WO2022151696A1 - 储能液冷系统及温度控制方法 - Google Patents

储能液冷系统及温度控制方法 Download PDF

Info

Publication number
WO2022151696A1
WO2022151696A1 PCT/CN2021/107882 CN2021107882W WO2022151696A1 WO 2022151696 A1 WO2022151696 A1 WO 2022151696A1 CN 2021107882 W CN2021107882 W CN 2021107882W WO 2022151696 A1 WO2022151696 A1 WO 2022151696A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
temperature
cooling
threshold
plate assembly
Prior art date
Application number
PCT/CN2021/107882
Other languages
English (en)
French (fr)
Inventor
施璐
谈文
陈佰爽
赵贺
Original Assignee
上海派能能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海派能能源科技股份有限公司 filed Critical 上海派能能源科技股份有限公司
Publication of WO2022151696A1 publication Critical patent/WO2022151696A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of liquid cooling, for example, to an energy storage liquid cooling system and a temperature control method.
  • lithium-ion batteries have gradually become the first choice for industrial and vehicle-mounted energy storage devices due to their high energy density characteristics and high commercialization prospects.
  • the capacity and power usage of the energy storage battery system gradually increases, the heat production of the energy storage battery system also increases gradually, resulting in a large temperature rise and high temperature of the energy storage battery system during operation.
  • the common cooling methods of energy storage systems are mainly natural cooling or forced air cooling, but the cooling power of these two cooling methods is limited and cannot meet the cooling requirements of large-capacity, high-power energy storage battery systems.
  • the present application provides an energy storage liquid cooling system and a temperature control method.
  • the temperature and flow rate of the liquid cooling module are adjusted to adjust the temperature and flow rate of the liquid cooling module.
  • the module can perform precise temperature regulation, has the characteristics of high integration and high flexibility, and can meet the heat dissipation requirements of large-capacity, high-power energy storage battery systems.
  • the application provides an energy storage liquid cooling system, the system includes: a cabinet, a detection module and a control module, the cabinet is provided with a liquid cooling module and an energy storage module, and the liquid cooling module is configured to store energy storage.
  • the module is cooled or heated, the detection module is arranged on the liquid cooling module and the energy storage module, and the detection module is arranged to detect the temperature and flow of the cooling liquid in the liquid cooling module and the working parameters of the energy storage module;
  • the control module is electrically connected with the liquid cooling module and the detection module, the control module is configured to receive a feedback signal from the detection module, and control the temperature and flow of the cooling liquid in the liquid cooling module according to the feedback signal, wherein the feedback signal includes The temperature and flow rate of the cooling liquid in the liquid cooling module, and the working parameters of the energy storage module.
  • the energy storage module includes at least one battery; when the at least one battery is multiple batteries, the multiple batteries are arranged side by side.
  • the liquid cooling module includes a water cooling machine and a water cooling plate assembly connected to the water cooling machine, the water cooling machine is electrically connected with the control module, and the control module is configured to control the liquid cooling machine according to the feedback signal in the following manner
  • the temperature and flow rate of the cooling liquid in the cold module control the water cooler according to the feedback signal, so that the water cooler adjusts the flow rate and temperature of the cooling liquid entering the inlet end of the water cooling plate assembly;
  • the water cooling plate assembly includes The liquid inlet manifold, the liquid outlet manifold and at least one water-cooling plate, each water-cooled plate is independently connected to the first end of the liquid inlet manifold and the first end of the liquid outlet manifold through two adapters.
  • the second end is connected to the first end of the water cooler, the second end of the liquid outlet manifold is connected to the second end of the water cooler, and the inlet end of the water cooling plate assembly is the first end of the liquid inlet manifold one end, the outlet end of the water-cooling plate assembly is the first end of the liquid outlet manifold;
  • the at least one water-cooling plate is in one-to-one correspondence with the at least one battery;
  • the at least one water-cooling plate is a plurality of water-cooling plates In the case where the plurality of water cooling plates are connected in parallel; the at least one water cooling plate is configured to cool or heat at least one battery.
  • the cooling and heating operations of the battery are adjusted by the temperature of the cooling liquid in the water-cooling plate.
  • the application does not require or limit the type of cooling liquid, and those skilled in the art can reasonably select the cooling liquid according to the actual operation.
  • the coolant is water.
  • the cooling liquid in the liquid inlet main pipe enters each water-cooled plate for heat exchange, the cooling liquid after heat exchange is collected to the liquid outlet main pipe, and returns to the water cooler through the liquid outlet main pipe.
  • This application does not require or limit the arrangement of the water-cooling plate and the battery.
  • Those skilled in the art can reasonably set the position of the water-cooling plate according to the arrangement of the battery. For example, the water-cooling plate is placed close to the battery.
  • the detection module includes an inlet temperature sensor, an inlet flow sensor and an outlet temperature sensor, the inlet temperature sensor and the inlet flow sensor are all arranged at the inlet end of the water cooling plate assembly, and the outlet temperature sensor is arranged at the water cooling plate assembly.
  • the detection module further includes a battery parameter detector arranged on the energy storage module, and the battery parameter detector is configured to detect the working parameters of the energy storage module.
  • the working parameters described in this application include parameters such as voltage, current, state of charge (Stage Of Charge, SOC), temperature, and charge-discharge rate of the energy storage module.
  • the control modules are independently electrically connected to the water cooler, the inlet temperature sensor, the inlet flow sensor and the battery parameter detector; the control module is configured to receive the feedback signal of the inlet temperature sensor, the feedback signal of the inlet flow sensor and the battery parameters.
  • the feedback signal of the detector and according to the feedback signal of the inlet temperature sensor, the feedback signal of the inlet flow sensor and the feedback signal of the battery parameter detector, the cooling mode of the water cooler is controlled, and the cooling mode includes a fast cooling mode, a fast cooling mode mode, intermediate cooling mode, slow cooling mode and heating mode.
  • the battery parameter detector is located in a cabinet.
  • the present application provides a temperature control method, using the energy storage liquid cooling system, the method includes: a detection module detects the working parameters of the energy storage module, and detects the temperature and flow of the cooling liquid in the liquid cooling module, and The feedback signal is sent to the control module, and the control module controls the temperature and flow of the cooling liquid in the liquid cooling module according to the feedback signal, so as to control the temperature of the energy storage module through the cooling liquid; wherein the feedback signal includes the energy storage module the operating parameters and the temperature and flow of the coolant within the liquid cooling module.
  • the detection module detects the working parameters of the energy storage module, and detects the temperature and flow of the cooling liquid in the liquid cooling module, and sends a feedback signal to the control module, which is based on the The feedback signal controls the temperature and flow of the cooling liquid in the liquid cooling module, so as to control the temperature of the energy storage module through the cooling liquid, including:
  • the battery parameter detector detects the temperature and charge-discharge rate of the energy storage module, the inlet temperature sensor and the inlet flow sensor detect the temperature and flow rate of the inlet end of the water-cooling plate assembly respectively, and the battery parameter detector sends the data of the battery parameter detector.
  • the feedback signal is sent to the control module, the inlet temperature sensor sends the feedback signal of the inlet temperature sensor to the control module, and the inlet flow sensor sends the feedback signal of the inlet flow sensor to the control module, and enters the S200:
  • the feedback signal of the battery parameter detector includes the temperature and charge-discharge rate of the energy storage module, the feedback signal of the inlet temperature sensor includes the temperature of the inlet end of the water-cooling plate assembly, and the inlet flow sensor includes all The flow rate at the inlet end of the water-cooled plate assembly;
  • the control module receives the feedback signal of the inlet temperature sensor, the feedback signal of the inlet flow sensor and the feedback signal of the battery parameter detector, the control module determines whether the temperature of the energy storage module is greater than or equal to the first battery temperature threshold, and the energy storage module Whether the charge-discharge rate of the energy storage module is less than the first rate threshold, in response to the judgment that the temperature of the energy storage module is greater than or equal to the first battery temperature threshold, and the charge-discharge rate of the energy storage module is less than the first rate threshold As a result, the control module starts the first processing mode and goes to S201; in response to the temperature of the energy storage module being less than the first battery temperature threshold, or the charging and discharging rate of the energy storage module being greater than or equal to the first rate threshold the judgment result, enter S300;
  • the control module determines whether the temperature of the inlet end of the water-cooling plate assembly is equal to the first water temperature threshold, and in response to the judgment result that the temperature of the inlet end of the water-cooling plate assembly is equal to the first water temperature threshold, enter S203; in response to the water-cooling plate assembly If the temperature of the inlet end of the component is not equal to the judgment result of the first water temperature threshold, go to S202;
  • control module controls the water cooler according to the feedback signal of the inlet temperature sensor and the feedback signal of the inlet flow sensor, so that the water cooler adjusts the temperature and flow rate of the cooling liquid entering the inlet end of the water cooling plate assembly until the The temperature of the inlet end of the water-cooling plate assembly is greater than or equal to the first water temperature threshold, and the process goes to S203;
  • control module determines whether the temperature of the energy storage module is greater than or equal to the second battery temperature threshold, and in response to the judgment result that the temperature of the energy storage module is greater than or equal to the second battery temperature threshold, enter S205; in response to If the judgment result that the temperature of the energy storage module is lower than the temperature threshold of the second battery is NO, go to S200;
  • control module controls the energy storage module to stop working, and the control module shuts down the system
  • the control module determines whether the temperature of the energy storage module is greater than or equal to the third battery temperature threshold, and in response to the determination result that the temperature of the energy storage module is greater than or equal to the third battery temperature threshold, the control module starts the second processing mode , enter S301; in response to the judgment result that the temperature of the energy storage module is less than the third battery temperature threshold, enter S400;
  • the control module determines whether the charge and discharge rate of the energy storage module is greater than or equal to the second rate threshold, and in response to the judgment result that the charge and discharge rate of the energy storage module is greater than or equal to the second rate threshold, enter S302; in response to If the judgment result of the charge-discharge rate of the energy storage module is less than the second rate threshold, go to S305;
  • the control module determines whether the temperature of the inlet end of the water-cooling plate assembly is equal to the first water temperature threshold according to the feedback signal of the inlet temperature sensor, and responds to the judgment result that the temperature of the inlet end of the water-cooling plate assembly is equal to the first water temperature threshold , go to S303; in response to the judgment result that the temperature of the inlet end of the water-cooling plate assembly is not equal to the first water temperature threshold, go to S304;
  • control module controls the water cooler to execute the quick cooling mode
  • control module controls the water cooler according to the feedback signal of the inlet temperature sensor and the feedback signal of the inlet flow sensor, so that the water cooler adjusts the temperature and flow of the cooling liquid entering the inlet end of the water cooling plate assembly until the water cooling plate The temperature of the cooling liquid at the inlet end of the component is greater than or equal to the first water temperature threshold, and the process goes to S303;
  • control module determines whether the temperature of the inlet end of the water-cooling plate assembly is equal to the second water temperature threshold, and in response to the judgment result that the temperature of the inlet end of the water-cooling plate assembly is equal to the second water temperature threshold, go to step S306; in response to the water cooling If the temperature of the inlet end of the plate assembly is not equal to the judgment result of the second water temperature threshold, go to S307;
  • control module controls the water cooler to execute the fast cooling mode
