WO2022151474A1 - 通信方法、通信设备及可读存储介质 - Google Patents

通信方法、通信设备及可读存储介质 Download PDF

Info

Publication number
WO2022151474A1
WO2022151474A1 PCT/CN2021/072493 CN2021072493W WO2022151474A1 WO 2022151474 A1 WO2022151474 A1 WO 2022151474A1 CN 2021072493 W CN2021072493 W CN 2021072493W WO 2022151474 A1 WO2022151474 A1 WO 2022151474A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
pdcchs
coresets
different
search space
Prior art date
Application number
PCT/CN2021/072493
Other languages
English (en)
French (fr)
Inventor
张京华
简•沙希德
生嘉
Original Assignee
捷开通讯(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 捷开通讯(深圳)有限公司 filed Critical 捷开通讯(深圳)有限公司
Priority to PCT/CN2021/072493 priority Critical patent/WO2022151474A1/zh
Priority to CN202180090059.2A priority patent/CN116803037A/zh
Publication of WO2022151474A1 publication Critical patent/WO2022151474A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication, and in particular, to a communication method, a communication device and a readable storage medium.
  • Wireless communication systems and networks such as the 5th generation (5G) mobile communication standards and technologies, are well known.
  • This 5G standard and technology was developed by the 3rd Generation Partnership Project (3G Partnership Project, 3GPP).
  • RedCap Reduced Capability
  • Use cases for RedCap include industrial wireless sensors, video surveillance, and wearables.
  • the primary requirement for RedCap devices is to reduce device cost and complexity compared to high-performance user equipment, in addition to specific requirements such as data rate, latency, battery life, availability, and reliability.
  • the RedCap device is limited by the bandwidth, and it is easy to cause congestion in the Physical Downlink Control Channel (PDCCH) with a high degree of aggregation.
  • PDCCH Physical Downlink Control Channel
  • the main technical problem to be solved by the present application is to provide a communication method, communication device and readable storage medium, which can solve the problems in the prior art that a PDCCH with a high degree of aggregation easily causes congestion and a PDCCH with a high degree of aggregation consumes more resources.
  • a first aspect of the present application provides a communication method, the method includes: splitting a first PDCCH to be sent into n second PDCCHs, n>1, and each of the second PDCCHs The aggregation degree of the first PDCCH is lower than that of the first PDCCH; time-frequency resources are allocated to each of the second PDCCHs; and n pieces of the second PDCCH are sent to the user equipment using the allocated time-frequency resources.
  • a second aspect of the present application provides a communication method, the method includes: performing blind decoding on multiple search spaces to receive n second PDCCHs, n>1;
  • the first PDCCH is obtained by combining, and the aggregation degree of each of the second PDCCHs is lower than that of the first PDCCH.
  • a third aspect of the present application provides a communication device, the device includes a processor and a communication circuit, the processor is connected to the communication circuit; the processor is configured to execute instructions to implement any one of the first aspects of the present application The provided communication method.
  • a fourth aspect of the present application provides a communication device, the device includes a processor and a communication circuit, the processor is connected to the communication circuit; the processor is configured to execute instructions to implement the communication provided in the second aspect of the present application method.
  • the present application provides a readable storage medium storing instructions, which implement the aforementioned method when the instructions are executed.
  • the beneficial effects of the present application are as follows: the first PDCCH with high aggregation degree to be sent is divided into second PDCCH with low aggregation degree, and time-frequency resources are allocated to each second PDCCH, and the base station uses the allocated time-frequency resources to send The user equipment sends the second PDCCH, thereby solving the problems in the prior art that the PDCCH with a high degree of aggregation easily causes congestion and the PDCCH with a high degree of aggregation consumes more resources
  • FIG. 1 is a schematic structural diagram of an embodiment of a wireless communication system or network of the present application.
  • FIG. 2 is a schematic flowchart of the first embodiment of the communication method of the present application.
  • FIG. 3 is a schematic diagram of a first embodiment of time-frequency resource allocation in the present application.
  • FIG. 4 is a schematic diagram of a second embodiment of time-frequency resource allocation according to the present application.
  • FIG. 5 is a schematic diagram of a third embodiment of time-frequency resource allocation of the present application.
  • FIG. 6 is a schematic diagram of a fourth embodiment of time-frequency resource allocation of the present application.
  • FIG. 7 is a schematic diagram of a fifth embodiment of time-frequency resource allocation of the present application.
  • FIG. 8 is a schematic flowchart of the second embodiment of the communication method of the present application.
  • FIG. 9 is a schematic structural diagram of a first embodiment of a communication device of the present application.
  • FIG. 10 is a schematic structural diagram of a second embodiment of a communication device of the present application.
  • FIG. 11 is a schematic structural diagram of an embodiment of a readable storage medium of the present application.
  • User equipment in this application may include or represent any portable computing device used for communication.
  • Examples of user equipment that may be used in certain embodiments of the described devices, methods and systems may be wired or wireless devices such as mobile devices, mobile phones, terminals, smart phones, portable computing devices such as laptops , handheld devices, tablets, tablet computers, netbooks, personal digital assistants, music players, and other computing devices capable of wired or wireless communications.
  • the user equipment may also be a reduced capability (Reduced Capability) user equipment.
  • FIG. 1 is a wireless communication comprising a core network 102 (or telecommunications infrastructure) with multiple network nodes 104a-104m (eg, base stations gNBs) serving cells 106a-106m of multiple wireless communication units 108a-108e (eg, UEs)
  • a schematic diagram of a system or network 100 .
  • a plurality of network nodes 104a-104m are connected to the core network 102 by links. These links may be wired or wireless (eg, radio communication links, fiber optics, etc.).
  • Core network 102 may include multiple core network nodes, network entities, application servers, or any other network or computing device that may communicate with one or more radio access networks including multiple network nodes 104a-104m.
  • the network nodes 104a-104m are illustrated as base stations, which may be gNBs in a 5G network, for example but not limited to.
  • Each of the plurality of network nodes 104a-104m (eg, base stations) has a footprint, which is schematically represented in FIG. 1 for serving one or more UEs 108a for simplicity and by way of example and not limitation
  • UEs 108a-108e can receive services from wireless communication system 100, such as voice, video, audio, or other communication services.
  • the wireless communication system or network 100 may include or represent any one or more communication networks used for communication between UEs 108a-108e and other devices, content sources, or servers connected to the wireless communication system or network 100.
  • Core network 102 may also include or represent one or more communication networks, one or more network nodes, entities, elements, application servers, servers, base stations or other links, coupled or connected to form wireless communication system or network 100 Network equipment. Links or couplings between network nodes may be wired or wireless (eg, radio communication links, fiber optics, etc.).
  • the wireless communication system or network 100 and core network 102 may include any suitable combination of a core network and a wireless access network comprising network nodes or entities, base stations, access points, etc. that enable UEs 108a-108e, wireless communication system 100 and Communication between network nodes 104a-104m of core network 102, content sources, and/or other devices connected to system or network 100 is enabled.
  • An example of a wireless communication network 100 may be at least one communication network or a combination thereof including, but not limited to, one or more wired and/or wireless telecommunications networks, a core network(s), radio access network(s), computer network(s), data communication network(s), internet, telephone network, wireless network, such as WiMAX based on the IEEE 802.11 standard by way of example only , WLAN and/or Wi-Fi network, or Internet Protocol (Internet Protocol, IP) network, packet-switched network or enhanced packet-switched network, IP Multimedia Subsystem (IP Multimedia Subsystem, IMS) network or based on wireless, cellular or satellite Technical communication networks, such as mobile networks, Global System for Mobile Communications (GSM), GPRS networks, Wideband Code Division Multiple Access (W-CDMA), CDMA2000 or LTE/Advanced LTE communication network or any 2nd, 3rd, 4th or 5th generation and beyond type of communication network etc.
