WO2022141086A1 - 通信方法、装置及可读存储介质 - Google Patents

通信方法、装置及可读存储介质 Download PDF

Info

Publication number
WO2022141086A1
WO2022141086A1 PCT/CN2020/140986 CN2020140986W WO2022141086A1 WO 2022141086 A1 WO2022141086 A1 WO 2022141086A1 CN 2020140986 W CN2020140986 W CN 2020140986W WO 2022141086 A1 WO2022141086 A1 WO 2022141086A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
user equipment
blind decoding
size
reserved
Prior art date
Application number
PCT/CN2020/140986
Other languages
English (en)
French (fr)
Inventor
张京华
扬•沙希德
生嘉
Original Assignee
捷开通讯(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 捷开通讯(深圳)有限公司 filed Critical 捷开通讯(深圳)有限公司
Priority to PCT/CN2020/140986 priority Critical patent/WO2022141086A1/zh
Priority to CN202080108220.XA priority patent/CN116965090A/zh
Publication of WO2022141086A1 publication Critical patent/WO2022141086A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information

Definitions

  • the present application relates to the field of communication, and in particular, to a communication method, device and readable storage medium.
  • Wireless communication systems and networks such as the 5th generation (5G) mobile communication standards and technologies, are well known.
  • This 5G standard and technology was developed by the 3rd Generation Partnership Project (3G Partnership Project, 3GPP).
  • RedCap Reduced Capability
  • Use cases for RedCap include industrial wireless sensors, video surveillance, and wearables.
  • the primary requirement for RedCap devices is to reduce device cost and complexity compared to high-performance user equipment, in addition to specific requirements such as data rate, latency, battery life, availability, and reliability.
  • PDCCH physical downlink control channel
  • BD Blind Decoding
  • the technical problem mainly solved by the present application is to provide a communication method, an apparatus and a readable storage medium, which can solve the problem that the blind decoding of the PDCCH affects the power consumption of the device in the prior art.
  • a first aspect of the present application provides a communication method, the method includes: determining the size of the reserved downlink control information DCI, and the number of categories of the reserved DCI size is less than the number of categories of all DCI sizes; The downlink control information DCI size.
  • a second aspect of the present application provides a communication method, the method includes: receiving a DCI size reserved from a base station, and the number of categories of the reserved DCI size is smaller than the number of categories of all DCI sizes; according to the reserved DCI size Blind decoding of the physical downlink control channel PDCCH is performed.
  • a third aspect of the present application provides a communication method, the method includes: determining a blind decoding reduction ratio of a first time unit based on a system state in the first time unit; adjusting the first time using the blind decoding reduction ratio Blind decoding related parameters in the unit; send the blind decoding related parameters in the first time unit to the user equipment.
  • a fourth aspect of the present application provides a communication method, the method includes: receiving blind decoding related parameters in a first time unit from a base station, where the blind decoding related parameters are obtained by the base station using the first time unit
  • the blind decoding reduction ratio is obtained by adjusting the blind decoding reduction ratio, and the blind decoding reduction ratio is determined by the base station based on the system state in the first time unit; the PDCCH blind decoding is performed according to the blind decoding related parameters in the first time unit.
  • a fifth aspect of the present application provides a communication method, the method includes: determining a group common DCI of multiple user equipments, where the group common DCI includes the DCI of all user equipments; sending the bearer group common DCI to the user equipment For the PDCCH, the time slot span of the PDCCH carrying the group common DCI includes at least two time slots.
  • a sixth aspect of the present application provides a communication method, the method includes: allocating a search space for a user equipment, and the search space is mapped to at least two control resource sets CORESET located in different time units.
  • a first aspect of the present application provides a communication device, the device includes a processor and a communication circuit, the processor is connected to the communication circuit; 5.
  • the communication method provided in any one of the sixth aspects.
  • a second aspect of the present application provides a communication device, the device includes a processor and a communication circuit, the processor is connected to the communication circuit; the processor is configured to execute instructions to implement the second or fourth aspect of the present application. provided communication method.
  • the present application provides a readable storage medium storing instructions, which implement the aforementioned method when the instructions are executed.
  • the beneficial effects of the present application are: determine the size of the reserved downlink control information DCI, and the number of categories of the reserved DCI size is smaller than the number of categories of all DCI sizes; and notify the user equipment of the reserved downlink control information DCI size. Reducing the number of categories of the DCI size reduces the number of aggregation levels that the user equipment needs to use during blind decoding, thereby reducing the number of blind decoding times and reducing the power consumption of the user equipment.
  • FIG. 1 is a schematic structural diagram of an embodiment of a wireless communication system or network of the present application.
  • FIG. 2 is a schematic flowchart of the first embodiment of the communication method of the present application.
  • FIG. 3 is a schematic flowchart of a second embodiment of the communication method of the present application.
  • FIG. 4 is a schematic flowchart of a third embodiment of the communication method of the present application.
  • FIG. 5 is a schematic flowchart of a fourth embodiment of the communication method of the present application.
  • FIG. 6 is a schematic flowchart of a fifth embodiment of the communication method of the present application.
  • FIG. 7 is a schematic flowchart of a sixth embodiment of the communication method of the present application.
  • FIG. 8 is a schematic structural diagram of a first embodiment of a communication device of the present application.
  • FIG. 9 is a schematic structural diagram of a second embodiment of a communication device of the present application.
  • FIG. 10 is a schematic structural diagram of an embodiment of a readable storage medium of the present application.
  • User equipment in this application may include or represent any portable computing device used for communication.
  • Examples of user equipment that may be used in certain embodiments of the described devices, methods and systems may be wired or wireless devices such as mobile devices, mobile phones, terminals, smart phones, portable computing devices such as laptops , handheld devices, tablets, tablet computers, netbooks, personal digital assistants, music players, and other computing devices capable of wired or wireless communications.
  • the user equipment may also be a reduced capability (Reduced Capability) user equipment.
  • FIG. 1 is a wireless communication comprising a core network 102 (or telecommunications infrastructure) with multiple network nodes 104a-104m (eg, base stations gNBs) serving cells 106a-106m of multiple wireless communication units 108a-108e (eg, UEs)
  • a schematic diagram of a system or network 100 .
  • a plurality of network nodes 104a-104m are connected to the core network 102 by links. These links may be wired or wireless (eg, radio communication links, fiber optics, etc.).
  • Core network 102 may include multiple core network nodes, network entities, application servers, or any other network or computing device that may communicate with one or more radio access networks including multiple network nodes 104a-104m.
  • the network nodes 104a-104m are illustrated as base stations, which may be gNBs in a 5G network, for example but not limited to.
  • Each of the plurality of network nodes 104a-104m (eg, base stations) has a footprint, which is schematically represented in FIG. 1 for serving one or more UEs 108a for simplicity and by way of example and not limitation
  • UEs 108a-108e can receive services from wireless communication system 100, such as voice, video, audio, or other communication services.
  • the wireless communication system or network 100 may include or represent any one or more communication networks used for communication between UEs 108a-108e and other devices, content sources, or servers connected to the wireless communication system or network 100.
  • Core network 102 may also include or represent one or more communication networks, one or more network nodes, entities, elements, application servers, servers, base stations or other links, coupled or connected to form wireless communication system or network 100 Network equipment. Links or couplings between network nodes may be wired or wireless (eg, radio communication links, fiber optics, etc.).
