WO2020063301A1 - 一种通信方法、装置及设备 - Google Patents

一种通信方法、装置及设备 Download PDF

Info

Publication number
WO2020063301A1
WO2020063301A1 PCT/CN2019/104753 CN2019104753W WO2020063301A1 WO 2020063301 A1 WO2020063301 A1 WO 2020063301A1 CN 2019104753 W CN2019104753 W CN 2019104753W WO 2020063301 A1 WO2020063301 A1 WO 2020063301A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
uplink channel
resource
frequency
group
Prior art date
Application number
PCT/CN2019/104753
Other languages
English (en)
French (fr)
Inventor
胡丹
邵家枫
官磊
马蕊香
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811300414.0A external-priority patent/CN110972302B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19864992.3A priority Critical patent/EP3846561A4/en
Publication of WO2020063301A1 publication Critical patent/WO2020063301A1/zh
Priority to US17/216,144 priority patent/US11863492B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of mobile communication technologies, and in particular, to a communication method, device, and device.
  • the International Telecommunication Union defines three major application scenarios for the fifth generation mobile communication system (the fifth generation, 5G) and future mobile communication systems: enhanced mobile broadband (eMBB), High-reliability and low-latency communications (URLLC) and mass machine type communications (mMTC).
  • enhanced mobile broadband eMBB
  • URLLC High-reliability and low-latency communications
  • mMTC mass machine type communications
  • the URLLC service has extremely high delay requirements.
  • the unidirectional transmission delay from the sender to the receiver must be within 0.5 milliseconds (ms), and within 1 ms, it can reach 99.999% transmission reliability.
  • HARQ bearer hybrid automatic repeat request
  • ACK bearer hybrid automatic repeat request
  • Channels such as physical uplink control channels (PUCCH).
  • PUCCH physical uplink control channels
  • PDSCH physical downlink shared channels
  • HARQ-ACK joint coding is a HARQ-ACK codebook carried on an uplink channel, such as PUCCH and sent. This method is not conducive to reducing the feedback delay of HARQ-ACK, and cannot be applied to service data transmission that requires low delay, such as the aforementioned URLLC service transmission.
  • the embodiments of the present application provide a communication method, device, and device, which are used to reduce transmission delay when transmitting multiple HARQ-ACKs in the same time unit.
  • a communication method may be executed by a terminal device or a communication device (such as a chip system) capable of supporting the terminal device to implement the method.
  • the method is described by taking the terminal device as an example for description.
  • the method includes: obtaining a grouping relationship, receiving a first DCI, and determining an i-th group of time-frequency resources corresponding to a first parameter related to the first DCI among N groups of time-frequency resources according to the grouping relationship, and determining The first uplink channel of the first HARQ-ACK is carried on the first time-frequency resource of the i-th group of time-frequency resources.
  • the grouping relationship represents a corresponding relationship between the first parameter and N groups of time-frequency resources.
  • the N groups of time-frequency resources are obtained by grouping time-frequency resources on a time unit.
  • the frequency resource corresponds to one or more first parameters.
  • the first parameter is related to DCI.
  • the time-frequency resource in each group of time-frequency resources is the time-frequency resource of the uplink channel carrying HARQ-ACK, and N is a positive integer greater than or equal to 2.
  • I is a positive integer less than or equal to N.
  • time-frequency resources on one time unit are divided into N groups of time-frequency resources, and each group of time-frequency resources in the N groups of time-frequency resources can be used to transmit an uplink channel carrying HARQ-ACK. That is, compared with the prior art, a time unit can only be used to transmit one uplink channel carrying HARQ-ACK.
  • one time unit can be used to transmit N number of HARQ-ACK bearers. Upstream channel.
  • the uplink channels carrying HARQ-ACK that need to be sent earlier in the time domain in this time unit do not have to wait until the last one carrying HARQ-ACK.
  • the uplink channel of the ACK is sent on the same PUCCH resource, that is, the method of this application can be used to send the HARQ-ACK that arrives first, thereby reducing the transmission delay and improving the transmission efficiency.
  • the first parameter includes a K1 value, a first time length, codebook identification indication information, a wireless network temporary identifier (RNTI), a termination symbol of an uplink channel, and a physical downlink control.
  • RNTI wireless network temporary identifier
  • the K1 value is from PDSCH
  • PDCCH physical downlink control channel
  • SIV start symbol and length indicator value
  • the first time-frequency resource may be part of the time-frequency resource in the i-th group of time-frequency resources, or may be all time-frequency resources in the i-th group of time-frequency resources.
  • the uplink channel may include a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH).
  • the terminal device may receive the grouping relationship from a network device, or the terminal device may obtain the grouping relationship locally.
  • the network device may also determine the grouping relationship according to one or more of the following conditions before sending the grouping relationship to the terminal device:
  • K1 value The K1 value can be semi-statically configured or predefined.
  • the first time length may be semi-statically configured or predefined.
  • the index of SLIV can be semi-statically configured or predefined.
  • the SLIV in the embodiment of the present application refers to the SLIV of the HARQ-ACK corresponding to the PDSCH.
  • the codebook identification indication information is used to indicate a group of time-frequency resources carrying HARQ-ACK among the N groups of time-frequency resources.
  • the codebook identification indication information may include N values, each value corresponding to one of the N groups of time-frequency resources. Group time-frequency resources.
  • the indication information may be included in the DCI.
  • RNTI is used to scramble DCI.
  • the terminal device may further receive a second DCI, and according to the grouping relationship, determine the k-th group corresponding to the first parameter related to the second DCI in the N groups of time-frequency resources. Frequency resource, the terminal device determines a second uplink channel carrying a second HARQ-ACK on a second time-frequency resource in the k-th group of time-frequency resources.
  • k is a positive integer less than or equal to N, and k and i are different values.
  • the first time-frequency resource and the second time-frequency resource may or may not overlap.
  • the following describes the case of overlapping and the case of not overlapping, respectively.
  • the terminal device sends the first uplink channel on the first time domain resource, and sends the second uplink on the second time domain resource. channel.
  • the terminal device can transmit the first uplink channel carrying the first HARQ-ACK and the second uplink channel carrying the second HARQ-ACK on two different sets of time-frequency resources in the N sets of time-frequency resources.
  • An uplink channel and the second uplink channel do not have to be sent on the same PUCCH resource.
  • the HARQ-ACK that arrives first in the first HARQ-ACK and the second HARQ-ACK can be fed back first, which can reduce the transmission delay to a certain extent.
  • the first time-frequency resource partially overlaps or completely overlaps the second time-frequency resource.
  • the terminal device may send the first HARQ-ACK and the second HARQ-ACK The combination is a third HARQ-ACK, and the terminal device determines to carry a third uplink channel of the third HARQ-ACK on a third time-frequency resource, where the third time-frequency resource is the N sets of time-frequency resources A time-frequency resource in a group of time-frequency resources included in the resource.
  • the third time-frequency resource may also be determined. method.
  • the terminal device selects a group of time-frequency resources from the i-th group of time-frequency resources or the k-th group of time-frequency resources, and determines a third time-frequency resource from the set of time-frequency resources.
  • the following description uses a terminal device to determine a third time-frequency resource in the i-th time-frequency resource as an example for description.
  • the terminal device may determine the third time-frequency resource among the i-th group of time-frequency resources, or it may be understood that when the first uplink channel satisfies the following one When there are multiple conditions, the third time-frequency resource is a time-frequency resource in the i-th group of time-frequency resources.
  • the terminal device may determine the third time-frequency resource in the i-th group of time-frequency resources when determining that the first time length corresponding to the first uplink channel is the smallest or one of the smallest. .
  • the first uplink channel is an uplink channel corresponding to the DCI scrambled by the first RNTI.
  • the first RNTI is a new type of RNTI provided by this application, and has the following functions: It can be determined through this first RNTI that the PDSCH data corresponding to HARQ-ACK originates from the first type of service, and the first type of service may be URLLC, for example. business.
  • the first uplink channel is an uplink channel carried on a time-frequency resource determined according to a K1 value or an SLIV index.
  • the terminal device may determine the third time-frequency resource in the ith group of time-frequency resources by using the following method: the terminal device determines the bit with the third HARQ-ACK in the first uplink channel resource group The first uplink channel resource set corresponding to the number, the first uplink channel resource group corresponds to an uplink channel sent on the i-th time-frequency resource, the first uplink channel resource group includes one or more uplink channel resource sets, and the terminal device After determining the first uplink channel resource set, a third time-frequency resource may be determined in the first uplink channel resource set.
  • the uplink channel may be PUCCH or PUSCH.
  • the uplink channel may be a PUCCH
  • the terminal device may determine the third time-frequency resource in the i-th group of time-frequency resources by using the following method: the terminal device is determined in the first PUCCH resource group to be the third time-frequency resource.
  • the first PUCCH resource set corresponding to the number of bits of HARQ-ACK
  • the first PUCCH resource group corresponds to the PUCCH sent on the i-th time-frequency resource
  • the first PUCCH resource group includes one or more PUCCH resource sets
  • the terminal device After the first PUCCH resource set is determined, a third time-frequency resource may be determined in the first PUCCH resource set.
  • the terminal device may determine the third time-frequency resource by using the following method: the terminal device determines the second uplink channel resource corresponding to the number of bits of the third HARQ-ACK in the second uplink channel resource group Set, where the second uplink channel resource group is configured for the uplink channel carrying the third HARQ-ACK, the second uplink channel resource group includes one or more uplink channel resource sets, and the second uplink channel resource group is N groups
  • the time-frequency resource in the j-th time-frequency resource in the time-frequency resource can also be understood as the second uplink channel resource group corresponds to the uplink channel sent on the j-th time-frequency resource.
  • the terminal device is determining the second uplink channel. After the resource set, the third time-frequency resource can be determined in the second uplink channel resource set, j is a positive integer less than or equal to N, and j, i, and k are different values.
  • the uplink channel may be a PUCCH
  • the terminal device may determine the third time-frequency resource by using the following method: the terminal device determines, in the second PUCCH resource group, a number corresponding to the number of bits of the third HARQ-ACK
  • the second PUCCH resource set where the second PUCCH resource group is configured for the PUCCH carrying the third HARQ-ACK, the second PUCCH resource group includes one or more PUCCH resource sets, and the second PUCCH resource group is N groups
  • the time-frequency resource in the j-th time-frequency resource in the frequency resource can also be understood as the second PUCCH resource group corresponding to the PUCCH sent on the j-th time-frequency resource.
  • a third time-frequency resource may be determined in the second PUCCH resource set, j is a positive integer less than or equal to N, and j, i, and k are different values.
  • the terminal device when the first time-frequency resource and the second time-frequency resource partially overlap or completely overlap, the terminal device sends only an uplink channel that satisfies a preset condition, and discards another uplink channel. It can be understood that when there are more than two time-frequency resources overlapping, the terminal device may send one of the uplink channels that meets the preset conditions, and discard the other uplink channels.
  • the terminal device sends the first uplink channel as an example to explain the foregoing preset conditions. If the terminal device sends the first uplink channel, the first uplink channel satisfies the following preset conditions:
  • condition 1 the first time length corresponding to the first uplink channel is shorter than the first time length corresponding to the second uplink channel.
  • the first uplink channel is an uplink channel corresponding to the DCI scrambled by the first RNTI.
  • the first uplink channel is an uplink channel carried on a time-frequency resource determined according to a K1 value or a SLIV index.
  • the terminal device determines to carry the first uplink channel of the first HARQ-ACK on the fourth time-frequency resource.
  • a fifth uplink channel carrying a second HARQ-ACK on a fifth time-frequency resource where the fourth time-frequency resource is a time-frequency resource in the m group of time-frequency resources included in the N groups of time-frequency resources, and the fifth time-frequency resource are time-frequency resources in the n-th group of time-frequency resources included in the N groups of time-frequency resources, m and n are positive integers less than or equal to N, and m and n are different values.
  • the m-th time-frequency resource and the n-th time-frequency resource do not overlap in the time domain. It can be understood that all the time-frequency resources in the m-th time-frequency resource and the All time-frequency resources in the n sets of time-frequency resources do not overlap in the time domain.
  • the first uplink channel and the second uplink channel may be PUCCH.
  • the following method may be used to determine the fourth Time-frequency resource and fifth time-frequency resource: the terminal device determines a third PUCCH resource set corresponding to the number of bits of the first HARQ-ACK in the third PUCCH resource group, and the third PUCCH resource group includes one or more PUCCH Resource set, the third PUCCH resource group is the time-frequency resource in the m-th time-frequency resource; the terminal device determines the fourth time-frequency resource in the third PUCCH resource set; the terminal device determines in the fourth PUCCH resource group A fourth PUCCH resource set corresponding to the number of bits of the two HARQ-ACKs, the fourth PUCCH resource group includes one or more PUCCH resource sets, and the fourth PUCCH resource group
  • the third PUCCH resource group and the fourth PUCCH resource group are all pre-configured. It may be pre-configured by a network device, for example, it may be configured by a network device through high-level signaling.
  • the terminal device determines to carry the second uplink channel of the second HARQ-ACK on the sixth time-frequency resource, where
  • the sixth time-frequency resource is the time-frequency resource of the s-th group of time-frequency resources included in the N groups of time-frequency resources, s is a positive integer less than or equal to N, and s and i are different values.
  • the sixth time-frequency resource in the s group of time-frequency resources and the first time-frequency resource in the ith group of time-frequency resources do not overlap in the time domain.
  • the first uplink channel and the second uplink channel may be PUCCH.
  • the following method may also be used to determine the first time-frequency resource and the sixth time-frequency resource: the terminal device is in the first PUCCH resource group To determine a fifth PUCCH resource set corresponding to the number of bits of the first HARQ-ACK, the first PUCCH resource group corresponds to a PUCCH sent on the i-th time-frequency resource, and the first PUCCH resource group includes one or more PUCCH The resource set; the terminal device determines the first time-frequency resource in the fifth PUCCH resource set; the terminal device determines the sixth PUCCH resource set corresponding to the number of bits of the second HARQ-ACK in the fifth PUCCH resource group, and the fifth PUCCH The resource group includes one or more PUCCH resource sets, and the fifth PUCCH resource group is pre-configured; the terminal device determines the sixth time-
  • the first uplink channel meets one or more of the following conditions:
  • the first time length corresponding to the first uplink channel is shorter than the first time length corresponding to the second uplink channel
  • the first uplink channel is an uplink channel corresponding to the DCI scrambled by the first RNTI;
  • the first uplink channel is an uplink channel carried on a time-frequency resource determined according to the K1 value or the SLIV index.
  • an embodiment of the present application provides another communication method.
  • the method may be executed by a terminal device or a communication device (such as a chip system) capable of supporting the terminal device to implement the method.
  • the terminal device executes the method. Describe as an example.
  • the method includes: a terminal device acquiring a first grouping relationship, where the first grouping relationship represents a correspondence between a first time length and N groups of time-frequency resources, where the N groups of time-frequency resources are time-frequency resources on a time unit Resulting from the grouping, each group of the time-frequency resources corresponds to one or more of the first time length, the first time length is related to a K1 set, and the K1 set includes multiple K1 values, and the K1 values Is the number of time units offset from the time unit where the PDSCH is located to the time unit where the uplink channel corresponding to the HARQ-ACK of the PDSCH is located, the time-frequency resource in each group of time-frequency resources is the uplink channel carrying the HARQ-ACK Time-frequency resources, the first time length is a unit time length of the K1 value, or the first time length represents a time length corresponding to the K1 value, and N is a positive integer greater than or equal to 2;
  • the terminal device determines an i-th group of time-frequency resources corresponding to a first time length related to the first K1 set in the N groups of time-frequency resources according to the first grouping relationship, and Among the time-frequency resources, the k-th time-frequency resource corresponding to the first time length related to the second K1 set is determined, where i is a positive integer less than or equal to N, and k is a positive integer less than or equal to N. And, k and i are different values;
  • a first uplink channel carrying a first HARQ-ACK on a first time-frequency resource in the i-th group of time-frequency resources and determining a second time in the k-th group of time-frequency resources Frequency resources carrying a second uplink channel of a second HARQ-ACK, wherein the first HARQ-ACK corresponds to a first downlink association set, and the second HARQ-ACK is associated with a second downlink Set correspondence
  • the terminal device merges the first downlink joint set and the second downlink joint set to obtain a third downlink joint set
  • the first downlink joint subset in the first downlink joint set corresponds to a third HARQ-ACK
  • the second downlink joint subset in the second downlink joint set corresponds to a fourth HARQ-ACK
  • the third HARQ-ACK belongs to the first HARQ-ACK
  • the fourth HARQ-ACK belongs to the second HARQ-ACK
  • the terminal device sends a fifth HARQ-ACK according to the third downlink joint set, and the fifth HARQ-ACK includes a third HARQ-ACK or a fourth HARQ-ACK.
  • the time-frequency resources on one time unit are divided into N groups of time-frequency resources, and each group of time-frequency resources in the N groups of time-frequency resources can be used to transmit an uplink channel carrying HARQ-ACK, that is, phase
  • one time unit can only be used to transmit one uplink channel carrying HARQ-ACK.
  • one time unit can be used to transmit N uplink channels carrying HARQ-ACK. In this way, when multiple uplink channels carrying HARQ-ACK need to be transmitted in a time unit, the uplink channels carrying HARQ-ACK that need to be sent earlier in the time domain in this time unit do not have to wait until the last one carrying HARQ-ACK.
  • the uplink channel of the ACK is sent on the same PUCCH resource, that is, the method of this application can be used to send the HARQ-ACK that arrives first, thereby reducing the transmission delay and improving the transmission efficiency.
  • the terminal device can determine that the first downlink joint set scheduled by the first K1 set and the second downlink joint set scheduled by the second K1 set occur. Overlap. For the HARQ-ACK corresponding to the resource portion where the overlap occurs, the terminal device sends only one group, which can reduce the number of transmitted bits and thereby increase the transmission speed.
  • the first time-frequency resource may be part of the time-frequency resource in the i-th group of time-frequency resources, or may be all time-frequency resources in the i-th group of time-frequency resources.
  • the second time-frequency resource may be a part of the time-frequency resources in the k-th group of time-frequency resources, or may be all the time-frequency resources in the k-th group of time-frequency resources.
  • the uplink channel may include a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH).
  • the terminal device may receive the first grouping relationship from a network device, or the terminal device may obtain the first grouping relationship locally.
  • the network device may further determine the first grouping relationship according to the first time length before sending the first grouping relationship to the terminal device. .
  • the first K1 set and the second K1 set may be obtained from a network device, or may be configured by high-level signaling.
  • the HARQ-ACK may be a semi-static codebook.
  • an embodiment of the present application provides another communication method.
  • the method may be executed by a terminal device or a communication device (such as a chip system) capable of supporting the terminal device to implement the method.
  • the terminal device executes the method. Describe as an example.
  • the method includes: a terminal device receiving a first DCI and a second DCI, determining a first time-frequency resource for transmitting a first uplink channel in a pre-configured first PUCCH resource group, and determining transmission in a pre-configured second PUCCH resource group A second time-frequency resource of a second uplink channel, and sending the first uplink channel on the first time-frequency resource, and sending the second uplink channel on the second time-frequency resource, wherein the The first PUCCH resource group and the second PUCCH resource group are PUCCH resource groups configured for the same time slot, the first uplink channel is used to carry a first HARQ-ACK scheduled by the first DCI, and the second The uplink channel is used to carry a second HARQ-ACK scheduled by the second DCI.
  • first DCI and the second DCI may be from the same network device, or may be from different network devices.
  • the terminal device when the first time-frequency resource partially overlaps or completely overlaps the second time-frequency resource, the terminal device resets the first uplink channel and / or the second uplink channel. It is selected to carry the time-frequency resources it sends.
  • the terminal device may determine the third time-frequency resource for sending the first uplink channel in the pre-configured third PUCCH resource group, and determine the first time for sending the second uplink channel in the pre-configured fourth PUCCH resource group.
  • Four time-frequency resources and send the first uplink channel on the third time-frequency resource, and send the second uplink channel on the fourth time-frequency resource.
  • any PUCCH resource belonging to the third PUCCH resource group and any PUCCH resource belonging to the fourth PUCCH resource group have no common OFDM symbols, that is, the PUCCH in the third PUCCH resource group
  • the resources do not completely overlap with the PUCCH resources in the fourth PUCCH resource group.
  • the terminal device when the first time-frequency resource partially overlaps or completely overlaps the second time-frequency resource, the terminal device reselects a time-frequency resource for the second uplink channel for carrying the transmission.
  • the terminal device may determine a fifth time-frequency resource for sending a second uplink channel in a pre-configured fifth PUCCH resource group, and send the second uplink channel on the fifth time-frequency resource.
  • any PUCCH resource belonging to the first PUCCH resource group and any PUCCH resource belonging to the fifth PUCCH resource group have no common OFDM symbol, that is, the PUCCH in the first PUCCH resource group The resources do not completely overlap with the PUCCH resources in the fifth PUCCH resource group.
  • an embodiment of the present application provides a terminal device, and the terminal device has a function of implementing the behavior of the terminal device in the foregoing method example.
  • the functions may be implemented by hardware, and may also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the functions described above.
  • the terminal device includes: an obtaining unit, a receiving unit, and a processing unit. These units can perform the corresponding functions in the method example in the first aspect. For details, refer to the detailed description in the method example. To repeat.
  • the terminal device includes a memory, a transceiver, a processor, and a bus, where the memory, the transceiver, and the processor are connected through the bus; the processor calls and stores the data in the processor.
  • the instructions in the memory execute the method in the first aspect.
  • an embodiment of the present application provides a network device, and the network device has a function of implementing the behavior of the network device in the foregoing method example.
  • the functions may be implemented by hardware, and may also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the functions described above.
  • the network device includes: a sending unit, and the sending unit may perform a corresponding function in the method example in the first aspect.
  • the sending unit may perform a corresponding function in the method example in the first aspect.
  • the network device includes a memory, a transceiver, and a bus, where the memory and the transceiver are connected through the bus; the transceiver may perform the method in the first aspect described above. For details, see The detailed description in the method example is not repeated here.
  • an embodiment of the present application further provides a computer storage medium.
  • the computer storage medium stores computer-executable instructions.
  • the computer-executable instructions are called by a computer, the computer executes the first aspect. Or the method provided by any one of the above first aspect designs.
  • an embodiment of the present application further provides a computer program product.
  • the computer program product stores instructions that, when run on a computer, causes the computer to execute the foregoing first aspect or any of the foregoing first aspects. The method described in one possible design.
  • an embodiment of the present application provides a chip system, which includes a processor and may further include a memory, for implementing the foregoing first aspect or a method in any possible design of the first aspect.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 is a schematic diagram of a feedback HARQ-ACK
  • FIG. 2 is a schematic diagram of a network architecture applied in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another network architecture applied in the embodiment of the present application.
  • FIG. 4 is a communication method according to an embodiment of the present application.
  • FIG. 5 (a) is a schematic diagram after grouping time units according to an embodiment of the present application.
  • FIG. 5 (b) is a schematic diagram of another time unit grouping according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another time unit grouping according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of DCI scheduling provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a PUCCH resource group according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another PUCCH resource group according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another communication device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 14 is another communication method according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a resource acquisition and union set provided by an embodiment of the present application.
  • Terminal devices including devices that provide voice and / or data connectivity to users, may include, for example, a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN) and exchange voice and / or data with the RAN.
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, subscriber unit, subscriber station, mobile station, mobile station, remote Station (remote station), access point (access point (AP)), remote terminal device (remote terminal), access terminal device (access terminal), user terminal device (user terminal), user agent (user agent), or user Equipment (user device) and so on.
  • a mobile phone or a "cellular" phone
  • a computer with a mobile terminal device a portable, pocket, handheld, computer-built or vehicle-mounted mobile device, a smart wearable device, and the like.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with lower power consumption, devices with limited storage capabilities, or devices with limited computing capabilities.
  • it includes bar code, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanner, and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanner and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be referred to as wearable smart devices. They are the general name for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a device that is worn directly on the body or is integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also powerful functions through software support, data interaction, and cloud interaction.
  • Broad-spectrum wearable smart devices include full-featured, large-sized, full or partial functions that do not rely on smart phones, such as smart watches or smart glasses, and only focus on certain types of application functions, and need to cooperate with other devices such as smart phones Use, such as smart bracelets, smart helmets, smart jewelry, etc. for physical signs monitoring.
  • a network device is a device in a wireless network.
  • the network device may be a radio access network (RAN) node (or device) that connects a terminal device to the wireless network, and may also be called a base station.
  • RAN radio access network
  • some examples of network equipment are: Node B (gNB), transmission reception point (TRP), evolved Node B (eNB), Node B (Node B, NB), Home base stations (e.g., home NodeB, or home NodeB, HNB), baseband unit (BBU), or wireless fidelity (Wifi) access point (AP).
  • the RAN may include a centralized unit (CU) node and a distributed unit (DU) node.
  • This structure separates the protocol layer of the base station, and some of the functions of the protocol layer are centrally controlled by the CU. The remaining part or all of the functions of the protocol layer are distributed in the DU, and the CU is centrally controlled by the CU.
  • the embodiment of the present application does not limit the specific technology and specific device form used by the base station.
  • a network device provides services for a cell
  • a terminal device communicates with the network device through a transmission resource (for example, a frequency domain resource or a spectrum resource) used by the cell
  • the cell may be a network device (For example, a base station)
  • the corresponding cell can belong to a macro base station or a small cell.
  • the small cell here can include: urban cell, micro cell, and pico cell. (pico cell), femto cell (femto cell), etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • Subcarrier interval In an orthogonal frequency division multiplexing (OFDM) system, the interval between the center or peak positions of two adjacent subcarriers in the frequency domain.
  • OFDM orthogonal frequency division multiplexing
  • the subcarrier interval in a long term evolution (LTE) system is 15 (kilohertz, kHz)
  • the subcarrier interval in a next generation (new) radio (NR) system may be 15kHz, or 30kHz , Or 60kHz, or 120kHz and so on.
  • Table 1 shows the subcarrier interval currently supported in the 5G NR system:
  • Subcarrier interval 2 ⁇ ⁇ 15 (kHz) CP type 0 15 Normal 1 30 conventional 2 60 Regular or extended
  • the URLLC service requires extremely high delay.
  • the one-way transmission delay from the sender to the receiver must be within 0.5ms, and within 1ms, it can reach 99.999% transmission reliability.
  • the wireless air interface data transmission can use shorter time scheduling units, for example, use mini-slots, or use timeslots with larger subcarrier intervals as the smallest Time scheduling unit.
  • a mini-slot includes one or more time domain symbols, and the time domain symbols herein may be orthogonal frequency division multiplexed OFDM symbols. For a time slot with a subcarrier interval of 15kHz, including 6 or 7 time domain symbols, the corresponding time length is 0.5ms; for a time slot with a subcarrier interval of 60kHz, the corresponding time length is shortened to 0.125ms.
  • URLLC service data usually uses a short time scheduling unit to meet the requirements of ultra-short delay. For example, 2 time domain symbols with a subcarrier interval of 15kHz or a time slot with a subcarrier interval of 60kHz corresponding to 7 hours. Domain symbol, corresponding time length is 0.125ms.
  • the delay refers to a transmission time required for a user application layer data packet to reach a receiving side wireless protocol stack layer 2/3 SDU from a service data unit (SDU) at the transmitting protocol wireless layer 2/3.
  • SDU service data unit
  • the user plane delay requirement of the URLLC service is 0.5 ms for both uplink and downlink. It should be noted that the performance requirement of 0.5ms here refers to the average delay of the data packet.
  • Reliability refers to the success probability of the transmitting end correctly transmitting X-bit data to the receiving end within a certain period of time, which is still defined as the user application layer data packet arriving at the receiving end's wireless protocol stack layer from the transmitting end's wireless protocol stack layer 2 / 3SDU The time required for 2 / 3SDU.
  • a typical requirement is to send 32bytes of data in 1ms to achieve 99.999% reliability. It should be pointed out that the above performance indicators are only typical values. Specific URLLC services may have different requirements for reliability. For example, some extremely demanding industrial controls need to achieve a transmission success probability of 99.9999999% within 0.25ms of end-to-end delay.
  • Starting symbol and length indication information value table In this article, the starting symbol and length indication information value may be referred to as SLIV. Correspondingly, in this article, the starting symbol and length indication information value form may be referred to as the SLIV table. .
  • the SLIV table may include: physical downlink shared channel (PDSCH) mapping method (PDSCH mapping type) and Class A demodulation reference signal (DMRS) position (dmrs-TypeA-Position), physical downlink The number of time slots K 0 offset from the time slot where the physical channel control channel (PDCCH) is located to the time slot where the uplink channel of the PDSCH scheduled by the PDCCH is located, the starting symbol S of the PDSCH in the time slot, and the PDSCH occupation The number of symbols L.
  • a SLIV table may include at least one type of SLIV information, and each type of SLIV information has a corresponding number (ie, an index of the SLIV).
  • the row index in the table is the SLIV index.
  • the SLIV table and the SLIV index can be configured by high-level parameters or predefined.
  • the index of the SLIV is carried by the DCI on the PDCCH, and is used to indicate the time domain resource allocation of the PDSCH scheduled by the DCI, that is, the combination of the length of the initial time domain symbol and the duration of the time domain symbol of the PDSCH in the time domain .
  • Hybrid automatic repeat request-acknowledgement (HARQ) -ACK uplink channel can be understood as an uplink channel used to carry HARQ-ACK, and can also be described as an uplink channel corresponding to HARQ-ACK.
  • the first parameter is related to DCI and may include multiple understandings, for example, one is understood that the first parameter includes or carries or is carried on DCI, or one is understood that the first parameter can be derived from parameters carried on DCI, or The first parameter is a parameter related to the PDCCH where the DCI is located, or the first parameter is a parameter that scrambles the DCI.
  • the two different understandings will be illustrated in detail in the following, which will not be described in detail here.
  • the HARQ-ACK corresponding to the PDSCH can also be described as the HARQ-ACK of the PDSCH, indicating that the HARQ-ACK is feedback information for the PDSCH.
  • HARQ-ACK may include positive acknowledgement (ACKnowledgement, ACK) or negative acknowledgement (NACK).
  • ACK positive acknowledgement
  • NACK negative acknowledgement
  • the terminal device receives the PDSCH sent by the network device correctly, it can feedback the ACK for the PDSCH received correctly.
  • a NACK may be fed back for the PDSCH that is not received correctly.
  • a PUCCH resource group (PUCCH resource set) is a new concept proposed in this application.
  • a PUCCH resource group may include one or more PUCCH resource sets.
  • the PUCCH resource set may be an existing protocol.
  • the definition may also be newly defined in this application, which will be illustrated in detail in the following, and will not be described in detail here.
  • eMBB PDSCH refers to the PDSCH corresponding to the eMBB service, and can also be described as the PDSCH of the eMBB service.
  • URLLC PDSCH refers to a PDSCH corresponding to a URLLC service, and can also be described as a PDSCH of a URLLC service.
  • the K1 value refers to the number of time units offset from the time unit in which the PDSCH is located to the time unit in which the uplink channel corresponding to the HARQ-ACK of the PDSCH is located.
  • the existing protocol mechanism indicates the value of K1 through a PDSCH-to-HARQ-timing-indicator field (field) carried on the DCI. This field includes three bits, and the value can be from "000" to "111". What is the value of K1 specifically indicated in a DCI is configured or predefined through RRC.
  • the first time length which represents the time length corresponding to the K1 value, can also be referred to as the unit of the K1 value, or the granularity of the K1 value.
  • a time unit may include one or more consecutive transmission time intervals (TTIs) or one or more slots or one or more time domain symbols.
  • TTIs transmission time intervals
  • the slot can be a full slot (mini slot) or a mini-slot (also called a non-slot).
  • the mini slot contains less than 14 orthogonal frequency division multiplexing. , OFDM) symbols
  • a mini-slot can be 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or 13 OFDM symbols.
  • Different time units are used to carry different data packets or different copies of the same data packet (also called duplicate versions).
  • the time-frequency resources described in the embodiments of the present application are a general term for time-domain resources and frequency-domain resources.
  • the instant-frequency resources include time-domain resources and frequency-domain resources. Signaling or data.
  • the time domain resource may be a resource on a time unit.
  • “multiple” means two or more. In view of this, in the embodiments of the present application, “multiple” may also be understood as “at least two”. "And / or” describes the association relationship of the associated objects, and indicates that there can be three kinds of relationships. For example, A and / or B can mean that there are three cases in which A exists alone, A and B exist, and B exists alone. In addition, the character "/”, unless otherwise specified, generally indicates that the related objects are an "or" relationship.
  • index and index can be understood as the same concept, and both are index in English.
  • index of SLIV can also be described as the number of SLIV, these two concepts can be interchanged.
  • the eMBB service is transmitted with the time slot as the scheduling granularity, and the URLLC service is usually scheduled with the mini-slot (for example, 2, 4, or 7 time domain symbols) as the schedule.
  • Granular transmission The transmission granularity of the two is different, which may cause the PUCCH carrying the HARQ-ACK corresponding to the eMBB PDSCH and the PUCCH carrying the HARQ-ACK corresponding to the URLLC PDSCH to be transmitted on the same time unit (such as a time slot).
  • HARQ-ACK can be determined by using a time slot as a unit, that is, the prior art does not support transmission of multiple physical uplink control channels carrying HARQ-ACK (physical uplink control channel) in one time slot.
  • PUCCH physical uplink control channel
  • PUCCH physical uplink control channel
  • HARQ-ACKs corresponding to multiple PDSCHs in one time slot need to be transmitted
  • Multiple HARQ-ACKs that need to be transmitted in a time slot are jointly encoded into a HARQ-ACK codebook and transmitted on a PUCCH. For example, as shown in FIG.
  • PDSCH1 can be URLLC PDSCH
  • PDSCH2 can be eMBB PDSCH
  • the terminal device determines PDSCH1.
  • the HARQ-ACK feedback is HARQ-NACK1
  • the HARQ-ACK feedback for PDSCH2 is HARQ-ACK2.
  • the downlink transmission uses a 30kHz subcarrier interval and the uplink transmission uses a 15kHz subcarrier interval, which is limited by the data interpretation of the terminal device.
  • HARQ-NACK1 of PDSCH1 may feed back at the beginning of the second time slot at the earliest, and HARQ-ACK2 of PDSCH2 scheduled later will arrive at a later time, and may feed back at the end of the uplink time slot as soon as possible. Due to the limitation of the existing protocol that only one HARQ-ACK uplink channel can be transmitted in a time slot, for the above example, using the prior art method, HARQ-NACK1 must wait for a certain time to be fed back with HARQ-ACK2, and wait for HARQ- After ACK2 is determined, HARQ-NACK1 and HARQ-ACK2 are combined into a HARQ-ACK and carried on a PUCCH for feedback.
  • NACK1 of PDSCH1 is delayed for transmission.
  • the retransmission of network equipment is also delayed.
  • the length of the timeslots of the line transmission is inconsistent.
  • the delay of this retransmission may exceed 1 downlink time slot (for example, 1ms).
  • the URLLC service requires a higher transmission delay (end-to-end 0.5ms), so the existing mechanism Cannot meet the delay requirements required for URLLC services.
  • the embodiments of the present application provide a communication method, device and device, which are used to reduce the transmission delay of the uplink channel when transmitting multiple uplink channels carrying HARQ-ACK in the same time unit.
  • the communication method provided in the embodiment of the present application may be applied to a 5G NR system or an LTE system, and may also be applied to a future mobile communication system, such as a 6th generation mobile communication system, etc., which is not limited in this application.
  • the technical solution provided in the embodiment of the present application is mainly applied to the URLLC service and the eMBB service as an example, and is not limited to this in practical applications.
  • the technical solution provided in the embodiment of the application can also be applied. For other businesses.
  • FIG. 2 is a schematic diagram of a network architecture applied in an embodiment of the present application.
  • the network architecture includes a network device and at least one terminal device.
  • the terminal device may be fixed or movable.
  • the terminal device may be connected to the network device in a wireless manner.
  • the network device may be, for example, a base station, and the terminal device may be, for example, a UE.
  • network equipment and terminal equipment can work in the NR system, and terminal equipment and network equipment can communicate through the NR system.
  • FIG. 2 is only a schematic diagram.
  • the mobile communication system may further include other network devices, for example, may also include a wireless relay device and a wireless backhaul device, which are not shown in FIG. 2. This embodiment of the present application does not limit the number of network devices and terminal devices included in the mobile communication system.
  • FIG. 3 is a schematic diagram of another network architecture applied in the embodiment of the present application.
  • the network device and the terminal devices 1 to 6 form a wireless communication network.
  • terminal devices 1 to 6 are entities that send uplink data and can transmit uplink channels to the network devices (uplink channels can carry uplink data).
  • uplink channels can carry uplink data.
  • terminal devices 1 to 6 can also receive the network.
  • the terminal devices 4 to 6 can also constitute a communication system, in which the network device can send downlink data to the terminal device 1, the terminal device 2, the terminal device 3, the terminal device 5, and the terminal device 5 can also Send downlink data to the terminal device 4 and the terminal device 6.
  • the network architecture may further include more network devices; similarly, the network The architecture may also include more terminal devices, and may also include other devices, which are not shown in FIG. 3.
  • FIG. 4 is a communication method provided by an embodiment of the present application.
  • the method is applied as an example to the network architecture shown in FIG. 2. The flow of this method is described below.
  • the terminal device acquires a grouping relationship.
  • the grouping relationship represents the correspondence between the first parameter and N groups of time-frequency resources.
  • the N groups of time-frequency resources are obtained by grouping time-frequency resources on a time unit, and each group of time-frequency resources in the N groups of time-frequency resources corresponds to each other.
  • the first parameter is related to downlink control information (DCI).
  • DCI downlink control information
  • the time-frequency resource in each group of time-frequency resources is the time-frequency resource of the uplink channel carrying HARQ-ACK, and N is greater than Or a positive integer equal to 2.
  • Each group of time-frequency resources may include one or more time-frequency resources.
  • the terminal device may receive the grouping relationship from a network device, or the terminal device may obtain the grouping relationship locally. Where the terminal device obtains the grouping relationship locally, the terminal device may store the grouping relationship locally in advance, and the grouping relationship may be obtained in advance by the terminal device from the network device, or it may be preset. In the following description, the terminal device receives the packet relationship from the network device as an example.
  • the first parameter may include a value K1 (K 1 value may be written), the length of a first time, the identification information indicating the codebook (codebook ID), terminating radio network temporary identifier (radio network temporary identity, RNTI) , an uplink channel One or more of the symbol, the monitoring timing of the PDCCH, or the index of the SLIV.
  • the first parameter includes the K1 value and the first time length; or includes the K1 value and the wireless network temporary identifier, or includes the K1 value and the SLIV index, or includes the K1 value and the PDCCH monitoring timing, or includes the K1 value and code
  • the identification indication information, or the codebook identification indication information and the termination symbol of the uplink channel is a value K1 (K 1 value may be written), the length of a first time, the identification information indicating the codebook (codebook ID), terminating radio network temporary identifier (radio network temporary identity, RNTI) , an uplink channel One or more of the symbol, the monitoring timing of the PDCCH,
  • the K1 value is the number of time units offset from the time unit where the physical downlink shared channel (physical downlink shared channel (PDSCH) is located) to the time unit where the uplink channel corresponding to the PDSCH is the HARQ-ACK.
  • the first time length represents a time length corresponding to the K1 value.
  • the first time length may include a first time unit length and a second time unit length.
  • the first time unit length is, for example, a time slot.
  • the slot may include 14 time-domain symbols.
  • the length of the second time unit is, for example, a mini-slot.
  • the mini-slot may include 2, 4, or 7 time-domain symbols.
  • the first parameter related to DCI in this application may include: the first parameter carried on DCI, or the first parameter may be derived from the parameter carried on DCI, or the parameter related to the PDCCH where DCI is located, or Parameters for scramble DCI.
  • the first parameter carried on the DCI may include a K1 value, an SLIV index, and codebook identification indication information.
  • the first parameter that can be derived from the parameters carried on the DCI may include a first time length derived from the K1 value and a termination symbol of the uplink channel derived from the uplink channel time-frequency resource allocation parameter.
  • a parameter related to a PDCCH where the DCI is located may include a monitoring timing of the PDCCH.
  • the parameter for scramble DCI is RNTI.
  • the uplink channel may include a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • S102 The terminal device receives the first DCI.
  • FIG. 4 illustrates that the terminal device receives the first DCI from the network device as an example.
  • the first parameter related to the first DCI corresponds to an ith group of time-frequency resources in the N groups of time-frequency resources, where i is a positive integer less than or equal to N.
  • the terminal device determines, from the N group of time-frequency resources, the i-th group of time-frequency resources corresponding to the first parameter related to the first DCI according to the obtained grouping relationship.
  • the terminal device determines a first uplink channel carrying a first HARQ-ACK on a first time-frequency resource in the i-th group of time-frequency resources.
  • the first HARQ-ACK corresponds to the PDSCH scheduled by the first DCI. It can be understood that the first HARQ-ACK is feedback information for the PDSCH scheduled by the first DCI.
  • the first HARQ-ACK may be an ACK or a NACK.
  • the first time-frequency resource may be part of the time-frequency resource in the i-th group of time-frequency resources, or may be all time-frequency resources in the i-th group of time-frequency resources.
  • the following describes how the terminal device determines the first uplink channel carrying the first HARQ-ACK on the first time-frequency resource in the i-th group of time-frequency resources.
  • the terminal device determines the corresponding PUCCH resource set according to the first HARQ-ACK bit number (payload size), and then according to the PUCCH resource indicator (allocated resource indicator, ARI) in the first DCI.
  • a first time-frequency resource carrying a first uplink channel is determined in the PUCCH resource set. For example, if the ARI is "000", it can be determined that the resource carrying the first uplink channel is the first PUCCH resource in the PUCCH resource set, that is, the first time-frequency resource is the first PUCCH resource in the PUCCH resource set. 1 PUCCH resource.
  • the terminal device determines a PUCCH resource set corresponding to a first HARQ-ACK bit number (payload size) in a PUCCH resource group configured through high-level signaling, and then according to the first DCI,