  • GSM Global System for Mobile Communications
  • W-CDMA Wideband Code Division Multiple Access
  • the wireless communication system 100 may be, by way of example only and not limited to, cyclic prefix orthogonal frequency division multiplexing (CP- 5G communication network using OFDM) technology.
  • the downlink may include one or more communication channels for transmitting data from one or more gNBs 104a-104m to one or more UEs 108a-108e.
  • a downlink channel is a communication channel used to transmit data, eg, from gNB 104a to UE 108a.
  • each frame may be 10ms in length
  • each frame may be divided into multiple subframes.
  • each frame may include 10 subframes of equal length, where each subframe consists of multiple time slots (eg, 2 time slots) for transmitting data.
  • time slots e.g, 2 time slots
  • a subframe may include several additional special fields or OFDM symbols, which may include, by way of example only, downlink synchronization symbols, broadcast symbols and/or uplink reference symbols.
  • the physical downlink control channel (PDCCH) in the downlink may carry downlink control information (DCI).
  • DCI downlink control information
  • PDCCH candidates are transmitted in a control resource set (CORESET), which spans one, two or three consecutive OFDM symbols over multiple resource blocks (RBs).
  • CORESET control resource set
  • PDCCH candidates may be carried by 1, 2, 4, 8 or 16 control channel elements (CCEs).
  • Each CCE consists of 6 resource element groups (REGs), and each REG is 12 resource elements (REs) in one OFDM symbol.
  • the search space consists of a set of PDCCH candidates, where each candidate can occupy one or more CCEs.
  • the number of CCEs used for PDCCH candidates is called aggregation level/degree of aggregation (AL), which can be 1, 2, 4, 8 or 16 in NR.
  • the first embodiment of the communication method of the present application includes:
  • the corresponding user equipment may be a reduced capability (RedCap) user equipment.
  • PDCCH transmission with high aggregation degree consumes resources very much. If the control resource set (CORESET) of a cell does not have enough resources, when the base station sends the PDCCH with high aggregation degree to the RedCap device in the cell, Due to the limitation of CORESET resources, the PDCCH that should be sent may not be sent, thereby causing the problem of PDCCH congestion.
  • CORESET control resource set
  • the first PDCCH to be sent is split into n second PDCCHs.
  • the aggregation degree of each second PDCCH is lower than that of the first PDCCH.
  • the first PDCCH may be split evenly to obtain n second PDCCHs; it may also be split randomly to obtain n second PDCCHs.
  • the second PDCCHs obtained by splitting may not overlap each other, and the aggregation degree of the first PDCCH is equal to the sum of the aggregation degrees of all the second PDCCHs obtained by splitting; or, the second PDCCHs obtained by splitting may partially overlap.
  • the degree of aggregation of one PDCCH is less than the sum of the degrees of aggregation of all split second PDCCHs.
  • S120 Allocate time-frequency resources for each second PDCCH.
  • time-frequency resources are allocated to each second PDCCH.
  • each search space is mapped to one CORESET, and one CORESET may correspond to multiple search spaces.
  • the n second PDCCHs obtained by splitting may be allocated into at least one search space.
  • the search spaces to which the n second PDCCHs belong at least two search spaces are respectively mapped to different control resource sets CORESETs, and the different CORESETs are bound together.
  • three second PDCCHs are obtained, such as the second PDCCH(1), the second PDCCH(2), and the second PDCCH(3).
  • the second PDCCH (1) and the second PDCCH (2) are allocated to the search space a
  • the second PDCCH (3) is allocated to the search space b, wherein the search space a is mapped to CORESET1, and the search space b Mapped to CORESET2, and CORESET1 and CORESET2 are bound together.
  • At least two CORESETs in different bundled CORESETs are located in different time units, and the time units may be one or more slots, symbols or subframes.
  • the bound CORESET1 is located in the time unit Slot N
  • the CORESET2 is located in the time unit Slot N+1.
  • Downlink control information (DCI) is separated into CORESET1 and CORESET2, and a user equipment (UserEquipment, UE) can extract the corresponding second PDCCH from the bound CORESET1 and CORESET2 respectively, and then obtain the first PDCCH.
  • DCI Downlink control information
  • UserEquipment User Equipment
  • the method described in this embodiment can reduce the blockage of the RedCap device.
  • At least two of the bound different CORESETs are located in the same time unit.
  • the bound CORESET1 and CORESET2 are both located in the time unit Slot N.
  • Downlink control information (DCI) is separated into CORESET1 and CORESET2, and a user equipment (UserEquipment, UE) can extract the corresponding second PDCCH from the bound CORESET1 and CORESET2, and then obtain the first PDCCH.
  • DCI Downlink control information
  • UserEquipment, UE User Equipment
  • This embodiment can reduce the scheduling waiting time of the CORESET in the same time unit, and increase the scheduling opportunity, further reducing the congestion of the RedCap device.
  • the n second PDCCHs obtained by splitting are mapped into corresponding search spaces, and in the search spaces to which the n second PDCCHs belong, at least one search space is an extended search space, and the parameters of the extended search space Include the monitoringSlotPeriodicityAndOffset field.
  • Each extended search space maps to at least two different CORESETs.
  • three second PDCCHs are obtained, such as the second PDCCH(1), the second PDCCH(2), and the second PDCCH(3).
  • the second PDCCH (1) and the second PDCCH (2) are allocated to the search space a, and the second PDCCH (3) is allocated to the search space b.
  • the search space a is an extended search space, and the extended search space (search space a) is mapped to CORESET1 and CORESET2.
  • At least two of the CORESETs to which the extended search space is mapped are located in different time units.
  • CORESET1 is located in the time unit Slot N
  • CORESET2 is located in the time unit Slot N+1.
  • Different aggregation degrees can be configured at different times within the same CORESET.
  • This embodiment maps the search space of the RedCap device into CORESETs of different time units to extend the time from one time unit to multiple time units.
  • the first PDCCH is split to obtain three second PDCCHs, such as the second PDCCH (1), the second PDCCH (2), and the second PDCCH (3).
  • the second PDCCH (1), the second PDCCH (2) and the second PDCCH (3) are allocated to the search space a, and the search space a is an extended search space, and the extended search space (search space a) maps to CORESET1 and CORESET2 so that Downlink Control Information (DCI) is separated in CORESET1 and CORESET2.
  • DCI Downlink Control Information
  • the user equipment may extract the corresponding second PDCCH from CORESET1 and CORESET2, and then obtain the first PDCCH.
  • time unit Slot N+1 monitors CORESET2
  • the frequency bands occupied by at least two of the plurality of CORESETs to which the extended search space is mapped are different. These different frequency bands can be non-overlapping. However, for RedCap UEs, the available bandwidth is smaller than that of conventional UEs. In this case, the frequency bands of at least two CORESETs that occupy different frequency bands can partially overlap, so as to ensure that these CORESETs The available bandwidth of the UE will not be exceeded. For example, as shown in FIG. 6 , CORESET1 is located in the time unit Slot N, and CORESET2 is located in the time unit Slot N+1.
  • the extended search space may be configured with two aggregation degrees at different times within the same CORESET.
  • the frequency band occupied by CORESET1 is different from the frequency band occupied by CORESET2, and the frequency band occupied by CORESET1 and the frequency band occupied by CORESET2 partially overlap, as shown by the box in FIG. 6 .
  • the first PDCCH is split to obtain three second PDCCHs, such as the second PDCCH (1), the second PDCCH (2), and the second PDCCH (3).
  • the second PDCCH (1), the second PDCCH (2) and the second PDCCH (3) are allocated to the search space a, and the search space a is an extended search space, and the extended search space (search space a) maps to CORESET1 and CORESET2 so that Downlink Control Information (DCI) is separated in CORESET1 and CORESET2.
  • DCI Downlink Control Information
  • the user equipment may extract the corresponding second PDCCH from CORESET1 and CORESET2, and then obtain the first PDCCH.
