WO2022151175A1 - 波束管理方法与装置 - Google Patents

波束管理方法与装置 Download PDF

Info

Publication number
WO2022151175A1
WO2022151175A1 PCT/CN2021/071810 CN2021071810W WO2022151175A1 WO 2022151175 A1 WO2022151175 A1 WO 2022151175A1 CN 2021071810 W CN2021071810 W CN 2021071810W WO 2022151175 A1 WO2022151175 A1 WO 2022151175A1
Authority
WO
WIPO (PCT)
Prior art keywords
common
terminal device
public
dci
indicated
Prior art date
Application number
PCT/CN2021/071810
Other languages
English (en)
French (fr)
Inventor
樊波
张希
陈雷
袁世通
刘凤威
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/071810 priority Critical patent/WO2022151175A1/zh
Priority to CN202180089638.5A priority patent/CN116686365A/zh
Priority to EP21918383.7A priority patent/EP4266786A4/en
Publication of WO2022151175A1 publication Critical patent/WO2022151175A1/zh
Priority to US18/352,125 priority patent/US20230361827A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06968Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using quasi-colocation [QCL] between signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06964Re-selection of one or more beams after beam failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications, and in particular, to a beam management method and apparatus.
  • the fifth generation mobile communication system can use high-frequency communication, that is, use ultra-high frequency (>6GHz) signals to transmit data.
  • a major problem with high-frequency communication is that the signal energy drops sharply with the transmission distance, resulting in short signal transmission distances.
  • high-frequency communication adopts analog beam technology. By weighting the antenna array, the signal energy is concentrated in a small angle range to form a beam-like signal (called analog beam, or simply beam for short). ), thereby increasing the transmission distance. Both network equipment and terminal equipment use beams for transmission.
  • Network equipment and terminal equipment use beams for transmission.
  • the beam quality of the beams respectively used by the network device and the terminal device for different channels or different reference signals will change, resulting in the change of the optimal beams for different channels or different reference signals.
  • the network device updates the beams respectively used by the network device and the terminal device for different channels or different reference signals through different signaling, so as to ensure that the beam used by the terminal device is always the best.
  • the present application provides a beam management method and apparatus, which are used for efficient beam notification, avoiding complex and redundant instruction instructions, and reducing signaling overhead.
  • a first aspect of the present application provides a beam management method, which includes:
  • the terminal device receives beam configuration information from the network device.
  • the beam configuration information includes configuration information of one or more common beams.
  • the one or more common beams include any one of the following: an independent common beam for uplink transmission or downlink transmission; a joint common beam for uplink transmission and downlink transmission.
  • the terminal device receives beam activation information from the network device.
  • the beam activation information is used to activate part of the one or more common beams.
  • the terminal device receives beam indication information from the network device.
  • the beam indication information is used to indicate one or more common beams in some common beams.
  • the beam type of the public beam configured by the network device for the terminal device is limited.
  • independent public beam and joint public beam cannot be configured at the same time. Since the joint public beam can be used for both uplink transmission and downlink transmission, if the network device configures the joint public beam for the terminal device, it is not necessary to configure the independent public beam for the terminal device, thereby avoiding the waste of beam resources and improving the efficiency of beam resources. utilization. Since the independent public beam can be used for uplink transmission or downlink transmission, if the network device configures the independent public beam for the terminal device, it is not necessary to configure the joint public beam for the terminal device, thereby avoiding the waste of beam resources and improving the utilization of beam resources. Rate.
  • the beam configuration information includes configuration parameters of the first common beam. If the configuration parameter of the first common beam includes the first parameter and does not include the second parameter, the first common beam is an uplink common beam; or, if the configuration parameter of the first common beam includes the second parameter and does not include the first parameter parameter, the first public beam is a downlink public beam; or, if the configuration parameters of the first public beam include the first parameter and the second parameter, the first public beam is a joint public beam; the first parameter includes at least one of the following: It is used to determine the reference signal resources of the uplink transmission beam, spatial relationship information, uplink power control parameters, and channel sounding reference signal (sounding reference signal, SRS) resources.
  • the second parameter includes at least one of the following: quasi-colocation (QCL) information, and a bandwidth part (bandwidth part, BWP) parameter.
  • QCL quasi-colocation
  • BWP bandwidth part
  • the terminal device may determine the beam type of the one or more common beams according to the configuration parameters included in the beam configuration information. There is no need to indicate the beam type of one or more common beams through other information or fields, reducing the overhead of network resources. For example, signaling overhead, indication bit overhead.
  • the beam indication information is carried by the first downlink control information (downlink control information, DCI); when the first condition is satisfied, and the hybrid automatic repeat request (hybrid automatic repeat) corresponding to the first DCI request, HARQ) feedback result is an acknowledgement character (acknowledgement, ACK), indicating that one or more common beams indicated by the beam indication information are indicated successfully;
  • DCI downlink control information
  • hybrid automatic repeat request hybrid automatic repeat
  • HARQ hybrid automatic repeat request
  • ACK acknowledgement character
  • the first condition includes a combination of one or more of the following:
  • the terminal equipment reports to support the public beam function
  • the network device configures the public beam function of the terminal device to be on
  • the first DCI does not schedule a physical downlink shared channel (PDSCH);
  • PDSCH physical downlink shared channel
  • the first DCI schedules the PDSCH and the terminal device uses a dynamic hybrid automatic repeat request acknowledgement (HARQ-ACK) codebook to perform HARQ feedback;
  • HARQ-ACK dynamic hybrid automatic repeat request acknowledgement
  • the one or more common beams indicated by the first DCI are different from the common beams currently used by the terminal device.
  • the HARQ feedback result of the terminal device for the first DCI or the HARQ feedback result for the PDSCH scheduled for the first DCI indicates that the indication of one or more common beams indicated by the beam indication information is successful.
  • the public beam indicated by the first DCI takes effect at the first time slot after adding the first time offset at the first moment
  • the first moment is the moment of receiving the first DCI, or the moment when the terminal equipment sends the HARQ feedback result corresponding to the first DCI;
  • the HARQ feedback result corresponding to the first DCI is the HARQ feedback result fed back for the first DCI or the HARQ feedback result for the first DCI feedback
  • the network device and the terminal device may determine the effective time of the common beam indicated by the first DCI, and switch to the common beam at the effective time. beam, so as to realize the transmission between the network device and the terminal device through the common beam.
  • the beam indication information is carried by the first DCI, when the second condition is satisfied, and the HARQ feedback result corresponding to the first DCI is an acknowledgement (acknowledgement, ACK) or a non-acknowledgement (non-acknowledgement) , NACK), indicating that the indication of one or more common beams indicated by the beam indication information is successful;
  • the second condition includes a combination of one or more of the following:
  • the terminal equipment reports to support the public beam function
  • the network device configures the public beam function of the terminal device to be on
  • the first DCI schedules the PDSCH
  • the terminal equipment uses the semi-static HARQ-ACK codebook for HARQ feedback
  • the one or more common beams indicated by the first DCI are different from the common beams currently used by the terminal device.
  • the HARQ feedback result of the terminal device on the PDSCH scheduled by the first DCI indicates that the indication of one or more common beams indicated by the beam indication information is successful.
  • the public beam indicated by the first DCI takes effect at the first time slot after adding the first time offset at the first moment
  • the first moment is the moment when the terminal equipment receives the first DCI, or the moment when the terminal equipment sends the HARQ feedback result corresponding to the first DCI;
  • the HARQ feedback result corresponding to the first DCI is the HARQ feedback for the PDSCH scheduled by the first DCI Feedback results.
  • the network device and the terminal device may determine the effective time of the common beam indicated by the first DCI, and switch to the common beam at the effective time. beam, so as to realize the transmission between the network device and the terminal device through the common beam.
  • the beam indication information is carried by the first DCI; the first DCI includes a common beam indication field, and the common beam indication field is used to indicate a common beam of a beam type; the method further includes:
  • the terminal device determines the beam type of the common beam indicated by the common beam indication field according to the beam configuration information; or,
  • the terminal device determines the beam type of the common beam indicated by the common beam indication field according to the beam activation information; or,
  • the terminal device determines the beam type of the common beam indicated by the common beam indication field according to the first DCI.
  • the common beam indication field included in the first DCI indicates a common beam of a beam type
  • various specific implementations for the terminal device to determine the beam type indicated by the common beam indication field are proposed, Improve the diversity and feasibility of the program.
  • the terminal device determines the beam type of the public beam indicated by the public beam indication field according to the beam configuration information, including:
  • the terminal device determines that the beam type indicated by the public beam indication field is a joint public beam; or,
  • the terminal device determines that the beam type of the public beam indicated by the public beam indication field is uplink Common beam or downlink common beam.
  • the terminal device determines the beam type indicated by the common beam indication field according to the beam configuration information, which provides a basis for the implementation of the solution. That is, the beam type indicated by the common beam indication field is indirectly determined through the beam type configured by the beam configuration information.
  • the terminal device determines the beam type of the public beam indicated by the public beam indication field according to the beam activation information, including:
  • the terminal device determines that the beam type of the common beam indicated by the common beam indication field is the joint common beam; or,
  • the terminal device determines that the beam type of the common beam indicated by the common beam indication field is an uplink common beam or a downlink common beam.
  • a specific process is provided for the terminal device to determine the beam type of the common beam indicated by the common beam indication field according to the beam activation information. That is, the beam type indicated by the common beam indication field is indirectly determined by the beam type of the activated common beam.
  • the first x bits or the last x bits of the common beam indication field or the first indication field included in the first DCI is used to indicate the beam type of the common beam indicated by the common beam indication field, x is an integer greater than or equal to 1;
  • the beam type includes any of the following: joint common beam, uplink common beam, downlink common beam; or,
  • the beam type includes any of the following: uplink common beam, downlink common beam.
  • the beam indication information is carried through the first DCI, the first DCI includes a common beam indication field, and the common beam indication field includes one or two subfields; the method further includes:
  • the terminal device determines, according to the beam type of the common beam configured by the beam configuration information, the number of subfields included in the common beam indication field, and/or the beam type indicated by the subfield.
  • the terminal device may determine the number of subfields included in the common beam indication field and the respectively indicated beam types according to the beam type of the common beam configured by the beam configuration information.
  • the common beam indication field includes a subfield, and the one subfield is used to indicate the joint common beam
  • the common beam indication field includes two subfields, and the two subfields are used to indicate the uplink common beam and the downlink common beam.
  • the common beam indication field includes two subfields
  • the first subfield of the two subfields is used to indicate the uplink common beam
  • the second subfield of the two subfields is used to indicate Downlink common beam
  • the first subfield of the two subfields is used to indicate the downlink common beam
  • the second subfield of the two subfields is used to indicate the uplink common beam.
  • the beam types of the common beams respectively indicated by the two subfields may be specified through some preset communication protocols.
  • the method further includes:
  • the terminal device determines the beam types indicated by the two subfields according to the beam configuration information; or,
  • the terminal device determines the beam types indicated by the two subfields according to the beam activation information; or,
  • the terminal device determines the beam types respectively indicated by the two subfields according to the first DCI.
  • the beam configuration information includes an uplink common beam set and a downlink common beam set; the terminal device determines the beam types respectively indicated by the two subfields according to the beam configuration information, including:
  • the terminal device determines the beam types respectively indicated by the two subfields according to the configuration sequence of the uplink common beam set and the downlink common beam set; or,
  • the terminal device determines the beam types respectively indicated by the two subfields according to the size sequence of the set indexes corresponding to the uplink common beam set and the downlink common beam set respectively.
  • the terminal device determines the beam types indicated by the two subfields according to the beam activation information, including: the terminal device determines the two subfields according to the sequence of the uplink common beam and the downlink common beam activated by the beam activation information. Beam type indicated respectively.
  • the terminal device determines the beam types respectively indicated by the two subfields according to the first DCI, including: the terminal device determines, according to the first x bits or the last x bits in the common beam indication field, or the first The second indication field included in the DCI determines the beam type indicated by the first subfield and the beam type indicated by the second subfield of the two subfields.
  • a specific process is provided for the terminal device to determine the beam types indicated by the two subfields in combination with the second indication field or the common beam field included in the first DCI.
  • the beam indication information is carried through the first DCI; if the first DCI does not include a common beam indication field, the method further includes:
  • the terminal device transmits using the public beam activated by the beam activation information; or,
  • the terminal device uses the one with the largest beam index, or the one with the smallest beam index, or the one with the highest ranking, or the last ranked one, or the corresponding
  • the common beam indicates that the field value is the smallest, or the corresponding common beam indicates the common beam with the largest field value for transmission.
  • the terminal device may determine to use the corresponding public beam for transmission in combination with the beam activation information. In this way, normal communication cannot be performed between the terminal device and the network device because the beam indication information does not indicate a common beam, and the performance of the communication system is improved.
  • the method further includes:
  • the terminal device ignores the beam indication information
  • the second public beam includes any one of the following: a public beam currently used by the terminal device, and a public beam indicated or valid for the last time by the terminal device in time.
  • the public beam indication field included in the beam indication information still indicates When the beam is public, the terminal device can ignore the beam indication information. In this way, the terminal device will not update the public beam to avoid unnecessary network resource overhead.
  • the method further includes:
  • the terminal device uses the K public beams as beams corresponding to the K first resources or the K first resource sets;
  • the K common beams are in one-to-one correspondence with the K first resources or the K first resource sets, each of the K first resource sets includes the first resources, and the K common beams are respectively used for the corresponding first resource sets. transmission of resources;
  • the K public beams are sorted in the order of the indication of the beam indication information or the order of the beam index size of the K public beams;
  • the K first resources or the K first resource sets are sorted according to the resource configuration order or the resource index size order;
  • the first resource includes any one of the following: channel status information reference signal (channel status information reference signal, CSI-RS) without repeating (repetitoin parameter and transmission information (transmitting, information, trs-Info) parameter), codebook (codebook) ) type SRS, non-codebook (nonCodebook type) SRS, nonCodebook type SRS associated CSI-RS.
  • channel status information reference signal channel status information reference signal, CSI-RS
  • codebook codebook
  • nonCodebook type SRS nonCodebook type SRS
  • nonCodebook type SRS associated CSI-RS.
  • the terminal device is the K first resource set.
  • a resource or a set of K resources determines the corresponding common beam, so as to facilitate the transmission of the corresponding first resource.
  • the beam indication information is used by the network device to indicate the public beam to the terminal device for the first time after the terminal device initially accesses; before the public beam indicated by the beam indication information takes effect, the method further includes: the terminal The device uses the synchronization signal used in the initial access - broadcast channel measurement resource block (synchronization signal and PBCH block, SSB) beam for transmission.
  • the synchronization signal used in the initial access - broadcast channel measurement resource block synchronization signal and PBCH block, SSB
  • the beam indication information is used by the network device to indicate the common beam to the terminal device for the first time after the terminal device initially accesses.
  • the beam indication information Before the public beam indicated by the beam indication information takes effect, a specific implementation manner in which the terminal device uses the public beam for transmission is provided, so as to facilitate the communication between the terminal device and the network device. Because the public beam indicated by the beam indication information does not take effect, the terminal device and the network device cannot communicate normally, and the performance of the communication system is improved.
  • the beam indication information is used by the network device to indicate the public beam to the terminal device for the first time after the terminal device fails to perform a beam; after the terminal device completes the beam failure recovery, the public beam indicated by the beam indication information takes effect.
  • the method further includes: the terminal device transmits by using the beam reported by the terminal device to the network device during the beam failure recovery process.
  • a specific implementation is provided in which the terminal device uses the public beam for transmission, so as to facilitate communication between the terminal device and the network device. Because the public beam indicated by the beam indication information does not take effect, the terminal device and the network device cannot communicate normally, and the performance of the communication system is improved.
  • the beam indication information is used by the network device to indicate the public beam to the terminal device for the first time after the terminal device initially accesses; after the terminal device initial access, before the terminal device receives the beam activation information,
  • the method further includes: the terminal device uses the SSB beam used for initial access for transmission; after the terminal device receives the beam activation information, before the public beam indicated by the beam indication information takes effect, the method further includes: the terminal device uses the beam activation information The first public beam or the last public beam activated for transmission; or, the terminal device transmits by using the public beam with the largest or smallest value of the public beam indication field among the public beams activated by the beam activation information.
  • the terminal device uses the public beam for transmission, so as to facilitate communication between the terminal device and the network device. Because the public beam indicated by the beam indication information does not take effect, the terminal device and the network device cannot communicate normally, and the performance of the communication system is improved.
  • the beam indication information is carried by the first DCI, and the first DCI also schedules the first PDSCH data; the method further includes: if the time of the first PDSCH data by the network device is earlier than that indicated by the first DCI When the public beam of the terminal device takes effect, the terminal device uses the third public beam to receive the first PDSCH data from the network device; the third public beam includes any of the following: if the network device is after initial access by the terminal device or after completion of beam failure recovery , the public beam indicated to the terminal equipment for the first time has taken effect, and the third public beam is the currently used public beam, or the public beam that has been effective or indicated for the last time; The public beam indicated to the terminal equipment does not take effect, and the third public beam is the SSB beam used by the terminal equipment during initial access; if the network equipment completes beam failure recovery after the terminal equipment, the public beam indicated to the terminal equipment for the first time does not take effect. , and the third public beam is the beam reported by the terminal device to the network device when
  • the beam indication information is carried through the first DCI, and the first DCI also schedules the first PDSCH data. If the time when the network device sends the first PDSCH data is before the time when the common beam indicated by the first DCI takes effect, the terminal device uses the third common beam for transmission. In this way, normal communication between the terminal device and the network device will not be prevented because the public beam indicated by the beam indication information does not take effect, and the performance of the communication system is improved.
  • the network device if the time interval between the time when the network device sends the first PDSCH data scheduled by the first DCI and the time when the network device sends the first DCI is greater than or equal to a preset threshold, and the network device The time of sending the first PDSCH data is earlier than the time when the common beam indicated by the first DCI takes effect, and the third common beam further includes the common beam indicated by the first DCI.
  • the method further includes: the terminal device receives the second DCI from the network device; if the time when the network device sends the second PDSCH data scheduled by the second DCI is between the time when the network device sends the second DCI The time interval between the two is less than the preset threshold value, and the terminal device uses the fourth public beam to receive the second PDSCH data from the network device;
  • the fourth public beam includes any one of the following: if the network device indicates to the terminal device for the first time after the initial access of the terminal device or after the beam failure recovery is completed, the public beam indicated to the terminal device for the first time has taken effect, and the fourth public beam is the currently used public beam. , or the last public beam that took effect or was indicated; if the public beam indicated to the terminal for the first time by the network device does not take effect after the initial access of the terminal, the fourth public beam is the SSB used by the terminal during initial access. Beam; if the public beam indicated by the network device to the terminal device for the first time does not take effect after the terminal device completes the beam failure recovery, the fourth public beam is the beam reported by the terminal device to the network device when the beam fails to recover.
  • the terminal device adopts the fourth common The beam receives the second PDSCH data. In this way, the normal communication between the terminal device and the network device will not be prevented because the public beam indicated by the beam indication information does not take effect, and the performance of the communication system will be improved.
  • a second aspect of the present application provides a beam management method, the method includes:
  • the network device sends beam configuration information to the terminal device.
  • the beam configuration information includes configuration information of one or more common beams.
  • the one or more common beams include any one of the following: an independent common beam for uplink transmission or downlink transmission; a joint common beam for uplink transmission and downlink transmission.
  • the network device sends beam activation information to the terminal device.
  • the beam activation information is used to activate part of the one or more common beams.
  • the network device sends beam indication information to the terminal device.
  • the beam indication information is used to indicate one or more common beams in some common beams.
  • the beam type of the public beam configured by the network device for the terminal device is limited.
  • independent public beam and joint public beam cannot be configured at the same time. Since the joint public beam can be used for both uplink transmission and downlink transmission, if the network device configures the joint public beam for the terminal device, it is not necessary to configure the independent public beam for the terminal device, thereby avoiding the waste of beam resources and improving the efficiency of beam resources. utilization. Since the independent public beam can be used for uplink transmission or downlink transmission, if the network device configures the independent public beam for the terminal device, it is not necessary to configure the joint public beam for the terminal device, thereby avoiding the waste of beam resources and improving the utilization of beam resources. Rate.
  • the beam configuration information includes configuration parameters of the first public beam; if the configuration parameters of the first public beam include the first parameter and do not include the second parameter, the first public beam is an uplink public beam; or, If the configuration parameter of the first common beam includes the second parameter and does not include the first parameter, the first common beam is a downlink common beam; or, if the configuration parameter of the first common beam includes the first parameter and the second parameter, the first common beam A common beam is a joint common beam; the first parameter includes at least one of the following: a reference signal resource for determining the uplink transmission beam, spatial relationship information, uplink power control parameters, and SRS resources; the second parameter includes at least one of the following: QCL Information, BWP parameters.
  • the terminal device may determine the beam type of the one or more common beams according to the configuration parameters included in the beam configuration information. There is no need to indicate the beam type of one or more common beams through other information or fields, reducing the overhead of network resources. For example, signaling overhead, indication bit overhead.
  • the beam indication information is carried by the first DCI; when the first condition is satisfied, and the HARQ feedback result corresponding to the first DCI is ACK, indicating that one or more common beam indications indicated by the beam indication information success;
  • the first condition includes a combination of one or more of the following:
  • the terminal equipment reports to support the public beam function
  • the network device configures the public beam function of the terminal device to be on
  • the first DCI does not schedule PDSCH
  • the first DCI schedules the PDSCH and the terminal device uses the dynamic HARQ-ACK codebook for HARQ feedback;
  • the one or more common beams indicated by the first DCI are different from the common beams currently used by the terminal device.
  • the HARQ feedback result of the terminal device for the first DCI or the HARQ feedback result for the PDSCH scheduled for the first DCI indicates that the indication of one or more common beams indicated by the beam indication information is successful.
  • the public beam indicated by the first DCI takes effect at the first time slot after adding the first time offset at the first moment ;
  • the first moment is the moment when the first DCI is received, or the moment when the terminal device sends the HARQ feedback result corresponding to the first DCI;
  • the HARQ feedback result corresponding to the first DCI is the HARQ feedback result fed back for the first DCI or the HARQ feedback result fed back against the PDSCH scheduled for the first DCI.
  • the network device and the terminal device may determine the effective time of the common beam indicated by the first DCI, and switch to the common beam at the effective time. beam, so as to realize the transmission between the network device and the terminal device through the common beam.
  • the beam indication information is carried by the first DCI.
  • the HARQ feedback result corresponding to the first DCI is ACK or NACK, it indicates that one or more common information indicated by the beam indication information is ACK or NACK. Beam indication is successful;
  • the second condition includes a combination of one or more of the following:
  • the terminal equipment reports to support the public beam function
  • the network device configures the public beam function of the terminal device to be on
  • the first DCI schedules the PDSCH
  • the terminal equipment uses the semi-static HARQ-ACK codebook for HARQ feedback
  • the one or more common beams indicated by the first DCI are different from the common beams currently used by the terminal device.
  • the HARQ feedback result of the terminal device on the PDSCH scheduled by the first DCI indicates that the indication of one or more common beams indicated by the beam indication information is successful.
  • the public beam indicated by the first DCI takes effect at the first time slot after adding the first time offset at the first moment ;
  • the first moment is the moment when the terminal device receives the first DCI, or the moment when the terminal device sends the HARQ feedback result corresponding to the first DCI;
  • the HARQ feedback result corresponding to the first DCI is the HARQ feedback for the PDSCH feedback scheduled by the first DCI result.