  • the wireless communication system or network 100 and core network 102 may include any suitable combination of a core network and a wireless access network comprising network nodes or entities, base stations, access points, etc. that enable UEs 108a-108e, wireless communication system 100 and Communication between network nodes 104a-104m of core network 102, content sources, and/or other devices connected to system or network 100 is enabled.
  • An example of a wireless communication network 100 may be at least one communication network or a combination thereof including, but not limited to, one or more wired and/or wireless telecommunications networks, a core network(s), radio access network(s), computer network(s), data communication network(s), internet, telephone network, wireless network, such as WiMAX based on the IEEE 802.11 standard by way of example only , WLAN and/or Wi-Fi network, or Internet Protocol (Internet Protocol, IP) network, packet-switched network or enhanced packet-switched network, IP Multimedia Subsystem (IP Multimedia Subsystem, IMS) network or based on wireless, cellular or satellite Technical communication networks, such as mobile networks, Global System for Mobile Communications (GSM), GPRS networks, Wideband Code Division Multiple Access (W-CDMA), CDMA2000 or LTE/Advanced LTE communication network or any 2nd, 3rd, 4th or 5th generation and beyond type of communication network etc.
  • GSM Global System for Mobile Communications
  • W-CDMA Wideband Code Division Multiple Access
  • the wireless communication system 100 may be, by way of example only and not limited to, cyclic prefix orthogonal frequency division multiplexing (CP- 5G communication network using OFDM) technology.
  • the downlink may include one or more communication channels for transmitting data from one or more gNBs 104a-104m to one or more UEs 108a-108e.
  • a downlink channel is a communication channel used to transmit data, for example, from gNB 104a to UE 108a.
  • each frame may be 10ms in length
  • each frame may be divided into multiple subframes.
  • each frame may include 10 subframes of equal length, where each subframe consists of multiple time slots (eg, 2 time slots) for transmitting data.
  • time slots e.g, 2 time slots
  • a subframe may include several additional special fields or OFDM symbols, which may include, by way of example only, downlink synchronization symbols, broadcast symbols and/or uplink reference symbols.
  • the physical downlink control channel (PDCCH) in the downlink may carry downlink control information (DCI).
  • DCI downlink control information
  • PDCCH candidates are transmitted in a control resource set (CORESET), which spans one, two or three consecutive OFDM symbols over multiple resource blocks (RBs).
  • CORESET control resource set
  • PDCCH candidates may be carried by 1, 2, 4, 8 or 16 control channel elements (CCEs).
  • Each CCE consists of 6 resource element groups (REGs), and each REG is 12 resource elements (REs) in one OFDM symbol.
  • the search space consists of a set of PDCCH candidates, where each candidate can occupy one or more CCEs.
  • the number of CCEs used for PDCCH candidates is called aggregation level (AL) and can be 1, 2, 4, 8 or 16 in NR.
  • the number of BDs of the user equipment is reduced, which is beneficial to relax the UE processing time line, thereby reducing the time consumed by the PDCCH blind decoding and testing, so that the PDSCH/PUSCH processing can have more time.
  • BDs PDCCH blind decoding
  • the first embodiment of the communication method of the present application includes:
  • the corresponding user equipment may be a reduced capability (RedCap) user equipment.
  • DCI is divided into multiple formats, and different formats are used to transmit different control information, such as downlink scheduling and uplink scheduling.
  • the size of DCI in different formats may be different, and the size of DCI can be divided into n categories.
  • a user equipment may determine the aggregation level according to the size of the DCI format to be received by itself, and then perform blind decoding of the PDCCH in the search space according to the aggregation level.
  • the number of classes of DCI sizes reserved by the base station is smaller than the number of classes of all DCI sizes. Let the number of categories of reserved DCI size be m, then m ⁇ n.
  • uplink and downlink traffic For the capability-reduced user equipment, its usage is relatively fixed, and the dominant side in the corresponding uplink and downlink traffic is also fixed.
  • upstream traffic For example, for video surveillance equipment and industrial sensors, it is mainly upstream traffic; for sensors related to execution equipment and control functions, it is mainly downstream traffic.
  • the base station can determine the DCI size of the reserved downlink control information according to the uplink and downlink traffic of the user equipment, and reserve the DCI corresponding to the traffic mainly used by a large number of user equipments, so that most UEs can select an appropriate aggregation level for PDCCH blind decoding.
  • the reserved downlink control information DCI size includes the size of the uplink DCI and does not include the size of the downlink DCI, and the first condition includes that the uplink traffic of the user equipment is greater than the downlink traffic;
  • the second condition is that the reserved downlink control information DCI size includes the size of the downlink DCI and does not include the size of the uplink DCI, and the second condition includes that the uplink traffic of the user equipment is smaller than the downlink traffic.
  • the reserved DCI size can be carried by Radio Resource Control (RRC) signaling or by higher layer signaling.
  • RRC Radio Resource Control
  • S130 Align DCIs whose sizes are different from the reserved DCI size to change the size to the reserved DCI size.
  • All DCIs can be divided into n types according to their size, among which m types are reserved, and the size of the remaining n-m types of DCI is different from the size of the reserved m types of DCI.
  • n-m types of DCIs For each of the n-m types of DCIs, it needs to be aligned with one of the reserved m-types of DCI, and the size of each of the n-m types of DCIs after alignment is the same as one of the reserved m-types of DCIs.
  • For specific alignment please refer to the description in Section 7.3.1.0 of the standard document TS 38.221.
  • the number of categories of DCI sizes is reduced, so that the number of aggregation levels that the user equipment needs to use during blind decoding is reduced, thereby reducing the number of blind decoding times and reducing the power consumption of the user equipment
  • the second embodiment of the communication method of the present application includes:
  • S210 Receive the reserved DCI size from the base station.
  • the number of classes of the reserved DCI size is smaller than the number of classes of all DCI sizes.
  • This embodiment is applied to the UE, and the specific content may refer to the description of the first embodiment of the communication method of the present application.
  • S220 Perform blind decoding of the PDCCH according to the reserved DCI size.
  • the user equipment may determine the target aggregation level based on the reserved downlink control information DCI size and the DCI format to be received, and then perform blind decoding of the PDCCH according to the target aggregation level.
  • the number of categories of DCI sizes is reduced, so that the number of aggregation levels that the user equipment needs to use during blind decoding is reduced, thereby reducing the number of blind decoding times and reducing the power consumption of the user equipment.
  • the third embodiment of the communication method of the present application includes:
  • S310 Determine the blind decoding reduction ratio of the first time unit based on the system state in the first time unit.
  • the first time unit includes at least one time slot or subframe, for example, the first time unit may be one time slot, or the duration of the PDCCH.
  • the user equipment may be a reduced capability user equipment.
  • the system state includes at least one of the number of user equipments to be scheduled, traffic load and channel state.
  • the blind decoding reduction ratio is negatively correlated with the system state/traffic load, that is, the more user equipments to be scheduled/the greater the traffic load, the lower the blind decoding reduction ratio, and the lower the corresponding probability of causing PDCCH congestion, thereby reducing the scheduling pressure.
  • the blind decoding reduction ratio is positively correlated with the channel state, that is, the better the channel state, the higher the blind decoding reduction ratio.
  • S320 Adjust the blind decoding related parameters in the first time unit by using the blind decoding reduction ratio.
  • the parameters related to blind decoding include at least one of the number of control channel elements (CCEs), the number of aggregation levels, and the time slot span.