  • time unit Slot N+1 monitors CORESET2
  • the n second PDCCHs obtained by splitting are allocated into corresponding search spaces, and the time-frequency resources allocated by at least two second PDCCHs in the n second PDCCHs belong to different monitoring occasions of the same CORESET , as shown in Figure 7.
  • three second PDCCHs are obtained, such as the second PDCCH (1), the second PDCCH (2), and the second PDCCH (3).
  • the video resources allocated by the second PDCCH(1) and the second PDCCH(2) both belong to CORESET1.
  • CORESET1 is configured periodically, for example, CORESET1 in time unit solt N is configured in one cycle, and CORESET1 in time unit solt N+1 is configured in another cycle.
  • S130 Send n second PDCCHs to the user equipment using the allocated time-frequency resources.
  • the n second PDCCHs are sent to the user equipment using the time-frequency resources allocated in any of the embodiments in FIG. 3 , FIG. 4 , FIG. 5 , FIG. 6 , and FIG. 7 .
  • the method before sending the n second PDCCHs to the user equipment, the method further includes sending CORESET binding configuration information to the user equipment.
  • the binding configuration information is carried by controlResourceSetToAddModList and/or controlResourceSetToAddModList2.
  • a first PDCCH with a high aggregation degree to be sent is split into a second PDCCH with a low aggregation degree, and time-frequency resources are allocated to each second PDCCH, and the base station uses the allocated time-frequency resources
  • the resource sends the second PDCCH to the user equipment, so as to solve the problems in the prior art that the PDCCH with high aggregation degree easily causes congestion and the PDCCH with high aggregation degree consumes more resources.
  • the second embodiment of the communication method of the present application includes:
  • S210 Perform blind decoding on multiple search spaces to receive n second PDCCHs.
  • the method in this embodiment is applied to the user equipment side, and the user equipment performs blind decoding on multiple search spaces, and then receives the corresponding second PDCCH.
  • n>1 the aggregation degree of each second PDCCH is lower than that of the first PDCCH.
  • the second PDCCH is obtained by splitting the first PDCCH equally.
  • the user equipment further receives CORESET bundling configuration information from the base station, and blindly decodes multiple search spaces according to the bundling configuration information to receive n second PDCCHs.
  • the search spaces to which the n second PDCCHs belong at least two search spaces are respectively mapped to different control resource sets CORESET, and the different CORESETs are bound together.
  • three second PDCCHs are obtained, such as the second PDCCH(1), the second PDCCH(2), and the second PDCCH(3).
  • the second PDCCH (1) and the second PDCCH (2) are allocated to the search space a
  • the second PDCCH (3) is allocated to the search space b, wherein the search space a is mapped to CORESET1, and the search space b Mapped to CORESET2, and CORESET1 and CORESET2 are bound together.
  • the user equipment performs blind decoding from the search space of the CORESET according to the CORESET binding configuration information, and further receives n second PDCCHs.
  • At least two CORESETs in different bundled CORESETs are located in different time units, and the time units may be one or more slots, symbols or subframes.
  • the bound CORESET1 is located in the time unit Slot N
  • the CORESET2 is located in the time unit Slot N+1.
  • Downlink control information (DCI) is separated into CORESET1 and CORESET2, and a user equipment (UserEquipment, UE) can extract the corresponding second PDCCH from the bound CORESET1 and CORESET2 respectively, and then obtain the first PDCCH.
  • DCI Downlink control information
  • UserEquipment User Equipment
  • the method described in this embodiment can reduce the blockage of the RedCap device.
  • At least two of the bound different CORESETs are located in the same time unit.
  • the bound CORESET1 and CORESET2 are both located in the time unit Slot N.
  • Downlink control information (DCI) is separated into CORESET1 and CORESET2, and a user equipment (UserEquipment, UE) can extract the corresponding second PDCCH from the bound CORESET1 and CORESET2, and then obtain the first PDCCH.
  • DCI Downlink control information
  • UserEquipment, UE User Equipment
  • This embodiment can reduce the scheduling waiting time of the CORESET in the same time unit, and increase the scheduling opportunity, further reducing the congestion of the RedCap device.
  • the n second PDCCHs obtained by splitting are allocated into corresponding search spaces, and in the search spaces to which the n second PDCCHs belong, at least one search space is an extended search space, and the parameters of the extended search space Include the monitoringSlotPeriodicityAndOffset field.
  • Each extended search space maps to at least two different CORESETs.
  • three second PDCCHs are obtained, such as the second PDCCH(1), the second PDCCH(2), and the second PDCCH(3).
  • the second PDCCH (1) and the second PDCCH (2) are allocated to the search space a
  • the second PDCCH (3) is allocated to the search space b.
  • the search space a is an extended search space, and the extended search space (search space a) is mapped to CORESET1 and CORESET2.
  • a user equipment UserEquipment, UE may extract the corresponding second PDCCH from the bound CORESET1 and CORESET2, and then obtain the first PDCCH.
  • At least two of the CORESETs to which the extended search space is mapped are located in different time units.
  • CORESET1 is located in the time unit Slot N
  • CORESET2 is located in the time unit Slot N+1.
  • Different aggregation degrees can be configured at different times within the same CORESET.
  • This embodiment maps the search space of the RedCap device into CORESETs of different time units to extend the time from one time unit to multiple time units.
  • the first PDCCH is split to obtain three second PDCCHs, such as the second PDCCH (1), the second PDCCH (2), and the second PDCCH (3).
  • the second PDCCH (1), the second PDCCH (2) and the second PDCCH (3) are allocated to the search space a, and the search space a is an extended search space, and the extended search space (search space a) maps to CORESET1 and CORESET2 so that Downlink Control Information (DCI) is separated in CORESET1 and CORESET2.
  • DCI Downlink Control Information
  • the user equipment may extract the corresponding second PDCCH from CORESET1 and CORESET2, and then obtain the first PDCCH.
  • the frequency bands occupied by at least two of the plurality of CORESETs to which the extended search space is mapped are different. These different frequency bands can be non-overlapping. However, for RedCap UEs, the available bandwidth is smaller than that of conventional UEs. In this case, the frequency bands of at least two CORESETs that occupy different frequency bands can partially overlap, so as to ensure that these CORESETs The available bandwidth of the UE will not be exceeded. For example, as shown in FIG. 6 , CORESET1 is located in the time unit Slot N, and CORESET2 is located in the time unit Slot N+1.
  • the extended search space may be configured with two aggregation degrees at different times within the same CORESET.
  • the frequency band occupied by CORESET1 is different from the frequency band occupied by CORESET2, and the frequency band occupied by CORESET1 and the frequency band occupied by CORESET2 partially overlap, as shown by the box in FIG. 6 .
  • the first PDCCH is split to obtain three second PDCCHs, such as the second PDCCH (1), the second PDCCH (2), and the second PDCCH (3).
  • the second PDCCH (1), the second PDCCH (2) and the second PDCCH (3) are allocated to the search space a, and the search space a is an extended search space, and the extended search space (search space a) maps to CORESET1 and CORESET2 so that Downlink Control Information (DCI) is separated in CORESET1 and CORESET2.
  • DCI Downlink Control Information
  • the user equipment may extract the corresponding second PDCCH from CORESET1 and CORESET2, and then obtain the first PDCCH.
  • the n second PDCCHs obtained by splitting are allocated into corresponding search spaces, and the time-frequency resources allocated by at least two second PDCCHs in the n second PDCCHs belong to different monitoring occasions of the same CORESET , as shown in Figure 7.
  • three second PDCCHs are obtained, such as the second PDCCH (1), the second PDCCH (2), and the second PDCCH (3).
  • the video resources allocated by the second PDCCH(1) and the second PDCCH(2) both belong to CORESET1.
  • CORESET1 is configured periodically, for example, CORESET1 in time unit solt N is configured in one cycle, and CORESET1 in time unit solt N+1 is configured in another cycle.