  • control module controls the water cooler according to the feedback signal of the inlet temperature sensor and the feedback signal of the inlet flow sensor, so that the water cooler adjusts the temperature and flow rate entering the inlet end of the water cooling plate assembly until the inlet of the water cooling plate assembly If the temperature of the end is greater than or equal to the second water temperature threshold, enter S306;
  • the control module determines whether the temperature of the energy storage module is greater than or equal to the fourth battery temperature threshold, and in response to the judgment result that the temperature of the energy storage module is greater than or equal to the fourth battery temperature threshold, the control module starts the third processing mode , enter S401; in response to the judgment result that the temperature of the energy storage module is less than the fourth battery temperature threshold, enter S500;
  • the control module determines whether the charge and discharge rate of the energy storage module is greater than or equal to a second rate threshold, and in response to the judgment result that the charge and discharge rate of the energy storage module is greater than or equal to the second rate threshold, enter S402; in response to If the judgment result of the charge-discharge rate of the energy storage module is less than the second rate threshold, go to S405;
  • control module determines whether the temperature of the inlet end of the water-cooling plate assembly is equal to the second water temperature threshold, and in response to the judgment result that the temperature of the inlet end of the water-cooling plate assembly is equal to the second water temperature threshold, go to S403; in response to the water-cooling plate assembly If the temperature of the inlet end of the component is not equal to the judgment result of the second water temperature threshold, go to S404;
  • control module controls the water cooler to execute the intercooling mode
  • the control module controls the water cooler according to the feedback signal of the inlet temperature sensor and the feedback signal of the inlet flow sensor, so that the water cooler adjusts the temperature and flow rate of the cooling liquid entering the inlet end of the water cooling plate assembly until the The temperature of the inlet end of the water-cooling plate assembly is greater than or equal to the second water temperature threshold, and the process goes to S403;
  • the control module determines whether the temperature of the inlet end of the water-cooling plate assembly is equal to the third water temperature threshold, and in response to the judgment result that the temperature of the inlet end of the water-cooling plate assembly is equal to the third water temperature threshold, go to step S406; in response to the water cooling If the temperature of the inlet end of the plate assembly is not equal to the judgment result of the third water temperature threshold, go to S407;
  • control module controls the water cooler to execute the slow cooling mode
  • control module controls the water cooler according to the feedback signal of the inlet temperature sensor and the feedback signal of the inlet flow sensor, so that the water cooler adjusts the temperature and flow of the cooling liquid entering the inlet end of the water cooling plate assembly until the water cooling The temperature of the inlet end of the plate assembly is greater than or equal to the third water temperature threshold, and the process goes to S406;
  • control module controls the energy storage module to charge, and controls the water cooler, so that the water cooler adjusts the temperature and flow rate of the cooling liquid entering the inlet of the water-cooling plate assembly, until the temperature of the inlet end of the water-cooling plate assembly is greater than or equal to the fourth water temperature threshold, control The module controls the water cooler to execute the heating mode;
  • the first battery temperature threshold is less than the second battery temperature threshold and greater than the third battery temperature threshold, the third battery temperature threshold is less than the first battery temperature threshold; the first rate threshold is less than the second magnification threshold; the first water temperature threshold is less than the second water temperature threshold, the second water temperature threshold is less than the third water temperature threshold, and the third water temperature threshold is less than the fourth water temperature threshold; The first flow threshold is greater than the second flow threshold.
  • the temperature at the inlet end of the water-cooling plate assembly is the first water temperature threshold
  • the flow rate at the inlet end of the water-cooling plate assembly is the first flow rate threshold
  • the temperature at the inlet end of the water-cooling plate assembly is the second water temperature threshold
  • the flow rate at the inlet end of the water-cooling plate assembly is the first flow rate threshold
  • the temperature at the inlet end of the water-cooling plate assembly is the second water temperature threshold
  • the flow rate at the inlet end of the water-cooling plate assembly is the second flow rate threshold
  • the temperature at the inlet of the water-cooling plate assembly is the third water temperature threshold, and the flow rate at the inlet of the water-cooling plate assembly is the second flow threshold.
  • the temperature at the inlet end of the water-cooling plate assembly is the fourth water temperature threshold
  • the flow rate at the inlet end of the water-cooling plate assembly is the first flow rate threshold
  • the range of the first water temperature threshold is 14°C to 16°C, for example, the first water temperature threshold is 14.0°C, 14.5°C, 15.0°C, 15.5°C or 16.0°C.
  • the second water temperature threshold is 19°C to 21°C, for example, the second water temperature threshold is 19.0°C, 19.5°C, 20.0°C, 20.5°C or 21.0°C.
  • the third water temperature threshold is 24°C to 26°C, for example, the third water temperature threshold is 24.0°C, 24.5°C, 25.0°C, 25.5°C or 26°C.
  • the fourth water temperature threshold is 45°C to 47°C, for example, the fourth water temperature threshold is 45.0°C, 45.5°C, 46.0°C, 46.5°C or 47.0°C.
  • the first battery temperature threshold ranges from 54°C to 56°C, for example, the first battery temperature threshold is 54.0°C, 54.5°C, 55.0°C, 55.5°C or 56.0°C.
  • the temperature threshold of the second battery is 59°C to 61°C, for example, the temperature threshold of the second battery is 59.0°C, 59.5°C, 60.0°C, 60.5°C or 61.0°C.
  • the third battery temperature threshold is 44°C ⁇ 46°C, for example, the third battery temperature threshold is 44.0°C, 44.5°C, 45.0°C, 45.5°C or 46.0°C.
  • the fourth battery temperature threshold is 2°C to 4°C, for example, the fourth battery temperature threshold is 2.0°C, 2.5°C, 3.0°C, 3.5°C or 4.0°C.
  • the first magnification threshold is 1.5 ⁇ 2.0, for example, the first magnification threshold is 1.5, 1.6, 1.7, 1.8, 1.9 or 2.0.
  • the second magnification threshold is 0.5 ⁇ 1.0, for example, the second magnification threshold is 0.5, 0.6, 0.7, 0.8, 0.9 or 1.0.
  • the predetermined duration is 25min-35min, for example, the duration is 25min, 26min, 27min, 28min, 29min, 30min, 31min, 32min, 33min, 34min or 35min.
  • the range of the first flow threshold is 90% to 100% of the maximum flow rate of the cooling liquid entering the inlet end of the water-cooling plate assembly. 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% of maximum flow.
  • the range of the second flow threshold is 40% to 60% of the maximum flow rate of the cooling liquid entering the inlet end of the water-cooling plate assembly.
  • the second flow threshold value is 40% of the maximum flow rate of the cooling liquid entering the inlet end of the water-cooling plate assembly. %, 42%, 44%, 46%, 48%, 50%, 52%, 54%, 56%, 58%, or 60%.
  • FIG. 1 is a schematic structural diagram of an energy storage liquid cooling system provided in an embodiment of the application.
  • FIG. 3 is a flowchart of a first processing mode provided in an embodiment of the present application.
  • FIG. 4 is a flowchart of a second processing mode provided in an embodiment of the present application.
  • FIG. 5 is a flowchart of a third processing mode provided in an embodiment of the present application.
  • the terms "arranged”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral connection ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be an internal connection between two components.
  • the meanings of the above terms in the present application can be understood according to the situation.
  • CN109193076A discloses a water circulation cooling system for handling abnormal temperature rise of lithium ion battery pack, the system includes a battery pack temperature monitoring and warning part, a circulating water cooling battery pack part and a circulating water water temperature monitoring and cooling part.
  • a battery pack temperature monitoring and warning part In the process of charging, discharging, storing and transporting lithium-ion batteries, it provides a safer charging and discharging environment for the charging and discharging process of lithium-ion batteries, and gives timely warning before the thermal runaway of battery charging and discharging.
  • the temperature of the battery pack is adjusted by detecting the temperature of the circulating water and the battery pack, but the application does not consider the influence of the battery parameters, so there is an adjustment error.
  • CN109888432A discloses a lithium-ion battery thermal management system including spray cooling and phase change material heat storage, the system includes a battery box and a battery, and also includes a controller, a temperature sensor, a heat pipe, a heat preservation chamber and a spray chamber.
  • the temperature sensor is arranged in the battery box, one end of the heat pipe is in contact with the battery, and the two bifurcated sections of the heat pipe extend into the heat preservation chamber and the spray chamber respectively, the spray chamber is provided with a spray mechanism, and the heat preservation chamber is provided with a spray mechanism.
  • a container, a phase change material and a lifting mechanism are arranged indoors.
  • the system structure of this application is complicated, and there is still a problem that only the temperature of the battery is detected, which is likely to cause adjustment errors.
  • Liquid cooling systems all have problems such as complex structure and poor adjustment performance. Therefore, how to ensure that the liquid cooling system has the characteristics of simple structure and easy operation, but also has the characteristics of small adjustment error and energy saving, has become an urgent problem to be solved.
  • the technical solutions of the present application will be described below through embodiments.
  • the present application provides an energy storage liquid cooling system.
  • the system includes a cabinet 1, a detection module and a control module 3.
  • the cabinet 1 is provided with a liquid cooling module and an energy storage module.
  • Module 2 the liquid cooling module is set to cool or heat the energy storage module 2
  • the detection module is set on the liquid cooling module and the energy storage module 2
  • the detection module is set to detect the temperature and flow of the cooling liquid in the liquid cooling module, and
  • the control module 3 is electrically connected with the liquid cooling module and the detection module, and the control module 3 is set to receive the feedback signal of the detection module, and control the temperature and flow of the cooling liquid in the liquid cooling module according to the feedback signal .
  • the temperature and flow rate of the cooling liquid in the liquid cooling module are adjusted in real time.
  • the temperature of the energy storage module 2 is precisely regulated, and the liquid cooling module has heating and cooling functions to adapt to various working states of the energy storage module 2.
  • the energy storage liquid cooling system of the present application has high integration, high flexibility and Simple structure and so on.
  • the energy storage module 2 includes at least one battery arranged side by side
  • the liquid cooling module includes a cyclically connected water cooler 5 and a water cooling plate assembly 4
  • the water cooling plate assembly 4 includes a liquid inlet manifold, a liquid outlet manifold and at least one water cooling plate.
  • Each water cooling plate The liquid inlet main pipe and the liquid outlet main pipe are independently connected through the adapter.
  • the water-cooling plate is set to cool or heat the battery.
  • At least one water-cooling plate is connected in parallel, and the water-cooling plate corresponds to the battery one by one.
  • the liquid enters each water-cooling plate for heat exchange, and the cooling liquid after heat exchange is collected into the liquid outlet main pipe, and returned to the water cooler through the liquid outlet main pipe.
  • the cooling liquid in the water cooling plate is water.
  • the greater the flow rate of the cooling liquid the higher the heat exchange efficiency of the battery, and the higher the temperature consistency among the plurality of batteries.
  • the number of water-cooling plates is multiple, the number of batteries is multiple, each battery corresponds to a water-cooling plate, and the multiple water-cooling plates are connected in parallel through a pipeline system to form multiple independent liquid-cooling circuits, ensuring that multiple The flow of the branches is reasonably distributed, so as to achieve better temperature consistency among multiple batteries.
  • the detection module includes an inlet temperature sensor, an inlet flow sensor and an outlet temperature sensor.
  • the inlet temperature sensor and the inlet flow sensor are both arranged at the inlet end of the water cooling plate assembly 4
  • the outlet temperature sensor is arranged at the outlet end of the water cooling plate assembly 4 .
  • the detection module also includes a battery parameter detector 6 arranged on the energy storage module 2, and the battery parameter detector 6 is configured to detect the working parameters of the energy storage module 2, for example, the voltage, current, SOC, temperature and charge of the energy storage module 2. parameters such as discharge rate.
  • the battery parameter detector 6 is located in the cabinet 1 .
  • the control module 3 is electrically connected to the water cooler 5, the inlet temperature sensor, the inlet flow sensor and the battery parameter detector 6; the control module 3 receives the feedback signals of the inlet temperature sensor, the inlet flow sensor and the battery parameter detector 6, and according to these feedback signals , to control the cooling mode of the water cooler 5 .
  • Cooling modes include fast cooling mode, fast cooling mode, intermediate cooling mode, slow cooling mode and heating mode.