  • the PUCCH resource indicates that a first time-frequency resource carrying the first uplink channel is determined in the PUCCH resource set.
  • the PUCCH resource group is a new concept proposed in this application. Because the number of bits of different HARQ-ACKs may vary greatly, this application can use different high-level signaling to provide different HARQ-ACKs. The number of bits configures different PUCCH resource groups, and each PUCCH resource group includes one or more PUCCH resource sets.
  • time-frequency resources on one time unit are divided into N groups of time-frequency resources, and each group of time-frequency resources in the N groups of time-frequency resources can be used to transmit an uplink channel carrying HARQ-ACK. That is, compared with the prior art, a time unit can only be used to transmit one uplink channel carrying HARQ-ACK.
  • one time unit can be used to transmit N number of HARQ-ACK bearers. Upstream channel.
  • the uplink channels carrying HARQ-ACK that need to be sent earlier in the time domain in this time unit do not have to wait until the last one carrying HARQ-ACK.
  • the uplink channel of the ACK is sent on the same PUCCH resource, that is, the method of this application can be used to send the HARQ-ACK that arrives first, thereby reducing the transmission delay and improving the transmission efficiency.
  • the network device may also determine the grouping relationship according to one or more of the following conditions before sending the grouping relationship to the terminal device:
  • K1 value The K1 value can be semi-statically configured or predefined.
  • the first time length may be semi-statically configured or predefined.
  • the index of SLIV can be semi-statically configured or predefined.
  • the SLIV in the embodiment of the present application refers to the SLIV of the HARQ-ACK corresponding to the PDSCH.
  • the codebook identification indication information is used to indicate a group of time-frequency resources carrying HARQ-ACK among the N groups of time-frequency resources.
  • the codebook identification indication information may include N values, each value corresponding to one of the N groups of time-frequency resources. Group time-frequency resources.
  • the indication information may be carried on the DCI.
  • RNTI is used to scramble DCI.
  • the following describes the process by which the network device determines the grouping relationship based on the K1 value. Take the K1 value as a semi-static configuration as an example.
  • the network device can also obtain several K1 values configured at a high level before determining the grouping relationship according to the K1 value.
  • the following K1 values are described as a set of K1 values for the convenience of description.
  • the K1 value set can be divided into N K1 value subsets, and a one-to-one correspondence between the N K1 value subsets and N groups of time-frequency resources can be established.
  • the one-to-one correspondence between the N K1 subsets and the N sets of time-frequency resources is determined as the grouping relationship.
  • the network device may divide the set of K1 values into N subsets according to an index (which may be understood as a number) of several K1 values.
  • the network device can The K1 value set ⁇ 1,2,3,4,5,6,7,8 ⁇ is divided into a first K1 value subset ⁇ 1,2,3,4 ⁇ and a second K1 value subset according to the K1 value index ⁇ 5,6,7,8 ⁇ , after dividing the first K1 value subset and the second K1 value subset, the network device can establish a one-to-one correspondence between the two K1 value subsets and the two groups of time-frequency resources.
  • the two sets of time-frequency resources are respectively recorded as the first set of time-frequency resources and the second set of time-frequency resources.
  • the network device may map the first subset of K1 values to the first set of time-frequency resources.
  • the two K1 value subsets correspond to the second group of time-frequency resources, and the corresponding relationship between the first K1 value subset and the first group of time-frequency resources and the corresponding relationship between the second K1 value subset and the second group of time-frequency resources can be determined. Is the grouping relationship.
  • the network device can also divide the K1 value set ⁇ 1,2,3,4,5,6,7,8 ⁇ into a first K1 value subset ⁇ 1,2,3 ⁇ and a second K1 Value subset ⁇ 4,5,6,7,8 ⁇ .
  • the first K1 value subset and the second K1 value subset can also be divided in other ways, which are not limited in this application.
  • the grouping relationship can be in the form of a list. See Table 3 for a possible grouping relationship. Table 3 shows the first parameter as the value of K1. When the value of K1 is 1 to 4, the corresponding A group of time-frequency resources. When the K1 value is 5 to 8, it corresponds to the second group of time-frequency resources.
  • the K1 value set ⁇ 1,2,3,4,5,6,7,8 ⁇ can be divided into the first K1 value subset ⁇ 1,2,3 ⁇ and the second K1 value subset ⁇ 4,5,6 ⁇ and the third K1 value subset ⁇ 7,8 ⁇ .
  • the network device After dividing the first K1 value subset, the second K1 value subset, and the third K1 value subset, the network device can establish 3 K1 values. The one-to-one correspondence between the value subsets and the three sets of time-frequency resources.
  • the network device may map the first K1 value subset to the first set of time-frequency resources, the second K1 value subset to the second set of time-frequency resources, and the third K1 value subset to the third set of time-frequency resources.
  • the one-to-one correspondence between the three K1 subsets and the three groups of time-frequency resources may be determined as the grouping relationship.
  • the terminal device may determine the first group among N groups of time-frequency resources according to the obtained grouping relationship and the K1 value carried in the first DCI received.
  • the ith group of time-frequency resources corresponding to the K1 value carried in a DCI An embodiment is described below.
  • the grouping relationship determined by the network device includes: the first subset of K1 values ⁇ 1,2,3,4 ⁇ corresponds to the first group of time-frequency resources, and the second subset of K1 values ⁇ 5 , 6,7,8 ⁇ corresponds to the second group of time-frequency resources.
  • the network device determines the grouping relationship, it sends the grouping relationship to the terminal device, and sends the first DCI to the terminal device.
  • the K1 value carried in the first DCI is 3.
  • the terminal device can know that the K1 value 3 (also described as the K1 value carried in the first DCI) related to the first DCI belongs to the first K1 value.
  • the terminal device may determine the first group corresponding to the K1 value 3 related to the first DCI in the two groups of time-frequency resources according to the grouping relationship. Frequency resources, thereby determining a first uplink channel carrying a first HARQ-ACK on a first time-frequency resource of the first group of time-frequency resources.
  • the network device may also determine the grouping relationship by using the above method. The difference is that if the K1 value is predefined, the network device does not need to obtain several high-level configurations. K1 value, execute the above method directly using the predefined K1 value.
  • the following describes the process by which the network device determines the packet relationship according to the first time length. Take the first time length as a semi-static configuration as an example.
  • the network device may also obtain several first time lengths configured at a high level before determining the grouping relationship according to the first time length.
  • the length is described as a first set of time lengths.
  • the first time length set can be divided into N time length subsets, and then the N time length subsets and N sets of time-frequency resources can be established one by one.
  • a one-to-one correspondence between N time length subsets and N sets of time-frequency resources is determined as the grouping relationship.
  • N 2 as an example
  • the network device can divide the first time length set ⁇ 2,4,7,14 ⁇ into the first time length subset ⁇ 2 according to the first time length , 4,7 ⁇ and the second time-length subset ⁇ 14 ⁇ , after dividing the first time-length subset and the second time-length subset, the network device can establish two time-length subsets and two sets of time-frequency resources.
  • N 2 as an example
  • the two groups of time-frequency resources are recorded as the first group of time-frequency resources and the second group of time-frequency resources.
  • the network device may divide the first time length subset ⁇ 2,4 , 7 ⁇ corresponds to the first group of time-frequency resources, and the second time-length subset ⁇ 14 ⁇ corresponds to the second group of time-frequency resources, and the one-to-one correspondence between the two time-length subsets and the two groups of time-frequency resources can be determined.
  • the grouping relationship may be in the form of a list. See Table 4 for a possible grouping relationship. Table 4 shows the first parameter as the first time length. When the first time length is 2, 4, Or at 7, it corresponds to the first group of time-frequency resources. When the value of K1 is 5-8, it corresponds to the second group of time-frequency resources.
  • the terminal device may determine the group related to the first DCI among the N groups of time-frequency resources according to the obtained grouping relationship and the first time length.
  • the ith group of time-frequency resources corresponding to the first time length An embodiment is described below.
  • the grouping relationship determined by the network device includes: the first time length subset ⁇ 2 time domain symbols, 4 time domain symbols, 7 time domain symbols ⁇ corresponding to the first group of time-frequency resources, the first The two time length subset ⁇ 14 time domain symbols ⁇ corresponds to the second group of time-frequency resources.
  • the network device determines the grouping relationship, it sends the grouping relationship to the terminal device, and sends the first DCI to the terminal device, assuming that the first DCI corresponds to The first time length is 7 time domain symbols.
  • the terminal device After receiving the packet relationship and the first DCI sent by the network device, the terminal device can know that the first time length 7 time domain symbols related to the first DCI belong to the first time length sub According to the grouping relationship, it can be known that the first time length subset corresponds to the first group of time-frequency resources, so the terminal device can determine the first time length related to the first DCI among the two groups of time-frequency resources according to the grouping relationship.
  • the first group of time-frequency resources corresponding to the time-domain symbol may further determine a first uplink channel carrying the first HARQ-ACK on the first time-frequency resource of the first group of time-frequency resources.
  • the foregoing description uses the network device to determine the grouping relationship based on the K1 value and the first time length as an example.
  • the network device can also determine the grouping relationship based on the K1 value and the first time length.
  • the network device may configure, according to the first time length, the K1 value corresponding to the K1 value with the same time length as the first time length as a time length subset. For example, suppose that the indices of several K1 values obtained by a network device from higher layers are 1-8, and the corresponding set of K1 values can be recorded as ⁇ 1,2,3,4,5,6,7,8 ⁇ , where the index The time length corresponding to the K1 value of 1-4 (that is, the granularity of the K1 value) is 1/2 slot, and the time length corresponding to the K1 value of the index 5 to 8 (that is, the granularity of the K1 value) is the slot.
  • the K1 value corresponding to 1/2 slot is configured as the first time length subset ⁇ 1,2,3,4 ⁇ for a time length
  • the K1 value corresponding to the slot may be configured as the second time length subset according to the first time length ⁇ 5,6,7,8 ⁇
  • the first time length subset ⁇ 1,2,3,4 ⁇ can correspond to the first set of time-frequency resources
  • the second time length subset ⁇ 5,6,7,8 ⁇ Corresponds to the second group of time-frequency resources, and determines the one-to-one correspondence between the two time-length subsets and the two groups of time-frequency resources as the grouping relationship.
  • the network device may also determine the grouping relationship by using the above method. The difference is that if the first time length is predefined, the network device does not need to obtain high-level information.
  • the configured first time lengths directly use the predefined first time lengths to perform the foregoing method.
  • the following describes the process by which the network device determines the grouping relationship according to the SLIV index. Take the SLIV index as a semi-static configuration as an example.
  • the SLIV table of the high-level configuration can also be obtained.
  • the SLIV table can include multiple SLIV indexes, such as the SLIV of the existing protocol.
  • the table includes a total of 16 SLIV indexes from 1 to 16. The following describes the SLIV indexes as a set of SLIV indexes for convenience.
  • the network device obtains the SLIV table configured at a high level, the SLIV index set can be determined, and then the SLIV index set can be divided into N SLIV index subsets, and then N SLIV index subsets and N groups can be established.
  • the one-to-one correspondence between the time-frequency resources is determined as the one-to-one correspondence between the N index subsets and the N groups of time-frequency resources.
  • the network device may set the SLIV index set according to the SLIV index ⁇ 1,2,3,4,5,6,7,8,9,10,11,12, 13,14,15,16 ⁇ is divided into the first SLIV index subset ⁇ 1,2,3,4,5,6,7,8 ⁇ and the second SLIV index subset ⁇ 9,10,11,12 , 13,14,15,16 ⁇ , after dividing the index subset of the first SLIV and the index subset of the second SLIV, the network device can establish a one-to-one correspondence between the two SLIV index subsets and the two groups of time-frequency resources The relationship is described below for the convenience of describing the two groups of time-frequency resources as the first group of time-frequency resources and the second group of time-
  • the network device may correspond to the first set of time-frequency resources with the first SLIV index subset.
  • Resources the index subset of the second SLIV corresponds to the second group of time-frequency resources, and the one-to-one correspondence between the index subsets of the two SLIVs and the two groups of time-frequency resources can be determined as the grouping relationship.
  • the SLIV index included in the SLIV index set is evenly divided into N subsets as an example.
  • the network device may also unevenly index the SLIV index included in the SLIV index set. Is divided into N subsets.
  • N subsets are some examples.
  • the network device can establish a one-to-one correspondence between the three SLIV index subsets and the three groups of time-frequency resources.
  • the index subset of the first SLIV may correspond to the first group of time-frequency resources
  • the index subset of the second SLIV may correspond to the second group of time-frequency resources
  • the index subset of the third SLIV may correspond to the third group of time-frequency resources.
  • the index subset of the first SLIV corresponds to the first group of time-frequency resources
  • the index subset of the second SLIV corresponds to the second group of time-frequency resources
  • the index subset of the third SLIV The set corresponds to the third set of time-frequency resources
  • the index subset of the fourth SLIV corresponds to the fourth set of time-frequency resources.
  • the terminal device may determine the SLIV related to the first DCI among the N groups of time-frequency resources according to the obtained grouping relationship and the SLIV index.
  • the i-th group of time-frequency resources corresponding to the index An embodiment is described below.
  • the grouping relationship determined by the network device includes: the first SLIV index subset ⁇ 1,2,3,4,5,6,7,8 ⁇ corresponds to the first group of time-frequency resources
  • the index subset ⁇ 9,10,11,12,13,14,15,16 ⁇ of the second SLIV corresponds to the second group of time-frequency resources.
  • the network device determines the grouping relationship, it sends the grouping relationship to the terminal device.
  • the first DCI can be sent to the terminal device. Assuming that the index of the SLIV carried in the first DCI is 8, after receiving the packet relationship sent by the network device and the first DCI, the terminal device can learn the SLIV related to the first DCI.
  • Index 8 belongs to the index subset of the first SLIV. According to the grouping relationship, it can be known that the index subset of the first SLIV corresponds to the first group of time-frequency resources. Therefore, the terminal device can determine the relationship between the two groups of time-frequency resources according to the grouping relationship.
  • the first group of time-frequency resources corresponding to the index of the first DCI-related SLIV may further determine the first uplink channel carrying the first HARQ-ACK on the first time-frequency resource in the first group of time-frequency resources.
  • the index of the SLIV may be an index of a part of the SLIV included in the SLIV table.
  • the network device may divide the index of a part of the SLIV into N index subsets of SLIVs, evenly or unevenly, and establish a one-to-one correspondence between the index subsets of N SLIVs and N sets of time-frequency resources.
  • all PUCCH piggybacks are piggybacked on the PUSCH.
  • the network device may determine the foregoing grouping relationship according to the SLIV index corresponding to the PUSCH.
  • the network device may determine the foregoing grouping relationship according to the SLIV index corresponding to the PUSCH.
  • the following describes the process by which the network device determines the grouping relationship according to the codebook identification indication information.
  • the value of the codebook identification indication information may include N, and each value corresponds to a group of time-frequency resources in the N groups of time-frequency resources.
  • the value of the codebook identification instruction information may include 0 and 1.
  • the network device may correspond to the value 0 to the first group of time-frequency resources of the two groups of time-frequency resources and the value 1 to The second group of time-frequency resources in the two groups of time-frequency resources, so that the network device can establish a one-to-one correspondence between the value of the two codebook identification indication information and the two groups of time-frequency resources.
  • the terminal device may determine a set of time-frequency resources corresponding to the value of the codebook identification indication information among the N sets of time-frequency resources according to the value of the received codebook identification indication information carried on the DCI.
  • the following describes the process by which the network device determines the packet relationship according to the RNTI.
  • the network device may determine the grouping relationship according to the type of the RNTI.
  • the types of RNTI include three types, namely C-RNTI, CS-RNTI, and MCS-C-RNTI.
  • N 3 as an example, a network device may map the C-RNTI to the first of three groups of time-frequency resources.
  • the CS-RNTI corresponds to the second set of time-frequency resources of the three sets of time-frequency resources
  • the MCS-C-RNTI corresponds to the third set of time-frequency resources of the three sets of time-frequency resources.
  • the network device can establish a one-to-one correspondence between three types of RNTIs and three sets of time-frequency resources.
  • the terminal device can derive the RNTI scrambling type used by the DCI according to the received DCI, and can further determine in N sets of time-frequency resources according to the RNTI scrambling type used by the DCI, and carry the HARQ of the PDSCH scheduled by the DCI. -A set of time-frequency resources for the ACK's uplink channel.
  • MCS-C-RNTI is a new type of RNTI provided by this application.
  • the MCS-C-RNTI has the following functions:
  • the MCS-C-RNTI can determine that the PDSCH data corresponding to HARQ-ACK comes from
  • the first type of service may be, for example, a URLLC service.
  • MCS-C-RNTI only indicates one possible name, and it can also be described as X-RNTI. This application does not limit the name.
  • the purpose is to distinguish RNTIs with the above functions from existing RNTIs.
  • existing RNTIs such as It may include C-RNTI, CS-RNTI, P-RNTI or SI-RNTI.
  • the following describes the process by which the network device determines the grouping relationship according to the monitoring timing of the PDCCH.
  • the network device may divide the monitoring timings of several PDCCHs into N subsets according to the monitoring timings of several PDCCHs.
  • the monitoring timings of several PDCCHs are referred to as the monitoring timing set of PDCCHs.
  • the monitoring timings of several PDCCHs include symbols 0, 2, 4, 6, 8, 10, and 12 in a slot.
  • the network device can divide the PDCCH monitoring timing set ⁇ 0,2,4,6,8,10,12 ⁇ into the monitoring of the first PDCCH according to the monitoring timing of the PDCCH Timing subset ⁇ 0,2,4,6 ⁇ , second PDCCH monitoring timing subset ⁇ 8,10,12 ⁇ , the network device divides the first PDCCH monitoring timing subset, and the second PDCCH monitoring timing subset.
  • a one-to-one correspondence between the monitoring timing subsets of the two PDCCHs and the two sets of time-frequency resources may be established.
  • the network device may match the monitoring timing subsets of the first PDCCH with the first set of time-frequency resources, The subset of monitoring timings of the two PDCCHs corresponds to the second set of time-frequency resources.
  • the following describes the process by which the network device determines the grouping relationship according to the termination symbol of the uplink channel.
  • the network device may also obtain the indexes of several starting control channel elements (CCEs) configured at the upper layer, which may be described as, for example, the CCE index set. After obtaining the index set of the CCE configured by the higher layer, the network device may divide the index set of the CCE into an index subset of the N CCEs, and each index subset of the CCE may correspond to a set of uplink channel termination symbols.
  • CCEs starting control channel elements
  • the network device may establish a one-to-one correspondence between the termination symbols of the N groups of uplink channels and the N groups of time-frequency resources, and further determine the one-to-one correspondence between the termination symbols of the N groups of uplink channels and the N groups of time-frequency resources as the grouping relationship. .
  • the index subset of each CCE may correspond to a termination symbol of an uplink channel in a range. For example, suppose that there are two index subsets of CCEs, one index subset of CCE may correspond to the termination symbol of the uplink channel in the range of 2-7 symbols, and the other index subset of CCE may correspond to the uplink in the range of 8-13 symbols The termination symbol of the channel.
  • the network device may divide the CCE index set into N subsets according to the CCE index value.
  • the CCE index set ⁇ 1,2,3,4,5,6,7,8 ⁇ can be divided into the first CCE index subset ⁇ 1,2 ⁇ and the second CCE index subset according to the CCE index value ⁇ 3,4,5 ⁇ , the index subset of the third CCE ⁇ 6,7 ⁇ , and the index subset of the fourth CCE ⁇ 8 ⁇ , after dividing the index subset of the CCE, the network device can determine the index of each CCE
  • the termination symbol of a set of uplink channels corresponding to the subset assuming that the index subset of the first CCE ⁇ 1,2,3 ⁇ corresponds to the termination symbol of the first group of uplink channels is ⁇ 3,4,6 ⁇ , and the index of the second CCE
  • the subset ⁇ 3,4,5 ⁇ corresponds to the termination symbol of the second group of uplink channels as ⁇ 7,13 ⁇ , and
  • the four groups of time-frequency resources are recorded as the first group of time-frequency resources, the second group of time-frequency resources, The group of time-frequency resources and the fourth group of time-frequency resources.
  • the network device may match the termination symbols of the first group of uplink channels with the first group of time-frequency resources and the termination symbols of the second group of uplink channels with the second group.
  • Frequency resources, the termination symbols of the third group of uplink channels correspond to the third group of time-frequency resources, and the termination symbols of the fourth group of uplink channels correspond to the fourth group of time-frequency resources, so that the termination symbols of the four groups of uplink channels can be compared with the four groups.
  • the one-to-one correspondence between time-frequency resources is determined as the grouping relationship.
  • FIG. 5 (a) is a schematic diagram of time unit grouping provided in the embodiment of the present application.
  • the time unit is a slot
  • N is 4
  • the uplink channel is
  • PUCCH it is assumed that there are 7 HARQ-ACKs corresponding to the PDSCH that need to be transmitted on the slot, and one PUCCH carries the HARQ-ACK of one PDSCH.
  • the time domain resources for PUCCH transmission are selected according to the number of HARQ-ACK bits, and PUCCH1 to PUCCH7 are obtained.
  • the grouping is determined according to the termination symbol of a PUCCH. There may be several PUCCH starting symbols before the termination symbol. These PUCCHs overlap in the time domain.
  • PUCCH1 to 3 are divided into one group, corresponding to the first group of time-frequency resources; after that, only the start symbols of PUCCH5 are not grouped before the end symbols of PUCCH4, and the resources occupied by PUCCH4 and PUCCH5 correspond to the second Group of time-frequency resources; there is no other PUCCH start symbol before the end symbol of PUCCH6, it is divided into a group separately, corresponding to the third group of time-frequency resources, and the same PUCCH7 corresponds to the fourth group of time-frequency resources, so the network device can
  • the one-to-one correspondence between the termination symbols of the group of uplink channels and the four groups of time-frequency resources is determined as the grouping relationship.
  • the embodiment of the present application has described the method for the network device to determine the grouping relationship according to one condition.
  • the network device may also determine the grouping relationship based on a combination of two conditions.
  • the following description uses the network device to determine the grouping relationship based on the two conditions as an example.
  • the network device determines the grouping relationship according to the first time length and the RNTI as an example. Assuming that the first time lengths obtained by the network device are 14 time domain symbols, 2 time domain symbols, 4 time domain symbols, and 7 time domain symbols, the corresponding first time length set can be recorded as ⁇ 2 , 4,7,14 ⁇ , the network device may divide the first time length set ⁇ 2,4,7,14 ⁇ into the first time length subset ⁇ 2,4,7 ⁇ and the second time according to the first time length The length subset is ⁇ 14 ⁇ ; further it is assumed that the types of RNTI include three types, which are C-RNTI, CS-RNTI, and MCS-C-RNTI.
  • the time-frequency resources on a time unit are divided into four groups of time-frequency resources, which are respectively recorded as the first group of time-frequency resources, the second group of time-frequency resources, and the third group of time-frequency resources.
  • the network device grouping the resources in the time unit according to the combination of the two parameters of the first time length and the RNTI may include: setting the first time length to ⁇ 2,4,7 ⁇ and DCI by MCS -C-RNTI scrambling, corresponding to the first group of time-frequency resources; scrambling the first time length to ⁇ 2,4,7 ⁇ and DCI by C-RNTI, CS-RNTI, corresponding to the second group of time-frequency resources; The first time length is 14, and DCI is scrambled by MCS-C-RNTI, corresponding to the third set of time-frequency resources; the first time length is ⁇ 2,4,7 ⁇ and DCI is added by C-RNTI, CS-RNTI
  • the interference corresponds to a fourth group of time-frequency resources, and the network device may further determine the four groups of corresponding relationships as the grouping relationship.
  • the network device determines the grouping relationship according to the K1 value and the RNTI as an example. Assume that several K1 values obtained by the network device are 1, 2, 3, 4, 5, 6, 7, or 8, respectively, and the corresponding set of K1 values can be recorded as ⁇ 1,2,3,4,5,6,7 , 8 ⁇ , the network device can divide the K1 value set ⁇ 1,2,3,4,5,6,7,8 ⁇ into the first K1 value subset ⁇ 1,2,3,4 ⁇ and the first according to the K1 value Two K1 value subsets ⁇ 5,6,7,8 ⁇ ; further assume that the types of RNTI include three types, namely C-RNTI, CS-RNTI, and MCS-C-RNTI.
  • N 3 as an example, that is, the time-frequency resources on a time unit are divided into three groups of time-frequency resources, which are respectively recorded as the first group of time-frequency resources, the second group of time-frequency resources, and the third group of time-frequency resources.
  • the network device grouping the resources in the time unit according to the combination of the K1 value and the RNTI parameter may include: the K1 value is ⁇ 5,6,7,8 ⁇ and the DCI is scrambled by the MCS-C-RNTI, corresponding to the first A set of time-frequency resources; the K1 value is ⁇ 1,2,3,4 ⁇ and DCI is scrambled by C-RNTI and CS-RNTI, corresponding to the second set of time-frequency resources; the first time length is ⁇ 1,2 , 3,4 ⁇ , and the DCI is scrambled by the MCS-C-RNTI, corresponding to the third group of time-frequency resources, and the network device may further determine the four groups of corresponding relationships as the grouping relationship.
  • the network device may also determine the grouping relationship according to other condition combinations.
  • the network device may also determine the grouping relationship according to other condition combinations.
  • the network device may also determine the grouping relationship according to other condition combinations.
  • the network device may also determine the grouping relationship according to other condition combinations.
  • the network device may also determine the grouping relationship according to other condition combinations.
  • the network device may also determine the grouping relationship according to other condition combinations.
  • the network device may also determine the grouping relationship according to other condition combinations.
  • the network device may also determine the grouping relationship according to other condition combinations.
  • the network device may also determine the grouping relationship according to the above conditions of more than two items. For details, refer to the foregoing method for determining the grouping relationship by using a single condition, and details are not described herein again.
  • the network device may also obtain a parameter N configured at a high level, that is, how many time-frequency resources the network device divides the time-frequency resources on a time unit into High-level configuration.
  • FIG. 5 (b) is a schematic diagram of a time unit grouping provided in the embodiment of the present application.
  • the time unit is a slot and N is 3, that is, FIG. 5 In (b), the time-frequency resource on one time slot is divided into three groups of time-frequency resources as an example.
  • the first group of time-frequency resources occupies 1 to 3 symbols of the time slot. Time-frequency resources.
  • the second group of time-frequency resources occupies 4-9 symbols of time-slot resources
  • the third group of time-frequency resources occupies time-frequency resources of 8-14 symbols of time slots.
  • the frequency resources do not overlap with the second group of time-frequency resources
  • the first group of time-frequency resources do not overlap with the third group of time-frequency resources
  • the second group of time-frequency resources partially overlap with the third group of time-frequency resources.
  • the foregoing mainly describes how the network device determines the grouping relationship, and the following describes in detail how the terminal device implements the communication method provided in this application.
  • the number of DCIs received by the terminal device is not limited in this application.
  • the method embodiment corresponding to FIG. 4 mainly describes how the terminal device executes the method provided in this application when receiving a DCI.
  • the terminal device receives two DCIs as an example to further describe the method provided in this embodiment of the application.
  • the terminal device can also receive more than two DCIs, and the implementation principle is similar.
  • the following description uses terminal devices to receive two DCIs.
  • the terminal device may receive the second DCI in addition to the first DCI. After receiving the second DCI, the terminal device may determine the N group of time-frequency resources according to the obtained grouping relationship. Time-frequency resources corresponding to the first parameter related to the second DCI.
  • the first parameter corresponding to the second DCI and the first parameter corresponding to the first DCI both correspond to the i-th time-frequency resource of the N time-frequency resources.
  • the first parameter corresponding to the second DCI corresponds to the k-th time-frequency resource of the N-time-frequency resources, where k is a positive integer less than or equal to N, and the k is different from the i value.
  • the first parameter corresponding to the second DCI and the first parameter corresponding to the first DCI both correspond to the i-th time-frequency resource in the N time-frequency resources, and the terminal device may correspond to the PDSCH scheduled by the first DCI.
  • the first HARQ-ACK and the second HARQ-ACK corresponding to the PDSCH scheduled by the second DCI are synthesized into a synthetic HARQ-ACK, and an uplink channel carrying the synthetic HARQ-ACK is transmitted in the i-th group of time-frequency resources.
  • the first parameter corresponding to the second DCI corresponds to the k-th time-frequency resource in the N groups of time-frequency resources
  • the first parameter corresponding to the first DCI corresponds to the i-th time-frequency resource in the N groups of time-frequency resources
  • the terminal The device may determine that the second uplink channel carrying the second HARQ-ACK is carried on the second time-frequency resource in the k-th group of time-frequency resources.
  • the first time-frequency resource and the second time-frequency resource may or may not overlap.
  • the following describes the overlapping and non-overlapping situations respectively.
  • the first time-frequency resource and the second time-frequency resource do not overlap at all.
  • N 3
  • i 1
  • k 2
  • the i The group of time-frequency resources corresponds to the first group of time-frequency resources in FIG. 5 (b)
  • the k-th group of time-frequency resources corresponds to the second group of time-frequency resources in FIG. 5 (b)
  • the frequency resources and the second group of time-frequency resources do not overlap at all.
  • the first time-frequency resource is the time-frequency resource in the first group of time-frequency resources
  • the second time-frequency resource is the time-frequency resource in the second group of time-frequency resources.
  • the terminal device sends the first uplink channel on the first time-domain resource, and on the second time-domain resource. Send a second uplink channel.
  • the terminal device can transmit the first uplink channel carrying the first HARQ-ACK and the second uplink channel carrying the second HARQ-ACK on two different sets of time-frequency resources in the N sets of time-frequency resources.
  • An uplink channel and the second uplink channel do not have to be sent on the same PUCCH resource.
  • the HARQ-ACK that arrives first in the first HARQ-ACK and the second HARQ-ACK can be fed back first, which can reduce the transmission delay to a certain extent.
  • the first time-frequency resource and the second time-frequency resource partially overlap or completely overlap.
  • N 3
  • i 2
  • k 3
  • the i-th group of time-frequency resources corresponds to the second group of time-frequency resources in Fig. 5 (b)
  • the k-th group of time-frequency resources corresponds to the third group of time-frequency resources in Fig. 5 (b)
  • the first group of time-frequency resources in Fig. 5 (b) The two groups of time-frequency resources and the third group of time-frequency resources partially overlap. If the first time-frequency resource determined by the terminal device is 7 to 9 symbols in the second group of time-frequency resources, the determined second time-frequency resource is the third group.
  • the terminal device needs to Select the new resource.
  • the terminal device may reselect resources in the following manner: The terminal device combines the first HARQ-ACK and the second HARQ-ACK into a third HARQ-ACK, and determines to carry the third HARQ- on the third time-frequency resource.
  • the third uplink channel of the ACK wherein the third time-frequency resource is a time-frequency resource in a group of time-frequency resources included in the N groups of time-frequency resources.
  • the third time-frequency resource can also be determined before the terminal device determines that the third uplink channel of the third HARQ-ACK is carried on the third time-frequency resource. Two methods for determining the third time-frequency resource are given below.
  • the terminal device selects a group of time-frequency resources from the i-th group of time-frequency resources or the k-th group of time-frequency resources, and determines a third time-frequency resource from the set of time-frequency resources.
  • the following description uses a terminal device to determine a third time-frequency resource in the i-th time-frequency resource as an example for description.
  • the terminal device When determining that the first uplink channel satisfies one or more of the following conditions, the terminal device determines to determine a third time-frequency resource among the i-th group of time-frequency resources.
  • the terminal device may determine the third time-frequency resource in the i-th group of time-frequency resources when determining that the first time length corresponding to the first uplink channel is the smallest or one of the smallest. .
  • the first uplink channel is an uplink channel corresponding to the DCI scrambled by the first RNTI.
  • the first RNTI is a new type of RNTI provided by this application, and has the following functions: It can be determined through this first RNTI that the PDSCH data corresponding to HARQ-ACK originates from the first type of service, and the first type of service may be URLLC, for example. business.
  • the first uplink channel is an uplink channel carried on a time-frequency resource determined according to a K1 value or an SLIV index.
  • the first uplink channel is PUCCH.
  • the terminal device may determine the third time-frequency resource in the i-th group of time-frequency resources by using the following method: the terminal device determines the first PUCCH resource set corresponding to the number of bits of the third HARQ-ACK in the first PUCCH resource group.
  • a PUCCH resource group corresponds to a PUCCH sent on the i-th time-frequency resource.
  • the first PUCCH resource group includes one or more PUCCH resource sets. After determining the first PUCCH resource set, the terminal device may use the first PUCCH resource.
  • a third time-frequency resource is determined in the set.
  • the terminal device may determine the third time-frequency resource carrying the third HARQ-ACK codebook in the first PUCCH resource set according to the value of the third PUCCH resource indication, and the third PUCCH resource indication is in the third PDCCH.
  • the third PDCCH is the last PDCCH detected by the terminal device and scheduling the PDSCH in the PDSCH set.
  • the terminal device determines the third time-frequency resource in a second PUCCH resource group specifically configured for the overlapping PUCCH resources.
  • the following takes the first uplink channel as the PUCCH as an example to describe this implementation in detail.
  • the terminal device determines a second PUCCH resource set corresponding to the number of bits of the third HARQ-ACK in the second PUCCH resource group, where the second PUCCH resource group is configured for the PUCCH carrying the third HARQ-ACK, and the second The PUCCH resource group includes one or more PUCCH resource sets.
  • the second PUCCH resource group is the time-frequency resource in the j-th time-frequency resource of the N time-frequency resources.
  • the second PUCCH resource group corresponds to the For the PUCCH sent on the j-th time-frequency resource, after determining the second PUCCH resource set, the terminal device may determine the third time-frequency resource in the second PUCCH resource set, where j is a positive integer less than or equal to N, and j It is different from i and k. For example, the terminal device may determine a third time-frequency resource carrying the third HARQ-ACK codebook in the second PUCCH resource set according to the value of the third PUCCH resource indicator.
  • the third PUCCH resource indicator is in the third PDCCH. The value of the PUCCH resource indication.
  • the third PDCCH is the last PDCCH detected by the terminal device and scheduling the PDSCH in the PDSCH set.
  • the terminal device determines the third time-frequency resource in the second PUCCH resource group specifically configured for the overlapped PUCCH resource.
  • FIG. 6 is a schematic diagram after grouping time units according to an embodiment of the present application.
  • time units are used as time slots to divide time-frequency resources in a time unit into a first group of time-frequency resources and
  • the second set of time-frequency resources is taken as an example.
  • the first uplink channel is sent on the first set of time-frequency resources, and the second uplink channel is sent on the second set of time-frequency resources.
  • the first uplink channel carries the four HARQs indicated by DCI # 1 to DCI # 4.
  • the four HARQ-ACKs are carried on the first uplink channel, and the PUCCH resource set 2 is selected in the first PUCCH resource group according to the number of bits (for example, 10 bits) of the four HARQ-ACKs, because PUCCH resource set 2 corresponds to The number of bits ranges from 10 to 20 bits.
  • the four HARQ-ACKs indicated on DCI # 5 to DCI # 8 are carried on the second uplink channel, and the PUCCH resource set 3 is selected in the second PUCCH resource group according to the number of bits of the four HARQ-ACKs, 20 bits. .
  • the method of this application can be used to choose to carry the original
  • the HARQ-ACK codebook on the PUCCH is jointly coded as 30 bits. If the PUCCH resource set is re-selected in the second PUCCH resource group corresponding to the second uplink channel, the PUCCH resource set 3 will still be selected. At this time, during the downlink transmission, If DCI # 1 ⁇ DCI # 4 is lost, the second uplink channel only transmits the 20-bit HARQ-ACK codebook indicated by DCI # 5 ⁇ DCI # 8.
  • the network device is unaware of the DCI # 1 ⁇ DCI # 4 transmission loss. Therefore, when receiving the second uplink channel, the network device does not know whether the second uplink channel should be decoded with 20bit or 30bit.
  • the embodiment of the present application specifically configures a PUCCH resource group for overlapping PUCCH resources, that is, In this application, PUCCH resource groups are configured respectively for overlapping PUCCH resources and non-overlapping PUCCH resources. In this way, the reliability of the transmission uplink channel can be improved.
  • the terminal device when the first time-frequency resource and the second time-frequency resource partially overlap or completely overlap, the terminal device sends only an uplink channel that satisfies a preset condition, and discards another uplink channel. It can be understood that when there are more than two time-frequency resources overlapping, the terminal device may send one of the uplink channels that meets the preset conditions, and discard the other uplink channels.
  • the terminal device sends the first uplink channel as an example to explain the foregoing preset conditions. If the terminal device sends the first uplink channel, the first uplink channel satisfies the following preset conditions:
  • condition 1 the first time length corresponding to the first uplink channel is shorter than the first time length corresponding to the second uplink channel.
  • the first uplink channel is an uplink channel corresponding to the DCI scrambled by the first RNTI.
  • the first uplink channel is an uplink channel carried on a time-frequency resource determined according to a K1 value or a SLIV index.
  • the first DCI and the second DCI may be received by the terminal device from the same network device, or may be received from different network devices.
  • the two different network devices may both be transport nodes (TRPs).
  • TRPs transport nodes
  • the network device that sends the first DCI and the network device that sends the second DCI cannot decode the HARQ-ACK codebook jointly coded by the first HARQ-ACK and the second HARQ-ACK. For example, referring to FIG.
  • the two different TRPs are TRP # A and TRP # B, and the first DCI is TRP # A is sent to the terminal device, and the second DCI is sent by TRP # B to the terminal device.
  • the feedback information HARQ-ACK # 1 corresponding to the first DCI scheduled PDSCH # 1 corresponds to the second DCI scheduled PDSCH # 2.
  • the HARQ-ACK # 2 feedback information is instructed to be sent in the slot.
  • TRP # A and TRP # B are non-ideal backhaul lines, that is, TRP # A and TRP # B cannot know each other's scheduling situation in real time, then TRP # A and TRP # B cannot pair the HARQ-ACK # 1 and The HARQ-ACK # 2 coded HARQ-ACK codebook is decoded.
  • an embodiment of the present application further provides a method for sending HARQ-ACK.
  • the terminal device determines to carry the first uplink channel of the first HARQ-ACK on the fourth time-frequency resource, and at the fifth time Frequency resource carrying the second uplink channel of the second HARQ-ACK, wherein the fourth time-frequency resource is the time-frequency resource of the m group of time-frequency resources included in the N groups of time-frequency resources, and the fifth time-frequency resource is the N groups Among the time-frequency resources in the n-th group of time-frequency resources included in the time-frequency resource, m and n are positive integers less than or equal to N, and m and n are different values.
  • all time-frequency resources in the m-th group of time-frequency resources and all time-frequency resources in the n-th group of time-frequency resources do not overlap in the time domain.
  • the above uplink channel is a PUCCH as an example.
  • the foregoing embodiment can also be understood as that when the time-frequency resources corresponding to the two PUCCHs overlap, the step of selecting the time-frequency resources corresponding to the two PUCCHs is rolled back, that is, for the bearer.
  • the two PUCCHs of the HARQ-ACK reselect the non-overlapping time-frequency resources (also described as PUCCH resources), and then the HARQ-ACKs carried on the two PUCCHs can be sent separately on the non-overlapping time-frequency resources.
  • the above method only uses two HARQ-ACKs as an example to explain.
  • the above method is still applicable.
  • the above method can still be used to determine on two or more non-overlapping PUCCH resources Send HARQ-ACK separately.
  • the above method is not limited to the scenario where the network devices are non-ideal backhaul lines. In other scenarios, the above method is still applicable. It should be further explained that, for the above non-ideal backhaul scenario, one of the HARQ-ACKs can also be discarded, and only the other HARQ-ACK can be transmitted. For details, see the description of the method for discarding HARQ-ACK above. More details.
  • the terminal device Before the terminal device determines that the first uplink channel of the first HARQ-ACK is carried on the fourth time-frequency resource, and before the second uplink channel of the second HARQ-ACK is carried on the fifth time-frequency resource, the terminal device also needs to determine the fourth Time-frequency resource and fifth time-frequency resource.
  • the following uses the PUCCH as an example for the first uplink channel and the second uplink channel to specifically describe how the terminal device determines the fourth time-frequency resource and the fifth time-frequency resource.
  • the terminal device determines a third PUCCH resource set corresponding to the number of bits of the first HARQ-ACK in the third PUCCH resource group, and determines a fourth time-frequency resource in the third PUCCH resource set. .
  • the terminal device determines a fourth PUCCH resource set corresponding to the number of bits of the second HARQ-ACK in the fourth PUCCH resource group, and determines a fifth time-frequency resource in the fourth PUCCH resource set.
  • the third PUCCH resource group includes one or more PUCCH resource sets, the third PUCCH resource group is time-frequency resources in the m-th time-frequency resource, and the fourth PUCCH resource group includes one or more PUCCH resource sets, The fourth PUCCH resource group is a time-frequency resource in the n-th time-frequency resource.
  • the third PUCCH resource group and the fourth PUCCH resource group are used to select a PUCCH resource when the first time-frequency resource partially overlaps or completely overlaps the second time-frequency resource.
  • the third PUCCH resource group and the fourth PUCCH resource group involved above may be pre-configured. It may be configured by a network device, for example, it may be configured by a network device (such as a base station) through high-level parameters, or it may be configured by radio resource control (radio resource control (RRC) signaling).
  • RRC radio resource control
  • the above-mentioned third PUCCH resource group and the fourth PUCCH resource group may satisfy the following conditions: all PUCCH resources in the third PUCCH resource group and all PUCCH resources in the fourth PUCCH resource group do not overlap in the time domain at all. It can also be understood that all PUCCH resources in the third PUCCH resource group and all PUCCH resources in the fourth PUCCH resource group do not have any OFDM symbol in common.
  • the two PUCCHs in the pre-configured two PUCCH resource groups (for example, the third PUCCH resource group and the fourth PUCCH resource group described above) that do not overlap with each other may be two PUCCH
  • the HARQ-ACKs carried on the UEs select non-overlapping PUCCH resources.
  • the terminal device may use the number of HARQ-ACK bits and the PUCCH resource identifier (or ACK in the last DCI) -NACK resource indicator (ACK-NACK resource indicator (ARI)), which respectively selects one PUCCH resource from the third PUCCH resource group and the fourth PUCCH resource group for transmitting two HARQ-ACKs on two PUCCHs that originally overlapped Codebook.
  • PUCCH resource identifier or ACK in the last DCI
  • ACK-NACK resource indicator ARI
  • FIG. 8 is a possible schematic diagram of a third PUCCH resource group and a fourth PUCCH resource group.
  • the third PUCCH resource group includes PUCCH resource set 1-PUCCH resource set 4
  • the fourth PUCCH resource group includes PUCCH resource set 1-PUCCH resource set 4 as an example.
  • the third PUCCH resource group Occupies the first 7 symbols of time slot m
  • the fourth PUCCH resource group occupies the last 7 symbols of time slot m
  • all PUCCH resources in the third PUCCH resource group and all PUCCH resources in the fourth PUCCH resource group are completely in the time domain Do not overlap. It can be understood that FIG. 8 is only one possible illustration, and is not limited.
  • the embodiment of the present application also provides another method for sending HARQ-ACK.
  • this method when the first time-frequency resource and the second time-frequency resource partially or completely overlap, the terminal device is still on the first time-frequency resource.
  • the first uplink channel carrying the first HARQ-ACK, and the terminal device determines to carry the second uplink channel of the second HARQ-ACK on the sixth time-frequency resource, where the sixth time-frequency resource is the first channel included in the N groups of time-frequency resources.
  • s is a positive integer less than or equal to N, and s and i are different values.
  • the sixth time-frequency resource in the s-th group of time-frequency resources and the first time-frequency resource in the i-th group of time-frequency resources do not overlap in the time domain.
  • the terminal device may keep the first time-frequency resource carrying the first HARQ-ACK unchanged, and choose to carry the second HARQ. -ACK time-frequency resources.
  • the uplink channel is PUCCH as an example. When the time-frequency resources corresponding to the two PUCCHs overlap, this method can be used to send HARQ-ACKs on the two non-overlapping PUCCH resources.