  • CCEs control channel elements
  • the parameters related to blind decoding include at least one of the number of control channel elements (CCEs), the number of aggregation levels, and the time slot span.
  • the user equipment performs PDCCH blind decoding on the CCEs according to the required aggregation level. The more CCEs and the more aggregation levels, the more times of blind decoding.
  • the span gap refers to the number of time slots that can be scheduled by a single PDCCH. A single PDCCH can complete the uplink/downlink scheduling of all time slots within the time slot span. After the PDCCH is successfully decoded, the user equipment does not need to re-run in the corresponding time slot span. Perform PDCCH blind decoding. The larger the time slot span is, the fewer time slots the user equipment needs to perform blind decoding on as a whole, and the
  • S330 Send the blind decoding related parameters in the first time unit to the user equipment.
  • the user equipment After receiving it, the user equipment performs blind decoding of the PDCCH according to the above blind decoding related parameters within the first time unit.
  • the reduction ratio of the number of blind decoding times is fixed.
  • the number of user equipments that need to be scheduled in different time periods is different, and the maximum number of blind decoding required by the corresponding user equipment is also different.
  • the blind decoding after the same ratio reduction is heavy in traffic load (that is, the number of user equipments that need to be scheduled at the same time).
  • a large amount of PDCCH congestion may be caused in the period of time when the traffic load is too large, but resource waste may be caused in the period of light traffic load.
  • the base station controls the number of PDCCH blind decoding times of the user equipment in the first time unit according to the system state in the first time unit, so as to realize the dynamic reduction of PDCCH blind decoding following the system state, thereby reducing the number of user equipment It reduces the possibility of PDCCH blocking while reducing the number of PDCCH blind decoding times.
  • the fourth embodiment of the communication method of the present application includes:
  • S410 Receive blind decoding related parameters in the first time unit from the base station.
  • the blind decoding related parameters are adjusted by the base station using the blind decoding reduction ratio of the first time unit.
  • the blind decoding reduction ratio is determined by the base station based on the system state in the first time unit.
  • the blind decoding reduction ratio is negatively correlated with the system state.
  • This embodiment is applied to the UE, and the specific content may refer to the description of the third embodiment of the communication method of the present application.
  • S420 Perform blind decoding of the PDCCH according to the blind decoding related parameters in the first time unit.
  • the base station controls the number of PDCCH blind decoding times of the user equipment in the first time unit according to the system state in the first time unit, so as to realize the dynamic reduction of PDCCH blind decoding following the system state, thereby reducing the number of user equipment It reduces the possibility of PDCCH blocking while reducing the number of PDCCH blind decoding times.
  • the fifth embodiment of the communication method of the present application includes:
  • S510 Determine the group common DCI of multiple user equipments, where the group common DCI includes the DCIs of all user equipments.
  • the user equipment may be a reduced capability user equipment.
  • Group Common DCI GC-DCI
  • GC-DCI can schedule uplink/downlink transmissions of multiple user equipments simultaneously.
  • S520 Send the PDCCH carrying the group common DCI to the user equipment, where the time slot span of the PDCCH carrying the group common DCI includes at least two time slots.
  • the time slot span of the PDCCH carrying the group common DCI is X, and X>1.
  • the span of the X slot can support a smaller number of PDCCH candidates per time unit, thereby relaxing PDCCH processing, reducing the number of blind PDCCH decoding times, and reducing the clock rate of the processing module to achieve UE energy saving.
  • the probability of PDCCH congestion can be reduced while reducing the number of PDCCH blind decoding times. Although this will bring additional delay, due to the reduced capability of the UE, the real-time requirement of the UE is lower than that of the high-performance UE, and the tolerance to delay is higher, and the delay caused will not significantly affect the performance of the reduced capability UE. .
  • the sixth embodiment of the communication method of the present application includes:
  • S610 Allocate a search space for the user equipment, where the search space is mapped to at least two control resource sets (CORESET) located in different time units.
  • CORESET control resource sets
  • the user equipment may be a reduced capability user equipment.
  • each search space corresponds to one CORESET.
  • the search space of the UE is mapped to at least two CORESETs located in different time units, and one time unit includes at least one time slot, so as to extend the duration of the search space from a traditional single time slot to y time slots, where y>1.
  • the configuration of the search space extension is shown in the search space information element (IE) below.
  • the relevant configuration for search space expansion is shown in bold.
  • the reduced-capacity UE with lower priority is more likely to find available resources in the expanded search space.
  • the PDCCH candidate For example, the expanded search space covers time slots N and N+1. If time slot N has no available candidates for a certain capability-reduced UE to transmit PDCCH, the PDCCH of the capability-reduced UE can be allocated to time slot N+1 .
  • the coverage of the expanded search space (for example, at least two time slots) is larger than that of the traditional search space (for example, a single time slot), thereby reducing the total number of search spaces that need to be used, thereby reducing the PDCCH
  • the first embodiment of the communication device of the present application includes: a processor 110 and a memory 120 .
  • the processor 110 controls the operation of the communication device, and the processor 110 may also be referred to as a CPU (Central Processing Unit, central processing unit).
  • the processor 110 may be an integrated circuit chip with processing capability of signal sequences.
  • Processor 110 may also be a general purpose processor, digital signal sequence processor (DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components.
  • DSP digital signal sequence processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 120 stores instructions and data required for the operation of the processor 110 .
  • the processor 110 is configured to execute instructions to implement the methods provided by the first, third, fifth, and sixth embodiments of the communication method of the present application and possible combinations thereof.
  • the second embodiment of the communication device of the present application includes: a processor 210 and a memory 220 .
  • the processor 210 controls the operation of the communication device, and the processor 210 may also be referred to as a CPU (Central Processing Unit, central processing unit).
  • the processor 210 may be an integrated circuit chip with processing capability of signal sequences.
  • Processor 210 may also be a general purpose processor, digital signal sequence processor (DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components.
  • DSP digital signal sequence processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • Memory 220 stores instructions and data required for processor 210 to operate.
  • the processor 210 is configured to execute instructions to implement the methods provided by the second and fourth embodiments and possible combinations of the communication methods of the present application.
  • an embodiment of the readable storage medium of the present application includes a memory 310, and the memory 310 stores an instruction, when the instruction is executed, the method provided by any embodiment and possible combination of the communication method of the present application is implemented.
  • the memory 310 may include a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a flash memory (Flash Memory), a hard disk, an optical disk, and the like.
  • ROM read-only memory
  • RAM random access memory
  • flash Memory flash memory
  • the disclosed method and apparatus may be implemented in other manners.
  • the device implementations described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other divisions.
  • multiple units or components may be Incorporation may either be integrated into another system, or some features may be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this implementation manner.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法,该方法包括:确定保留的下行控制信息DCI大小,保留的DCI大小的类别数量小于所有DCI大小的类别数量;通知用户设备保留的下行控制信息DCI大小。本申请还公开了一种通信设备和可读存储介质。