  • the present application effectively controls the temperature of the battery by controlling the working mode of the water cooler 5.
  • the liquid cooling system also has a heating function, which can heat the cooling liquid in a low temperature environment, so as to realize the low temperature heating of the battery and improve the low temperature environment. The charging and discharging performance of the battery.
  • the outlet temperature sensor is only used for monitoring personnel monitoring, and does not participate in the control of the system.
  • An outlet temperature sensor can also be optional.
  • the present application provides a temperature control method, which adopts the above-mentioned energy storage liquid cooling system, as shown in FIG. 2 , FIG. 3 , FIG. 4 and FIG. 5 , and the control method includes the following: step.
  • the battery parameter detector 6 detects the temperature and charge-discharge rate of the energy storage module 2
  • the inlet temperature sensor and the inlet flow sensor detect the temperature and flow of the inlet end of the water-cooling plate assembly 4 respectively, and enter S200.
  • the control module 3 receives the feedback signal of the inlet temperature sensor, the feedback signal of the inlet flow sensor and the feedback signal of the battery parameter detector 6, determines whether the temperature of the energy storage module 2 is greater than or equal to the first battery temperature threshold, and the energy storage module Whether the charge and discharge rate of 2 is less than the first rate threshold, if the temperature of the energy storage module 2 is greater than or equal to the first battery temperature threshold, and the charge and discharge rate of the energy storage module 2 is less than the first rate threshold, the control module 3 starts the first rate threshold. In the processing mode, go to step S201; if the temperature of the energy storage module 2 is less than the first battery temperature threshold, or the charge/discharge rate of the energy storage module 2 is greater than or equal to the first rate threshold, go to step S300.
  • the control module 3 judges whether the temperature of the inlet end of the water-cooling plate assembly 4 is equal to the first water temperature threshold, if the temperature of the inlet end of the water-cooling plate assembly 4 is equal to the first water temperature threshold, enter S203; if the temperature of the inlet end of the water-cooling plate assembly 4 is not equal to the first water temperature threshold For the first water temperature threshold, go to S202.
  • control module 3 controls the water cooler 5, adjusts the temperature and flow rate of the cooling liquid entering the inlet end of the water cooling plate assembly 4, the water cooler 5 enters the quick cooling mode, and goes to S203.
  • the control module 3 determines whether the temperature of the energy storage module 2 is greater than or equal to the second battery temperature threshold, if the temperature of the energy storage module 2 is greater than or equal to the second battery temperature threshold, enter S205; if the temperature of the energy storage module 2 is less than or equal to the second battery temperature threshold Second battery temperature threshold, enter S200.
  • the control module 3 determines whether the temperature of the energy storage module 2 is greater than or equal to the third battery temperature threshold, and if the temperature of the energy storage module 2 is greater than or equal to the third battery temperature threshold, the control module 3 starts the second processing mode, and proceeds to step S301 ; If the temperature of the energy storage module 2 is less than the third battery temperature threshold, go to step S400.
  • the control module 3 judges whether the charge and discharge rate of the energy storage module 2 is greater than or equal to the second rate threshold, if the charge and discharge rate of the energy storage module 2 is greater than or equal to the second rate threshold, enter S302; The discharge rate is less than the second rate threshold, and the process proceeds to S305.
  • the control module 3 judges whether the temperature of the inlet end of the water cooling plate assembly 4 is equal to the first water temperature threshold, if the temperature of the inlet end of the water cooling plate assembly 4 is equal to the first water temperature threshold, enter S303; if the temperature of the inlet end of the water cooling plate assembly 4 is not equal to the first water temperature threshold For the first water temperature threshold, go to S304.
  • control module 3 controls the water cooler 5 to adjust the temperature and flow rate of the cooling liquid entering the inlet end of the water cooling plate assembly 4 , the water cooler 5 enters the quick cooling mode, and then goes to S303 .
  • the control module 3 judges whether the temperature of the inlet end of the water cooling plate assembly 4 is equal to the second water temperature threshold, if the temperature of the inlet end of the water cooling plate assembly 4 is equal to the second water temperature threshold, go to step S306; if the temperature of the inlet end of the water cooling plate assembly 4 is not equal to the second water temperature threshold If it is equal to the second water temperature threshold, go to step S307.
  • control module 3 controls the water cooler 5 to adjust the temperature and flow rate of the cooling liquid entering the inlet end of the water cooling plate assembly 4 , the water cooler 5 enters the fast cooling mode, and goes to S306 .
  • the control module 3 determines whether the temperature of the energy storage module 2 is greater than or equal to the fourth battery temperature threshold, and if the temperature of the energy storage module 2 is greater than or equal to the fourth battery temperature threshold, the control module 3 starts the third processing mode, and proceeds to S401; If the temperature of the energy storage module 2 is lower than the fourth battery temperature threshold, go to S500.
  • the control module 3 determines whether the charge-discharge rate of the energy storage module 2 is greater than or equal to the second rate threshold. If the charge-discharge rate of the energy storage module 2 is greater than or equal to the second rate threshold, go to S402; The charge-discharge rate is less than the second rate threshold, and the process proceeds to S405.
  • the control module 3 judges whether the temperature of the inlet end of the water-cooling plate assembly 4 is equal to the second water temperature threshold, if the temperature of the inlet end of the water-cooling plate assembly 4 is equal to the second water temperature threshold, go to step S403; If the temperature is not equal to the second water temperature threshold, go to step S404.
  • the water cooler 5 executes the intercooling mode.
  • control module 3 controls the water cooler 5, adjusts the temperature and flow rate of the cooling liquid entering the inlet end of the water cooling plate assembly 4, the water cooler 5 enters the intermediate cooling mode, and goes to S403.
  • the control module 3 judges whether the temperature of the inlet end of the water cooling plate assembly 4 is equal to the third water temperature threshold, if the temperature of the inlet end of the water cooling plate assembly 4 is equal to the third water temperature threshold, go to S406; if the temperature of the inlet end of the water cooling plate assembly 4 is not equal to the third water temperature threshold For the third water temperature threshold, go to S407.
  • control module 3 controls the water cooler 5 to adjust the temperature and flow rate of the cooling liquid entering the inlet end of the water cooling plate assembly 4 , the water cooler 5 enters the slow cooling mode, and goes to S406 .
  • the control module 3 controls the energy storage module 2 to charge, and controls the water cooler 5 to adjust the temperature and flow of the cooling liquid entering the inlet of the water cooling plate assembly 4, and the water cooler 5 enters the heating mode.
  • the temperature at the inlet end of the water cooling plate assembly 4 is the first water temperature threshold, and the flow rate at the inlet end of the water cooling plate assembly 4 is the first flow rate threshold.
  • the temperature at the inlet end of the water-cooling plate assembly 4 is the second water temperature threshold, and the flow rate at the inlet end of the water-cooling plate assembly 4 is the first flow rate threshold.
  • the temperature at the inlet end of the water-cooling plate assembly 4 is the second water temperature threshold, and the flow rate at the inlet end of the water-cooling plate assembly 4 is the second flow rate threshold.
  • the temperature at the inlet end of the water cooling plate assembly 4 is the third water temperature threshold, and the flow rate at the inlet end of the water cooling plate assembly 4 is the second flow threshold value.
  • the temperature at the inlet end of the water-cooling plate assembly 4 is the fourth water temperature threshold, and the flow rate at the inlet end of the water-cooling plate assembly 4 is the first flow rate threshold.
  • the first water temperature threshold ranges from 14°C to 16°C
  • the second water temperature threshold ranges from 19°C to 21°C
  • the third water temperature threshold ranges from 24°C to 26°C
  • the fourth water temperature threshold ranges from 29°C to 31°C. °C.
  • the range of the first battery temperature threshold is 54°C to 56°C
  • the range of the second battery temperature threshold is 59°C to 61°C
  • the range of the third battery temperature threshold is 44°C to 46°C
  • the range of the fourth battery temperature threshold is 2°C ⁇ 4°C.
  • the first magnification threshold is 1.5-2.0
  • the second magnification threshold is 0.5-1.0
  • the certain time is 25-35 minutes.
  • the range of the first flow threshold is 90% to 100% of the maximum flow of the cooling liquid entering the water-cooled plate assembly 4
  • the range of the second flow threshold is 40% to 60% of the maximum flow of the cooling liquid entering the water-cooled plate assembly 4 .
  • This embodiment provides an energy storage liquid cooling system, which is based on the energy storage liquid cooling system described in one embodiment, wherein the energy storage module 2 includes ten batteries, the water cooling plate assembly 4 includes ten water cooling plates, and the batteries are connected to ten batteries. One-to-one correspondence with the water-cooled plates.
  • This embodiment also provides a method for temperature control of the energy storage module 2 using the above-mentioned energy storage liquid cooling system. Based on the control method provided in one embodiment, the first water temperature threshold is 15°C, and the second water temperature threshold is 15°C. is 20°C, the third water temperature threshold is 25°C, and the fourth water temperature threshold is 46°C.
  • the first battery temperature threshold is 55°C
  • the second battery temperature threshold is 60°C
  • the third battery temperature threshold is 45°C
  • the fourth battery temperature threshold is 3°C.
  • the first magnification threshold is 2, and the second magnification threshold is 1.
  • the certain time is 30min.
  • the first flow threshold is 100% of the maximum flow of the cooling liquid entering the water-cooled plate assembly 4
  • the second flow threshold is 50% of the maximum flow of the cooling liquid entering the water-cooled plate assembly 4 .
  • This embodiment provides an energy storage liquid cooling system, which is based on the energy storage liquid cooling system described in one embodiment, wherein the energy storage module 2 includes six batteries, the water cooling plate assembly 4 includes six water cooling plates, and the batteries and One-to-one correspondence with the water-cooled plates.
  • This embodiment also provides a method for controlling the temperature of the energy storage module 2 by using the above-mentioned energy storage liquid cooling system.
  • the first water temperature threshold is 14°C
  • the second water temperature threshold is 14°C. is 19°C
  • the third water temperature threshold is 24°C
  • the fourth water temperature threshold is 45°C.
  • the first battery temperature threshold is 54°C
  • the second battery temperature threshold is 59°C
  • the third battery temperature threshold is 44°C
  • the fourth battery temperature threshold is 2°C.
  • the first magnification threshold is 1.5, and the second magnification threshold is 0.5.
  • the certain time is 25min.
  • the first flow threshold is 95% of the maximum flow of the cooling liquid entering the water-cooled plate assembly 4
  • the second flow threshold is 40% of the maximum flow of the cooling liquid entering the water-cooled plate assembly 4 .
  • This embodiment provides an energy storage liquid cooling system, which is based on the energy storage liquid cooling system described in one embodiment, wherein the energy storage module 2 includes ten batteries, the water cooling plate assembly 4 includes ten water cooling plates, and the batteries are connected to ten batteries. One-to-one correspondence with the water-cooled plates.
  • This embodiment also provides a method for temperature control of the energy storage module 2 by using the above-mentioned energy storage liquid cooling system.
  • the first water temperature threshold is 16°C
  • the second water temperature threshold is 16°C. is 21°C
  • the third water temperature threshold is 26°C
  • the fourth water temperature threshold is 47°C.
  • the first battery temperature threshold is 56°C
  • the second battery temperature threshold is 61°C
  • the third battery temperature threshold is 46°C
  • the fourth battery temperature threshold is 4°C.
  • the first magnification threshold is 2.0, and the second magnification threshold is 1.0. In S203, the certain time is 35min.
  • the first flow threshold is 90% of the maximum flow of the cooling liquid entering the water-cooled plate assembly 4
  • the second flow threshold is 60% of the maximum flow of the cooling liquid entering the water-cooled plate assembly 4 .
  • the present application detects the working parameters of the energy storage module 2 and adjusts the liquid cooling module through the control module 3 to adjust the temperature and flow of the cooling liquid in the liquid cooling module in real time.
  • the temperature of the energy storage module 2 is precisely regulated, and the liquid cooling module has heating and cooling functions to adapt to various working states of the energy storage module 2.
  • the energy storage liquid cooling system of the present application has high integration, high flexibility and Simple structure and so on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供了一种储能液冷系统及温度控制方法,所述系统包括:机柜、检测模块和控制模块,所述机柜内设置有液冷模块和储能模块,所述液冷模块设置为对储能模块进行降温或加热,所述检测模块设置于液冷模块和储能模块上,所述检测模块设置为检测液冷模块内冷却液的温度和流量、以及储能模块的工作参数;所述的控制模块分别与液冷模块和检测模块电性连接,所述控制模块设置为接收检测模块的反馈信号,并根据反馈信号控制液冷模块内的冷却液的温度和流量。