  • the terminal device Before the terminal device determines that the first uplink channel of the first HARQ-ACK is still carried on the first time-frequency resource, and determines that the second uplink channel of the second HARQ-ACK is carried on the sixth time-frequency resource, the first Time-frequency resources and sixth time-frequency resources.
  • the following uses the PUCCH as an example for the first uplink channel and the second uplink channel to specifically describe how the terminal device determines the first time-frequency resource and the sixth time-frequency resource.
  • the terminal device determines a fifth PUCCH resource set corresponding to the number of bits of the first HARQ-ACK in the first PUCCH resource group, and determines a first time-frequency resource in the fifth PUCCH resource set. .
  • the terminal device determines a sixth PUCCH resource set corresponding to the number of bits of the second HARQ-ACK in the fifth PUCCH resource group, and determines a sixth time-frequency resource in the sixth PUCCH resource set.
  • the first PUCCH resource group corresponds to the PUCCH sent on the i-th time-frequency resource.
  • the first PUCCH resource group includes one or more PUCCH resource sets, and the fifth PUCCH resource group includes one or more PUCCH resource sets. .
  • the fifth PUCCH resource group is used to reselect the PUCCH resource when the first time-frequency resource partially overlaps or completely overlaps the second time-frequency resource.
  • the fifth PUCCH resource group involved above may be pre-configured. It can be understood that the sixth time-frequency resource may be selected from a pre-configured PUCCH resource group.
  • the pre-configured PUCCH resource group may be configured by a network device, for example, may be configured by a network device (for example, a base station) through a high-level parameter, or may be configured by radio resource control (RRC) signaling. .
  • RRC radio resource control
  • all the PUCCH resources in the pre-configured PUCCH resource group may be located on several symbols at the edge of the time slot, and the time domain resources occupied are small, and it is not easy to overlap with other resources.
  • the pre-configured PUCCH resource group includes four PUCCH resource sets, namely PUCCH resource set 1, PUCCH resource set 2, PUCCH resource set 3, and PUCCH resource set 4, and each PUCCH resource set All of them include PUCCH resources. These PUCCH resources are located at the edge of the time slot m in FIG. 9, and occupy less time-domain resources and are not easy to overlap with other resources.
  • the first uplink channel satisfies one or more of the following conditions:
  • condition 1 the first time length corresponding to the first uplink channel is shorter than the first time length corresponding to the second uplink channel.
  • the first uplink channel is an uplink channel corresponding to the DCI scrambled by the first RNTI, and the first RNTI may be an MCS-RNTI.
  • the first uplink channel is an uplink channel carried on a time-frequency resource determined according to a K1 value or an SLIV index.
  • the above method can be used to determine non-overlapping PUCCH resources for each HARQ-ACK and send each network device a HARQ-ACK corresponding to the PDSCH it sends.
  • the terminal device when the first time-frequency resource and the second time-frequency resource overlap, can reallocate time-domain resources for transmitting the PUCCH, which can avoid the overlapping of the first time-frequency resource and the second time-frequency resource.
  • An error occurs when transmitting the first uplink channel and the second uplink channel separately, which can improve the reliability of the transmission uplink channel.
  • An embodiment of the present application further provides a communication method.
  • the method includes: a terminal device receives a first DCI and a second DCI, determines a first time-frequency resource for sending a first uplink channel in a pre-configured first PUCCH resource group, and A second time-frequency resource for sending a second uplink channel is determined from a pre-configured second PUCCH resource group, and the first uplink channel is sent on the first time-frequency resource, and the second time-frequency resource is sent.
  • the second uplink channel wherein the first PUCCH resource group and the second PUCCH resource group are PUCCH resource groups configured for a same time slot, and the first uplink channel is used to carry the first DCI scheduling A first HARQ-ACK, and the second uplink channel is used to carry a second HARQ-ACK scheduled by the second DCI.
  • the first DCI corresponds to the first PUCCH resource group
  • the second DCI corresponds to the second PUCCH resource group. It can be understood that the PUCCH resource group can be pre-configured according to conditions related to DCI.
  • the PUCCH resource group may be configured according to one or more of the following conditions related to DCI.
  • the first item, PDCCH monitoring timing indicates the position of the start symbol of the timing at which the terminal device detects the PDCCH within 1 time unit (such as a time slot). For example, the terminal device can obtain the time domain position of the potential PDCCH monitoring opportunity in a slot according to the high-level configuration information, such as PDCCH monitoring pattern parameters.
  • the DCI carried by the PDCCH may correspond to the first PUCCH resource group; when the start symbol of the PDCCH monitoring timing belongs to the second half of a slot, the DCI carried by the PDCCH corresponds to the second PUCCH resource group.
  • the second item is search space identity (SSID).
  • the terminal device will monitor the set of PDCCH candidate locations (also called search spaces) and try to decode the set by monitoring the DCI format (DCI format). Every PDCCH. For example, assuming that the aggregation level corresponding to the first SS ID is ⁇ 1,2,4,8 ⁇ and the aggregation level corresponding to the second SS ID is ⁇ 1,2,8 ⁇ , the first SS ID can be configured in advance to correspond to the first A PUCCH resource group, and the second SS ID corresponds to the second PUCCH resource group.
  • the terminal device after receiving the first DCI, if the terminal device determines that the first DCI corresponds to the first SS ID, it may correspondingly determine in the first PUCCH resource group to send a message for carrying the first DCI schedule.
  • the first time-frequency resource of the first uplink channel of the first HARQ-ACK similarly, after receiving the second DCI, if the terminal device determines that the second DCI corresponds to the second SS ID, it can be correspondingly allocated to the second PUCCH resource.
  • the second time-frequency resource of the second uplink channel for sending the second HARQ-ACK for carrying the second DCI schedule is determined.
  • the third item, RNTI is used to scramble the information bits of DCI.
  • the terminal device performs descrambling processing on several possible RNTI values. If the information bits that are descrambled according to a certain RNTI value can pass the CRC check, it indicates that the DCI is scrambled by the RNTI.
  • the RNTI where the DCI carried by the PDCCH is configured at a higher layer may include an existing RNTI such as C-RNTI, CS-RNTI, P-RNTI, SI-RNTI, or a new RNTI.
  • the new RNTI may be called X- RNTI.
  • the name of the new RNTI is not limited in this application. It can be referred to as other RNTI.
  • X-RNTI can include one or more types. Typical characteristics are the value and existing RNTI (such as C-RNTI, CS-RNTI). , P-RNTI, SI-RNTI) are not equal. Typical functions may include: The PDSCH data used to indicate PDCCH scheduling originates from the first type of service, such as URLLC service.
  • the X-RNTI may be MCS-C-RNTI, or other RNTIs that identify low-latency and high-reliability services. In this case, the PUCCH resource group may be divided according to the type of the RNTI of the PDCCH.
  • the DCI carried by the PDCCH corresponding to the existing RNTI may correspond to the first PUCCH resource group, and the corresponding RNTI is the new RNTI (
  • the DCI carried by the PDCCH of the X-RNTI) corresponds to the second PUCCH resource group.
  • the terminal device may determine to send the bearer for the bearer in the first PUCCH resource group accordingly.
  • the first time-frequency resource of the first uplink channel of the first HARQ-ACK scheduled by the first DCI is the new RNTI.
  • the terminal device determines that the RNTI corresponding to the PDCCH carrying the second DCI is the new RNTI.
  • a second time-frequency resource for sending a second uplink channel used to carry a second HARQ-ACK scheduled by the second DCI is determined.
  • the fourth item is a DCI format, which can be used to distinguish the DCI carried by the PDCCH.
  • the terminal device can blindly detect the PDCCH, try to decode each DCI format with a different number of bits (payload size), perform cyclic redundancy check (clyclic redundancy check, CRC), and determine the DCI payload corresponding to the PDCCH through the CRC.
  • the size is further combined with the format indicator byte in the decoded DCI to determine the DCI format of the PDCCH.
  • the high-level configuration DCI format may include format 1_0, format 1_1 and format 1_x, format 1_0 and format 1_1 may refer to the existing DCI format, and format 1_x may refer to a new DCI format different from format 1_0 and format 1_1.
  • format 1_x can be a DCI format that identifies low-latency and high-reliability services.
  • Typical features of the new DCI format can include format 1_x, format 1_1, and format 1_1 having different payload sizes. This application can divide the PUCCH resource group according to the type of DCI format.
  • the DCI formatted as the existing DCI format may correspond to the first PUCCH resource group
  • the DCI formatted as the new DCI format (for example, format 1_x) may correspond to the second PUCCH resource group.
  • the terminal device after receiving the first DCI, if the terminal device determines that the DCI format corresponding to the first DCI is the existing DCI format, it may correspondingly determine in the first PUCCH resource group to send the first The first time-frequency resource of the first uplink channel of the first HARQ-ACK scheduled by a DCI.
  • the terminal device determines that the DCI format corresponding to the second DCI is the new DCI format.
  • a second time-frequency resource for sending a second uplink channel used to carry a second HARQ-ACK scheduled by the second DCI is determined.
  • Item 5 The network device sending DCI. If the first DCI and the second DCI are sent by the first network device and the second network device, respectively, the first DCI can be configured to correspond to the first PUCCH resource group and the second DCI through high-level parameters. Corresponds to the second PUCCH resource group.
  • first DCI and the second DCI may be from the same network device, or may be from different network devices. That is, the first network device and the second network device may be the same network device or different network devices.
  • the terminal device when the first time-frequency resource partially overlaps or completely overlaps the second time-frequency resource, the terminal device resets the first uplink channel and / or the second uplink channel. It is selected to carry the time-frequency resources it sends.
  • the terminal device may determine the third time-frequency resource for sending the first uplink channel in the pre-configured third PUCCH resource group, and determine the first time for sending the second uplink channel in the pre-configured fourth PUCCH resource group.
  • Four time-frequency resources and send the first uplink channel on the third time-frequency resource, and send the second uplink channel on the fourth time-frequency resource.
  • the PUCCH resources belonging to the third PUCCH resource group and the PUCCH resources belonging to the fourth PUCCH resource group have no common OFDM symbols, that is, the PUCCH resources in the third PUCCH resource group and the fourth PUCCH resource group
  • the PUCCH resources in the PUCCH resource group do not overlap at all.
  • the first uplink channel and the second uplink channel have no OFDM symbols in common, so that the first HARQ-ACK and the second HARQ-ACK can be transmitted on different uplink channels carried in a time slot.
  • the terminal device when the first time-frequency resource partially overlaps or completely overlaps the second time-frequency resource, the terminal device reselects a time-frequency resource for the second uplink channel for carrying the transmission.
  • the terminal device may re-determine the fifth time-frequency resource for sending the second uplink channel in the pre-configured fifth PUCCH resource group, and send the second uplink channel on the fifth time-frequency resource.
  • the PUCCH resources belonging to the first PUCCH resource group and the PUCCH resources belonging to the fifth PUCCH resource group have no common OFDM symbols, that is, the PUCCH resources in the first PUCCH resource group and the fifth The PUCCH resources in the PUCCH resource group do not overlap at all.
  • the first uplink channel and the second uplink channel have no OFDM symbols in common, which can ensure that the first HARQ-ACK and the second HARQ-ACK can be transmitted on different uplink channels carried in a time slot.
  • the reselection of time-frequency resources in this application means that the time-frequency resources selected before are discarded and the time-frequency resources are reselected.
  • the terminal device reselects the time-frequency resources used by the second uplink channel to carry its transmission. It can be understood that the terminal device abandons the time-frequency resources determined for the second uplink channel before reselection, and re-selects the second uplink channel. Select time-frequency resources.
  • the terminal device and the network device include a hardware structure and / or a software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is performed by hardware or computer software-driven hardware depends on the specific application of the technical solution and design constraints. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of this application.
  • the functional modules of the terminal device and the network device may be divided according to the foregoing method example.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules may be implemented in the form of hardware or software functional modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • the embodiments of the present application further provide an apparatus for implementing any one of the methods in the embodiments of the present application.
  • an apparatus including a terminal device for implementing any of the methods in the embodiments of the present application.
  • another apparatus is provided, which includes a unit (or means) for implementing each step performed by a network device in any one of the methods in the embodiments of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device 700 according to an embodiment of the present application.
  • the communication device 700 may include an obtaining unit 701, a receiving unit 702, and a processing unit 703.
  • the obtaining unit 701 in the communication device 700 shown in FIG. 10 may be used for the communication device 700 to perform the steps shown in S101, and the receiving unit 702 may be used for the communication device 700 to perform the steps shown in S102.
  • the processing unit 703 may be used for the communication device 700 to perform the steps shown in S103 or S104.
  • an embodiment of the present application provides a communication device 800.
  • the communication device 800 can be applied to a network device.
  • FIG. 11 is a schematic structural diagram of a communication device 800 according to an embodiment of the present application.
  • the communication device 800 may include a sending unit 801.
  • the communication device 800 may further include a processing unit 802.
  • the sending unit 801 in the communication device 800 shown in FIG. 11 may be used for the communication device 800 to perform the steps shown in S102.
  • the following operations may also be performed:
  • the first parameter includes a K1 value, a first time length, codebook identification indication information, a wireless network temporary identification RNTI, an uplink channel termination symbol, a physical downlink control channel PDCCH monitoring timing, or One or more of an index of the start symbol and length indication information value SLIV, where the K1 value is an offset from the time unit where the PDSCH is located to the time unit where the uplink channel of the HARQ-ACK corresponding to the PDSCH is located The number of time units, and the first time length represents a time length corresponding to the K1 value.
  • the receiving unit 702 is further configured to:
  • the processing unit 703 is further configured to:
  • a k-th group of time-frequency resources corresponding to the first parameter related to the second DCI received by the receiving unit 702 is determined, where k is less than or equal to A positive integer of N, and k and i are different values, and determine a second uplink channel carrying a second HARQ-ACK on a second time-frequency resource in the k-th group of time-frequency resources.
  • processing unit 703 is further configured to:
  • the first HARQ-ACK and the second HARQ-ACK are combined into a third HARQ-ACK, and it is determined that the The third time-frequency resource carries the third uplink channel of the third HARQ-ACK, wherein the third time-frequency resource is a time-frequency resource in a group of time-frequency resources included in the N groups of time-frequency resources.
  • the third time-frequency resource is a time-frequency resource in the i-th group of time-frequency resources
  • the first time length corresponding to the first uplink channel is shorter than the first time length corresponding to the second uplink channel
  • the first uplink channel is an uplink channel corresponding to the DCI scrambled by the first RNTI;
  • the first uplink channel is an uplink channel carried on a time-frequency resource determined according to the K1 value or the SLIV index.
  • the first uplink channel is PUCCH
  • the processing unit 703 is further configured to:
  • a first PUCCH resource set corresponding to the number of bits of the third HARQ-ACK is determined, and the first PUCCH resource group corresponds to a PUCCH transmitted on the i-th time-frequency resource.
  • the first PUCCH resource group includes one or more PUCCH resource sets, and the third time-frequency resource is determined in the first PUCCH resource set.
  • the first uplink channel is PUCCH
  • the processing unit 703 is further configured to:
  • the second PUCCH resource group includes one or more PUCCH resource sets, and the second PUCCH resource group is a time-frequency resource in a j-th time-frequency resource of the N groups of time-frequency resources.
  • the third PUCCH resource set determines the third time-frequency resource, the j is a positive integer less than or equal to N, and the j, the i, and the k are different values.
  • processing unit 703 is further configured to:
  • the first uplink channel carrying the first HARQ-ACK on the fourth time-frequency resource is on the fifth time-frequency resource
  • a second uplink channel carrying a second HARQ-ACK wherein the fourth time-frequency resource is a time-frequency resource among the m group of time-frequency resources included in the N groups of time-frequency resources, and the fifth time-frequency resource Are time-frequency resources in the n-th group of time-frequency resources included in the N groups of time-frequency resources, where m and n are positive integers less than or equal to N, and m and n are different values .
  • the m-th group of time-frequency resources and the n-th group of time-frequency resources do not overlap in the time domain.
  • the first uplink channel and the second uplink channel are PUCCH
  • the processing unit 703 is further configured to:
  • a third PUCCH resource set corresponding to the number of bits of the first HARQ-ACK is determined, the third PUCCH resource group includes one or more PUCCH resource sets, and the third PUCCH
  • the resource group is the time-frequency resource in the m-th group of time-frequency resources; the fourth time-frequency resource is determined in the third PUCCH resource set; and the fourth PUCCH resource group is determined to be related to the second HARQ
  • processing unit 703 is further configured to:
  • the frequency resources are time-frequency resources in the s-th group of time-frequency resources included in the N groups of time-frequency resources, the s is a positive integer less than or equal to N, and the s and the i are different values.
  • the sixth time-frequency resource in the s-th group of time-frequency resources and the first time-frequency resource in the i-th group of time-frequency resources do not overlap in the time domain.
  • the first uplink channel and the second uplink channel are PUCCH; the processing unit 703 is further configured to:
  • a fifth PUCCH resource set corresponding to the number of bits of the first HARQ-ACK is determined, and the first PUCCH resource group corresponds to a PUCCH sent on the i-th time-frequency resource.
  • the first PUCCH resource group includes one or more PUCCH resource sets; the first time-frequency resource is determined in the fifth PUCCH resource set; and in the fifth PUCCH resource group, it is determined that A sixth PUCCH resource set corresponding to the number of bits of HARQ-ACK, the fifth PUCCH resource group includes one or more PUCCH resource sets, and the fifth PUCCH resource group is pre-configured; in the sixth PUCCH resource The sixth time-frequency resource is determined in a set.
  • the first uplink channel meets one or more of the following conditions:
  • a first time length corresponding to the first uplink channel is shorter than a first time length corresponding to the second uplink channel
  • the first uplink channel is an uplink channel corresponding to the DCI scrambled by the first RNTI;
  • the first uplink channel is an uplink channel carried on a time-frequency resource determined according to the K1 value or the SLIV index.
  • the processing unit 802 is configured to determine the grouping relationship according to one or more of the following conditions:
  • the codebook identification indication information
  • the RNTI The RNTI
  • the communication device 700 may further include a sending unit 704;
  • the receiving unit 702 is configured to receive a first DCI and a second DCI
  • the processing unit 703 is configured to determine a first time-frequency resource for sending a first uplink channel in a pre-configured first PUCCH resource group, and determine a second time for sending a second uplink channel in a pre-configured second PUCCH resource group. Time-frequency resources
  • the sending unit 704 is configured to send the first uplink channel on the first time-frequency resource and send the second uplink channel on the second time-frequency resource;
  • the first PUCCH resource group and the second PUCCH resource group are PUCCH resource groups configured for the same time slot, and the first uplink channel is used to carry a first HARQ-ACK scheduled by the first DCI, The second uplink channel is used to carry a second HARQ-ACK scheduled by the second DCI.
  • first DCI and the second DCI may be from the same network device, or may be from different network devices.
  • processing unit 703 is further configured to:
  • the first time-frequency resource partially overlaps or completely overlaps the second time-frequency resource, reselecting the time-frequency resource for the first uplink channel and / or the second uplink channel for carrying its transmission.
  • processing unit 703 is further configured to:
  • the processing unit 703 may determine to send a third time-frequency resource of the first uplink channel in a pre-configured third PUCCH resource group, and determine to send a second uplink in a pre-configured fourth PUCCH resource group A fourth time-frequency resource of the channel, and send the first uplink channel on the third time-frequency resource through the sending unit 704, and send the second uplink channel on the fourth time-frequency resource.
  • the PUCCH resources belonging to the third PUCCH resource group and the PUCCH resources belonging to the fourth PUCCH resource group have no common OFDM symbols, that is, the PUCCH resources in the third PUCCH resource group and the fourth PUCCH resource group
  • the PUCCH resources in the PUCCH resource group do not overlap at all.
  • processing unit 703 is further configured to:
  • the processing unit 703 may determine a fifth time-frequency resource for sending a second uplink channel in a pre-configured fifth PUCCH resource group, and send the fifth time-frequency resource through the sending unit 704 And sending the second uplink channel.
  • the PUCCH resources belonging to the first PUCCH resource group and the PUCCH resources belonging to the fifth PUCCH resource group have no common OFDM symbols, that is, the PUCCH resources in the first PUCCH resource group and the fifth The PUCCH resources in the PUCCH resource group do not overlap at all.
  • each unit in the above device can be a separately established processing element, or it can be integrated and implemented in a certain chip of the device.
  • it can also be stored in the form of a program in the memory and called and executed by a certain processing element of the device.
  • all or part of these units can be integrated together or can be implemented independently.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in a processor element or in a form called by software through a processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above method, for example, one or more application-specific integrated circuits (ASICs), or, one or Multiple microprocessors (DSPs), or one or more field programmable gate arrays (FPGAs), or a combination of at least two of these integrated circuit forms.
  • ASICs application-specific integrated circuits
  • DSPs Multiple microprocessors
  • FPGAs field programmable gate arrays
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or another processor that can call a program.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the above unit for receiving is an interface circuit of the device for receiving signals from other devices.
  • the receiving unit is an interface circuit that the chip uses to receive signals from other chips or devices.
  • the above unit for sending is an interface circuit of the device for sending signals to other devices.
  • the sending unit is an interface circuit that the chip uses to send signals to other chips or devices.
  • FIG. 12 is a schematic structural diagram of a terminal device according to an embodiment of the present application. It is used to implement the operation of the terminal device in the above embodiments.
  • the terminal device includes: an antenna 901, a radio frequency portion 902, and a signal processing portion 903.
  • the antenna 901 is connected to the radio frequency portion 902.
  • the radio frequency portion 902 receives information sent by the network device through the antenna 901, and sends the information sent by the network device to the signal processing portion 903 for processing.
  • the signal processing section 903 processes the information of the terminal device and sends it to the radio frequency section 902.
  • the radio frequency section 902 processes the information of the terminal device and sends it to the network device via the antenna 901.
  • the signal processing section 903 may include a modulation and demodulation subsystem to implement processing of each communication protocol layer of the data; it may also include a central processing subsystem to implement processing of the terminal device operating system and application layer; in addition, it may also Including other subsystems, such as the multimedia subsystem, peripheral subsystems, etc. Among them, the multimedia subsystem is used to control the terminal device camera, screen display, etc., and the peripheral subsystem is used to achieve connection with other devices.
  • the modem subsystem can be a separately set chip.
  • the above apparatus for a terminal device may be located in the modem subsystem.
  • the modem subsystem may include one or more processing elements 9031, for example, including a main control CPU and other integrated circuits.
  • the modem subsystem may further include a storage element 9032 and an interface circuit 9033.
  • the storage element 9032 is used to store data and programs, but the program used to execute the method performed by the terminal device in the method of the embodiment of the present application may not be stored in the storage element 9032, but stored outside the modem subsystem.
  • the memory is used when the modem subsystem is loaded.
  • the interface circuit 9033 is used to communicate with other subsystems.
  • the above device for a terminal device may be located in a modulation and demodulation subsystem.
  • the modulation and demodulation subsystem may be implemented by a chip.
  • the chip includes at least one processing element and an interface circuit.
  • the processing element is configured to execute any one of the above terminal devices.
  • Each step of the method, the interface circuit is used to communicate with other devices.
  • a unit that implements each step in the method of the embodiment of the present application by a terminal device may be implemented in the form of a processing element scheduler.
  • a device applied to a terminal device includes a processing element and a storage element, and the processing element calls the storage element storage. Program to execute the method performed by the terminal device in the foregoing method embodiments.
  • the storage element may be a storage element whose processing element is on the same chip, that is, an on-chip storage element.
  • the program for executing the method executed by the terminal device in the method in the embodiment of the present application may be a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the processing element calls or loads the program from the off-chip storage element to the on-chip storage element to call and execute the method executed by the terminal device in the foregoing method embodiments.
  • a unit applied to a terminal device to implement each step in the method of the embodiment of the present application may be configured as one or more processing elements, and these processing elements are provided on a modulation and demodulation subsystem.
  • the processing element may be an integrated circuit, for example: one or more ASICs, or one or more DSPs, or one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • a unit that implements each step in the method of the embodiment of the present application by a terminal device may be integrated together and implemented in the form of a system-on-a-chip (SOC), which is used to implement the above method.
  • SOC system-on-a-chip
  • At least one processing element and storage element may be integrated in the chip, and the method executed by the above terminal device may be implemented by the processing element calling a stored program of the storage element; or, at least one integrated circuit may be integrated in the chip to implement the above terminal
  • the above apparatus applied to a terminal device may include at least one processing element and an interface circuit, where at least one processing element is configured to execute any method performed by a terminal device provided by the foregoing method embodiment.
  • the processing element may perform some or all of the steps performed by the terminal device in a first manner: by calling a program stored in the storage element; or in a second manner: by combining instructions in the hardware with integrated logic circuits in the processor element Some or all of the steps performed by the terminal device are performed in the manner described above; of course, some or all of the steps performed by the terminal device may also be performed in combination with the first and second methods.
  • the processing elements here are the same as described above, and may be general-purpose processors, such as a CPU, or one or more integrated circuits configured to implement the above methods, such as: one or more ASICs, or one or more micro-processing Processor DSP, or one or more FPGAs, or a combination of at least two of these integrated circuit forms.
  • general-purpose processors such as a CPU
  • integrated circuits configured to implement the above methods, such as: one or more ASICs, or one or more micro-processing Processor DSP, or one or more FPGAs, or a combination of at least two of these integrated circuit forms.
  • a storage element may be a single memory or a collective term for multiple storage elements.
  • FIG. 13 is a schematic structural diagram of a network device according to an embodiment of the present application. It is used to implement the operation of the network device in the above embodiments.
  • the network device includes an antenna 1001, a radio frequency device 1002, and a baseband device 1003.
  • the antenna 1001 is connected to the radio frequency device 1002.
  • the radio frequency device 1002 receives the information sent by the terminal device through the antenna 1001, and sends the information sent by the terminal device to the baseband device 1003 for processing.
  • the baseband device 1003 processes the information of the terminal device and sends it to the radio frequency device 1002.
  • the radio frequency device 1002 processes the information of the terminal device and sends it to the terminal device via the antenna 1001.
  • the baseband device 1003 may include one or more processing elements 10031, for example, including a main control CPU and other integrated circuits.
  • the baseband device 1003 may further include a storage element 10032 and an interface circuit 10033.
  • the storage element 10032 is used to store programs and data.
  • the interface circuit 10033 is used to exchange information with the radio frequency device 1002.
  • the interface circuit is, for example, a common public wireless interface (common). public interface (CPRI).
  • the above device applied to the network device may be located in the baseband device 1003.
  • the above device applied to the network device may be a chip on the baseband device 1003.
  • the chip includes at least one processing element and an interface circuit, and the processing element is used to execute the above network.
  • the device executes each step of any method, and the interface circuit is used to communicate with other devices.
  • a unit that implements each step in the method of the embodiment of the present application by a network device may be implemented in the form of a processing element scheduler.
  • a device applied to a network device includes a processing element and a storage element, and the processing element calls the storage element storage.
  • the storage element may be a storage element on the same chip as the processing element, that is, an on-chip storage element, or a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • a unit applied to a network device to implement each step in the method of the embodiment of the present application may be configured as one or more processing elements, and these processing elements are provided on the baseband device.
  • the processing elements here It may be an integrated circuit, for example: one or more ASICs, or one or more DSPs, or one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • a unit that implements each step in the method of the embodiment of the present application by a network device may be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • a baseband device includes the SOC chip, which is used to implement the above. method.
  • At least one processing element and storage element may be integrated in the chip, and the method executed by the above network device may be implemented by the processing element calling a stored program of the storage element; or, at least one integrated circuit may be integrated in the chip to implement the above network
  • the method executed by the device or, in combination with the above implementation manner, the functions of some units are implemented in the form of a program called by a processing element, and the functions of some units are implemented in the form of an integrated circuit.
  • the above apparatus applied to a network device may include at least one processing element and an interface circuit, where at least one processing element is configured to execute any method performed by the network device provided by the foregoing method embodiment.
  • the processing element can execute some or all of the steps performed by the network device in the first way: by calling a program stored by the storage element; or in the second way: by using the integrated logic circuit of the hardware in the processor element to combine instructions
  • Some or all of the steps performed by the network device are performed in the manner described above; of course, some or all of the steps performed by the above network device may also be performed in combination with the first and second methods.
  • the processing elements here are the same as described above, and may be general-purpose processors, such as a CPU, or one or more integrated circuits configured to implement the above methods, such as: one or more ASICs, or one or more micro-processing Processor DSP, or one or more FPGAs, or a combination of at least two of these integrated circuit forms.
  • general-purpose processors such as a CPU
  • integrated circuits configured to implement the above methods, such as: one or more ASICs, or one or more micro-processing Processor DSP, or one or more FPGAs, or a combination of at least two of these integrated circuit forms.
  • a storage element may be a single memory or a collective term for multiple storage elements.
  • An embodiment of the present application further provides a communication method.
  • the method may be executed by a terminal device or a communication device (such as a chip system) capable of supporting the terminal device to implement the method.
  • the method is performed by the terminal device as an example. .
  • FIG. 14 is another communication method provided by an embodiment of the present application.
  • the method includes the following execution steps.
  • the terminal device acquires a first grouping relationship.
  • the first grouping relationship represents a correspondence between a first time length and N groups of time-frequency resources.
  • the N groups of time-frequency resources are obtained by grouping time-frequency resources in a time unit.
  • the frequency resource corresponds to one or more of the first time lengths, and the first time length is related to a K1 set, and the K1 set includes multiple K1 values, and the K1 value ranges from a time unit where the PDSCH is located to the The number of time units offset from the time unit where the uplink channel of the HARQ-ACK corresponding to the PDSCH is located.
  • the time-frequency resource in each group of time-frequency resources is the time-frequency resource of the uplink channel carrying the HARQ-ACK.
  • a unit time length whose length is a K1 value, or the first time length represents a time length corresponding to the K1 value
  • N is a positive integer greater than or equal to two.
  • the terminal device may receive the first grouping relationship from a network device, or the terminal device may obtain the first grouping relationship locally. If acquired locally, the first grouping relationship may be preset by the terminal device, or may be acquired and stored in advance from the network device. In the embodiment of the present application, if the first grouping relationship is received by the terminal device from the network device, the network device may further determine the first grouping relationship according to the first time length before sending the first grouping relationship to the terminal device. . For a method for the network device to determine the first grouping relationship according to the first time length, reference may be made to the foregoing description, and details are not described herein again.
  • the first time length may be a time slot or a mini time slot, for example, it may be a 1/2 time slot, or a 1/4 time slot, or M time domain symbols, M Is a positive integer less than 14.
  • the involved HARQ-ACK may be a semi-static codebook, and the following description uses HARQ-ACK as a semi-static codebook as an example.
  • the network device or the upper layer may configure several possible values of K1 for the terminal device. This application refers to the possible values of several K1 as the K1 set. Of course, this application is not limited to this. A set that includes multiple K1 values can be called a K1 set.
  • the correlation between the first time length and the K1 set may mean that the first time length and the K1 set have a corresponding relationship.
  • the corresponding relationship may be configured by high-level signaling or configured by a network device. It can be understood that when a terminal device acquires a K1 set, it can determine the first time length corresponding to the K1 set accordingly.
  • S202 The terminal device acquires the first K1 set and the second K1 set.
  • the first K1 set and the second K1 set may be obtained locally by the terminal device, or may be obtained from a network device. It can also be configured by high-level signaling.
  • the first grouping relationship may be in the form of a list or other forms, without limitation.
  • First length of time N sets of time-frequency resources 1/2 time slot
  • the first set of time-frequency resources Time slot
  • the terminal device determines the first time length (time slot and 1/2 time slot) and the N groups of time-frequency resources (the first group of time-frequency resources and the second group of time-frequency resources) according to the first grouping relationship. After the corresponding relationship of), the corresponding relationship between the K1 set and the N time-frequency resources can also be determined according to the corresponding relationship between the first time length and the K1 set. See Table 6, Table 6 is based on the conditions assumed in Table 5, Shows the correspondence between the K1 set and the first time length and N sets of time-frequency resources. The first K1 set is ⁇ 0,1,2,3 ⁇ , the second K1 set is ⁇ 1,2,3,4 ⁇ , the first One K1 set is related to time slots, and the second K1 set is related to 1/2 time slots.
  • K1 collection First length of time N sets of time-frequency resources
  • the first K1 set ⁇ 0,1,2,3 ⁇ 1/2 time slot
  • the first set of time-frequency resources The second K1 set ⁇ 1,2,3,4 ⁇ Time slot
  • the terminal device determines an i-th group of time-frequency resources corresponding to a first time length related to the first K1 set in the N groups of time-frequency resources according to the first grouping relationship, and Among the time-frequency resources, a k-th group of time-frequency resources corresponding to a first time length related to the second K1 set is determined. For example, taking Table 6 as an example, a terminal device may determine a first set of time-frequency resources corresponding to a first time length related to the first K1 set from two sets of time-frequency resources according to the first grouping relationship, and A second set of time-frequency resources corresponding to a first time length related to the second K1 set is determined from the two sets of time-frequency resources.
  • i is a positive integer less than or equal to N
  • k is a positive integer less than or equal to N
  • k and i are different values.
  • the terminal device determines a first uplink channel carrying a first HARQ-ACK on a first time-frequency resource in the i-th group of time-frequency resources, and determines a second time in the k-th group of time-frequency resources.
  • the second uplink channel of the second HARQ-ACK is carried on the frequency resource.
  • the terminal device can separately bear the first uplink channel and the second uplink channel on different groups of time-frequency resources.
  • only one uplink channel can be sent in one time unit.
  • the method of the present application can be used in one time unit. Send multiple uplink channels.
  • the first HARQ-ACK corresponds to a first downlink association set
  • the second HARQ-ACK corresponds to a second downlink association set.
  • the downlink association set may be determined according to the K1 set.
  • the first time-frequency resource may be part of the time-frequency resource in the i-th group of time-frequency resources, or may be all time-frequency resources in the i-th group of time-frequency resources.
  • the second time-frequency resource may be a part of the time-frequency resources in the k-th group of time-frequency resources, or may be all the time-frequency resources in the k-th group of time-frequency resources.
  • the uplink channel may include a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH).
  • the first downlink joint subset in the first downlink joint set corresponds to a third HARQ-ACK
  • the second downlink joint subset in the second downlink joint set corresponds to a fourth HARQ-ACK
  • the third HARQ-ACK belongs to the first HARQ-ACK
  • the fourth HARQ-ACK belongs to the second HARQ-ACK.
  • the union of the first downlink joint set and the second downlink joint set may refer to a combination of resources included in the first downlink joint set and the second downlink joint set. Resources are combined together, that is, the third downlink joint set.
  • the third downlink joint set includes the resources included in the first downlink joint set and the second downlink joint set, but there is no duplicate in the third downlink joint set. Resources.
  • the union of the first downlink joint set and the second downlink joint set may be recorded as the first downlink joint set and the second downlink joint set.
  • the terminal device sends a fifth HARQ-ACK according to the third downlink joint set, and the fifth HARQ-ACK includes a third HARQ-ACK or a fourth HARQ-ACK.
  • the fifth HARQ-ACK may further include a sixth HARQ-ACK, and the first HARQ-ACK may be composed of the sixth HARQ-ACK and the third HARQ-ACK.
  • the fifth HARQ-ACK may further include a seventh HARQ-ACK, and the second HARQ-ACK may be composed of the seventh HARQ-ACK and the fourth HARQ-ACK.
  • the terminal device may send the fifth HARQ-ACK to the network device, or send the fifth HARQ-ACK and the sixth HARQ-ACK.
  • the terminal device sends only one of the third HARQ-ACK and the fourth HARQ-ACK according to the third resource, thereby reducing the number of bits of the feedback HARQ-ACK and improving the HARQ-ACK transmission efficiency.
  • FIG. 15 is a schematic diagram of a resource acquisition and union set according to an embodiment of the present application.
  • the first grouping relationship obtained by the terminal device is the grouping relationship shown in Table 5.
  • the first K1 set obtained by the terminal device is ⁇ 0,1,2,3 ⁇ and the second K1 set is ⁇ 1 , 2,3,4 ⁇ , and then the terminal device may determine that the first time length related to the first K1 set corresponds to the first set of time-frequency resources among the two sets of time-frequency resources according to the first grouping relationship, and It is determined that the first time length related to the second K1 set corresponds to the second set of time-frequency resources.
  • FIG. 15 is a schematic diagram of a resource acquisition and union set according to an embodiment of the present application.
  • the terminal device may determine the first uplink channel carrying the first HARQ-ACK on the first time-frequency resource in the first group of time-frequency resources, and may also determine As shown in FIG.
  • the second uplink channel carrying the second HARQ-ACK on the second time-frequency resource in the frequency resource may include 1 / 2slot # n- 4, 1 / 2slot # n-3, 1 / 2slot # n-2, 1 / 2slot # n-1, 1 / 2slot # n, and 1 / 2slot # n + 1, the second K1 set is scheduled or corresponding Two times
  • the joint set may include slot # k-4, slot # k-3, slot # k-2, and slot # k-1, assuming that the first time-frequency resource and the second time-frequency resource partially or completely overlap, and the first time When the first downlink joint subset in the row joint set completely overlaps with the second downlink joint subset in the second downlink joint set, as shown in FIG.
  • the first downlink joint subset includes 1 / 2slot # n-4, 1 / 2slot # n-3, 1 / 2slot # n-2 and 1 / 2slot # n-1.
  • the second downlink joint subset includes slot # k-2 and slot # k-1.
  • Only the HARQ-ACK corresponding to a part of the resources (for example, the first downlink joint subset or the second downlink joint subset) is sent to the first downlink joint subset and the second downlink joint subset.
  • the terminal device may join the first downlink joint set and the second downlink joint set to obtain a third downlink joint set, and then may send a fifth HARQ-ACK and a fifth HARQ-ACK according to the third downlink joint set.
  • the first downlink joint subset corresponds to the third HARQ-ACK
  • the second downlink joint subset corresponds to the fourth HARQ-ACK.
  • the fifth HARQ-ACK sent by the terminal device according to the third downlink joint set includes only one of the third HARQ-ACK and the fourth HARQ-ACK, which can reduce the number of bits of the joint feedback. In the embodiment shown in FIG.
  • the combined HARQ-ACK includes a sixth HARQ-ACK and a third HARQ- ACK, seventh HARQ-ACK, and fourth HARQ-ACK.
  • the combined HARQ-ACK includes 10 bits, that is, the terminal device needs to feed back 10-bit HARQ-ACK, if the granularity of the overlapping resource part is calculated by 1/2 slot, corresponding to the case where the fifth HARQ-ACK includes the third HARQ-ACK, and the terminal device only needs to feed back 8 bits if the fifth HARQ-ACK is fed back according to the third downlink joint set HARQ-ACK; if the granularity of the overlapping resource part is calculated in the slot, corresponding to the case where the fifth HARQ-ACK includes the fourth HARQ-ACK, the terminal device only needs to feed back the 6-bit HARQ if the fifth HARQ-ACK is fed back according to the third downlink joint set. -ACK.
  • the operations performed by the terminal device in the communication method provided in the embodiments shown in FIG. 14 to FIG. 15 may be performed by the communication device applied to the terminal device provided in the embodiment of the present application, for example, the communication device 700; or may be implemented by the present application.
  • the terminal device provided by the example executes, for example, the terminal device shown in FIG. 15.
  • the communication device or terminal device may include an obtaining unit, a processing unit, and a sending unit, where the above steps S201 and S202 may be performed by the obtaining unit, the above steps S203-S205 may be performed by the processing unit, and the above step S206 It may be performed by a sending unit; or, the communication device or terminal device includes a processor and a transceiver coupled to a memory, where the above steps S201-S206 may be performed by a processor coupled to a memory; or the above steps S201-S205 may be performed by The processor coupled to the memory is executed, and step S206 is executed by the transceiver; or, the above steps S202-S205 may be executed by the processor coupled to the memory, and steps S201 and S206 are executed by the transceiver, which will not be described in detail.
  • the operations performed by the network device in the communication method provided by the embodiments shown in FIG. 14 to FIG. 15 described above may be performed by the communication device applied to the network device provided in the embodiment of the present application, for example, the communication device 800;
  • the network device execution for example, the network device execution shown in FIG. 13, is not described in detail.
  • the embodiment of the present application further provides a communication system including the foregoing terminal device and network device.
  • An embodiment of the present application further provides a computer storage medium.
  • the computer storage medium stores computer-executable instructions.
  • the computer-executable instructions When the computer-executable instructions are called by a computer, the computer executes any of the foregoing methods.
  • An embodiment of the present application further provides a computer program product.
  • the computer program product stores instructions that, when run on a computer, causes the computer to execute any of the foregoing methods.
  • An embodiment of the present application further provides a chip system.
  • the chip system includes a processor, and may further include a memory, for implementing any of the foregoing methods.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • this application may be provided as a method, a system, or a computer program product. Therefore, this application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Moreover, this application may take the form of a computer program product implemented on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) containing computer-usable program code.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing device to work in a particular manner such that the instructions stored in the computer-readable memory produce a manufactured article including an instruction device, the instructions
  • the device implements the functions specified in one or more flowcharts and / or one or more blocks of the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing device, so that a series of steps can be performed on the computer or other programmable device to produce a computer-implemented process, which can be executed on the computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.

