WO2022151364A1 - 生物信息识别装置及电子设备 - Google Patents

生物信息识别装置及电子设备 Download PDF

Info

Publication number
WO2022151364A1
WO2022151364A1 PCT/CN2021/072198 CN2021072198W WO2022151364A1 WO 2022151364 A1 WO2022151364 A1 WO 2022151364A1 CN 2021072198 W CN2021072198 W CN 2021072198W WO 2022151364 A1 WO2022151364 A1 WO 2022151364A1
Authority
WO
WIPO (PCT)
Prior art keywords
biometric information
identification device
information identification
fingerprint
conductive member
Prior art date
Application number
PCT/CN2021/072198
Other languages
English (en)
French (fr)
Inventor
冷寒剑
韦亚
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to EP21773260.1A priority Critical patent/EP4071662B1/en
Priority to CN202190000199.1U priority patent/CN219039787U/zh
Priority to PCT/CN2021/072198 priority patent/WO2022151364A1/zh
Priority to KR1020217031543A priority patent/KR20220103879A/ko
Priority to US17/492,600 priority patent/US11756328B2/en
Publication of WO2022151364A1 publication Critical patent/WO2022151364A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1329Protecting the fingerprint sensor against damage caused by the finger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1365Matching; Classification
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • H03K17/9622Capacitive touch switches using a plurality of detectors, e.g. keyboard
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • H03K2217/96071Capacitive touch switches characterised by the detection principle
    • H03K2217/96073Amplitude comparison