Description

储能液冷系统及温度控制方法
本申请要求在2021年01月12日提交中国专利局、申请号为202110035587.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及液冷技术领域,例如涉及一种储能液冷系统及温度控制方法。
背景技术
在多种储能技术中,锂离子电池以高能量密度特性和高商业化前景逐渐成为工业和车载储能装置的首选。但是随着储能电池系统的容量及使用功率逐渐增大,储能电池系统的产热量也逐渐增大,从而导致储能电池系统在工作过程中温升大、温度高。
由于锂离子电池的综合性能对工作温度比较敏感,电池长期工作在高温下时,会降低电池的功率性能,加速电池老化,影响储能系统的循环寿命。储能系统常见的冷却方式主要为自然冷却或强制风冷,但这两种冷却方式的散热功率有限,无法满足大容量、高功率的储能电池系统的散热需求。
发明内容
本申请提供一种储能液冷系统及温度控制方法,通过检测储能模块的电池参数,以及液冷模块的温度和流量,从而调节液冷模块的温度和流量,对不同使用状态下的储能模块进行精准的温度调节,具有集成度高和灵活性高等特点,且可以满足大容量、高功率的储能电池系统的散热需求。
本申请提供了一种储能液冷系统,所述的系统包括:机柜、检测模块和控制模块,所述机柜内设置有液冷模块和储能模块,所述液冷模块设置为对储能模块进行降温或加热,所述检测模块设置于液冷模块和储能模块上,所述检测模块设置为检测液冷模块内冷却液的温度和流量、以及储能模块的工作参数;所述的控制模块与液冷模块和检测模块电性连接,所述控制模块设置为接收检测模块的反馈信号,并根据反馈信号控制液冷模块内的冷却液的温度和流量,其中,所述反馈信号包括所述液冷模块内的冷却液的温度和流量、以及所述储能模块的工作参数。
可选地,所述的储能模块包括至少一块电池;在至少一块电池为多块电池的情况下,多块电池并排设置。
所述液冷模块包括水冷机和与水冷机连接的水冷板组件,所述水冷机与所述控制模块电性连接,所述控制模块是设置为通过如下方式根据所述反馈信号控制所述液冷模块内的冷却液的温度和流量:根据所述反馈信号控制水冷机以使得所述水冷机调节进入所述水冷板组件的进口端的冷却液的流量和温度;其中,所述水冷板组件包括进液总管、出液总管和至少一个水冷板,每个水冷板通过两个转接头分别独立接入所述进液总管的第一端和出液总管的第一端,所述进液总管的第二端与所述水冷机的第一端连接,所述出液总管的第二端与所述水冷机的第二端连接,所述水冷板组件的进口端为所述进液总管的第一端,所述水冷板组件的出口端为所述出液总管的第一端;所述至少一个水冷板与所述至少一块电池一一对应;在所述至少一个水冷板为多个水冷板的情况下,所述多个水冷板之间并联连接;所述至少一个水冷板设置为对至少一块电池进行降温或加热。
本申请中对电池进行降温和加热操作,均通过水冷板内的冷却液的温度进行调节,本申请对冷却液的种类不做要求和限定,本领域技术人员可根据实际操作合理选择冷却液的种类,例如,冷却液为水。
进液总管内的冷却液进入每个水冷板进行换热,换热后的冷却液汇集至出液总管,并通过出液总管返回水冷机。
本申请对水冷板与电池的排布方式不做要求和限定,本领域技术人员可根据电池的排布方式合理设置水冷板的位置,例如,水冷板紧贴电池设置。
可选地,所述检测模块包括进口温度传感器、进口流量传感器和出口温度传感器,所述进口温度传感器和进口流量传感器均设置于水冷板组件的进口端,所述出口温度传感器设置于水冷板组件的出口端;所述检测模块还包括设置于储能模块上的电池参数检测器,所述电池参数检测器设置为检测储能模块的工作参数。
本申请中所述的工作参数包括储能模块的电压、电流、荷电状态(Stage Of Charge,SOC)、温度和充放电倍率等参数。
所述的控制模块分别独立电性连接水冷机、进口温度传感器、进口流量传感器和电池参数检测器;所述控制模块是设置为接收进口温度传感器的反馈信号、进口流量传感器的反馈信号和电池参数检测器的反馈信号,并根据进口温度传感器的反馈信号、进口流量传感器的反馈信号和电池参数检测器的反馈信号,控制所述水冷机的制冷模式,所述制冷模式包括速冷模式、快冷模式、中冷模式、慢冷模式和加热模式。
可选地,所述电池参数检测器位于机柜内。
本申请提供给了一种温度控制方法,采用所述储能液冷系统,所述方法包括:检测模块检测储能模块的工作参数,并检测液冷模块内的冷却液的温度和流量,并将反馈信号发送至控制模块,控制模块根据反馈信号控制液冷模块内的冷却液的温度和流量,以通过冷却液对储能模块进行温度控制;其中,所述反馈信号包括所述储能模块的工作参数和所述液冷模块内的冷却液的温度和流量。
可选地,所述检测模块检测所述储能模块的工作参数,并检测所述液冷模块内的冷却液的温度和流量,并将反馈信号发送至所述控制模块,所述控制模块根据所述反馈信号控制所述液冷模块内的冷却液的温度和流量,以通过所述冷却液对所述储能模块进行温度控制,包括:
S100、电池参数检测器检测储能模块的温度和充放电倍率,进口温度传感器和进口流量传感器分别检测水冷板组件的进口端的温度和流量,所述电池参数检测器发送所述电池参数检测器的反馈信号至所述控制模块、所述进口温度传感器发送所述进口温度传感器的反馈信号至所述控制模块且所述进口流量传感器发送所述进口流量传感器的反馈信号发送至所述控制模块,进入S200;所述电池参数检测器的反馈信号包括所述储能模块的温度和充放电倍率,所述进口温度传感器的反馈信号包括所述水冷板组件的进口端的温度,所述进口流量传感器包括所述水冷板组件的进口端的流量;
S200、控制模块接收进口温度传感器的反馈信号、进口流量传感器的反馈信号和电池参数检测器的反馈信号,控制模块判断储能模块的温度是否大于等于第一电池温度阈值,以及所述储能模块的充放电倍率是否小于第一倍率阈值,响应于所述储能模块的温度大于或等于所述第一电池温度阈值,以及所述储能模块的充放电倍率小于所述第一倍率阈值的判断结果,控制模块开始第一处理模式,进入S201;响应于所述储能模块的温度小于所述第一电池温度阈值,或所述储能模块的充放电倍率大于或等于所述第一倍率阈值的判断结果,进入S300;
S201、控制模块判断水冷板组件的进口端的温度是否等于第一水温阈值,响应于所述水冷板组件的进口端的温度等于所述第一水温阈值的判断结果,进入S203;响应于所述水冷板组件的进口端的温度不等于所述第一水温阈值的判断结果,进入S202;
S202、控制模块根据所述进口温度传感器的反馈信号和所述进口流量传感器的反馈信号,控制水冷机,使所述水冷机调节进入水冷板组件的进口端的冷却液的温度和流量,直至所述水冷板组件的进口端的温度大于或等于所述第一水温阈值,进入S203;
S203、控制模块控制水冷机执行速冷模式设定时长后,进入S204;
S204、所述控制模块判断储能模块的温度是否大于或等于第二电池温度阈值,响应于所述储能模块的温度大于或等于所述第二电池温度阈值的判断结果,进入S205;响应于所述储能模块的温度小于所述第二电池温度阈值的判断结果否,进入S200;
S205、控制模块控制储能模块停止工作,控制模块关闭系统;
S300、控制模块判断储能模块的温度是否大于或等于第三电池温度阈值,响应于所述储能模块的温度大于或等于所述第三电池温度阈值的判断结果,控制模块开始第二处理模式,进入S301;响应于所述储能模块的温度小于所述第三电池温度阈值的判断结果,进入S400;
S301、控制模块判断储能模块的充放电倍率是否大于或等于第二倍率阈值,响应于所述储能模块的充放电倍率大于或等于所述第二倍率阈值的判断结果,进入S302;响应于所述储能模块的充放电倍率小于所述第二倍率阈值的判断结果,进入S305;
S302、控制模块根据所述进口温度传感器的反馈信号,判断水冷板组件的进口端的温度是否等于第一水温阈值,响应于所述水冷板组件的进口端的温度等于所述第一水温阈值的判断结果,进入S303;响应于所述水冷板组件的进口端的温度不等于所述第一水温阈值的判断结果,进入S304;
S303、控制模块控制水冷机执行速冷模式;
S304、控制模块根据所述进口温度传感器的反馈信号和所述进口流量传感器的反馈信号,控制水冷机,使水冷机调节进入水冷板组件的进口端的冷却液的温度和流量,直至所述水冷板组件的进口端的冷却液的温度大于或等于所述第一水温阈值,进入S303;
S305、控制模块判断水冷板组件的进口端的温度是否等于第二水温阈值,响应于所述水冷板组件的进口端的温度等于所述第二水温阈值的判断结果,进入步骤S306;响应于所述水冷板组件的进口端的温度不等于所述第二水温阈值的判断结果,进入S307;
S306、控制模块控制水冷机执行快冷模式;
S307、控制模块根据所述进口温度传感器的反馈信号和所述进口流量传感器的反馈信号,控制水冷机,使水冷机调节进入水冷板组件的进口端的温度和流量,直至所述水冷板组件的进口端的温度大于或等于所述第二水温阈值,进入S306;
S400、控制模块判断储能模块的温度是否大于或等于第四电池温度阈值,响应于所述储能模块的温度大于或等于所述第四电池温度阈值的判断结果,控制模块开始第三处理模式,进入S401;响应于所述储能模块的温度小于所述第四电池温度阈值的判断结果,进入S500;