Abstract

一种通信方法、装置及设备,用以在同一时间单元中传输多个HARQ-ACK时,降低传输时延。该方法包括:终端设备获取分组关系,分组关系表征第一参数与N组时频资源的对应关系,N组时频资源是对一个时间单元上的时频资源进行分组得到的,每组时频资源对应一个或多个第一参数,第一参数与DCI相关,每组时频资源中的时频资源用于承载HARQ-ACK的上行信道,N为大于或等于2的正整数,接收第一DCI,根据分组关系,在N组时频资源中确定与第一DCI相关的第一参数对应的第i组时频资源,i为小于或等于N的正整数,并确定在第i组时频资源中的第一时频资源上承载第一HARQ-ACK的第一上行信道。

Description

一种通信方法、装置及设备
本申请要求在2018年09月28日提交中国专利局、申请号为201811141655.5、申请名称为“一种通信方法、装置及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;以及要求在2018年11月02日提交中国专利局、申请号为201811300414.0、申请名称为“一种通信方法、装置及设备”的中国专利申请中除上述申请号为201811141655.5的申请文件中全部内容以外的其它部分内容的优先权,该部分内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其涉及一种通信方法、装置及设备。
背景技术
国际电信联盟(international telecommunication union,ITU)为第五代移动通信系统(the fifth generation,5G)以及未来的移动通信系统定义了三大类应用场景:增强型移动宽带(enhanced mobile broadband,eMBB)、高可靠低时延通信(ultra reliable and low latency communications,URLLC)以及海量机器类通信(massive machine type communications,mMTC)。
其中,URLLC业务对时延要求极高,从发送端到接收端的单向传输时延要求在0.5毫秒(millisecond,ms)以内,并且在1ms以内在达到99.999%的传输可靠性。
由于eMBB业务数据传输对时延的要求不高,现有技术中每个时隙中只传输一个承载混合自动重传请求-肯定应答(hybrid automatic repeat request,HARQ)-(acknowledgement,ACK)的上行信道,如物理上行控制信道(physical uplink control channel,PUCCH),若多个物理下行共享信道(physical downlink shared channel,PDSCH)对应的HARQ-ACK在同一个时隙中反馈,则将多个HARQ-ACK联合编码为一个HARQ-ACK码本承载在一个上行信道,如PUCCH上发送。这种方法不利于降低HARQ-ACK的反馈时延,无法适用于要求低时延的业务数据传输,例如上述URLLC业务的传输。
发明内容
本申请实施例提供一种通信方法、装置及设备,用以在同一时间单元中传输多个HARQ-ACK时,降低传输时延。
第一方面,提供一种通信方法,该方法可由终端设备或能够支持终端设备实现该方法的通信装置(例如芯片系统)执行,在本申请中,以由终端设备执行该方法为例进行描述。该方法包括:获取分组关系,接收第一DCI,根据所述分组关系,在N组时频资源中确定与所述第一DCI相关的第一参数对应的第i组时频资源,确定在所述第i组时频资源中的第一时频资源上承载第一HARQ-ACK的第一上行信道。
其中,所述分组关系表征第一参数与N组时频资源的对应关系,N组时频资源是对一个时间单元上的时频资源进行分组得到的,N组时频资源中的每组时频资源对应一个或多个第一参数,第一参数与DCI相关,每组时频资源中的时频资源是承载HARQ-ACK的上 行信道的时频资源,N为大于或等于2的正整数,i为小于或等于N的正整数。
本申请实施例提供的通信方法中,一个时间单元上的时频资源被分为N组时频资源,该N组时频资源中的每组时频资源可用于传输承载HARQ-ACK的上行信道,也就是说,相比现有技术中一个时间单元只能用于传输一个承载HARQ-ACK的上行信道,采用本申请实施例提供的方法,一个时间单元可用于传输N个承载HARQ-ACK的上行信道。这样,当需要在一个时间单元中传输多个承载HARQ-ACK的上行信道时,该时间单元中需要在时域上早些发送的承载HARQ-ACK的上行信道,不必等到和最后一个承载HARQ-ACK的上行信道在同一个PUCCH资源上发送,也就是说,采用本申请的方法可实现先到的HARQ-ACK先发送,从而降低传输时延,提升传输效率。
在一种可能的设计中,所述第一参数包括K1值、第一时间长度、码本标识指示信息、无线网络临时标识(radio network temporary identifier,RNTI)、上行信道的终止符号、物理下行控制信道(physical downlink control channel,PDCCH)的监听时机,或起始符号和长度指示信息值(Start and length indicator value,SLIV)的索引中的一项或多项,其中,所述K1值为从PDSCH所在的时间单元到所述PDSCH对应的HARQ-ACK的上行信道所在的时间单元偏移的时间单元数量,所述第一时间长度为K1值的单位时间长度,或者说所述第一时间长度表征所述K1值对应的时间长度。
本申请实施例中,第一时频资源可以是第i组时频资源中的部分时频资源,也可以是第i组时频资源中的全部时频资源。上行信道可以包括物理上行控制信道(physical uplink control channel,PUCCH)或物理上行共享信道(physical uplink shared channel,PUSCH)。
本申请实施例中,终端设备可以从网络设备接收该分组关系,或者终端设备从本地获取该分组关系。
本申请实施例中,若分组关系为终端设备从网络设备接收的,则网络设备在向终端设备发送分组关系之前,还可以根据如下一项或多项条件,确定分组关系:
条件1,K1值。K1值可以是半静态配置的或预定义的。
条件2,第一时间长度。第一时间长度可以是半静态配置的或预定义的。
条件3,SLIV的索引。SLIV的索引可以是半静态配置的或预定义的。其中,本申请实施例中SLIV是指HARQ-ACK对应PDSCH的SLIV。
条件4,码本标识指示信息。码本标识指示信息用于指示N组时频资源中承载HARQ-ACK的一组时频资源,码本标识指示信息可以包括N个取值,每个取值对应N组时频资源中的一组时频资源。该指示信息可以包含在DCI中。
条件5,RNTI。其中,RNTI用于对DCI加扰。
条件6,上行信道的终止符号。
条件7,PDCCH的监听时机。
可以理解,本申请中对终端设备接收的DCI的数量不做限制。在一种可能的设计中,终端设备还可接收第二DCI,根据所述分组关系,在所述N组时频资源中确定与所述第二DCI相关的第一参数对应的第k组时频资源,所述终端设备确定在所述第k组时频资源中的第二时频资源上承载第二HARQ-ACK的第二上行信道。其中,所述k为小于或等于N的正整数,且,所述k与所述i为不同值。
针对上述可能的设计中,第一时频资源与第二时频资源可能重叠,也可能不重叠,下面分别针对重叠的情况和不重叠的情况进行说明。
在一种可能的设计中,第一时频资源与第二时频资源完全不重叠,终端设备在第一时域资源上发送第一上行信道,且在第二时域资源上发送第二上行信道。这样,终端设备可在N组时频资源中的两组不同的时频资源上,分别传输承载第一HARQ-ACK的第一上行信道以及承载第二HARQ-ACK的第二上行信道,该第一上行信道和该第二上行信道不必在同一个PUCCH资源上发送,第一HARQ-ACK和第二HARQ-ACK中先到的HARQ-ACK可以先反馈,一定程度地可以降低传输时延。
在一种可能的设计中,第一时频资源与第二时频资源部分重叠或完全重叠,在这种情况下,终端设备可将所述第一HARQ-ACK和所述第二HARQ-ACK组合为第三HARQ-ACK,所述终端设备确定在第三时频资源上承载所述第三HARQ-ACK的第三上行信道,其中,所述第三时频资源为所述N组时频资源包括的一组时频资源中的时频资源。
本申请实施例中,终端设备确定在第三时频资源上承载第三HARQ-ACK的第三上行信道之前,还可确定第三时频资源,下面给出两种确定第三时频资源的方法。
在一种可能的实现方式中,终端设备在第i组时频资源或第k组时频资源中选择一组时频资源,在该组时频资源中确定第三时频资源。下面以终端设备在第i组时频资源中确定第三时频资源为例进行说明。终端设备可在确定第一上行信道满足如下一项或多项条件时,确定在第i组时频资源中确定第三时频资源,或者可以理解为,当所述第一上行信道满足如下一项或多项条件时,所述第三时频资源为所述第i组时频资源中的时频资源。
条件1,第一上行信道对应的第一时间长度小于第二上行信道对应的第一时间长度。可以理解,当多个时频资源重叠时,终端设备可在确定第一上行信道对应的第一时间长度最小,或为最小的之一时,在第i组时频资源中确定第三时频资源。
条件2,第一上行信道是通过第一RNTI加扰的DCI对应的上行信道。其中,第一RNTI为本申请提供的一种新型的RNTI,具备如下功能:通过该第一RNTI可以确定HARQ-ACK对应的PDSCH的数据来源于第一类型业务,第一类型业务例如可以是URLLC业务。
条件3,第一上行信道是承载在根据K1值或SLIV的索引确定的时频资源上的上行信道。
在一种可能的实现方式中,终端设备可采用如下方法在第i组时频资源中确定第三时频资源:终端设备在第一上行信道资源组中,确定与第三HARQ-ACK的比特数目对应的第一上行信道资源集合,第一上行信道资源组对应于在第i组时频资源上发送的上行信道,第一上行信道资源组中包括一个或多个上行信道资源集合,终端设备在确定第一上行信道资源集合后,可在第一上行信道资源集合中确定第三时频资源。需要说明的是,在该种设计中,上行信道可以为PUCCH,也可以是PUSCH。
在一种可能的实现方式中,上行信道可以为PUCCH,终端设备可采用如下方法在第i组时频资源中确定第三时频资源:终端设备在第一PUCCH资源组中,确定与第三HARQ-ACK的比特数目对应的第一PUCCH资源集合,第一PUCCH资源组对应于在第i组时频资源上发送的PUCCH,第一PUCCH资源组中包括一个或多个PUCCH资源集合,终端设备在确定第一PUCCH资源集合后,可在第一PUCCH资源集合中确定第三时频资源。
在一种可能的实现方式中,终端设备可采用如下方法确定第三时频资源:终端设备在第二上行信道资源组中,确定与第三HARQ-ACK的比特数目对应的第二上行信道资源集合,其中,第二上行信道资源组是为承载第三HARQ-ACK的上行信道配置的,第二上行 信道资源组中包括一个或多个上行信道资源集合,第二上行信道资源组为N组时频资源中的第j组时频资源中的时频资源,也可以理解为第二上行信道资源组对应于在第j组时频资源上发送的上行信道,终端设备在确定第二上行信道资源集合后,可在第二上行信道资源集合中确定第三时频资源,j为小于或等于N的正整数,且,j与i、k均为不同值。
在一种可能的实现方式中,上行信道可以为PUCCH,终端设备可采用如下方法确定第三时频资源:终端设备在第二PUCCH资源组中,确定与第三HARQ-ACK的比特数目对应的第二PUCCH资源集合,其中,第二PUCCH资源组是为承载第三HARQ-ACK的PUCCH配置的,第二PUCCH资源组中包括一个或多个PUCCH资源集合,第二PUCCH资源组为N组时频资源中的第j组时频资源中的时频资源,也可以理解为第二PUCCH资源组对应于在第j组时频资源上发送的PUCCH,终端设备在确定第二PUCCH资源集合后,可在第二PUCCH资源集合中确定第三时频资源,j为小于或等于N的正整数,且,j与i、k均为不同值。
在又一个可能的实施方式中,当第一时频资源与第二时频资源部分重叠或完全重叠时,终端设备仅发送满足预设条件的上行信道,丢弃另一个上行信道。可以理解,当有两个以上时频资源重叠时,终端设备可发送其中一个满足预设条件的上行信道,丢弃其它上行信道。
其中,以终端设备发送第一上行信道为例,对上述预设条件解释说明。若终端设备发送第一上行信道,则第一上行信道满足如下预设条件:
条件1,第一上行信道对应的第一时间长度小于第二上行信道对应的第一时间长度。
条件2,第一上行信道是由第一RNTI加扰的DCI对应的上行信道。
条件3,第一上行信道是承载在根据K1值或SLIV索引确定的时频资源上的上行信道。
在一种可能的设计中,当第一时频资源与第二时频资源部分重叠或完全重叠时,终端设备确定在第四时频资源上承载第一HARQ-ACK的第一上行信道,在第五时频资源上承载第二HARQ-ACK的第二上行信道,其中,第四时频资源为N组时频资源包括的第m组时频资源中的时频资源,第五时频资源为N组时频资源包括的第n组时频资源中的时频资源,m和n为小于或等于N的正整数,且,m和n为不同值。
在一种可能的设计中,第m组时频资源与第n组时频资源在时域上不重叠,可以理解为,所述第m组时频资源中的全部时频资源与所述第n组时频资源中的全部时频资源在时域上不重叠。
在一种可能的设计中,第一上行信道和第二上行信道可以为PUCCH。终端设备确定在第四时频资源上承载第一HARQ-ACK的第一上行信道,在第五时频资源上承载第二HARQ-ACK的第二上行信道之前,还可采用如下方法确定第四时频资源和第五时频资源:终端设备在第三PUCCH资源组中,确定与第一HARQ-ACK的比特数目对应的第三PUCCH资源集合,第三PUCCH资源组中包括一个或多个PUCCH资源集合,第三PUCCH资源组为第m组时频资源中的时频资源;终端设备在第三PUCCH资源集合中确定第四时频资源;终端设备在第四PUCCH资源组中,确定与第二HARQ-ACK的比特数目对应的第四PUCCH资源集合,第四PUCCH资源组中包括一个或多个PUCCH资源集合,第四PUCCH资源组为第n组时频资源中的时频资源;终端设备在第四PUCCH资源集合中确定第五时频资源。
其中,第三PUCCH资源组和第四PUCCH资源组均为预先配置的。可以是由网络设 备预先配置的,例如,可以是由网络设备通过高层信令配置的。
在一种可能的设计中,当第一时频资源与第二时频资源部分重叠或完全重叠时,终端设备确定在第六时频资源上承载第二HARQ-ACK的第二上行信道,其中,第六时频资源为N组时频资源包括的第s组时频资源中的时频资源,s为小于或等于N的正整数,且,s与i为不同值。
在一种可能的设计中,第s组时频资源中的第六时频资源与第i组时频资源中的第一时频资源在时域上不重叠。
在一种可能的设计中,第一上行信道和第二上行信道可以为PUCCH。终端设备确定在第六时频资源上承载第二HARQ-ACK的第二上行信道之前,还可采用如下方法确定第一时频资源和第六时频资源:终端设备在第一PUCCH资源组中,确定与第一HARQ-ACK的比特数目对应的第五PUCCH资源集合,第一PUCCH资源组对应于在第i组时频资源上发送的PUCCH,第一PUCCH资源组中包括一个或多个PUCCH资源集合;终端设备在第五PUCCH资源集合中确定第一时频资源;终端设备在第五PUCCH资源组中,确定与第二HARQ-ACK的比特数目对应的第六PUCCH资源集合,第五PUCCH资源组中包括一个或多个PUCCH资源集合,第五PUCCH资源组为预先配置的;终端设备在第六PUCCH资源集合中确定第六时频资源。
在一种可能的设计中,所述第一上行信道满足如下一项或多项条件:
所述第一上行信道对应的所述第一时间长度小于所述第二上行信道对应的所述第一时间长度;
所述第一上行信道是通过第一RNTI加扰的DCI对应的上行信道;
所述第一上行信道是承载在根据所述K1值或所述SLIV的索引确定的时频资源上的上行信道。
第二方面,本申请实施例提供另一种通信方法,该方法可由终端设备或能够支持终端设备实现该方法的通信装置(例如芯片系统)执行,在本申请中,以由终端设备执行该方法为例进行描述。该方法包括:终端设备获取第一分组关系,所述第一分组关系表征第一时间长度与N组时频资源的对应关系,所述N组时频资源是对一个时间单元上的时频资源进行分组得到的,每组所述时频资源对应一个或多个所述第一时间长度,所述第一时间长度与K1集合相关,所述K1集合中包括多个K1值,所述K1值为从PDSCH所在的时间单元到所述PDSCH对应的HARQ-ACK的上行信道所在的时间单元偏移的时间单元数量,每组所述时频资源中的时频资源是承载HARQ-ACK的上行信道的时频资源,所述第一时间长度为K1值的单位时间长度,或者说所述第一时间长度表征所述K1值对应的时间长度,所述N为大于或等于2的正整数;
所述终端设备获取第一K1集合和第二K1集合;
所述终端设备根据所述第一分组关系,在所述N组时频资源中确定与所述第一K1集合相关的第一时间长度对应的第i组时频资源,并在所述N组时频资源中确定与所述第二K1集合相关的第一时间长度对应的第k组时频资源,所述i为小于或等于N的正整数,所述k为小于或等于N的正整数,且,所述k与所述i为不同值;
所述终端设备确定在所述第i组时频资源中的第一时频资源上承载第一HARQ-ACK的第一上行信道,并确定在所述第k组时频资源中的第二时频资源上承载第二HARQ-ACK的第二上行信道,其中,所述第一HARQ-ACK与第一下行联合集(downlink association set) 对应,所述第二HARQ-ACK与第二下行联合集对应;
当所述第一时频资源与所述第二时频资源部分重叠或完全重叠,且所述第一下行联合集中的第一下行联合子集与第二下行联合集中的第二下行联合子集完全重叠时,所述终端设备对所述第一下行联合集和所述第二下行联合集取并集,得到第三下行联合集;
其中,所述第一下行联合集中的第一下行联合子集对应第三HARQ-ACK,所述第二下行联合集中的第二下行联合子集对应第四HARQ-ACK,所述第三HARQ-ACK属于所述第一HARQ-ACK,所述第四HARQ-ACK属于所述第二HARQ-ACK;
所述终端设备根据所述第三下行联合集,发送第五HARQ-ACK,所述第五HARQ-ACK包括第三HARQ-ACK或第四HARQ-ACK。
通过上述方法,一个时间单元上的时频资源被分为N组时频资源,该N组时频资源中的每组时频资源可用于传输承载HARQ-ACK的上行信道,也就是说,相比现有技术中一个时间单元只能用于传输一个承载HARQ-ACK的上行信道,采用本申请实施例提供的方法,一个时间单元可用于传输N个承载HARQ-ACK的上行信道。这样,当需要在一个时间单元中传输多个承载HARQ-ACK的上行信道时,该时间单元中需要在时域上早些发送的承载HARQ-ACK的上行信道,不必等到和最后一个承载HARQ-ACK的上行信道在同一个PUCCH资源上发送,也就是说,采用本申请的方法可实现先到的HARQ-ACK先发送,从而降低传输时延,提升传输效率。此外,通过该方法,在承载两个HARQ-ACK的时频资源发生重叠时,终端设备可确定第一K1集合调度的第一下行联合集与第二K1集合调度的第二下行联合集发生重叠,对于发生重叠的资源部分对应的HARQ-ACK,终端设备只发送一组,从而可减少传输的比特数目,进而提高传输速度。
本申请实施例中,第一时频资源可以是第i组时频资源中的部分时频资源,也可以是第i组时频资源中的全部时频资源。第二时频资源可以是第k组时频资源中的部分时频资源,也可以是第k组时频资源中的全部时频资源。上行信道可以包括物理上行控制信道(physical uplink control channel,PUCCH)或物理上行共享信道(physical uplink shared channel,PUSCH)。
本申请实施例中,终端设备可以从网络设备接收该第一分组关系,或者终端设备从本地获取该第一分组关系。
本申请实施例中,若第一分组关系为终端设备从网络设备接收的,则网络设备在向终端设备发送第一分组关系之前,还可以根据所述第一时间长度确定所述第一分组关系。
本申请实施例中,所述第一K1集合和所述第二K1集合可以是从网络设备获取的,也可以是高层信令配置的。
在一种可能的设计中,所述HARQ-ACK可以是半静态码本(semi-static codebook)。
第三方面,本申请实施例提供又一种通信方法,该方法可由终端设备或能够支持终端设备实现该方法的通信装置(例如芯片系统)执行,在本申请中,以由终端设备执行该方法为例进行描述。该方法包括:终端设备接收第一DCI和第二DCI,在预先配置的第一PUCCH资源组中确定发送第一上行信道的第一时频资源,在预先配置的第二PUCCH资源组中确定发送第二上行信道的第二时频资源,并在所述第一时频资源上发送所述第一上行信道,在所述第二时频资源上发送所述第二上行信道,其中,所述第一PUCCH资源组和所述第二PUCCH资源组是为同一时隙配置的PUCCH资源组,所述第一上行信道用于承载所述第一DCI调度的第一HARQ-ACK,所述第二上行信道用于承载所述第二DCI调度 的第二HARQ-ACK。
需要说明的是,所述第一DCI和所述第二DCI可以来自同一网络设备,也可以来自不同的网络设备。
在一种可能的设计中,当所述第一时频资源与所述第二时频资源部分重叠或完全重叠时,终端设备为所述第一上行信道和/或所述第二上行信道重选用于承载其发送的时频资源。
一个可能的实施方式中,当所述第一时频资源与所述第二时频资源部分重叠或完全重叠时,为所述第一上行信道和所述第二上行信道重选用于承载其发送的时频资源。在该实施方式中,终端设备可以在预先配置的第三PUCCH资源组中确定发送第一上行信道的第三时频资源,在预先配置的第四PUCCH资源组中确定发送第二上行信道的第四时频资源,并在所述第三时频资源上发送所述第一上行信道,在所述第四时频资源上发送所述第二上行信道。在一种可能的设计中,属于第三PUCCH资源组中的任一PUCCH资源与属于第四PUCCH资源组中的任一PUCCH资源没有共有的OFDM符号,也就是说第三PUCCH资源组中的PUCCH资源与第四PUCCH资源组中的PUCCH资源完全不重叠。
一个可能的实施方式中,当所述第一时频资源与所述第二时频资源部分重叠或完全重叠时,终端设备为所述第二上行信道重选用于承载其发送的时频资源。在该实施方式中,终端设备可以在预先配置的第五PUCCH资源组中确定发送第二上行信道的第五时频资源,并在所述第五时频资源上发送所述第二上行信道。在一种可能的设计中,属于第一PUCCH资源组中的任一PUCCH资源与属于第五PUCCH资源组中的任一PUCCH资源没有共有的OFDM符号,也就是说第一PUCCH资源组中的PUCCH资源与第五PUCCH资源组中的PUCCH资源完全不重叠。
第四方面,本申请实施例提供一种终端设备,所述终端设备具有实现上述方法示例中终端设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块或单元。
在一种可能的设计中,所述终端设备包括:获取单元、接收单元以及处理单元,这些单元可以执行上述第一方面中方法示例中相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在另一种可能的设计中,所述终端设备包括存储器、收发器、处理器和总线,其中,所述存储器、收发器以及处理器通过所述总线连接;所述处理器调用存储在所述存储器中的指令,执行上述第一方面中方法。
第五方面,本申请实施例提供一种网络设备,所述网络设备具有实现上述方法示例中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块或单元。
在一种可能的设计中,所述网络设备包括:发送单元,发送单元可以执行上述第一方面中方法示例中相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在另一种可能的设计中,所述网络设备包括存储器、收发器和总线,其中,所述存储器和收发器通过所述总线连接;所述收发器可执行上述第一方面中方法,具体参见方法示例中的详细描述,此处不做赘述。
第六方面,本申请实施例中还提供一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令在被计算机调用时,使所述计算机执行上述第一方面或上述第一方面的任意一种设计提供的方法。
第七方面,本申请实施例中还提供一种计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或上述第一方面的任意一种可能的设计中所述的方法。
第八方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面或第一方面的任一种可能的设计中的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
图1为一种反馈HARQ-ACK的示意图;
图2为本申请实施例应用的一种网络架构示意图;
图3为本申请实施例应用的另一种网络架构示意图;
图4为本申请实施例提供的一种通信方法;
图5(a)为本申请实施例提供的一种时间单元分组后的示意图;
图5(b)为本申请实施例提供的又一种时间单元分组后的示意图;
图6为本申请实施例提供的另一种时间单元分组后的示意图;
图7为本申请实施例提供的一种DCI调度示意图;
图8为本申请实施例提供的一种PUCCH资源组的示意图;
图9为本申请实施例提供的另一种PUCCH资源组的示意图;
图10为本申请实施例提供的一种通信装置结构示意图;
图11为本申请实施例提供的另一种通信装置结构示意图;
图12为本申请实施例提供的一种终端设备结构示意图;
图13为本申请实施例提供的一种网络设备结构示意图;
图14为本申请实施例提供的另一种通信方法;
图15为本申请实施例提供的一种资源取并集示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(personal communication service,PCS)电话、无 绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
2)网络设备是无线网络中的设备,网络设备可以是将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备),又可以称为基站。目前,一些网络设备的举例为:继续演进的节点B(gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、节点B(Node B,NB)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。另外,在一种网络结构中,RAN可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点。这种结构将基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。本申请的实施例对基站所采用的具体技术和具体设备形态不做限定。
另外,在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
3)子载波间隔,正交频分复用(orthogonal frequency division multiplexing,OFDM)系统中,频域上相邻的两个子载波的中心位置或峰值位置之间的间隔值。例如,长期演进(long term evolution,LTE)系统中的子载波间隔为15(kilohertz,kHz),下一代(next generation)新空口(new radio,NR)系统的子载波间隔可以是15kHz,或30kHz,或60kHz,或120kHz等。
可参考如下的表1,表1给出了5G NR系统中目前可以支持的子载波间隔:
表1
μ 子载波间隔=2 μ·15(kHz) CP类型
0 15 常规(normal)
1 30 常规
2 60 常规或扩展
    (extended)
3 120 常规
4 240 常规
其中,μ用于确定子载波间隔,例如,μ=0时,子载波间隔为15kHz,μ=1时,子载波间隔为30kHz。
4)URLLC业务,URLLC业务对时延要求极高,从发送端到接收端的单向传输时延要求在0.5ms以内,并且在1ms以内在达到99.999%的传输可靠性。
为了满足URLLC业务的传输时延需求,无线空口的数据传输可以使用更短的时间调度单元,例如,使用迷你时隙(mini-slot),或使用更大的子载波间隔的时隙作为最小的时间调度单元。其中,一个mini-slot包括一个或多个时域符号,这里的时域符号可以是正交频分复用OFDM符号。对于子载波间隔为15kHz的一个时隙,包括6个或7个时域符号,对应的时间长度为0.5ms;对于子载波间隔为60kHz的一个时隙,对应的时间长度则缩短为0.125ms。
URLLC业务数据通常采用较短的时间调度单元,以满足超短时延的需求,例如,采用15kHz子载波间隔的2个时域符号,或者采用60kHz子载波间隔的一个时隙,对应7个时域符号,对应的时间长度为0.125ms。
为了更好地量化URLLC业务的特性指标,从而给5G系统设计提供基准输入和评估准则,第三代合作伙伴项目(the 3 rd generation partnership project,3GPP)工作组对URLLC业务定义的特性指标包括时延与可靠性。
具体地,时延是指用户应用层数据包从发送端无线协议栈层2/3的服务数据单元(service data unit,SDU)到达接收端无线协议栈层2/3SDU所需的传输时间。在网络设备和终端设备均不处于非连续接收态(discontinuous reception,DRX)的情况下,URLLC业务的用户面时延要求对于上下行均为0.5ms。需要说明的是,这里0.5ms的性能要求是指数据包的平均时延。
可靠性是指发送端在一定时间内向接收端正确传输X比特数据的成功概率,所述一定时间仍定义为用户应用层数据包从发送端无线协议栈层2/3SDU到达接收端无线协议栈层2/3SDU所需的时间。对于URLLC业务,一个典型需求是在1ms内发送32bytes数据达到99.999%可靠性。需要指出的上述性能指标仅是个典型值,具体URLLC业务可能对可靠性有不同的要求,比如某些极端苛刻的工业控制需要在端到端时延在0.25ms内达到99.9999999%的传输成功概率。
5)起始符号和长度指示信息值表格,在本文中,可将起始符号和长度指示信息值简称为SLIV,相应的在本文中,起始符号和长度指示信息值表格可简称为SLIV表格。SLIV表格中可包括:物理下行共享信道(physical downlink shared channel,PDSCH)映射方式(PDSCH mapping type)以及A类解调参考信号(demodulation reference signal,DMRS)位置(dmrs-TypeA-Position),物理下行控制信道(physical downlink control channel,PDCCH)所在的时隙到该PDCCH调度的PDSCH的上行信道所在的时隙偏移的时隙数量K 0,PDSCH在时隙中的起始符号S,PDSCH所占的符号数L。一个SLIV表格中可包括至少一种SLIV信息,每种SLIV信息都有对应的编号(即,SLIV的索引(index))。
例如请参见表2,为协议NR R15 38.214v15.2.0中的表格5.1.2.1.1-2,表中的row index为SLIV的索引,SLIV表格及SLIV的索引可以是高层参数配置或预定义的。现有协议中, SLIV的索引由PDCCH上的DCI承载,用于指示DCI调度的PDSCH的时域资源分配,即PDSCH在时域上的起始时域符号和持续的时域符号的长度的组合。
表2
Figure PCTCN2019104753-appb-000001
6)混合自动重传请求-确认(hybrid automatic repeat request,HARQ)-ACK的上行信道,可以理解为用于承载HARQ-ACK的上行信道,也可以描述为与HARQ-ACK对应的上行信道。
7)第一参数与DCI相关,可以包括多种理解,例如一种理解为第一参数包含或携带或承载在DCI上,或者一种理解为第一参数可由DCI上承载的参数推导得到,或者第一参数为与DCI所在的PDCCH相关的参数,或者第一参数为对DCI加扰的参数,下文中会针对这两种不同的理解详细举例说明,此处不再详述。
8)PDSCH对应的HARQ-ACK,也可以描述为PDSCH的HARQ-ACK,表示HARQ-ACK为针对PDSCH的反馈信息。例如,HARQ-ACK可以包括肯定应答(acknowledgement,ACK)或否定应答(negative acknowledgement,NACK),当终端设备正确接收网络设备发送的PDSCH时,可针对该正确接收的PDSCH反馈ACK,当终端设备未能正确接收网络设备发送的PDSCH时,可针对该未正确接收的PDSCH反馈NACK。
9)PUCCH资源集合(PUCCH resource set),目前5G NR系统中配置了K(1<=K<=4)个PUCCH resource set,PUCCH resource set n(n=0,1,2,3)用于承载的ACK/NACK的比特数目(payload size)的N UCI的取值范围为N n<=N UCI<=N n+1,目前5G NR系统中规定N 0=1&N 1=3。
10)PUCCH资源组(PUCCH resource set group),为本申请提出的一个新的概念,本 申请中,一个PUCCH资源组可以包括一个或多个PUCCH资源集合,该PUCCH资源集合可以是现有协议中定义的,也可以是本申请中新定义的,下文中会详细举例说明,此处不再详述。
11)eMBB PDSCH,是指与eMBB业务对应的PDSCH,也可以描述为eMBB业务的PDSCH。类似地,URLLC PDSCH,是指与URLLC业务对应的PDSCH,也可以描述为URLLC业务的PDSCH。
12)K1值,是指从PDSCH所在的时间单元到该PDSCH对应的HARQ-ACK的上行信道所在的时间单元偏移的时间单元数量。现有协议机制通过DCI上承载的PDSCH-to-HARQ-timing-indicator域(field),指示K1值,该域包括三比特,取值可以从“000”到“111”。一个DCI中具体指示的K1值为何值是通过RRC配置的或预定义的。
13)第一时间长度,表征K1值对应的时间长度,也可以称为K1值的单位,或者K1值的粒度。
14)本申请实施例中所述的时间单元,可用于承载信息。例如,一个时间单元可以包括连续的一个或多个传输时间间隔(transmission time interval,TTI)或者一个或多个时隙(slot)或者一个或多个时域符号(symbol)。其中,slot可以是全时隙(full slot),也可以是迷你时隙(mini-slot,或称为non-slot),迷你时隙包含小于14个正交频分复用(orthogonal frequency division multiplexing,OFDM)的符号,一个迷你时隙可以为2、3、4、5、6、7、8、9、10、11、12或13个OFDM符号。不同时间单元用于承载不同数据包或同一数据包的不同副本(或称为重复版本)。
15)本申请实施例中所述的时频资源是时域资源与频域资源的总称,即时频资源包括时域资源与频域资源,时频资源可以用于承载终端设备与网络设备通信过程中的信令或数据。所述时域资源可以是时间单元上的资源。
16)本申请实施例中,“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
在本申请所介绍的各个实施例中,“编号”和“索引”可理解为同一概念,英文均为index。例如,SLIV的索引也可以描述为SLIV的编号,这两个概念可以互换。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
下面介绍本申请实施例的技术背景。
在5G NR系统中会存在URLLC业务和eMBB业务两种业务共存的场景,eMBB业务以时隙为调度粒度传输,URLLC业务通常以mini-slot(例如2,4或7个时域符号)为调度粒度传输,二者的传输粒度不同,可能会导致承载eMBB PDSCH对应的HARQ-ACK的PUCCH,与承载URLLC PDSCH对应的HARQ-ACK的PUCCH,需要在同一个时间单元(例如时隙)上传输。
目前,现有技术中,可以用时隙为一个单位确定HARQ-ACK,也就是说,现有技术中不支持在一个时隙上传输多个承载HARQ-ACK的物理上行控制信道(physical uplink control channel,PUCCH),即,现有技术中在一个时隙中只能传输一个承载HARQ-ACK的PUCCH,现有技术中,当一个时隙中有多个PDSCH对应的HARQ-ACK需要传输时, 将需要在一个时隙中传输的多个HARQ-ACK联合编码为一个HARQ-ACK码本并在一个PUCCH上传输。例如,如图1所示,假设终端设备在一个时隙内需要针对不同的PDSCH(PDSCH1和PDSCH2)反馈HARQ-ACK,PDSCH1可以是URLLC PDSCH,PDSCH2可以是eMBB PDSCH,假设终端设备确定的针对PDSCH1反馈的HARQ-ACK为HARQ-NACK1,针对PDSCH2反馈的HARQ-ACK为HARQ-ACK2,进一步假设下行传输使用30kHz的子载波间隔,上行传输使用15kHz的子载波间隔,受限于终端设备的数据译码能力,PDSCH1的HARQ-NACK1最快可能在上行第二个时隙的起始位置反馈,后续调度的PDSCH2的HARQ-ACK2到来时刻较晚,最快可能在该上行时隙的结束位置反馈。由于现有协议限制在一个时隙中只能传输一个HARQ-ACK的上行信道,针对上述举例,采用现有技术的方法,HARQ-NACK1必须等待一定的时间和HARQ-ACK2一起反馈,待HARQ-ACK2确定后,将HARQ-NACK1和HARQ-ACK2合成为一个HARQ-ACK承载于一个PUCCH进行反馈,这样,PDSCH1的NACK1被延后传输,相应的,网络设备的重传也被延后,由于上下行传输的时隙长度不一致,这个重传的延后量可能超过1个下行时隙(例如1ms),而URLLC业务对传输时延的要求较高(端到端0.5ms),故现有机制无法满足URLLC业务所需的时延要求。
鉴于此,本申请实施例提供一种通信方法、装置及设备,用以在同一时间单元中传输多个承载HARQ-ACK的上行信道时,降低上行信道的传输时延。
本申请实施例提供的通信方法,可以应用于5G NR系统或LTE系统,也可以应用于未来的移动通信系统,例如第6代移动通信系统等,本申请不做限定。
另外,在下文的介绍过程中,主要以将本申请实施例提供的技术方案应用于URLLC业务、eMBB业务为例,在实际应用中不限于此,例如本申请实施例提供的技术方案也可应用于其他的业务。
请参见图2,为本申请实施例应用的一种网络架构示意图。如图2所示,该网络架构包括网络设备以及至少一个终端设备,终端设备可以是固定位置的,也可以是可移动的。终端设备可通过无线的方式与网络设备相连,网络设备例如可以为基站,终端设备例如可以为UE。其中,网络设备和终端设备可以工作在NR系统中,终端设备与网络设备可以通过NR系统进行通信。图2只是示意图,该移动通信系统中还可以包括其它网络设备,例如,还可以包括无线中继设备和无线回传设备,在图2中未画出。本申请实施例对该移动通信系统中包括的网络设备和终端设备的数量不做限定。
请参见图3,为本申请实施例应用的另一种网络架构示意图。如图3所示,网络设备和终端设备1~终端设备6组成一个无线通信网络。在该无线通信网络中,终端设备1~终端设备6作为发送上行数据的实体,可向网络设备传输上行信道(上行信道可以承载上行数据),当然,终端设备1~终端设备6也可接收网络设备发送的下行数据。此外,终端设备4~终端设备6也可以组成一个通信系统,在该通信系统中,网络设备可以发送下行数据给终端设备1、终端设备2、终端设备3、终端设备5,终端设备5也可以发送下行数据给终端设备4、终端设备6。应理解,图3所示的网络架构中仅以包括一个网络设备为例进行说明,但本申请实施例并不限于此,例如,网络架构中还可以包括更多的网络设备;类似地,网络架构中也可以包括更多的终端设备,并且还可以包括其它设备,图3中未予以示出。
请参见图4,为本申请实施例提供的一种通信方法,在下文的介绍过程中,以将该方 法应用在图2所示的网络架构为例说明。该方法的流程介绍如下。
S101:终端设备获取分组关系。
该分组关系表征第一参数与N组时频资源的对应关系,N组时频资源是对一个时间单元上的时频资源进行分组得到的,N组时频资源中的每组时频资源对应一个或多个第一参数,第一参数与下行控制信息(downlink control information,DCI)相关,每组时频资源中的时频资源是承载HARQ-ACK的上行信道的时频资源,N为大于或等于2的正整数。其中,每组时频资源中可以包括一个或多个时频资源。
本申请实施例中,终端设备可以从网络设备接收该分组关系,或者终端设备从本地获取该分组关系。其中,在终端设备从本地获取该分组关系的情况下,终端设备可将该分组关系预先存储在本地,该分组关系可以是终端设备预先从网络设备获取的,也可以是预设的。下文中以终端设备从网络设备接收该分组关系为例说明。
其中,第一参数可以包括K1值(也可以写作K 1值)、第一时间长度、码本标识指示信息(codebook ID)、无线网络临时标识(radio network temporary identity,RNTI)、上行信道的终止符号、PDCCH的监听时机,或SLIV的索引中的一项或多项。例如,第一参数包括K1值、以及第一时间长度;或者包括K1值和无线网络临时标识,或者包括K1值和SLIV的索引,或者包括K1值和PDCCH的监听时机,或者包括K1值和码本标识指示信息,或者包括码本标识指示信息和上行信道的终止符号等。
本申请中,K1值为从物理下行共享信道(physical downlink shared channel,PDSCH)所在的时间单元到该PDSCH对应的HARQ-ACK的上行信道所在的时间单元偏移的时间单元数量。第一时间长度表征所述K1值对应的时间长度,本申请实施例中第一时间长度可包括第一时间单元长度、第二时间单元长度,其中,第一时间单元长度例如为时隙,时隙可包括14个时域符号,第二时间单元长度例如为迷你时隙,迷你时隙可包括2、4或者7个时域符号。本申请中下文中所涉及的K1值、第一时间长度均与此处描述的含义相同,再次出现不再赘述。
需要说明的是,本申请中第一参数与DCI相关可以包括:DCI上承载的第一参数,或者可以由DCI上承载的参数推导出第一参数,或者与DCI所在的PDCCH相关的参数,或者对DCI加扰的参数。例如,DCI上承载的第一参数可以包括K1值、SLIV的索引、码本标识指示信息。又例如,可以由DCI上承载的参数推导出的第一参数可以包括,由K1值推导出的第一时间长度、由上行信道时频资源分配参数推导出的上行信道的终止符号。又例如,与DCI所在的PDCCH相关的参数可以包括PDCCH的监听时机。又例如,对DCI加扰的参数为RNTI。
本申请实施例中,上行信道可以包括物理上行控制信道(physical uplink control channel,PUCCH)或物理上行共享信道(physical uplink shared channel,PUSCH)。
可以理解的是,上述分组关系可以是列表的形式,也可以是其它形式,本申请对此不做限定。
S102:终端设备接收第一DCI。
图4中以终端设备从网络设备接收该第一DCI为例示意。其中,与该第一DCI相关的第一参数对应N组时频资源中的第i组时频资源,i为小于或等于N的正整数。
S103:终端设备根据获取的分组关系,在N组时频资源中确定与第一DCI相关的第一参数对应的第i组时频资源。
S104:终端设备确定在第i组时频资源中的第一时频资源上承载第一HARQ-ACK的第一上行信道。