Description

通信方法、装置及可读存储介质 【技术领域】
本申请涉及通信领域,特别是涉及一种通信方法、装置及可读存储介质。
【背景技术】
无线通信系统及网络,如第五代(the 5th generation,5G)移动通信标准及技术,是众所周知的。这种5G标准和技术由第三代合作伙伴项目(3G Partnership Project,3GPP)所开发。
目前3GPP正在研究项目“关于降低能力(Reduced Capability,RedCap)的NR设备的支持研究”。RedCap的用例包括工业无线传感器,视频监控和可穿戴设备。与高性能用户设备相比,RedCap设备的主要要求是降低设备成本和复杂性,此外还具有特定的要求,例如数据速率,延迟,电池寿命,可用性和可靠性。但是发明人经过长期研究发现,目前的物理下行控制信道(Physical Downlink Control Channel,PDCCH)盲解码(Blind Decoding,BD)会对RedCap设备的功耗造成显著影响。
【发明内容】
本申请主要解决的技术问题是提供一种通信方法、装置及可读存储介质,能够解决现有技术中PDCCH盲解码对设备功耗造成影响的问题。
为了解决上述技术问题,本申请第一方面提供了一种通信方法,该方法包括:确定保留的下行控制信息DCI大小,保留的DCI大小的类别数量小于所有DCI大小的类别数量;通知用户设备保留的下行控制信息DCI大小。
为了解决上述技术问题,本申请第二方面提供了一种通信方法,该方法包括:接收来自于基站保留的DCI大小,保留的DCI大小的类别数量小于所有DCI大小的类别数量;按照保留的DCI大小进行物理下行控制信道PDCCH盲解码。
为了解决上述技术问题,本申请第三方面提供了一种通信方法,该方法包括:基于第一时间单元内系统状态确定第一时间单元的盲解码缩减比例;利用盲解码缩减比例调整第一时间单元内的盲解码相关参数;向用户设备发送第一 时间单元内的盲解码相关参数。
为了解决上述技术问题,本申请第四方面提供了一种通信方法,该方法包括:接收来自于基站的第一时间单元内的盲解码相关参数,盲解码相关参数是基站利用第一时间单元的盲解码缩减比例调整得到的,盲解码缩减比例是基站基于第一时间单元内系统状态确定的;在第一时间单元内按照盲解码相关参数进行PDCCH盲解码。
为了解决上述技术问题,本申请第五方面提供了一种通信方法,该方法包括:确定多个用户设备的组共同DCI,组共同DCI包括所有用户设备的DCI;向用户设备发送承载组共同DCI的PDCCH,承载组共同DCI的PDCCH的时隙跨度包括至少两个时隙。
为了解决上述技术问题,本申请第六方面提供了一种通信方法,该方法包括:为用户设备分配搜索空间,搜索空间映射到至少两个位于不同时间单元的控制资源集CORESET。
为了解决上述技术问题,本申请第一方面提供了一种通信设备,该设备包括处理器和通信电路,处理器连接通信电路;处理器用于执行指令以实现如本申请第一、第三、第五、第六方面中任一项所提供的通信方法。
为了解决上述技术问题,本申请第二方面提供了一种通信设备,该设备包括处理器和通信电路,处理器连接通信电路;处理器用于执行指令以实现如本申请第二或第四方面所提供的通信方法。
为了解决上述技术问题,本申请提供了一种可读存储介质,存储有指令,指令被执行时实现前述的方法。
本申请的有益效果是:确定保留的下行控制信息DCI大小,保留的DCI大小的类别数量小于所有DCI大小的类别数量;通知用户设备保留的下行控制信息DCI大小。缩小DCI大小的类别数量,使得用户设备在盲解码时需要使用的聚合等级数量变少,从而减少盲解码次数,减少用户设备的功耗。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。其中:
图1是本申请无线通信系统或网络一实施方式的结构示意图;
图2是本申请通信方法第一实施例的流程示意图;
图3是本申请通信方法第二实施例的流程示意图;
图4是本申请通信方法第三实施例的流程示意图;
图5是本申请通信方法第四实施例的流程示意图;
图6是本申请通信方法第五实施例的流程示意图;
图7是本申请通信方法第六实施例的流程示意图;
图8是本申请通信设备第一实施例的结构示意图;
图9是本申请通信设备第二实施例的结构示意图;
图10是本申请可读存储介质一实施例的结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,以下各实施例中不冲突的可以相互结合。显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的“用户设备”可以包括或代表用于通信的任何便携式计算设备。在所描述的设备,方法和系统的某些实施例中可使用的用户设备的示例可以是有线或无线设备,例如移动设备,移动电话,终端,智能电话,便携式计算设备,诸如膝上型电脑,手持设备,平板,平板电脑,上网本,个人数字助理,音乐播放器以及能够进行有线或无线通信的其他计算设备。另外,用户设备还可以为能力降低(Reduced Capability)用户设备。
图1是包括核心网102(或电信基础设施),具有服务于多个无线通信单元108a-108e(例如UE)的小区106a-106m的多个网络节点104a-104m(例如基站gNB)的无线通信系统或网络100的示意图。多个网络节点104a-104m通过链路连接到核心网102。这些链路可以是有线或无线的(例如无线电通信链接、光纤等)。核心网102可包括多个核心网络节点,网络实体,应用服务器或可以与包括多个网络节点104a-104m的一个或多个无线接入网络进行通信的任何其他网络或计算设备。
在本示例中,网络节点104a-104m被示意为基站,例如但不限于,其在5G网络中可以是gNB。多个网络节点104a-104m(例如,基站)中的每个都具有足迹(footprint),为简化且例如但不限于,其在图1中示意性地表示用于服务于一个或多个UE 108a-108e的对应的圆形小区106a-106m。UE 108a-108e能够从无线通信系统100接收服务,例如声音、视频、音频或其他通信服务。
无线通信系统或网络100可以包括或代表用于UE 108a-108e与其他设备、内容源或连接无线通信系统或网络100的服务器之间的通信的任意一个或多个通信网络。核心网102也可以包括或代表链接,耦接或连接以形成无线通信系统或网络100的一个或多个通信网络,一个或多个网络节点,实体,元素,应用程序服务器,服务器,基站或其他网络设备。网络节点之间的链接或耦接可以是有线或无线的(例如无线电通信链接、光纤等)。该无线通信系统或网络100以及核心网102可以包括包含网络节点或实体的核心网络和无线接入网络的任何适当组合,基站,接入点等,其使得UE 108a-108e、无线通信系统100和核心网102的网络节点104a-104m、内容源和/或连接到系统或网络100的其他设备之间能够通信。