  • the user equipment further receives the CORESET binding configuration information from the base station.
  • the CORESET binding configuration information is shown in any of the embodiments in FIG. 3 to FIG. 7 , and performs blind decoding on multiple search spaces according to the binding configuration information to receive n a second PDCCH.
  • S220 Combine n second PDCCHs to obtain a first PDCCH.
  • the user equipment Since the n second PDCCHs are obtained by splitting the first PDCCH, the user equipment will combine the n second PDCCHs to obtain the first PDCCH after blind decoding obtains the n second PDCCHs. Further, since the n second PDCCHs are obtained by splitting the first PDCCH, the aggregation degree of each second PDCCH is lower than that of the first PDCCH.
  • the user equipment obtains n second PDCCHs through blind decoding, and combines the n second PDCCHs to obtain the first PDCCH.
  • the first embodiment of the communication device of the present application includes: a processor 110 and a communication circuit 120 .
  • the processor 110 controls the operation of the communication device, and the processor 110 may also be referred to as a CPU (Central Processing Unit, central processing unit).
  • the processor 110 may be an integrated circuit chip with processing capability of signal sequences.
  • Processor 110 may also be a general purpose processor, digital signal sequence processor (DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components.
  • DSP digital signal sequence processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the processor 110 drives the communication circuit 120 to implement the method provided by the first embodiment of the communication method of the present application.
  • the second embodiment of the communication device of the present application includes: a processor 210 and a communication circuit 220 .
  • the processor 210 controls the operation of the communication device, and the processor 210 may also be referred to as a CPU (Central Processing Unit, central processing unit).
  • the processor 210 may be an integrated circuit chip with processing capability of signal sequences.
  • Processor 210 may also be a general purpose processor, digital signal sequence processor (DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components.
  • DSP digital signal sequence processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the processor 210 drives the communication circuit 220 to implement the method provided by the second embodiment of the communication method of the present application.
  • an embodiment of the readable storage medium of the present application includes a memory 310, and the memory 310 stores an instruction, when the instruction is executed, the method provided by any embodiment and possible combination of the communication method of the present application is implemented.
  • the memory 310 may include a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a flash memory (Flash Memory), a hard disk, an optical disk, and the like.
  • ROM read-only memory
  • RAM random access memory
  • flash Memory flash memory
  • the disclosed method and apparatus may be implemented in other manners.
  • the device implementations described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other divisions.
  • multiple units or components may be Incorporation may either be integrated into another system, or some features may be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this implementation manner.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a stand-alone product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法,该方法包括:将待发送的第一PDCCH拆分为n个第二PDCCH,n>1,且每个所述第二PDCCH的聚合度低于所述第一PDCCH的聚合度;为每个所述第二PDCCH分配时频资源;使用所分配的所述时频资源向用户设备发送n个所述第二PDCCH。从而解决现有技术中高聚合度的PDCCH容易造成堵塞以及高聚合度的PDCCH消耗更多资源的问题。

Description

通信方法、通信设备及可读存储介质 【技术领域】
本申请涉及通信领域,特别是涉及一种通信方法、通信设备及可读存储介质。
【背景技术】
无线通信系统及网络,如第五代(the 5th generation,5G)移动通信标准及技术,是众所周知的。这种5G标准和技术由第三代合作伙伴项目(3G Partnership Project,3GPP)所开发。
目前3GPP正在研究项目“关于降低能力(Reduced Capability,RedCap)的NR设备的支持研究”。RedCap的用例包括工业无线传感器,视频监控和可穿戴设备。与高性能用户设备相比,RedCap设备的主要要求是降低设备成本和复杂性,此外还具有特定的要求,例如数据速率,延迟,电池寿命,可用性和可靠性。但是RedCap设备受限于带宽限制,在高聚合度的物理下行控制信道(Physical Downlink Control Channel,PDCCH)时容易造成堵塞。
【发明内容】
本申请主要解决的技术问题是提供一种通信方法、通信设备及可读存储介质,能够解决现有技术中高聚合度的PDCCH容易造成堵塞以及高聚合度的PDCCH消耗更多资源的问题。