Definitions

  • the present application relates to the technical field of fingerprint identification, and in particular, to a biometric information identification device and electronic equipment.
  • the fingerprint identification module usually adopts capacitive fingerprint identification.
  • the size of a single Pixel corresponds to the width of the fingerprint
  • the peaks (the highest point of the fingerprint) and the valley (the lowest point of the fingerprint) on the fingerprint will correspond to different Pixels, because of their different heights,
  • There will be a capacitance difference between the two Pixels and this capacitance difference will be fed back to the fingerprint recognition chip to generate a fingerprint image. That is, for capacitive fingerprint recognition, the main signal quantity is the capacitance difference between two Pixels, and the peaks and valleys on the fingerprint of the finger are identified by the capacitance difference to form a fingerprint image.
  • the purpose of some embodiments of the present application is to provide a biometric information identification device and electronic equipment, which are used to increase the signal volume of capacitive fingerprint identification, thereby improving the accuracy of capacitive fingerprint identification.
  • a biometric information identification device comprising: a fingerprint identification module, and a side of the fingerprint identification module facing the user for encapsulating the fingerprint identification module to
  • the encapsulation layer that insulates the fingerprint identification module from the outside world, the top surface of the encapsulation layer is an arc surface;
  • the fingerprint identification module includes: a fingerprint identification chip for identifying the user's fingerprint information, the upper surface of the fingerprint identification chip is A plurality of capacitive pixel units are arranged on the surface, and the capacitive pixel units and the user's finger form a capacitor; and a plurality of conductive members are located above the capacitive pixel units.
  • Embodiments of the present application further provide an electronic device, including the above-mentioned biometric information identification device.
  • the embodiments of the present application are provided with a plurality of capacitive pixel units on a fingerprint identification chip for identifying fingerprint information, and a conductive member is added above the capacitive pixel units to sense the finger according to the capacitive pixel units.
  • the additional conductive member as a conductor reduces the distance d between the fingerprint and the capacitive pixel unit in disguised form, thereby increasing the capacitance value C of the capacitance generated by the capacitive pixel unit. Therefore, when the biometric information identification device is applied to an electronic device, the fingerprint identification module can generate a larger signal amount, thereby reducing the situation that the identification cannot be recognized or the capacitance signal amount is small so that the identification is not accurate enough.
  • the conductive member is a hollow structure.
  • the bottom of the conductive member is in contact with the top of the capacitive pixel unit.
  • the conductive member is directly connected to the capacitive pixel unit, so that the two can jointly form a pole plate for sensing capacitance to sense the capacitance generated by the touch of a finger, and the additional conductive member is used to directly reduce the distance between the capacitive pixel unit and the finger. The distance between them can obtain a larger signal amount.
  • the fingerprint identification chip includes a middle portion and an edge portion disposed around the middle portion; in a direction from the middle portion to the edge portion, the heights of the plurality of conductive members gradually decrease.
  • the distances between the top surface of the packaging layer and the top of the conductive member are basically the same, so that when the user's finger touches the top surface, it is guaranteed.
  • the distances between each conductive element and the finger surface are approximately equal, which improves the problem of large differences in capacitance values sensed by capacitive pixel units in different regions, and better adapts to the scenario where the biometric information recognition device is applied under the raised area on the terminal.
  • the cross-sectional areas of the plurality of conductive members are equal.
  • the conductive member is a columnar conductive column. This arrangement not only facilitates production and fabrication, but also facilitates ensuring the consistency of the shapes of each conductive member, so as to improve the consistency of capacitive signals detected by each capacitive pixel unit.
  • the heights of the plurality of conductive members are equal.
  • the cross section of the conductive member at the edge can make the fingerprint information obtained by the capacitive pixel units in different parts of the biometric information identification device as consistent as possible, so as to facilitate the algorithm processing of the fingerprint signal and reduce the fingerprint signal.
  • the encapsulation layer is thick in the middle and thin on both sides, so that the distance between the capacitive pixel units at the edge of the biometric information identification device and the finger is smaller than that of the biometric information identification device.
  • the distance between the capacitive pixel unit in the middle and the finger can be guaranteed by the way that the cross-sectional area of the conductive member at the edge is smaller than that of the conductive member at the middle.
  • the size of the semaphore is roughly the same.
  • the bottom of the conductive member is spaced apart from the top of the capacitive pixel unit
  • the fingerprint identification module further includes: a dielectric layer disposed between the capacitive pixel unit and the conductive member , the dielectric layer is disposed on the upper surface and covers the plurality of capacitive pixel units; the dielectric layer includes: a first surface close to one side of the encapsulation layer, and the plurality of conductive parts are disposed on the first surface.
  • the first surface is an arc surface. This arrangement can offset the influence on the signal quantity when the encapsulation layer is non-planar.
  • the height of each of the conductive members is greater than or equal to 100 microns.
  • the cross-sectional area of each of the conductive members ranges from 400 square micrometers to 900 square micrometers.
  • the distance between any two adjacent conductive members ranges from 20 microns to 30 microns.
  • each of the conductive members is disposed corresponding to one of the capacitive pixel units. This arrangement can increase the amount of signals that can be obtained at each position of the biometric information identification device and improve the accuracy of fingerprint identification on the premise that the resolution remains unchanged.
  • the conductive members are copper pillars.
  • the biometric information identification device is disposed on the side of the electronic device.
  • FIG. 1 is a schematic structural diagram of a biometric information identification device provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another biometric information identification device provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another biometric information identification device provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another biometric information identification device provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another biometric information identification device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another biometric information identification device provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a capacitance value sensed by a capacitive pixel unit when a finger touches the biometric information identification device.
  • the biometric information identification device includes: a fingerprint identification module, and a fingerprint identification module located on the side of the fingerprint identification module facing the user and used to identify the fingerprint
  • the module is encapsulated to make the fingerprint identification module and the outside insulate the encapsulation layer 14, the top surface of the encapsulation layer 14 is an arc surface
  • the fingerprint identification module includes: a fingerprint identification chip 11 and a plurality of capacitive pixel units 12, and the capacitive pixel units 12 are located in On the upper surface of the fingerprint identification chip 11, a plurality of capacitive pixel units 12 are used to collect user fingerprint information, the fingerprint identification chip 11 is used to identify fingerprint information, and the capacitive pixel units 12 form capacitance with the user's finger.
  • the biometric information identification device also includes The plurality of conductive members 13 are located above the capacitive pixel unit 12 .
  • the additional conductive member 13 as a conductor reduces the distance d between the fingerprint and the capacitive pixel unit 12 in disguised form, thereby increasing the capacitance value C of the capacitance generated by the capacitive pixel unit. Therefore, when the biometric information identification device is applied to an electronic device, the fingerprint identification module can generate a larger signal volume, which can reduce the occurrence of unrecognized or less accurate identification due to a small capacitance signal. For example, even fingerprint identification The insulating member above/outside the capacitive pixel unit in the module is relatively thick, and the biometric information identification device provided by the present invention can still realize relatively accurate fingerprint identification.
  • biometric information identification device in this embodiment, will be specifically described below. The following content is only provided for the convenience of understanding, and is not necessary for implementing this solution.
  • the conductive member 13 can be a column-shaped conductive column, which is not only convenient for production (for example, forming a column shape by electroplating), but also facilitates to ensure the consistency of the shape of each conductive member, so as to improve the capacitance signal detected by each capacitive pixel unit. consistency.
  • the material of the conductive member may be gold, silver, copper or other conductive materials.
  • the conductive member may be a copper column. Since copper has high conductivity, the effect of fingerprint identification is further provided.
  • the conductive column may be a solid structure.
  • the conductive member 13 may also be a hollow structure.
  • the conductive member 13 has a sealed cavity 20 , which can simultaneously ensure that the distance between the conductive member 13 and the top surface of the encapsulation layer 14 is short to avoid By increasing the signal amount of the detected capacitance signal, materials and costs can be saved, and the material used for preparing the first dielectric layer can be prevented from entering the cavity from the opening of the cavity.
  • the encapsulation layer 14 includes: a top surface 142 away from the fingerprint identification chip 11 , and a bottom surface 141 opposite to the top surface 142 .
  • the top surface 142 is an arc surface.
  • the traditional capacitive fingerprint module is a square or circular flat contact type, the user feels uncomfortable when using it, and the appearance is not beautiful, which makes it difficult to make new breakthroughs in the user experience due to the lack of novelty of the mobile phone case; and especially in the In harsh environments such as sand and dust, dust is often easily adsorbed on the plane, and the fingerprint recognition may cause misjudgment and other problems during use.