  • the network device and the terminal device may determine the effective time of the common beam indicated by the first DCI, and switch to the common beam at the effective time. beam, so as to realize the transmission between the network device and the terminal device through the common beam.
  • the beam indication information is carried by the first DCI, the first DCI includes a common beam indication field, and the common beam indication field is used to indicate a common beam of a beam type;
  • the beam type of the common beam indicated by the common beam indication field is determined by the beam configuration information; or,
  • the beam type of the common beam indicated by the common beam indication field is determined by the beam activation information; or,
  • the beam type of the common beam indicated by the common beam indication field is determined by the first DCI.
  • the network device configures the common beam mode of the terminal device as a joint common beam pattern through the beam configuration information, or the beam configuration information includes the configuration information of the joint common beam, the beam indicated by the common beam indication field Type is Joint Common Beam; or,
  • the network device configures the public beam mode of the terminal device as an independent public beam mode through the beam configuration information, or the beam configuration information includes the configuration information of the independent public beam, the beam type of the public beam indicated by the public beam indication field is the uplink public beam or Downlink common beam.
  • the beam type indicated by the common beam indication field is indirectly determined through the beam type configured by the beam configuration information.
  • the beam type of the common beam indicated by the common beam indication field is the joint common beam
  • the beam type of the common beam indicated by the common beam indication field is an uplink common beam or a downlink common beam.
  • the beam type indicated by the common beam indication field is indirectly determined by the beam type of the activated common beam.
  • the first x bits or the last x bits of the common beam indication field or the first indication field included in the first DCI is used to indicate the beam type of the common beam indicated by the common beam indication field, and x is an integer greater than or equal to 1;
  • the beam type includes any of the following: joint common beam, uplink common beam, downlink common beam; or,
  • the beam type includes any of the following: uplink common beam, downlink common beam.
  • the beam type of the common beam indicated by the common beam indication field is indicated by the first DCI or the common beam indication field.
  • the beam indication information is carried by the first DCI, the first DCI includes a common beam indication field, and the common beam indication field includes one or two subfields;
  • the number of subfields included in the common beam indication field and/or the beam type indicated by the subfield is determined by the beam type configured by the beam configuration information.
  • the beam type of the common beam configured through the beam configuration information indicates the number of subfields included in the common beam indication field and the beam type indicated respectively.
  • the common beam indication field includes a subfield, and the one subfield is used to indicate the joint common beam;
  • the common beam indication field includes two subfields, and the two subfields are used to indicate the uplink common beam and the downlink common beam.
  • the common beam indication field includes two subfields
  • the first subfield of the two subfields is used to indicate the uplink common beam
  • the second subfield of the two subfields is used to indicate the uplink common beam.
  • the beam types of the common beams respectively indicated by the two subfields may be specified through some preset communication protocols.
  • the beam types respectively indicated by the two subfields are determined through beam configuration information or beam activation information or the first DCI.
  • the common beam indication field includes two subfields
  • multiple possible implementation manners for indicating the beam types indicated by the two subfields respectively are provided, which improves the diversity of the solution.
  • the beam configuration information includes an uplink common beam set and a downlink common beam set
  • the beam types indicated by the two subfields are determined by the configuration sequence of the uplink common beam set and the downlink common beam set; or,
  • the size of the set index corresponding to the uplink common beam set and the downlink common beam set respectively indicated by the two subfields is determined in order.
  • a technical solution is provided for determining the beam types corresponding to the two subfields by the configuration order of the uplink common beam set and the downlink common beam set included in the beam configuration information or the set index size order, thereby improving the solution. completeness and feasibility.
  • the beam types respectively indicated by the two subfields are determined by the order of the uplink common beams and the downlink common beams activated by the beam activation information.
  • a technical solution is provided for determining the beam types corresponding to the two subfields respectively by the activation sequence of the common beam in the beam activation information, thereby improving the integrity and diversity of the solution.
  • the beam types respectively indicated by the two subfields are determined by the first x bits or the last x bits in the common beam indication field or the second indication field included in the first DCI.
  • the beam indication information is carried through the first DCI; if the first DCI does not include a common beam indication field, the method further includes:
  • the network device uses the public beam activated by the beam activation information for transmission; or,
  • the network device uses the one with the largest beam index among the multiple common beams, or the one with the smallest beam index, or the one with the highest ranking, or the last ranked one, or the corresponding common beam.
  • the indication field value is the smallest, or the corresponding public beam indicates the public beam with the largest field value for transmission.
  • the network device may determine to use the corresponding public beam for transmission in combination with the beam activation information. In this way, normal communication cannot be performed between the terminal device and the network device because the beam indication information does not indicate a common beam, and the performance of the communication system is improved.
  • the K public beams are K The beams corresponding to the first resources or the K first resource sets; the K common beams are in one-to-one correspondence with the K first resources or the K first resource sets, and each first resource set in the K first resource sets includes For the first resource, the K public beams are respectively used for transmission of the corresponding first resource;
  • the K public beams are sorted in the order of the indication of the beam indication information or the order of the beam index size of the K public beams;
  • the K first resources or the K first resource sets are sorted according to the resource configuration order or the resource index size order;
  • the first resource includes any one of the following: a CSI-RS for which the repeatitoin parameter and the trs-Info parameter are not configured, a sounding reference signal SRS of a codebook type, an SRS of a nonCodebook type, and a CSI-RS associated with an SRS of a nonCodebook type.
  • the K public beams are respectively is a common beam corresponding to the K first resources or K resource sets, so as to facilitate transmission of the corresponding first resources.
  • the beam indication information is used for the network device to indicate the public beam to the terminal device for the first time after the terminal device initially accesses; before the public beam indicated by the beam indication information takes effect, the method further includes: the network The device transmits with the terminal device using the SSB beam used when the terminal device initially accesses.
  • the network device uses the SSB beam used when the terminal device initially accesses to transmit to the terminal device, so as to facilitate communication between the terminal device and the network device . In this way, normal communication between the terminal device and the network device will not be prevented because the public beam indicated by the beam indication information does not take effect, and the performance of the communication system is improved.
  • the beam indication information is used by the network device to indicate the public beam to the terminal device for the first time after the terminal device fails to perform a beam; after the terminal device completes the beam failure recovery, the public beam indicated by the beam indication information takes effect.
  • the method further includes: the network device transmits by using the beam reported by the terminal device to the network device during the beam failure recovery process.
  • a specific implementation is provided in which the network device uses the public beam for transmission, so as to facilitate communication between the terminal device and the network device. Because the public beam indicated by the beam indication information does not take effect, the terminal device and the network device cannot communicate normally, and the performance of the communication system is improved.
  • the beam indication information is used by the network device to indicate the public beam to the terminal device for the first time after the terminal device initially accesses; after the terminal device initially accesses and before the network device sends the beam activation information, the The method further includes: the network device uses the SSB beam used for initial access for transmission; after the network device sends the beam activation information, before the public beam indicated by the beam indication information takes effect, the method further includes: the network device uses the beam activation information to activate the beam. The first public beam or the last public beam is used for transmission; or, the network device transmits by using the public beam with the largest or smallest value of the public beam indication field among the public beams activated by the beam activation information.
  • the network device uses the public beam for transmission, so as to facilitate communication between the terminal device and the network device. Because the public beam indicated by the beam indication information does not take effect, the terminal device and the network device cannot communicate normally, and the performance of the communication system is improved.
  • the beam indication information is carried by the first DCI, and the first DCI also schedules the first PDSCH data; the method further includes: if the time when the network device sends the first PDSCH data is earlier than the time indicated by the first DCI When the public beam takes effect, the network device uses the third public beam to send the first PDSCH data to the network device; the third public beam includes any of the following: if the network device after the initial access of the terminal device or after completing beam failure recovery, the first PDSCH data The public beam indicated to the terminal device at one time has taken effect, and the third public beam is the currently used public beam, or the public beam that took effect or indicated the last time; The public beam indicated by the device does not take effect, and the third public beam is the SSB beam used by the terminal device during initial access; if the network device fails to recover the beam after the terminal device completes the beam failure recovery, the public beam indicated to the terminal device for the first time does not take effect.
  • the three common beams are the beams reported by the terminal device to
  • the beam indication information is carried through the first DCI, and the first DCI also schedules the first PDSCH data. If the time when the network device sends the first PDSCH data is before the time when the common beam indicated by the first DCI takes effect, the network device uses the third common beam for transmission. In this way, normal communication between the terminal device and the network device will not be prevented because the public beam indicated by the beam indication information does not take effect, and the performance of the communication system is improved.
  • the third common beam further includes the common beam indicated by the first DCI.
  • the method further includes: the network device sends the second DCI to the terminal device; if the time between the time when the network device sends the second PDSCH data scheduled by the second DCI and the time when the network device sends the second DCI If the time interval is less than the preset threshold value, the network device sends the second PDSCH data to the terminal device using the fourth public beam;
  • the public beam that has already taken effect, and the fourth public beam is the currently used public beam, or the last public beam that has been effective or indicated; Take effect, the fourth public beam is the SSB beam used by the terminal device during the initial access; if the network device after the terminal device completes beam failure recovery, the public beam indicated to the terminal device for the first time does not take effect, the fourth public beam is the beam failure beam The beam reported by the terminal device to the network device during recovery.
  • the network device adopts the fourth common The beam receives the second PDSCH data. In this way, normal communication between the terminal device and the network device will not be prevented because the public beam indicated by the beam indication information does not take effect, and the performance of the communication system is improved.
  • a third aspect of the present application provides a beam management method, the method comprising:
  • the terminal device receives beam configuration information from the network device.
  • the beam configuration information includes configuration information of one or more common beams.
  • the beam configuration information includes configuration parameters of the one or more common beams. If the configuration parameters of each public beam in the one or more public beams include the first parameter and do not include the second parameter, each public beam is an uplink public beam; or, if the configuration parameters of each public beam include the first parameter Two parameters and does not include the first parameter, each common beam is a downlink common beam; or, if the configuration parameters of each common beam include the first parameter and the second parameter, each common beam is a joint common beam; the first The parameters include at least one of the following: reference signal resources for determining the uplink transmission beam, spatial relationship information, uplink power control parameters, and SRS resources.
  • the second parameter includes at least one of the following: QCL information, BWP parameter.
  • the terminal device receives beam activation information from the network device.
  • the beam activation information is used to activate part of the one or more common beams.
  • the terminal device receives beam indication information from the network device.
  • the beam indication information is used to indicate one or more common beams in some common beams.
  • the terminal equipment may determine the beam type of the one or more common beams according to the configuration parameters included in the beam configuration information. There is no need to indicate the beam type of one or more common beams through other information or fields, reducing the overhead of network resources. For example, signaling overhead, indication bit overhead.
  • a fourth aspect of the present application provides a beam management method, the method comprising:
  • the network device sends beam configuration information to the terminal device.
  • the beam configuration information includes configuration information of one or more common beams.
  • the beam configuration information includes configuration parameters of the one or more common beams. If the configuration parameters of each public beam in the one or more public beams include the first parameter and do not include the second parameter, each public beam is an uplink public beam; or, if the configuration parameters of each public beam include the first parameter Two parameters and does not include the first parameter, each common beam is a downlink common beam; or, if the configuration parameters of each common beam include the first parameter and the second parameter, each common beam is a joint common beam; the first The parameters include at least one of the following: reference signal resources for determining the uplink transmission beam, spatial relationship information, uplink power control parameters, and SRS resources.
  • the second parameter includes at least one of the following: QCL information, BWP parameter.
  • the network device sends beam activation information to the terminal device.
  • the beam activation information is used to activate part of the one or more common beams.
  • the network device sends beam indication information to the terminal device.
  • the beam indication information is used to indicate one or more common beams in some common beams.
  • the network device may indicate the beam type of the one or more common beams to the terminal device through configuration parameters included in the beam configuration information. There is no need to indicate the beam type of one or more common beams through other information or fields, reducing the overhead of network resources. For example, signaling overhead, indication bit overhead.
  • a fifth aspect of the present application provides a beam management method, the method comprising:
  • the terminal device receives beam configuration information from the network device.
  • the beam configuration information includes configuration information of one or more common beams.
  • the terminal device receives beam activation information from the network device.
  • the beam activation information is used to activate part of the one or more common beams.
  • the terminal device receives beam indication information from the network device.
  • the beam indication information is used to indicate one or more public beams in some public beams; the beam indication information is carried by the first DCI; when the first condition is met, and the HARQ feedback result corresponding to the first DCI is ACK, indicating the beam indication information One or more of the indicated common beams indicate success;
  • the first condition includes a combination of one or more of the following:
  • the terminal equipment reports to support the public beam function
  • the network device configures the public beam function of the terminal device to be on
  • the first DCI does not schedule PDSCH
  • the first DCI schedules the PDSCH and the terminal device uses the dynamic HARQ-ACK codebook for HARQ feedback;
  • the one or more common beams indicated by the first DCI are different from the common beams currently used by the terminal device.
  • the public beam indicated by the first DCI takes effect at the first time slot after adding the first time offset at the first moment;
  • the first moment is the moment when the first DCI is received, or the moment when the terminal device sends the HARQ feedback result corresponding to the first DCI;
  • the HARQ feedback result corresponding to the first DCI is the HARQ feedback result fed back for the first DCI or the HARQ feedback result for the first DCI HARQ feedback result of PDSCH feedback scheduled by DCI.
  • a sixth aspect of the present application provides a beam management method, the method comprising:
  • the network device sends beam configuration information to the terminal device.
  • the beam configuration information includes configuration information of one or more common beams.
  • the network device sends beam activation information to the terminal device.
  • the beam activation information is used to activate part of the one or more common beams.
  • the network device sends beam indication information to the terminal device.
  • the beam indication information is used to indicate one or more public beams in some public beams; the beam indication information is carried by the first DCI; when the first condition is met, and the HARQ feedback result corresponding to the first DCI is ACK, indicating that the beam indication One or more common beams indicated by the information indicate success;
  • the first condition includes a combination of one or more of the following:
  • the terminal equipment reports to support the public beam function
  • the network device configures the public beam function of the terminal device to be on
  • the first DCI does not schedule PDSCH
  • the first DCI schedules the PDSCH and the terminal device uses the dynamic HARQ-ACK codebook for HARQ feedback;
  • the one or more common beams indicated by the first DCI are different from the common beams currently used by the terminal device.
  • the public beam indicated by the first DCI takes effect at the first time slot after adding the first time offset at the first moment;
  • the first moment is the moment when the first DCI is received, or the moment when the terminal device sends the HARQ feedback result corresponding to the first DCI;
  • the HARQ feedback result corresponding to the first DCI is the HARQ feedback result fed back for the first DCI or the HARQ feedback result for the first DCI HARQ feedback result of PDSCH feedback scheduled by DCI.
  • a seventh aspect of the present application provides a beam management method, the method comprising:
  • the terminal device receives beam configuration information from the network device.
  • the beam configuration information includes configuration information of one or more common beams.
  • the terminal device receives beam activation information from the network device.
  • the beam activation information is used to activate part of the one or more common beams.
  • the terminal device receives beam indication information from the network device.
  • the beam indication information is used to indicate one or more public beams in some public beams; the beam indication information is carried by the first DCI, when the second condition is met, and the HARQ feedback result corresponding to the first DCI is ACK or NACK, indicating that the beam One or more common beams indicated by the indication information indicate success;
  • the second condition includes a combination of one or more of the following:
  • the terminal equipment reports to support the public beam function
  • the network device configures the public beam function of the terminal device to be on
  • the first DCI schedules the PDSCH
  • the terminal equipment uses the semi-static HARQ-ACK codebook for HARQ feedback
  • the one or more common beams indicated by the first DCI are different from the common beams currently used by the terminal device.
  • the public beam indicated by the first DCI takes effect at the first time slot after adding the first time offset at the first moment;
  • the first time is the time when the first DCI is received, or the time when the terminal device sends the HARQ feedback result corresponding to the first DCI;
  • the HARQ feedback result corresponding to the first DCI is the HARQ feedback result for PDSCH feedback scheduled by the first DCI.
  • An eighth aspect of the present application provides a beam management method, the method comprising:
  • the network device sends beam configuration information to the terminal device.
  • the beam configuration information includes configuration information of one or more common beams.
  • the network device sends beam activation information to the terminal device.
  • the beam activation information is used to activate part of the one or more common beams.
  • the network device sends beam indication information to the terminal device.
  • the beam indication information is used to indicate one or more public beams in some public beams; the beam indication information is carried by the first DCI, when the second condition is met, and the HARQ feedback result corresponding to the first DCI is ACK or NACK, indicating that One or more common beams indicated by the beam indication information are indicated successfully;
  • the second condition includes a combination of one or more of the following:
  • the terminal equipment reports to support the public beam function
  • the network device configures the public beam function of the terminal device to be on
  • the first DCI schedules the PDSCH
  • the terminal equipment uses the semi-static HARQ-ACK codebook for HARQ feedback
  • the one or more common beams indicated by the first DCI are different from the common beams currently used by the terminal device.
  • the public beam indicated by the first DCI takes effect at the first time slot after adding the first time offset at the first moment;
  • the first time is the time when the first DCI is received, or the time when the terminal device sends the HARQ feedback result corresponding to the first DCI;
  • the HARQ feedback result corresponding to the first DCI is the HARQ feedback result for PDSCH feedback scheduled by the first DCI.
  • a ninth aspect of the present application provides a beam management method, the method comprising:
  • the terminal device receives beam configuration information from the network device.
  • the beam configuration information includes configuration information of one or more common beams.
  • the terminal device receives beam activation information from the network device.
  • the beam activation information is used to activate part of the one or more common beams.
  • the terminal device receives beam indication information from the network device.
  • the beam indication information is used to indicate one or more common beams in some common beams;
  • the beam indication information is carried by the first DCI; the first DCI includes a common beam indication field, and the common beam indication field is used to indicate a common beam of a beam type; the method further includes:
  • the terminal device determines the beam type of the common beam indicated by the common beam indication field according to the beam configuration information; or,
  • the terminal device determines the beam type of the common beam indicated by the common beam indication field according to the beam activation information; or,
  • the terminal device determines the beam type of the common beam indicated by the common beam indication field according to the first DCI.
  • the terminal device determines the beam type of the public beam indicated by the public beam indication field according to the beam configuration information, including:
  • the terminal device determines that the beam type indicated by the public beam indication field is a joint public beam; or,
  • the terminal device determines that the beam type of the public beam indicated by the public beam indication field is uplink Common beam or downlink common beam.
  • the terminal device determines the beam type of the public beam indicated by the public beam indication field according to the beam activation information, including:
  • the terminal device determines that the beam type of the common beam indicated by the common beam indication field is the joint common beam; or,
  • the terminal device determines that the beam type of the common beam indicated by the common beam indication field is an uplink common beam or a downlink common beam.
  • the first x bits or the last x bits of the common beam indication field or the first indication field included in the first DCI is used to indicate the beam type of the common beam indicated by the common beam indication field, x is an integer greater than or equal to 1;
  • the beam type includes any of the following: joint common beam, uplink common beam, downlink common beam; or,
  • the beam type includes any of the following: uplink common beam, downlink common beam.
  • a tenth aspect of the present application provides a beam management method, the method comprising:
  • the network device sends beam configuration information to the terminal device.
  • the beam configuration information includes configuration information of one or more common beams.
  • the network device sends beam activation information to the terminal device.
  • the beam activation information is used to activate part of the one or more common beams.
  • the network device sends beam indication information to the terminal device.
  • the beam indication information is used to indicate one or more public beams in the partial public beams;
  • the beam indication information is carried by the first DCI, and the first DCI includes a common beam indication field, and the common beam indication field is used to indicate a common beam of a beam type;
  • the beam type of the common beam indicated by the common beam indication field is determined by the beam configuration information; or,
  • the beam type of the common beam indicated by the common beam indication field is determined by the beam activation information; or,
  • the beam type of the common beam indicated by the common beam indication field is determined by the first DCI.
  • the network device configures the public beam mode of the terminal device as a joint public beam mode through the beam configuration information, or the beam configuration information includes the configuration information of the joint public beam, the beam type indicated by the public beam indication field is a joint common beam; or,
  • the network device configures the public beam mode of the terminal device as an independent public beam mode through the beam configuration information, or the beam configuration information includes the configuration information of the independent public beam, the beam type of the public beam indicated by the public beam indication field is the uplink public beam or Downlink common beam.
  • the beam type of the common beam indicated by the common beam indication field is the joint common beam
  • the beam type of the common beam indicated by the common beam indication field is an uplink common beam or a downlink common beam.
  • the first x bits or the last x bits of the common beam indication field or the first indication field included in the first DCI is used to indicate the beam type of the common beam indicated by the common beam indication field, and x is an integer greater than or equal to 1;
  • the beam type includes any of the following: joint common beam, uplink common beam, downlink common beam; or,
  • the beam type includes any of the following: uplink common beam, downlink common beam.
  • An eleventh aspect of the present application provides a beam management method, which includes:
  • the terminal device receives beam configuration information from the network device; the beam configuration information includes configuration information of one or more public beams; the terminal device receives beam activation information from the network device; the beam activation information is used to activate the one or more public beams Part of the public beams in the beam; the terminal device receives the beam indication information from the network device; the beam indication information is used to indicate one or more public beams in the partial public beams; the beam indication information is carried by the first DCI, and the first DCI includes the public beams.
  • Beam indication field the common beam indication field includes one or two subfields; the terminal device determines the number of subfields included in the common beam indication field according to the beam type of the public beam configured by the beam configuration information, and/or, the beam type indicated by the subfield .
  • the common beam indication field includes a subfield, and the one subfield is used to indicate the joint common beam;
  • the common beam indication field includes two subfields, and the two subfields are used to indicate the uplink common beam and the downlink common beam.
  • the common beam indication field includes two subfields
  • the first subfield of the two subfields is used to indicate the uplink common beam
  • the second subfield of the two subfields is used to indicate Downlink common beam
  • the first subfield of the two subfields is used to indicate the downlink common beam
  • the second subfield of the two subfields is used to indicate the uplink common beam.
  • the method further includes:
  • the terminal device determines the beam types indicated by the two subfields according to the beam configuration information; or,
  • the terminal device determines the beam types indicated by the two subfields according to the beam activation information; or,
  • the terminal device determines the beam types respectively indicated by the two subfields according to the first DCI.
  • the beam configuration information includes an uplink common beam set and a downlink common beam set; the terminal device determines the beam types respectively indicated by the two subfields according to the beam configuration information, including:
  • the terminal device determines the beam types respectively indicated by the two subfields according to the configuration sequence of the uplink common beam set and the downlink common beam set; or,
  • the terminal device determines the beam types respectively indicated by the two subfields according to the size sequence of the set indexes corresponding to the uplink common beam set and the downlink common beam set respectively.
  • the terminal device determines the beam types respectively indicated by the two subfields according to the beam activation information, including: the terminal device determines the two subfields according to the order of the uplink common beam and the downlink common beam activated by the beam activation information Beam type indicated respectively.
  • the terminal device determines the beam types respectively indicated by the two subfields according to the first DCI, including: the terminal device determines, according to the first x bits or the last x bits in the common beam indication field, or the first The second indication field included in the DCI determines the beam type indicated by the first subfield and the beam type indicated by the second subfield of the two subfields.
  • a twelfth aspect of the present application provides a beam management method, the method comprising:
  • the network device sends beam configuration information to the terminal device.
  • the beam configuration information includes configuration information of one or more common beams; the network device sends beam activation information to the terminal device.
  • the beam activation information is used to activate part of the one or more public beams; the network device sends beam indication information to the terminal device; the beam indication information is used to indicate one or more public beams in the part of the public beams; the beam indication
  • the information is carried by the first DCI, the first DCI includes a common beam indication field, and the common beam indication field includes one or two subfields; the number of subfields included in the common beam indication field and/or the beam type indicated by the subfields is passed through the beam configuration information
  • the configured beam type is determined.