其中,第一HARQ-ACK与第一DCI调度的PDSCH对应,可以理解为第一HARQ-ACK是针对第一DCI调度的PDSCH的反馈信息。该第一HARQ-ACK可以是ACK或NACK。
本申请实施例中,第一时频资源可以是第i组时频资源中的部分时频资源,也可以是第i组时频资源中的全部时频资源。以下描述终端设备如何确定在第i组时频资源中的第一时频资源上承载第一HARQ-ACK的第一上行信道。
一种可能的实现方式中,终端设备根据第一HARQ-ACK的比特数目(payload size)确定对应的PUCCH资源集合,再根据第一DCI中的PUCCH资源指示(allocated resource indicator,ARI),在该PUCCH资源集合中确定承载第一上行信道的第一时频资源。例如,假设该ARI为“000”,则可确定承载第一上行信道的资源为该PUCCH资源集合中的第1个PUCCH资源,也就是说,第一时频资源为该PUCCH资源集合中的第1个PUCCH资源。
又一种可能的实现方式中,终端设备在通过高层信令配置的PUCCH资源组中,确定与第一HARQ-ACK的比特数目(payload size)对应的PUCCH资源集合,再根据第一DCI中的PUCCH资源指示,在该PUCCH资源集合中确定承载第一上行信道的第一时频资源。
需要说明的是,在该种实现方式中,PUCCH资源组是本申请新提出的概念,由于不同的HARQ-ACK的比特数目可能相差很大,本申请可通过高层信令为不同的HARQ-ACK的比特数目配置不同的PUCCH资源组,每个PUCCH资源组中包括一个或多个的PUCCH资源集合。
本申请实施例提供的通信方法中,一个时间单元上的时频资源被分为N组时频资源,该N组时频资源中的每组时频资源可用于传输承载HARQ-ACK的上行信道,也就是说,相比现有技术中一个时间单元只能用于传输一个承载HARQ-ACK的上行信道,采用本申请实施例提供的方法,一个时间单元可用于传输N个承载HARQ-ACK的上行信道。这样,当需要在一个时间单元中传输多个承载HARQ-ACK的上行信道时,该时间单元中需要在时域上早些发送的承载HARQ-ACK的上行信道,不必等到和最后一个承载HARQ-ACK的上行信道在同一个PUCCH资源上发送,也就是说,采用本申请的方法可实现先到的HARQ-ACK先发送,从而降低传输时延,提升传输效率。
本申请实施例中,若分组关系为终端设备从网络设备接收的,则网络设备在向终端设备发送分组关系之前,还可以根据如下一项或多项条件,确定分组关系:
条件1,K1值。K1值可以是半静态配置的或预定义的。
条件2,第一时间长度。第一时间长度可以是半静态配置的或预定义的。
条件3,SLIV的索引。SLIV的索引可以是半静态配置的或预定义的。其中,本申请实施例中SLIV是指HARQ-ACK对应PDSCH的SLIV。
条件4,码本标识指示信息。码本标识指示信息用于指示N组时频资源中承载HARQ-ACK的一组时频资源,码本标识指示信息可以包括N个取值,每个取值对应N组时频资源中的一组时频资源。该指示信息可以承载在DCI上。
条件5,RNTI。其中,RNTI用于对DCI加扰。
条件6,上行信道的终止符号。
条件7,PDCCH的监听时机。
以下描述网络设备根据K1值确定分组关系的过程。以K1值为半静态配置的为例说明。
在K1值为半静态配置的情况下,网络设备在根据K1值确定分组关系之前,还可获取高层配置的若干个K1值,以下为方便描述将该若干个K1值描述为K1值集合。网络设备在获取到高层配置的K1值集合之后,可将该K1值集合分为N个K1值子集,进而可建立N个K1值子集与N组时频资源的一一对应关系,将N个K1子集与N组时频资源的一一对应关系确定为所述分组关系。
可选的,网络设备可根据若干个K1值的索引(可以理解为编号),将该K1值集合分为N个子集。
例如,假设若干个K1值的索引为1-8,相应的K1值集合可记为{1,2,3,4,5,6,7,8},以N=2为例,网络设备可根据K1值的索引将K1值集合{1,2,3,4,5,6,7,8}分为第一K1值子集{1,2,3,4}和第二K1值子集{5,6,7,8},网络设备在划分第一K1值子集和第二K1值子集之后,可建立2个K1值子集与2组时频资源的一一对应关系,以下为便于描述将2组时频资源分别记为第一组时频资源和第二组时频资源,示例性地,网络设备可将第一K1值子集对应第一组时频资源,将第二K1值子集对应第二组时频资源,进而可将第一K1值子集与第一组时频资源的对应关系以及第二K1值子集与第二组时频资源的对应关系确定为所述分组关系。此外,在上述举例中网络设备也可将K1值集合{1,2,3,4,5,6,7,8}分为第一K1值子集{1,2,3}和第二K1值子集{4,5,6,7,8},当然第一K1值子集和第二K1值子集还可以是其它划分方式,本申请中不做限制。针对该举例,分组关系可以是列表形式,参见表3所示,示出一种可能的分组关系形式,表3中以第一参数为K1值示意,当K1值取1~4时,对应第一组时频资源,当K1值取5~8时,对应第二组时频资源。
表3
Figure PCTCN2019104753-appb-000002
又例如,假设若干个K1值的索引为1-8,相应的K1值集合可记为{1,2,3,4,5,6,7,8},以N=3为例,网络设备可根据K1值的索引将K1值集合{1,2,3,4,5,6,7,8}分为第一K1值子集{1,2,3}、第二K1值子集{4,5,6}以及第三K1值子集{7,8},网络设备在划分第一K1值子集、第二K1值子集和第三K1值子集之后,可建立3个K1值子集与3组时频资源的一一对应关系,以下为便于描述将3组时频资源分别记为第一组时频资源、第二组时频资源和第三组时频资源,示例性地,网络设备可将第一K1值子集对应第一组时频资源,将第二K1值子集对应第二组时频资源,将第三K1值子集对应第三组时频资源,进而可将3个K1子集与3组时频资源的一一对应关系确定为所述分组关系。
再例如,假设若干个K1值的索引为1-16,相应的K1值集合可记为{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},以N=2为例,网络设备可根据K1值的索引将K1 值集合{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}分为第一K1值子集{1,2,3,4,5,6,7,8}和第二K1值子集{9,10,11,12,13,14,15,16},示例性地,网络设备在划分第一K1值子集和第二K1值子集之后,可将第一K1值子集对应第二组时频资源,将第二K1值子集对应第一组时频资源,进而可将第一K1值子集与第二组时频资源的对应关系以及第二K1值子集与第一组时频资源的对应关系确定为所述分组关系。
本申请实施例中,若网络设备根据K1值确定分组关系,相应的,终端设备可根据获取到的分组关系以及接收到的第一DCI中携带的K1值,在N组时频资源中确定第一DCI中携带的K1值对应的第i组时频资源。下面以一个实施方式说明。
例如,假设N为2,i为1,网络设备确定的分组关系包括:第一K1值子集{1,2,3,4}对应第1组时频资源,第二K1值子集{5,6,7,8}对应第2组时频资源,网络设备确定分组关系后,将该分组关系发送给终端设备,并向终端设备发送第一DCI,该第一DCI中携带的K1值为3,终端设备在接收到网络设备发送的分组关系以及第一DCI之后,可获知与第一DCI相关的K1值3(也可描述为第一DCI中携带的K1值)属于第一K1值子集,而第一K1值子集对应第1组时频资源,故,终端设备可根据该分组关系,在2组时频资源中确定与第一DCI相关的K1值3对应的第1组时频资源,进而可确定在第1组时频资源中的第一时频资源上承载第一HARQ-ACK的第一上行信道。
需要说明的是,在K1值为预定义的情况下,网络设备也可采用上述方法确定所述分组关系,区别在于,若K1值为预定义的,则网络设备不需要获取高层配置的若干个K1值,直接使用预定义的K1值执行上述方法。
以下描述网络设备根据第一时间长度确定分组关系的过程。以第一时间长度为半静态配置的为例说明。
在第一时间长度为半静态配置的情况下,网络设备在根据第一时间长度确定分组关系之前,还可获取高层配置的若干个第一时间长度,以下为方便描述将该若干个第一时间长度描述为第一时间长度集合。网络设备在获取到高层配置的第一时间长度集合之后,可将该第一时间长度集合分为N个时间长度子集,进而可建立N个时间长度子集与N组时频资源的一一对应关系,将N个时间长度子集与N组时频资源的一一对应关系确定为所述分组关系。
例如,假设网络设备获取到的若干个第一时间长度分别为14个时域符号、2个时域符号、4个时域符号、7个时域符号,相应的第一时间长度集合可记为{2,4,7,14},以N=2为例,网络设备可根据第一时间长度将第一时间长度集合{2,4,7,14}分为第一时间长度子集{2,4,7}和第二时间长度子集{14},网络设备在划分第一时间长度子集和第二时间长度子集之后,可建立2个时间长度子集与2组时频资源的一一对应关系,以下为便于描述将2组时频资源分别记为第一组时频资源和第二组时频资源,示例性地,网络设备可将第一时间长度子集{2,4,7}对应第一组时频资源,将第二时间长度子集{14}对应第二组时频资源,进而可将2个时间长度子集与2组时频资源的一一对应关系确定为所述分组关系。针对该举例,分组关系可以是列表形式,参见表4所示,示出一种可能的分组关系形式,表4中以第一参数为第一时间长度示意,当第一时间长度取2、4或7时,对应第一组时频资源,当K1值取5~8时,对应第二组时频资源。
表4
Figure PCTCN2019104753-appb-000003
Figure PCTCN2019104753-appb-000004
本申请实施例中,若网络设备根据第一时间长度确定分组关系,相应的,终端设备可根据获取到的分组关系以及第一时间长度,在N组时频资源中确定与第一DCI相关的第一时间长度对应的第i组时频资源。下面以一个实施方式说明。
例如,假设N为2,i为1,网络设备确定的分组关系包括:第一时间长度子集{2时域符号,4时域符号,7时域符号}对应第1组时频资源,第二时间长度子集{14时域符号}对应第2组时频资源,网络设备确定分组关系后,将该分组关系发送给终端设备,并向终端设备发送第一DCI,假设该第一DCI对应的第一时间长度为7时域符号,终端设备在接收到网络设备发送的分组关系以及第一DCI之后,可获知与第一DCI相关的第一时间长度7时域符号属于第一时间长度子集,而根据分组关系可知第一时间长度子集对应第1组时频资源,故,终端设备可根据该分组关系,在2组时频资源中确定与第一DCI相关的第一时间长度7时域符号对应的第1组时频资源,进而可确定在第1组时频资源中的第一时频资源上承载第一HARQ-ACK的第一上行信道。
本申请实施例中,上述以网络设备分别以K1值、第一时间长度确定分组关系为例说明,网络设备还可根据K1值和第一时间长度共同确定分组关系,以下描述网络设备根据K1值和第一时间长度共同确定分组关系的方法。
在一种可能的实现方式中,网络设备可根据第一时间长度,将K1值对应的时间长度为相同的第一时间长度的K1值配置为一个时间长度子集。例如,假设网络设备从高层获取到的若干个K1值的索引为1-8,相应的K1值集合可记为{1,2,3,4,5,6,7,8},其中,索引为1-4的K1值对应的时间长度(即K1值的粒度)为1/2slot,索引为5-8的K1值对应的时间长度(即K1值的粒度)为slot,网络设备可根据第一时间长度将对应1/2slot的K1值配置为第一时间长度子集{1,2,3,4},可根据第一时间长度将对应slot的K1值配置为第二时间长度子集{5,6,7,8},进而可将第一时间长度子集{1,2,3,4}对应第一组时频资源,将第二时间长度子集{5,6,7,8}对应第二组时频资源,将2个时间长度子集与2组时频资源的一一对应关系确定为所述分组关系。
需要说明的是,在第一时间长度为预定义的情况下,网络设备也可采用上述方法确定所述分组关系,区别在于,若第一时间长度为预定义的,则网络设备不需要获取高层配置的若干个第一时间长度,直接使用预定义的第一时间长度执行上述方法。
以下描述网络设备根据SLIV的索引确定分组关系的过程。以SLIV的索引为半静态配置的为例说明。
在SLIV的索引为半静态配置的情况下,网络设备在根据SLIV的索引确定分组关系之前,还可获取高层配置的SLIV表格,SLIV表格中可包括多个SLIV的索引,例如现有协议的SLIV表格中包括1~16共计16个SLIV的索引,以下为方便描述将该若干个SLIV的索引描述为SLIV的索引集合。网络设备在获取到高层配置的SLIV表格后,可确定SLIV的索引集合,进而可将该SLIV的索引集合分为N个SLIV的索引子集,进而可建立N个SLIV的索引子集与N组时频资源的一一对应关系,将N个索引子集与N组时频资源的一 一对应关系确定为所述分组关系。
例如,假设若干个SLIV的索引为1-16,相应的SLIV的索引集合可记为{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},以N=2为例,网络设备可根据SLIV的索引将SLIV的索引集合{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}分为第一SLIV的索引子集{1,2,3,4,5,6,7,8}和第二SLIV的索引子集{9,10,11,12,13,14,15,16},网络设备在划分第一SLIV的索引子集和第二SLIV的索引子集之后,可建立2个SLIV的索引子集与2组时频资源的一一对应关系,以下为便于描述将2组时频资源分别记为第一组时频资源和第二组时频资源,示例性地,网络设备可将第一SLIV的索引子集对应第一组时频资源,将第二SLIV的索引子集对应第二组时频资源,进而可将2个SLIV的索引子集与2组时频资源的一一对应关系确定为所述分组关系。
需要说明的是,上述举例中以将SLIV的索引集合中包括的SLIV的索引平均分为N个子集为例示意,本申请中网络设备还可将SLIV的索引集合中包括的SLIV的索引不平均的分为N个子集。下面举例说明。
例如,假设若干个SLIV的索引为1-16,相应的SLIV的索引集合可记为{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},以N=2为例,网络设备可不平均的将SLIV的索引集合{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}分为第一SLIV的索引子集{1,2,3,4,8,12,15}和第二SLIV的索引子集{5,6,7,9,10,11,13,14,16},网络设备在划分SLIV的索引子集之后,可建立2个SLIV的索引子集与2组时频资源的一一对应关系,例如可将第一SLIV的索引子集对应第一组时频资源,将第二SLIV的索引子集对应第二组时频资源。
又例如,假设若干个SLIV的索引为1-16,相应的SLIV的索引集合可记为{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},以N=3为例,网络设备可不平均的将SLIV的索引集合{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}分为第一SLIV的索引子集{1,2,3,4,8,12,15}、第二SLIV的索引子集{5,6,7,13,14,16}以及第三SLIV的索引子集{9,10,11},网络设备在划分SLIV的索引子集之后,可建立3个SLIV的索引子集与3组时频资源的一一对应关系,例如可将第一SLIV的索引子集对应第一组时频资源,将第二SLIV的索引子集对应第二组时频资源,并将第三SLIV的索引子集对应第三组时频资源。
再例如,假设若干个SLIV的索引为1-16,相应的SLIV的索引集合可记为{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},以N=4为例,网络设备可不平均的将SLIV的索引集合{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}分为第一SLIV的索引子集{1,2,3,12}、第二SLIV的索引子集{5,6,7,13,14,16}、第三SLIV的索引子集{9,10,11}以及第四SLIV的索引子集{4,8,15},网络设备在划分SLIV的索引子集之后,可建立4个SLIV的索引子集与4组时频资源的一一对应关系,例如可将第一SLIV的索引子集对应第一组时频资源,将第二SLIV的索引子集对应第二组时频资源,将第三SLIV的索引子集对应第三组时频资源,并将第四SLIV的索引子集对应第四组时频资源。
本申请实施例中,若网络设备根据SLIV的索引确定分组关系,相应的,终端设备可根据获取到的分组关系以及SLIV的索引,在N组时频资源中确定与第一DCI相关的SLIV的索引对应的第i组时频资源。下面以一个实施方式说明。
例如,假设N为2,i为1,网络设备确定的分组关系包括:第一SLIV的索引子集{1,2,3,4,5,6,7,8}对应第1组时频资源,第二SLIV的索引子集{9,10,11,12,13,14,15,16}对应第2组时频资源,网络设备确定分组关系后,将该分组关系发送给终端设备,之后可向终 端设备发送第一DCI,假设该第一DCI中携带的SLIV的索引为8,终端设备在接收到网络设备发送的分组关系以及第一DCI之后,可获知与第一DCI相关的SLIV的索引8属于第一SLIV的索引子集,而根据分组关系可知第一SLIV的索引子集对应第1组时频资源,故,终端设备可根据该分组关系,在2组时频资源中确定与第一DCI相关的SLIV的索引对应的第1组时频资源,进而可确定在第1组时频资源中的第一时频资源上承载第一HARQ-ACK的第一上行信道。
一个可能的实施方式中,SLIV的索引可以是SLIV表格中包括的部分SLIV的索引。在该实施方式中,网络设备可将部分SLIV的索引平均或不平均的分为N个SLIV的索引子集,并建立N个SLIV的索引子集与N组时频资源的一一对应关系。
又一个可能的实施方式中,全部PUCCH捎带承载(piggyback)在PUSCH上。在该实施方式中,网络设备可根据PUSCH对应的SLIV索引确定上述分组关系。具体实现方式可参见根据PDSCH对应的SLIV的索引确定分组关系的方法,此处不再赘述。
以下描述网络设备根据码本标识指示信息确定分组关系的过程。
一个可能的实施方式中,码本标识指示信息的取值可以包括N个,每个取值对应N组时频资源中的一组时频资源。例如,以N=2为例,码本标识指示信息的取值可以包括0和1,网络设备可将取值0对应2组时频资源中的第一组时频资源,将取值1对应2组时频资源中的第二组时频资源,这样网络设备可建立起2个码本标识指示信息的取值与2组时频资源的一一对应关系。终端设备可根据接收到的DCI上承载的码本标识指示信息的取值,在N组时频资源中确定与该码本标识指示信息的取值对应的一组时频资源。
以下描述网络设备根据RNTI确定分组关系的过程。
可选的,网络设备可根据RNTI的类型确定分组关系。
例如,假设RNTI的类型包括三种类型,分别为C-RNTI、CS-RNTI以及MCS-C-RNTI,以N=3为例,网络设备可将C-RNTI对应3组时频资源中的第一组时频资源,将CS-RNTI对应3组时频资源中的第二组时频资源,将MCS-C-RNTI对应3组时频资源中的第三组时频资源。这样网络设备可建立起3种类型的RNTI与3组时频资源的一一对应关系。终端设备可根据接收到的DCI,推导出该DCI所采用的RNTI加扰类型,进而可根据DCI所采用的RNTI加扰类型,在N组时频资源中确定,承载该DCI调度的PDSCH的HARQ-ACK的上行信道的一组时频资源。
需要说明的是,MCS-C-RNTI为本申请提供的一种新型的RNTI,该MCS-C-RNTI具备如下功能:通过该MCS-C-RNTI可以确定HARQ-ACK对应的PDSCH的数据来源于第一类型业务,第一类型业务例如可以是URLLC业务。MCS-C-RNTI仅表示一种可能的名称,也可以描述为X-RNTI,本申请对名称不做限制,目的是区分具备上述功能的RNTI与现有的RNTI,其中,现有的RNTI例如可以包括C-RNTI、CS-RNTI、P-RNTI或SI-RNTI等。
以下描述网络设备根据PDCCH的监听时机确定分组关系的过程。
可选的,网络设备可根据若干个PDCCH的监听时机,将该若干个PDCCH的监听时机分为N个子集,为便于描述将若干个PDCCH的监听时机称为PDCCH的监听时机集合。例如,假设若干个PDCCH的监听时机包括一个slot内的符号0、2、4、6、8、10、12,相应的,可以理解为PDCCH的监听时机集合为{0,2,4,6,8,10,12},以N=2为例,网络设备可根据PDCCH的监听时机将PDCCH的监听时机集合{0,2,4,6,8,10,12}分为第一PDCCH 的监听时机子集{0,2,4,6}、第二PDCCH的监听时机子集{8,10,12},网络设备在划分第一PDCCH的监听时机子集、第二PDCCH的监听时机子集之后,可建立2个PDCCH的监听时机子集与2组时频资源的一一对应关系,示例性地,网络设备可将第一PDCCH的监听时机子集对应第一组时频资源,将第二PDCCH的监听时机子集对应第二组时频资源。
以下描述网络设备根据上行信道的终止符号确定分组关系的过程。
网络设备在根据上行信道的终止符号确定分组关系之前,还可获取高层配置的若干个起始控制信道粒子(control channel element,CCE)的索引(index),例如可以描述为CCE的索引集合。网络设备在获取到高层配置的CCE的索引集合之后,可将该CCE的索引集合分为N个CCE的索引子集,而每个CCE的索引子集可以对应一组上行信道的终止符号,这样,网络设备可建立N组上行信道的终止符号与N组时频资源的一一对应关系,进而将N组上行信道的终止符号与N组时频资源的一一对应关系确定为所述分组关系。
其中,每个CCE的索引子集可以对应一个范围内的上行信道的终止符号。例如,假设有两个CCE的索引子集,一个CCE的索引子集可以对应2~7符号范围内的上行信道的终止符号,另一个CCE的索引子集可以对应8~13符号范围内的上行信道的终止符号。
可选的,网络设备可根据CCE的索引值,将CCE的索引集合分为N个子集。
例如,假设若干个CCE的索引值为1-8,相应的CCE的索引集合可记为{1,2,3,4,5,6,7,8},以N=4为例,网络设备可根据CCE的索引值将CCE的索引集合{1,2,3,4,5,6,7,8}分为第一CCE的索引子集{1,2}、第二CCE的索引子集{3,4,5}、第三CCE的索引子集{6,7}以及第四CCE的索引子集{8},网络设备在划分CCE的索引子集之后,可确定每个CCE的索引子集对应的一组上行信道的终止符号,假设第一CCE的索引子集{1,2,3}对应第一组上行信道的终止符号为{3,4,6},第二CCE的索引子集{3,4,5}对应第二组上行信道的终止符号为{7,13},第三CCE的索引子集{6,7}对应第三组上行信道的终止符号为{10},第四CCE的索引子集{8}对应第四组上行信道的终止符号为{7},进而网络设备可建立4组上行信道的终止符号与4组时频资源的一一对应关系,以下为便于描述将4组时频资源分别记为第一组时频资源、第二组时频资源、第三组时频资源以及第四组时频资源,示例性地,网络设备可将第一组上行信道的终止符号对应第一组时频资源,将第二组上行信道的终止符号对应第二组时频资源,将第三组上行信道的终止符号对应第三组时频资源,将第四组上行信道的终止符号对应第四组时频资源,从而可将4组上行信道的终止符号与4组时频资源的一一对应关系确定为所述分组关系。
又例如,请参见图5(a),为本申请实施例提供的一种时间单元分组后的示意图,图5(a)中假设时间单元为时隙(slot),N为4,上行信道为PUCCH,假设有7个PDSCH对应的HARQ-ACK需要在slot n上传输,一个PUCCH上承载一个PDSCH的HARQ-ACK,根据HARQ-ACK的比特数目选择PUCCH传输的时域资源,得到PUCCH1~PUCCH7。根据一个PUCCH的终止符号确定分组,在终止符号之前的可能有若干个PUCCH的起始符号,上述的这些PUCCH在时域上有重叠,图5(a)中PUCCH1的最后一个符号之前,有PUCCH2和PUCCH3的起始符号,则PUCCH1~3分为一组,对应第一组时频资源;之后PUCCH4的结束符号之前未分组的只有PUCCH5的起始符号,则PUCCH4和PUCCH5占用的资源对应第二组时频资源;PUCCH6的结束符号之前没有其他PUCCH的起始符号,则单独分为一组,对应第三组时频资源,同理PUCCH7对应第四组时频资源,从而网络设备可将4组上行信道的终止符号与4组时频资源的一一对应关系确定为所述分组关系。
本申请实施例以上描述了网络设备根据一项条件确定分组关系的方法,此外,网络设备还可根据两项条件的组合确定分组关系,下面以网络设备根据两项条件确定分组关系为例说明。
例如,以网络设备根据第一时间长度和RNTI确定分组关系为例说明。假设网络设备获取到的若干个第一时间长度分别为14个时域符号、2个时域符号、4个时域符号、7个时域符号,相应的第一时间长度集合可记为{2,4,7,14},网络设备可根据第一时间长度将第一时间长度集合{2,4,7,14}分为第一时间长度子集{2,4,7}和第二时间长度子集{14};进一步假设RNTI的类型包括三种类型,分别为C-RNTI、CS-RNTI以及MCS-C-RNTI。以N=4为例,也就是说将一个时间单元上的时频资源分为4组时频资源,分别记为第一组时频资源、第二组时频资源、第三组时频资源以及第四组时频资源,网络设备根据第一时间长度和RNTI这两个参数的组合对时间单元中的资源分组可包括:将第一时间长度为{2,4,7}且DCI由MCS-C-RNTI加扰,对应第一组时频资源;将第一时间长度为{2,4,7}且DCI由C-RNTI、CS-RNTI加扰,对应第二组时频资源;将第一时间长度为14,且DCI由MCS-C-RNTI加扰,对应第三组时频资源;将第一时间长度为{2,4,7}且DCI由C-RNTI、CS-RNTI加扰对应第四组时频资源,网络设备进而可将该四组对应关系确定为所述分组关系。
又例如,以网络设备根据K1值和RNTI确定分组关系为例说明。假设网络设备获取到的若干个K1值分别为1、2、3、4、5、6、7或8,相应的K1值集合可记为{1,2,3,4,5,6,7,8},网络设备可根据K1值将K1值集合{1,2,3,4,5,6,7,8}分为第一K1值子集{1,2,3,4}和第二K1值子集{5,6,7,8};进一步假设RNTI的类型包括三种类型,分别为C-RNTI、CS-RNTI以及MCS-C-RNTI。以N=3为例,也就是说将一个时间单元上的时频资源分为3组时频资源,分别记为第一组时频资源、第二组时频资源以及第三组时频资源,网络设备根据K1值和RNTI这两个参数的组合对时间单元中的资源分组可包括:将K1值为{5,6,7,8}且DCI由MCS-C-RNTI加扰,对应第一组时频资源;将K1值为{1,2,3,4}且DCI由C-RNTI、CS-RNTI加扰,对应第二组时频资源;将第一时间长度为{1,2,3,4},且DCI由MCS-C-RNTI加扰,对应第三组时频资源,网络设备进而可将该四组对应关系确定为所述分组关系。
可以理解,上述举例仅为示意性说明,网络设备还可根据其它的条件组合确定分组关系,可分别参见上述以单个条件确定分组关系的方法,此处不再赘述。
此外,网络设备还可根据多于两项的上述条件确定分组关系,可分别参见上述以单个条件确定分组关系的方法,此处不再赘述。
本申请实施例中,网络设备在根据上述方法确定分组关系之前,还可获取高层配置的参数N,也就是说,网络设备将一个时间单元上的时频资源分为多少组时频资源可以由高层来配置。
可以理解的是,本申请中由一个时间单元上的时频资源分组得到的N组时频资源可以重叠,也可以不重叠,其中,重叠可以是指部分重叠或者完全重叠。请参见图5(b),为本申请实施例提供的一种时间单元分组后的示意图,图5(b)中假设时间单元为时隙(slot),N为3,也就是说,图5(b)中以将一个时隙上的时频资源分为3组时频资源为例示意,如图5(b)所示,第1组时频资源占时隙的1~3个符号的时频资源,第2组时频资源占时隙的4~9个符号的时频资源,第3组时频资源占时隙的8~14个符号的时频资源,其中,第1组时频资源与第2组时频资源不重叠,第1组时频资源与第3组时频资源不重叠,第 2组时频资源与第3组时频资源部分重叠。
上文中主要描述了网络设备如何确定分组关系,下文中详细描述终端设备如何实施本申请提供的通信方法。
可以理解,本申请中对终端设备接收的DCI的数量不做限制。图4对应的方法实施例中主要描述了终端设备在接收到一个DCI时如何执行本申请提供的方法,下面以终端设备接收两个DCI为例,对本申请实施例提供的方法做进一步的说明,当然终端设备也可接收两个以上的DCI,实现的原理类似,本申请中下面以终端设备接收两个DCI阐述。
在一个可能的实施方式中,终端设备除接收第一DCI之外,还可接收第二DCI,终端设备在接收到第二DCI后,可根据获取的分组关系,在N组时频资源中确定与第二DCI相关的第一参数对应的时频资源。一种可能的情况,第二DCI对应的第一参数与第一DCI对应的第一参数,均对应N组时频资源中第i组时频资源。另一种可能的情况,第二DCI对应的第一参数对应N组时频资源中第k组时频资源,k为小于或等于N的正整数,且,所述k与所述i为不同值。以下针对这两种可能的情况分别进行描述。
第一种情况,第二DCI对应的第一参数与第一DCI对应的第一参数,均对应N组时频资源中第i组时频资源,终端设备可将第一DCI调度的PDSCH对应的第一HARQ-ACK,与第二DCI调度的PDSCH对应的第二HARQ-ACK,合成为一个合成HARQ-ACK,在第i组时频资源中传输承载合成HARQ-ACK的上行信道。
第二种情况,第二DCI对应的第一参数对应N组时频资源中第k组时频资源,第一DCI对应的第一参数对应N组时频资源中第i组时频资源,终端设备可确定在第k组时频资源中的第二时频资源上承载第二HARQ-ACK的第二上行信道。
其中,针对上述第二种情况,第一时频资源与第二时频资源可能重叠,也可能不重叠,下面分别针对重叠的情况和不重叠的情况进行说明。
在一个可能的实施方式中,第一时频资源与第二时频资源完全不重叠,例如,以图5(b)为例示意,假设N为3,i为1,k为2,第i组时频资源对应图5(b)中的第1组时频资源,第k组时频资源对应图5(b)中的第2组时频资源,图5(b)中第1组时频资源和第2组时频资源完全不重叠,第一时频资源为第1组时频资源中的时频资源,第二时频资源为第2组时频资源中的时频资源,故图5(b)中第一时频资源与第二时频资源完全不重叠,在该实施方式中,终端设备在第一时域资源上发送第一上行信道,且在第二时域资源上发送第二上行信道。这样,终端设备可在N组时频资源中的两组不同的时频资源上,分别传输承载第一HARQ-ACK的第一上行信道以及承载第二HARQ-ACK的第二上行信道,该第一上行信道和该第二上行信道不必在同一个PUCCH资源上发送,第一HARQ-ACK和第二HARQ-ACK中先到的HARQ-ACK可以先反馈,一定程度地可以降低传输时延。
在另一个可能的实施方式中,第一时频资源与第二时频资源部分重叠或完全重叠,例如,以图5(b)为例示意,假设N为3,i为2,k为3,第i组时频资源对应图5(b)中的第2组时频资源,第k组时频资源对应图5(b)中的第3组时频资源,图5(b)中第2组时频资源和第3组时频资源部分重叠,若终端设备确定的第一时频资源为第2组时频资源中的7~9符号,确定的第二时频资源为第3组时频资源中的8~11符号,此时为第一时频资源与第二时频资源部分重叠的情况,若终端设备确定的第一时频资源为第2组时频资源中的8~9符号,确定的第二时频资源为第3组时频资源中的8~9符号,此时为第一时频 资源与第二时频资源完全重叠的情况,在该实施方式中,由于在重叠的资源上只允许传输一个PUCCH,因此,无论是第一时频资源与第二时频资源部分重叠或完全重叠,终端设备都需要重新选择资源。本申请中,终端设备可采用如下方式重选资源:终端设备将第一HARQ-ACK和第二HARQ-ACK组合为第三HARQ-ACK,并确定在第三时频资源上承载第三HARQ-ACK的第三上行信道,其中,第三时频资源为N组时频资源包括的一组时频资源中的时频资源。本申请中,终端设备确定在第三时频资源上承载第三HARQ-ACK的第三上行信道之前,还可确定第三时频资源,下面给出两种确定第三时频资源的方法。
在一种可能的实现方式中,终端设备在第i组时频资源或第k组时频资源中选择一组时频资源,在该组时频资源中确定第三时频资源。下面以终端设备在第i组时频资源中确定第三时频资源为例进行说明。
终端设备可在确定第一上行信道满足如下一项或多项条件时,确定在第i组时频资源中确定第三时频资源。
条件1,第一上行信道对应的第一时间长度小于第二上行信道对应的第一时间长度。可以理解,当多个时频资源重叠时,终端设备可在确定第一上行信道对应的第一时间长度最小,或为最小的之一时,在第i组时频资源中确定第三时频资源。
条件2,第一上行信道是通过第一RNTI加扰的DCI对应的上行信道。其中,第一RNTI为本申请提供的一种新型的RNTI,具备如下功能:通过该第一RNTI可以确定HARQ-ACK对应的PDSCH的数据来源于第一类型业务,第一类型业务例如可以是URLLC业务。
条件3,第一上行信道是承载在根据K1值或SLIV的索引确定的时频资源上的上行信道。
在一个可能的实施方式中,假设第一上行信道为PUCCH。终端设备可采用如下方法在第i组时频资源中确定第三时频资源:终端设备在第一PUCCH资源组中,确定与第三HARQ-ACK的比特数目对应的第一PUCCH资源集合,第一PUCCH资源组对应于在第i组时频资源上发送的PUCCH,第一PUCCH资源组中包括一个或多个PUCCH资源集合,终端设备在确定第一PUCCH资源集合后,可在第一PUCCH资源集合中确定第三时频资源。示例性地,终端设备可根据第三PUCCH资源指示取值,在第一PUCCH资源集合中确定承载第三HARQ-ACK码本的第三时频资源,第三PUCCH资源指示是第三PDCCH中的PUCCH资源指示的取值,第三PDCCH是终端设备检测到的、调度PDSCH集合中的PDSCH的最后一个PDCCH。
在另一种可能的实现方式中,终端设备在为重叠的PUCCH资源专门配置的第二PUCCH资源组中,确定第三时频资源。下面以第一上行信道为PUCCH为例,详细描述该种实现方式。
终端设备在第二PUCCH资源组中,确定与第三HARQ-ACK的比特数目对应的第二PUCCH资源集合,其中,第二PUCCH资源组是为承载第三HARQ-ACK的PUCCH配置的,第二PUCCH资源组中包括一个或多个PUCCH资源集合,第二PUCCH资源组为N组时频资源中的第j组时频资源中的时频资源,也可以理解为第二PUCCH资源组对应于在第j组时频资源上发送的PUCCH,终端设备在确定第二PUCCH资源集合后,可在第二PUCCH资源集合中确定第三时频资源,j为小于或等于N的正整数,且,j与i、k均为不同值。示例性地,终端设备可根据第三PUCCH资源指示取值,在第二PUCCH资源集合中确定承载第三HARQ-ACK码本的第三时频资源,第三PUCCH资源指示是第三PDCCH 中的PUCCH资源指示的取值,第三PDCCH是终端设备检测到的、调度PDSCH集合中的PDSCH的最后一个PDCCH。下文将以一个实施方式对第一时频资源和第二时频资源重叠时,终端设备在为重叠的PUCCH资源专门配置的第二PUCCH资源组中确定第三时频资源进行说明。
例如,请参见图6,为本申请实施例提供的时间单元分组后的示意图,图6中以时间单元为时隙,以将一个时间单元中的时频资源分为第一组时频资源和第二组时频资源为例示意。其中,在第一组时频资源上发送第一上行信道,在第二组时频资源上发送第二上行信道,第一上行信道上承载DCI#1~DCI#4所分别指示的四个HARQ-ACK,该四个HARQ-ACK承载在第一上行信道上,根据该四个HARQ-ACK的比特数目(例如10bit)在第一PUCCH资源组中选取PUCCH资源集合2,因为PUCCH资源集合2对应的比特数目范围为10~20bit。类似地,DCI#5~DCI#8上分别指示的四个HARQ-ACK承载在第二上行信道上,根据该四个HARQ-ACK的比特数目20bit在第二PUCCH资源组中选取PUCCH资源集合3。
当第一PUCCH资源组中的PUCCH资源集合2和第二PUCCH资源组中的PUCCH资源集合3对应的承载HARQ-ACK的资源有重叠,此时采用本申请的方法可选择将原本承载于两个PUCCH上的HARQ-ACK码本联合编码为30bit,若在第二上行信道对应的第二PUCCH资源组中重新选取PUCCH资源集合,仍会选取PUCCH资源集合3,此时若在下行传输过程中,DCI#1~DCI#4丢失,则第二上行信道只传输DCI#5~DCI#8所指示的20bit HARQ-ACK码本,此时网络设备对于DCI#1~DCI#4传输丢失并不知情,所以在收到第二上行信道时,网络设备不知道应该以20bit还是30bit来解码第二上行信道,针对这种情况的出现,本申请实施例为重叠的PUCCH资源专门配置PUCCH资源组,即,本申请中针对重叠的PUCCH资源和不重叠的PUCCH资源分别配置PUCCH资源组。这样,可提高传输上行信道的可靠性。
在又一个可能的实施方式中,当第一时频资源与第二时频资源部分重叠或完全重叠时,终端设备仅发送满足预设条件的上行信道,丢弃另一个上行信道。可以理解,当有两个以上时频资源重叠时,终端设备可发送其中一个满足预设条件的上行信道,丢弃其它上行信道。
其中,以终端设备发送第一上行信道为例,对上述预设条件解释说明。若终端设备发送第一上行信道,则第一上行信道满足如下预设条件:
条件1,第一上行信道对应的第一时间长度小于第二上行信道对应的第一时间长度。
条件2,第一上行信道是由第一RNTI加扰的DCI对应的上行信道。
条件3,第一上行信道是承载在根据K1值或SLIV索引确定的时频资源上的上行信道。
需要说明的是,本申请实施例中第一DCI和第二DCI可以是终端设备从相同的网络设备接收的,也可以是从不同的网络设备接收的。
当第一DCI和第二DCI从不同的网络设备接收时,这两个不同的网络设备可以均为传输节点(transport point,TRP)。
在第一DCI和第二DCI从不同的网络设备接收时,若该不同的网络设备之间是非理想回程线路(backhaul)的,由于处于非理想回程线路的网络设备之间无法实时获知彼此的调度情况,故在该种场景下,发送第一DCI的网络设备和发送第二DCI的网络设备无法对由第一HARQ-ACK和第二HARQ-ACK联合编码后的HARQ-ACK码本进行解码。例如, 参阅图7所示,以网络设备为TRP为例,假设第一DCI和第二DCI从不同的TRP接收,两个不同的TRP分别为TRP#A和TRP#B,且第一DCI为TRP#A向终端设备发送的,第二DCI为TRP#B向终端设备发送的,第一DCI调度的PDSCH#1对应的反馈信息HARQ-ACK#1与第二DCI调度的PDSCH#2对应的反馈信息HARQ-ACK#2,均被指示在slot n中发送。若TRP#A与TRP#B之间是非理想回程线路的,即TRP#A和TRP#B无法实时获知彼此的调度情况,则TRP#A和TRP#B均无法对由HARQ-ACK#1和HARQ-ACK#2联合编码后的HARQ-ACK码本进行解码。
基于上述问题,本申请实施例还提供一种发送HARQ-ACK的方法。在该方法中,当第一时频资源与第二时频资源部分重叠或完全重叠时,终端设备确定在第四时频资源上承载第一HARQ-ACK的第一上行信道,在第五时频资源上承载第二HARQ-ACK的第二上行信道,其中,第四时频资源为N组时频资源包括的第m组时频资源中的时频资源,第五时频资源为N组时频资源包括的第n组时频资源中的时频资源,m和n为小于或等于N的正整数,且,m和n为不同值。
可选的,第m组时频资源中的全部时频资源与第n组时频资源中的全部时频资源在时域上不重叠。以上行信道为PUCCH为例,上述实施方式也可以理解为,当两个PUCCH对应的时频资源重叠时,对选择两个PUCCH对应的时频资源的步骤进行回退,也就是说,为承载HARQ-ACK的两个PUCCH重选不重叠的时频资源(也可描述为PUCCH资源),进而可在不重叠的时频资源上分别发送两个PUCCH上分别承载的HARQ-ACK。
上述方法仅以发送两个HARQ-ACK为例说明,当发送两个以上的HARQ-ACK时,上述方法仍适用。例如,在发送两个以上HARQ-ACK的情况下,当分别承载每个HARQ-ACK的PUCCH对应的时频资源重叠时,仍然可采用上述方法,确定在两个以上个不重叠的PUCCH资源上分别发送HARQ-ACK。
需要说明的是,上述方法不限定用于网络设备之间是非理想回程线路的场景,在其它场景下,上述方法仍然适用。进一步需要说明的是,针对上述非理想回程线路的场景,还可将其中的一个HARQ-ACK丢弃,只传输另一个HARQ-ACK,详见上文中关于丢弃HARQ-ACK的方法描述,此处不再赘述。
终端设备确定在第四时频资源上承载第一HARQ-ACK的第一上行信道,且在第五时频资源上承载第二HARQ-ACK的第二上行信道之前,终端设备还需要确定第四时频资源和第五时频资源。下面以第一上行信道和第二上行信道为PUCCH为例,具体描述终端设备如何确定第四时频资源和第五时频资源。
在一个可能的实施方式中,终端设备在第三PUCCH资源组中,确定与第一HARQ-ACK的比特数目对应的第三PUCCH资源集合,并在第三PUCCH资源集合中确定第四时频资源。终端设备在第四PUCCH资源组中,确定与第二HARQ-ACK的比特数目对应的第四PUCCH资源集合,并在第四PUCCH资源集合中确定第五时频资源。
其中,第三PUCCH资源组中包括一个或多个PUCCH资源集合,第三PUCCH资源组为第m组时频资源中的时频资源,第四PUCCH资源组中包括一个或多个PUCCH资源集合,第四PUCCH资源组为第n组时频资源中的时频资源。第三PUCCH资源组和第四PUCCH资源组用于当第一时频资源与第二时频资源部分重叠或完全重叠时选择PUCCH资源。
上述涉及的第三PUCCH资源组和第四PUCCH资源组可以是预先配置的。可以是由 网络设备配置的,例如可以是由网络设备(例如基站)通过高层参数配置的,可以是由无线资源控制(radio resource control,RRC)信令配置的。
进一步需要说明的是,上述第三PUCCH资源组和第四PUCCH资源组可以满足如下条件:第三PUCCH资源组中所有的PUCCH资源与第四PUCCH资源组中所有PUCCH资源在时域上完全不重叠,也可以理解为第三PUCCH资源组中所有的PUCCH资源与第四PUCCH资源组中所有PUCCH资源没有任何一个共有的OFDM符号。这样,当两个PUCCH对应的时频资源重叠时,可以在预先配置的两个没有PUCCH资源重叠的PUCCH资源组(例如上述第三PUCCH资源组和第四PUCCH资源组)中,为两个PUCCH上分别承载的HARQ-ACK选取不重叠的PUCCH资源。
示例性地,以预先配置的PUCCH资源组为第三PUCCH资源组和第四PUCCH资源组为例,终端设备可以根据HARQ-ACK的比特数和最后一个DCI中的PUCCH resource indicator(或称为ACK-NACK资源指示(ACK-NACK resource indicator,ARI)),分别在第三PUCCH资源组和第四PUCCH资源组中选取一个PUCCH资源用于传输承载原来重叠的两个PUCCH上的两个HARQ-ACK码本。