可在所描述的设备,方法和系统一些实施例中使用的无线通信网络100的示例可以是至少一个通信网络或其组合,包括但不限于,一个或多个有线和/或无线电信网络,一个或多个核心网,一个或多个无线接入网络,一个或多个计算机网络,一个或多个数据通信网络,互联网,电话网络,无线网络,例如基于仅作为示例的IEEE802.11标准的WiMAX、WLAN和/或Wi-Fi网络,或互联网协议(Internet Protocol,IP)网络,分组交换网络或增强型分组交换网络,IP多媒体子系统(IP Multimedia Subsystem,IMS)网络或基于无线、蜂窝或卫星技术的通信网络,诸如移动网络,全球移动通信系统(Global System for Mobile Communications,GSM),GPRS网络,宽带码分多址接入(Wideband Code Division Multiple Access,W-CDMA),CDMA2000或LTE/高级LTE通信网络或任何第二代,第三代,第四代或第五代和超越类型的通信网络等。
在图1的示例中,该无线通信系统100可以是,仅作为示例但不限于,使用下行链路和上行链路信道的循环前缀正交频分复用(cyclic prefix orthogonal frequency division multiplexing,CP-OFDM)技术的5G通信网络。下行链路可以包括用于将数据从一个或多个gNB 104a-104m传输到一个或多个UE108a-108e的一个或多个通信信道。通常下行链路信道是用于传输数据的通信信 道,例如,从gNB 104a到UE 108a。
用于5G网络的上行链路和下行链路均被分成无线帧(例如,每个帧可以是10ms的长度),其中每个帧可以被分成多个子帧。例如,每个帧可以包括10个长度相等的子帧,其中每个子帧由用于传输数据的多个时隙(例如2个时隙)组成。除了时隙之外,子帧可以包括若干额外的特殊字段或OFDM符号,其可包括,仅作为示例,下行链路同步符号,广播符号和/或上行链路参考符号。
其中,下行链路中的物理下行控制信道(PDCCH)可承载下行控制信息(DCI)。PDCCH候选在控制资源集(CORESET)中传输,这些资源跨越多个资源块(RB)上的一个,两个或三个连续OFDM符号。PDCCH候选可由1、2、4、8或16个控制信道元(CCE)携带。每个CCE由6个资源元素组(REG)组成,每个REG在一个OFDM符号中是12个资源粒子(RE)。
为了接收DCI,UE需要在PDCCH搜索空间对PDCCH候选进行盲解码。搜索空间由一组PDCCH候选组成,其中每个候选可以占用一个或多个CCE。用于PDCCH候选的CCE的数量称为聚合等级(AL),在NR中可以为1、2、4、8或16。
发明人发现可以通过减少用户设备的PDCCH盲解码(BD)数量来节省用户设备的功耗。并且用户设备的BD数量减少,有利于放宽UE处理时间线,从而减少PDCCH盲解码测所消耗的时间,使得PDSCH/PUSCH处理可以有更多时间。但是很少的BD数目将限制gNB的调度灵活性,并且将严重增加UE PDCCH的堵塞概率。
如图2所示,本申请通信方法第一实施例包括:
S110:确定保留的DCI大小。
本实施例应用于基站。对应的用户设备可以为能力降低(RedCap)用户设备。
DCI分为多种格式,不同的格式用于传输不同的控制信息,例如下行调度、上行调度等。不同格式的DCI的大小可能不同,DCI的大小可以分为n个类别。
用户设备(UserEquipment,UE)可以根据自己待接收的DCI格式的大小确定聚合等级,再根据聚合等级在搜索空间中进行PDCCH盲解码。DCI大小的类别越多,UE需要选择聚合等级就越多,对应的PDCCH盲解码最大次数(以下简称次数)就越多。
本实施例中,基站保留的DCI大小的类别数量小于所有DCI大小的类别数 量。设保留的DCI大小的类别数量为m,则m<n。
对于能力降低用户设备,其用途相对来说是固定的,对应的上下行流量中的优势方也是固定的。例如,对于视频监控设备、工业传感器而言主要是上行流量;对于执行设备以及控制功能相关的传感器而言主要是下行流量。
基站可以根据用户设备的上下行流量确定保留的下行控制信息DCI大小,保留数量较多的用户设备主要使用的流量对应的DCI,使得大部分UE能够选择合适的聚合等级进行PDCCH盲解码。具体的,若用户设备满足第一条件,则保留的下行控制信息DCI大小包括上行DCI的大小,且不包括下行DCI的大小,第一条件包括用户设备的上行流量大于下行流量;若用户设备满足第二条件,则保留的下行控制信息DCI大小包括下行DCI的大小,且不包括上行DCI的大小,第二条件包括用户设备的上行流量小于下行流量。
S120:通知用户设备保留的DCI大小。
保留的DCI大小可以由无线资源控制(RRC)信令承载,也可以由更高层信令承载。
S130:对大小与保留的DCI大小不同的DCI进行对齐以将大小变为保留的DCI大小。
所有的DCI按照大小可以分为n类,其中的m类被保留,剩余的n-m类的DCI的大小与保留的m类DCI的大小不同。对于这n-m类DCI中的每一类,需要将其与保留的m类DCI中的一类进行对齐,对齐之后n-m类DCI中每一类的大小与保留的m类DCI中的一类相同。具体对齐方式可参考标准文档TS 38.221中7.3.1.0节的描述。
通过本实施例的实施,缩小DCI大小的类别数量,使得用户设备在盲解码时需要使用的聚合等级数量变少,从而减少盲解码次数,减少用户设备的功耗
如图3所示,本申请通信方法第二实施例包括:
S210:接收来自于基站的保留的DCI大小。
保留的DCI大小的类别数量小于所有DCI大小的类别数量。
本实施例应用于UE,具体内容可参考本申请通信方法第一实施例的描述。
S220:按照保留的DCI大小进行PDCCH盲解码。
具体的,用户设备可以基于保留的下行控制信息DCI大小以及待接收的DCI格式确定目标聚合等级,然后按照目标聚合等级进行PDCCH盲解码。
通过本实施例的实施,缩小DCI大小的类别数量,使得用户设备在盲解码 时需要使用的聚合等级数量变少,从而减少盲解码次数,减少用户设备的功耗
如图4所示,本申请通信方法第三实施例包括:
S310:基于第一时间单元内系统状态确定第一时间单元的盲解码缩减比例。
第一时间单元包括至少一个时隙或子帧,例如,第一时间单元可以为一个时隙,或者PDCCH的持续时段。用户设备可以为能力降低用户设备。
可选的,系统状态包括待调度用户设备数量,流量负荷和信道状态中的至少一种。盲解码缩减比例与系统状态/流量负荷负相关,即待调度的用户设备越多/流量负荷越大,盲解码缩减比例越低,对应的造成PDCCH堵塞的概率越低,从而减小调度压力。盲解码缩减比例与信道状态正相关,即信道状态越好,盲解码缩减比例越高。
S320:利用盲解码缩减比例调整第一时间单元内的盲解码相关参数。