  • the common beam indication field includes a subfield, and the one subfield is used to indicate the joint common beam;
  • the common beam indication field includes two subfields, and the two subfields are used to indicate the uplink common beam and the downlink common beam.
  • the common beam indication field includes two subfields
  • the first subfield of the two subfields is used to indicate the uplink common beam
  • the second subfield of the two subfields is used to indicate the uplink common beam.
  • the beam types respectively indicated by the two subfields are determined through beam configuration information or beam activation information or the first DCI.
  • the beam configuration information includes an uplink common beam set and a downlink common beam set
  • the beam types indicated by the two subfields are determined by the configuration sequence of the uplink common beam set and the downlink common beam set; or,
  • the size of the set index corresponding to the uplink common beam set and the downlink common beam set respectively indicated by the two subfields is determined in order.
  • the beam types respectively indicated by the two subfields are determined by the order of the uplink common beams and the downlink common beams activated by the beam activation information.
  • the beam types respectively indicated by the two subfields are determined by the first x bits or the last x bits in the common beam indication field or the second indication field included in the first DCI.
  • a thirteenth aspect of the present application provides a beam management method, the method comprising:
  • the terminal device receives beam configuration information from the network device; the beam configuration information includes configuration information of one or more public beams; the terminal device receives beam activation information from the network device; the beam activation information is used to activate the one or more public beams Part of the public beam in the beam; the DCI sent by the network device to the terminal device does not include the public beam indication field; if the beam activation information is used to activate a public beam, the terminal device uses the public beam activated by the beam activation information for transmission; if the beam activation information For activating multiple public beams, the terminal device uses the beam index with the largest beam index, or the beam index with the smallest beam index, or the most advanced or the last sorted, or the corresponding public beam indication field among the multiple public beams. The one with the smallest value, or the corresponding common beam with the largest value of the common beam indication field, is used for transmission.
  • a fourteenth aspect of the present application provides a beam management method, the method comprising:
  • the network device sends beam configuration information to the terminal device.
  • the beam configuration information includes configuration information of one or more common beams; the network device sends beam activation information to the terminal device.
  • the beam activation information is used to activate part of one or more public beams; the DCI sent by the network device to the terminal device does not include the public beam indication field; if the beam activation information is used to activate a public beam, the network device uses beam activation
  • the public beam activated by the information is used for transmission; if the beam activation information is used to activate multiple public beams, the network device uses the beam index with the largest beam index, or the beam index with the smallest beam index, or the most advanced one among the multiple public beams. The last one, or the public beam with the smallest corresponding common beam indication field value, or the public beam with the largest corresponding common beam indication field value, is used for transmission.
  • a fifteenth aspect of the present application provides a beam management method, the method comprising:
  • the terminal device receives beam configuration information from the network device; the beam configuration information includes configuration information of one or more public beams; the terminal device receives beam activation information from the network device; the beam activation information is used to activate the one or more public beams Part of the public beams in the beam; the terminal device receives the beam indication information from the network device; the beam indication information is used to indicate one or more public beams in the part of the public beams;
  • the terminal device ignores the beam indication information; the second public beam includes any of the following: the public beam currently used by the terminal device, the latest indication in time by the terminal device, or Effective public beam.
  • a sixteenth aspect of the present application provides a beam management method, the method comprising:
  • the terminal device receives beam configuration information from the network device; the beam configuration information includes configuration information of one or more public beams; the terminal device receives beam activation information from the network device; the beam activation information is used to activate the one or more public beams Part of the public beam in the beam; the terminal device receives the beam indication information from the network device.
  • the beam indication information is used to indicate one or more public beams in some public beams; if the beam indication information indicates K public beams of the same beam type, and the network device configures K first resources or K first resources for the terminal device set; the terminal device uses the K public beams as the beams corresponding to the K first resources or the K first resource sets;
  • the K common beams are in one-to-one correspondence with the K first resources or the K first resource sets, each of the K first resource sets includes the first resources, and the K common beams are respectively used for the corresponding first resource sets. transmission of resources;
  • the K public beams are sorted in the order of the indication of the beam indication information or the order of the beam index size of the K public beams;
  • the K first resources or the K first resource sets are sorted according to the resource configuration order or the resource index size order;
  • the first resource includes any one of the following: a CSI-RS for which the repetitoin parameter and the trs-Info parameter are not configured, an SRS of a codebook type, an SRS of a nonCodebook type, and a CSI-RS associated with an SRS of a nonCodebook type.
  • a seventeenth aspect of the present application provides a beam management method, the method comprising:
  • the network device sends beam configuration information to the terminal device.
  • the beam configuration information includes configuration information of one or more public beams; the network device sends beam activation information to the terminal device; the beam activation information is used to activate part of the one or more public beams; the network device sends the beam to the terminal device indication information; the beam indication information is used to indicate one or more public beams in some public beams;
  • the K common beams are K first resources or K first resources respectively A beam corresponding to a resource set;
  • the K common beams are in one-to-one correspondence with the K first resources or the K first resource sets, each of the K first resource sets includes the first resources, and the K common beams are respectively used for the corresponding first resource sets. transmission of resources;
  • the K public beams are sorted in the order of the indication of the beam indication information or the order of the beam index size of the K public beams;
  • the K first resources or the K first resource sets are sorted according to the resource configuration order or the resource index size order;
  • the first resource includes any one of the following: a CSI-RS for which the repetitoin parameter and the trs-Info parameter are not configured, an SRS of a codebook type, an SRS of a nonCodebook type, and a CSI-RS associated with an SRS of a nonCodebook type.
  • An eighteenth aspect of the present application provides a beam management method, the method comprising:
  • the terminal device receives beam configuration information from the network device; the beam configuration information includes configuration information of one or more public beams; the terminal device receives beam activation information from the network device; the beam activation information is used to activate the one or more public beams Part of the common beam in the beam.
  • the terminal equipment receives the beam indication information from the network equipment; the beam indication information is used to indicate one or more public beams in some public beams; the beam indication information is used for the network equipment to indicate to the terminal equipment for the first time after the initial access of the terminal equipment Common beam: Before the public beam indicated by the beam indication information takes effect, the terminal device uses the SSB beam used for initial access for transmission.
  • a nineteenth aspect of the present application provides a beam management method, the method comprising:
  • the network device sends beam configuration information to the terminal device; the beam configuration information includes configuration information of one or more common beams; the network device sends beam activation information to the terminal device; the beam activation information is used to activate part of one or more common beams public beam; the network device sends beam indication information to the terminal device; the beam indication information is used to indicate one or more public beams in some public beams; the beam indication information is used by the network device to send the first time to the terminal equipment after the initial access of the terminal equipment.
  • the terminal equipment indicates the public beam; before the public beam indicated by the beam indication information takes effect, the network equipment uses the SSB beam used when the terminal equipment initially accesses for transmission.
  • a twentieth aspect of the present application provides a beam management method, the method comprising:
  • the terminal device receives beam configuration information from the network device; the beam configuration information includes configuration information of one or more public beams; the terminal device receives beam activation information from the network device; the beam activation information is used to activate the one or more public beams Part of the public beam in the beam; the terminal device receives the beam indication information from the network device.
  • the beam indication information is used to indicate one or more public beams in some of the public beams; the beam indication information is used by the network device to indicate the public beam to the terminal device for the first time after the terminal device has a beam failure; after the terminal device completes beam failure recovery , before the public beam indicated by the beam indication information takes effect, the terminal device uses the beam reported by the terminal device to the network device during the beam failure recovery process for transmission.
  • a twenty-first aspect of the present application provides a beam management method, the method comprising:
  • the network device sends beam configuration information to the terminal device; the beam configuration information includes configuration information of one or more common beams; the network device sends beam activation information to the terminal device; the beam activation information is used to activate part of one or more common beams public beam; the network device sends beam indication information to the terminal device; the beam indication information is used to indicate one or more public beams in some public beams;
  • the beam indication information is used by the network device to indicate the common beam to the terminal device for the first time after a beam failure occurs in the terminal device. After the terminal device completes beam failure recovery and before the public beam indicated by the beam indication information takes effect, the network device uses the beam reported by the terminal device to the network device during the beam failure recovery process for transmission.
  • a twenty-second aspect of the present application provides a beam management method, the method comprising:
  • the terminal device receives beam configuration information from the network device; the beam configuration information includes configuration information of one or more public beams; the terminal device receives beam activation information from the network device; the beam activation information is used to activate the one or more public beams Part of the public beams in the beam; the terminal device receives the beam indication information from the network device; the beam indication information is used to indicate one or more public beams in the part of the public beams;
  • the beam indication information is used by the network device to indicate the common beam to the terminal device for the first time after the terminal device initially accesses. After the initial access of the terminal device, before the terminal device receives the beam activation information, the terminal device uses the SSB beam used for the initial access for transmission;
  • the terminal device After the terminal device receives the beam activation information and before the public beam indicated by the beam indication information takes effect, the terminal device uses the first public beam or the last public beam activated by the beam activation information for transmission; or, the terminal device uses the beam activation information to activate The public beam with the largest or smallest value of the common beam indication field is used for transmission.
  • a twenty-third aspect of the present application provides a beam management method, the method comprising:
  • the network device sends beam configuration information to the terminal device; the beam configuration information includes configuration information of one or more common beams; the network device sends beam activation information to the terminal device; the beam activation information is used to activate part of one or more common beams public beam; the network device sends beam indication information to the terminal device; the beam indication information is used to indicate one or more public beams in some public beams;
  • the beam indication information is used by the network device to indicate the common beam to the terminal device for the first time after the terminal device initially accesses. After the initial access of the terminal device, before the network device sends the beam activation information to the terminal device, the network device uses the SSB beam used for the initial access of the terminal device for transmission;
  • the network device After the network device sends the beam activation information to the terminal device and before the public beam indicated by the beam indication information takes effect, the network device uses the first public beam or the last public beam activated by the beam activation information for transmission; or, the network device uses beam activation Among the public beams activated by the information, the public beam with the largest or smallest value of the public beam indication field is used for transmission.
  • a twenty-fourth aspect of the present application provides a beam management method, the method comprising:
  • the terminal device receives beam configuration information from the network device.
  • the beam configuration information includes configuration information of one or more public beams; the terminal device receives beam activation information from the network device; the beam activation information is used to activate part of the one or more public beams; Beam indication information for network devices.
  • the beam indication information is used to indicate one or more common beams in some common beams;
  • the beam indication information is carried by the first DCI, and the first DCI also schedules the first PDSCH data;
  • the terminal device uses the third public beam to receive the first PDSCH data from the network device;
  • the third public beam includes any of the following: if the public beam indicated to the terminal device for the first time by the network device has taken effect after the initial access of the terminal device or after completion of beam failure recovery, the third public beam is the currently used public beam , or the last public beam that took effect or indicated; if the public beam indicated to the terminal for the first time by the network device does not take effect after the initial access of the terminal, the third public beam is the SSB used by the terminal during initial access. Beam; if the public beam indicated by the network device to the terminal device for the first time does not take effect after the terminal device completes the beam failure recovery, the third public beam is the beam reported by the terminal device to the network device when the beam fails to recover.
  • the network device sends The time of the first PDSCH data is earlier than the time when the common beam indicated by the first DCI takes effect, and the third common beam further includes the common beam indicated by the first DCI.
  • a twenty-fifth aspect of the present application provides a beam management method, the method comprising:
  • the network device sends beam configuration information to the terminal device; the beam configuration information includes configuration information of one or more common beams; the network device sends beam activation information to the terminal device; the beam activation information is used to activate part of one or more common beams public beam; the network device sends beam indication information to the terminal device; the beam indication information is used to indicate one or more public beams in some public beams;
  • the beam indication information is carried by the first DCI, and the first DCI also schedules the first PDSCH data;
  • the network device uses the third public beam to receive the first PDSCH data from the network device;
  • the third public beam includes any of the following: if the public beam indicated to the terminal device for the first time by the network device has taken effect after the initial access of the terminal device or after completion of beam failure recovery, the third public beam is the currently used public beam , or the last public beam that took effect or indicated; if the public beam indicated to the terminal for the first time by the network device does not take effect after the initial access of the terminal, the third public beam is the SSB used by the terminal during initial access. Beam; if the public beam indicated by the network device to the terminal device for the first time does not take effect after the terminal device completes the beam failure recovery, the third public beam is the beam reported by the terminal device to the network device when the beam fails to recover.
  • the network device sends The time of the first PDSCH data is earlier than the time when the common beam indicated by the first DCI takes effect, and the third common beam further includes the common beam indicated by the first DCI.
  • a twenty-sixth aspect of the present application provides a beam management method, the method comprising:
  • the terminal device receives beam configuration information from the network device; the beam configuration information includes configuration information of one or more public beams; the terminal device receives beam activation information from the network device; the beam activation information is used to activate the one or more public beams Part of the common beam in the beam.
  • the terminal device receives the first DCI from the network device; the first DCI is used to indicate one or more public beams in the partial public beams;
  • the terminal device receives the second DCI from the network device
  • the terminal device uses the fourth common beam to receive the second data from the network device. PDSCH data;
  • the fourth public beam includes any one of the following: if the network device indicates to the terminal device for the first time after the initial access of the terminal device or after the beam failure recovery is completed, the public beam indicated to the terminal device for the first time has taken effect, and the fourth public beam is the currently used public beam. , or the last public beam that took effect or was indicated; if the public beam indicated to the terminal for the first time by the network device does not take effect after the initial access of the terminal, the fourth public beam is the SSB used by the terminal during initial access. Beam; if the public beam indicated by the network device to the terminal device for the first time does not take effect after the terminal device completes the beam failure recovery, the fourth public beam is the beam reported by the terminal device to the network device when the beam fails to recover.
  • a twenty-seventh aspect of the present application provides a beam management method, the method comprising:
  • the network device sends beam configuration information to the terminal device; the beam configuration information includes configuration information of one or more common beams; the network device sends beam activation information to the terminal device; the beam activation information is used to activate part of one or more common beams public beam; the network device sends the first DCI to the terminal device; the first DCI is used to indicate one or more public beams in part of the public beams;
  • the network device sends the second DCI to the terminal device
  • the network device uses the fourth public beam to receive the second data from the network device.
  • PDSCH data If the time interval between the time when the network device sends the second PDSCH data scheduled by the second DCI and the time when the network device sends the second DCI is less than the preset threshold value, the network device uses the fourth public beam to receive the second data from the network device.
  • the fourth public beam includes any one of the following: if the network device indicates to the terminal device for the first time after the initial access of the terminal device or after the beam failure recovery is completed, the public beam indicated to the terminal device for the first time has taken effect, and the fourth public beam is the currently used public beam. , or the last public beam that took effect or was indicated; if the public beam indicated to the terminal for the first time by the network device does not take effect after the initial access of the terminal, the fourth public beam is the SSB used by the terminal during initial access. Beam; if the public beam indicated by the network device to the terminal device for the first time does not take effect after the terminal device completes the beam failure recovery, the fourth public beam is the beam reported by the terminal device to the network device when the beam fails to recover.
  • a twenty-eighth aspect of the present application provides a terminal device, the terminal device comprising:
  • a receiving unit configured to receive beam configuration information from a network device, where the beam configuration information includes configuration information of one or more common beams; the one or more common beams include any of the following: an independent common beam used for uplink transmission or downlink transmission beam; a joint common beam used for uplink transmission and downlink transmission; receiving beam activation information from network equipment, the beam activation information is used to activate part of one or more common beams; receiving beam indication information from network equipment, The beam indication information is used to indicate one or more common beams in some common beams.
  • the beam configuration information includes configuration parameters of the first public beam
  • the first common beam is an uplink common beam
  • the first common beam is a downlink common beam
  • the first public beam is a joint public beam
  • the first parameter includes at least one of the following: a reference signal resource for determining an uplink transmission beam, spatial relationship information, an uplink power control parameter, and an SRS resource;
  • the second parameter includes at least one of the following: QCL information, BWP parameter.
  • the beam indication information is carried by the first DCI; when the first condition is satisfied, and the HARQ feedback result corresponding to the first DCI is ACK, indicating that one or more common beam indications indicated by the beam indication information success;
  • the first condition includes a combination of one or more of the following:
  • the terminal equipment reports to support the public beam function
  • the network device configures the public beam function of the terminal device to be on
  • the first DCI does not schedule PDSCH
  • the first DCI schedules the PDSCH and the terminal device uses the dynamic HARQ-ACK codebook for HARQ feedback;
  • the one or more common beams indicated by the first DCI are different from the common beams currently used by the terminal device.
  • the first moment is the moment when the first DCI is received, or the moment when the terminal device sends the HARQ feedback result corresponding to the first DCI;
  • the HARQ feedback result corresponding to the first DCI is the HARQ feedback result fed back for the first DCI or the HARQ feedback result fed back against the PDSCH scheduled by the first DCI.
  • the beam indication information is carried by the first DCI.
  • the HARQ feedback result corresponding to the first DCI is ACK or NACK, it indicates that one or more common information indicated by the beam indication information is ACK or NACK. Beam indication is successful;
  • the second condition includes a combination of one or more of the following:
  • the terminal equipment reports to support the public beam function
  • the network device configures the public beam function of the terminal device to be on
  • the first DCI schedules the physical downlink shared channel PDSCH
  • the terminal equipment uses the semi-static HARQ-ACK codebook for HARQ feedback
  • the one or more common beams indicated by the first DCI are different from the common beams currently used by the terminal device.
  • the public beam indicated by the first DCI takes effect at the first time slot after adding the first time offset at the first moment ;
  • the first moment is the moment when the first DCI is received, or the moment when the terminal device sends the HARQ feedback result corresponding to the first DCI;
  • the HARQ feedback result corresponding to the first DCI is the HARQ feedback result fed back to the PDSCH scheduled by the first DCI.
  • the beam indication information is carried by the first DCI; the first DCI includes a common beam indication field, and the common beam indication field is used to indicate a common beam of a beam type; the terminal device further includes a processing unit; processing Units are used for:
  • the beam type of the common beam indicated by the common beam indication field is determined according to the first DCI.
  • processing unit is specifically used for:
  • the network device configures the public beam mode of the terminal device as a joint public beam mode through the beam configuration information, or the beam configuration information includes the configuration information of the joint public beam, determine that the beam type indicated by the public beam indication field is the joint public beam;
  • the network device configures the public beam mode of the terminal device as an independent public beam mode through the beam configuration information, or the beam configuration information includes the configuration information of the independent public beam, determine that the beam type of the public beam indicated by the public beam indication field is the uplink public beam or downlink common beam.
  • processing unit is specifically used for:
  • the beam activation information is used to activate the joint common beam, determine that the beam type of the common beam indicated by the common beam indication field is the joint common beam;
  • the beam activation information is used to activate the independent common beam, it is determined that the beam type of the common beam indicated by the common beam indication field is an uplink common beam or a downlink common beam.
  • the first x bits or the last x bits of the common beam indication field or the first indication field included in the first DCI is used to indicate the beam type of the common beam indicated by the common beam indication field, and x is an integer greater than or equal to 1;
  • the beam type includes any of the following: joint common beam, uplink common beam, downlink common beam; or,
  • the beam type includes any of the following: uplink common beam, downlink common beam.
  • the beam indication information is carried by the first DCI, the first DCI includes a common beam indication field, and the common beam indication field includes one or two subfields;
  • the terminal device further includes a processing unit; the processing unit is further configured to :
  • the number of subfields included in the common beam indication field and/or the beam type indicated by the subfield is determined according to the beam type of the common beam configured by the beam configuration information.
  • the public beam indication field includes a subfield, and a subfield is used to indicate the joint public beam
  • the common beam indication field includes two subfields, and the two subfields are used to indicate the uplink common beam and the downlink common beam.
  • the common beam indication field includes two subfields
  • the first subfield of the two subfields is used to indicate the uplink common beam
  • the second subfield of the two subfields is used to indicate the downlink common beam
  • the first subfield of the two subfields is used to indicate the downlink common beam
  • the second subfield of the two subfields is used to indicate the uplink common beam.
  • the processing unit is further configured to:
  • the beam types respectively indicated by the two subfields are determined according to the first DCI.
  • the beam configuration information includes an uplink common beam set and a downlink common beam set; the processing unit is specifically configured to:
  • the beam types respectively indicated by the two subfields are determined according to the size sequence of the set indexes corresponding to the uplink common beam set and the downlink common beam set respectively.
  • processing unit is specifically used for:
  • the beam types indicated by the two subfields are determined according to the sequence of the uplink common beam and the downlink common beam activated by the beam activation information.
  • processing unit is specifically used for:
  • the terminal device further includes a processing unit; the processing unit is further configured to:
  • the beam activation information is used to activate a common beam
  • the public beam activated by the beam activation information is used for transmission
  • the beam activation information is used to activate multiple common beams, use the beam index with the largest beam index, or the beam index with the smallest beam index, or the one with the highest ranking, or the last ranked one, or the corresponding common beam indication field among the multiple common beams.
  • the one with the smallest value, or the corresponding common beam with the largest value of the common beam indication field, is used for transmission.
  • the terminal device further includes a processing unit; the processing unit is further configured to:
  • the beam indication information is ignored
  • the second public beam includes any one of the following: a public beam currently used by the terminal device, and a public beam indicated or valid for the last time by the terminal device in time.
  • the terminal device further includes a processing unit; the processing unit is further configured to:
  • the K common beams are in one-to-one correspondence with the K first resources or the K first resource sets, each of the K first resource sets includes the first resources, and the K common beams are respectively used for the corresponding first resource sets. transmission of resources;
  • the K public beams are sorted in the order of the indication of the beam indication information or the order of the beam index size of the K public beams;
  • the K first resources or the K first resource sets are sorted according to the resource configuration order or the resource index size order;
  • the first resource includes any one of the following: a CSI-RS for which the repetitoin parameter and the trs-Info parameter are not configured, an SRS of a codebook type, an SRS of a nonCodebook type, and a CSI-RS associated with an SRS of a nonCodebook type.
  • the beam indication information is used by the network device to indicate the public beam to the terminal device for the first time after the terminal device initially accesses; the terminal device further includes a processing unit;
  • the processing unit is configured to:
  • the synchronization signal block SSB beam used in the initial access is used for transmission.
  • the beam indication information is used by the network device to indicate the public beam to the terminal device for the first time after a beam failure occurs in the terminal device; the terminal device further includes a processing unit;
  • the processing unit is configured to:
  • the beam indication information is used by the network device to indicate the public beam to the terminal device for the first time after the terminal device initially accesses; the terminal device further includes a processing unit;
  • the processing unit is further configured to:
  • the processing unit is further configured to:
  • the public beam with the largest or smallest value of the common beam indication field among the public beams activated by the beam activation information is used for transmission.
  • the beam indication information is carried through the first DCI, and the first DCI also schedules the first PDSCH data;
  • the terminal device further includes a processing unit, and the processing unit is configured to:
  • the third public beam is used to receive the first PDSCH data from the network device
  • the third common beam includes any of the following:
  • the third public beam is the currently used public beam, or the last public beam that took effect or indicated. beam;
  • the third public beam is the SSB beam used by the terminal device during initial access
  • the third public beam is the beam reported by the terminal device to the network device when the beam fails to recover.
  • the network device if the time interval between the time when the network device sends the first PDSCH data scheduled by the first DCI and the time when the network device sends the first DCI is greater than or equal to a preset threshold, and the network device The time of sending the first PDSCH data is earlier than the time when the common beam indicated by the first DCI takes effect, and the third common beam further includes the common beam indicated by the first DCI.