为了解决上述技术问题,本申请第一方面提供了一种通信方法,该方法包括:将待发送的第一PDCCH拆分为n个第二PDCCH,n>1,且每个所述第二PDCCH的聚合度低于所述第一PDCCH的聚合度;为每个所述第二PDCCH分配时频资源;使用所分配的所述时频资源向用户设备发送n个所述第二PDCCH。
为了解决上述技术问题,本申请第二方面提供了一种通信方法,该方法包括:对多个搜索空间进行盲解码以接收n个第二PDCCH,n>1;将n个所述第二PDCCH组合得到第一PDCCH,每个所述第二PDCCH的聚合度低于所述第一PDCCH的聚合度。
为了解决上述技术问题,本申请第三方面提供了一种通信设备,该设备包 括处理器和通信电路,处理器连接通信电路;处理器用于执行指令以实现如本申请第一方面中任一项所提供的通信方法。
为了解决上述技术问题,本申请第四方面提供了一种通信设备,该设备包括处理器和通信电路,处理器连接通信电路;处理器用于执行指令以实现如本申请第二方面所提供的通信方法。
为了解决上述技术问题,本申请提供了一种可读存储介质,存储有指令,指令被执行时实现前述的方法。
本申请的有益效果是:将待发送的高聚合度的第一PDCCH拆分为低聚合度的第二PDCCH,并为每一个第二PDCCH分配时频资源,基站利用所分配的时频资源向用户设备发送第二PDCCH,从而解决现有技术中高聚合度的PDCCH容易造成堵塞以及高聚合度的PDCCH消耗更多资源的问题
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是本申请无线通信系统或网络一实施方式的结构示意图;
图2是本申请通信方法第一实施例的流程示意图;
图3是本申请时频资源分配的第一实施例的示意图;
图4是本申请时频资源分配的第二实施例的示意图;
图5是本申请时频资源分配的第三实施例的示意图;
图6是本申请时频资源分配的第四实施例的示意图;
图7是本申请时频资源分配的第五实施例的示意图;
图8是本申请通信方法第二实施例的流程示意图
图9是本申请通信设备第一实施例的结构示意图;
图10是本申请通信设备第二实施例的结构示意图;
图11是本申请可读存储介质一实施例的结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,以下各实施例中不冲突的可以相互结合。显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的“用户设备”可以包括或代表用于通信的任何便携式计算设备。在所描述的设备,方法和系统的某些实施例中可使用的用户设备的示例可以是有线或无线设备,例如移动设备,移动电话,终端,智能电话,便携式计算设备,诸如膝上型电脑,手持设备,平板,平板电脑,上网本,个人数字助理,音乐播放器以及能够进行有线或无线通信的其他计算设备。另外,用户设备还可以为能力降低(Reduced Capability)用户设备。
图1是包括核心网102(或电信基础设施),具有服务于多个无线通信单元108a-108e(例如UE)的小区106a-106m的多个网络节点104a-104m(例如基站gNB)的无线通信系统或网络100的示意图。多个网络节点104a-104m通过链路连接到核心网102。这些链路可以是有线或无线的(例如无线电通信链接、光纤等)。核心网102可包括多个核心网络节点,网络实体,应用服务器或可以与包括多个网络节点104a-104m的一个或多个无线接入网络进行通信的任何其他网络或计算设备。
在本示例中,网络节点104a-104m被示意为基站,例如但不限于,其在5G网络中可以是gNB。多个网络节点104a-104m(例如,基站)中的每个都具有足迹(footprint),为简化且例如但不限于,其在图1中示意性地表示用于服务于一个或多个UE 108a-108e的对应的圆形小区106a-106m。UE 108a-108e能够从无线通信系统100接收服务,例如声音、视频、音频或其他通信服务。
无线通信系统或网络100可以包括或代表用于UE 108a-108e与其他设备、内容源或连接无线通信系统或网络100的服务器之间的通信的任意一个或多个通信网络。核心网102也可以包括或代表链接,耦接或连接以形成无线通信系统或网络100的一个或多个通信网络,一个或多个网络节点,实体,元素,应用程序服务器,服务器,基站或其他网络设备。网络节点之间的链接或耦接可以是有线或无线的(例如无线电通信链接、光纤等)。该无线通信系统或网络100以及核心网102可以包括包含网络节点或实体的核心网络和无线接入网络的任何适当组合,基站,接入点等,其使得UE 108a-108e、无线通信系统100和核 心网102的网络节点104a-104m、内容源和/或连接到系统或网络100的其他设备之间能够通信。
可在所描述的设备,方法和系统一些实施例中使用的无线通信网络100的示例可以是至少一个通信网络或其组合,包括但不限于,一个或多个有线和/或无线电信网络,一个或多个核心网,一个或多个无线接入网络,一个或多个计算机网络,一个或多个数据通信网络,互联网,电话网络,无线网络,例如基于仅作为示例的IEEE802.11标准的WiMAX、WLAN和/或Wi-Fi网络,或互联网协议(Internet Protocol,IP)网络,分组交换网络或增强型分组交换网络,IP多媒体子系统(IP Multimedia Subsystem,IMS)网络或基于无线、蜂窝或卫星技术的通信网络,诸如移动网络,全球移动通信系统(Global System for Mobile Communications,GSM),GPRS网络,宽带码分多址接入(Wideband Code Division Multiple Access,W-CDMA),CDMA2000或LTE/高级LTE通信网络或任何第二代,第三代,第四代或第五代和超越类型的通信网络等。
在图1的示例中,该无线通信系统100可以是,仅作为示例但不限于,使用下行链路和上行链路信道的循环前缀正交频分复用(cyclic prefix orthogonal frequency division multiplexing,CP-OFDM)技术的5G通信网络。下行链路可以包括用于将数据从一个或多个gNB 104a-104m传输到一个或多个UE108a-108e的一个或多个通信信道。通常下行链路信道是用于传输数据的通信信道,例如,从gNB 104a到UE 108a。
用于5G网络的上行链路和下行链路均被分成无线帧(例如,每个帧可以是10ms的长度),其中每个帧可以被分成多个子帧。例如,每个帧可以包括10个长度相等的子帧,其中每个子帧由用于传输数据的多个时隙(例如2个时隙)组成。除了时隙之外,子帧可以包括若干额外的特殊字段或OFDM符号,其可包括,仅作为示例,下行链路同步符号,广播符号和/或上行链路参考符号。
其中,下行链路中的物理下行控制信道(PDCCH)可承载下行控制信息(DCI)。PDCCH候选在控制资源集(CORESET)中传输,这些资源跨越多个资源块(RB)上的一个,两个或三个连续OFDM符号。PDCCH候选可由1、2、4、8或16个控制信道元(CCE)携带。每个CCE由6个资源元素组(REG)组成,每个REG在一个OFDM符号中是12个资源粒子(RE)。
为了接收DCI,UE需要在搜索空间对PDCCH候选进行盲解码。搜索空间由一组PDCCH候选组成,其中每个候选可以占用一个或多个CCE。用于PDCCH 候选的CCE的数量称为聚合等级/聚合度(AL),在NR中可以为1、2、4、8或16。
如图2所示,本申请通信方法第一实施例包括:
S110:将待发送的第一PDCCH拆分为n个第二PDCCH。
本实施例应用于基站。对应的用户设备可以为能力降低(RedCap)用户设备。具有较高聚合度的PDCCH传输非常消耗资源,如果某个小区的控制资源集(Control-resource set,CORESET)没有足够的资源,则在基站向小区内的RedCap设备发送高聚合度的PDCCH时,受限于CORESET资源的限制,可能导致本应发送的PDCCH无法发出,从而造成PDCCH堵塞问题。
本实施例中,将待发送的第一PDCCH拆分为n个第二PDCCH。其中n>1,每一个第二PDCCH的聚合度低于第一PDCCH。具体的,可以将第一PDCCH进行平均拆分,以得到n个第二PDCCH;还可以随机拆分,以得到n个第二PDCCH。拆分得到第二PDCCH可以互不重叠,此时第一PDCCH的聚合度等于所有拆分得到的第二PDCCH的聚合度之和;或者,拆分得到第二PDCCH可以有部分重叠,此时第一PDCCH的聚合度小于所有拆分得到的第二PDCCH的聚合度之和。
S120:为每个第二PDCCH分配时频资源。
具体的,为每个第二PDCCH分配时频资源。相关技术中,每个搜索空间映射到一个CORESET,且一个CORESET可以对应多个搜索空间。可以将拆分得到的n个第二PDCCH分配到至少一个搜索空间内。
在一实施例中,n个第二PDCCH所属的搜索空间中,至少两个搜索空间分别映射到不同的控制资源集CORESET,且所述不同的CORESET绑定在一起。举例说明,例如第一PDCCH拆分后得到三个第二PDCCH,如第二PDCCH(1)、第二PDCCH(2)、第二PDCCH(3)。其中,第二PDCCH(1)以及第二PDCCH(2)被分配到搜索空间a内,第二PDCCH(3)被分配到搜索空间b内,其中,搜索空间a映射到CORESET1中,搜索空间b映射到CORESET2中,且CORESET1与CORESET2绑定在一起。
在一实施例中,绑定的不同CORESET中的至少两个CORESET位于不同的时间单元,时间单元可以为一个或者多个时隙(slot)、符号或子帧。举例说明,如图3所示,其中,绑定的CORESET1位于时间单元Slot N中,CORESET2位于时间单元Slot N+1中。下行控制信息(DCI)分开在CORESET1和CORESET2 中,用户设备(UserEquipment,UE)可以从绑定的CORESET1和CORESET2中分别提取对应的第二PDCCH,进而获得第一PDCCH。本实施例所述的方法,能够降低RedCap设备的堵塞。