S401、控制模块判断储能模块的充放电倍率是否大于或等于第二倍率阈值,响应于所述储能模块的充放电倍率大于或等于所述第二倍率阈值的判断结果,进入S402;响应于所述储能模块的充放电倍率小于所述第二倍率阈值的判断结果,进入S405;
S402、控制模块判断水冷板组件的进口端的温度是否等于第二水温阈值,响应于所述水冷板组件的进口端的温度等于所述第二水温阈值的判断结果,进入S403;响应于所述水冷板组件的进口端的温度不等于所述第二水温阈值的判断结果,进入S404;
S403、控制模块控制水冷机执行中冷模式;
S404、控制模块根据所述进口温度传感器的反馈信号和所述进口流量传感器的反馈信号,控制水冷机,使所述水冷机调节进入水冷板组件的进口端的冷却液的温度和流量,直至所述水冷板组件的进口端的温度大于或等于所述第二水温阈值,进入S403;
S405、控制模块判断水冷板组件的进口端的温度是否等于第三水温阈值,响应于所述水冷板组件的进口端的温度等于所述第三水温阈值的判断结果,进入步骤S406;响应于所述水冷板组件的进口端的温度不等于所述第三水温阈值的判断结果,进入S407;
S406、控制模块控制水冷机执行慢冷模式;
S407、控制模块根据所述进口温度传感器的反馈信号和所述进口流量传感器的反馈信号,控制水冷机,使水冷机调节进入水冷板组件的进口端的冷却液的的温度和流量,直至所述水冷板组件的进口端的温度大于或等于所述第三水温阈值,进入S406;
S500、控制模块控制储能模块进行充电,并控制水冷机,使水冷机调节进入水冷板组件进口的冷却液的温度和流量,直至水冷板组件的进口端的温度大于或等于第四水温阈值,控制模块控制水冷机执行加热模式;
其中,所述第一电池温度阈值小于所述第二电池温度阈值且大于所述第三电池温度阈值,所述第三电池温度阈值小于所述第一电池温度阈值;所述第一倍率阈值小于所述第二倍率阈值;所述第一水温阈值小于所述第二水温阈值,所述第二水温阈值小于所述第三水温阈值,所述第三水温阈值小于所述第四水 温阈值;所述第一流量阈值大于所述第二流量阈值。
可选地,所述的速冷模式中,所述水冷板组件的进口端的温度为第一水温阈值,水冷板组件的进口端的流量为第一流量阈值。
所述快冷模式中,所述水冷板组件的进口端的温度为第二水温阈值,水冷板组件的进口端的流量为第一流量阈值。
所述中冷模式中,所述水冷板组件的进口端的温度为第二水温阈值,水冷板组件的进口端的流量为第二流量阈值。
所述慢冷模式中,所述水冷板组件的进口端的温度为第三水温阈值,水冷板组件的进口端的流量为第二流量阈值。
所述加热模式中,所述水冷板组件的进口端的温度为第四水温阈值,所述水冷板组件的进口端的流量为第一流量阈值。
可选地,所述的第一水温阈值的范围为14℃~16℃,例如,第一水温阈值为14.0℃、14.5℃、15.0℃、15.5℃或16.0℃。
所述的第二水温阈值为19℃~21℃,例如,第二水温阈值为19.0℃、19.5℃、20.0℃、20.5℃或21.0℃。
所述的第三水温阈值为24℃~26℃,例如,第三水温阈值为24.0℃、24.5℃、25.0℃、25.5℃或26℃。
所述的第四水温阈值为45℃~47℃,例如,第四水温阈值为45.0℃、45.5℃、46.0℃、46.5℃或47.0℃。
可选地,所述第一电池温度阈值的范围为54℃~56℃,例如,第一电池温度阈值为54.0℃、54.5℃、55.0℃、55.5℃或56.0℃。
所述第二电池温度阈值为59℃~61℃,例如,第二电池温度阈值为59.0℃、59.5℃、60.0℃、60.5℃或61.0℃。
所述第三电池温度阈值为44℃~46℃,例如,第三电池温度阈值为44.0℃、44.5℃、45.0℃、45.5℃或46.0℃。
所述第四电池温度阈值为2℃~4℃,例如,第四电池温度阈值为2.0℃、2.5℃、3.0℃、3.5℃或4.0℃。
可选地,所述的第一倍率阈值为1.5~2.0,例如,第一倍率阈值为1.5、1.6、1.7、1.8、1.9或2.0。
所述第二倍率阈值为0.5~1.0,例如,第二倍率阈值为0.5、0.6、0.7、0.8、0.9或1.0。
步骤S203中,所述预定时长为25min~35min,例如,时长为25min、26min、27min、28min、29min、30min、31min、32min、33min、34min或35min。
可选地,所述的第一流量阈值的范围为进入水冷板组件的进口端的冷却液的最大流量的90%~100%,例如,第一流量阈值为进入水冷板组件的进口端的冷却液的最大流量的90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%。
所述的第二流量阈值的范围为进入水冷板组件的进口端的冷却液的最大流量的40%~60%,例如,第二流量阈值为进入水冷板组件的进口端的冷却液的最大流量的40%、42%、44%、46%、48%、50%、52%、54%、56%、58%或60%。
本申请所述的数值范围不仅包括上述例举的点值,还包括没有例举出的上述数值范围之间的任意的点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的点值。
附图说明
图1为本申请一个实施方式中提供的储能液冷系统的结构示意图;
图2为本申请一个实施方式中提供的温度控制方法的流程图;
图3为本申请一个实施方式中提供的第一处理模式的流程图;
图4为本申请一个实施方式中提供的第二处理模式的流程图;
图5为本申请一个实施方式中提供的第三处理模式的流程图。
图中,1-机柜;2-储能模块;3-控制模块;4-水冷板组件;5-水冷机;6-电池参数检测器;7-进口温度传感器;8-进口流量传感器;9-出口温度传感器。
具体实施方式
在本申请的描述中,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,除非另有明确的规定和限定,术语“设置”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据情况理解上述术语在本申请中的含义。
CN109193076A公开了一种用于处置锂离子电池组异常升温的水循环冷却系统,该系统包括电池组温度监测预警部分、循环水冷却电池组部分和循环水水温监测及冷却部分。在锂离子电池的充电、放电、储存、运输过程中,为锂离子电池的充放电过程提供更加安全的充放电环境,在电池充放电热失控之前进行及时预警。该申请通过检测循环水温度和电池组温度,对电池组进行温度调节,但是该申请未考虑电池参数的影响,从而存在调节误差。
CN109888432A公开了一种含喷淋冷却和相变材料储热的锂离子电池热管理系统,该系统包括电池箱以及电池,还包括控制器、温度传感器、热管、保温室以及喷淋室,所述温度传感器设置在电池箱内,所述热管的一端与电池接触,且所述热管分叉的两段分别伸入保温室与喷淋室,所述喷淋室内设有喷淋机构,所述保温室内设有容器、相变材料以及升降机构。但是该申请的系统结构复杂,依然存在仅检测电池温度,容易造成调节误差。
液冷系统均存在结构复杂和调节性能差等问题,因此,如何在保证液冷系统具有结构简单和操作简易等情况下,还具有调节误差小和节能等特点,成为迫切需要解决的问题。下面通过实施方式来说明本申请的技术方案。
在一个实施方式中,本申请提供了一种储能液冷系统,如图1所示,所述的系统包括机柜1、检测模块和控制模块3,机柜1内设置有液冷模块和储能模块2,液冷模块设置为对储能模块2进行降温或加热,检测模块设置于液冷模块和储能模块2上,检测模块设置为检测液冷模块内的冷却液的温度和流量,以及储能模块2的工作参数;控制模块3与液冷模块和检测模块电性连接,控制模块3设置为接收检测模块的反馈信号,并根据反馈信号控制液冷模块内的冷却液的温度和流量。
本申请通过检测储能模块2的工作参数,并通过控制模块3根据检测模块的反馈信号调节液冷模块,实时调节液冷模块内的冷却液的温度和流量,在低耗能的情况下,对储能模块2的温度进行精准调控,并且液冷模块具有加热和降温功能,以适应储能模块2的多种工作状态,本申请的储能液冷系统具有集成度高、灵活性高和结构简单等特点。
储能模块2包括至少一块并排设置的电池,液冷模块包括循环连接的水冷机5和水冷板组件4,水冷板组件4包括进液总管、出液总管和至少一个水冷板, 每个水冷板通过转接头独立接入进液总管和出液总管,水冷板设置为对电池进行降温或加热,至少一个水冷板之间并联连接,水冷板与电池一一对应,所述进液总管内的冷却液进入每个水冷板进行换热,换热后的冷却液汇集至出液总管,并通过出液总管返回水冷机。可选地,水冷板内的冷却液为水。可选地,冷却液的流量越大,电池的换热效率越高,多个电池间的温度一致性越高。
一实施例中,水冷板的数量为多个,电池的数量为多块,每块电池对应一个水冷板,多个水冷板通过管路系统并行连通形成多个独立的液冷回路,保证多个支路的流量合理分配,从而实现多个电池间较好的温度一致性。
检测模块包括进口温度传感器、进口流量传感器和出口温度传感器,进口温度传感器和进口流量传感器均设置于水冷板组件4的进口端,出口温度传感器设置于水冷板组件4的出口端。