  • the new structural design scheme makes the fingerprint identification module more tactile and three-dimensional in appearance of the whole machine, It brings a new sense of sight to the user group; on the other hand, the use of the curved three-dimensional design is that a point will not be a surface when it is dropped, so as to avoid the plane of the entire capacitive fingerprint recognition module being affected by the mobile phone when it is dropped.
  • the curved surface design will also play a buffering role when the whole machine falls; and the curved surface design makes it difficult for dust and other impurities to be absorbed, which avoids the misjudgment of fingerprint recognition during use.
  • the encapsulation layer 14 may be a plastic encapsulation layer that encapsulates the fingerprint identification module so as to insulate the fingerprint identification module from the outside.
  • the bottom of the conductive member 13 is in contact with the top of the capacitive pixel unit 12, so that both the conductive member 13 and the capacitive pixel unit 12 can jointly form a plate for sensing capacitance to sense the touch of a finger.
  • Capacitance the distance between the capacitive pixel unit 12 and the finger can be directly reduced by the additional conductive member 13, and a larger signal amount can be obtained.
  • the heights of the plurality of conductive members 13 are all equal, the cross-sectional area of each conductive member 13 is constant, and the cross-sectional areas of the plurality of conductive members 13 are also equal.
  • the fingerprint identification chip 11 includes a middle portion 113 and an edge portion 114 arranged around the middle portion 113 , in the direction from the middle portion 113 to the edge portion 114 .
  • the heights of the plurality of conductive members 13 gradually decrease, the cross-sectional area of each conductive member 13 is constant, and the cross-sectional areas of the plurality of conductive members 13 are also equal.
  • the biometric information identification device can be suitably arranged under the raised area on the terminal to realize fingerprint identification, and the change trend of the height of the conductive member 13 is consistent with the change trend of the curved top surface 142 of the encapsulation layer 14, so that
  • the distance between the top surface 142 of the encapsulation layer 14 and the top of the conductive member 13 is basically the same everywhere, so that when the user's finger touches the top surface 142, the distance between each conductive member 13 and the surface of the finger is guaranteed to be approximately equal, which improves the capacitive type in different areas.
  • the problem of the large difference in the capacitance value sensed by the pixel unit 12 is better suited to the scenario where the biometric information identification device is applied to the scene below the raised area on the terminal, and it is also better applicable to the capacitive pixel unit and the capacitive pixel unit in the biometric information identification device.
  • the thickness of the insulating layer between the fingers is thick or the thickness of the insulating layer is inconsistent. For example, in the curved capacitive fingerprint module shown in FIG.
  • the biometric information identification device can be arranged on the side of the mobile phone, so as to realize the capacitive fingerprint recognition on the side, and at the same time, it can also make the capacitance signal larger, and further Accurate fingerprint recognition can adapt to the current trend of full-screen display and enrich the user experience.
  • the top surface of the encapsulation layer 14 It is a curved surface, the middle part of the encapsulation layer 14 is thick, and the two sides are thin.
  • the cross-sectional area of the plurality of conductive members 13 can be gradually reduced in the direction from the middle portion 113 to the edge portion 114, That is, the cross-sectional area of the conductive member 13 at the edge is smaller than the cross-sectional area of the conductive member 13 at the middle, so that the fingerprint information obtained by the capacitive pixel units in different parts of the biometric information identification device can be as consistent as possible, so that For the algorithm processing of the fingerprint signal, at the same time reduce the risk of upper and lower saturation of the data of the fingerprint signal, so as to achieve the purpose of improving the fingerprint recognition performance.
  • the heights of the plurality of conductive members 13 gradually decrease, and the heights of the plurality of conductive members 13 are gradually reduced.
  • the cross-sectional area is also gradually reduced.
  • the bottom of the conductive member 13 and the top of the capacitive pixel unit 12 may also be spaced apart, and a dielectric layer 15 may also be added between the capacitive pixel unit 12 and the conductive member 13 .
  • the layer 15 is laid on the upper surface 111 and covers a plurality of capacitive pixel units 12, the dielectric layer 15 includes a first surface 151 on the side close to the encapsulation layer 14, and a plurality of conductive members 13 are arranged on the first surface 151, specifically , the first end surface 131 of the conductive member 13 is in contact with the first surface 151 of the dielectric layer, wherein the first surface 151 may be an arc surface.
  • This arrangement can offset or reduce the influence on the signal quantity when the encapsulation layer is non-planar.
  • the height setting method of the conductive members 13 since the height difference of each conductive member 13 is known in the design and manufacturing stages, the height of each conductive member 13 can also be compensated by designing a software program.
  • the problem of inconsistent semaphore size caused by the difference so, in the case of compensating for the difference in semaphore through software design, it is not necessary to use specific structural design (such as height, cross-sectional area, etc.) in the design and manufacturing process to ensure that The signal quantity is the same, so that the structure of the conductive member 13 is simpler and the manufacturing process is easier.
  • the top surface 142 can also be a flat surface or a surface of other shapes.
  • the conductive member in addition to the height setting method of the conductive member 13 above, can be adaptively changed according to the shape of the surface of the mounting position of the biometric information identification device. 13, so that the shape formed by the end of the conductive member 13 matches the shape of the surface of the mounting position, which will not be exemplified here.
  • each capacitive pixel unit 12 is correspondingly provided with a conductive Piece 13.
  • at least part of the capacitive pixel units 12 can also share the conductive members 13 .
  • the number of conductive members 13 is less than that of the capacitive pixel units 12
  • the projection of at least some of the conductive members 13 on the upper surface 111 is different from that of at least two of the conductive members 13 .
  • the projections of the individual capacitive pixel units 12 on the upper surface 111 are partially overlapped, that is, a plurality of capacitive pixel units 12 correspond to one conductive member 13.
  • FIG. 7 which is a schematic diagram of the capacitance value C sensed by the capacitive pixel unit 12 when a finger touches the biometric information identification device.
  • the capacitance fingerprint signal is mainly affected by the capacitance difference ⁇ C.
  • the corresponding value, Cmin is the value corresponding to the valley of the fingerprint when the finger touches the biometric information identification device.
  • EMC is the encapsulation layer 14
  • PI is the dielectric layer 15
  • ⁇ EMC is the dielectric constant of the encapsulation layer 14
  • ⁇ PI is the dielectric constant of the dielectric layer 15
  • h is the height
  • S is the cross-sectional area of the conductive member 13
  • H is the thickness of the encapsulation layer 14 .
  • the thicknesses of the encapsulation layer 14 and the dielectric layer 15 are both constant. Specifically, the thickness of the encapsulation layer 14 is 200 ⁇ m, and the thickness of the dielectric layer 15 is 10 ⁇ m (microns).
  • Table 1 shows the trend of the signal-to-noise ratio changing with the height of the conductive member 13 when the cross-sectional area of the conductive member 13 and the dielectric constant of the encapsulation layer 14 and the dielectric constant of the dielectric layer 15 are constant. It can be known from the data that the greater the height of the conductive member 13, the greater the capacitance signal amount.
  • Table 2 shows the trend of the signal-to-noise ratio changing with the cross-sectional area of the conductive member 13 when the height of the conductive member 13 and the dielectric constant of the encapsulation layer 14 and the dielectric constant of the dielectric layer 15 are constant. It can be seen from the data that the cross-sectional area of the conductive member 13 has little effect on the signal quantity.
  • Table 3 shows the trend of the signal-to-noise ratio changing with the dielectric constant of the encapsulation layer 14 and the dielectric constant of the dielectric layer 15 when the height and cross-sectional area of the conductive member 13 are constant. The greater the dielectric constant of 14 and the dielectric layer 15, the greater the amount of capacitance signal.
  • the distance between any two adjacent conductive members 13 can be in the range of 20 micrometers to 30 micrometers, so as to match the peaks and valleys of the fingerprint of the finger.
  • the inventor In order to know whether the conductive member 13 is a solid structure or a hollow structure, and the influence of whether the dielectric layer 15 is provided on the signal quantity, the inventor also performed a signal-to-noise ratio detection simulation experiment under different thicknesses of the encapsulation layer 14.
  • the specific data are as follows:
  • EMC is the encapsulation layer 14
  • PI is the dielectric layer 15
  • ⁇ EMC is the dielectric constant of the encapsulation layer 14
  • ⁇ PI is the dielectric constant of the dielectric layer 15
  • h is the height
  • S is the cross-sectional area of the conductive member 13
  • H is the thickness of the encapsulation layer 14 .
  • the height of each conductive member 13 may be greater than or equal to 100 microns
  • the cross-sectional area of each conductive member 13 may range from 400 square microns to 900 square microns (preferably, 625 square microns)
  • the thickness of the encapsulation layer 14 may range from 150 microns to 250 microns (preferably , 200 microns)
  • the thickness of the dielectric layer 15 can range from 8 microns to 12 microns (preferably, 10 microns).
  • the thickness of the dielectric layer 15 in the simulation is constant, specifically, the thickness of the dielectric layer 15 is 10 ⁇ m.
  • the embodiments of the present application further provide an electronic device, which may be a portable electronic device such as a mobile phone or a PAD, which includes any of the biometric information identification devices described in the previous embodiments.
  • an electronic device which may be a portable electronic device such as a mobile phone or a PAD, which includes any of the biometric information identification devices described in the previous embodiments.
  • the biometric information identification device is arranged on the side of the electronic device, so that when the user's finger touches the side of the electronic device, the biometric information identification device is used to detect the capacitance change, and then the fingerprint of the user's finger is recognized.
  • the top surface of the encapsulation layer is an arc surface, so that it can better adapt to the curved surface area on the side of the electronic device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • General Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