在另一实施例中,绑定的不同CORESET中的至少两个CORESET位于同一时间单元。举例说明,如图4所示,其中,绑定的CORESET1以及CORESET2都位于时间单元Slot N中。下行控制信息(DCI)分开在CORESET1和CORESET2中,用户设备(UserEquipment,UE)可以从绑定的CORESET1和CORESET2中提取对应的第二PDCCH,进而获得第一PDCCH。本实施例能够减少同一时间单元内的CORESET的调度等待时间,并且增加调度机会,进一步降低RedCap设备的堵塞。
在另一实施例中,将拆分得到的n个第二PDCCH映射到对应的搜索空间内,n个第二PDCCH所属的搜索空间中,至少一个搜索空间为扩展搜索空间,扩展搜索空间的参数包括monitoringSlotPeriodicityAndOffset字段。每个扩展搜索空间映射到至少两个不同的CORESET。在一具体实施例中,例如第一PDCCH拆分后得到三个第二PDCCH,如第二PDCCH(1)、第二PDCCH(2)、第二PDCCH(3)。其中,第二PDCCH(1)以及第二PDCCH(2)被分配到搜索空间a内,第二PDCCH(3)被分配到搜索空间b内。其中搜索空间a为扩展搜索空间,并且该扩展搜索空间(搜索空间a)映射到CORESET1和CORESET2。
在一实施例中,扩展搜索空间映射到的CORESET中的至少两个位于不同的时间单元。举例说明,如图5所示,其中,CORESET1位于时间单元Slot N中,CORESET2位于时间单元Slot N+1中。同一CORESET内的不同时间可以配置不同的聚合度。例如,时间单元Slot N的CORESET1的time1时配置有聚合度AL=1,时间单元Slot N的CORESET1的time2时配置有聚合度AL=2。时间单元Slot N+1的CORESET2的time3时配置有聚合度AL=2,时间单元Slot N+1的CORESET2的time4时配置有聚合度AL=4。本实施例将RedCap设备的搜索空间映射到不同时间单元的CORESET中,以将时间从1个时间单元扩展到多个时间单元。若第一PDCCH拆分后得到三个第二PDCCH,如第二PDCCH(1)、第二PDCCH(2)、第二PDCCH(3)。其中,第二PDCCH(1)、第二PDCCH(2)以及第二PDCCH(3)被分配到搜索空间a内,且搜索空间a为扩展搜索空间,且该扩展搜索空间(搜索空间a)映射到CORESET1和CORESET2,以使得下行控制信息(DCI)分开在CORESET1和CORESET2中。用户设备可以 从CORESET1和CORESET2中提取对应的第二PDCCH,进而获得第一PDCCH。具体的,在时间单元Slot N监视CORESET1时,可以配置一次聚合度AL=2的传输,在时间单元Slot N+1监视CORESET2时,可以配置一次聚合度Al=4的传输,这等于配置了聚合度Al=6的传输。以此能够在达到性能的前提下,消耗更少资源。
在另一实施例中,扩展搜索空间映射到的多个CORESET中的至少两个的占据的频段不同。这些不同的频段可以是互不重叠的,然而对于RedCap UE,其可用的带宽是小于常规UE的,这种情况下,至少两个占据的频段不同的CORESET的频段可以部分重叠,从而保证这些CORESET不会超出UE的可用带宽。举例说明,如图6所示,其中,CORESET1位于时间单元Slot N中,CORESET2位于时间单元Slot N+1中。本实施例中,扩展搜索空间可以在同一CORESET内的不同时间配置两个聚合度。例如,时间单元Slot N的CORESET1的time1时配置有聚合度AL=1,时间单元Slot N的CORESET1的time2时配置有聚合度AL=2。时间单元Slot N+1的CORESET2的time3时配置有聚合度AL=2,时间单元Slot N+1的CORESET2的time4时配置有聚合度AL=4。本实施例中,CORESET1占据的频段与CORESET2占据的频段不同,并且CORESET1占据的频段与CORESET2占据的频段部分重叠,如图6中方框所示。若第一PDCCH拆分后得到三个第二PDCCH,如第二PDCCH(1)、第二PDCCH(2)、第二PDCCH(3)。其中,第二PDCCH(1)、第二PDCCH(2)以及第二PDCCH(3)被分配到搜索空间a内,且搜索空间a为扩展搜索空间,且该扩展搜索空间(搜索空间a)映射到CORESET1和CORESET2,以使得下行控制信息(DCI)分开在CORESET1和CORESET2中。用户设备可以从CORESET1和CORESET2中提取对应的第二PDCCH,进而获得第一PDCCH。具体的,在时间单元Slot N监视CORESET1时,可以配置一次聚合度AL=2的传输,在时间单元Slot N+1监视CORESET2时,可以配置一次聚合度Al=4的传输,这等于配置了聚合度Al=6的传输。以此能够在达到性能的前提下,消耗更少资源。
在另一实施例中,将拆分得到的n个第二PDCCH分配到对应的搜索空间内,n个第二PDCCH中至少两个第二PDCCH所分配的时频资源属于同一CORESET的不同监测时机,如图7所示。例如第一PDCCH拆分后得到三个第二PDCCH,如第二PDCCH(1)、第二PDCCH(2)、第二PDCCH(3)。其中,第二PDCCH(1)以及第二PDCCH(2)所分配的视频资源均属于CORESET1。CORESET1 被周期性的配置,例如在一个周期内配置时间单元solt N内的CORESET1,在另一个周期内配置时间单元solt N+1内的CORESET1。以此在连续两个监测周期连续两次监视CORESET1时,可以配置一次聚合度AL=2的传输和一次聚合度AL=2的传输,这等于配置了聚合度Al=4的传输。以此能够在达到性能的前提下,消耗更少资源。
S130:使用所分配的时频资源向用户设备发送n个第二PDCCH。
具体的,使用图3、图4、图5、图6、图7中任一实施例分配的时频资源向用户设备发送n个第二PDCCH。
在另一实施例中,在向用户设备发送n个第二PDCCH之前还包括向用户设备发送CORESET绑定配置信息。该绑定配置信息由controlResourceSetToAddModList和/或controlResourceSetToAddModList2承载。
本实施例所述的通信方法,将待发送的高聚合度的第一PDCCH拆分为低聚合度的第二PDCCH,并为每一个第二PDCCH分配时频资源,基站利用所分配的时频资源向用户设备发送第二PDCCH,从而解决现有技术中高聚合度的PDCCH容易造成堵塞以及高聚合度的PDCCH消耗更多资源的问题。
如图8所示,本申请通信方法第二实施例包括:
S210:对多个搜索空间进行盲解码以接收n个第二PDCCH。
具体的,本实施例的方法应用于用户设备侧,用户设备对多个搜索空间进行盲解码,进而接收对应的第二PDCCH。其中,n>1,每一个第二PDCCH的聚合度低于第一PDCCH。具体的,第二PDCCH时通过将第一PDCCH进行平拆分所得的。
在一具体实施例中,用户设备进一步接收来自于基站的CORESET绑定配置信息,根据绑定配置信息对多个搜索空间进行盲解码以接收n个第二PDCCH。
具体的,在一实施例中,n个第二PDCCH所属的搜索空间中,至少两个搜索空间分别映射到不同的控制资源集CORESET,且所述不同的CORESET绑定在一起。举例说明,例如第一PDCCH拆分后得到三个第二PDCCH,如第二PDCCH(1)、第二PDCCH(2)、第二PDCCH(3)。其中,第二PDCCH(1)以及第二PDCCH(2)被分配到搜索空间a内,第二PDCCH(3)被分配到搜索空间b内,其中,搜索空间a映射到CORESET1中,搜索空间b映射到CORESET2中,且CORESET1与CORESET2绑定在一起。
用户设备根据该CORESET绑定配置信息,从CORESET的搜索空间中进行 盲解码,进而接收n个第二PDCCH。
在一实施例中,绑定的不同CORESET中的至少两个CORESET位于不同的时间单元,时间单元可以为一个或者多个时隙(slot)、符号或子帧。举例说明,如图3所示,其中,绑定的CORESET1位于时间单元Slot N中,CORESET2位于时间单元Slot N+1中。下行控制信息(DCI)分开在CORESET1和CORESET2中,用户设备(UserEquipment,UE)可以从绑定的CORESET1和CORESET2中分别提取对应的第二PDCCH,进而获得第一PDCCH。本实施例所述的方法,能够降低RedCap设备的堵塞。
在另一实施例中,绑定的不同CORESET中的至少两个CORESET位于同一时间单元。举例说明,如图4所示,其中,绑定的CORESET1以及CORESET2都位于时间单元Slot N中。下行控制信息(DCI)分开在CORESET1和CORESET2中,用户设备(UserEquipment,UE)可以从绑定的CORESET1和CORESET2中提取对应的第二PDCCH,进而获得第一PDCCH。本实施例能够减少同一时间单元内的CORESET的调度等待时间,并且增加调度机会,进一步降低RedCap设备的堵塞。
在另一实施例中,将拆分得到的n个第二PDCCH分配到对应的搜索空间内,n个第二PDCCH所属的搜索空间中,至少一个搜索空间为扩展搜索空间,扩展搜索空间的参数包括monitoringSlotPeriodicityAndOffset字段。每个扩展搜索空间映射到至少两个不同的CORESET。在一具体实施例中,例如第一PDCCH拆分后得到三个第二PDCCH,如第二PDCCH(1)、第二PDCCH(2)、第二PDCCH(3)。其中,第二PDCCH(1)以及第二PDCCH(2)被分配到搜索空间a内,第二PDCCH(3)被分配到搜索空间b内。其中搜索空间a为扩展搜索空间,并且该扩展搜索空间(搜索空间a)映射到CORESET1和CORESET2。用户设备(UserEquipment,UE)可以从绑定的CORESET1和CORESET2中提取对应的第二PDCCH,进而获得第一PDCCH。