检测模块还包括设置于储能模块2上的电池参数检测器6,电池参数检测器6设置为检测储能模块2的工作参数,例如,储能模块2的电压、电流、SOC、温度和充放电倍率等参数。电池参数检测器6位于机柜1内。
控制模块3电性连接水冷机5、进口温度传感器、进口流量传感器和电池参数检测器6;控制模块3接收进口温度传感器、进口流量传感器和电池参数检测器6的反馈信号,并根据这些反馈信号,控制水冷机5的制冷模式。制冷模式包括速冷模式、快冷模式、中冷模式、慢冷模式和加热模式。本申请通过控制水冷机5的工作模式,有效控制电池的温度,同时该液冷系统也具备加热功能,可在低温环境下对冷却液进行加热,从而实现对电池的低温加热,提高低温环境下电池的充放电性能。
可选地,出口温度传感器仅用于监控人员监控,不参与系统的控制。出口温度传感器还可以是选配的。
在另一个实施方式中,本申请提供了一种温度控制方法,该方法采用上述的储能液冷系统,如图2、图3、图4和图5所示,所述的控制方法包括以下步骤。
S100、电池参数检测器6检测储能模块2的温度和充放电倍率,进口温度传感器和进口流量传感器分别检测水冷板组件4的进口端的温度和流量,进入S200。
S200、控制模块3接收进口温度传感器的反馈信号、进口流量传感器的反馈信号和电池参数检测器6的反馈信号,判断储能模块2的温度是否大于或等于第一电池温度阈值,以及储能模块2的充放电倍率是否小于第一倍率阈值,如果储能模块2的温度大于或等于第一电池温度阈值,且储能模块2的充放电 倍率小于第一倍率阈值的,控制模块3开始第一处理模式,进入步骤S201;如果储能模块2的温度小于第一电池温度阈值,或储能模块2的充放电倍率大于或等于第一倍率阈值,进入步骤S300。
S201、控制模块3判断水冷板组件4的进口端的温度是否等于第一水温阈值,如果水冷板组件4的进口端的温度等于第一水温阈值,进入S203;如果水冷板组件4的进口端的温度不等于第一水温阈值,进入S202。
S202、控制模块3控制水冷机5,调节进入水冷板组件4的进口端的冷却液的温度和流量,水冷机5进入速冷模式,进入S203。
S203、水冷机5执行速冷模式一定时间后,进入S204。
S204、控制模块3判断储能模块2的温度是否大于或等于第二电池温度阈值,如果储能模块2的温度大于或等于第二电池温度阈值,进入S205;如果储能模块2的温度小于第二电池温度阈值,进入S200。
S205、储能模块2停止工作,系统关闭。
S300、控制模块3判断储能模块2的温度是否大于或等于第三电池温度阈值,如果储能模块2的温度大于或等于第三电池温度阈值,控制模块3开始第二处理模式,进入步骤S301;如果储能模块2的温度小于第三电池温度阈值,进入步骤S400。
S301、控制模块3判断储能模块2的充放电倍率是否大于或等于第二倍率阈值,如果储能模块2的充放电倍率大于或等于第二倍率阈值,进入S302;如果储能模块2的充放电倍率小于第二倍率阈值,进入S305。
S302、控制模块3判断水冷板组件4的进口端的温度是否等于第一水温阈值,如果水冷板组件4的进口端的温度等于第一水温阈值,进入S303;如果水冷板组件4的进口端的温度不等于第一水温阈值,进入S304。
S303、水冷机5执行速冷模式。
S304、控制模块3控制水冷机5,调节进入水冷板组件4的进口端的冷却液的温度和流量,水冷机5进入速冷模式,进入S303。
S305、控制模块3判断水冷板组件4的进口端的温度是否等于第二水温阈值,如果水冷板组件4的进口端的温度等于第二水温阈值,进入步骤S306;如果水冷板组件4的进口端的温度不等于第二水温阈值,进入步骤S307。
S306、水冷机5执行快冷模式。
S307、控制模块3控制水冷机5,调节进入水冷板组件4的进口端的冷却液的温度和流量,水冷机5进入快冷模式,进入S306。
S400、控制模块3判断储能模块2的温度是否大于或等于第四电池温度阈值,如果储能模块2的温度大于或等于第四电池温度阈值,控制模块3开始第三处理模式,进入S401;如果储能模块2的温度小于第四电池温度阈值,进入S500。
S401、控制模块3判断储能模块2的充放电倍率是否大于或等于第二倍率阈值,如果断储能模块2的充放电倍率大于或等于第二倍率阈值,进入S402;如果断储能模块2的充放电倍率小于第二倍率阈值,进入S405。
S402、控制模块3判断水冷板组件4的进口端的温度是否等于第二水温阈值,如果水冷板组件4的进口端的温度等于第二水温阈值,进入步骤S403;如果水冷板组件4的进液总管的温度不等于第二水温阈值,进入步骤S404。
S403、水冷机5执行中冷模式。
S404、控制模块3控制水冷机5,调节进入水冷板组件4的进口端的冷却液的温度和流量,水冷机5进入中冷模式,进入S403。
S405、控制模块3判断水冷板组件4的进口端的温度是否等于第三水温阈值,如果水冷板组件4的进口端的温度等于第三水温阈值,进入S406;如果水冷板组件4的进口端的温度不等于第三水温阈值,进入S407。
S406、水冷机5执行慢冷模式。
S407、控制模块3控制水冷机5,调节进入水冷板组件4的进口端的冷却液的温度和流量,水冷机5进入慢冷模式,进入S406。
S500、控制模块3控制储能模块2进行充电,并控制水冷机5,调节进入水冷板组件4的进口端的冷却液的温度和流量,水冷机5进入加热模式。
速冷模式中,水冷板组件4的进口端的温度为第一水温阈值,水冷板组件4的进口端的流量为第一流量阈值。快冷模式中,水冷板组件4的进口端的温度为第二水温阈值,水冷板组件4的进口端的流量为第一流量阈值。中冷模式中,水冷板组件4的进口端的温度为第二水温阈值,水冷板组件4的进口端的流量为第二流量阈值。慢冷模式中,水冷板组件4的进口端的温度为第三水温阈值,水冷板组件4的进口端的流量为第二流量阈值。加热模式中,水冷板组件4的进口端的温度为第四水温阈值,水冷板组件4的进口端的流量为第一流量阈值。
第一水温阈值的范围为14℃~16℃,第二水温阈值的范围为19℃~21℃,第三水温阈值的范围为24℃~26℃,第四水温阈值的范围为29℃~31℃。
第一电池温度阈值的范围为54℃~56℃,第二电池温度阈值的范围为59℃~61℃,第三电池温度阈值的范围为44℃~46℃,第四电池温度阈值的范围为2℃ ~4℃。
第一倍率阈值为1.5~2.0,第二倍率阈值为0.5~1.0。步骤S203中,所述的一定时间为25~35min。
第一流量阈值的范围为进入水冷板组件4的冷却液的最大流量的90%~100%,第二流量阈值的范围为进入水冷板组件4的冷却液的最大流量的40%~60%。
实施例1
本实施例提供了一种储能液冷系统,基于一个实施方式中所述的储能液冷系统,其中,储能模块2包括十个电池,水冷板组件4包括十个水冷板,电池与水冷板一一对应。
本实施例还提供了一种采用上述储能液冷系统对储能模块2进行温度控制的方法,基于一个实施方式中提供的控制方法,其中,第一水温阈值为15℃,第二水温阈值为20℃,第三水温阈值为25℃,第四水温阈值为46℃。第一电池温度阈值为55℃,第二电池温度阈值为60℃,第三电池温度阈值为45℃,第四电池温度阈值为3℃。
第一倍率阈值为2,第二倍率阈值为1。S203中,所述一定时间为30min。第一流量阈值为进入水冷板组件4的冷却液的最大流量的100%,第二流量阈值为进入水冷板组件4的冷却液的最大流量的50%。
实施例2
本实施例提供了一种储能液冷系统,基于一个实施方式中所述的储能液冷系统,其中,储能模块2包括六个电池,水冷板组件4包括六个水冷板,电池与水冷板一一对应。
本实施例还提供了一种采用上述储能液冷系统对储能模块2进行温度控制的方法,基于一个实施方式中提供的控制方法,其中,第一水温阈值为14℃,第二水温阈值为19℃,第三水温阈值为24℃,第四水温阈值为45℃。第一电池温度阈值为54℃,第二电池温度阈值为59℃,第三电池温度阈值为44℃,第四电池温度阈值为2℃。
第一倍率阈值为1.5,第二倍率阈值为0.5。S203中,所述一定时间为25min。第一流量阈值为进入水冷板组件4的冷却液的最大流量的95%,第二流量阈值为进入水冷板组件4的冷却液的最大流量的40%。
实施例3
本实施例提供了一种储能液冷系统,基于一个实施方式中所述的储能液冷 系统,其中,储能模块2包括十个电池,水冷板组件4包括十个水冷板,电池与水冷板一一对应。
本实施例还提供了一种采用上述储能液冷系统对储能模块2进行温度控制的方法,基于一个实施方式中提供的控制方法,其中,第一水温阈值为16℃,第二水温阈值为21℃,第三水温阈值为26℃,第四水温阈值为47℃。第一电池温度阈值为56℃,第二电池温度阈值为61℃,第三电池温度阈值为46℃,第四电池温度阈值为4℃。
第一倍率阈值为2.0,第二倍率阈值为1.0。S203中,所述的一定时间为35min。第一流量阈值为进入水冷板组件4的冷却液的最大流量的90%,第二流量阈值为进入水冷板组件4的冷却液的最大流量的60%。
在以上实施例中,本申请通过检测储能模块2的工作参数,并通过控制模块3调节液冷模块,实时调节液冷模块内的冷却液的温度和流量,在低耗能的情况下,对储能模块2的温度进行精准调控,并且液冷模块具有加热和降温功能,以适应储能模块2的多种工作状态,本申请的储能液冷系统具有集成度高、灵活性高和结构简单等特点。