参阅图8所示,为一种第三PUCCH资源组和第四PUCCH资源组的可能的示意图。图8中以第三PUCCH资源组包括PUCCH资源集合1-PUCCH资源集合4,以第四PUCCH资源组包括PUCCH资源集合1-PUCCH资源集合4为例示意,由图8可知,第三PUCCH资源组占用时隙m的前7个符号,第四PUCCH资源组占用时隙m的后7个符号,第三PUCCH资源组中所有的PUCCH资源与第四PUCCH资源组中所有PUCCH资源在时域上完全不重叠。可以理解,图8仅为一种可能的示意,并非限定。
本申请实施例还提供另一种发送HARQ-ACK的方法,在该方法中,当第一时频资源与第二时频资源部分重叠或完全重叠时,终端设备仍然在第一时频资源上承载第一HARQ-ACK的第一上行信道,终端设备确定在第六时频资源上承载第二HARQ-ACK的第二上行信道,其中,第六时频资源为N组时频资源包括的第s组时频资源中的时频资源,s为小于或等于N的正整数,且,s与i为不同值。可选的,第s组时频资源中的第六时频资源与第i组时频资源中的第一时频资源在时域上不重叠。采用该实施方式,在第一时频资源与第二时频资源部分重叠或完全重叠的情况下,终端设备可以保留承载第一HARQ-ACK的第一时频资源不变,选取承载第二HARQ-ACK的时频资源。以上行信道为PUCCH为例,当两个PUCCH对应的时频资源重叠时,通过该方法可以在两个不重叠的PUCCH资源上分别发送HARQ-ACK。
终端设备确定仍然在第一时频资源上承载第一HARQ-ACK的第一上行信道,以及确定在第六时频资源上承载第二HARQ-ACK的第二上行信道之前,还需要确定第一时频资源和第六时频资源。下面以第一上行信道和第二上行信道为PUCCH为例,具体描述终端设备如何确定第一时频资源和第六时频资源。
在一个可能的实施方式中,终端设备在第一PUCCH资源组中,确定与第一HARQ-ACK的比特数目对应的第五PUCCH资源集合,并在第五PUCCH资源集合中确定第一时频资源。终端设备在第五PUCCH资源组中,确定与第二HARQ-ACK的比特数目对应的第六PUCCH资源集合,并在第六PUCCH资源集合中确定第六时频资源。
其中,第一PUCCH资源组对应于在第i组时频资源上发送的PUCCH,第一PUCCH资源组中包括一个或多个PUCCH资源集合,第五PUCCH资源组中包括一个或多个 PUCCH资源集合。第五PUCCH资源组用于当第一时频资源与第二时频资源部分重叠或完全重叠时重新选择PUCCH资源。
上述涉及的第五PUCCH资源组可以为预先配置的。可以理解为,第六时频资源可以在预先配置的PUCCH资源组中选取。其中,该预先配置的PUCCH资源组可以是由网络设备配置的,例如可以是由网络设备(例如基站)通过高层参数配置的,可以是由无线资源控制(radio resource control,RRC)信令配置的。
可选的,该预先配置的PUCCH资源组中的所有PUCCH资源可以位于时隙边缘的若干个符号上,且占用的时域资源较小,不易与其他资源重叠。例如,参阅图9所示,假设该预先配置的PUCCH资源组包括四个PUCCH资源集合,分别为PUCCH资源集合1、PUCCH资源集合2、PUCCH资源集合3以及PUCCH资源集合4,每个PUCCH资源集合中均包括PUCCH资源,图9中这些PUCCH资源位于时隙m的边缘,占用的时域资源较小,不易与其他资源重叠。
在一个可能的实施方式中,针对上述实现方式,第一上行信道满足如下一项或多项条件:
条件1,第一上行信道对应的第一时间长度小于第二上行信道对应的第一时间长度。
条件2,第一上行信道是通过第一RNTI加扰的DCI对应的上行信道,其中第一RNTI可以为MCS-RNTI。
条件3,第一上行信道是承载在根据K1值或SLIV的索引确定的时频资源上的上行信道。
通过上述实施方式提供的方法,当来自两个或者多个网络设备(例如非理想回程线路的TRP)的PDSCH对应的反馈信息HARQ-ACK在同一个时隙中传输,且多个承载HARQ-ACK的PUCCH资源有重叠时,采用上述方法可以为每个HARQ-ACK确定不重叠的PUCCH资源,并向每个网络设备发送与其发送的PDSCH相对应的HARQ-ACK,这样,不仅可降低传输时延,提高传输效率,还可避免网络设备因接收到联合编码的HARQ-ACK码本而无法解码的问题,可保证需要在同一个时隙中传输的HARQ-ACK都能及时传输。
本申请实施例中,当第一时频资源和第二时频资源重叠时,终端设备可重新分配传输PUCCH的时域资源,可避免在重叠的第一时频资源和第二时频资源上分别传输第一上行信道和第二上行信道时出错,可提高传输上行信道的可靠性。
本申请实施例还提供一种通信方法,该方法包括:终端设备接收第一DCI和第二DCI,在预先配置的第一PUCCH资源组中确定发送第一上行信道的第一时频资源,在预先配置的第二PUCCH资源组中确定发送第二上行信道的第二时频资源,并在所述第一时频资源上发送所述第一上行信道,在所述第二时频资源上发送所述第二上行信道,其中,所述第一PUCCH资源组和所述第二PUCCH资源组是为同一时隙配置的PUCCH资源组,所述第一上行信道用于承载所述第一DCI调度的第一HARQ-ACK,所述第二上行信道用于承载所述第二DCI调度的第二HARQ-ACK。
其中,第一DCI与第一PUCCH资源组对应,第二DCI与第二PUCCH资源组对应。可以理解为,PUCCH资源组可以根据与DCI相关的条件预先配置。
在一种可能的设计中,可以根据与DCI相关的如下条件中的一个或多个配置PUCCH资源组。
第1项,PDCCH监测时机(PDCCH monitoring occasion),表示终端设备检测到PDCCH 所在的时机的起始符号在1个时间单元(如时隙)内的位置。例如,终端设备可以根据高层配置信息,如PDCCH监测模式(PDCCH monitoring pattern)参数,获取1个slot内潜在的PDCCH监测时机时域位置,当PDCCH监测时机的起始符号属于1个slot的前半个时隙时,可将该PDCCH承载的DCI对应第一PUCCH资源组;当PDCCH监测时机的起始符号属于1个slot的后半个时隙时,将该PDCCH承载的DCI对应第二PUCCH资源组。
第2项,搜索空间身份(search space ID,SS ID),终端设备会监听PDCCH候选位置(PDCCH candidates)集合(或称为搜索空间),通过监听DCI格式(DCI format)来尝试解码该集合中的每一个PDCCH。例如,假设与第一SS ID对应的聚合等级为{1,2,4,8},与第二SS ID对应的聚合等级为{1,2,8},可以预先配置第一SS ID对应第一PUCCH资源组,第二SS ID对应第二PUCCH资源组。在该种配置情况下,终端设备在接收到第一DCI后,若确定第一DCI对应第一SS ID,则可相应的在第一PUCCH资源组中,确定发送用于承载第一DCI调度的第一HARQ-ACK的第一上行信道的第一时频资源,类似的,终端设备在接收到第二DCI后,若确定第二DCI对应第二SS ID,则可相应的在第二PUCCH资源组中,确定发送用于承载第二DCI调度的第二HARQ-ACK的第二上行信道的第二时频资源。
第3项,RNTI,用于对DCI的信息比特进行扰码。终端设备分别对几种可能的RNTI取值进行去扰码处理,如果依据某一个RNTI取值进行去扰码后的信息比特可以通过CRC校验,则表明该DCI由该RNTI扰码。其中,高层配置PDCCH承载的DCI的RNTI可以包括C-RNTI、CS-RNTI、P-RNTI、SI-RNTI等已有的RNTI,也可以包括新的RNTI,例如可以将新的RNTI称为X-RNTI,本申请对新的RNTI的名称不做限定,可以称为其它RNTI,X-RNTI可以包括一种或多种,典型特征是取值与现有的RNTI(例如C-RNTI、CS-RNTI、P-RNTI、SI-RNTI)的取值不相等,典型功能可以包括:用于指示PDCCH调度的PDSCH的数据来源于第一类型业务,如URLLC业务。其中X-RNTI可以为MCS-C-RNTI,或者其他标识低时延高可靠业务的RNTI。在该种情况中,可以根据PDCCH的RNTI的类型划分PUCCH资源组。例如,可以将对应的RNTI为现有RNTI(例如C-RNTI、CS-RNTI、P-RNTI、SI-RNTI)的PDCCH承载的DCI对应第一PUCCH资源组,将对应的RNTI为新的RNTI(例如X-RNTI)的PDCCH承载的DCI对应第二PUCCH资源组。在该种配置情况下,终端设备在接收到第一DCI后,若确定承载第一DCI的PDCCH对应的RNTI为现有RNTI,则可相应的在第一PUCCH资源组中,确定发送用于承载第一DCI调度的第一HARQ-ACK的第一上行信道的第一时频资源,类似的,终端设备在接收到第二DCI后,若确定承载第二DCI的PDCCH对应的RNTI为新的RNTI,则可相应的在第二PUCCH资源组中,确定发送用于承载第二DCI调度的第二HARQ-ACK的第二上行信道的第二时频资源。
第4项,DCI格式(DCI format),DCI format可以用于区分PDCCH承载的DCI。终端设备可通过PDCCH盲检,对每一种比特数目(payload size)不同的DCI format都尝试解码,进行循环冗余校验(clyclic redundance check,CRC),通过CRC确定该PDCCH对应的DCI的payload size,进一步结合译码后DCI中格式指示符(format indicator)字节,确定该PDCCH的DCI format。其中,高层配置的DCI format可以包括format 1_0,format 1_1和format 1_x,format 1_0和format 1_1可以是指现有的DCI format,format 1_x可以是指不同于format 1_0、format 1_1的新的DCI format,可以有1种或多种,format 1_x可 以为标识低时延高可靠业务的DCI format。新的DCI format的典型特征可以包括format 1_x与format 1_0、format 1_1具有不同的payload size。本申请可以根据DCI format的类型划分PUCCH资源组。例如,可以将DCI format为现有DCI format(例如format 1_0,format1_1)的DCI对应第一PUCCH资源组,将DCI format为新的DCI format(例如format 1_x)的DCI对应第二PUCCH资源组。在该种配置情况下,终端设备在接收到第一DCI后,若确定第一DCI对应的DCI format为现有DCI format,则可相应的在第一PUCCH资源组中,确定发送用于承载第一DCI调度的第一HARQ-ACK的第一上行信道的第一时频资源,类似的,终端设备在接收到第二DCI后,若确定第二DCI对应的DCI format为新的DCI format,则可相应的在第二PUCCH资源组中,确定发送用于承载第二DCI调度的第二HARQ-ACK的第二上行信道的第二时频资源。
第5项,发送DCI的网络设备,若第一DCI和第二DCI分别由第一网络设备和第二网络设备发送,则可通过高层参数配置第一DCI对应第一PUCCH资源组,第二DCI对应第二PUCCH资源组。
需要说明的是,所述第一DCI和所述第二DCI可以来自同一网络设备,也可以来自不同的网络设备。即上述第一网络设备与第二网络设备可以是相同的网络设备,也可以是不同的网络设备。
在一种可能的设计中,当所述第一时频资源与所述第二时频资源部分重叠或完全重叠时,终端设备为所述第一上行信道和/或所述第二上行信道重选用于承载其发送的时频资源。
一个可能的实施方式中,当所述第一时频资源与所述第二时频资源部分重叠或完全重叠时,为所述第一上行信道和所述第二上行信道重选用于承载其发送的时频资源。在该实施方式中,终端设备可以在预先配置的第三PUCCH资源组中确定发送第一上行信道的第三时频资源,在预先配置的第四PUCCH资源组中确定发送第二上行信道的第四时频资源,并在所述第三时频资源上发送所述第一上行信道,在所述第四时频资源上发送所述第二上行信道。在一种可能的设计中,属于第三PUCCH资源组中的PUCCH资源与属于第四PUCCH资源组中的PUCCH资源没有共有的OFDM符号,也就是说第三PUCCH资源组中的PUCCH资源与第四PUCCH资源组中的PUCCH资源完全不重叠。在该种设计中,第一上行信道和第二上行信道没有共有的OFDM符号,使得第一HARQ-ACK和第二HARQ-ACK能够承载在一个时隙中的不同上行信道上分别发送。
一个可能的实施方式中,当所述第一时频资源与所述第二时频资源部分重叠或完全重叠时,终端设备为所述第二上行信道重选用于承载其发送的时频资源。在该实施方式中,终端设备可以在预先配置的第五PUCCH资源组中重新确定发送第二上行信道的第五时频资源,并在所述第五时频资源上发送所述第二上行信道。在一种可能的设计中,属于第一PUCCH资源组中的PUCCH资源与属于第五PUCCH资源组中的PUCCH资源没有共有的OFDM符号,也就是说第一PUCCH资源组中的PUCCH资源与第五PUCCH资源组中的PUCCH资源完全不重叠。在该种设计中,第一上行信道和第二上行信道没有共有的OFDM符号,可以保证第一HARQ-ACK和第二HARQ-ACK能够承载在一个时隙中的不同上行信道上分别发送。
需要说明的是,本申请中重选时频资源是指,放弃使用之前选取的时频资源,重新选取时频资源。例如,终端设备为所述第二上行信道重选用于承载其发送的时频资源,可以理解为终端设备放弃使用重选之前为第二上行信道确定的时频资源,并重新为第二上行信 道选取时频资源。
上述主要从终端设备与网络设备之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,终端设备和网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端设备和网络设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
基于相同的发明构思,本申请实施例还提供用于实现以本申请实施例中任意一种方法的装置,例如,提供一种装置包括用以实现本申请实施例中任意一种方法中终端设备所执行的各个步骤的单元(或手段)。再如,还提供另一种装置,包括用以实现本申请实施例中任意一种方法中网络设备所执行的各个步骤的单元(或手段)。
一种可能的实施方式中,本申请实施例提供一种通信装置700。该通信装置700可以应用于终端设备。图10所示为本申请实施例提供的一种通信装置700的结构示意图,参阅图10所示,该通信装置700可包括获取单元701、接收单元702以及处理单元703。
基于如图4所示的通信方法,图10所示的通信装置700中的获取单元701可用于通信装置700执行如S101所示步骤,接收单元702可用于通信装置700执行如S102所示步骤,处理单元703可用于通信装置700执行如S103或S104所示步骤。
另一种可能的实施方式中,本申请实施例提供一种通信装置800。该通信装置800可以应用于网络设备。图11所示为本申请实施例提供的一种通信装置800的结构示意图,参阅图11所示,该通信装置800可包括发送单元801。在实施中,通信装置800还可包括处理单元802。
基于如图4所示的通信方法,图11所示的通信装置800中的发送单元801可用于通信装置800执行如S102所示步骤。
当通信装置700应用于终端设备,通信装置800应用于网络设备时,还可执行如下操作:
一种可能的设计中,所述第一参数包括K1值、第一时间长度、码本标识指示信息、无线网络临时标识RNTI、上行信道的终止符号、物理下行控制信道PDCCH的监听时机,或起始符号和长度指示信息值SLIV的索引中的一项或多项,其中,所述K1值为从PDSCH所在的时间单元到所述PDSCH对应的HARQ-ACK的上行信道所在的时间单元偏移的时间单元数量,所述第一时间长度表征所述K1值对应的时间长度。
一种可能的设计中,所述接收单元702还用于:
接收第二DCI;
所述处理单元703还用于:
根据所述分组关系,在所述N组时频资源中确定与所述接收单元702接收的所述第二 DCI相关的第一参数对应的第k组时频资源,所述k为小于或等于N的正整数,且,所述k与所述i为不同值,确定在所述第k组时频资源中的第二时频资源上承载第二HARQ-ACK的第二上行信道。
一种可能的设计中,所述处理单元703还用于:
当所述第一时频资源与所述第二时频资源部分重叠或完全重叠时,将所述第一HARQ-ACK和所述第二HARQ-ACK组合为第三HARQ-ACK,确定在第三时频资源上承载所述第三HARQ-ACK的第三上行信道,其中,所述第三时频资源为所述N组时频资源包括的一组时频资源中的时频资源。
一种可能的设计中,当所述第一上行信道满足如下一项或多项条件时,所述第三时频资源为所述第i组时频资源中的时频资源;
所述第一上行信道对应的所述第一时间长度小于所述第二上行信道对应的所述第一时间长度;
所述第一上行信道是通过第一RNTI加扰的DCI对应的上行信道;
所述第一上行信道是承载在根据所述K1值或所述SLIV的索引确定的时频资源上的上行信道。
一种可能的设计中,所述第一上行信道为PUCCH;
所述处理单元703还用于:
在第一PUCCH资源组中,确定与所述第三HARQ-ACK的比特数目对应的第一PUCCH资源集合,所述第一PUCCH资源组对应于在所述第i组时频资源上发送的PUCCH,所述第一PUCCH资源组中包括一个或多个PUCCH资源集合,在所述第一PUCCH资源集合中确定所述第三时频资源。
一种可能的设计中,所述第一上行信道为PUCCH;
所述处理单元703还用于:
在第二PUCCH资源组中,确定与所述第三HARQ-ACK的比特数目对应的第二PUCCH资源集合,所述第二PUCCH资源组是为承载所述第三HARQ-ACK的PUCCH配置的,所述第二PUCCH资源组中包括一个或多个PUCCH资源集合,所述第二PUCCH资源组为所述N组时频资源中的第j组时频资源中的时频资源,在所述第二PUCCH资源集合中确定所述第三时频资源,所述j为小于或等于N的正整数,且,所述j与所述i、所述k均为不同值。
一种可能的设计中,所述处理单元703还用于:
当所述第一时频资源与所述第二时频资源部分重叠或完全重叠时,确定在第四时频资源上承载第一HARQ-ACK的第一上行信道,在第五时频资源上承载第二HARQ-ACK的第二上行信道,其中,所述第四时频资源为所述N组时频资源包括的第m组时频资源中的时频资源,所述第五时频资源为所述N组时频资源包括的第n组时频资源中的时频资源,所述m和所述n为小于或等于N的正整数,且,所述m和所述n为不同值。
一种可能的设计中,所述第m组时频资源与所述第n组时频资源在时域上不重叠。
一种可能的设计中,所述第一上行信道和所述第二上行信道为PUCCH,所述处理单元703还用于:
在第三PUCCH资源组中,确定与所述第一HARQ-ACK的比特数目对应的第三PUCCH资源集合,所述第三PUCCH资源组中包括一个或多个PUCCH资源集合,所述第 三PUCCH资源组为所述第m组时频资源中的时频资源;在所述第三PUCCH资源集合中确定所述第四时频资源;在第四PUCCH资源组中,确定与所述第二HARQ-ACK的比特数目对应的第四PUCCH资源集合,所述第四PUCCH资源组中包括一个或多个PUCCH资源集合,所述第四PUCCH资源组为所述第n组时频资源中的时频资源;在所述第四PUCCH资源集合中确定所述第五时频资源;其中,所述第三PUCCH资源组和所述第四PUCCH资源组均为预先配置的。
一种可能的设计中,所述处理单元703还用于:
当所述第一时频资源与所述第二时频资源部分重叠或完全重叠时,确定在第六时频资源上承载第二HARQ-ACK的第二上行信道,其中,所述第六时频资源为所述N组时频资源包括的第s组时频资源中的时频资源,所述s为小于或等于N的正整数,且,所述s与所述i为不同值。
一种可能的设计中,所述第s组时频资源中的所述第六时频资源与所述第i组时频资源中的所述第一时频资源在时域上不重叠。
一种可能的设计中,所述第一上行信道和所述第二上行信道为PUCCH;所述处理单元703还用于:
在第一PUCCH资源组中,确定与所述第一HARQ-ACK的比特数目对应的第五PUCCH资源集合,所述第一PUCCH资源组对应于在所述第i组时频资源上发送的PUCCH,所述第一PUCCH资源组中包括一个或多个PUCCH资源集合;在所述第五PUCCH资源集合中确定所述第一时频资源;在第五PUCCH资源组中,确定与所述第二HARQ-ACK的比特数目对应的第六PUCCH资源集合,所述第五PUCCH资源组中包括一个或多个PUCCH资源集合,所述第五PUCCH资源组为预先配置的;在所述第六PUCCH资源集合中确定所述第六时频资源。
一种可能的设计中,所述第一上行信道满足如下一项或多项条件:
所述第一上行信道对应的第一时间长度小于所述第二上行信道对应的第一时间长度;
所述第一上行信道是通过第一RNTI加扰的DCI对应的上行信道;
所述第一上行信道是承载在根据所述K1值或所述SLIV的索引确定的时频资源上的上行信道。
一种可能的设计中,所述处理单元802,用于根据如下一项或多项条件,确定所述分组关系:
所述K1值;
所述第一时间长度;
所述SLIV的索引;
所述码本标识指示信息;
所述RNTI;
所述上行信道的终止符号;
所述PDCCH的监听时机。
在另一种可能的通信方法中,该通信装置700还可包括发送单元704;
所述接收单元702,用于接收第一DCI和第二DCI;
所述处理单元703,用于在预先配置的第一PUCCH资源组中确定发送第一上行信道的第一时频资源,在预先配置的第二PUCCH资源组中确定发送第二上行信道的第二时频 资源;
所述发送单元704,用于在所述第一时频资源上发送所述第一上行信道,在所述第二时频资源上发送所述第二上行信道;
其中,所述第一PUCCH资源组和所述第二PUCCH资源组是为同一时隙配置的PUCCH资源组,所述第一上行信道用于承载所述第一DCI调度的第一HARQ-ACK,所述第二上行信道用于承载所述第二DCI调度的第二HARQ-ACK。
需要说明的是,所述第一DCI和所述第二DCI可以来自同一网络设备,也可以来自不同的网络设备。
在一种可能的设计中,所述处理单元703还用于:
当所述第一时频资源与所述第二时频资源部分重叠或完全重叠时,为所述第一上行信道和/或所述第二上行信道重选用于承载其发送的时频资源。
一个可能的实施方式中,所述处理单元703还用于:
当所述第一时频资源与所述第二时频资源部分重叠或完全重叠时,为所述第一上行信道和所述第二上行信道重选用于承载其发送的时频资源。在该实施方式中,所述处理单元703可以在预先配置的第三PUCCH资源组中确定发送第一上行信道的第三时频资源,在预先配置的第四PUCCH资源组中确定发送第二上行信道的第四时频资源,并通过所述发送单元704在所述第三时频资源上发送所述第一上行信道,在所述第四时频资源上发送所述第二上行信道。
在一种可能的设计中,属于第三PUCCH资源组中的PUCCH资源与属于第四PUCCH资源组中的PUCCH资源没有共有的OFDM符号,也就是说第三PUCCH资源组中的PUCCH资源与第四PUCCH资源组中的PUCCH资源完全不重叠。
一个可能的实施方式中,所述处理单元703还用于:
当所述第一时频资源与所述第二时频资源部分重叠或完全重叠时,为所述第二上行信道重选用于承载其发送的时频资源。在该实施方式中,所述处理单元703可以在预先配置的第五PUCCH资源组中确定发送第二上行信道的第五时频资源,并通过所述发送单元704在所述第五时频资源上发送所述第二上行信道。在一种可能的设计中,属于第一PUCCH资源组中的PUCCH资源与属于第五PUCCH资源组中的PUCCH资源没有共有的OFDM符号,也就是说第一PUCCH资源组中的PUCCH资源与第五PUCCH资源组中的PUCCH资源完全不重叠。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC), 或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
请参考图12,其为本申请实施例提供的一种终端设备的结构示意图。用于实现以上实施例中终端设备的操作。如图12所示,该终端设备包括:天线901、射频部分902、信号处理部分903。天线901与射频部分902连接。在下行方向上,射频部分902通过天线901接收网络设备发送的信息,将网络设备发送的信息发送给信号处理部分903进行处理。在上行方向上,信号处理部分903对终端设备的信息进行处理,并发送给射频部分902,射频部分902对终端设备的信息进行处理后经过天线901发送给网络设备。
信号处理部分903可以包括调制解调子系统,用于实现对数据各通信协议层的处理;还可以包括中央处理子系统,用于实现对终端设备操作系统以及应用层的处理;此外,还可以包括其它子系统,例如多媒体子系统,周边子系统等,其中多媒体子系统用于实现对终端设备相机,屏幕显示等的控制,周边子系统用于实现与其它设备的连接。调制解调子系统可以为单独设置的芯片。可选地,以上用于终端设备的装置可以位于该调制解调子系统。
调制解调子系统可以包括一个或多个处理元件9031,例如,包括一个主控CPU和其它集成电路。此外,该调制解调子系统还可以包括存储元件9032和接口电路9033。存储元件9032用于存储数据和程序,但用于执行本申请实施例的方法中终端设备所执行的方法的程序可能不存储于该存储元件9032中,而是存储于调制解调子系统之外的存储器中,使用时调制解调子系统加载使用。接口电路9033用于与其它子系统通信。以上用于终端设备的装置可以位于调制解调子系统,该调制解调子系统可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上终端设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,终端设备实现本申请实施例的方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如应用于终端设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中终端设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行本申请实施例的方法中终端设备所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中终端设备执行的方法。
在又一种实现中,应用于终端设备的装置实现本申请实施例的方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于调制解调子系统上,这里的处 理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
终端设备实现本申请实施例的方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上终端设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上终端设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上应用于终端设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种终端设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行终端设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行终端设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行终端设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
请参考图13,其为本申请实施例提供的一种网络设备的结构示意图。用于实现以上实施例中网络设备的操作。如图13所示,该网络设备包括:天线1001、射频装置1002、基带装置1003。天线1001与射频装置1002连接。在上行方向上,射频装置1002通过天线1001接收终端设备发送的信息,将终端设备发送的信息发送给基带装置1003进行处理。在下行方向上,基带装置1003对终端设备的信息进行处理,并发送给射频装置1002,射频装置1002对终端设备的信息进行处理后经过天线1001发送给终端设备。
基带装置1003可以包括一个或多个处理元件10031,例如,包括一个主控CPU和其它集成电路。此外,该基带装置1003还可以包括存储元件10032和接口电路10033,存储元件10032用于存储程序和数据;接口电路10033用于与射频装置1002交互信息,该接口电路例如为通用公共无线接口(common public radio interface,CPRI)。以上应用于网络设备的装置可以位于基带装置1003,例如,以上应用于网络设备的装置可以为基带装置1003上的芯片,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上网络设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,网络设备实现本申请实施例的方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如应用于网络设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中网络设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件,也可以为与处理元件处于不同芯片上的存储元件,即片外存储元件。
在另一种实现中,应用于网络设备的装置实现本申请实施例的方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于基带装置上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
网络设备实现本申请实施例的方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,例如,基带装置包括该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上网络设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上网络设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上应用于网络设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种网络设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行网络设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行网络设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上网络设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
本申请实施例还提供一种通信方法,该方法可由终端设备或能够支持终端设备实现该方法的通信装置(例如芯片系统)执行,在本申请中,以由终端设备执行该方法为例进行描述。
请参见图14所示,为本申请实施例提供的另一种通信方法,该方法包括如下执行步骤。
S201:终端设备获取第一分组关系。
其中,所述第一分组关系表征第一时间长度与N组时频资源的对应关系,所述N组时频资源是对一个时间单元上的时频资源进行分组得到的,每组所述时频资源对应一个或多个所述第一时间长度,所述第一时间长度与K1集合相关,所述K1集合中包括多个K1值,所述K1值为从PDSCH所在的时间单元到所述PDSCH对应的HARQ-ACK的上行信道所在的时间单元偏移的时间单元数量,每组所述时频资源中的时频资源是承载HARQ-ACK的上行信道的时频资源,所述第一时间长度为K1值的单位时间长度,或者说所述第一时间长度表征所述K1值对应的时间长度,所述N为大于或等于2的正整数。
本申请实施例中,终端设备可以从网络设备接收该第一分组关系,或者终端设备从本地获取该第一分组关系。若从本地获取,则该第一分组关系可以是终端设备预设的,也可以是预先从网络设备获取并存储的。本申请实施例中,若第一分组关系为终端设备从网络设备接收的,则网络设备在向终端设备发送第一分组关系之前,还可以根据所述第一时间长度确定所述第一分组关系。其中,网络设备根据第一时间长度确定第一分组关系的方法可以参见上文中的描述,此处不再赘述。
本申请中,所述第一时间长度可以是时隙,也可以是迷你时隙,例如可以是1/2时隙,也可以是1/4时隙,也可以是M个时域符号,M为小于14的正整数。
在该实施例中,所涉及的HARQ-ACK可以是半静态码本(semi-static codebook),下面以HARQ-ACK为半静态码本为例说明。对于半静态的HARQ-ACK,网络设备或高层可以为终端设备配置若干个K1的可能取值,本申请将该若干个K1的可能取值称为K1集合, 当然本申请并不引以为限,包括多个K1值的集合均可称为K1集合。
此外,本申请中,所述第一时间长度与K1集合相关可以是指所述第一时间长度与K1集合具备对应关系。该对应关系可以是由高层信令配置或由网络设备配置。可以理解为终端设备在获取到一个K1集合就可以相应的确定出与该K1集合对应的第一时间长度。
S202:终端设备获取第一K1集合和第二K1集合。
可选的,所述第一K1集合和第二K1集合可以是终端设备从本地获取的,也可以是从网络设备获取的。还可以是高层信令配置的。
本申请中,第一分组关系可以是列表的形式,也可以是其他形式,不做限制。
参见表5所示,为一种可能的第一分组关系,在表5中以N=2为例,也就是说,将一个时间单元分为两组时频资源,分别为第一组时频资源和第二组时频资源,并以第一时间长度包括时隙和1/2时隙、为例示意。
表5
第一时间长度 N组时频资源
1/2时隙 第一组时频资源
时隙 第二组时频资源
在该实施例中,终端设备在根据第一分组关系,确定第一时间长度(时隙和1/2时隙)与N组时频资源(第一组时频资源和第二组时频资源)的对应关系之后,还可根据所述第一时间长度与K1集合的对应关系,确定出K1集合与N组时频资源的对应关系,参见表6,表6基于表5中假设的条件,示出K1集合与第一时间长度与N组时频资源的对应关系,第一K1集合为{0,1,2,3}、第二K1集合为{1,2,3,4}、第一K1集合与时隙相关,第二K1集合与1/2时隙相关。
表6
K1集合 第一时间长度 N组时频资源
第一K1集合{0,1,2,3} 1/2时隙 第一组时频资源
第二K1集合{1,2,3,4} 时隙 第二组时频资源
S203:终端设备根据所述第一分组关系,在所述N组时频资源中确定与所述第一K1集合相关的第一时间长度对应的第i组时频资源,并在所述N组时频资源中确定与所述第二K1集合相关的第一时间长度对应的第k组时频资源。例如,以表6为例,终端设备可根据所述第一分组关系,在两组时频资源中确定与所述第一K1集合相关的第一时间长度对应的第一组时频资源,并在两组时频资源中确定与所述第二K1集合相关的第一时间长度对应的第二组时频资源。
其中,所述i为小于或等于N的正整数,所述k为小于或等于N的正整数,且,所述k与所述i为不同值。
S204:终端设备确定在所述第i组时频资源中的第一时频资源上承载第一HARQ-ACK的第一上行信道,并确定在所述第k组时频资源中的第二时频资源上承载第二HARQ-ACK的第二上行信道。这样,终端设备可以在不同组的时频资源上分别承载第一上行信道以及第二上行信道,相比现有技术只能在一个时间单元发送一个上行信道,本申请的方法可以在一个时间单元发送多个上行信道。
其中,所述第一HARQ-ACK与第一下行联合集(downlink association set)对应,所 述第二HARQ-ACK与第二下行联合集对应。
本申请实施例中,下行联合集(downlink association set)可根据K1集合确定。
本申请实施例中,第一时频资源可以是第i组时频资源中的部分时频资源,也可以是第i组时频资源中的全部时频资源。第二时频资源可以是第k组时频资源中的部分时频资源,也可以是第k组时频资源中的全部时频资源。上行信道可以包括物理上行控制信道(physical uplink control channel,PUCCH)或物理上行共享信道(physical uplink shared channel,PUSCH)。
S205:当所述第一时频资源与所述第二时频资源部分重叠或完全重叠,且所述第一下行联合集中的第一下行联合子集与第二下行联合集中的第二下行联合子集完全重叠时,所述终端设备对所述第一下行联合集和所述第二下行联合集取并集,得到第三下行联合集。
其中,所述第一下行联合集中的第一下行联合子集对应第三HARQ-ACK,所述第二下行联合集中的第二下行联合子集对应第四HARQ-ACK,所述第三HARQ-ACK属于所述第一HARQ-ACK,所述第四HARQ-ACK属于所述第二HARQ-ACK。
本申请实施例中,所述第一下行联合集和所述第二下行联合集取并集,可以是指将所述第一下行联合集包括的资源和所述第二下行联合集包括的资源合并在一起组成的集合,也就是第三下行联合集,在第三下行联合集中包括第一下行联合集和第二下行联合集包括的资源,但是第三下行联合集中不存在重复的资源。所述第一下行联合集和所述第二下行联合集取并集可以记为所述第一下行联合集∪所述第二下行联合集。
S206:终端设备根据所述第三下行联合集,发送第五HARQ-ACK,所述第五HARQ-ACK包括第三HARQ-ACK或第四HARQ-ACK。
该实施例中,第五HARQ-ACK还可包括第六HARQ-ACK,第一HARQ-ACK可由第六HARQ-ACK和第三HARQ-ACK构成。第五HARQ-ACK还可包括第七HARQ-ACK,第二HARQ-ACK可由第七HARQ-ACK和第四HARQ-ACK构成。
终端设备可以向网络设备发送上述第五HARQ-ACK,或者发送上述第五HARQ-ACK以及第六HARQ-ACK。
通过该方法,终端设备根据所述第三资源,仅发送第三HARQ-ACK和第四HARQ-ACK中的一个,从而减少反馈的HARQ-ACK的比特数,可提升HARQ-ACK传输效率。
下面以一个实施方式对上述方法做进一步说明。
参见图15所示,其为本申请实施例提供的一种资源取并集示意图。在图15中假设终端设备获取到的第一分组关系为表5所示的分组关系,终端设备获取到的第一K1集合为{0,1,2,3}、第二K1集合为{1,2,3,4},进而终端设备可根据第一分组关系,在两组时频资源中确定与第一K1集合相关的第一时间长度对应第一组时频资源,并在两组时频资源中确定与第二K1集合相关的第一时间长度对应第二组时频资源,图15中假设第一时间单元为slot#k,也就是说,所述的两组时频资源为slot#k上的时频资源,进一步的,终端设备可确定在第一组时频资源中的第一时频资源上承载第一HARQ-ACK的第一上行信道,还可确定在第二组时频资源中的第二时频资源上承载第二HARQ-ACK的第二上行信道,由图15可知,第一K1集合调度的或者对应的第一下行联合集可包括1/2slot#n-4、1/2slot#n-3、1/2slot#n-2、1/2slot#n-1、1/2slot#n以及1/2slot#n+1,第二K1集合调度的或对应的第二下行联合集可包括slot#k-4、slot#k-3、slot#k-2和slot#k-1,假设第一时频资源与第二时频资源部分重叠或完全重叠,且第一下行联合集中的第一下行联合子集与第二下行联合集中 的第二下行联合子集完全重叠时,如图15所示,第一下行联合子集包括1/2slot#n-4、1/2slot#n-3、1/2slot#n-2以及1/2slot#n-1,第二下行联合子集包括slot#k-2以及slot#k-1,采用本申请的方法针对重叠的第一下行联合子集和第二下行联合子集,只发送其中的一部分资源(例如第一下行联合子集或第二下行联合子集)对应的HARQ-ACK。具体的,终端设备可对第一下行联合集和第二下行联合集取并集,得到第三下行联合集,进而可根据第三下行联合集发送第五HARQ-ACK,第五HARQ-ACK包括第三HARQ-ACK或第四HARQ-ACK,如图15所示,第一下行联合子集对应第三HARQ-ACK,第二下行联合子集对应第四HARQ-ACK,采用本申请的方法,终端设备根据第三下行联合集发送的第五HARQ-ACK仅包括第三HARQ-ACK和第四HARQ-ACK中的一个,可减少联合反馈的比特数。在图15所示的实施方式中,若直接将第一HARQ-ACK与第二HARQ-AKC级联合并,可以理解为级联合并后的HARQ-ACK包括第六HARQ-ACK、第三HARQ-ACK、第七HARQ-ACK以及第四HARQ-ACK,假设一个粒度的资源反馈1比特的HARQ-ACK,则级联合并后的HARQ-ACK包括10比特,也就是终端设备需要反馈10比特HARQ-ACK,若重叠资源部分的粒度按1/2slot计算,对应第五HARQ-ACK包括第三HARQ-ACK的情况,而终端设备根据第三下行联合集反馈第五HARQ-ACK的话仅需要反馈8比特HARQ-ACK;若重叠资源部分的粒度按slot计算,对应第五HARQ-ACK包括第四HARQ-ACK的情况,终端设备根据第三下行联合集反馈第五HARQ-ACK的话仅需要反馈6比特HARQ-ACK。
可以理解,上述图14-图15所示实施例提供的通信方法中终端设备执行的操作可以由本申请实施例提供的应用于终端设备的通信装置执行,例如通信装置700执行;也可以由本申请实施例提供的终端设备执行,例如图15所示的终端设备执行。示例性地,所述通信装置或者终端设备可以包括获取单元,处理单元以及发送单元,其中,上述步骤S201与S202可以由获取单元执行,上述步骤S203-S205可以由处理单元执行,且上述步骤S206可以由发送单元执行;或者,所述通信装置或者终端设备包括耦合存储器的处理器以及收发器,其中,上述步骤S201-S206可以由耦合存储器的处理器执行;或者,上述步骤S201-S205可以由耦合存储器的处理器执行,且步骤S206由收发器执行;或者,上述步骤S202-S205可以由耦合存储器的处理器执行,且步骤S201与S206由收发器执行,不做详述。
上述图14-图15所示实施例提供的通信方法中网络设备执行的操作可以由本申请实施例提供的应用于网络设备的通信装置执行,例如通信装置800执行;也可以由本申请实施例提供的网络设备执行,例如图13所示的网络设备执行,不做详述。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,其包括前述的终端设备以及网络设备。
本申请实施例中还提供一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令在被计算机调用时,使所述计算机执行上述任一方法。
本申请实施例中还提供一种计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述任一方法。
本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述任一方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本领域内的技术人员应明白,本申请实施例可提供为方法、系统、或计算机程序产品。 因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请中一些可能的实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括本申请实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (78)