本申请部分实施例提供了一种生物信息识别装置,包括:指纹识别模块、及位于指纹识别模块朝向用户的一侧且用于将指纹识别模块进行封装以使指纹识别模块与外界绝缘的封装层(14),所述封装层(14)的顶面(142)为弧面;指纹识别模块包括:用于识别用户的指纹信息的指纹识别芯片(11),指纹识别芯片(11)的上表面上设置有多个电容式像素单元(12),电容式像素单元(12)与用户手指形成电容;及多个导电件(13),位于电容式像素单元(12)上方。本申请实施例还提供一种具有该生物信息识别装置的电子设备。本申请部分实施例还提供一种具有该种生物信息识别装置的电子设备。

Description

生物信息识别装置及电子设备 技术领域
本申请涉及指纹识别技术领域,特别涉及一种生物信息识别装置及电子设备。
背景技术
随着人们对于手机安全性的要求不断提高,生物识别逐渐被广泛应用于手机的身份验证。例如,中高端手机一般都配备有指纹识别模组等生物信息识别装置,指纹识别模组通常采用电容式指纹识别,具体原理如下:将芯片的感应区分割成多个小份(以下简称Pixel,单个Pixel的尺寸与手指指纹的宽度相对应),当手指按压感应区时,手指指纹上的峰(指纹最高点)和谷(指纹最低点)会对应到不同的Pixel上,因其高度不同,两个Pixel之间会产生电容差,这个电容差值会反馈给指纹识别芯片生成指纹图像。即,对于电容式指纹识别而言,主要的信号量就是两个Pixel之间的电容差,利用该电容差识别出手指指纹上的峰和谷,形成指纹图像。
伴随着手机全面屏流行趋势的到来,原本广泛应用于中高端机型的正面指纹识别,开始转向屏下或侧面,但传统的电容式指纹信号无法穿透较厚的屏幕或曲面的侧面结构,导致电容式指纹识别的信号量不足,指纹识别的准确率不高、甚至无法识别。
发明内容
本申请部分实施例的目的在于提供一种生物信息识别装置及电子设备,用以提高电容式指纹识别的信号量,进而提高电容指纹识别的准确性。
为解决上述技术问题,本申请的实施例提供了一种生物信息识别装置,包括:指纹识别模块、及位于所述指纹识别模块朝向用户的一侧且用于将所述指纹识别模块进行封装以使所述指纹识别模块与外界绝缘的封装层,所述封装层的顶面为弧面;所述指纹识别模块包括:用于识别用户的指纹信息的指纹识别芯片,所述指纹识别芯片的上表面上设置有多个电容式像素单元,所述电容式像素单元与用户手指形成电容;及多个导电件,位于所述电容式像素单元上方。
本申请的实施例还提供一种电子设备,包括如上所述的生物信息识别装置。
本申请实施例相对于相关技术而言,其在用于识别指纹信息的指纹识别芯片上设置多个电容式像素单元、并在电容式像素单元上方增设导电件,根据电容式像素单元感测手指指纹时产生的电容值计算公式C=εS/4πkd,d为导电件距离手指的距离(不设置导电件时,d为电容式像素单元距离手指的高度),用户手指按压在电容式像素单元上方进行识别时,增设的导电件作为导体而言变相的降低了手指指纹与电容式像素单元之间的距离d,从而增大了电容式像素单元所产生的电容的电容值C。所以,该生物信息识别装置应用在电子设备上时,该指纹识别模块可以产生更大的信号量,进而可以减少出现无法识别或者电容信号量较小以致识别不够准确的情况。
在一个例子中,所述导电件为中空结构。
在一个例子中,所述导电件的底部与所述电容式像素单元的顶部接触。通过导电件与所述电容式像素单元直接相接,从而二者能够共同组成用于感应电容的极板以感应手指触摸而产生的电容,利用增设的导电件直接降低电容式像素单元与手指之间的间距,能够获得更大的信号量。
在一个例子中,所述指纹识别芯片包括中部、以及环绕所述中部设置的边缘部;在由所述中部到所述边缘部的方向上,所述多个导电件的高度逐渐减小。如此设置,由于导电件的高度变化趋势与封装层的顶面的变化趋势一致,使得各处的封装层的顶面距离导电件的顶端的距离基本一致,从而当用户手指触及顶面时,保证各个导电件距离手指表面的距离大致相等,改善了不同区域电容式像素单元所感应到的电容值差异较大的问题,更好的适应生物信息识别装置应用于终端上凸起区域下方的场景。
在一个例子中,所述多个导电件的横截面积相等。
在一个例子中,所述导电件为柱状的导电柱。如此设置,不仅便于生产制作,还可以便于保障各个导电件的形状的一致性,以提高各个电容式像素单元检测的电容信号的一致性。
在一个例子中,所述多个导电件的高度相等。
在一个例子中,所述指纹识别芯片包括中部、以及环绕所述中部设置的边缘部;在由所述中部到所述边缘部的方向上,所述多个导电件的横截面积逐渐减小。由于电容式像素单元感应到的电容值C=εS/4πkd,因此,C与导电件的横截面积呈正相关、与导电件与手指的距离(也即导电件上方封装层的厚度)呈负相关。当该生物信息识别装置的边缘部分的电容式像素单元与手指之间的距离小于生物信息识别装置的中部的电容式像素单元与手指之间的距离时,通 过上述边缘处的导电件的横截面积比中部处的导电件的横截面积小的方式,可以使得生物信息识别装置不同地方的电容式像素单元获取到的指纹信息尽量一致,以便于对指纹信号的算法处理,同时降低指纹信号的数据上下饱和的风险,进而达到改善指纹识别性能的目的。例如,当所述封装层的顶面为弧面时,封装层的中部厚,两侧薄,以致生物信息识别装置的边缘部分的电容式像素单元与手指之间的距离小于生物信息识别装置的中部的电容式像素单元与手指之间的距离,则通过上述边缘处的导电件的横截面积比中部处的导电件的横截面积小的方式,可以保证各电容式像素单元处获取到的信号量大小大体一致。
在一个例子中,所述导电件的底部与所述电容式像素单元的顶部间隔设置,所述指纹识别模块还包括:设置在所述电容式像素单元与所述导电件之间的介电层,所述介电层设置在所述上表面上并覆盖所述多个电容式像素单元;所述介电层包括:靠近所述封装层一侧的第一表面,所述多个导电件设置在所述第一表面上。
在一个例子中,所述第一表面为弧面。如此设置,能够抵消封装层为非平面时对信号量造成的影响。
在一个例子中,每个所述导电件的高度大于或等于100微米。
在一个例子中,每个所述导电件的横截面积范围为400平方微米至900平方微米。
在一个例子中,任意相邻的两个导电件之间的间距范围为20微米至30微米。
在一个例子中,每个所述导电件对应一个所述电容式像素单元设置。如此设置,能够在保证分辨率不变的前提下,提升生物信息识别装置各个位置所能获得的信号量,提高指纹识别的准确率。
在一个例子中,所述导电件为铜柱。
在一个例子中,所述生物信息识别装置设置于所述电子设备的侧面。
附图说明
图1是本申请的实施例提供的一种生物信息识别装置的结构示意图;