Claims (11)

  1. 一种储能液冷系统,包括:机柜、检测模块和控制模块,所述机柜内设置有液冷模块和储能模块,所述液冷模块设置为对所述储能模块进行降温或加热,所述检测模块设置于所述液冷模块和所述储能模块上,所述检测模块设置为检测所述液冷模块内的冷却液的温度和流量、以及所述储能模块的工作参数;
    所述控制模块与所述液冷模块和所述检测模块电性连接,所述控制模块设置为接收所述检测模块的反馈信号,并根据所述反馈信号控制所述液冷模块内的冷却液的温度和流量;其中,所述反馈信号包括所述液冷模块内的冷却液的温度和流量、以及所述储能模块的工作参数。
  2. 根据权利要求1所述的系统,其中,所述储能模块包括至少一块电池;在所述至少一块电池为多块电池的情况下,所述多块电池并排设置;
    所述液冷模块包括水冷机和与所述水冷机连接的水冷板组件,所述水冷机与所述控制模块电性连接,所述控制模块是设置为通过如下方式根据所述反馈信号控制所述液冷模块内的冷却液的温度和流量:根据所述反馈信号控制水冷机以使得所述水冷机调节进入所述水冷板组件的进口端的冷却液的流量和温度;
    其中,所述水冷板组件包括进液总管、出液总管和至少一个水冷板,每个水冷板通过两个转接头分别独立接入所述进液总管的第一端和所述出液总管的第一端,所述进液总管的第二端与所述水冷机的第一端连接,所述出液总管的第二端与所述水冷机的第二端连接,所述水冷板组件的进口端为所述进液总管的第一端,所述水冷板组件的出口端为所述出液总管的第一端;所述至少一个水冷板与所述至少一块电池一一对应;在所述至少一个水冷板为多个水冷板的情况下,所述多个水冷板之间并联连接;
    所述至少一个水冷板设置为对所述至少一块电池进行降温或加热;
    所述进液总管内的冷却液进入每个水冷板进行换热,换热后的冷却液汇集至所述出液总管,并通过所述出液总管返回所述水冷机。
  3. 根据权利要求2所述的系统,其中,所述检测模块包括进口温度传感器、进口流量传感器和出口温度传感器,所述进口温度传感器和所述进口流量传感器均设置于所述水冷板组件的进口端,所述出口温度传感器设置于所述水冷板组件的出口端;所述检测模块还包括设置于所述储能模块上的电池参数检测器,所述电池参数检测器设置为检测所述储能模块的工作参数;
    所述控制模块独立电性连接所述水冷机、所述进口温度传感器、所述进口流量传感器和所述电池参数检测器;所述控制模块是设置为接收所述进口温度传感器的反馈信号、所述进口流量传感器的反馈信号和所述电池参数检测器的 反馈信号,并根据所述进口温度传感器的反馈信号、所述进口流量传感器的反馈信号和所述电池参数检测器的反馈信号,控制所述水冷机的制冷模式,所述制冷模式包括速冷模式、快冷模式、中冷模式、慢冷模式和加热模式。
  4. 根据权利要求3所述的系统,其中,所述电池参数检测器位于机柜内。
  5. 一种温度控制方法,采用权利要求1-4任一项所述的储能液冷系统,包括:
    所述检测模块检测所述储能模块的工作参数,并检测所述液冷模块内的冷却液的温度和流量,并将反馈信号发送至所述控制模块,所述控制模块根据所述反馈信号控制所述液冷模块内的冷却液的温度和流量,以通过所述冷却液对所述储能模块进行温度控制;其中,所述反馈信号包括所述储能模块的工作参数和所述液冷模块内的冷却液的温度和流量。
  6. 根据权利要求5所述的方法,其中,所述检测模块检测所述储能模块的工作参数,并检测所述液冷模块内的冷却液的温度和流量,并将反馈信号发送至所述控制模块,所述控制模块根据所述反馈信号控制所述液冷模块内的冷却液的温度和流量,以通过所述冷却液对所述储能模块进行温度控制,包括:
    S100、电池参数检测器检测所述储能模块的温度和充放电倍率,进口温度传感器和进口流量传感器分别检测水冷板组件的进口端的温度和流量,所述电池参数检测器发送所述电池参数检测器的反馈信号至所述控制模块、所述进口温度传感器发送所述进口温度传感器的反馈信号至所述控制模块且所述进口流量传感器发送所述进口流量传感器的反馈信号发送至所述控制模块,进入S200;所述电池参数检测器的反馈信号包括所述储能模块的温度和充放电倍率,所述进口温度传感器的反馈信号包括所述水冷板组件的进口端的温度,所述进口流量传感器包括所述水冷板组件的进口端的流量;
    S200、所述控制模块接收所述进口温度传感器的反馈信号、所述进口流量传感器的反馈信号和所述电池参数检测器的反馈信号,判断所述储能模块的温度是否大于或等于第一电池温度阈值,以及所述储能模块的充放电倍率是否小于第一倍率阈值,响应于所述储能模块的温度大于或等于所述第一电池温度阈值,以及所述储能模块的充放电倍率小于所述第一倍率阈值的判断结果所述控制模块开始第一处理模式,进入S201;响应于所述储能模块的温度小于所述第一电池温度阈值,或所述储能模块的充放电倍率大于或等于所述第一倍率阈值的判断结果,进入S300;
    S201、所述控制模块判断所述水冷板组件的进口端的温度是否等于第一水温阈值,响应于所述水冷板组件的进口端的温度等于所述第一水温阈值的判断 结果,进入S203;响应于所述水冷板组件的进口端的温度不等于所述第一水温阈值的判断结果,进入S202;
    S202、所述控制模块根据所述进口温度传感器的反馈信号和所述进口流量传感器的反馈信号,控制所述水冷机,使所述水冷机调节进入所述水冷板组件的进口端的冷却液的温度和流量,直至所述水冷板组件的进口端的温度大于或等于所述第一水温阈值,,进入S203;
    S203、所述控制模块控制所述水冷机执行所述速冷模式设定时长后,进入S204;
    S204、所述控制模块判断所述储能模块的温度是否大于或等于第二电池温度阈值,响应于所述储能模块的温度大于或等于所述第二电池温度阈值的判断结果,进入S205;响应于所述储能模块的温度小于所述第二电池温度阈值的判断结果,进入S200;
    S205、所述控制模块控制所述储能模块停止工作,所述控制模块关闭所述系统;
    S300、所述控制模块判断所述储能模块的温度是否大于或等于第三电池温度阈值,响应于所述储能模块的温度大于或等于所述第三电池温度阈值的判断结果,所述控制模块开始第二处理模式,进入S301;响应于所述储能模块的温度小于所述第三电池温度阈值的判断结果,进入S400;
    S301、所述控制模块判断所述储能模块的充放电倍率是否大于或等于第二倍率阈值,响应于所述储能模块的充放电倍率大于或等于所述第二倍率阈值的判断结果,进入S302;响应于所述储能模块的充放电倍率小于所述第二倍率阈值的判断结果,进入S305;
    S302、所述控制模块判断所述水冷板组件的进口端的温度是否等于第一水温阈值,响应于所述水冷板组件的进口端的温度等于所述第一水温阈值的判断结果,进入S303;响应于所述水冷板组件的进口端的温度不等于所述第一水温阈值的判断结果,进入S304;
    S303、所述控制模块控制所述水冷机执行所述速冷模式;
    S304、所述控制模块根据所述进口温度传感器的反馈信号和所述进口流量传感器的反馈信号,控制所述水冷机,使所述水冷机调节进入所述水冷板组件的进口端的冷却液的温度和流量,直至所述水冷板组件的进口端的冷却液的温度大于或等于所述第一水温阈值,所述控制模块控制所述水冷机进入速冷模式,进入S303;
    S305、所述控制模块判断所述水冷板组件的进口端的温度是否等于第二水 温阈值,响应于所述水冷板组件的进口端的温度等于所述第二水温阈值的判断结果,进入S306;响应于所述水冷板组件的进口端的温度不等于所述第二水温阈值的判断结果,进入S307;
    S306、所述控制模块控制所述水冷机执行所述快冷模式;
    S307、所述控制模块根据所述进口温度传感器的反馈信号和所述进口流量传感器的反馈信号,控制所述水冷机,使所述水冷机调节进入所述水冷板组件的进口端的冷却液的温度和流量,直至所述水冷板组件的进口端的温度大于或等于所述第二水温阈值,,进入S306;
    S400、所述控制模块判断所述储能模块的温度是否大于或等于第四电池温度阈值,响应于所述储能模块的温度大于或等于所述第四电池温度阈值的判断结果,所述控制模块开始第三处理模式,进入S401;响应于所述储能模块的温度小于所述第四电池温度阈值的判断结果,进入S500;
    S401、所述控制模块判断所述储能模块的充放电倍率是否大于或等于第二倍率阈值,响应于所述储能模块的充放电倍率大于或等于所述第二倍率阈值的判断结果,进入S402;响应于所述储能模块的充放电倍率小于所述第二倍率阈值的判断结果,进入S405;
    S402、所述控制模块判断所述水冷板组件的进口端的温度是否等于第二水温阈值,响应于所述水冷板组件的进口端的温度等于所述第二水温阈值的判断结果,进入S403;响应于所述水冷板组件的进口端的温度不等于所述第二水温阈值的判断结果,进入S404;
    S403、所述控制模块控制所述水冷机执行所述中冷模式;
    S404、所述控制模块根据所述进口温度传感器的反馈信号和所述进口流量传感器的反馈信号,控制所述水冷机,使所述水冷机调节进入所述水冷板组件的进口端的冷却液的温度和流量,直至所述水冷板组件的进口端的温度大于或等于所述第二水温阈值,进入S403;
    S405、所述控制模块判断所述水冷板组件的进口端的温度是否等于第三水温阈值,响应于所述水冷板组件的进口端的温度等于所述第三水温阈值的判断结果,进入S406;响应于所述水冷板组件的进口端的温度不等于所述第三水温阈值的判断结果,进入S407;
    S406、所述控制模块控制所述水冷机执行慢冷模式;
    S407、所述控制模块根据所述进口温度传感器的反馈信号和所述进口流量传感器的反馈信号,控制所述水冷机,使所述水冷机调节进入所述水冷板组件的进口端的冷却液的温度和流量,直至所述水冷板组件的进口端的温度大于或 等于所述第三水温阈值,进入S406;
    S500、所述控制模块控制所述储能模块进行充电,并控制所述水冷机,使水冷机调节进入水冷板组件的进口端的冷却液的温度和流量,直至所述水冷板组件的进口端的温度大于或等于所述第四水温阈值,所述控制模块控制所述水冷机执行加热模式;
    其中,所述第一电池温度阈值小于所述第二电池温度阈值且大于所述第三电池温度阈值,所述第三电池温度阈值小于所述第一电池温度阈值;所述第一倍率阈值小于所述第二倍率阈值;所述第一水温阈值小于所述第二水温阈值,所述第二水温阈值小于所述第三水温阈值,所述第三水温阈值小于所述第四水温阈值;所述第一流量阈值大于所述第二流量阈值。
  7. 根据权利要求6所述的方法,其中,所述速冷模式中,所述水冷板组件的进口端的温度为所述第一水温阈值,所述水冷板组件的进口端的流量为第一流量阈值;
    所述快冷模式中,所述水冷板组件的进口端的温度为所述第二水温阈值,所述水冷板组件的进口端的流量为所述第一流量阈值;
    所述中冷模式中,所述水冷板组件的进口端的温度为所述第二水温阈值,所述水冷板组件的进口端的流量为第二流量阈值;
    所述慢冷模式中,所述水冷板组件的进口端的温度为所述第三水温阈值,所述水冷板组件的进口端的流量为所述第二流量阈值;
    所述加热模式中,所述水冷板组件的进口端的温度为所述第四水温阈值,所述水冷板组件的进口端的流量为所述第一流量阈值。
  8. 根据权利要求6或7所述的方法,其中,所述的第一水温阈值的范围为14℃~16℃;
    所述第二水温阈值的范围为19℃~21℃;
    所述第三水温阈值的范围为24℃~26℃;
    所述第四水温阈值的范围为45℃~47℃。
  9. 根据权利要求6-8任一项所述的方法,其中,所述第一电池温度阈值的范围为54℃~56℃;
    所述第二电池温度阈值的范围为59℃~61℃;
    所述第三电池温度阈值的范围为44℃~46℃;
    所述第四电池温度阈值的范围为2℃~4℃。
  10. 根据权利要求6-9任一项所述的方法,其中,所述第一倍率阈值的范围为1.5~2.0;
    所述第二倍率阈值的范围为0.5~1.0;
    S203中,所述预定时间的范围为25min~35min。
  11. 根据权利要求6-10任一项所述的方法,其中,所述第一流量阈值的范围为进入所述水冷板组件的进口端的冷却液的最大流量的90%~100%;
    所述第二流量阈值的范围为进入所述水冷板组件的进口端的冷却液的最大流量的40%~60%。
PCT/CN2021/107882 2021-01-12 2021-07-22 储能液冷系统及温度控制方法 WO2022151696A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110035587.XA CN112864488B (zh) 2021-01-12 2021-01-12 一种储能液冷系统装置及其控制方法
CN202110035587.X 2021-01-12