  • the receiving unit is also used for:
  • the terminal device also includes a processing unit for:
  • the fourth public beam is used to receive the second PDSCH data from the network device ;
  • the fourth public beam is the currently used public beam, or the last public beam that took effect or indicated. beam;
  • the fourth public beam is the SSB beam used by the terminal device during initial access
  • the fourth public beam is the beam reported by the terminal device to the network device when the beam fails to recover.
  • a twenty-ninth aspect of the present application provides a network device, the network device comprising:
  • a sending unit configured to send beam configuration information to the terminal device, where the beam configuration information includes configuration information of one or more common beams; the one or more common beams include any of the following: an independent common beam used for uplink transmission or downlink transmission ; Joint public beam used for uplink transmission and downlink transmission; Send beam activation information to terminal equipment, beam activation information is used to activate some public beams in one or more public beams; Send beam indication information to terminal equipment, beam indication information Used to indicate one or more common beams among the partial common beams.
  • the beam configuration information includes configuration parameters of the first public beam
  • the first common beam is an uplink common beam
  • the first common beam is a downlink common beam
  • the first public beam is a joint public beam
  • the first parameter includes at least one of the following: a reference signal resource for determining an uplink transmission beam, spatial relationship information, an uplink power control parameter, and an SRS resource;
  • the second parameter includes at least one of the following: QCL information, BWP parameter.
  • the beam indication information is carried by the first DCI; when the first condition is satisfied, and the HARQ feedback result of the HARQ corresponding to the first DCI is ACK, indicating that one or the other indicated by the beam indication information is ACK. Multiple common beams indicate success;
  • the first condition includes a combination of one or more of the following:
  • the terminal equipment reports to support the public beam function
  • the network device configures the public beam function of the terminal device to be on
  • the first DCI does not schedule the physical downlink shared channel PDSCH
  • the first DCI schedules the PDSCH and the terminal device adopts the dynamic hybrid automatic repeat request to confirm the HARQ-ACK codebook for HARQ feedback;
  • the one or more common beams indicated by the first DCI are different from the common beams currently used by the terminal device.
  • the public beam indicated by the first DCI takes effect at the first time slot after adding the first time offset at the first moment ;
  • the first moment is the moment when the first DCI is received, or the moment when the terminal device sends the HARQ feedback result corresponding to the first DCI;
  • the HARQ feedback result corresponding to the first DCI is the HARQ feedback result fed back for the first DCI or the HARQ feedback result fed back against the PDSCH scheduled for the first DCI.
  • the beam indication information is carried by the first DCI.
  • the HARQ feedback result corresponding to the first DCI is ACK or NACK, it indicates that one or more common information indicated by the beam indication information is ACK or NACK. Beam indication is successful;
  • the second condition includes a combination of one or more of the following:
  • the terminal equipment reports to support the public beam function
  • the network device configures the public beam function of the terminal device to be on
  • the first DCI schedules the PDSCH
  • the terminal equipment uses the semi-static HARQ-ACK codebook for HARQ feedback
  • the one or more common beams indicated by the first DCI are different from the common beams currently used by the terminal device.
  • the public beam indicated by the first DCI takes effect at the first time slot after adding the first time offset at the first moment ;
  • the first moment is the moment when the first DCI is received, or the moment when the terminal device sends the HARQ feedback result corresponding to the first DCI;
  • the HARQ feedback result corresponding to the first DCI is the HARQ feedback result fed back to the PDSCH scheduled by the first DCI.
  • the beam indication information is carried by the first DCI, the first DCI includes a common beam indication field, and the common beam indication field is used to indicate a common beam of a beam type;
  • the beam type of the common beam indicated by the common beam indication field is determined through the beam configuration information; or,
  • the beam type of the common beam indicated by the common beam indication field is determined through the beam activation information; or,
  • the beam type of the common beam indicated by the common beam indication field is determined through the first DCI.
  • the network device configures the common beam mode of the terminal device as a joint common beam mode through the beam configuration information, or the beam configuration information includes the configuration information of the joint common beam, the beam indicated by the common beam indication field Type is joint public beam;
  • the network device configures the public beam mode of the terminal device as an independent public beam mode through the beam configuration information, or the beam configuration information includes the configuration information of the independent public beam, the beam type of the public beam indicated by the public beam indication field is the uplink public beam or Downlink common beam.
  • the beam type of the common beam indicated by the common beam indication field is the joint common beam
  • the beam type of the common beam indicated by the common beam indication field is an uplink common beam or a downlink common beam.
  • the first x bits or the last x bits of the common beam indication field or the first indication field included in the first DCI is used to indicate the beam type of the common beam indicated by the common beam indication field, and x is an integer greater than or equal to 1;
  • the beam type includes any of the following: joint common beam, uplink common beam, downlink common beam; or,
  • the beam type includes any of the following: uplink common beam, downlink common beam.
  • the beam indication information is carried through a first DCI, the first DCI includes a common beam indication field, and the common beam indication field includes one or two subfields;
  • the number of subfields included in the common beam indication field and/or the beam type indicated by the subfield is determined by the beam type configured by the beam configuration information.
  • the public beam indication field includes a subfield, and a subfield is used to indicate the joint public beam
  • the common beam indication field includes two subfields, and the two subfields are used to indicate the uplink common beam and the downlink common beam.
  • the common beam indication field includes two subfields
  • the first subfield of the two subfields is used to indicate the uplink common beam
  • the second subfield of the two subfields is used to indicate the downlink common beam
  • the first subfield of the two subfields is used to indicate the downlink common beam
  • the second subfield of the two subfields is used to indicate the uplink common beam.
  • the beam types respectively indicated by the two subfields are determined through beam configuration information or beam activation information or the first DCI.
  • the beam configuration information includes an uplink common beam set and a downlink common beam set
  • the beam types indicated by the two subfields are determined by the configuration sequence of the uplink common beam set and the downlink common beam set; or,
  • the set index sizes corresponding to the uplink common beam set and the downlink common beam set respectively indicated by the two subfields are determined in order.
  • the beam types respectively indicated by the two subfields are determined by the order of the uplink common beams and the downlink common beams activated by the beam activation information.
  • the beam types respectively indicated by the two subfields are determined by the first x bits or the last x bits in the common beam indication field or the second indication field included in the first DCI.
  • the beam indication information is carried by the first DCI; if the first DCI does not include a common beam indication field; the network device further includes a processing unit, and the processing unit is configured to:
  • the beam activation information is used to activate a common beam
  • the public beam activated by the beam activation information is used for transmission
  • the beam activation information is used to activate multiple common beams, use the beam index with the largest beam index, or the beam index with the smallest beam index, or the one with the highest ranking, or the last ranked one, or the corresponding common beam indication field among the multiple common beams.
  • the one with the smallest value, or the corresponding common beam with the largest value of the common beam indication field, is used for transmission.
  • the K public beams are K beams corresponding to the first resources or K first resource sets;
  • the K common beams are in one-to-one correspondence with the K first resources or the K first resource sets, each of the K first resource sets includes the first resources, and the K common beams are respectively used for the corresponding first resource sets. transmission of resources;
  • the K public beams are sorted in the order of the indication of the beam indication information or the order of the beam index size of the K public beams;
  • the K first resources or the K first resource sets are sorted according to the resource configuration order or the resource index size order;
  • the first resource includes any one of the following: a CSI-RS for which the repetitoin parameter and the trs-Info parameter are not configured, an SRS of a codebook type, an SRS of a nonCodebook type, and a CSI-RS associated with an SRS of a nonCodebook type.
  • the beam indication information is used by the network device to indicate the common beam to the terminal device for the first time after the initial access of the terminal device; the network device further includes a processing unit; before the public beam indicated by the beam indication information takes effect , the processing unit is used to:
  • the synchronization signal block SSB beam used by the terminal equipment for initial access is used for transmission with the terminal equipment.
  • the beam indication information is used by the network device to indicate the public beam to the terminal device for the first time after the terminal device fails in the beam; the network device further includes a processing unit;
  • the processing unit is configured to:
  • the beam indication information is used by the network device to indicate the public beam to the terminal device for the first time after the terminal device initially accesses; the network device further includes a processing unit;
  • the processing unit is configured to:
  • the processing unit is further configured to:
  • the public beam with the largest or smallest value of the common beam indication field among the public beams activated by the beam activation information is used for transmission.
  • the beam indication information is carried by the first DCI, and the first DCI also schedules the first PDSCH data;
  • the network device further includes a processing unit; the processing unit is further configured to:
  • the third public beam is used to send the first PDSCH data to the network device
  • the third common beam includes any of the following:
  • the third public beam is the currently used public beam, or the last public beam that took effect or indicated. beam;
  • the third public beam is the SSB beam used by the terminal device during initial access
  • the third public beam is the beam reported by the terminal device to the network device when the beam fails to recover.
  • the network device if the time interval between the time when the network device sends the first PDSCH data scheduled by the first DCI and the time when the network device sends the first DCI is greater than or equal to a preset threshold, and the network device The time of sending the first PDSCH data is earlier than the time when the common beam indicated by the first DCI takes effect, and the third common beam further includes the common beam indicated by the first DCI.
  • the sending unit is also used for:
  • the network device also includes a processing unit for:
  • the fourth public beam is used to send the second PDSCH data to the terminal device;
  • the fourth common beam includes any of the following:
  • the fourth public beam is the currently used public beam, or the last public beam that took effect or indicated. beam;
  • the fourth public beam is the SSB beam used by the terminal device when the terminal device initially accesses;
  • the fourth public beam is the beam reported by the terminal device to the network device when the beam fails to recover.
  • a thirtieth aspect of the present application provides a communication device, the communication device includes: a processor and a memory.
  • a computer program or computer instruction is stored in the memory, and the processor is used to invoke and execute the computer program or computer instruction stored in the memory, so that the processor implements the first aspect, the third aspect, the fifth aspect, the seventh aspect,
  • the communication device further includes a transceiver, and the processor is configured to control the transceiver to send and receive signals.
  • a thirty-first aspect of the present application provides a communication device, where the communication device includes: a processor and a memory.
  • a computer program or computer instruction is stored in the memory, and the processor is used to call and execute the computer program or computer instruction stored in the memory, so that the processor implements the second aspect, the fourth aspect, the sixth aspect, the eighth aspect, Any of the tenth aspect, the twelfth aspect, the fourteenth aspect, the seventeenth aspect, the nineteenth aspect, the twenty-first aspect, the twenty-third aspect, the twenty-fifth aspect and the twenty-seventh aspect Any one of the implementations of an aspect.
  • the communication device further includes a transceiver, and the processor is configured to control the transceiver to send and receive signals.
  • a thirty-second aspect of the present application provides a computer program product comprising instructions, characterized in that, when it is run on a computer, the computer is caused to perform any one of the first to twenty-seventh aspects. any implementation.
  • a thirty-third aspect of the present application provides a computer-readable storage medium, comprising computer instructions that, when executed on a computer, cause the computer to perform any one of the first to twenty-seventh aspects. an implementation.
  • a thirty-fourth aspect of the present application provides a chip device, including a processor for invoking a computer program or computer instructions in the memory, so that the processor executes any one of the first to twenty-seventh aspects above Any of the implementations of the aspect.
  • the processor is coupled to the memory through an interface.
  • a thirty-fifth aspect of the present application provides a communication system, where the communication system includes the terminal device of the twenty-eighth aspect and the communication apparatus of the twenty-ninth aspect.
  • FIG. 1 is a schematic diagram of a wireless communication system to which a beam management method according to an embodiment of the present application is applicable;
  • FIG. 2 is another schematic diagram of a wireless communication system to which beam management according to an embodiment of the present application is applicable;
  • FIG. 3 is a schematic diagram of a medium access control-control element (MAC CE) structure for activating a transmission configuration index (TCI) to which the beam management method according to the embodiment of the present application is applicable;
  • MAC CE medium access control-control element
  • FIG. 4 is an exemplary diagram of a method for beam indication to which the beam management method according to the embodiment of the present application is applicable;
  • FIG. 5 shows a schematic diagram of an embodiment of a beam management method according to an embodiment of the present application
  • FIG. 6 is a schematic structural diagram of a MAC CE provided by a beam management method according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another embodiment of a beam management method according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another embodiment of a beam management method according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another embodiment of a beam management method according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another embodiment of a beam management method according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another embodiment of a beam management method according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of another embodiment of a beam management method according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of another embodiment of a beam management method according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of another embodiment of a beam management method according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of another embodiment of a beam management method according to an embodiment of the present application.
  • FIG. 16A is a schematic diagram of another embodiment of a beam management method according to an embodiment of the present application.
  • 16B is a schematic diagram of a scenario of a beam management method according to an embodiment of the present application.
  • FIG. 17A is a schematic diagram of another embodiment of a beam management method according to an embodiment of the present application.
  • 17B is a schematic diagram of another scenario of the beam management method according to the embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 19 is another schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 20 is another schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 21 is another schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 22 is another schematic structural diagram of a communication device according to an embodiment of the present application.
  • 5th generation 5G
  • 5G fifth generation
  • LTE long term evolution
  • FDD Frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • FIG. 1 and FIG. 2 To facilitate understanding of the embodiments of the present application, a communication system applicable to the embodiments of the present application is first described in detail with reference to FIG. 1 and FIG. 2 .
  • FIG. 1 is a schematic diagram of a wireless communication system 100 suitable for an embodiment of the present application.
  • the wireless communication system 100 may include at least one network device, such as the network device 111 shown in FIG. 1 , and the wireless communication system 100 may also include at least one terminal device, such as the terminal device 121 shown in FIG. 1 . with terminal equipment 122. Both the network device and the terminal device can be configured with multiple antennas, and the network device and the terminal device can communicate using the multi-antenna technology.
  • FIG. 2 is a schematic diagram of a wireless communication system 200 suitable for an embodiment of the present application.
  • the wireless communication system 200 may include at least one network device, such as network devices 211 , 212 , and 213 shown in FIG. 2 , and the wireless communication system 200 may also include at least one terminal device, such as shown in FIG. 2 . terminal equipment 221. Both the network device and the terminal device can be configured with multiple antennas, and the network device and the terminal device can communicate using the multi-antenna technology.
  • the network device in the wireless communication system may be any device having a wireless transceiver function.
  • the device includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base station controller, BSC) , base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, WIFI) system Access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc.
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • base transceiver station base transceiver station
  • BTS home base station
  • home base station for example, home evolved NodeB, or home Node B,
  • It can also be 5G, such as NR , a gNB in the system, or, a transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of a base station in a 5G system, or, it can also be a network node that constitutes a gNB or a transmission point, Such as baseband unit (BBU), or distributed unit (distributed unit, DU) and so on.
  • BBU baseband unit
  • DU distributed unit
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (active antenna unit, AAU for short).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implementing functions of radio resource control (RRC) and packet data convergence protocol (PDCP) layers.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, the media access control (MAC) layer and the physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • the higher-layer signaling such as the RRC layer signaling
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • the terminal equipment in the wireless communication system may also be referred to as user equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, User terminal, terminal, wireless communication device, user agent or user equipment.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security ( Wireless terminals in transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the embodiments of the present application do not limit application scenarios.
  • the embodiment of the beam in the NR protocol can be a spatial domain filter, or a spatial filter, or a spatial domain parameter, a spatial parameter, and a spatial setting ( spatial domain setting), spatial setting, or quasi-colocation (QCL) information, QCL assumption, QCL indication, etc.
  • the beam can be indicated by transmitting the TCI-state parameter, or by the spatial relation parameter. Therefore, in this application, beams can be replaced by spatial filters, spatial filters, spatial parameters, spatial parameters, spatial settings, spatial settings, QCL information, QCL assumptions, QCL indications, TCI-state (including uplink TCI-state, downlink TCI-state, TCI-state), spatial relationship, etc.
  • the above terms are also equivalent to each other.
  • the beam can also be replaced with other terms representing the beam, which is not limited in this application.
  • the beam used to transmit the signal can be called the transmission beam (transmission beam, Tx beam), also can be called the spatial domain transmission filter (spatial domain transmission filter), the spatial transmission filter (spatial transmission filter), the spatial domain transmission parameter (spatial domain) transmission parameter) or spatial transmission parameter, spatial domain transmission setting or spatial transmission setting.
  • Downlink transmit beams can be indicated by TCI-state.
  • the beam used to receive the signal can be called the receive beam (reception beam, Rx beam), also can be called the spatial domain reception filter (spatial domain reception filter), the spatial reception filter (spatial reception filter), the spatial domain reception parameter (spatial domain) reception parameter) or spatial reception parameter, spatial domain reception setting or spatial reception setting.
  • the uplink transmit beam may be indicated by spatial relationship, or uplink TCI-state, or SRS resource (representing the transmit beam using the SRS). Therefore, the uplink beam can also be replaced with SRS resources.
  • the transmitting beam may refer to the distribution of signal strength in different directions in space after the signal is transmitted by the antenna
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • the beams may be broad beams, or narrow beams, or other types of beams.
  • the beamforming technique may be beamforming or other techniques.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, a hybrid digital beamforming technology, or a hybrid analog beamforming technology.
  • Beams generally correspond to resources. For example, when performing beam measurement, network equipment uses different resources to measure different beams. The terminal equipment feeds back the measured resource quality, and the network equipment knows the quality of the corresponding beam. When data is transmitted, beam information is also indicated by its corresponding resources. For example, the network device indicates the information of the physical downlink sharing channel (PDSCH) beam of the terminal device through the TCI field in the DCI.
  • PDSCH physical downlink sharing channel
  • multiple beams with the same or similar communication characteristics are considered as one beam.
  • One or more antenna ports may be included in a beam for transmitting data channels, control channels, sounding signals, and the like.
  • One or more antenna ports forming a beam can also be viewed as a set of antenna ports.
  • TCI-state (used to indicate the downlink beam)
  • Network equipment can generate different beams, pointing in different directions of transmission.
  • downlink data transmission when a network device uses a specific beam to send data to a terminal device, it needs to notify the terminal device of the information of the transmit beam it uses, so that the terminal device can use the receive beam corresponding to the transmit beam to send data to the terminal device.
  • the network device indicates to the terminal device the relevant information of the transmission beam it uses through the TCI field in the DCI.
  • the size of the TCI field is 3 bits, which can specifically represent 8 different field values (codepoints).
  • TCI-state index can uniquely identify a TCI-state.
  • a TCI-state includes several parameters through which information about the transmit beam can be determined.
  • TCI-state is configured by network devices to each terminal device. The structure of TCI-state is as follows:
  • Each TCI-state includes an own index tci-StateId, and two QCL-Infos.
  • Each QCL-Info includes a cell (cell) field and bwp-Id, respectively indicating which bandwidth part (BWP) of which cell the TCI-state applies to, that is, different cells or different BWPs of the same cell can be configured differently QCL-Info.
  • the QCL-Info also includes a reference signal (referenceSignal), which is used to indicate which reference signal resource forms a quasi-co-location (QCL) relationship with.
  • referenceSignal reference signal
  • beams are generally replaced by other terms. For example, in data transmission and channel measurement, beams correspond to reference signal resources, and one beam corresponds to one reference signal resource.
  • the QCL relationship means that two reference signal resources (or two antenna ports, and there is a one-to-one correspondence between antenna ports and reference signal resources) have some of the same spatial parameters, and which spatial parameters are the same depends on the type of the QCL-Info, That is, another field qcl-Type of QCL-Info.
  • qcl-Type can have four values ⁇ typeA, typeB, typeC, typeD ⁇ . Taking typeD as an example, typeD indicates that the two reference signal resources have the same spatial reception parameter information, that is, the two beams have the same reception beam. At most one of the two QCL-Infos included in the TCI-state is TypeD.
  • An example is given below to illustrate how a network device based on the R15 protocol or the R16 protocol indicates to a terminal device the receiving beam information of the data transmission beam through the TCI-state, including the configuration, activation and indication of the TCI-state.
  • Transmission configuration index state (TCI-state) configuration The network device configures multiple TCI-states to the terminal device through radio resource control (RRC) signaling. Each of these TCI-states includes a QCL-Info of typeD.
  • RRC radio resource control
  • Each of these TCI-states includes a QCL-Info of typeD.
  • the network device may also be configured with TCI-states that do not include QCL-info of type D, but these TCI-states are not indications for data transmission beams, so they are not further described here.
  • TCI-state activation After a network device configures multiple TCI-states, it needs to activate 8 TCI-states through MAC-CE.
  • the 8 TCI-states are in one-to-one correspondence with the 8 values of the TCI field in the DCI. That is, which 8 TCI-states correspond to the 8 values of the TCI field of the DCI is determined through CE signaling of the MAC control element of the medium access control layer.
  • FIG. 3 is a schematic structural diagram of a MAC CE for activating TCI applicable to an embodiment of the present application.
  • the fields T0 to T(N-2)*8+07 correspond to the respective TCI-states whose indexes configured in the first step are 0 to (N-2)*8+7, and each field The size is 1 bit, and the value can be 0 or 1.
  • a value of 1 indicates that the TCI-state is activated, and a value of 0 indicates that the TCI-state is not activated.
  • Each MAC CE can theoretically have 8 activation fields with a value of 1, and the rest are all 0.
  • the TCI-states corresponding to the eight fields whose value is 1 are the eight TCI-states corresponding to the eight values of the TCI field in the DCI.
  • the minimum value of 000 in the TCI field corresponds to the TCI-state with the smallest index activated in the MAC CE, and so on, one-to-one correspondence.
  • the network device indicates a specific TCI-state through the TCI field in the DCI.
  • the value of the TCI field in the DCI sent by the network device to the terminal device is 000, which indicates the TCI-state corresponding to 000 adopted by the data transmission beam.
  • the referenceSignal contained in the QCL-Info of type D in the TCI-state is the channel state information-reference signal (CSI-RS) with index #1, indicating that the beam used for data transmission is the same as the one used for data transmission.
  • the receive beams corresponding to the CSI-RS with index #1 are the same.
  • the receive beam corresponding to the CSI-RS with index #1 can be determined through the beam measurement process, which is known to the terminal device. Therefore, through the specific value of the TCI field, the terminal device can determine the receiving beam corresponding to the data transmission beam, so as to use the corresponding receiving beam to receive data.
  • the transmit beam of uplink transmission is indicated by spatial relation, which is similar in function to TCI-state, and is used to inform the terminal equipment what transmit beam to use for uplink transmission.
  • the target reference signal resource (which can be any one of SRS, SSB, and CSI-RS) is used to indicate the corresponding uplink beam. If spatial relation#1 is used for uplink transmission, and the spatial relation#1 includes a target reference signal resource #2, it means that the transmit beam used for uplink transmission is the transmit beam or receive beam of the target reference signal. For example, when the target reference signal resource is an uplink resource SRS, it indicates that the transmission beam used for uplink transmission is the transmission beam of the SRS (the transmission beam of the SRS is known).
  • the target reference signal resource is a downlink resource such as SSB or CSI-RS, indicating that the transmission beam used for uplink transmission is the receiving beam of the SSB or the receiving beam of the CSI-RS (the receiving beam of the SSB or the receiving beam of the CSI-RS). beam is known).
  • Network devices can configure multiple spatial relations for end devices. Then activate one of them for the corresponding data transmission through the MAC CE.
  • Uplink transmission includes physical uplink control channel (PUCCH), sounding reference signal (SRS), physical uplink sharing channel (PUSCH), etc., all of which require corresponding spatial relation.
  • the spatial relation of PUCCH is indicated by MACCE signaling.
  • the spatial relation of the SRS is also indicated by MACCE signaling.
  • a specific SRS is associated with PUSCH transmission, and the spatial relation of the SRS is used for transmission.