  1. 一种通信方法,其特征在于,包括:
    获取分组关系,所述分组关系表征第一参数与N组时频资源的对应关系,所述N组时频资源是对一个时间单元上的时频资源进行分组得到的,每组所述时频资源对应一个或多个所述第一参数,所述第一参数与下行控制信息DCI相关,每组所述时频资源中的时频资源是承载混合自动重传请求-确认HARQ-ACK的上行信道的时频资源,所述N为大于或等于2的正整数;
    接收第一DCI;
    根据所述分组关系,在所述N组时频资源中确定与所述第一DCI相关的第一参数对应的第i组时频资源,所述i为小于或等于N的正整数;
    确定在所述第i组时频资源中的第一时频资源上承载第一HARQ-ACK的第一上行信道。
  2. 如权利要求1所述的方法,其特征在于,所述第一参数包括K1值、第一时间长度、码本标识指示信息、无线网络临时标识RNTI、上行信道的终止符号、物理下行控制信道PDCCH的监听时机,或起始符号和长度指示信息值SLIV的索引中的一项或多项,其中,所述K1值为从物理下行共享信道PDSCH所在的时间单元到所述PDSCH对应的HARQ-ACK的上行信道所在的时间单元偏移的时间单元数量,所述第一时间长度表征所述K1值对应的时间长度。
  3. 如权利要求2所述的方法,其特征在于,还包括:
    接收第二DCI;
    根据所述分组关系,在所述N组时频资源中确定与所述第二DCI相关的第一参数对应的第k组时频资源,所述k为小于或等于N的正整数,且,所述k与所述i为不同值;
    确定在所述第k组时频资源中的第二时频资源上承载第二HARQ-ACK的第二上行信道。
  4. 如权利要求3所述的方法,其特征在于,还包括:
    当所述第一时频资源与所述第二时频资源部分重叠或完全重叠时,将所述第一HARQ-ACK和所述第二HARQ-ACK组合为第三HARQ-ACK,确定在第三时频资源上承载所述第三HARQ-ACK的第三上行信道,其中,所述第三时频资源为所述N组时频资源包括的一组时频资源中的时频资源。
  5. 如权利要求4所述的方法,其特征在于,当所述第一上行信道满足如下一项或多项条件时,所述第三时频资源为所述第i组时频资源中的时频资源;
    所述第一上行信道对应的第一时间长度小于所述第二上行信道对应的第一时间长度;
    所述第一上行信道是通过第一RNTI加扰的DCI对应的上行信道;
    所述第一上行信道是承载在根据所述K1值或所述SLIV的索引确定的时频资源上的上行信道。
  6. 如权利要求5所述的方法,其特征在于,所述方法还包括:
    在第一上行信道资源组中,确定与所述第三HARQ-ACK的比特数目对应的第一上行信道资源集合,所述第一上行信道资源组对应于在所述第i组时频资源上发送的上行信道,所述第一上行信道资源组中包括一个或多个上行信道资源集合;
    在所述第一上行信道资源集合中确定所述第三时频资源。
  7. 如权利要求5或6所述的方法,其特征在于,所述第一上行信道为物理上行控制信道PUCCH,所述方法还包括:
    在第一PUCCH资源组中,确定与所述第三HARQ-ACK的比特数目对应的第一PUCCH资源集合,所述第一PUCCH资源组对应于在所述第i组时频资源上发送的PUCCH,所述第一PUCCH资源组中包括一个或多个PUCCH资源集合;
    在所述第一PUCCH资源集合中确定所述第三时频资源。
  8. 如权利要求4所述的方法,其特征在于,所述方法还包括:
    在第二上行信道资源组中,确定与所述第三HARQ-ACK的比特数目对应的第二上行信道资源集合,所述第二上行信道资源组是为承载所述第三HARQ-ACK的上行信道配置的,所述第二上行信道资源组中包括一个或多个上行信道资源集合,所述第二上行信道资源组为所述N组时频资源中的第j组时频资源中的时频资源;
    在所述第二上行信道资源集合中确定所述第三时频资源,j为小于或等于N的正整数,且,j与i、k均为不同值。
  9. 如权利要求4或8所述的方法,其特征在于,所述第一上行信道为PUCCH,所述方法还包括:
    在第二PUCCH资源组中,确定与所述第三HARQ-ACK的比特数目对应的第二PUCCH资源集合,所述第二PUCCH资源组是为承载所述第三HARQ-ACK的PUCCH配置的,所述第二PUCCH资源组中包括一个或多个PUCCH资源集合,所述第二PUCCH资源组为所述N组时频资源中的第j组时频资源中的时频资源;
    在所述第二PUCCH资源集合中确定所述第三时频资源,所述j为小于或等于N的正整数,且,所述j与所述i、所述k均为不同值。
  10. 如权利要求3所述的方法,其特征在于,还包括:
    当所述第一时频资源与所述第二时频资源部分重叠或完全重叠时,确定在第四时频资源上承载第一HARQ-ACK的第一上行信道,在第五时频资源上承载第二HARQ-ACK的第二上行信道,其中,所述第四时频资源为所述N组时频资源包括的第m组时频资源中的时频资源,所述第五时频资源为所述N组时频资源包括的第n组时频资源中的时频资源,所述m和所述n为小于或等于N的正整数,且,所述m和所述n为不同值。
  11. 如权利要求10所述的方法,其特征在于,所述第m组时频资源与所述第n组时频资源在时域上不重叠。
  12. 如权利要求11所述的方法,其特征在于,所述第一上行信道和所述第二上行信道为PUCCH,所述方法还包括:
    在第三PUCCH资源组中,确定与所述第一HARQ-ACK的比特数目对应的第三PUCCH资源集合,所述第三PUCCH资源组中包括一个或多个PUCCH资源集合,所述第三PUCCH资源组为所述第m组时频资源中的时频资源;
    在所述第三PUCCH资源集合中确定所述第四时频资源;
    在第四PUCCH资源组中,确定与所述第二HARQ-ACK的比特数目对应的第四PUCCH资源集合,所述第四PUCCH资源组中包括一个或多个PUCCH资源集合,所述第四PUCCH资源组为所述第n组时频资源中的时频资源;
    在所述第四PUCCH资源集合中确定所述第五时频资源;
    其中,所述第三PUCCH资源组和所述第四PUCCH资源组均为预先配置的。
  13. 如权利要求3所述的方法,其特征在于,还包括:
    当所述第一时频资源与所述第二时频资源部分重叠或完全重叠时,确定在第六时频资源上承载第二HARQ-ACK的第二上行信道,其中,所述第六时频资源为所述N组时频资源包括的第s组时频资源中的时频资源,所述s为小于或等于N的正整数,且,所述s与所述i为不同值。
  14. 如权利要求13所述的方法,其特征在于,所述第s组时频资源中的所述第六时频资源与所述第i组时频资源中的所述第一时频资源在时域上不重叠。
  15. 如权利要求14所述的方法,其特征在于,所述第一上行信道和所述第二上行信道为PUCCH,所述方法还包括:
    在第一PUCCH资源组中,确定与所述第一HARQ-ACK的比特数目对应的第五PUCCH资源集合,所述第一PUCCH资源组对应于在所述第i组时频资源上发送的PUCCH,所述第一PUCCH资源组中包括一个或多个PUCCH资源集合;
    在所述第五PUCCH资源集合中确定所述第一时频资源;
    在第五PUCCH资源组中,确定与所述第二HARQ-ACK的比特数目对应的第六PUCCH资源集合,所述第五PUCCH资源组中包括一个或多个PUCCH资源集合,所述第五PUCCH资源组为预先配置的;
    在所述第六PUCCH资源集合中确定所述第六时频资源。
  16. 如权利要求13至15任一项所述的方法,其特征在于,所述第一上行信道满足如下一项或多项条件:
    所述第一上行信道对应的第一时间长度小于所述第二上行信道对应的第一时间长度;
    所述第一上行信道是通过第一RNTI加扰的DCI对应的上行信道;
    所述第一上行信道是承载在根据所述K1值或所述SLIV的索引确定的时频资源上的上行信道。
  17. 如权利要求3所述的方法,其特征在于,还包括:
    当所述第一时频资源与所述第二时频资源部分重叠或完全重叠时,发送所述第一上行信道,且丢弃所述第二上行信道,所述第一上行信道满足预设条件。
  18. 如权利要求17所述的方法,其特征在于,所述第一上行信道满足如下预设条件:
    所述第一上行信道对应的第一时间长度小于所述第二上行信道对应的第一时间长度;
    所述第一上行信道是通过第一RNTI加扰的DCI对应的上行信道;
    所述第一上行信道是承载在根据K1值或SLIV的索引确定的时频资源上的上行信道。
  19. 如权利要求3所述的方法,其特征在于,还包括:
    当所述第一时频资源与所述第二时频资源完全不重叠时,在所述第一时频资源上发送所述第一上行信道,且在所述第二时频资源上发送所述第二上行信道。
  20. 如权利要求1至19任一项所述的方法,其特征在于,获取分组关系,包括:
    接收来自网络设备的所述分组关系;或者,
    从本地获取所述分组关系。
  21. 一种通信方法,其特征在于,包括:
    获取分组关系,所述分组关系表征第一时间长度与N组时频资源的对应关系,所述N组时频资源是对一个时间单元上的时频资源进行分组得到的,每组所述时频资源对应一个 或多个所述第一时间长度,所述第一时间长度与K1集合相关,所述K1集合中包括多个K1值,所述K1值为从物理下行共享信道PDSCH所在的时间单元到所述PDSCH对应的混合自动重传请求-确认HARQ-ACK的上行信道所在的时间单元偏移的时间单元数量,每组所述时频资源中的时频资源是承载HARQ-ACK的上行信道的时频资源,所述第一时间长度为K1值的单位时间长度,或者所述第一时间长度表征所述K1值对应的时间长度,所述N为大于或等于2的正整数;
    获取第一K1集合和第二K1集合;
    根据所述分组关系,在所述N组时频资源中确定与所述第一K1集合相关的第一时间长度对应的第i组时频资源,在所述N组时频资源中确定与所述第二K1集合相关的第一时间长度对应的第k组时频资源,所述i为小于或等于N的正整数,所述k为小于或等于N的正整数,且,所述k与所述i为不同值;
    确定在所述第i组时频资源中的第一时频资源上承载第一HARQ-ACK的第一上行信道,并确定在所述第k组时频资源中的第二时频资源上承载第二HARQ-ACK的第二上行信道,所述第一HARQ-ACK与第一下行联合集对应,所述第二HARQ-ACK与第二下行联合集对应;
    当所述第一时频资源与所述第二时频资源部分重叠或完全重叠,且所述第一下行联合集中的第一下行联合子集与第二下行联合集中的第二下行联合子集完全重叠时,对所述第一下行联合集和所述第二下行联合集取并集,得到第三下行联合集,其中,所述第一下行联合集中的第一下行联合子集对应第三HARQ-ACK,所述第二下行联合集中的第二下行联合子集对应第四HARQ-ACK,所述第三HARQ-ACK属于所述第一HARQ-ACK,所述第四HARQ-ACK属于所述第二HARQ-ACK;
    根据所述第三下行联合集,发送第五HARQ-ACK,所述第五HARQ-ACK包括第三HARQ-ACK或第四HARQ-ACK。
  22. 如权利要求21所述的方法,其特征在于,获取分组关系,包括:
    接收来自网络设备的所述分组关系;或者,
    从本地获取所述分组关系。
  23. 如权利要求21或22所述的方法,其特征在于,所述第一K1集合和所述第二K1集合为从网络设备获取的,或者为高层信令配置的。
  24. 如权利要求21至23任一项所述的方法,其特征在于,所述HARQ-ACK包括半静态码本。
  25. 一种通信方法,其特征在于,包括:
    接收第一下行控制信息DCI和第二DCI;
    在预先配置的第一物理上行控制信道PUCCH资源组中确定发送第一上行信道的第一时频资源,在预先配置的第二PUCCH资源组中确定发送第二上行信道的第二时频资源;
    在所述第一时频资源上发送所述第一上行信道,在所述第二时频资源上发送所述第二上行信道,其中,所述第一PUCCH资源组和所述第二PUCCH资源组是为同一时隙配置的PUCCH资源组,所述第一上行信道用于承载所述第一DCI调度的第一混合自动重传请求-确认HARQ-ACK,所述第二上行信道用于承载所述第二DCI调度的第二HARQ-ACK。
  26. 如权利要求25所述的方法,其特征在于,当所述第一时频资源与所述第二时频资源部分重叠或完全重叠时,重选用于承载所述第一上行信道的时频资源和/或重选用于承 载所述第二上行信道的时频资源。
  27. 如权利要求26所述的方法,其特征在于,重选用于承载所述第一上行信道的时频资源和重选用于承载所述第二上行信道的时频资源;
    所述方法还包括:
    在预先配置的第三PUCCH资源组中确定发送所述第一上行信道的第三时频资源,在预先配置的第四PUCCH资源组中确定发送所述第二上行信道的第四时频资源,并在所述第三时频资源上发送所述第一上行信道,在所述第四时频资源上发送所述第二上行信道。
  28. 如权利要求27所述的方法,其特征在于,所述第三PUCCH资源组中的PUCCH资源与所述第四PUCCH资源组中的PUCCH资源完全不重叠。
  29. 如权利要求26所述的方法,其特征在于,重选用于承载所述第二上行信道的时频资源;
    所述方法还包括:
    在预先配置的第五PUCCH资源组中确定发送所述第二上行信道的第五时频资源,并在所述第五时频资源上发送所述第二上行信道。
  30. 如权利要求29所述的方法,其特征在于,所述第一PUCCH资源组中的PUCCH资源与所述第五PUCCH资源组中的PUCCH资源完全不重叠。
  31. 一种通信方法,其特征在于,包括:
    向终端设备发送分组关系,所述分组关系表征第一参数与N组时频资源的对应关系,所述N组时频资源是对一个时间单元上的时频资源进行分组得到的,每组所述时频资源对应一个或多个所述第一参数,所述第一参数与下行控制信息DCI相关,每组所述时频资源中的时频资源是承载混合自动重传请求-确认HARQ-ACK的上行信道的时频资源,所述N为大于或等于2的正整数;
    向所述终端设备发送第一DCI,其中,与所述第一DCI相关的第一参数对应所述N组时频资源中的第i组时频资源,所述i为小于或等于N的正整数。
  32. 如权利要求31所述的方法,其特征在于,所述第一参数包括K1值、第一时间长度、码本标识指示信息、无线网络临时标识RNTI、上行信道的终止符号、物理下行控制信道PDCCH的监听时机,或起始符号和长度指示信息值SLIV的索引中的一项或多项,其中,所述K1值为从物理下行共享信道PDSCH所在的时间单元到所述PDSCH对应的HARQ-ACK的上行信道所在的时间单元偏移的时间单元数量,所述第一时间长度表征所述K1值对应的时间长度。
  33. 如权利要求32所述的方法,其特征在于,还包括:
    根据如下一项或多项条件,确定所述分组关系:
    所述K1值;
    所述第一时间长度;
    所述SLIV的索引;
    所述码本标识指示信息;
    所述RNTI;
    所述上行信道的终止符号;
    所述PDCCH的监听时机。
  34. 一种通信方法,其特征在于,包括:
    向终端设备发送分组关系,所述分组关系表征第一时间长度与N组时频资源的对应关系,所述N组时频资源是对一个时间单元上的时频资源进行分组得到的,每组所述时频资源对应一个或多个所述第一时间长度,所述第一时间长度与K1集合相关,所述K1集合中包括多个K1值,所述K1值为从物理下行共享信道PDSCH所在的时间单元到所述PDSCH对应的混合自动重传请求-确认HARQ-ACK的上行信道所在的时间单元偏移的时间单元数量,每组所述时频资源中的时频资源是承载HARQ-ACK的上行信道的时频资源,所述第一时间长度为K1值的单位时间长度,或者所述第一时间长度表征所述K1值对应的时间长度,所述N为大于或等于2的正整数;
    向所述终端设备发送第一K1集合和第二K1集合,所述第一K1集合和第二K1集合属于所述K1集合。
  35. 如权利要求34所述的方法,其特征在于,所述HARQ-ACK可以是半静态码本。
  36. 一种通信装置,其特征在于,包括获取单元、接收单元以及处理单元;
    所述获取单元,用于获取分组关系,所述分组关系表征第一参数与N组时频资源的对应关系,所述N组时频资源是对一个时间单元上的时频资源进行分组得到的,每组所述时频资源对应一个或多个所述第一参数,所述第一参数与下行控制信息DCI相关,每组所述时频资源中的时频资源是承载混合自动重传请求-确认HARQ-ACK的上行信道的时频资源,所述N为大于或等于2的正整数;
    所述接收单元,用于接收第一DCI;
    所述处理单元,用于根据所述获取单元获取的所述分组关系,在所述N组时频资源中确定与所述接收单元接收的所述第一DCI相关的第一参数对应的第i组时频资源,所述i为小于或等于N的正整数,确定在所述第i组时频资源中的第一时频资源上承载第一HARQ-ACK的第一上行信道。
  37. 如权利要求36所述的装置,其特征在于,所述第一参数包括K1值、第一时间长度、码本标识指示信息、无线网络临时标识RNTI、上行信道的终止符号、物理下行控制信道PDCCH的监听时机,或起始符号和长度指示信息值SLIV的索引中的一项或多项,其中,所述K1值为从物理下行共享信道PDSCH所在的时间单元到所述PDSCH对应的HARQ-ACK的上行信道所在的时间单元偏移的时间单元数量,所述第一时间长度表征所述K1值对应的时间长度。
  38. 如权利要求37所述的装置,其特征在于,所述接收单元还用于:
    接收第二DCI;
    所述处理单元还用于:
    根据所述分组关系,在所述N组时频资源中确定与所述接收单元接收的所述第二DCI相关的第一参数对应的第k组时频资源,所述k为小于或等于N的正整数,且,所述k与所述i为不同值,确定在所述第k组时频资源中的第二时频资源上承载第二HARQ-ACK的第二上行信道。
  39. 如权利要求38所述的装置,其特征在于,所述处理单元还用于:
    当所述第一时频资源与所述第二时频资源部分重叠或完全重叠时,将所述第一HARQ-ACK和所述第二HARQ-ACK组合为第三HARQ-ACK,确定在第三时频资源上承载所述第三HARQ-ACK的第三上行信道,其中,所述第三时频资源为所述N组时频资源包括的一组时频资源中的时频资源。
  40. 如权利要求39所述的装置,其特征在于,当所述第一上行信道满足如下一项或多项条件时,所述第三时频资源为所述第i组时频资源中的时频资源;
    所述第一上行信道对应的第一时间长度小于所述第二上行信道对应的第一时间长度;
    所述第一上行信道是通过第一RNTI加扰的DCI对应的上行信道;
    所述第一上行信道是承载在根据所述K1值或所述SLIV的索引确定的时频资源上的上行信道。
  41. 如权利要求40所述的装置,其特征在于,所述处理单元还用于:
    在第一上行信道资源组中,确定与所述第三HARQ-ACK的比特数目对应的第一上行信道资源集合,所述第一上行信道资源组对应于在所述第i组时频资源上发送的上行信道,所述第一上行信道资源组中包括一个或多个上行信道资源集合;
    在所述第一上行信道资源集合中确定所述第三时频资源。
  42. 如权利要求40或41所述的装置,其特征在于,所述第一上行信道为物理上行控制信道PUCCH;
    所述处理单元还用于:
    在第一PUCCH资源组中,确定与所述第三HARQ-ACK的比特数目对应的第一PUCCH资源集合,所述第一PUCCH资源组对应于在所述第i组时频资源上发送的PUCCH,所述第一PUCCH资源组中包括一个或多个PUCCH资源集合,在所述第一PUCCH资源集合中确定所述第三时频资源。
  43. 如权利要求39所述的装置,其特征在于,所述处理单元还用于:
    在第二上行信道资源组中,确定与所述第三HARQ-ACK的比特数目对应的第二上行信道资源集合,所述第二上行信道资源组是为承载所述第三HARQ-ACK的上行信道配置的,所述第二上行信道资源组中包括一个或多个上行信道资源集合,所述第二上行信道资源组为所述N组时频资源中的第j组时频资源中的时频资源;
    在所述第二上行信道资源集合中确定所述第三时频资源,j为小于或等于N的正整数,且,j与i、k均为不同值。
  44. 如权利要求39或43所述的装置,其特征在于,所述第一上行信道为PUCCH;
    所述处理单元还用于:
    在第二PUCCH资源组中,确定与所述第三HARQ-ACK的比特数目对应的第二PUCCH资源集合,所述第二PUCCH资源组是为承载所述第三HARQ-ACK的PUCCH配置的,所述第二PUCCH资源组中包括一个或多个PUCCH资源集合,所述第二PUCCH资源组为所述N组时频资源中的第j组时频资源中的时频资源,在所述第二PUCCH资源集合中确定所述第三时频资源,所述j为小于或等于N的正整数,且,所述j与所述i、所述k均为不同值。
  45. 如权利要求38所述的装置,其特征在于,所述处理单元还用于:
    当所述第一时频资源与所述第二时频资源部分重叠或完全重叠时,确定在第四时频资源上承载第一HARQ-ACK的第一上行信道,在第五时频资源上承载第二HARQ-ACK的第二上行信道,其中,所述第四时频资源为所述N组时频资源包括的第m组时频资源中的时频资源,所述第五时频资源为所述N组时频资源包括的第n组时频资源中的时频资源,所述m和所述n为小于或等于N的正整数,且,所述m和所述n为不同值。
  46. 如权利要求45所述的装置,其特征在于,所述第m组时频资源与所述第n组时 频资源在时域上不重叠。
  47. 如权利要求46所述的装置,其特征在于,所述第一上行信道和所述第二上行信道为PUCCH;
    所述处理单元还用于:
    在第三PUCCH资源组中,确定与所述第一HARQ-ACK的比特数目对应的第三PUCCH资源集合,所述第三PUCCH资源组中包括一个或多个PUCCH资源集合,所述第三PUCCH资源组为所述第m组时频资源中的时频资源;
    在所述第三PUCCH资源集合中确定所述第四时频资源;
    在第四PUCCH资源组中,确定与所述第二HARQ-ACK的比特数目对应的第四PUCCH资源集合,所述第四PUCCH资源组中包括一个或多个PUCCH资源集合,所述第四PUCCH资源组为所述第n组时频资源中的时频资源;
    在所述第四PUCCH资源集合中确定所述第五时频资源;
    其中,所述第三PUCCH资源组和所述第四PUCCH资源组均为预先配置的。
  48. 如权利要求38所述的装置,其特征在于,所述处理单元还用于:
    当所述第一时频资源与所述第二时频资源部分重叠或完全重叠时,确定在第六时频资源上承载第二HARQ-ACK的第二上行信道,其中,所述第六时频资源为所述N组时频资源包括的第s组时频资源中的时频资源,所述s为小于或等于N的正整数,且,所述s与所述i为不同值。
  49. 如权利要求48所述的装置,其特征在于,所述第s组时频资源中的所述第六时频资源与所述第i组时频资源中的所述第一时频资源在时域上不重叠。
  50. 如权利要求49所述的装置,其特征在于,所述第一上行信道和所述第二上行信道为PUCCH;
    所述处理单元还用于:
    在第一PUCCH资源组中,确定与所述第一HARQ-ACK的比特数目对应的第五PUCCH资源集合,所述第一PUCCH资源组对应于在所述第i组时频资源上发送的PUCCH,所述第一PUCCH资源组中包括一个或多个PUCCH资源集合;
    在所述第五PUCCH资源集合中确定所述第一时频资源;
    在第五PUCCH资源组中,确定与所述第二HARQ-ACK的比特数目对应的第六PUCCH资源集合,所述第五PUCCH资源组中包括一个或多个PUCCH资源集合,所述第五PUCCH资源组为预先配置的;
    在所述第六PUCCH资源集合中确定所述第六时频资源。
  51. 如权利要求48至50任一项所述的装置,其特征在于,所述第一上行信道满足如下一项或多项条件:
    所述第一上行信道对应的第一时间长度小于所述第二上行信道对应的第一时间长度;
    所述第一上行信道是通过第一RNTI加扰的DCI对应的上行信道;
    所述第一上行信道是承载在根据所述K1值或所述SLIV的索引确定的时频资源上的上行信道。
  52. 如权利要求38所述的装置,其特征在于,所述装置还包括发送单元;
    所述处理单元还用于:
    当所述第一时频资源与所述第二时频资源部分重叠或完全重叠时,通过所述发送单元 发送所述第一上行信道,且丢弃所述第二上行信道,所述第一上行信道满足预设条件。
  53. 如权利要求52所述的装置,其特征在于,所述第一上行信道满足如下预设条件:
    所述第一上行信道对应的第一时间长度小于所述第二上行信道对应的第一时间长度;
    所述第一上行信道是通过第一RNTI加扰的DCI对应的上行信道;
    所述第一上行信道是承载在根据K1值或SLIV的索引确定的时频资源上的上行信道。
  54. 如权利要求38所述的装置,其特征在于,所述装置还包括发送单元;
    所述处理单元还用于:
    当所述第一时频资源与所述第二时频资源完全不重叠时,通过所述发送单元在所述第一时频资源上发送所述第一上行信道,且在所述第二时频资源上发送所述第二上行信道。
  55. 如权利要求36至54任一项所述的装置,其特征在于,所述接收单元还用于:
    接收来自网络设备的所述分组关系;或者,
    所述获取单元具体用于:从本地获取所述分组关系。
  56. 一种通信装置,其特征在于,包括获取单元、处理单元和发送单元;
    所述获取单元,用于获取分组关系,所述分组关系表征第一时间长度与N组时频资源的对应关系,所述N组时频资源是对一个时间单元上的时频资源进行分组得到的,每组所述时频资源对应一个或多个所述第一时间长度,所述第一时间长度与K1集合相关,所述K1集合中包括多个K1值,所述K1值为从物理下行共享信道PDSCH所在的时间单元到所述PDSCH对应的混合自动重传请求-确认HARQ-ACK的上行信道所在的时间单元偏移的时间单元数量,每组所述时频资源中的时频资源是承载HARQ-ACK的上行信道的时频资源,所述第一时间长度为K1值的单位时间长度,或者所述第一时间长度表征所述K1值对应的时间长度,所述N为大于或等于2的正整数;
    所述获取单元,还用于获取第一K1集合和第二K1集合;
    所述处理单元,用于根据所述分组关系,在所述N组时频资源中确定与所述第一K1集合相关的第一时间长度对应的第i组时频资源,在所述N组时频资源中确定与所述第二K1集合相关的第一时间长度对应的第k组时频资源,所述i为小于或等于N的正整数,所述k为小于或等于N的正整数,且,所述k与所述i为不同值;
    所述处理单元,还用于确定在所述第i组时频资源中的第一时频资源上承载第一HARQ-ACK的第一上行信道,并确定在所述第k组时频资源中的第二时频资源上承载第二HARQ-ACK的第二上行信道,所述第一HARQ-ACK与第一下行联合集对应,所述第二HARQ-ACK与第二下行联合集对应;
    所述处理单元,还用于当所述第一时频资源与所述第二时频资源部分重叠或完全重叠,且所述第一下行联合集中的第一下行联合子集与第二下行联合集中的第二下行联合子集完全重叠时,对所述第一下行联合集和所述第二下行联合集取并集,得到第三下行联合集,其中,所述第一下行联合集中的第一下行联合子集对应第三HARQ-ACK,所述第二下行联合集中的第二下行联合子集对应第四HARQ-ACK,所述第三HARQ-ACK属于所述第一HARQ-ACK,所述第四HARQ-ACK属于所述第二HARQ-ACK;
    所述发送单元,用于根据所述第三下行联合集,发送第五HARQ-ACK,所述第五HARQ-ACK包括第三HARQ-ACK或第四HARQ-ACK。
  57. 如权利要求56所述的装置,其特征在于,所述装置还包括接收单元;
    所述接收单元,用于接收来自网络设备的所述分组关系;或者,
    所述获取单元具体用于:从本地获取所述分组关系。
  58. 如权利要求56或57所述的装置,其特征在于,所述第一K1集合和所述第二K1集合为从网络设备获取的,或者为高层信令配置的。
  59. 如权利要求56至58任一项所述的装置,其特征在于,所述HARQ-ACK包括半静态码本。
  60. 一种通信装置,其特征在于,包括接收单元、处理单元和发送单元;
    所述接收单元,用于接收第一下行控制信息DCI和第二DCI;
    所述处理单元,用于在预先配置的第一物理上行控制信道PUCCH资源组中确定发送第一上行信道的第一时频资源,在预先配置的第二PUCCH资源组中确定发送第二上行信道的第二时频资源;
    所述发送单元,用于在所述第一时频资源上发送所述第一上行信道,在所述第二时频资源上发送所述第二上行信道,其中,所述第一PUCCH资源组和所述第二PUCCH资源组是为同一时隙配置的PUCCH资源组,所述第一上行信道用于承载所述第一DCI调度的第一混合自动重传请求-确认HARQ-ACK,所述第二上行信道用于承载所述第二DCI调度的第二HARQ-ACK。
  61. 如权利要求60所述的装置,其特征在于,所述处理单元还用于:
    当所述第一时频资源与所述第二时频资源部分重叠或完全重叠时,重选用于承载所述第一上行信道的时频资源和/或重选用于承载所述第二上行信道的时频资源。
  62. 如权利要求61所述的装置,其特征在于,当所述处理单元用于重选用于承载所述第一上行信道的时频资源和重选用于承载所述第二上行信道的时频资源时,所述处理单元还用于:
    在预先配置的第三PUCCH资源组中确定发送所述第一上行信道的第三时频资源,在预先配置的第四PUCCH资源组中确定发送所述第二上行信道的第四时频资源,并通过所述发送单元在所述第三时频资源上发送所述第一上行信道,在所述第四时频资源上发送所述第二上行信道。
  63. 如权利要求62所述的装置,其特征在于,所述第三PUCCH资源组中的PUCCH资源与所述第四PUCCH资源组中的PUCCH资源完全不重叠。
  64. 如权利要求61所述的装置,其特征在于,当所述处理单元用于重选用于承载所述第二上行信道的时频资源时,所述处理单元还用于:
    在预先配置的第五PUCCH资源组中确定发送所述第二上行信道的第五时频资源,并通过所述发送单元在所述第五时频资源上发送所述第二上行信道。
  65. 如权利要求64所述的装置,其特征在于,所述第一PUCCH资源组中的PUCCH资源与所述第五PUCCH资源组中的PUCCH资源完全不重叠。
  66. 一种通信装置,其特征在于,包括发送单元;
    所述发送单元,用于向终端设备发送分组关系,所述分组关系表征第一参数与N组时频资源的对应关系,所述N组时频资源是对一个时间单元上的时频资源进行分组得到的,每组所述时频资源对应一个或多个所述第一参数,所述第一参数与下行控制信息DCI相关,每组所述时频资源中的时频资源是承载混合自动重传请求-确认HARQ-ACK的上行信道的时频资源,所述N为大于或等于2的正整数;
    所述发送单元还用于:
    向所述终端设备发送第一DCI,其中,与所述第一DCI相关的第一参数对应所述N组时频资源中的第i组时频资源,所述i为小于或等于N的正整数。
  67. 如权利要求66所述的装置,其特征在于,所述第一参数包括K1值、第一时间长度、码本标识指示信息、无线网络临时标识RNTI、上行信道的终止符号、物理下行控制信道PDCCH的监听时机,或起始符号和长度指示信息值SLIV的索引中的一项或多项,其中,所述K1值为从物理下行共享信道PDSCH所在的时间单元到所述PDSCH对应的HARQ-ACK的上行信道所在的时间单元偏移的时间单元数量,所述第一时间长度表征所述K1值对应的时间长度。
  68. 如权利要求67所述的装置,其特征在于,所述装置还包括处理单元;
    所述处理单元,用于根据如下一项或多项条件,确定所述分组关系:
    所述K1值;
    所述第一时间长度;
    所述SLIV的索引;
    所述码本标识指示信息;
    所述RNTI;
    所述上行信道的终止符号;
    所述PDCCH的监听时机。
  69. 一种通信装置,其特征在于,包括发送单元;
    所述发送单元,用于向终端设备发送分组关系,所述分组关系表征第一时间长度与N组时频资源的对应关系,所述N组时频资源是对一个时间单元上的时频资源进行分组得到的,每组所述时频资源对应一个或多个所述第一时间长度,所述第一时间长度与K1集合相关,所述K1集合中包括多个K1值,所述K1值为从物理下行共享信道PDSCH所在的时间单元到所述PDSCH对应的混合自动重传请求-确认HARQ-ACK的上行信道所在的时间单元偏移的时间单元数量,每组所述时频资源中的时频资源是承载HARQ-ACK的上行信道的时频资源,所述第一时间长度为K1值的单位时间长度,或者所述第一时间长度表征所述K1值对应的时间长度,所述N为大于或等于2的正整数;
    所述发送单元,还用于向所述终端设备发送第一K1集合和第二K1集合,所述第一K1集合和第二K1集合属于所述K1集合。
  70. 如权利要求69所述的装置,其特征在于,所述HARQ-ACK可以是半静态码本。
  71. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,当所述指令在计算机上运行时,使计算机执行如权利要求1至35任一项所述的方法。
  72. 一种计算机程序产品,其特征在于,所述计算机程序产品在被计算机调用时,使得计算机执行如权利要求1至35任一项所述的方法。
  73. 一种通信设备,其特征在于,包括:处理器,所述处理器与存储器耦合;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器中存储的计算机程序,以使所述通信设备执行如权利要求1-30中任一项所述的方法。
  74. 一种通信设备,其特征在于,包括:处理器,所述处理器与存储器耦合;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器中存储的计算机程序,以使所述通信设备执行如权 利要求31-35中任一项所述的方法。
  75. 一种通信装置,其特征在于,用于执行如权利要求1-30任一项所述的方法。
  76. 一种通信装置,其特征在于,用于执行如权利要求31-35任一项所述的方法。
  77. 一种通信系统,其特征在于,包括如权利要求73所述的装置以及如权利要求74所述的装置。
  78. 一种通信系统,其特征在于,包括如权利要求75所述的装置以及如权利要求76所述的装置。
PCT/CN2019/104753 2018-09-28 2019-09-06 一种通信方法、装置及设备 WO2020063301A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19864992.3A EP3846561A4 (en) 2018-09-28 2019-09-06 COMMUNICATION PROCEDURE AND DEVICE AND DEVICE
US17/216,144 US11863492B2 (en) 2018-09-28 2021-03-29 Communications method, apparatus, and device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811141655.5 2018-09-28
CN201811141655 2018-09-28
CN201811300414.0A CN110972302B (zh) 2018-09-28 2018-11-02 一种通信方法、装置及设备
CN201811300414.0 2018-11-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/216,144 Continuation US11863492B2 (en) 2018-09-28 2021-03-29 Communications method, apparatus, and device