在一实施例中,扩展搜索空间映射到的CORESET中的至少两个位于不同的时间单元。举例说明,如图5所示,其中,CORESET1位于时间单元Slot N中,CORESET2位于时间单元Slot N+1中。同一CORESET内的不同时间可以配置不同的聚合度。例如,时间单元Slot N的CORESET1的time1时配置有聚合度AL=1,时间单元Slot N的CORESET1的time2时配置有聚合度AL=2。时间单元Slot N+1的CORESET2的time3时配置有聚合度AL=2,时间单元Slot N+1 的CORESET2的time4时配置有聚合度AL=4。本实施例将RedCap设备的搜索空间映射到不同时间单元的CORESET中,以将时间从1个时间单元扩展到多个时间单元。若第一PDCCH拆分后得到三个第二PDCCH,如第二PDCCH(1)、第二PDCCH(2)、第二PDCCH(3)。其中,第二PDCCH(1)、第二PDCCH(2)以及第二PDCCH(3)被分配到搜索空间a内,且搜索空间a为扩展搜索空间,且该扩展搜索空间(搜索空间a)映射到CORESET1和CORESET2,以使得下行控制信息(DCI)分开在CORESET1和CORESET2中。用户设备可以从CORESET1和CORESET2中提取对应的第二PDCCH,进而获得第一PDCCH。具体的,以此在时间单元Slot N监视CORESET1时,可以配置一次聚合度AL=2的传输,在时间单元Slot N+1监视CORESET2时,可以配置一次聚合度Al=4的传输,这等于配置了聚合度Al=6的传输。以此能够在达到性能的前提下,消耗更少资源。
在另一实施例中,扩展搜索空间映射到的多个CORESET中的至少两个的占据的频段不同。这些不同的频段可以是互不重叠的,然而对于RedCap UE,其可用的带宽是小于常规UE的,这种情况下,至少两个占据的频段不同的CORESET的频段可以部分重叠,从而保证这些CORESET不会超出UE的可用带宽。举例说明,如图6所示,其中,CORESET1位于时间单元Slot N中,CORESET2位于时间单元Slot N+1中。本实施例中,扩展搜索空间可以在同一CORESET内的不同时间配置两个聚合度。例如,时间单元Slot N的CORESET1的time1时配置有聚合度AL=1,时间单元Slot N的CORESET1的time2时配置有聚合度AL=2。时间单元Slot N+1的CORESET2的time3时配置有聚合度AL=2,时间单元Slot N+1的CORESET2的time4时配置有聚合度AL=4。本实施例中,CORESET1占据的频段与CORESET2占据的频段不同,并且CORESET1占据的频段与CORESET2占据的频段部分重叠,如图6中方框所示。若第一PDCCH拆分后得到三个第二PDCCH,如第二PDCCH(1)、第二PDCCH(2)、第二PDCCH(3)。其中,第二PDCCH(1)、第二PDCCH(2)以及第二PDCCH(3)被分配到搜索空间a内,且搜索空间a为扩展搜索空间,且该扩展搜索空间(搜索空间a)映射到CORESET1和CORESET2,以使得下行控制信息(DCI)分开在CORESET1和CORESET2中。用户设备可以从CORESET1和CORESET2中提取对应的第二PDCCH,进而获得第一PDCCH。具体的,以此在时间单元Slot N监视CORESET1时,可以配置一次聚合度AL=2的传输,在时间单元Slot  N+1监视CORESET2时,可以配置一次聚合度Al=4的传输,这等于配置了聚合度Al=6的传输。以此能够在达到性能的前提下,消耗更少资源。
在另一实施例中,将拆分得到的n个第二PDCCH分配到对应的搜索空间内,n个第二PDCCH中至少两个第二PDCCH所分配的时频资源属于同一CORESET的不同监测时机,如图7所示。例如第一PDCCH拆分后得到三个第二PDCCH,如第二PDCCH(1)、第二PDCCH(2)、第二PDCCH(3)。其中,第二PDCCH(1)以及第二PDCCH(2)所分配的视频资源均属于CORESET1。CORESET1被周期性的配置,例如在一个周期内配置时间单元solt N内的CORESET1,在另一个周期内配置时间单元solt N+1内的CORESET1。以此在连续两个监测周期S连续两次监视CORESET1时,可以配置一次聚合度AL=2的传输和一次聚合度AL=2的传输,这等于配置了聚合度Al=4的传输。以此能够在达到性能的前提下,消耗更少资源。
用户设备进一步接收来自于基站的CORESET绑定配置信息,CORESET绑定配置信息为例如图3-图7中任一实施例所示,根据绑定配置信息对多个搜索空间进行盲解码以接收n个第二PDCCH。
S220:将n个第二PDCCH组合得到第一PDCCH。
由于n个第二PDCCH是将第一PDCCH拆分所得的,因此用户设备在盲解码获取到n个第二PDCCH后,将将n个第二PDCCH组合得到第一PDCCH。进一步,由于n个第二PDCCH是将第一PDCCH拆分所得的,因此每个所述第二PDCCH的聚合度低于所述第一PDCCH的聚合度。
本实施例所述的通信方法,用户设备通过盲解码得到n个第二PDCCH,并将n个第二PDCCH组合得到第一PDCCH。从而解决现有技术中高聚合度的PDCCH容易造成堵塞以及高聚合度的PDCCH消耗更多资源的问题。
如图9所示,本申请通信设备第一实施例包括:处理器110和通信电路120。
处理器110控制通信设备的操作,处理器110还可以称为CPU(Central Processing Unit,中央处理单元)。处理器110可能是一种集成电路芯片,具有信号序列的处理能力。处理器110还可以是通用处理器、数字信号序列处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
处理器110驱动通信电路120以实现本申请通信方法第一实施例所提供的 方法。
如图10所示,本申请通信设备第二实施例包括:处理器210和通信电路220。
处理器210控制通信设备的操作,处理器210还可以称为CPU(Central Processing Unit,中央处理单元)。处理器210可能是一种集成电路芯片,具有信号序列的处理能力。处理器210还可以是通用处理器、数字信号序列处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
处理器210驱动通信电路220以实现本申请通信方法第二实施例所提供的方法。
如图11所示,本申请可读存储介质一实施例包括存储器310,存储器310存储有指令,该指令被执行时实现本申请通信方法任一实施例及可能的组合所提供的方法。
存储器310可以包括只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、闪存(Flash Memory)、硬盘、光盘等。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施方式仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施方式方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或 使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机装置(可以是个人计算机,服务器,或者网络装置等)或处理器(processor)执行本申请各个实施方式所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (27)

  1. 一种通信方法,所述方法应用于基站侧,其特征在于,所述方法包括:
    将待发送的第一PDCCH拆分为n个第二PDCCH,n>1,且每个所述第二PDCCH的聚合度低于所述第一PDCCH的聚合度;
    为每个所述第二PDCCH分配时频资源;
    使用所分配的所述时频资源向用户设备发送n个所述第二PDCCH。
  2. 根据权利要求1所述的方法,其特征在于,
    n个所述第二PDCCH所属的搜索空间中,至少两个所述搜索空间分别映射到不同的控制资源集CORESET,且所述不同的CORESET绑定在一起。
  3. 根据权利要求2所述的方法,其特征在于,
    绑定的不同CORESET中的至少两个CORESET位于不同的时间单元。
  4. 根据权利要求2所述的方法,其特征在于,
    绑定的不同CORESET中的至少两个CORESET位于同一时间单元。
  5. 根据权利要求2所述的方法,其特征在于,所述使用所述所分配的时频资源向用户设备发送n个所述第二PDCCH之前进一步包括:
    向所述用户设备发送CORESET绑定配置信息。
  6. 根据权利要求5所述的方法,其特征在于,
    所述CORESET绑定配置信息由controlResourceSetToAddModList和/或controlResourceSetToAddModList2承载。
  7. 根据权利要求1所述的方法,其特征在于,
    n个所述第二PDCCH所属的搜索空间中,至少一个所述搜索空间为扩展搜索空间,每个所述扩展搜索空间映射到至少两个不同的CORESET。
  8. 根据权利要求7所述的方法,其特征在于,
    所述扩展搜索空间映射到的CORESET中的至少两个位于不同的时间单元。
  9. 根据权利要求7所述的方法,其特征在于,
    所述扩展搜索空间映射到的多个CORESET中的至少两个占据的频段不同。
  10. 根据权利要求9所述的方法,其特征在于,
    所述至少两个占据的频段不同的CORESET的频段部分重叠。
  11. 根据权利要求7所述的方法,其特征在于,
    所述扩展搜索空间的参数包括monitoringSlotPeriodicityAndOffset字段。
  12. 根据权利要求1所述的方法,其特征在于,
    n个所述第二PDCCH中的至少两个所述第二PDCCH所分配的时频资源属于同一CORESET的不同监测时机。
  13. 根据权利要求1-12中任一项所述的方法,其特征在于,
    所述用户设备为能力降低用户设备。
  14. 一种通信方法,所述方法应用于用户设备侧,其特征在于,所述方法包括:
    对多个搜索空间进行盲解码以接收n个第二PDCCH,n>1;