图2是本申请的实施例提供的另一种生物信息识别装置的结构示意图;
图3是本申请的实施例提供的又一种生物信息识别装置的结构示意图;
图4是本申请的实施例提供的又一种生物信息识别装置的结构示意图;
图5是本申请的实施例提供的又一种生物信息识别装置的结构示意图;
图6是本申请的实施例提供的又一种生物信息识别装置的结构示意图;
图7是手指触摸生物信息识别装置时电容式像素单元感应到的电容值的示意图。
具体实施例
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。
本申请的实施例涉及一种生物信息识别装置,如图1所示,本实施例提供的生物信息识别装置包括:指纹识别模块、及位于指纹识别模块朝向用户的一侧且用于将指纹识别模块进行封装以使指纹识别模块与外界绝缘的封装层14,封装层14的顶面为弧面,指纹识别模块包括:指纹识别芯片11和多个电容式像素单元12,电容式像素单元12位于指纹识别芯片11的上表面上,多个电容式像素单元12用于采集用户指纹信息,指纹识别芯片11用于识别指纹信息,电容式像素单元12与用户手指形成电容,生物信息识别装置还包括多个导电件13,多个导电件13位于电容式像素单元12上方。
由于其在用于识别指纹信息的指纹识别芯片11上设置多个电容式像素单元12、并在电容式像素单元12上方增设导电件13,根据电容式像素单元12感测手指指纹时产生的电容值计算公式C=εS/4πkd,d为导电件13距离手指的高度(不设置导电件13时,d为电容式像素单元12距离手指的高度),用户手指按压在电容式像素单元12上方进行识别时,增设的导电件13作为导体而言变相的降低了手指指纹与电容式像素单元12之间的距离d,从而增大了电容式像素单元所产生的电容的电容值C。所以,该生物信息识别装置应用在电子设备上时,指纹识别模块可以产生更大的信号量,进而可以减少出现无法识别或者减少电容信号量较小以致识别不够准确的情况例如,即使是指纹识别模块里电容式像素单元上方/外侧的绝缘件较厚,本实用新型提供的生物信息识别装置依然能实现较准确的指纹识别。
下面对本实施例的生物信息识别装置的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必需。
具体的说,导电件13可以为柱状的导电柱,不仅便于生产制作(比如通 过电镀形成柱状),还可以便于保障各个导电件的形状的一致性,以提高各个电容式像素单元检测的电容信号的一致性。其中,导电件的材料可以为金、银、铜等导电材料,本实施例中,所述导电件可以为铜柱,由于铜具有高导电性,从而进一步提供了指纹识别的效果。本实施例中,导电柱可以为实心结构。当然,如图2所示,导电件13也可以为中空结构,此时,导电件13具有密封腔体20,其可以同时保障导电件13与封装层14的顶面之间的距离较短以增加检测的电容信号的信号量,还可以节省材料和成本,且还避免了用于制备第一介质层的材料从腔体的开口处进入腔体中。
实际应用中,封装层14包括:远离指纹识别芯片11的顶面142、与顶面142相对设置的底面141,本实施例中,顶面142为弧面。传统电容式指纹模块都是一个方形或者圆形的平面接触式,用户使用时手感不舒适,外形不美观等问题,致使手机壳新意不足很难在用户体验上有新的突破;而且尤其是在风沙、粉尘等恶劣环境下,灰尘经常会很容易吸附在平面上,使用时指纹识别出现误判等问题。而本实施例中,通过封装层14的顶面142为弧面这一弧面电容指纹设计,新的结构设计方案一方面使指纹识别模块在整机外观上更具手感,更具立体感,带给用户群体全新的既视感;另一方面采用弧面立体设计在摔落时接触的是一个点不会是一个面,从而能够避免手机在摔落时对整个电容式指纹识别模块的平面造成损伤,而且弧面设计对整机摔落时也会起到一个缓冲的作用;并且,弧面设计使得灰尘等杂质不易吸附,避免了使用时指纹识别出现误判。具体的,本实施方式中,封装层14可以是将指纹识别模块进行塑封、以使指纹识别模块与外界绝缘的塑封层。
本实施例中,导电件13的底部与电容式像素单元12的顶部接触,从而, 导电件13与电容式像素单元12二者能够共同组成用于感应电容的极板以感应手指触摸而产生的电容,利用增设的导电件13直接降低电容式像素单元12与手指之间的间距,能够获得更大的信号量。
其中,多个导电件13的高度均相等,每个导电件13的横截面积恒定,多个导电件13的横截面积也均相等。
如图3所示,在本实施例的另一种生物信息识别装置结构中,指纹识别芯片11包括中部113、以及环绕中部113设置的边缘部114,在由中部113到边缘部114的方向上,多个导电件13的高度逐渐减小,每个导电件13的横截面积恒定,多个导电件13的横截面积也均相等。如此设置,使得该生物信息识别装置能够适合设置在终端上凸起区域的下方实现指纹识别,该种导电件13的高度变化趋势与封装层14的弧形的顶面142的变化趋势一致,使得各处的封装层14的顶面142距离导电件13的顶端的距离基本一致,从而当用户手指触及顶面142时,保证各个导电件13距离手指表面的距离大致相等,改善了不同区域电容式像素单元12所感应到的电容值差异较大的问题,更好的适应生物信息识别装置应用于终端上凸起区域下方的场景也可以更好的适用于生物信息识别装置中电容式像素单元与手指之间的绝缘层的厚度较厚或者绝缘层的厚度不一致的情况。例如,图1中所示的弧面的电容指纹模组,该生物信息识别装置可以设置于手机的侧面,以实现侧面的电容式指纹识别的同时,还可以使得电容信号量较大,进而较准确的进行指纹识别,进而可以适应当前全面屏盛行的趋势,且能丰富用户体验。
如图4所示,在本实施方式的又一种生物信息识别装置结构中,多个导电件13的高度相等,在由中部113到边缘部114的方向上,多个导电件13的 横截面积逐渐减小。由于电容式像素单元12感应到的电容值C=εS/4πkd,因此,C与导电件13的横截面积呈正相关、与导电件13的d呈负相关,在电容式像素单元12上方设置导电件13后,当该生物信息识别装置设置在终端上凸起区域的下方实现指纹识别时(例如将生物信息识别装置设置于手机的侧面凸起的电源键内时),封装层14的顶面为弧面,封装层14的中部厚、两侧薄,此时,生物信息识别装置的中部的电容式像素单元与手指之间的距离较大(d较大)、而生物信息识别装置的边缘部分的电容式像素单元与手指之间的距离较小(d较小),因此,可以通过在由中部113到边缘部114的方向上,使得多个导电件13的横截面积逐渐减小,即,上述边缘处的导电件13的横截面积比中部处的导电件13的横截面积小的方式,可以使得生物信息识别装置不同地方的电容式像素单元获取到的指纹信息尽量一致,以便于对指纹信号的算法处理,同时降低指纹信号的数据上下饱和的风险,进而达到改善指纹识别性能的目的。