Publications (1)

Publication Number Publication Date
WO2022151696A1 true WO2022151696A1 (zh) 2022-07-21

Family

ID=76002817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107882 WO2022151696A1 (zh) 2021-01-12 2021-07-22 储能液冷系统及温度控制方法

Country Status (2)

Country Link
CN (1) CN112864488B (zh)
WO (1) WO2022151696A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115686117A (zh) * 2023-01-03 2023-02-03 苏州浪潮智能科技有限公司 液冷控制方法、系统、液冷机柜、电子设备及存储介质
CN116149394A (zh) * 2023-03-08 2023-05-23 中国航空规划设计研究总院有限公司 一种多水源补水降温的高温排水降温控制系统及控制方法
CN117393920A (zh) * 2023-12-11 2024-01-12 深圳市普裕时代新能源科技有限公司 一种锂离子电池液冷储能系统
CN117458011A (zh) * 2023-12-22 2024-01-26 江苏天合储能有限公司 一种储能系统性能评估模型以及性能评估方法
CN117728074A (zh) * 2024-02-18 2024-03-19 珠海格力钛电器有限公司 储能系统液冷降温的控制方法和装置
WO2024103342A1 (zh) * 2022-11-17 2024-05-23 华为技术有限公司 散热装置、车辆及散热控制方法
CN118763320A (zh) * 2024-08-05 2024-10-11 合肥华宇智航动力能源有限公司 一种工业用储能锂电池冷却机构及储能锂电池
CN118825503A (zh) * 2024-09-10 2024-10-22 河南工学院 一种新能源电池簇的联动温度控制系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112864488B (zh) * 2021-01-12 2023-02-07 上海派能能源科技股份有限公司 一种储能液冷系统装置及其控制方法
CN113675502B (zh) * 2021-08-17 2023-04-07 苏州清陶新能源科技有限公司 一种电池模组的冷却介质流量控制方法及电池模组
CN114050352A (zh) * 2021-11-29 2022-02-15 湖北亿纬动力有限公司 一种箱式电源非接触式液冷系统及控制方法
CN114497806A (zh) * 2022-01-26 2022-05-13 西安科技大学 一种动力电池热管理系统及控制方法
CN116315304A (zh) * 2023-02-21 2023-06-23 珠海科创储能科技有限公司 一种多级液冷管道的均流调压方法
CN117239304B (zh) * 2023-11-16 2024-01-30 深圳永泰数能科技有限公司 液冷储能热管理系统及方法
CN119855119A (zh) * 2025-03-18 2025-04-18 北京亿安天下科技股份有限公司 支持智能温控的分段控制冷板式液冷结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544618A (zh) * 2010-12-30 2012-07-04 上海航天电源技术有限责任公司 一种动力锂离子电池液冷温度控制管理方法
CN108365294A (zh) * 2018-03-06 2018-08-03 贵安新区新特电动汽车工业有限公司 电池包及其热管理控制方法
CN110696680A (zh) * 2019-09-17 2020-01-17 中国矿业大学 动力电池包温度预调控系统和方法及热管理系统控制方法
CN112002956A (zh) * 2020-08-21 2020-11-27 常州瑞德丰精密技术有限公司 一种液冷板、电池包、电动汽车及储能装置
CN112864488A (zh) * 2021-01-12 2021-05-28 上海派能能源科技股份有限公司 一种储能液冷系统装置及其控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105720318B (zh) * 2014-12-03 2019-06-21 广州汽车集团股份有限公司 一种新能源汽车的液冷电池系统及其温度控制方法
CN106972207B (zh) * 2016-11-11 2020-02-28 蔚来汽车有限公司 模块化可扩展的温度调节系统
CN111376692B (zh) * 2018-12-29 2022-06-07 宇通客车股份有限公司 一种车辆、多支路温度调节液冷电源系统及其控制方法
CN110048189B (zh) * 2019-04-24 2020-07-17 中通客车控股股份有限公司 一种液冷电池热管理系统及其控制方法
CN110931896A (zh) * 2019-11-28 2020-03-27 湖南海博瑞德电智控制技术有限公司 一种锂离子电池温度管理系统
CN111211375B (zh) * 2020-01-10 2021-04-20 中国科学院广州能源研究所 一种调频用锂离子电池液冷式热管控方法及储能系统
CN111600084A (zh) * 2020-06-22 2020-08-28 江苏文轩热管理系统有限公司 电池组发热量等效测试系统及测试方法
CN111864300B (zh) * 2020-06-28 2021-06-22 江苏大学 一种基于回路状态监测的复合式冷却结构及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544618A (zh) * 2010-12-30 2012-07-04 上海航天电源技术有限责任公司 一种动力锂离子电池液冷温度控制管理方法
CN108365294A (zh) * 2018-03-06 2018-08-03 贵安新区新特电动汽车工业有限公司 电池包及其热管理控制方法
CN110696680A (zh) * 2019-09-17 2020-01-17 中国矿业大学 动力电池包温度预调控系统和方法及热管理系统控制方法
CN112002956A (zh) * 2020-08-21 2020-11-27 常州瑞德丰精密技术有限公司 一种液冷板、电池包、电动汽车及储能装置
CN112864488A (zh) * 2021-01-12 2021-05-28 上海派能能源科技股份有限公司 一种储能液冷系统装置及其控制方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024103342A1 (zh) * 2022-11-17 2024-05-23 华为技术有限公司 散热装置、车辆及散热控制方法
CN115686117A (zh) * 2023-01-03 2023-02-03 苏州浪潮智能科技有限公司 液冷控制方法、系统、液冷机柜、电子设备及存储介质
CN116149394A (zh) * 2023-03-08 2023-05-23 中国航空规划设计研究总院有限公司 一种多水源补水降温的高温排水降温控制系统及控制方法
CN117393920A (zh) * 2023-12-11 2024-01-12 深圳市普裕时代新能源科技有限公司 一种锂离子电池液冷储能系统
CN117393920B (zh) * 2023-12-11 2024-03-08 深圳市普裕时代新能源科技有限公司 一种锂离子电池液冷储能系统
CN117458011A (zh) * 2023-12-22 2024-01-26 江苏天合储能有限公司 一种储能系统性能评估模型以及性能评估方法
CN117458011B (zh) * 2023-12-22 2024-04-23 江苏天合储能有限公司 一种储能系统性能评估模型以及性能评估方法
CN117728074A (zh) * 2024-02-18 2024-03-19 珠海格力钛电器有限公司 储能系统液冷降温的控制方法和装置
CN117728074B (zh) * 2024-02-18 2024-05-03 珠海格力钛电器有限公司 储能系统液冷降温的控制方法和装置
CN118763320A (zh) * 2024-08-05 2024-10-11 合肥华宇智航动力能源有限公司 一种工业用储能锂电池冷却机构及储能锂电池
CN118825503A (zh) * 2024-09-10 2024-10-22 河南工学院 一种新能源电池簇的联动温度控制系统

Also Published As

Publication number Publication date
CN112864488B (zh) 2023-02-07
CN112864488A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
WO2022151696A1 (zh) 储能液冷系统及温度控制方法
CN102324590B (zh) 锂离子动力电池组充放电过程中温度控制系统及方法
CN207994008U (zh) 一种电池包液冷装置、电池包及车辆
EP4510301A1 (en) Energy storage system thermal management method and energy storage system
CN111403848B (zh) 一种基于极耳液冷方式的动力电池热管理系统
CN116470187A (zh) 适用于浸没式液冷储能系统的电芯均温系统及方法
CN206471453U (zh) 一种电池包冷却系统
CN114552050B (zh) 一种电池系统热管理方法及热管理装置
CN114335648A (zh) 全钒液流电池系统的控制方法和控制系统
WO2021129858A1 (zh) 换电站换热综合控制方法
CN119298262A (zh) 一种基于蓄电池的电池环流的主动式在线电压均衡方法及系统
CN117317467A (zh) 一种储能电池模组组合散热装置及其控制方法
CN218731239U (zh) 一种储能集装箱及温控电池模组
CN113540616A (zh) 一种基于重力热管冷却的电池热管理系统及控制方法
CN118353176A (zh) 自适应低功耗储能集装箱、控制方法及系统
CN118763311A (zh) 电池温度预测、分布式电池热管理系统及分级调控方法
JP7665868B2 (ja) 温度管理機器と試験システム
CN118380691A (zh) 一种集中式液冷储能热管理系统
CN116345014B (zh) 一种大型储能系统热管理方法、电子设备及存储介质
CN217691324U (zh) 一种基于热管与冷却液浸没式双控电池包模组的储能系统
CN113381096B (zh) 基于冷却路径的实时优化电池热管理系统
CN110137620A (zh) 一种基于记忆金属的高安全性电池系统及其控制方法
CN114590171B (zh) 热管理系统的控制方法、热管理系统以及车辆
CN211265672U (zh) 一种新能源动力电池热管理控制装置
CN110797604B (zh) 一种均衡风冷电池箱系统及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918891

Country of ref document: EP

Kind code of ref document: A1