    将n个所述第二PDCCH组合得到第一PDCCH,每个所述第二PDCCH的聚合度低于所述第一PDCCH的聚合度。
  15. 根据权利要求14所述的方法,其特征在于,
    n个所述第二PDCCH所属的搜索空间中,至少两个所述搜索空间分别映射到不同的控制资源集CORESET,且所述不同的CORESET绑定在一起。
  16. 根据权利要求15所述的方法,其特征在于,
    绑定的不同CORESET中的至少两个CORESET位于不同的时间单元。
  17. 根据权利要求15所述的方法,其特征在于,
    绑定的不同CORESET中的至少两个CORESET位于同一时间单元。
  18. 根据权利要求15所述的方法,其特征在于,所述对多个搜索空间进行盲解码以接收n个第二PDCCH之前进一步包括:
    接收来自于所述基站的CORESET绑定配置信息。
  19. 根据权利要求14所述的方法,其特征在于,
    n个所述第二PDCCH所属的搜索空间中,至少一个所述搜索空间为扩展搜索空间,所述扩展搜索空间映射到至少两个不同的CORESET。
  20. 根据权利要求19所述的方法,其特征在于,
    所述扩展搜索空间映射到的CORESET中的至少两个位于不同的时间单元。
  21. 根据权利要求19所述的方法,其特征在于,
    所述扩展搜索空间映射到的CORESET中的至少两个占据的频段不同。
  22. 根据权利要求21所述的方法,其特征在于,
    所述至少两个占据的频段不同的CORESET的频段部分重叠。
  23. 根据权利要求14所述的方法,其特征在于,
    n个所述第二PDCCH中的至少两个所述第二PDCCH所分配的时频资源属于同一CORESET的不同监测时机。
  24. 根据权利要求14-23中任一项所述的方法,其特征在于,
    所述用户设备为能力降低用户设备。
  25. 一种通信设备,其特征在于,包括:处理器和通信电路,所述处理器连接所述通信电路;
    所述处理器用于执行指令以实现如权利要求1-13任一项所述的方法。
  26. 一种通信设备,其特征在于,包括:处理器和通信电路,所述处理器连接所述通信电路;
    所述处理器用于执行指令以实现如权利要求14-24任一项所述的方法。
  27. 一种可读存储介质,存储有指令,其特征在于,所述指令被执行时实现如权利要求1-24任一项所述的方法。
PCT/CN2021/072493 2021-01-18 2021-01-18 通信方法、通信设备及可读存储介质 WO2022151474A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/072493 WO2022151474A1 (zh) 2021-01-18 2021-01-18 通信方法、通信设备及可读存储介质
CN202180090059.2A CN116803037A (zh) 2021-01-18 2021-01-18 通信方法、通信设备及可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/072493 WO2022151474A1 (zh) 2021-01-18 2021-01-18 通信方法、通信设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2022151474A1 true WO2022151474A1 (zh) 2022-07-21

Family

ID=82446828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072493 WO2022151474A1 (zh) 2021-01-18 2021-01-18 通信方法、通信设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN116803037A (zh)
WO (1) WO2022151474A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103190113A (zh) * 2010-10-01 2013-07-03 松下电器产业株式会社 用于非交织的中继物理下行链路控制信道r-pdcch的搜索空间
CN104012159A (zh) * 2011-12-22 2014-08-27 交互数字专利控股公司 Lte载波聚合中的控制信令
WO2020006416A1 (en) * 2018-06-29 2020-01-02 Qualcomm Incorporated Pdcch with repetition
CN111713042A (zh) * 2018-02-15 2020-09-25 苹果公司 分级波束形成结构和波束指示的传输以改善设备移动性并减少新无线电(nr)中的网络流量开销

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103190113A (zh) * 2010-10-01 2013-07-03 松下电器产业株式会社 用于非交织的中继物理下行链路控制信道r-pdcch的搜索空间
CN104012159A (zh) * 2011-12-22 2014-08-27 交互数字专利控股公司 Lte载波聚合中的控制信令
CN111713042A (zh) * 2018-02-15 2020-09-25 苹果公司 分级波束形成结构和波束指示的传输以改善设备移动性并减少新无线电(nr)中的网络流量开销
WO2020006416A1 (en) * 2018-06-29 2020-01-02 Qualcomm Incorporated Pdcch with repetition

Also Published As

Publication number Publication date
CN116803037A (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
US11122555B2 (en) Data transmission method, terminal device, and base station system
WO2018228500A1 (zh) 一种调度信息传输方法及装置
WO2019192345A1 (zh) 一种时域资源分配方法及装置
KR20120025622A (ko) 시스템 정보 송신 윈도우의 브로드캐스트를 위한 방법 및 장치
AU2016245681A1 (en) Pucch resource allocation method in carrier aggregation and equipments thereof
WO2019029014A1 (zh) 通信方法、终端设备和网络设备
WO2020063301A1 (zh) 一种通信方法、装置及设备
WO2016177177A1 (zh) 发送、接收短传输时间间隔通信的资源分配信息的方法和装置
US11202294B2 (en) Methods and devices for determining downlink resource set and sending resource position information
WO2013178177A2 (zh) Ue类型上报、资源分配方法及装置、ue、基站
WO2017185980A1 (zh) 数据传输方法及装置
WO2018228497A1 (zh) 一种指示方法、处理方法及装置
KR20200017507A (ko) 다운링크 제어 채널 자원을 확정하는 방법, 장치, 사용자 기기 및 기지국
WO2022151474A1 (zh) 通信方法、通信设备及可读存储介质
US9444602B2 (en) Control signaling transmission method, control signaling processing device, and terminal
WO2022155774A1 (zh) 资源抢占处理方法、通信设备及可读存储介质
WO2022155772A1 (zh) 资源抢占处理方法、通信设备及可读存储介质
WO2022141086A1 (zh) 通信方法、装置及可读存储介质
WO2023011620A1 (zh) 一种通信方法及装置
WO2022155773A1 (zh) 资源抢占处理方法、通信设备及可读存储介质
US20240215052A1 (en) Method for transmitting point-to-multipoint configuration and apparatus thereof, and readable storage medium
EP4280781A1 (en) Communication method, communication device, and computer readable storage medium
WO2022236722A1 (en) Method for transmitting point-to-multipoint configuration and apparatus thereof, and readable storage medium
WO2016197740A1 (zh) 一种速率拆分的方法、装置和演进型节点
WO2022077501A1 (en) Method, device and memory for scheduling downlink control information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918675

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180090059.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918675

Country of ref document: EP

Kind code of ref document: A1