如图5所示,在本实施例的还一种生物信息识别装置结构中,在由中部113到边缘部114的方向上,多个导电件13的高度逐渐减小,多个导电件13的横截面积也逐渐减小,通过导电件13的高度和横截面积这两个维度的补偿,从而能够进一步减小不同区域获取到的信号量的大小差异。
如图6所示,导电件13的底部与电容式像素单元12的顶部也可以间隔设置,在电容式像素单元12与导电件13之间也可以增设有介电层15,此时,介电层15铺设在上表面111上并覆盖多个电容式像素单元12,介电层15包括靠近封装层14一侧的第一表面151,多个导电件13设置在第一表面151上,具体的,导电件13的第一端面131与介电层的第一表面151接触,其中,第一 表面151可以为弧面。如此设置,能够抵消或减少封装层为非平面时对信号量造成的影响。
可以理解的是,无论针对何种导电件13的高度设置方式,由于各导电件13的高度差是在设计、制造阶段已知的,所以也可以通过设计软件程序来弥补各导电件13的高度差带来的信号量大小不一致的问题,如此以来,在通过软件设计弥补信号量差异的情形下,便可以在设计制造过程中不必通过特定的结构设计(如高度、横截面积等)来确保信号量一致,使得导电件13的结构更加简单,制作过程更加容易。
当然,顶面142也可以为平面或其他形状的表面,对应的,除了以上导电件13的高度设置方式之外,还可以根据生物信息识别装置装配位置表面的形状不同,适应性的改变导电件13的高度、以使导电件13末端组成的形状与装配位置表面的形状匹配,在此不再一一举例。
此外,为了在保证分辨率不变的前提下,提升生物信息识别装置各个位置所能获得的信号量,提高指纹识别的准确率,本实施例中,每个电容式像素单元12对应设置一个导电件13。当然,也可以令至少部分的电容式像素单元12共用导电件13,此时,导电件13的数量少于电容式像素单元12,至少部分导电件13在上表面111上的投影、与至少两个的电容式像素单元12在上表面111上的投影部分重叠,也即,多个电容式像素单元12对应一个导电件13,通过减少导电件13的数量并增加导电件13的横截面积,降低了导电件13的制作工艺难度。
为了保证指纹识别的准确率,在实际应用中要求信噪比SNR大于5,而SNR=73.35*△C,即,SNR与△C成正比,因此,需要提高信号量以满足要求。 具体的,电容计算公式:C=εS/4πkd,从公式可知C受介电层K值,介电层厚度,电极板面积影响。
如图7所示,其为手指触摸生物信息识别装置时电容式像素单元12感应到的电容值C的示意图。电容指纹信号量主要受电容差△C影响,△C越大,说明模组能检测到的指纹信号越强,其中,△C=Cmax-Cmin,Cmax为手指触摸生物信息识别装置时指纹的峰对应的值,Cmin为手指触摸生物信息识别装置时指纹的谷对应的值。
为了获知各影响因子对信号量大小的影响,发明人根据控制变量法做了以下仿真实验,具体数据如下:
表1
Figure PCTCN2021072198-appb-000001
表2
Figure PCTCN2021072198-appb-000002
表3
Figure PCTCN2021072198-appb-000003
表1、表2、表3中,EMC为封装层14,PI为介电层15,εEMC为封装层14的介电常数,εPI为介电层15的介电常数,h为导电件13的高度,S为导电件13的横截面积,H为封装层14的厚度。
需要说明的是,仿真中封装层14和介电层15的厚度均恒定不变,具体为,封装层14的厚度为200um,介电层15的厚度为10um(微米)。
表1展示了导电件13的横截面积、以及封装层14的介电常数和介电层15的介电常数恒定的情形下,信噪比随导电件13的高度变化的趋势,由表1数据可知,导电件13高度越大,电容信号量越大。
表2展示了导电件13的高度、以及封装层14的介电常数和介电层15的介电常数恒定的情形下,信噪比随导电件13的横截面积变化的趋势,由表2数据可知,导电件13的横截面积对信号量的影响不大。
表3展示了导电件13的高度和横截面积恒定的情形下,信噪比随封装层14的介电常数和介电层15的介电常数变化的趋势,由表3数据可知,封装层14和介电层15的介电常数越大,电容信号量越大。
另外,需要说明的是,任意相邻的两个导电件13之间的间距范围可以为20微米至30微米,以与手指指纹的峰和谷匹配。
为了获知导电件13为实心结构或中空结构、以及是否设置介电层15对信号量的影响,发明人还做了不同封装层14的厚度下的信噪比检测仿真实验,具体数据如下:
表4
Figure PCTCN2021072198-appb-000004
表5
Figure PCTCN2021072198-appb-000005
表6
Figure PCTCN2021072198-appb-000006
表4、表5、表6中,EMC为封装层14,PI为介电层15,εEMC为封装层14的介电常数,εPI为介电层15的介电常数,h为导电件13的高度,S为导电件13的横截面积,H为封装层14的厚度。
根据导电件13的高度、导电件13的横截面积、封装层14的厚度、以及介电层15的厚度对信噪比SNR的影响趋势,本实施例中,每个导电件13的高度可以大于或等于100微米,每个导电件13的横截面积范围可以为400平方微米至900平方微米(优选的,625平方微米),封装层14的厚度范围可以为150微米至250微米(优选的,200微米),介电层15的厚度范围可以为8微米至12微米(优选的,10微米),通过在这些范围内合理的取值,能够使得信噪比 SNR大于5,从而保证了指纹识别的准确率。
需要说明的是,仿真中介电层15的厚度恒定不变,具体为,介电层15的厚度为10um。
由上述仿真数据可知,在相同的条件下,导电件13为实心结构且不设置介电层15(导电件13与电容式像素单元12直接相连)时,能够获得更大的信号量。
此外,本申请的实施例还提供一种电子设备,该电子设备可以是手机、PAD等便携式电子装置,其包括如前实施例所述的任一种生物信息识别装置。
可选的,生物信息识别装置设置于所述电子设备的侧面,以在用户手指触及电子设备的侧面时,利用生物信息识别装置检测电容变化,进而识别用户手指的指纹,由于生物信息识别装置的封装层的顶面为弧面,从而能够更好的与电子设备侧面的曲面区域相适应。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (17)