  • Panel refers to an antenna panel, which can be an antenna panel of a network device or an antenna panel of a terminal device.
  • This antenna array can generate simulated beams pointing in different directions. That is to say, multiple analog beams can be formed on each antenna panel, and the best analog beam for the antenna panel can be determined by beam measurement.
  • the terminal device can be equipped with multiple antenna panels, which can be distributed in different positions and face in different directions, which ensures that no matter which direction the terminal device faces, at least one antenna panel is facing the network device and can be connected with the network device. data transfer.
  • the terminal device can turn on all antenna panels at the same time for transmission.
  • the terminal device can also use only a single antenna panel for transmission at a time, and other unused antenna panels can be turned off. Whether the antenna panel of the terminal device is in an open or closed state generally needs to be notified to the network device, that is, the state information of the antenna panel generally needs to be exchanged between the terminal device and the network device.
  • the antenna panel is the antenna panel of the terminal device.
  • Antenna panels can also be represented by panel index, etc.
  • the antenna panel can also be implicitly represented in other ways.
  • the antenna panel can also use antenna ports (such as CSI-RS ports, SRS ports, demodulation reference signal (DMRS) ports, phase tracking Reference signal (phase tracking reference signal, PTRS) port, CRS port, time-frequency tracking reference signal (tracking reference signal, TRS port, SSB port, etc.) or antenna port group to characterize, can also be represented by resources (such as CSI-RS resources , SRS resources, DMRS resources, PTRS resources, cell reference signal (CRS) resources, time-frequency tracking reference signal (tracking reference signal, TRS) resources, SSB resources, etc.) or resource groups to characterize, can also be characterized by a certain Channel representations (such as PUCCH, PUSCH, physical random access channel (PRACH), physical downlink sharing channel (PDSCH),
  • CSI-RS resources such as CSI-RS
  • the network device is a device deployed in a wireless access network to provide a wireless communication function for a terminal device.
  • the network equipment may include various forms of macro base stations, micro base stations (also called small cells), relay stations, access points, and the like. In systems using different radio access technologies, the names of network equipment may vary, for example, global system for mobile communication (GSM) or code division multiple access (CDMA)
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • BTS base transceiver station
  • NodeB, NB in the wideband code division multiple access
  • WCDMA wideband code division multiple access
  • LTE long term evolution
  • eNodeB evolutional NodeB
  • the network device may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device may also be a base station device in a future 5G network or a network device in a future evolved public land mobile network (public land mobile network, PLMN) network.
  • the network device can also be a wearable device or a vehicle-mounted device.
  • a network device can also transmit a transmission and reception point (TRP).
  • TRP transmission and reception point
  • the involved terminal devices may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to a wireless modem.
  • the terminal can be a mobile station (mobile station, MS), a subscriber unit (subscriber unit), a cellular phone (cellular phone), a smart phone (smart phone), a wireless data card, a personal digital assistant (personal digital assistant, PDA) computer, tablet computer, wireless modem (modem), handheld device (handset), laptop computer (laptop computer), machine type communication (machine type communication, MTC) terminal, etc.
  • each channel is indicated by a separate beam.
  • the beams of PDCCH and PDSCH are indicated by TCI-state, and the beams of PUCCH and PUSCH are indicated by spatial relation.
  • Each channel has its own corresponding beam.
  • a common beam is defined, which is used for multiple uplink and downlink channels at the same time.
  • Common beam multiple channels, multiple channels, multiple reference signals, and/or the same beam commonly used by multiple reference signals.
  • the multiple channels or multiple channels include, but are not limited to, at least one of the following channels: PDCCH, PDSCH, PUCCH, PUSCH, PRACH.
  • the reference signal includes, but is not limited to, at least one of the following signals: SSB, CSI-RS, DMRS, phase tracking reference signal (PTRS), TRS, SRS, etc.
  • public beams can be specifically classified into the following three categories.
  • Joint (joint) common beam used for transmission of one or more channels or one or more reference signals, such as PDCCH, PDSCH, PUCCH and PUSCH, for both uplink and downlink.
  • Uplink common beam used for transmission of multiple uplink channels at the same time, and/or simultaneously used for transmission of multiple uplink channels, and/or simultaneously used for transmission of one or more uplink reference signals.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Control Channel
  • SRS Physical Reference Signal
  • Downlink common beam used for transmission of multiple downlink channels at the same time, and/or simultaneously used for transmission of multiple downlink channels, and/or simultaneously used for transmission of one or more downlink reference signals.
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Control Channel
  • CSI-RS Physical Downlink Reference Signal
  • public beams can be divided into the following two categories:
  • Joint Common Beam Used for both uplink and downlink transmissions. For example, it is simultaneously used for transmission of one or more channels or reference signals in uplink, and simultaneously used for transmission of one or more channels or reference signals in downlink.
  • PDCCH, PDSCH, PUCCH and PUSCH used for both uplink and downlink transmissions. For example, PDCCH, PDSCH, PUCCH and PUSCH.
  • the uplink common beam and the downlink common beam are combined into one type of common beam, which is called a separate common beam.
  • the independent common beam may be an uplink common beam or a downlink common beam.
  • the network device may configure, activate, and indicate one common beam for the terminal device, the one common beam being the joint common beam.
  • the network device can configure, activate, and indicate multiple common beams for the terminal device, and the multiple common beams are different types of common beams, such as uplink common beams and downlink common beams, or control channel common beams and data channel common beams.
  • the multiple common beams may also be of the same type, that is, to configure, activate, and indicate multiple common beams of the same type for the terminal device.
  • the common beam can be a newly defined structure (different from the existing TCI-state and spatial relation structures).
  • the public beam includes beam indication related information, including but not limited to one or more of the following: public beam ID, logical cell ID (cell ID), physical cell ID, frequency component ID (bandwidth part, BWP) to determine the beam reference signal resources, Quasi colocation (QCL) type, uplink power control related parameters (such as path loss measurement reference signal resources, p0, closedLoopIndex, etc.).
  • the common beam can be cell-level, that is, one common beam is used for transmission of multiple channels in a cell.
  • Common beams can be BWP-level for transmission of multiple beams within a BWP.
  • Common beams can also be cross-cell, i.e. used for transmission of multiple channels of multiple cells.
  • the plurality of cells may be a plurality of cells within a band.
  • the multiple cells may also be multiple cells across frequency bands.
  • the common beam may be at the control-resource set (control-resource set, CORESET) level, that is, all PDCCHs corresponding to the CORESET, and/or all PDSCHs scheduled by the PDCCH of the CORESET, and/or, the PDCCH scheduled by the CORESET All PUSCHs of the CORESET, and/or the PUCCH/PUSCH of the ACK/NACK transmission of the PDSCH scheduled by the PDCCH of the CORESET use the same common beam.
  • control-resource set control-resource set, CORESET
  • CORESET control-resource set
  • Common beams are also represented by TCI-state or spatial relation.
  • the downlink common beam is represented by TCI-state.
  • the uplink common beam is represented by spatial relation.
  • the embodiment of the common beam in the protocol may be TCI-state or spatial relation, or other parameters used to indicate the uplink transmission beam, or other parameters used to indicate the downlink transmission beam.
  • the beams defined in the 3GPP R15 protocol and the 3GPP R16 protocol, such as TCI-state, spatial relation, and spatial filter are called ordinary beams.
  • Ordinary beams are used for the transmission of a single channel, and are not used for the transmission of multiple channels or multiple reference signals at the same time.
  • the network device needs to individually indicate a common beam for each channel for transmission.
  • FIG. 4 is an example diagram of a method for beam indication applicable to an embodiment of the present application.
  • the network device indicates beams for PDCCH, PDSCH, PUCCH and PUSCH respectively through different signaling. Since different signaling is used for each channel, a large signaling overhead is caused. However, in general, the beams corresponding to multiple different channels are often the same, so there is no need to separately indicate them separately, which wastes signaling overhead.
  • FIG. 5 is a schematic diagram of an embodiment of a beam management method according to an embodiment of the present application.
  • the beam management method includes:
  • the network device sends beam configuration information to the terminal device.
  • the terminal device receives beam configuration information from the network device.
  • the beam configuration information includes configuration information of one or more common beams.
  • the network device may send the beam configuration information to the terminal device through radio resource control (radiore source control, RRC).
  • the beam configuration information includes configuration parameters of one or more common beams.
  • the configuration parameters of one or more common beams included in the beam configuration information may be delivered to the terminal device through one or more RRCs.
  • the network device sends beam activation information to the terminal device.
  • the terminal device receives the beam activation information from the network device.
  • the beam activation information is used to activate part of the one or more common beams.
  • the network device sends beam activation information to the terminal device through the MAC CE for activating a group of common beams.
  • the group of common beams is a common beam among one or more common beams in the above step 501 .
  • the set of common beams includes one or more common beams.
  • the MAC CE includes beam indices corresponding to one or more common beams included in the group of common beams.
  • the MAC CE includes a bitmap for identifying the set of common beams.
  • the network device sends beam indication information to the terminal device.
  • the terminal device receives beam indication information from the network device.
  • the beam indication information is used to indicate one or more public beams in the part of the public beams.
  • the network device sends beam indication information to the terminal device through the first DCI.
  • the first DCI is used to indicate one or more common beams in a set of common beams activated by the MAC C.
  • the terminal equipment uses the common beam indicated by the beam indication information for transmission. If the beam indication information indicates a downlink common beam, the terminal device uses the common beam indicated by the beam indication information as a downlink channel or downlink reference signal beam. If the beam indication information indicates an uplink common beam, the terminal device uses the common beam indicated by the beam indication information as a beam of an uplink channel or an uplink reference signal. If the beam indication information indicates a joint common beam, the terminal device uses the common beam indicated by the beam indication information as a beam of an uplink channel, an uplink reference signal, a downlink channel and a downlink reference signal.
  • the network device configures one or more common beams for the terminal device through the beam configuration information.
  • the network device activates part of the one or more public beams for the terminal device through the beam activation information.
  • the network device indicates to the terminal device one or more public beams in the part of the public beams through the beam indication information. Since the common beam is the same beam commonly used by multiple channels or multiple signals, the corresponding beams can be indicated for multiple channels or multiple signals uniformly.
  • the above-mentioned embodiment shown in FIG. 5 realizes efficient beam indication, avoids complex indication instructions, and saves extra overhead.
  • the present application provides the first embodiment.
  • the following describes FIG. 6 to introduce the technical solution of the first embodiment provided by the present application.
  • FIG. 6 is a schematic diagram of another embodiment of the beam management method according to the embodiment of the present application.
  • the beam management method includes:
  • the network device sends beam configuration information to the terminal device.
  • the terminal device receives beam configuration information from the network device.
  • Step 601 is similar to step 501 in the foregoing embodiment shown in FIG. 5 .
  • Step 601 please refer to the relevant introduction of step 501 in the foregoing embodiment shown in FIG. 5 , which will not be repeated here.
  • the beam configuration information includes one or more common beams configured by the terminal device including the first common beam.
  • the beam configuration information includes configuration parameters of the first common beam. If the configuration parameters of the first common beam include the first parameter and do not include the second parameter, the first common beam is an uplink common beam; if the configuration parameters of the first common beam include the second parameter and do not include the first parameter, the first common beam The beam is a downlink common beam; if the configuration parameters of the first common beam include the first parameter and the second parameter, the first common beam is a joint common beam.
  • the first parameter includes at least one of the following: reference signal resources for determining the uplink transmission beam, spatial relationship information, uplink power control parameters, channel sounding reference signal resources, spatial relationship parameters, and first QCL information.
  • the first QCL information includes QCL information of typeE or typeF.
  • the second parameter includes at least one of the following: second QCL information, bandwidth component BWP parameter.
  • the second QCL information includes QCL information of any one of typeA, typeB, typeC, and typeD.
  • the uplink power control parameters include path loss measurement resources, p0 parameters, close loop index, and the like.
  • the BWP parameters include the BWP ID.
  • the beam configuration information includes one or more common beam sets.
  • the beam types of the common beams respectively included in the one or more common beam sets are different. For example, if the beam configuration information includes a common beam set, the beam type of the common beams included in the common beam set is a joint common beam. If the beam configuration information includes two common beam sets, the common beam included in one of the two common beam sets is an uplink common beam, and the common beam included in the other public beam set is a downlink common beam. If the beam configuration information includes three public beam sets, the beam type included in one of the three public beam sets is a joint public beam, the beam type included in one public beam set is an uplink public beam, and there is another public beam. The beam types included in the set are downlink common beams.
  • this embodiment further includes step 601a.
  • Step 601a is performed after step 601 .
  • Step 601a The terminal device determines the beam type of one or more public beams configured by the network device for the terminal device according to the beam configuration information.
  • the terminal device determines the beam type of one or more common beams according to the beam configuration information including the configuration parameters of one or more common beams.
  • the beam configuration information includes configuration parameters corresponding to the one or more common beams respectively.
  • the terminal device determines the beam type of each common beam according to whether the configuration parameters of each of the one or more common beams include the first parameter and the second parameter. If the configuration parameters of the common beam include the first parameter and do not include the second parameter, the common beam is an uplink common beam. If the configuration parameter of the common beam includes the second parameter and does not include the first parameter, the common beam is a downlink common beam. If the configuration parameters of the common beam include the first parameter and the second parameter, the common beam is a joint common beam.
  • the beam configuration information includes one or more common beam sets.
  • the beam types of the common beams respectively included in the one or more common beam sets are different. For example, if the beam configuration information includes a common beam set, the beam type of the common beams included in the common beam set is a joint common beam. If the beam configuration information includes two common beam sets, the common beam included in one of the two common beam sets is an uplink common beam, and the common beam included in the other common beam set is a downlink common beam. If the beam configuration information includes three public beam sets, the beam type included in one of the three public beam sets is a joint public beam, the beam type included in one public beam set is an uplink public beam, and there is another public beam. The beam types included in the set are downlink common beams.
  • the terminal device determines the beam type of one or more public beams configured by the network device for the terminal device according to the number of public beam sets included in the beam configuration information.
  • the terminal device determines the beam type of the common beam included in each common beam set according to the number of common beam sets included in the beam configuration information.
  • the beam type of the common beams included in the common beam set is a joint common beam.
  • the beam types of the common beams respectively included in the two common beam sets are uplink common beams and downlink common beams, respectively.
  • the public beam in the first public beam set of the two public beam sets is an uplink public beam
  • the public beam in the second public beam set of the two public beam sets is a downlink public beam.
  • the common beam in the first common beam set of the two common beam sets is a downlink common beam
  • the common beam in the second common beam set of the two common beam sets is an uplink common beam.
  • the beam type of the common beam included in the first common beam set among the three common beam sets is joint common beam
  • the beam type of the common beam included in the other two common beam sets is The beam types are uplink common beam and downlink common beam respectively.
  • the public beams in the second public beam set are uplink public beams
  • the public beams in the third public beam set are downlink public beams.
  • the public beams in the second public beam set are downlink public beams
  • the public beams in the third public beam set are uplink public beams.
  • the beam configuration information includes three public beam sets
  • the beam types of the public beams included in the third public beam set are joint public beams
  • the beam types of the public beams included in the first two public beam sets are uplink public beams respectively and downlink common beams.
  • the public beams in the first public beam set are uplink public beams
  • the public beams in the second public beam set are downlink public beams.
  • the common beams in the first common beam set are downlink common beams
  • the common beams in the second common beam set are uplink common beams.
  • the network device sends beam activation information to the terminal device.
  • the terminal device receives the beam activation information from the network device.
  • Step 602 is similar to step 502 in the foregoing embodiment shown in FIG. 5 .
  • Step 602 please refer to the relevant introduction of step 502 in the foregoing embodiment shown in FIG. 5 , which will not be repeated here.
  • the terminal device may determine the beam type of the public beam activated by the network device for the terminal device.
  • the network device sends beam indication information to the terminal device.
  • the terminal device receives beam indication information from the network device.
  • Step 603 is similar to step 503 in the foregoing embodiment shown in FIG. 5 .
  • Step 603 please refer to the relevant introduction of step 503 in the foregoing embodiment shown in FIG. 5 , which will not be repeated here.
  • the terminal device may determine the beam type of the public beam indicated by the network device to the terminal.
  • the terminal equipment may determine the beam type of the one or more common beams according to the beam configuration information.
  • the specific terminal device may determine the beam type of the one or more common beams according to the configuration parameters included in the beam configuration information or the number of common beam sets. There is no need to indicate the beam type of one or more common beams through other information or fields, reducing the overhead of network resources. For example, signaling overhead, indication bit overhead.
  • the present application provides a second embodiment, which includes steps 501 to 503 in the embodiment shown in FIG. 5 above.
  • one or more public beams configured by the network device for the terminal device include any of the following: an independent public beam used for uplink transmission or downlink transmission, a joint public beam used for uplink transmission and downlink transmission beam.
  • the network device configures an independent public beam or a joint public beam for the terminal device.
  • the terminal device is not expected to be configured with the independent common beam and the joint common beam at the same time. That is, the independent common beam and the joint common beam cannot be configured at the same time.
  • the terminal device may determine the beam types of some of the public beams activated by the network device and the beam types of the public beams indicated by the network device.
  • the one or more common beams include joint common beams.
  • the terminal device may determine that the public beam activated by the network device is the joint public beam, and determine that the public beam indicated by the network device is the joint public beam.
  • the beam type of the public beam configured by the network device for the terminal device is limited.
  • independent public beam and joint public beam cannot be configured at the same time. Since the joint public beam can be used for uplink transmission and downlink transmission at the same time, if the network device configures the joint public beam for the terminal device, there is no need to configure the independent public beam for the terminal device, so as to avoid the waste of beam resources and improve the efficiency of beam resources. utilization. Since the independent public beam can be used for uplink transmission or downlink transmission, if the network device configures the independent public beam for the terminal device, it is not necessary to configure the joint public beam for the terminal device, thereby avoiding the waste of beam resources and improving the utilization of beam resources. Rate.
  • Embodiment 3 where Embodiment 3 includes the foregoing steps 501 to 503 .
  • the network device may configure public beams of various beam types for the terminal device by means of a common beam set.
  • Three possible implementations are shown below. It should be noted that the following three possible implementation manners are merely an example, and other possible implementation manners are also applicable to the technical solutions of the embodiments of the present application.
  • the beam configuration information includes the first public beam set, the second public beam set and the third public beam set.
  • the first set of common beams includes joint common beams.
  • the second set of common beams includes uplink common beams.
  • the third set of common beams includes downlink common beams.
  • the terminal device can distinguish the beam types of the common beams through the common beam set. Specifically, after step 501, the terminal device determines, according to the public beam set included in the beam configuration information, beam types corresponding to one or more public beams configured by the network device for the terminal device respectively.
  • Common beams included in different common beam sets may be represented by beam indices. Two possible implementations are shown below.
  • Implementation Mode 1 The network device respectively indicates the common beams included in the first common beam set, the common beams included in the second common beam set, and the common beams included in the third common beam set through the global beam index.
  • the beam indices of the common beams in different common beam sets are different.
  • the first common beam set includes two joint common beams, and the corresponding beam indices are ⁇ #0, #2 ⁇ .
  • the second common beam set includes three uplink common beams, and the corresponding beam indices are ⁇ #1, #3, #5 ⁇ .
  • the third common beam set includes two downlink common beams, and the corresponding beam indices are ⁇ #4, #6 ⁇ respectively.
  • the terminal device determines, according to the beam index of the one or more common beams included in the beam configuration information, the beam types corresponding to the one or more common beams respectively.
  • the terminal device determines the beam type of the part of the common beams activated by the beam activation information according to the beam index of the part of the common beams.
  • the terminal device determines the beam type corresponding to the one or more common beams indicated by the beam indication information according to the beam index of the one or more common beams indicated by the beam indication information.
  • Implementation Mode 2 The network device respectively indicates the common beams included in the first common beam set, the common beams included in the second common beam set, and the common beams included in the third common beam set by using the local beam index.
  • the beam indices of common beams within different sets of common beams may be the same.
  • the first common beam set includes two joint common beams, and the corresponding beam indices are ⁇ #0, #1 ⁇ .
  • the second common beam set includes three uplink common beams, and the corresponding beam indices are ⁇ #0, #1, #3 ⁇ .
  • the third common beam set includes two downlink common beams, and the corresponding beam indices are ⁇ #0, #1 ⁇ .
  • the beam configuration information includes a fourth common beam set and a fifth common beam set.
  • the fourth set of common beams includes a joint set of common beams.
  • the fifth set of common beams includes independent common beams. That is to say, the uplink common beam and the downlink common beam are included in the fifth common beam set.
  • the terminal device can distinguish the beam types of the common beams through the common beam set. Specifically, after step 501, the terminal device determines, according to the public beam set included in the beam configuration information, beam types corresponding to one or more public beams configured by the network device for the terminal device respectively.
  • Common beams included in different common beam sets may be represented by beam indices. Two possible implementations are shown below.
  • Implementation Mode 1 The network device respectively indicates the public beams included in the fourth public beam set and the public beams included in the fifth public beam set by using the global beam index.
  • the beam indices of the common beams in different common beam sets are different.
  • the fourth common beam set includes two joint common beams, and the corresponding beam indices are ⁇ #0, #2 ⁇ respectively.
  • the fifth common beam set includes four common beams (including uplink common beams and downlink common beams), and the corresponding beam indices are ⁇ #1, #3, #4, #5 ⁇ respectively.
  • the terminal device determines, according to the beam index of the one or more common beams included in the beam configuration information, the beam types corresponding to the one or more common beams respectively.
  • the terminal device determines the beam type of the part of the common beams activated by the beam activation information according to the beam index of the part of the common beams.
  • the terminal device determines the beam type corresponding to the one or more common beams indicated by the beam indication information according to the beam index of the one or more common beams indicated by the beam indication information.
  • Implementation Mode 2 The network device respectively indicates the public beams included in the fourth public beam set and the public beams included in the fifth public beam set by using the local beam index.
  • the beam indices of common beams within different sets of common beams may be the same.
  • the fourth common beam includes two joint common beams, and the corresponding beam indices are ⁇ #0, #2 ⁇ respectively.
  • the fifth common beam set includes four common beams (including an uplink common beam and a downlink common beam), and the corresponding beam indices are ⁇ #0, #1, #2, #3 ⁇ respectively.
  • the beam configuration information includes a sixth common beam set
  • the sixth common beam set includes an uplink common beam, a downlink common beam, and a joint common beam.
  • the network device configures public beams of various beam types for the terminal device by means of a public beam set, which provides a basis for the implementation of the solution.
  • the present application provides the fourth embodiment, which includes the above steps 501 to 503 in FIG. 5 .
  • the beam activation information is carried by the MAC CE.
  • common beams of different beam types are activated by different MAC CEs.
  • the terminal device determines the beam type of the public beam activated by the MAC CE according to the beam index of the public beam included in the MAC CE.
  • the terminal device can determine the beam type of the public beam activated by the MAC CE according to the beam index of the public beam included in the MAC CE. For example, if the beam index of the common beam is #0, the terminal device may determine that the common beam belongs to the first public beam set, that is, the joint public beam.
  • the terminal device can determine the beam type of the public beam activated by the MAC CE according to the beam index of the public beam included in the MAC CE. For example, if the beam index of the common beam is #2, the terminal device can determine that the common beam belongs to the fourth set of common beams, that is, the joint common beam. For example, if the beam index of the public beam is #1, the terminal device can determine that the public beam belongs to the fifth public beam set, that is, is an independent public beam. And whether the public beam is an uplink public beam or a downlink public beam, the specific terminal equipment should also be determined in combination with other relevant fields or other methods.