盲解码相关参数包括控制信道元(CCE)数量,聚合等级数量,时隙跨度中的至少一种。通过调整盲解码相关参数,可以调整用户设备的盲解码次数。用户设备是根据需要的聚合等级对CCE进行PDCCH盲解码,CCE越多,聚合等级越多,盲解码的次数就越多。时隙跨度(span gap)是指单个PDCCH可以调度的时隙数量,单个PDCCH可以完成时隙跨度内所有时隙的上/下行调度,成功解码PDCCH之后用户设备无需在对应的时隙跨度内再次进行PDCCH盲解码。时隙跨度越大,整体上用户设备需要进行盲解码的时隙就越少,盲解码的次数就越少。
S330:向用户设备发送第一时间单元内的盲解码相关参数。
用户设备收到后,在第一时间单元内按照上述盲解码相关参数进行PDCCH盲解码。
在相关技术中,盲解码次数的缩减比例是固定的。然而在实际应用中,不同时段内需要调度的用户设备数量不同,对应的用户设备需要的盲解码最大次数也不同,同一比例缩减后的盲解码在流量负载重(即需要同时调度的用户设备数量多)的时段内可能会带来大量的PDCCH堵塞,但是在流量负载轻的时段内可能会造成资源浪费。
通过本实施例的实施,基站根据第一时间单元内的系统状态来控制用户设备在第一时间单元内的PDCCH盲解码次数,实现了PDCCH盲解码跟随系统状态进行动态缩减,从而在减少用户设备的PDCCH盲解码次数的同时减少了出现PDCCH阻塞的可能性。
如图5所示,本申请通信方法第四实施例包括:
S410:接收来自于基站的第一时间单元内的盲解码相关参数。
盲解码相关参数是基站利用第一时间单元的盲解码缩减比例调整得到的,盲解码缩减比例是基站基于第一时间单元内系统状态确定的,盲解码缩减比例与系统状态负相关。
本实施例应用于UE,具体内容可参考本申请通信方法第三实施例的描述。
S420:在第一时间单元内按照盲解码相关参数进行PDCCH盲解码。
通过本实施例的实施,基站根据第一时间单元内的系统状态来控制用户设备在第一时间单元内的PDCCH盲解码次数,实现了PDCCH盲解码跟随系统状态的动态缩减,从而在减少用户设备的PDCCH盲解码次数的同时减少了出现PDCCH阻塞的可能性。
如图6所示,本申请通信方法第五实施例包括:
S510:确定多个用户设备的组共同DCI,组共同DCI包括所有用户设备的DCI。
本实施例应用于基站。用户设备可以为能力降低用户设备。组共同DCI(GC-DCI)可以同时调度多个用户设备的上行/下行传输。
S520:向用户设备发送承载组共同DCI的PDCCH,承载组共同DCI的PDCCH的时隙跨度包括至少两个时隙。
设承载组共同DCI的PDCCH的时隙跨度为X,X>1。X时隙的跨度间隙可以在每个时间单位支持较少数量的PDCCH候选,从而放松PDCCH处理,减少PDCCH盲解码次数,并降低处理模块的时钟速率来实现UE节能。结合GC-DCI,可以在减少PDCCH盲解码次数的同时减少PDCCH堵塞的概率。虽然这样会带来额外的延时,由于能力降低UE对实时性的要求低于高性能UE,对延迟的容忍度更高,带来的延时并不会显著的影响能力降低UE的性能表现。
如图7所示,本申请通信方法第六实施例包括:
S610:为用户设备分配搜索空间,搜索空间映射到至少两个位于不同时间单元的控制资源集(CORESET)。
本实施例应用于基站。用户设备可以为能力降低用户设备。
相关技术中,每个搜索空间对应一个CORESET。本实施例中将UE的搜索空间映射到至少两个位于不同时间单元中的CORESET,一个时间单元包括至少一个时隙,以将搜索空间的持续时间从传统的单个时隙扩展到y时隙,其中y>1。 搜索空间扩展的配置显示在下面的搜索空间信元(IE)中。在下面的搜索空间IE中,搜索空间扩展的相关配置以粗体显示。
Figure PCTCN2020140986-appb-000001
由于能力降低UE对实时性的要求低于高性能UE,与传统的映射到单个时隙的CORSET去的搜索空间相比,优先级更低的能力降低UE更容易在扩展后的搜索空间找到可用的PDCCH候选。例如,扩展后的搜索空间覆盖时隙N和N+1,若时隙N已没有可用的候选供某个能力降低UE传输PDCCH,则可以将该能力降低UE的PDCCH分配到时隙N+1。
通过本实施例的实施,扩展之后的搜索空间的覆盖范围(例如至少两个时隙)大于传统的搜索空间(例如单个时隙),从而减少需要用到的搜索空间的总数,进而减少了PDCCH阻塞的可能性;同时扩展了UE可调度的范围,实现了在减少PDCCH盲解码次数的同时降低PDCCH阻塞的可能性。
如图8所示,本申请通信设备第一实施例包括:处理器110和存储器120。
处理器110控制通信设备的操作,处理器110还可以称为CPU(Central Processing Unit,中央处理单元)。处理器110可能是一种集成电路芯片,具有信号序列的处理能力。处理器110还可以是通用处理器、数字信号序列处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器120存储处理器110工作所需要的指令和数据。
处理器110用于执行指令以实现本申请通信方法第一、第三、第五、第六实施例及可能的组合所提供的方法。
如图9所示,本申请通信设备第二实施例包括:处理器210和存储器220。
处理器210控制通信设备的操作,处理器210还可以称为CPU(Central Processing Unit,中央处理单元)。处理器210可能是一种集成电路芯片,具有信号序列的处理能力。处理器210还可以是通用处理器、数字信号序列处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器220存储处理器210工作所需要的指令和数据。
处理器210用于执行指令以实现本申请通信方法第二、第四实施例及可能的组合所提供的方法。
如图10所示,本申请可读存储介质一实施例包括存储器310,存储器310存储有指令,该指令被执行时实现本申请通信方法任一实施例及可能的组合所提供的方法。
存储器310可以包括只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、闪存(Flash Memory)、硬盘、光盘等。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施方式仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接, 可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施方式方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机装置(可以是个人计算机,服务器,或者网络装置等)或处理器(processor)执行本申请各个实施方式所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (19)