  1. 一种生物信息识别装置,其特征在于,包括:
    指纹识别模块、及位于所述指纹识别模块朝向用户的一侧且用于将所述指纹识别模块进行封装以使所述指纹识别模块与外界绝缘的封装层,所述封装层的顶面为弧面;
    所述指纹识别模块包括:
    用于识别用户的指纹信息的指纹识别芯片,所述指纹识别芯片的上表面上设置有多个电容式像素单元,所述电容式像素单元与用户手指形成电容;及
    多个导电件,位于所述电容式像素单元上方。
  2. 根据权利要求1所述的生物信息识别装置,其特征在于,所述导电件为中空结构。
  3. 根据权利要求1所述的生物信息识别装置,其特征在于,所述导电件的底部与所述电容式像素单元的顶部接触。
  4. 根据权利要求3所述的生物信息识别装置,其特征在于,所述指纹识别芯片包括中部、以及环绕所述中部设置的边缘部;在由所述中部到所述边缘部的方向上,所述多个导电件的高度逐渐减小。
  5. 根据权利要求3所述的生物信息识别装置,其特征在于,所述多个导电件的横截面积相等。
  6. 根据权利要求5所述的生物信息识别装置,其特征在于,所述导电件为柱状的导电柱。
  7. 根据权利要求3所述的生物信息识别装置,其特征在于,所述多个导电件的高度相等。
  8. 根据权利要求7所述的生物信息识别装置,其特征在于,所述指纹识别芯片包括中部、以及环绕所述中部设置的边缘部;在由所述中部到所述边缘部的方向上,所述多个导电件的横截面积逐渐减小。
  9. 根据权利要求1所述的生物信息识别装置,其特征在于,所述导电件的底部与所述电容式像素单元的顶部间隔设置,所述指纹识别模块还包括:设置在所述电容式像素单元与所述导电件之间的介电层,所述介电层设置在所述上表面上并覆盖所述多个电容式像素单元;
    所述介电层包括:靠近所述封装层一侧的第一表面,所述多个导电件设置在所述第一表面上。
  10. 根据权利要求9所述的生物信息识别装置,其特征在于,所述介电层的第一表面为弧面。
  11. 根据权利要求1-10任一项所述的生物信息识别装置,其特征在于,每个所述导电件的高度大于或等于100微米。
  12. 根据权利要求1-10任一项所述的生物信息识别装置,其特征在于,每个所述导电件的横截面积范围为400平方微米至900平方微米。
  13. 根据权利要求1-10任一项所述的生物信息识别装置,其特征在于,任意相邻的两个导电件之间的间距范围为20微米至30微米。
  14. 根据权利要求1-10任一项所述的生物信息识别装置,其特征在于,每个所述导电件对应一个所述电容式像素单元设置。
  15. 根据权利要求1-10任一项所述的生物信息识别装置,其特征在于,所述导电件为铜柱。
  16. 一种电子设备,包括如权利要求1-15中任一项所述的生物信息识别装置。
  17. 根据权利要求16所述的电子设备,其特征在于,所述生物信息识别装置设置于所述电子设备的侧面。
PCT/CN2021/072198 2021-01-15 2021-01-15 生物信息识别装置及电子设备 WO2022151364A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21773260.1A EP4071662B1 (en) 2021-01-15 2021-01-15 Apparatus for recognizing biometric information, and electronic device
CN202190000199.1U CN219039787U (zh) 2021-01-15 2021-01-15 生物信息识别装置及电子设备
PCT/CN2021/072198 WO2022151364A1 (zh) 2021-01-15 2021-01-15 生物信息识别装置及电子设备
KR1020217031543A KR20220103879A (ko) 2021-01-15 2021-01-15 생체 정보 인식 장치 및 전자 기기
US17/492,600 US11756328B2 (en) 2021-01-15 2021-10-02 Biological information identification apparatus and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/072198 WO2022151364A1 (zh) 2021-01-15 2021-01-15 生物信息识别装置及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/492,600 Continuation US11756328B2 (en) 2021-01-15 2021-10-02 Biological information identification apparatus and electronic device