  • multiple common beams of different beam types are activated through the same MAC CE. That is, one MAC CE can activate common beams of multiple different beam types.
  • one MAC CE is used to activate a group of uplink common beams and a group of downlink common beams.
  • a possible MAC CE format is shown below in conjunction with FIG. 7 .
  • FIG. 7 is a possible format of the MAC CE provided by the embodiment of the present application.
  • all TCI state ID i,1 in the MAC CE corresponds to the public beam of the first beam type
  • all TCI state ID i,2 corresponds to the public beam of the second beam type.
  • i is an integer greater than or equal to 0 and less than or equal to N.
  • the first beam type is an uplink common beam
  • the second beam type is a downlink common beam.
  • the first beam type is a downlink common beam
  • the first beam type is an uplink common beam.
  • the first beam type and the second beam type may be specified by the communication protocol, or configured by the network device for the terminal device through RRC, or indicated by the first bit (bit) of the MAC CE.
  • the C i field (1 bit) before each TCI state ID i,1 is used to indicate whether there is a TCI state ID i,2 .
  • the activated joint common beam corresponds to each field value of the common beam indication field in the DCI one-to-one.
  • the DCI includes DCI used for uplink scheduling or downlink scheduling.
  • the joint common beam can only be associated with the field value of the common beam indication field in the DCI used for downlink scheduling, that is, only the DCI used for downlink scheduling can be used to indicate the joint common beam.
  • the joint common beam can only be associated with the field value of the common beam indication field in the DCI used for uplink scheduling, that is, only the DCI used for uplink scheduling can be used to indicate the joint common beam.
  • the joint common beam can be associated with the field value of the common beam indication field in the DCI for uplink scheduling and the DCI for downlink scheduling, that is, the DCI for uplink scheduling or the DCI for downlink scheduling can be used to indicate Joint public beam.
  • the activated uplink common beam and the downlink common beam are respectively mapped to the common beam indication field values of different types of DCI, that is, they are associated with the common beam field values in different types of DCIs. .
  • the activated uplink common beam is associated with the common beam indication field in the DCI used for uplink scheduling, that is, the activated uplink common beam can only be indicated by the DCI used for uplink scheduling.
  • the activated downlink common beam is associated with the common beam indication field in the DCI used for downlink scheduling, that is, the activated downlink common beam can only be indicated by the DCI used for downlink scheduling.
  • a technical solution for activating a common beam of a beam type through a MAC CE is provided, and a technical solution for activating a common beam of multiple beam types through a MAC CE is provided. That is, some specific public beam activation methods are provided. For the technical solution of activating public beams of multiple beam types through one MAC CE, the signaling overhead used by network equipment and terminal equipment for activating public beams can be reduced, and beam activation can be efficiently performed.
  • This application provides the fifth embodiment.
  • the following describes the technical solution of the fifth embodiment provided by the present application with reference to FIG. 8 .
  • FIG. 8 is a schematic diagram of another embodiment of the beam management method according to the embodiment of the present application.
  • the beam management method includes:
  • the network device sends beam configuration information to the terminal device.
  • the terminal device receives beam configuration information from the network device.
  • the network device sends beam activation information to the terminal device.
  • the terminal device receives the beam activation information from the network device.
  • the network device sends beam indication information to the terminal device.
  • the terminal device receives beam indication information from the network device.
  • Steps 801 to 803 are related to the introduction of steps 501 to 503 in the embodiment shown in FIG. 5 .
  • steps 501 to 503 in the embodiment shown in FIG. 5 .
  • steps 501 to 502 in the embodiment shown in FIG. 5 .
  • the beam indication information is carried through the first DCI.
  • Two implementation manners indicating that the terminal device successfully receives the first DCI are shown below.
  • the first possible implementation manner when the first condition is satisfied, and the HARQ feedback result corresponding to the first DCI is ACK, it means that the terminal device has successfully received the first DCI, or it means that one or more public data indicated by the first DCI Beam indication is successful.
  • the first condition includes a combination of one or more of the following:
  • the terminal equipment reports to support the public beam function
  • the network device configures the public beam function of the terminal device to be on;
  • the first DCI does not schedule PDSCH
  • the first DCI schedules the PDSCH and the terminal device uses the dynamic HARQ-ACK codebook for HARQ feedback;
  • the one or more common beams indicated by the first DCI are different from the common beams currently used by the terminal device.
  • the terminal device successfully receiving the first DCI includes: the terminal device receives the first DCI from the network device and successfully decodes the first DCI.
  • the common beam indicated by the first DCI takes effect after adding the first time offset at the first moment; or, when the first DCI is satisfied condition, and the HARQ feedback result corresponding to the first DCI is ACK, the public beam indicated by the first DCI takes effect in the first time slot after adding the first time offset at the first moment.
  • the first time is the time when the terminal device receives the first DCI, or the time when the terminal device sends the HARQ feedback result corresponding to the first DCI, that is, the time when the terminal device feeds back the above-mentioned ACK.
  • the HARQ feedback result corresponding to the first DCI is the HARQ feedback result fed back for the first DCI or the HARQ feedback result fed back for the PDSCH scheduled by the first DCI.
  • the first time offset is a preset time offset, or a time offset configured by the network device for the terminal device, which is not specifically limited in this application.
  • the above-mentioned embodiment shown in FIG. 8 further includes steps 803a to 803c.
  • Steps 803a to 803c are performed after step 803 .
  • step 803b can be executed first and then step 803c; or, step 803c can be executed first and then step 803b; or step 803b and step 803c can be executed simultaneously according to the situation.
  • Step 803a The terminal device sends an ACK to the network device.
  • Step 803b The terminal device determines the effective time of the common beam indicated by the first DCI according to the first moment and the first time offset.
  • Step 803c The network device determines the effective time of the common beam indicated by the first DCI according to the first moment and the first time offset.
  • Example 1 If the first DCI does not schedule PDSCH, the terminal device performs HARQ feedback for the first DCI. If the terminal device successfully receives the first DCI, the terminal device feeds back an ACK to the network device, indicating that the terminal device successfully received the first DCI, or that the terminal device successfully received the beam indication information. In other words, if the first DCI does not schedule PDSCH, and the terminal device feeds back an ACK to the network device, it means that the terminal device successfully receives the first DCI.
  • the common beam indicated by the first DCI takes effect after adding the first time offset at the first moment; or, the common beam indicated by the first DCI is the first moment after adding the first time offset.
  • the first time slot takes effect.
  • the public beam indicated by the first DCI is only at the first moment. It takes effect after adding the first time offset, or takes effect at the first time slot after adding the first time offset at the above-mentioned first moment.
  • Example 2 If the PDSCH is scheduled by the first DCI, the terminal device may only perform HARQ feedback on the PDSCH scheduled by the first DCI. Because the terminal device can notify the network device of the PDSCH scheduled by the first DCI and whether the first DCI is successfully received by the terminal device through the HARQ feedback result corresponding to the PDSCH scheduled by the first DCI.
  • the terminal device uses the dynamic HARQ-ACK codebook for HARQ feedback
  • the terminal device feeds back ACK to the network device it means that the terminal device successfully receives the first DCI.
  • the terminal device feeds back NACK to the network device it means that the terminal device has not successfully received the first DCI.
  • the common beam indicated by the first DCI takes effect after adding the first time offset at the first moment, or taking effect at the first time slot after adding the first time offset at the first moment.
  • the public beam indicated by the first DCI is only at the first moment. It takes effect after adding the first time offset, or takes effect at the first time slot after adding the first time offset at the above-mentioned first moment.
  • the first DCI is used by the network device to indicate the public beam to the terminal device for the n+1th time after the terminal device initially accesses.
  • the public beam currently used by the terminal equipment or the public beam indicated to the terminal equipment by the network equipment last time refers to the public beam that the network equipment indicates to the terminal equipment for the nth time after the terminal equipment initially accesses and takes effect.
  • n is an integer greater than or equal to 1.
  • the terminal device can ignore the first DCI, and the terminal device does not need to determine the public beam according to the effective time of the public beam shown above. effective.
  • the moment when the terminal device receives the first DCI can be understood as the moment when the network device sends the first DCI.
  • the moment when the terminal device sends the HARQ feedback result corresponding to the first DCI may be understood as the moment when the network device receives the HARQ feedback result corresponding to the first DCI. Therefore, the network device may determine the effective time of the common beam indicated by the first DCI by using the first moment and the first time offset. In this way, the network device and the terminal device can be switched to the common beam at the effective time, so as to implement transmission between the network device and the terminal device through the common beam.
  • the second possible implementation manner when the second condition is satisfied, and the HARQ feedback result corresponding to the first DCI is ACK or NACK, it means that the terminal device has successfully received the first DCI, or it means that one or more of the first DCI indicated A common beam indicates success.
  • the second condition includes a combination of one or more of the following:
  • the terminal equipment reports to support the public beam function
  • the network device sets the public beam public configuration of the terminal device to the open state
  • the first DCI schedules the PDSCH
  • the terminal equipment uses the semi-static HARQ-ACK codebook for HARQ feedback
  • the one or more common beams indicated by the first DCI are different from the common beams currently used by the terminal device.
  • the terminal device successfully receiving the first DCI means that the terminal device receives the first DCI from the network device and successfully decodes the first DCI.
  • the common beam indicated by the first DCI takes effect after adding the first time offset at the first moment; or, the first DCI The indicated common beam takes effect at the first time slot after adding the first time offset at the first moment.
  • the first time is the time when the terminal device receives the first DCI, or the time when the terminal device sends the HARQ feedback result corresponding to the first DCI, that is, the time when the terminal device feeds back the ACK or NACK.
  • the first time offset must be greater than the time when the terminal device receives the first DCI and the HARQ feedback result corresponding to the first DCI is sent.
  • the time interval between moments That is, the effective time of the common beam indicated by the first DCI must be later than the sending time of the HARQ feedback result corresponding to the first DCI.
  • the first time offset can be designed as a fixed value, that is, the value specified by the communication protocol. Then, in practical applications, it should be ensured that the time interval between the time when the terminal device receives the first DCI and the time when the HARQ feedback result corresponding to the first DCI is sent is smaller than the fixed value.
  • the terminal device ignores the first DCI, that is, the common beam indicated by the first DCI does not take effect, or is delayed for a period of time effective. For example, the effective time of the common beam indicated by the first DCI is delayed to the first time slot after the time when the terminal device sends the HARQ feedback result corresponding to the first DCI.
  • the HARQ feedback result corresponding to the first DCI is the HARQ feedback result fed back to the PDSCH scheduled by the first DCI.
  • the first time offset is a preset time offset, or a time offset configured by the network device for the terminal device, which is not specifically limited in this application.
  • the first moment may specifically be a certain time slot, or a certain symbol, or a certain second, or a certain millisecond, which is not specifically limited in this application.
  • the first time offset includes X time units. X is an integer greater than or equal to 1.
  • the time unit includes one slot, one slot group, one symbol, one symbol group, or one millisecond.
  • the above-mentioned embodiment shown in FIG. 8 further includes steps 803d to 803f.
  • Steps 803d to 803f are performed after step 803d.
  • Step 803e can be executed first and then step 803f; or step 803e can be executed first and then step 803f; or step 803e and step 803f can be executed simultaneously according to the situation.
  • Step 803d The terminal device sends ACK or NACK to the network device.
  • Step 803e The terminal device determines the effective time of the common beam indicated by the first DCI according to the first moment and the first time offset.
  • the first moment and the first time offset please refer to the aforementioned related introduction.
  • Step 803f The network device determines the effective time of the common beam indicated by the first DCI according to the first moment and the first time offset.
  • Example 3 If the PDSCH is scheduled by the first DCI, the terminal device may only perform HARQ feedback on the PDSCH scheduled by the first DCI. Because the terminal device can notify the network device of the PDSCH scheduled by the first DCI and whether the first DCI is successfully received by the terminal device through the HARQ feedback result corresponding to the PDSCH scheduled by the first DCI.
  • the terminal device feeding back ACK or NACK to the network device may indicate that the terminal device successfully receives the first DCI.
  • the terminal device feeds back a NACK to the network device. In the case where the terminal device fails to receive the first DCI and the terminal device fails to successfully receive the PDSCH scheduled by the first DCI, the terminal device does not feed back any information to the network device.
  • the terminal device uses the semi-static HARQ-ACK codebook for HARQ feedback, if the terminal device feeds back ACK or NACK to the network device, it means that the terminal device successfully receives the first DCI.
  • the common beam indicated by the first DCI takes effect at the first moment after adding the first time offset, or takes effect at the first time slot after adding the first time offset at the first moment.
  • the public beam indicated by the first DCI is only at the first moment. It takes effect after adding the first time offset, or takes effect at the first time slot after adding the first time offset at the above-mentioned first moment.
  • the moment when the terminal device receives the first DCI can be understood as the moment when the network device sends the first DCI.
  • the moment when the terminal device sends the HARQ feedback result corresponding to the first DCI may be understood as the moment when the network device receives the HARQ feedback result corresponding to the first DCI. Therefore, the network device may determine the effective time of the common beam indicated by the first DCI by using the first moment and the first time offset. In this way, the network device and the terminal device can be switched to the common beam at the effective time, so as to implement transmission between the network device and the terminal device through the common beam.
  • the first DCI is used by the network device to indicate the public beam to the terminal device for the n+1th time after the terminal device initially accesses.
  • the public beam currently used by the terminal equipment or the public beam indicated to the terminal equipment by the network equipment last time refers to the public beam that the network equipment indicates to the terminal equipment for the nth time after the terminal equipment initially accesses and takes effect.
  • n is an integer greater than or equal to 1.
  • the following describes how to determine the codebook type used by the terminal device.
  • the terminal device uses the dynamic HARQ-ACK codebook rule to perform HARQ feedback.
  • the first DCI includes a downlink assignment index (DAI) field or the length of the DAI field included in the first DCI is not 0. Therefore, in the above-mentioned first condition, the terminal device using the dynamic HARQ-ACK codebook for HARQ feedback can also be replaced by the existence of the DAI field in the first DCI or the length of the DAI field included in the first DCI is not 0.
  • DAI downlink assignment index
  • the terminal device uses the semi-static HARQ-ACK codebook rule for HARQ feedback.
  • the terminal device adopts the semi-static HARQ-ACK codebook or when the dynamic HARQ-ACK codebook is not used, the first DCI does not include the DAI field or the length of the DAI field included in the first DCI is 0. Therefore, in the above-mentioned second condition, the terminal equipment can also use the HARQ-ACK semi-static codebook to replace the DAI field that does not exist in the first DCI or that the length of the DAI field included in the first DCI is 0.
  • the terminal device is indicated to successfully receive the first DCI through the HARQ feedback result of the terminal device for the first DCI or the HARQ feedback result of the PDSCH scheduled for the first DCI. That is, a specific manner in which the network device determines to successfully receive the first DCI under various application scenarios is provided. Moreover, the network device and the terminal device can determine the effective time of the common beam indicated by the first DCI, and switch to the common beam at the effective time, thereby implementing transmission between the network device and the terminal device through the common beam.
  • the beam indication information is carried by the first DCI.
  • the first DCI includes a common beam indication field.
  • the common beam indication field is used to indicate a common beam of a beam type, and the specific process for the terminal device to determine the beam type indicated by the common beam indication field refers to the technical solution in Embodiment 6 below.
  • the common beam indication field is used to indicate common beams of two beam types, and the specific process for the terminal device to determine the beam type indicated by the common beam indication field refers to the technical solution in Embodiment 7 below.
  • FIG. 9 is a schematic diagram of another embodiment of the beam management method according to the embodiment of the present application.
  • the beam management method includes:
  • the network device sends beam configuration information to the terminal device.
  • the terminal device receives beam configuration information from the network device.
  • the network device sends beam activation information to the terminal device.
  • the terminal device receives the beam activation information from the network device.
  • the network device sends beam indication information to the terminal device.
  • the terminal device receives beam indication information from the network device.
  • Steps 901 to 903 are related to the introduction of steps 501 to 503 in the embodiment shown in FIG. 5 .
  • steps 501 to 503 in the embodiment shown in FIG. 5 .
  • steps 501 to 502 in the embodiment shown in FIG. 5 .
  • the beam indication information is carried by the first DCI.
  • the K field values of the common beam indication field in the first DCI may be in one-to-one correspondence with the K common beams activated by the beam activation information. For example, when the common beam indication field in the first DCI is a certain value, it indicates the common beam corresponding to the field value.
  • the terminal device first determines the beam type indicated by the common beam indication field, and then determines which specific public beam or beams it is in combination with the beam activation information.
  • This embodiment introduces how the terminal device determines the beam type indicated by the common beam indication field in the case that the common beam indication field is used to indicate a public beam of one beam type.
  • this embodiment further includes step 904 .
  • Step 904 is performed after step 903 .
  • Step 904 The terminal device determines the beam type of the public beam indicated by the common beam indication field according to the beam configuration information; or, the terminal device determines the beam type of the public beam indicated by the public beam indication field according to the beam activation information;
  • the DCI determines the beam type of the common beam indicated by the Common Beam Indication field.
  • the terminal device determining the beam type of the public beam indicated by the public beam indication field according to the beam configuration information includes: if the network device configures the public beam mode of the terminal device as a joint public beam mode through the beam configuration information, or the beam configuration information includes The configuration information of the joint public beam, the terminal device determines that the public beam indication field indicates the joint public beam; if the network device configures the public beam mode of the terminal device as an independent public beam mode through the beam configuration information, or, the beam configuration information includes the independent public beam mode.
  • configuration information of the common beam the terminal device determines that the beam type of the common beam indicated by the common beam indication field is an uplink common beam or a downlink common beam.
  • the network device sends beam configuration information to the terminal device through RRC. That is, the RRC includes beam configuration information. If the network device configures the common beam mode of the terminal device as the joint common beam mode through the RRC, or the RRC includes configuration information of the joint common beam, the common beam indication field included in the first DCI indicates the joint common beam.
  • the network device configures the common beam mode of the terminal device as the independent public beam mode through the RRC, or the RRC includes configuration information of the independent public beam
  • the common beam indication field included in the first DCI indicates the uplink common beam or the downlink common beam.
  • the terminal device should determine in combination with other fields in the first DCI. For example, the terminal device may indicate through a dedicated field (such as an uplink and downlink indication field) in the first DCI, or indicate through the first x bits or the last x bits of the common beam field of the first DCI.
  • a dedicated field such as an uplink and downlink indication field
  • the network device configures the common beam mode of the terminal device to the joint common beam mode through RRC, or the RRC includes the configuration information of the joint common beam, the dedicated fields included in the first DCI or the first x fields of the common beam fields of the first DCI The bits or the last x bits have no practical significance and can be ignored by the terminal device.
  • the common beam mode of the above-mentioned terminal device is configured as a joint common beam mode, or the RRC includes no configuration information of the joint common beam.
  • the terminal device determining the beam type of the common beam indicated by the common beam indication field according to the beam activation information includes: if the beam activation information is used to activate the joint public beam, the terminal device determines that the beam type of the public beam indicated by the public beam indication information is: Joint common beam; if the beam activation information is used to activate the independent common beam, the terminal device determines that the beam type of the common beam indicated by the common beam indication field is an uplink common beam or a downlink common beam.
  • the network device sends beam activation information to the terminal device through the MAC CE. That is, the MAC CE includes beam activation information. If the MAC CE only activates the joint common beam, the common beam indication field included in the first DCI indicates the joint common beam; if the MAC CE does not activate the joint common beam or the MAC CE activates the independent common beam, the common beam included in the first DCI The indication field indicates the uplink common beam or the downlink common beam.
  • the terminal device should determine in combination with other fields in the first DCI. For example, the terminal device may indicate through a dedicated field (such as an uplink and downlink indication field) in the first DCI, or indicate through the first x bits or the last x bits of the common beam field of the first DCI.
  • a dedicated field such as an uplink and downlink indication field
  • the dedicated field included in the first DCI or the first x bits or the last x bits of the common beam field of the first DCI have no practical significance and can be ignored by the terminal device. Or the first x bits or the last of the dedicated field included in the first DCI or the common beam field of the first DCI do not exist.
  • the terminal device shall take the MAC CE received later in time as the criterion. That is, the terminal device determines the type of the common beam indicated by the DCI according to the MAC CE received by the terminal device later in time. In other words, the MAC CE used to activate the joint public beam and the MAC CE used to activate the independent public beam will overlap each other, and the MAC CE received by the terminal device later in time will cover the MAC CE received by the terminal device earlier in time. MAC CE.
  • the terminal device determining the beam type of the common beam indicated by the common beam indication field according to the first DCI includes: the terminal device according to the first x bits in the common beam indication field included in the first DCI or the first bit included in the first DCI
  • the indication field determines the beam type of the common beam indicated by the common beam indication field.
  • the first x bits in the common beam indication field included in the first DCI or the first indication field included in the first DCI are used to indicate the beam type of the common beam indicated by the common beam indication field.
  • x is an integer greater than or equal to 1.
  • the network device distinguishes the beam type of the common beam indicated by the common beam indication field by using the first x bits in the common beam indication field or the first indication field included in the first DCI.
  • the beam type includes any of the following: joint common beam, uplink common beam, downlink common beam; or,
  • the beam type includes any of the following: uplink common beam, downlink common beam.
  • the terminal device determines the beam type of the common beam indicated by the common beam indication field by using the technical solution of the sixth embodiment. Then, the terminal device may determine the common beam specifically indicated by each field value included in the common beam indication field. Field values included in the common beam indication field may correspond one-to-one with common beams activated by the beam activation information.
  • each field value in the common beam indication field corresponds one-to-one with the downlink common beam activated by the beam activation information. That is, the terminal device can determine which downlink common beams are specifically indicated through the values of each field.
  • the common beam indication field indicates a joint common beam, then each field value in the common beam indication field corresponds to the joint common beam activated by the beam activation information in one-to-one correspondence. That is, the terminal device can determine which joint common beams are specifically indicated by using the respective field values.
  • Embodiment 6 three possible implementation manners for the terminal device to determine the beam type indicated by the beam indication field are shown for the case that the common beam indication field indicates a public beam of one beam type. That is, the terminal device realizes the determination of the beam type indicated by the common beam indication field through the technical solution of the sixth embodiment. And, the terminal device determines the specific indicated common beam according to the beam type indicated by the common beam indication field, each field value included in the common beam indication field, and the beam activation information. In this way, transmission between the terminal device and the network device can be performed through the common beam.
  • the present application provides the seventh embodiment, and the following describes the technical solution of the seventh embodiment provided by the present application with reference to FIG. 10 .
  • FIG. 10 is a schematic diagram of another embodiment of the beam management method according to the embodiment of the present application.
  • the beam management method includes:
  • a network device sends beam configuration information to a terminal device.
  • the terminal device receives beam configuration information from the network device.
  • the network device sends beam activation information to the terminal device.
  • the terminal device receives the beam activation information from the network device.
  • the network device sends beam indication information to the terminal device.
  • the terminal device receives beam indication information from the network device.
  • steps 1001 to 1003 and steps 501 to 503 in the embodiment shown in FIG. 5 please refer to the related introduction of steps 501 to 502 in the embodiment shown in FIG. 5 .
  • the beam indication information in step 1003 is carried by the first DCI.
  • the K field values of the common beam indication field in the first DCI may be in one-to-one correspondence with the K common beams activated by the beam activation information. For example, when the common beam indication field in the first DCI is a certain value, it indicates the common beam corresponding to the field value.
  • the terminal device first determines the beam type indicated by the public beam indication field, and then combines the beam activation information to determine which specific public beam or beams it is.
  • This embodiment introduces how the terminal device determines the beam type indicated by the common beam indication field in the case where the common beam indication field is used to indicate common beams of two beam types.