  1. 一种通信方法,其特征在于,所述方法包括:
    确定保留的下行控制信息DCI大小,所述保留的DCI大小的类别数量小于所有DCI大小的类别数量;
    通知用户设备所述保留的下行控制信息DCI大小。
  2. 根据权利要求1所述的方法,其特征在于,
    所述确定保留的下行控制信息DCI大小包括:
    根据所述用户设备的上下行流量确定所述保留的下行控制信息DCI大小。
  3. 根据权利要求2所述的方法,其特征在于,
    所述根据所述用户设备的上下行流量确定所述保留的下行控制信息DCI大小包括:
    若所述用户设备满足第一条件,则所述保留的下行控制信息DCI大小包括上行DCI的大小,且不包括下行DCI的大小,所述第一条件包括所述用户设备的上行流量大于下行流量;
    若所述用户设备满足第二条件,则所述保留的下行控制信息DCI大小包括下行DCI的大小,且不包括上行DCI的大小,所述第二条件包括所述用户设备的上行流量小于下行流量。
  4. 根据权利要求1所述的方法,其特征在于,进一步包括:
    对大小与所述保留的DCI大小不同的DCI进行对齐以将大小变为所述保留的DCI大小。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,
    所述用户设备为能力降低用户设备。
  6. 一种通信方法,其特征在于,所述方法包括:
    接收来自于基站的保留的DCI大小,所述保留的DCI大小的类别数量小于所有DCI大小的类别数量;
    按照所述保留的DCI大小进行物理下行控制信道PDCCH盲解码。
  7. 根据权利要求6所述的方法,其特征在于,
    所述按照所述保留的下行控制信息DCI大小进行PDCCH盲解码包括:
    基于所述保留的下行控制信息DCI大小确定目标聚合等级;
    按照所述目标聚合等级进行PDCCH盲解码。
  8. 一种通信方法,其特征在于,所述方法包括:
    基于第一时间单元内系统状态确定所述第一时间单元的盲解码缩减比例;
    利用所述盲解码缩减比例调整所述第一时间单元内的盲解码相关参数;
    向所述用户设备发送所述第一时间单元内的盲解码相关参数。
  9. 根据权利要求8所述的方法,其特征在于,
    所述盲解码相关参数包括控制信道元CCE数量,聚合等级数量,时隙跨度中的至少一种,所述系统状态包括待调度用户设备数量,流量负荷和信道状态中的至少一种。
  10. 根据权利要求8所述的方法,其特征在于,
    所述第一时间单元包括至少一个时隙或子帧。
  11. 根据权利要求8-10中任一项所述的方法,其特征在于,
    所述用户设备为能力降低用户设备。
  12. 一种通信方法,其特征在于,所述方法包括:
    接收来自于基站的第一时间单元内的盲解码相关参数,所述盲解码相关参数是所述基站利用所述第一时间单元的盲解码缩减比例调整得到的,所述盲解码缩减比例是所述基站基于所述第一时间单元内系统状态确定的;
    在所述第一时间单元内按照所述盲解码相关参数进行PDCCH盲解码。
  13. 根据权利要求12所述的方法,其特征在于,
    所述盲解码相关参数包括控制信道元CCE数量,聚合等级数量,时隙跨度中的至少一种,所述系统状态包括待调度用户设备数量,流量负荷和信道状态中的至少一种。
  14. 一种通信方法,其特征在于,所述方法包括:
    确定多个用户设备的组共同DCI,所述组共同DCI包括所有所述用户设备的DCI;
    向所述用户设备发送承载所述组共同DCI的PDCCH,所述承载所述组共同DCI的PDCCH的时隙跨度包括至少两个时隙。
  15. 根据权利要求14所述的方法,其特征在于,
    所述用户设备为能力降低用户设备。
  16. 一种通信方法,其特征在于,所述方法包括:
    为用户设备分配搜索空间,所述搜索空间映射到至少两个位于不同时间单元的控制资源集CORESET。
  17. 一种通信设备,其特征在于,包括:处理器和通信电路,所述处理器连接所述通信电路;
    所述处理器用于执行指令以实现如权利要求1-5、8-11、14-15、16任一项所述的方法。
  18. 一种通信设备,其特征在于,包括:处理器和通信电路,所述处理器连接所述通信电路;
    所述处理器用于执行指令以实现如权利要求6-7、12-13任一项所述的方法。
  19. 一种可读存储介质,存储有指令,其特征在于,所述指令被执行时实现如权利要求1-16任一项所述的方法。
PCT/CN2020/140986 2020-12-29 2020-12-29 通信方法、装置及可读存储介质 WO2022141086A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/140986 WO2022141086A1 (zh) 2020-12-29 2020-12-29 通信方法、装置及可读存储介质
CN202080108220.XA CN116965090A (zh) 2020-12-29 2020-12-29 通信方法、装置及可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/140986 WO2022141086A1 (zh) 2020-12-29 2020-12-29 通信方法、装置及可读存储介质