Publications (1)

Publication Number Publication Date
WO2022151364A1 true WO2022151364A1 (zh) 2022-07-21

Family

ID=82406327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072198 WO2022151364A1 (zh) 2021-01-15 2021-01-15 生物信息识别装置及电子设备

Country Status (5)

Country Link
US (1) US11756328B2 (zh)
EP (1) EP4071662B1 (zh)
KR (1) KR20220103879A (zh)
CN (1) CN219039787U (zh)
WO (1) WO2022151364A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103870813A (zh) * 2014-03-14 2014-06-18 联想(北京)有限公司 指纹传感器和电子设备
CN105095887A (zh) * 2015-09-16 2015-11-25 京东方科技集团股份有限公司 一种指纹识别模组及指纹识别方法、显示装置
CN105184287A (zh) * 2015-10-29 2015-12-23 京东方科技集团股份有限公司 一种电极结构、指纹识别模组及其制备方法、显示装置
CN205788221U (zh) * 2015-06-08 2016-12-07 指纹卡有限公司 具有中介结构的指纹感测装置
CN107004127A (zh) * 2017-02-08 2017-08-01 深圳市飞仙智能科技有限公司 一种智能终端、电容式指纹传感器及其感测模块
US20180300520A1 (en) * 2017-04-17 2018-10-18 Sunasic Technologies, Inc. Capacitive image sensor with noise reduction feature and method operating the same
CN208384588U (zh) * 2018-04-18 2019-01-15 Oppo广东移动通信有限公司 指纹模组及电子设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9001040B2 (en) * 2010-06-02 2015-04-07 Synaptics Incorporated Integrated fingerprint sensor and navigation device
US10353500B2 (en) * 2015-01-27 2019-07-16 Lg Innotek Co., Ltd. Touch device
US10282585B2 (en) * 2015-11-13 2019-05-07 Cypress Semiconductor Corporation Sensor-compatible overlay
KR20180026597A (ko) * 2016-09-02 2018-03-13 삼성디스플레이 주식회사 터치 패널 및 이를 포함하는 표시 장치
US10578575B2 (en) * 2016-09-14 2020-03-03 Sunasic Technologies, Inc. Noise-reduced capacitive sensing unit
US10346665B2 (en) * 2017-05-30 2019-07-09 Sunasic Technologies Limited Noise reduced capacitive image sensor and method operating the same
US10205895B2 (en) * 2017-07-05 2019-02-12 Sunasic Technologies Limited Capacitive image sensor with noise reduction feature and method operating the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103870813A (zh) * 2014-03-14 2014-06-18 联想(北京)有限公司 指纹传感器和电子设备
CN205788221U (zh) * 2015-06-08 2016-12-07 指纹卡有限公司 具有中介结构的指纹感测装置
CN105095887A (zh) * 2015-09-16 2015-11-25 京东方科技集团股份有限公司 一种指纹识别模组及指纹识别方法、显示装置
CN105184287A (zh) * 2015-10-29 2015-12-23 京东方科技集团股份有限公司 一种电极结构、指纹识别模组及其制备方法、显示装置
CN107004127A (zh) * 2017-02-08 2017-08-01 深圳市飞仙智能科技有限公司 一种智能终端、电容式指纹传感器及其感测模块
US20180300520A1 (en) * 2017-04-17 2018-10-18 Sunasic Technologies, Inc. Capacitive image sensor with noise reduction feature and method operating the same
CN208384588U (zh) * 2018-04-18 2019-01-15 Oppo广东移动通信有限公司 指纹模组及电子设备

Also Published As

Publication number Publication date
US11756328B2 (en) 2023-09-12
CN219039787U (zh) 2023-05-16
US20220230010A1 (en) 2022-07-21
EP4071662A1 (en) 2022-10-12
EP4071662A4 (en) 2022-10-12
EP4071662B1 (en) 2023-12-27
KR20220103879A (ko) 2022-07-25

Similar Documents

Publication Publication Date Title
US10783347B2 (en) Capacitive sensor packaging
KR101849213B1 (ko) 이동 단말기
KR101911710B1 (ko) 지문 인식 칩 패키징 구조 및 패키징 방법
US20150071509A1 (en) Biometric Sensor Stack Structure
WO2018148901A1 (zh) 指纹按键结构、按键压力检测方法和电子设备
TW201635191A (zh) 懸浮電容式指紋感測器及其製造方法
CN212724041U (zh) 生物信息识别装置及电子设备
WO2020124783A1 (zh) 一种显示装置及其使用方法
CN204029787U (zh) 指纹识别芯片封装结构
CN109656428A (zh) 触控面板
CN107589871B (zh) 一种压感触控模组、制备方法、触摸屏及显示装置
WO2022151364A1 (zh) 生物信息识别装置及电子设备
CN204926117U (zh) 指纹识别模组及终端设备
CN205193823U (zh) 指纹识别感测装置、电子设备以及移动设备
WO2020034287A1 (zh) 显示装置
CN105446534B (zh) 一种压力传感装置及具有该压力传感装置的终端设备
TWI575437B (zh) Capacitive fingerprint induction module
CN201084167Y (zh) 触滑式薄型指纹辨识器封装构造及其封装基板
CN205353984U (zh) 一种压力传感装置及具有该压力传感装置的终端设备
CN205942737U (zh) 指纹传感器封装件
CN204009944U (zh) 指纹识别检测组件及包含其的终端设备
CN110133896B (zh) Lcd显示面板及其制备方法、终端设备
WO2022141367A1 (zh) 一种弧面电容指纹封装结构、模组、电子设备及封装方法
CN216697344U (zh) 电容式指纹感测模块
WO2022198574A1 (zh) 电容指纹识别方法、电容指纹识别装置和电子设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021773260

Country of ref document: EP

Effective date: 20210929

NENP Non-entry into the national phase

Ref country code: DE