  • the common beam indication field includes two subfields, and the two subfields respectively indicate different beam types.
  • the terminal device determines the beam types indicated by the two subfields respectively.
  • the following introduces four possible implementation manners for the terminal device to determine the beam types indicated by the two subfields respectively.
  • Step 1004a is performed after step 1003.
  • Step 1004a if the common beam indication field includes two subfields, the terminal device determines that the first subfield of the two subfields is used to indicate the uplink common beam, and the second subfield of the two subfields is used to indicate the downlink common beam; Alternatively, the first subfield of the two subfields is used to indicate the downlink common beam, and the second subfield of the two subfields is used to indicate the uplink common beam.
  • the beam types respectively indicated by the two subfields may be specified by a preset communication protocol.
  • the preset communication protocol stipulates that the first subfield of the two subfields is used to indicate the uplink common beam, and the second subfield of the two subfields is used to indicate the downlink common beam; or, the first subfield of the two subfields is used to indicate the downlink common beam; One subfield is used to indicate the downlink common beam, and the second subfield of the two subfields is used to indicate the uplink common beam.
  • the terminal device can determine that the first subfield of the two subfields is used to indicate the uplink common beam, and the second subfield of the two subfields is used to indicate the downlink common beam according to the preset communication protocol; The first subfield in the field is used to indicate the downlink common beam, and the second subfield of the two subfields is used to indicate the uplink common beam.
  • step 1004b Implementation mode 2 is described below in conjunction with step 1004b.
  • the above embodiment shown in FIG. 10 further includes step 1004b.
  • Step 1004b is performed after step 1003.
  • Step 1004b The terminal device determines the beam types respectively indicated by the two subfields according to the beam configuration information.
  • the beam configuration information includes an uplink common beam set and a downlink common beam set.
  • the terminal device determining the beam types respectively indicated by the two subfields according to the beam configuration information includes: the terminal device determining the subfields corresponding to the uplink common beam and the downlink common beam respectively according to the configuration sequence corresponding to the uplink common beam set and the downlink common beam set respectively; or , the terminal device determines the subfields corresponding to the uplink common beam and the downlink common beam respectively according to the size order of the set indexes corresponding to the uplink common beam set and the downlink common beam set respectively.
  • the RRC includes beam configuration information.
  • the network device configures the beam types corresponding to the two subfields through RRC.
  • the RRC includes an uplink common beam set and a downlink common beam set.
  • the beam type corresponding to the public beam set in the first configuration order corresponds to the first subfield
  • the beam type corresponding to the public beam set in the later configuration order corresponds to the second subfield.
  • the beam type corresponding to the public beam set in the later configuration order in the RRC corresponds to the first subfield
  • the beam type corresponding to the public beam set in the earlier configuration order corresponds to the second subfield.
  • the configuration order of the uplink common beam set in the RRC is before the configuration order of the downlink common beam set, then the first subfield indicates the uplink common beam, and the second subfield indicates the downlink common beam.
  • the RRC includes an uplink common beam set and a downlink common beam set. If the set index of the uplink common beam set is smaller than the set index of the downlink common beam set, the first subfield indicates the uplink common beam, and the second subfield indicates the downlink common beam. Or, the set index of the uplink common beam set is greater than the set index of the downlink common beam set, then the first subfield indicates the downlink common beam, and the second subfield indicates the uplink common beam.
  • step 1004c Implementation mode 3 is described below in conjunction with step 1004c.
  • the embodiment shown in FIG. 10 further includes step 1004c.
  • Step 1004c is performed after step 1003.
  • Step 1004c The terminal device determines the beam types indicated by the two subfields according to the beam activation information.
  • the terminal device determines the subfields corresponding to the uplink common beam and the downlink common beam respectively according to the order of the uplink common beam and the downlink common beam activated by the beam activation information.
  • beam activation information is carried by MAC CE.
  • the uplink public beam is ranked first, then the first subfield indicates the uplink public beam, and the second subfield indicates the downlink public beam.
  • the first subfield indicates the downlink public beam
  • the second subfield indicates the uplink public beam
  • the first type of common beam activated by the MAC CE corresponds to the first subfield
  • the second type of common beam activated by the MAC CE corresponds to the second subfield
  • step 1004d the implementation mode 4 is described below in conjunction with step 1004d.
  • the above embodiment shown in FIG. 10 further includes step 1004d.
  • Step 1004d is performed after step 1003.
  • Step 1004d The terminal device determines the beam types respectively indicated by the two subfields according to the first DCI.
  • the first DCI includes a common beam indication field.
  • the terminal device determines the beam type indicated by the first subfield of the two subfields and the indication of the second subfield according to the first x bits or the last x bits in the common beam indication field or the second indication field included in the first DCI the beam type.
  • the first x bits or the last x bits of the common beam indication field indicate that the first subfield indicates the uplink common beam, and the second subfield indicates the downlink common beam.
  • the terminal device determines the beam types respectively indicated by the two subfields through the technical solution of the seventh embodiment. Then, the terminal device may determine the common beam specifically indicated by each field value included in the common beam indication field. Field values included in the common beam indication field may correspond one-to-one with common beams activated by the beam activation information.
  • the terminal device determines the number of subfields included in the common beam indication field, and/or the beam type indicated by the subfield. Three possible determinations are shown below.
  • Determining manner 1 The terminal device determines, according to the beam type configured by the beam configuration information, the number of subfields included in the common beam indication field, and/or the beam type indicated by the subfield.
  • the common beam indication field includes one or two subfields. If the network device configures the common beam mode of the terminal device as a joint common beam mode through the beam configuration information, or the beam type configured in the beam configuration information is a joint common beam, the common beam indication field includes a subfield. And, the one subfield is used to indicate the joint common beam.
  • the public beam indication field includes two subfields.
  • the two subfields are respectively used to indicate the uplink common beam and the downlink common beam.
  • the terminal device performs the above step 1004a or step 1004b or step 1004c or step 1004d to further determine the beam types indicated by the two subfields respectively.
  • Determining manner 2 The terminal device determines, according to the beam type activated by the beam activation information, the number of subfields included in the common beam indication field, and/or the beam type indicated by the subfield.
  • the terminal device determines that the common beam indication field includes one subfield, that is, the common beam indication field does not have a second subfield. If the beam activation information is not used to activate the joint common beam, or the beam activation information is used to activate the uplink common beam and the downlink common beam, the terminal device determines that the common beam indication field includes two subfields. For the case that the common beam indication field includes two subfields, the terminal device performs the above step 1004a or step 1004b or step 1004c or step 1004d to further determine the beam types indicated by the two subfields respectively.
  • the terminal device shall take the MAC CE received later in time as the criterion. That is, the terminal device determines the type of the common beam indicated by the DCI according to the MAC CE received by the terminal device later in time. In other words, the MAC CE used to activate the joint public beam and the MAC CE used to activate the independent public beam will overlap each other, and the MAC CE received by the terminal device later in time will cover the MAC CE received by the terminal device earlier in time. MAC CE.
  • Determining manner 3 The terminal device determines, according to the first DCI, the number of subfields included in the common beam indication field, and/or the beam type indicated by the subfields.
  • the first DCI includes a common beam indication field.
  • the terminal device determines the number of subfields included in the common beam indication field and/or the beam type indicated by the subfield according to the first x bits or the last x bits in the common beam indication field or the third indication field included in the first DCI .
  • the first x bits or the last x bits of the common beam indication field indicate that the number of subfields included in the common beam indication field is 1. Then it can be known that the common beam indication field includes a subfield. The first x bits or the last x bits of the common beam indication field indicate that the number of subfields included in the common beam indication field is 2. And, the first subfield of the two subfields indicates the uplink common beam, and the second subfield indicates the downlink common beam.
  • the present application proposes the technical solution of the eighth embodiment for this problem.
  • the following describes the technical solution of the eighth embodiment provided by the present application with reference to FIG. 11 .
  • FIG. 11 is a schematic diagram of another embodiment of the beam management method according to the embodiment of the present application.
  • the beam management method includes:
  • the network device sends beam configuration information to the terminal device.
  • the terminal device receives beam configuration information from the network device.
  • the network device sends beam activation information to the terminal device.
  • the terminal device receives the beam activation information from the network device.
  • Steps 1101 to 1102 are similar to steps 501 to 502 in the embodiment shown in FIG. 5 .
  • steps 501 to 502 in the embodiment shown in FIG. 5 .
  • steps 501 to 502 in the embodiment shown in FIG. 5 , which will not be repeated here.
  • the DCI sent by the network device to the terminal device does not include the common beam indication field, that is to say, the DCI is only used for scheduling data, and is not used for indicating the common beam.
  • the embodiment shown in FIG. 11 further includes step 1103 or step 1104 .
  • Step 1103 or step 1104 is performed after step 1102 .
  • the terminal device transmits by using the public beam activated by the beam activation information.
  • the beam activation information is carried by the MAC CE.
  • the MAC CE can only activate one common beam.
  • the MAC CE can only activate one common beam for a common beam of the same beam type.
  • the terminal device uses the public beam activated by the beam activation information for transmission, including: if the beam activation information is only used to activate one public beam, the terminal device uses the public beam activated by the beam activation information for transmission. transmission; or,
  • the terminal device uses the public beam activated by the beam activation information for transmission, including: if the beam activation information only activates one public beam for the public beam of the same beam type, the terminal device uses the beam activation The information is activated on the common beam of this beam type for transmission.
  • the terminal device uses the beam index with the largest beam index, or the beam index with the smallest beam index, the most advanced, or the last sorted, or the corresponding public beam among the multiple public beams.
  • the beam with the smallest value of the beam indication field, or the corresponding public beam with the largest value of the indication field, is used for transmission.
  • the beam activation information is carried by the MAC CE.
  • the terminal device may use the one with the largest beam index, or The public beam with the smallest beam index, the highest ranking, or the last ranking, or the corresponding common beam indication field value is the smallest, or the corresponding common beam indication field value is the largest common beam for transmission.
  • the DCI does not have a common beam indication field or the common beam indication field included in the DCI does not indicate a common beam.
  • the terminal device may use the one with the largest beam index, or the one with the smallest beam index, the one with the highest ranking, or the one with the highest ranking among the multiple common beams.
  • the latter, or the corresponding common beam with the smallest value of the indication field, or the common beam with the largest value of the corresponding common beam indication field is used for transmission.
  • the multiple public beams respectively have corresponding public beam indication field values. Specifically, it may be specified through a communication protocol.
  • the network device may configure whether there is a common beam indication field (eg, a TCI field) in the DCI through beam configuration information. In this way, the terminal device can determine that the DCI does not have a common beam indication field through the beam configuration information.
  • the network device indicates whether there is a common beam indication field in the DCI through the beam activation information. For example, the network device indicates whether there is a common beam indication field in the DCI through a field in the MAC CE. Alternatively, the network device indicates whether the DCI is used to indicate a common beam through the first x bits of the DCI.
  • the network device implements the technical solution of the eighth embodiment to indicate the common beam to the terminal device. In this way, the terminal device can determine the corresponding public beam for transmission between the terminal device and the network device.
  • the beam indication information shown in FIG. 5 is carried by the first DCI.
  • the first DCI includes a common beam indication field.
  • the common beam indicated by the first DCI is consistent with the common beam currently used by the terminal equipment (that is, the terminal equipment does not need to update the common beam), and the common beam indication field included in the first DCI still indicates the common beam, how to avoid the terminal equipment Update public beams.
  • the present application proposes the technical solution of the ninth embodiment for this problem.
  • the technical solution of the ninth embodiment provided by the present application is described below with reference to FIG. 12 .
  • FIG. 12 is a schematic diagram of another embodiment of the beam management method according to the embodiment of the present application.
  • the beam management method includes:
  • the network device sends beam configuration information to the terminal device.
  • the terminal device receives beam configuration information from the network device.
  • the network device sends beam activation information to the terminal device.
  • the terminal device receives the beam activation information from the network device.
  • the network device sends beam indication information to the terminal device.
  • the terminal device receives beam indication information from the network device.
  • Steps 1201 to 1203 are similar to steps 501 to 503 in the foregoing embodiment shown in FIG. 5 .
  • steps 501 to 503 in the foregoing embodiment shown in FIG. 5 please refer to the related introductions of steps 501 to 503 in the foregoing embodiment shown in FIG. 5 .
  • the beam indication information is carried through the first DCI.
  • the first DCI includes a dedicated common beam indication field value.
  • the dedicated public beam indication field value is used to indicate that the first DCI does not indicate any public beam. That is, the dedicated public beam indication field value does not correspond to any public beam, and the other public beam indication field values of the first DCI are used to indicate public beams.
  • the terminal equipment performs the mapping between the common beam indication field value and the common beam activated by the MAC CE, the terminal equipment skips the dedicated public beam indication field value.
  • the dedicated public beam indication field value is the smallest field value, and the terminal device skips the smallest field value, and maps other field values of the first DCI with the public beam activated by the MAC CE.
  • the dedicated public beam indication field value is the largest field value.
  • the terminal device skips the largest subfield value, and maps other field values of the first DCI with the common beam activated by the MAC CE.
  • the terminal device may ignore the beam indication information. Based on the implementation manner, optionally, this embodiment further includes step 1204 . Step 1204 is performed after step 1203 .
  • Step 1204 If the common beam indicated by the common beam indication information is the same as the second public beam, the terminal device ignores the beam indication information.
  • the second public beam includes any one of the following: a public beam currently used by the terminal device, and a public beam indicated or effective by the terminal device most recently in time.
  • the beam indication information in the foregoing step 1103 is used for the public beam indicated by the network device to the terminal device at the n+1th time after the terminal device initially accesses.
  • the most recent public beam indicated or effective by the terminal equipment in time includes: after the terminal equipment initially accesses, the public beam indicated by the network equipment to the terminal equipment for the nth time, or the public beam indicated by the network equipment to the terminal equipment for the nth time and effective. . n is an integer greater than or equal to 1.
  • the beam indication information in the above step 1103 is used for the public beam that the network device indicates to the terminal device for the n+1th time after the terminal device fails to recover from the beam.
  • the most recent public beams indicated or effective by the terminal equipment in time include: after the terminal equipment fails to recover successfully, the public beams indicated by the network equipment to the terminal equipment for the nth time, or the public beams indicated by the network equipment to the terminal equipment for the nth time and become effective.
  • public beam. n is an integer greater than or equal to 1.
  • the terminal device may directly ignore the beam indication information.
  • the terminal device does not need to determine that the common beam indicated by the common beam indication field is effective according to the effective time of the embodiment shown in FIG. 8 . That is to say, only when the beam indication information is different from the public beam currently used by the terminal device, or is different from the public beam previously indicated to the terminal device by the network device, the terminal device updates the public beam according to the beam indication information.
  • the terminal device may skip the mapping of the dedicated public beam indication field value according to the dedicated public beam indication field value included in the beam indication information; or, the terminal device ignores the beam indication information. In this way, the terminal device will not update the public beam to avoid unnecessary network resource overhead. For example, the terminal device feeds back ACK or NACK to the network device for the beam indication information, and determines the effective time of the common beam between the network device and the terminal device, and so on.
  • the present application provides the tenth embodiment, and the following describes the technical solution of the tenth embodiment provided by the present application with reference to FIG. 13 .
  • FIG. 13 is a schematic diagram of another embodiment of the beam management method according to the embodiment of the present application.
  • the beam management method includes:
  • the network device sends beam configuration information to the terminal device.
  • the terminal device receives beam configuration information from the network device.
  • the network device sends beam activation information to the terminal device.
  • the terminal device receives the beam activation information from the network device.
  • the network device sends beam indication information to the terminal device.
  • the terminal device receives beam indication information from the network device.
  • Steps 1301 to 1303 are similar to steps 501 to 503 in the foregoing embodiment shown in FIG. 5 .
  • steps 501 to 503 in the foregoing embodiment shown in FIG. 5 please refer to the related introductions of steps 501 to 503 in the foregoing embodiment shown in FIG. 5 .
  • this embodiment further includes step 1304 .
  • the terminal device uses the K common beams as beams corresponding to the K first resources or the K first resource sets respectively.
  • the K common beams are in one-to-one correspondence with the K first resources or the K first resource sets, and each first resource set in the K first resource sets includes the first resources.
  • K is an integer greater than or equal to 2.
  • the first common beam among the K common beams is used for the transmission of the first first resource among the K first resources or the first resource included in the first first resource set among the K first resource sets.
  • the second common beam of the K common beams is used for the transmission of the second first resource in the K first resources or the first resource included in the second first resource set in the K first resource sets, and so on.
  • the Kth common beam is used for transmission of the Kth first resource or the first resource included in the Kth first resource set.
  • the K public beams are sorted according to the activation order of the public beams activated by the beam activation information, or sorted according to the beam index size of the public beams activated by the beam activation information, or sorted according to the indication order of the public beams in the beam indication information, or according to the beams.
  • the index sizes of the common beams indicated by the indication information are sorted in order.
  • the K first resources are sorted according to the configuration order of the first resources, or according to the size order of the resource indexes of the first resources.
  • the K first resource sets are sorted according to the configuration order of the K first resource sets, or according to the resource index size order of the first resources respectively included in the K first resource sets, or according to the set index of the K first resource sets Sort by size.
  • the K common beams are in one-to-one correspondence with the K first resources according to any of the above-mentioned sorting.
  • the first common beam in the activation order is used to configure the transmission of the first resource or the first resource set in the first order.
  • the second-ranked common beam is activated for transmission of the second-ranked first resource or first resource set.
  • the Kth public beam in the activation order is used to configure the transmission of the Kth first resource or the first resource set in the Kth order.
  • the common beam ranked first in the order is indicated for transmission of the first resource or the first resource set ranked first in the resource index size.
  • the common beam ranked second in order is indicated for transmission of the first resource or first resource set ranked second in resource index size.
  • the public beam ranked in the Kth order is instructed to be used for the transmission of the first resource or the first resource set ranked in the Kth size of the resource index.
  • the first resource includes any one of the following: a CSI-RS for which the repetitoin parameter and the trs-Info parameter are not configured, an SRS of a codebook type, an SRS of a nonCodebook type, and a CSI-RS associated with an SRS of a nonCodebook type.
  • the network device indicates multiple public beams to the terminal device through beam indication information.
  • Each common beam corresponds to an uplink channel or a downlink channel or an uplink reference signal or a downlink reference signal of a transmission and reception point (TRP).
  • TRP transmission and reception point
  • the beam indication information indicates two uplink common beams
  • the network device configures two SRS resource sets for the terminal device. Then the first uplink common beam in the two uplink common beams is used for transmission of the first SRS resource set or the SRS resource set with a smaller index among the two SRS resource sets. The second uplink common beam of the two uplink common beams is used for transmission of the second SRS resource set of the two SRS resource sets or the SRS resource set with a larger index.
  • the first uplink common beam includes: the first uplink common beam in the two uplink common beams, or the uplink common beam with a smaller beam index in the two uplink common beams, or the corresponding common beam field in the two uplink common beams Upstream common beam with smaller value.
  • the second uplink common beam includes: the second uplink common beam of the two uplink common beams, or the uplink common beam with a larger beam index among the two uplink common beams, or the corresponding common beam field of the two uplink common beams Upstream common beam with larger value.
  • the SRS resource set includes: SRS resource set of codebook type, or SRS resource set of nonCodebook type, or SRS resource set of antennaSwitch, or SRS resource set of beamManagement.
  • the beam indication information indicates two downlink common beams
  • the network device configures two CSI-RS resources for the terminal device. Then the first downlink common beam of the two downlink common beams is used for transmission of the first CSI-RS resource or the CSI-RS resource with a smaller index among the two CSI-RS resources.
  • the second downlink common beam among the two downlink common beams is used for transmission of the second CSI-RS resource or the CSI-RS resource with a larger index among the two CSI-RS resources.
  • the two CSI-RS resources may also be referred to as two CSI-RS resource sets, or two CSI-RS resource settings. There is no specific limitation in this application.
  • the first downlink common beam includes: the first downlink common beam in the two downlink common beams, or a downlink common beam with a smaller beam index in the two downlink common beams, or a corresponding common beam in the two downlink common beams Downlink common beam with smaller field value.
  • the second downlink common beam includes: the second downlink common beam among the two downlink common beams, or the downlink common beam with a larger beam index among the two downlink common beams, or the corresponding common beam field in the two downlink common beams The downlink common beam with a larger value.
  • the CSI-RS resource set can be the CSI-RS resource set used for beam management (that is, the CSI-RS resource set configured with the repetition parameter), or the CSI-RS resource set used for time-frequency tracking (that is, the CSI-RS resource set configured with the repetition parameter)
  • the CSI-RS resource set of trs-Info or the CSI-RS resource set used for CSI measurement (that is, the CSI-RS resource set of neither the repetition parameter nor the trs-Info is configured).
  • the beam indication information indicates two downlink common beams
  • the network device configures two nonCodebook type SRS resource sets for the terminal device.
  • Each resource set is associated with a CSI-RS.
  • the third downlink common beam of the two downlink common beams is used for the CSI-related CSI- RS transmission.
  • the fourth downlink common beam of the two downlink common beams is used for the CSI-RS associated with the second nonCodebook type SRS resource set or the nonCodebook type SRS resource set with a larger index in the two nonCodebook type SRS resource sets. transmission.
  • the third downlink common beam includes: the first downlink common beam in the two downlink common beams, or the downlink common beam with a smaller index among the two downlink common beams, or the corresponding common beam field value in the two downlink common beams Smaller downlink common beam.
  • the fourth downlink common beam includes: the second downlink common beam in the two downlink common beams, or the downlink common beam with a larger index in the two downlink common beams, or the corresponding common beam field value in the two downlink common beams Larger downlink common beam.
  • the terminal device has K first resources or K first resource sets.
  • the first resource or the K resource sets determine the corresponding common beam, so as to facilitate the transmission of the corresponding first resource.
  • the beam indication information is used by the network device to indicate the public beam to the terminal device for the first time after the terminal device initially accesses. Then, before the public beam indicated by the beam indication information takes effect, how does the terminal device transmit with the network device.
  • the present application proposes the technical solution of Embodiment 11 for this problem.
  • FIG. 14 is a schematic diagram of another embodiment of the beam management method according to the embodiment of the present application.
  • the beam management method includes:
  • the network device sends beam configuration information to the terminal device.
  • the terminal device receives beam configuration information from the network device.
  • the network device sends beam activation information to the terminal device.
  • the terminal device receives the beam activation information from the network device.
  • the network device sends beam indication information to the terminal device.
  • the terminal device receives beam indication information from the network device.
  • Steps 1401 to 1403 are similar to steps 501 to 503 in the foregoing embodiment shown in FIG. 5 .
  • steps 501 to 503 in the foregoing embodiment shown in FIG. 5 please refer to the related introductions of steps 501 to 503 in the foregoing embodiment shown in FIG. 5 .
  • the beam indication information is used by the network device to indicate the public beam to the terminal device for the first time after the terminal device initially accesses. Then, before the common beam indicated by the beam indication information takes effect, this embodiment shows two possible implementations of transmission between the terminal device and the network device.
  • Implementation mode 1 is described below in conjunction with step 1404 .
  • this embodiment further includes step 1404 .
  • the terminal device uses the SSB beam used for initial access for transmission.
  • the beam indication information is used by the network device to indicate the uplink common beam to the terminal device for the first time after the initial access of the terminal device, and then the terminal device uses the SSB beam used in the initial access for uplink transmission. Similarly, the network device uses the SSB beam to perform uplink transmission with the terminal device.