Publications (1)

Publication Number Publication Date
WO2022141086A1 true WO2022141086A1 (zh) 2022-07-07

Family

ID=82258712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140986 WO2022141086A1 (zh) 2020-12-29 2020-12-29 通信方法、装置及可读存储介质

Country Status (2)

Country Link
CN (1) CN116965090A (zh)
WO (1) WO2022141086A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102754476A (zh) * 2010-04-06 2012-10-24 上海贝尔股份有限公司 Pusch的上行传输方法、和系统
US20140307696A1 (en) * 2011-11-11 2014-10-16 Lg Electronics Inc. Method and device for obtaining and receiving control information in wireless communication system
CN109802758A (zh) * 2017-11-16 2019-05-24 诺基亚技术有限公司 管理在新无线电中的搜索空间之间的控制信道盲搜索
US20190313378A1 (en) * 2018-04-05 2019-10-10 Huawei Technologies Co., Ltd. Method and system for downlink control information payload size determination
CN110786066A (zh) * 2017-06-23 2020-02-11 高通股份有限公司 物理下行控制信道中的数据传输

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102754476A (zh) * 2010-04-06 2012-10-24 上海贝尔股份有限公司 Pusch的上行传输方法、和系统
US20140307696A1 (en) * 2011-11-11 2014-10-16 Lg Electronics Inc. Method and device for obtaining and receiving control information in wireless communication system
CN110786066A (zh) * 2017-06-23 2020-02-11 高通股份有限公司 物理下行控制信道中的数据传输
CN109802758A (zh) * 2017-11-16 2019-05-24 诺基亚技术有限公司 管理在新无线电中的搜索空间之间的控制信道盲搜索
US20190313378A1 (en) * 2018-04-05 2019-10-10 Huawei Technologies Co., Ltd. Method and system for downlink control information payload size determination

Also Published As

Publication number Publication date
CN116965090A (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
KR101379873B1 (ko) 시스템 정보 송신 윈도우의 브로드캐스트를 위한 방법 및 장치
US9635653B2 (en) Switching between downlink and uplink
WO2018171640A1 (zh) 一种数据传输方法、终端设备及基站系统
CN110972302A (zh) 一种通信方法、装置及设备
CN103380649A (zh) 在广播通信中用于资源更改通知的通信单元和方法
WO2021026917A1 (zh) 信号发送方法、装置和系统
JP2023078303A (ja) V2xトラフィックに対応するための制御チャネル構造設計
US8964616B2 (en) System and method for scheduling cell broadcast message
CN111436085A (zh) 通信方法及装置
CN112449425B (zh) 一种通信方法和装置
US11013018B2 (en) Data multiplexing apparatus and method and communication system
WO2022077410A1 (zh) 信息反馈方法以及装置
WO2019047659A1 (zh) 一种指示以及下行控制信道检测方法、设备、装置
WO2022141086A1 (zh) 通信方法、装置及可读存储介质
WO2023279865A1 (zh) 一种通信方法及装置
WO2020051889A1 (zh) 一种数据传输方法、控制信息发送方法及设备
WO2022155774A1 (zh) 资源抢占处理方法、通信设备及可读存储介质
WO2022155772A1 (zh) 资源抢占处理方法、通信设备及可读存储介质
WO2018058475A1 (zh) 一种数据传输方法及设备
US11206652B2 (en) Downlink channel transmitting method, downlink channel receiving method, devices thereof, base station and terminal
WO2022151474A1 (zh) 通信方法、通信设备及可读存储介质
WO2020223886A1 (zh) 一种通信方法及系统
WO2022077501A1 (en) Method, device and memory for scheduling downlink control information
WO2023226022A1 (en) Methods and apparatuses of a power saving mechanism for xr traffic
WO2016197740A1 (zh) 一种速率拆分的方法、装置和演进型节点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967434

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080108220.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967434

Country of ref document: EP

Kind code of ref document: A1