Publications (1)

Publication Number Publication Date
WO2020063301A1 true WO2020063301A1 (zh) 2020-04-02

Family

ID=69952850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104753 WO2020063301A1 (zh) 2018-09-28 2019-09-06 一种通信方法、装置及设备

Country Status (1)

Country Link
WO (1) WO2020063301A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113038610A (zh) * 2021-02-10 2021-06-25 展讯通信(上海)有限公司 数据传输方法、装置、设备、存储介质以及程序产品
WO2021203247A1 (zh) * 2020-04-07 2021-10-14 北京小米移动软件有限公司 非授权频段反馈方法、非授权频段反馈装置及存储介质
CN113541887A (zh) * 2020-04-13 2021-10-22 维沃移动通信有限公司 物理下行共享信道的调度方法、网络设备及终端设备
WO2022194249A1 (zh) * 2021-03-19 2022-09-22 维沃移动通信有限公司 Harq ack反馈方法、装置、终端及存储介质
CN116097597A (zh) * 2020-08-07 2023-05-09 华为技术有限公司 信息传输方法和通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140161060A1 (en) * 2012-12-11 2014-06-12 Samsung Electronics Co., Ltd Transmissions/receptions of uplink acknowledgement signals in wireless networks
WO2017105158A1 (ko) * 2015-12-18 2017-06-22 엘지전자 주식회사 상향링크 제어 정보 전송 방법 및 이를 수행하는 사용자 장치
CN107872303A (zh) * 2016-09-26 2018-04-03 华为技术有限公司 传输反馈信息的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140161060A1 (en) * 2012-12-11 2014-06-12 Samsung Electronics Co., Ltd Transmissions/receptions of uplink acknowledgement signals in wireless networks
WO2017105158A1 (ko) * 2015-12-18 2017-06-22 엘지전자 주식회사 상향링크 제어 정보 전송 방법 및 이를 수행하는 사용자 장치
CN107872303A (zh) * 2016-09-26 2018-04-03 华为技术有限公司 传输反馈信息的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3846561A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021203247A1 (zh) * 2020-04-07 2021-10-14 北京小米移动软件有限公司 非授权频段反馈方法、非授权频段反馈装置及存储介质
CN113541887A (zh) * 2020-04-13 2021-10-22 维沃移动通信有限公司 物理下行共享信道的调度方法、网络设备及终端设备
CN113541887B (zh) * 2020-04-13 2024-01-09 维沃移动通信有限公司 物理下行共享信道的调度方法、网络设备及终端设备
CN116097597A (zh) * 2020-08-07 2023-05-09 华为技术有限公司 信息传输方法和通信装置
CN113038610A (zh) * 2021-02-10 2021-06-25 展讯通信(上海)有限公司 数据传输方法、装置、设备、存储介质以及程序产品
CN113038610B (zh) * 2021-02-10 2023-06-20 展讯通信(上海)有限公司 数据传输方法、装置、设备、存储介质以及程序产品
WO2022194249A1 (zh) * 2021-03-19 2022-09-22 维沃移动通信有限公司 Harq ack反馈方法、装置、终端及存储介质

Similar Documents

Publication Publication Date Title
CN110972302B (zh) 一种通信方法、装置及设备
CN113115457B (zh) 无线通信系统中的低延迟、低带宽和低占空比操作
US20200100245A1 (en) Downlink and uplink channel with low latency
WO2020063301A1 (zh) 一种通信方法、装置及设备
WO2018227600A1 (zh) 反馈信息的发送和接收方法、装置以及通信系统
US11570800B2 (en) Data transmission method, terminal device and network device
US11632219B2 (en) Resource determining method, indication method, and apparatus
WO2018157756A1 (zh) 数据处理方法及装置
US20220239443A1 (en) Communication method and apparatus
WO2020063838A1 (zh) 传输数据的方法及装置
WO2019157634A1 (zh) 一种harq信息的传输方法及装置、计算机存储介质
JP7419553B2 (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
WO2021237860A1 (zh) 数据传输方法、终端设备和网络设备
WO2022056877A1 (zh) 信息传输方法、终端设备和网络设备
WO2022032515A1 (zh) 无线通信方法、终端设备和网络设备
CN113647163B (zh) 一种通信方法及设备
WO2021163968A1 (zh) 用于确定混合自动重传请求信息的方法、终端设备和网络设备
WO2021088260A1 (zh) 传输反馈信息的方法、终端设备和网络设备
US20200267754A1 (en) Gap configuration for multiple transport blocks
WO2021000239A1 (zh) 无线通信方法、网络设备和终端设备
WO2020087541A1 (zh) 下行控制信息的传输方法和设备
WO2019157639A1 (zh) 一种harq信息的传输方法及装置、计算机存储介质
WO2018227596A1 (zh) 时域资源指示方法、数据传输方法、装置和通信系统
WO2023039811A1 (zh) 通信方法及通信装置
WO2023093531A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019864992

Country of ref document: EP

Effective date: 20210329