  • the beam indication information is used by the network device to indicate the downlink common beam to the terminal device for the first time after the initial access of the terminal device, and then the terminal device uses the SSB beam used in the initial access for downlink reception. Similarly, the network device uses the SSB beam to send downlink to the terminal device.
  • the beam indication information is used by the network device to indicate the joint public beam to the terminal device for the first time after the initial access of the terminal device, then the terminal device uses the SSB beam used in the initial access for uplink transmission and downlink reception. Similarly, the network device uses the SSB beam to perform uplink transmission with the terminal device, and uses the SSB beam to perform downlink transmission to the terminal device.
  • step 1404 there is no fixed execution order between step 1404 and steps 1401 to 1403 .
  • Figure 14 is just an example. In practical applications, before the public beam indicated by the beam indication information takes effect, there is data on the terminal device that needs to be transmitted, and the terminal device executes the above step 1404 .
  • Implementation mode 2 is described below in conjunction with steps 1405 to 1407 .
  • this embodiment further includes steps 1405 to 1407 .
  • Step 1405 is performed before step 1402.
  • the beam activation information is used by the network device to activate the public beam to the terminal device for the first time after the terminal device initially accesses.
  • the terminal device uses the SSB beam used for the initial access for transmission.
  • the beam activation information is used by the network device to activate the uplink common beam to the terminal device for the first time after the initial access of the terminal device.
  • the terminal device uses the SSB beam used in the initial access for uplink transmission.
  • the network device uses the SSB beam to perform uplink transmission with the terminal device.
  • the beam activation information is used by the network device to activate the downlink common beam to the terminal device for the first time after the initial access of the terminal device.
  • the terminal device uses the SSB beam used in the initial access for downlink reception.
  • the network device uses the SSB beam to send downlink to the terminal device.
  • the beam activation information is used by the network device to activate the joint common beam to the terminal device for the first time after the initial access of the terminal device.
  • the beam activation information is used by the network device to activate the uplink common beam and the downlink common beam to the terminal device for the first time after the terminal device initially accesses.
  • the terminal device uses the SSB beam used in the initial access for uplink transmission or downlink reception.
  • the network device uses the SSB beam to perform uplink transmission with the terminal device, and uses the SSB beam to perform downlink transmission to the terminal device.
  • the terminal device After the terminal device receives the beam activation information and before the public beam indicated by the beam indication information takes effect, if the beam activation information is used to activate a public beam, the terminal device uses the public beam activated by the beam activation information for transmission.
  • the beam activation information is used by the network device to activate the uplink common beam to the terminal device for the first time after the initial access of the terminal device. Then, after the terminal device receives the beam activation information, the terminal device can determine the uplink common beam activated by the beam activation information.
  • the terminal equipment uses the uplink common beam for uplink transmission.
  • the network device uses the SSB beam to perform uplink transmission with the terminal device.
  • the beam activation information is used by the network device to activate the downlink common beam to the terminal device for the first time after the initial access of the terminal device. Then, after the terminal device receives the beam activation information, the terminal device can determine the downlink common beam activated by the beam activation information.
  • the terminal equipment uses the downlink common beam for downlink reception.
  • the network device uses the SSB beam to send downlink to the terminal device.
  • the beam activation information is used by the network device to activate the joint common beam to the terminal device for the first time after the initial access of the terminal device. Then, after the terminal device receives the beam activation information, the terminal device can determine the joint common beam activated by the beam activation information.
  • the terminal equipment uses the joint common beam for uplink transmission and downlink reception.
  • the network device uses the joint public beam to perform uplink transmission with the terminal device, and uses the joint public beam to perform downlink transmission to the terminal device.
  • the terminal device After the terminal device receives the beam activation information and before the public beam indicated by the beam indication information takes effect, if the beam activation information is used to activate multiple public beams, the terminal device uses the first public beam or the last public beam activated by the beam activation information. One common beam is used for transmission; or, among the public beams activated by the beam activation information, the public beam with the largest or smallest value of the common beam indication field is used for transmission.
  • the beam activation information is used by the network device to activate multiple uplink common beams to the terminal device for the first time after the terminal device initially accesses. Then, after the terminal device receives the beam activation information, the terminal device may determine a plurality of uplink common beams activated by the beam activation information. The terminal device uses the first uplink common beam or the last uplink common beam among the multiple uplink common beams for uplink transmission. Similarly, the network equipment uses the first uplink common beam or the last uplink common beam among the plurality of uplink common beams to perform uplink transmission with the terminal equipment.
  • the beam activation information is used by the network device to activate multiple downlink common beams to the terminal device for the first time after the terminal device initially accesses. Then, after the terminal device receives the beam activation information, the terminal device may determine a plurality of downlink common beams activated by the beam activation information.
  • the terminal equipment uses the first downlink common beam or the last downlink common beam among the multiple downlink common beams for downlink reception.
  • the network device uses the first downlink common beam or the last downlink common beam among the multiple downlink common beams to perform downlink transmission to the terminal device.
  • the beam activation information is used by the network device to activate multiple joint common beams to the terminal device for the first time after the terminal device initially accesses. Then, after the terminal device receives the beam activation information, the terminal device may determine a plurality of joint common beams activated by the beam activation information. The terminal device uses the first joint common beam or the last joint common beam among the plurality of joint common beams for uplink transmission and downlink reception. Similarly, the network device uses the first joint public beam or the last joint public beam among the plurality of joint public beams to perform uplink transmission with the terminal device, and downlink transmission to the terminal device.
  • step 1406 or step 1407 is executed after step 1402 .
  • step 1406 or step 1407 is executed after step 1402 .
  • FIG. 14 is just an example.
  • the terminal device After the terminal device receives the beam activation information and before the public beam indicated by the beam indication information takes effect, if there is data to be transmitted on the terminal device, the terminal device executes step 1406 or step 1407 .
  • the beam indication information is used by the network device to indicate the public beam to the terminal device for the first time after the terminal device initially accesses.
  • the public beam indicated by the beam indication information takes effect, two possible implementation manners in which the terminal device uses the public beam for transmission are provided, so as to facilitate the communication between the terminal device and the network device. Because the public beam indicated by the beam indication information does not take effect, the terminal device and the network device cannot communicate normally, and the performance of the communication system is improved.
  • the beam indication information is used by the network device to indicate the public beam to the terminal device for the first time after a beam failure occurs in the terminal device. Then, before the public beam indicated by the beam indication information takes effect, how does the terminal device transmit with the network device.
  • the present application proposes the technical solution of the twelfth embodiment to solve this problem.
  • FIG. 15 is a schematic diagram of another embodiment of the beam management method according to the embodiment of the present application.
  • the beam management method includes:
  • the network device sends beam configuration information to the terminal device.
  • the terminal device receives the beam configuration information from the network device.
  • the network device sends beam activation information to the terminal device.
  • the terminal device receives the beam activation information from the network device.
  • the network device sends beam indication information to the terminal device.
  • the terminal device receives beam indication information from the network device.
  • Steps 1501 to 1503 are similar to steps 501 to 503 in the foregoing embodiment shown in FIG. 5 .
  • steps 501 to 503 in the foregoing embodiment shown in FIG. 5 please refer to the related introductions of steps 501 to 503 in the foregoing embodiment shown in FIG. 5 .
  • the beam indication information is used by the network device to indicate the public beam to the terminal device for the first time after a beam failure occurs in the terminal device.
  • This embodiment also includes step 1504 .
  • the terminal device uses the beam reported by the terminal device to the network device during the beam failure recovery process for transmission.
  • the terminal equipment uses the beams reported by the terminal equipment to the network equipment during the beam failure recovery process for transmission, including: the terminal equipment uses the beams reported by the terminal equipment to the network equipment during the beam failure recovery process for uplink transmission and downlink reception.
  • the network device uses the terminal device to use the beam reported by the terminal device to the network device in the beam failure recovery process to perform transmission and the terminal device to perform uplink transmission, and to perform downlink transmission to the terminal device.
  • step 1504 there is no fixed execution order between step 1504 and step 1501 to step 1503 .
  • the terminal device may perform step 1504 . Specifically, it may be performed before step 1501, or step 1504 may be performed during the execution of steps 1501 to 1503, or step 1504 may be performed after step 1503, which is not specifically limited in this application.
  • the above step 1504 can also be replaced by the terminal device using the information reported by the terminal device to the network device during the beam failure recovery process before the public beam indicated by the beam indication information takes effect after the terminal device receives the beam failure recovery response message. beam for transmission.
  • the above step 1504 can also be replaced by the time when the terminal device receives the beam failure recovery response message plus a preset time interval (for example, 28 symbols), before the public beam indicated by the beam indication information takes effect, the terminal device uses the terminal The device transmits to the beam reported by the network device during the beam failure recovery process.
  • the beam indication information is used by the network device to indicate the public beam to the terminal device for the first time after a beam failure occurs in the terminal device.
  • the public beam indicated by the beam indication information takes effect, a specific implementation manner in which the terminal device adopts the public beam for transmission is provided, so as to facilitate the communication between the terminal device and the network device. Because the public beam indicated by the beam indication information does not take effect, the terminal device and the network device cannot communicate normally, and the performance of the communication system is improved.
  • the beam indication information is carried through the first DCI.
  • the first DCI also schedules the first PDSCH data. If the time when the network device sends the first PDSCH data is before the time when the common beam indicated by the first DCI takes effect, how does the terminal device receive the first PDSCH data.
  • the present application proposes the technical solution of the thirteenth embodiment to solve this problem. The following describes the technical solution of the thirteenth embodiment provided by the present application through FIG. 16A .
  • FIG. 16A is a schematic diagram of another embodiment of the beam management method according to the embodiment of the present application.
  • the beam management method includes:
  • the network device sends beam configuration information to the terminal device.
  • the terminal device receives beam configuration information from the network device.
  • the network device sends beam activation information to the terminal device.
  • the terminal device receives the beam activation information from the network device.
  • the network device sends the first DCI to the terminal device.
  • the terminal device receives the first DCI from the network device.
  • Steps 1601 to 1603 are similar to steps 501 to 503 in the foregoing embodiment shown in FIG. 5 .
  • steps 501 to 503 in the foregoing embodiment shown in FIG. 5 please refer to the related introductions of steps 501 to 503 in the foregoing embodiment shown in FIG. 5 .
  • this embodiment further includes step 1604 .
  • Step 1604 is performed after step 1603.
  • the terminal device uses the third common beam to receive the first PDSCH data.
  • the first PDSCH data is PDSCH data scheduled by the first DCI.
  • the moment when the network device sends the first PDSCH data may be understood as the moment when the terminal device receives the first PDSCH data.
  • the terminal device needs a period of time to decode the first DCI. After the decoding is successful, the terminal device can determine whether PDSCH data is scheduled by the first DCI, and the beam used for PDSCH data transmission (ie, the common beam indicated by the first DCI), and the like. Therefore, when the time when the network device sends the first PDSCH data is earlier than the time when the common beam indicated by the first DCI takes effect, the terminal device can use the third common beam to receive the first PDSCH data.
  • the third common beam includes any of the following:
  • the third public beam is the currently used public beam, or the public beam that was last valid or indicated.
  • the third condition includes any one or more of the following:
  • the terminal equipment supports the public beam function
  • the terminal device enables the public beam function
  • the beam indication information is used for the network equipment to indicate the public beam to the terminal equipment for the n+1th time after the terminal equipment initially accesses or after the beam failure recovery is completed. That is, the terminal device adopts the currently used public beam as the network device to indicate the public beam to the terminal device for the nth time after initial access of the terminal device or after completion of beam failure recovery.
  • n is an integer greater than or equal to 1.
  • the terminal equipment uses the public beam indicated last time: the network equipment indicates the public beam to the terminal equipment for the nth time after the terminal equipment initially accesses or completes beam failure recovery.
  • the use of the last valid public beam by the terminal device can be understood as the public beam that the network device indicates to the terminal device for the nth time and takes effect after the initial access of the terminal device or after completion of beam failure recovery.
  • the third public beam is the SSB beam used by the terminal equipment during initial access.
  • the fourth condition includes any one or more of the following:
  • the terminal equipment supports the public beam function
  • the terminal device enables the public beam function
  • the third public beam is the SSB beam used by the terminal device during the initial access, and can also be replaced with: After the network device initially accesses the terminal device, the terminal device does not receive the beam activation information in step 1602, and the third public beam is the SSB beam used by the terminal device during initial access.
  • This embodiment is described by taking as an example that the public beam indicated by the network device to the terminal device for the first time after initial access by the terminal device does not take effect, and the third public beam is the SSB beam used by the terminal device during initial access as an example.
  • the third public beam is the beam reported by the terminal device to the network device when the beam fails to recover.
  • the fifth condition includes any one or more of the following:
  • the terminal equipment supports the public beam function
  • the terminal device enables the public beam function
  • the network device After the terminal device completes beam failure recovery, the network device indicates that the public beam to the terminal device for the first time does not take effect.
  • the third common beam is a common beam activated by the beam activation information.
  • the sixth condition includes any one or more of the following:
  • the terminal equipment supports the public beam function
  • the terminal device enables the public beam function
  • the beam activation information activates a common beam.
  • the third public beam is the first public beam among the multiple public beams activated by the beam activation information, or the last public beam, or the public beam with the largest value of the corresponding public beam indication field beam, or the corresponding public beam indicates the public beam with the smallest field value.
  • the terminal equipment supports the public beam function
  • the terminal device enables the public beam function
  • the beam activation information activates multiple public beams.
  • the terminal device may use any of the third common beams shown above for transmission.
  • the time interval between the time when the network device sends the first PDSCH data scheduled by the first DCI and the time when the network device sends the first DCI is greater than or equal to the preset threshold, and the time interval for sending the first PDSCH data by the network device The time is earlier than the time when the common beam indicated by the first DCI takes effect, and the third common beam further includes the common beam indicated by the first DCI.
  • the moment when the network device sends the first DCI may be understood as the moment when the terminal device receives the first DCI.
  • the preset threshold value is the duration required for the terminal device to decode the first DCI. As shown in FIG. 16B , if the time when the network device sends the first PDSCH data scheduled by the first DCI falls within time period 2, that is, the time when the network device sends the first PDSCH data falls within the time when the terminal device completes decoding the first DCI In the subsequent time period, the terminal device may also transmit through the common beam indicated by the first DCI.
  • the terminal device uses the common beam indicated by the first DCI for transmission.
  • the common beam may be an uplink common beam, or a downlink common beam, or a joint common beam.
  • the above-mentioned embodiment shown in FIG. 16A only introduces the technical solution of how the terminal device receives the first PDSCH data before the common beam scheduled by the first DCI takes effect.
  • the above-mentioned first PDSCH data may also be replaced with CSI-RS triggered by the first DCI. That is, if the time when the network device sends the CSI-RS triggered by the first DCI is earlier than the time when the common beam indicated by the first DCI takes effect, the terminal device can receive the CSI-RS triggered by the first DCI using any of the third public beams described above.
  • the above-mentioned first PDSCH data is replaced with the HARQ feedback result corresponding to the first PDSCH data. That is, if the time when the terminal device sends the HARQ feedback result corresponding to the first PDSCH data is earlier than the time when the public beam indicated by the first DCI takes effect, the terminal device can send the first PDSCH data corresponding to the first PDSCH data to the network device by using any of the above-mentioned third public beams. HARQ feedback results.
  • the above-mentioned first PDSCH data is replaced with the PUSCH scheduled by the first DCI. That is, if the time when the terminal device sends the PUSCH scheduled by the first DCI is earlier than the time when the common beam indicated by the first DCI takes effect, the terminal device can use any of the third common beams described above to send the PUSCH scheduled by the first DCI.
  • the above-mentioned first PDSCH data is replaced with an SRS triggered by the first DCI. That is, if the time when the terminal device sends the SRS triggered by the first DCI is earlier than the time when the common beam indicated by the first DCI takes effect, the terminal device can send the SRS triggered by the first DCI to the network device by using any of the above-mentioned third public beams.
  • the beam indication information is carried by the first DCI, and the first DCI also schedules the first PDSCH data. If the time when the network device sends the first PDSCH data is before the time when the common beam indicated by the first DCI takes effect, the terminal device uses the third common beam for transmission.
  • the terminal device realizes the reception of the first PDSCH data scheduled by the first DCI through the technical solution of the thirteenth embodiment. Because the public beam indicated by the beam indication information does not take effect, the terminal device and the network device cannot communicate normally, and the performance of the communication system is improved.
  • the present application provides the fourteenth embodiment, and the following describes the technical solution of the fourteenth embodiment provided by the present application through FIG. 17A .
  • FIG. 17A is a schematic diagram of another embodiment of the beam management method according to the embodiment of the present application.
  • the beam management method includes:
  • the network device sends beam configuration information to the terminal device.
  • the terminal device receives beam configuration information from the network device.
  • the network device sends beam activation information to the terminal device.
  • the terminal device receives the beam activation information from the network device.
  • the network device sends the first DCI to the terminal device.
  • the terminal device receives the first DCI from the network device.
  • Steps 1701 to 1703 are similar to steps 501 to 503 in the foregoing embodiment shown in FIG. 5 .
  • steps 501 to 503 in the foregoing embodiment shown in FIG. 5 please refer to the related introductions of steps 501 to 503 in the foregoing embodiment shown in FIG. 5 .
  • this embodiment further includes step 1704 and step 1705 .
  • Steps 1704 to 1705 are performed after step 1703 .
  • the terminal device receives the second DCI from the network device.
  • the second DCI is used for scheduling the second PDSCH data.
  • the terminal device uses the fourth public beam to receive the second PDSCH data. PDSCH data.
  • the moment when the network device sends the second PDSCH data scheduled by the second DCI can be understood as the moment when the terminal device receives the second PDSCH data.
  • the moment when the network device sends the second DCI may be understood as the moment when the terminal device receives the second DCI.
  • the terminal device needs a period of time to decode the second DCI. Only after the decoding is successful, the terminal device can determine whether the second DCI schedules PDSCH data, and the beam used for PDSCH data transmission, and the like.
  • the preset threshold value is the duration required for the terminal device to decode the second DCI.
  • the terminal device uses the fourth common beam to receive the second PDSCH data. PDSCH data.
  • the fourth common beam includes any of the following:
  • the fourth public beam is the currently used public beam, or the public beam that was last valid or indicated.
  • the seventh condition includes any one or more of the following:
  • the terminal equipment supports the public beam function
  • the terminal device enables the public beam function
  • the first DCI is used by the network device to indicate the public beam to the terminal device for the n+1th time after the terminal device initially accesses or after the beam failure recovery is completed. That is, the terminal equipment adopts the currently used public beam as the network equipment to indicate the public beam to the terminal equipment for the nth time after initial access of the terminal equipment or after completion of beam failure recovery.
  • n is an integer greater than or equal to 1.
  • the terminal equipment uses the public beam indicated last time: the network equipment indicates the public beam to the terminal equipment for the nth time after the terminal equipment initially accesses or completes beam failure recovery.
  • the use of the last valid public beam by the terminal device can be understood as the public beam that the network device indicates to the terminal device for the nth time and takes effect after the initial access of the terminal device or after completion of beam failure recovery.
  • the fourth public beam is the SSB beam used by the terminal equipment during initial access.
  • the eighth condition includes any one or more of the following:
  • the terminal equipment supports the public beam function
  • the terminal device enables the public beam function
  • the fourth public beam is the SSB beam used by the terminal device during initial access and can be replaced with: After the device is initially accessed by the terminal device, the terminal device does not receive the beam activation information in step 1602, and the fourth public beam is the SSB beam used by the terminal device during initial access.
  • the fourth public beam is the beam reported by the terminal device to the network device when the beam fails to recover.
  • the ninth condition includes any one or more of the following:
  • the terminal equipment supports the public beam function
  • the terminal device enables the public beam function
  • the network device After the terminal device completes beam failure recovery, the network device indicates that the public beam to the terminal device for the first time does not take effect.
  • the fourth common beam is a common beam activated by the beam activation information.
  • the tenth condition includes any one or more of the following:
  • the terminal equipment supports the public beam function

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种波束管理方法与装置, 用于高效的进行波束的通知, 避免复杂冗余的指示指令, 减少信令开销。本申请实施例提供的方法包括: 终端设备接收来自网络设备的波束配置信息; 该波束配置信息包括一个或多个公共波束的配置信息; 该一个或多个公共波束包括以下任一种: 用于上行传输或下行传输的独立公共波束; 用于上行传输和下行传输的联合公共波束; 终端设备接收来自网络设备的波束激活信息; 该波束激活信息用于激活该一个或多个公共波束中的部分公共波束; 终端设备接收来自网络设备的波束指示信息; 波束指示信息用于指示部分公共波束中的一个或多个公共波束。

Description

波束管理方法与装置 技术领域
本申请涉及通信领域,尤其涉及一种波束管理方法与装置。
背景技术
第五代移动通信系统(5th generation,5G)可以采用高频通信,即采用超高频段(>6GHz)信号传输数据。高频通信的一个主要问题是信号能量随传输距离急剧下降,导致信号传输距离短。为了克服这个问题,高频通信采用模拟波束技术,通过对天线阵列进行加权处理,将信号能量集中在一个较小的角度范围内,形成一个类似于光束一样的信号(称为模拟波束,简称波束),从而提高传输距离。网络设备和终端设备都要采用波束进行传输。
网络设备与终端设备采用波束进行传输。当终端设备移动时,网络设备与终端设备之间针对不同信道或不同参考信号分别采用的波束的波束质量会发生变化,导致不同信道或不同参考信号的最佳波束发生变换。最佳波束发生变化时,网络设备分别通过不同的信令更新网络设备与终端设备之间针对不同信道或不同参考信号分别采用的波束,以便于保证终端设备使用的波束总是最佳的。
由上述方案可知,针对每种信道或每种参考信号,网络设备采用相应的信令向终端设备指示波束,导致信令开销较大。因此,如何高效的进行波束的通知,避免复杂冗余的指示信令,是本申请解决的主要问题。
发明内容
本申请提供了一种波束管理方法与装置,用于高效的进行波束的通知,避免复杂冗余的指示指令,减少信令开销。
本申请第一方面提供一种波束管理方法,该方法包括:
终端设备接收来自网络设备的波束配置信息。该波束配置信息包括一个或多个公共波束的配置信息。该一个或多个公共波束包括以下任一种:用于上行传输或下行传输的独立公共波束;用于上行传输和下行传输的联合公共波束。然后,终端设备接收来自网络设备的波束激活信息。该波束激活信息用于激活该一个或多个公共波束中的部分公共波束。终端设备接收来自网络设备的波束指示信息。波束指示信息用于指示部分公共波束中的一个或多个公共波束。
上述技术方案中,限定了网络设备为终端设备配置的公共波束的波束类型。对于终端设备来说,不能同时被配置独立公共波束和联合公共波束。由于联合公共波束可以同时用于上行传输和下行传输,因此如果网络设备为终端设备配置了联合公共波束,则没有必要再为终端设备配置独立公共波束,从而避免波束资源的浪费,提高波束资源的利用率。由于独立公共波束可以用于上行传输或下行传输,因此如果网络设备为终端设备配置了独立公共波束,则没有必要再为终端设备配置联合公共波束,从而避免波束资源的浪费,提高波束资源的利用率。
一种可能的实现方式中,该波束配置信息包括第一公共波束的配置参数。若该第一公共波束的配置参数包括第一参数且不包括第二参数,该第一公共波束为上行公共波束;或者,若该第一公共波束的配置参数包括第二参数且不包括第一参数,该第一公共波束为下行公共波束;或者,若第一公共波束的配置参数包括第一参数和第二参数,第一公共波束为联合公共波束;第一参数包括以下至少一项:用于确定上行发送波束的参考信号资源,空间关系信息、上行功率控制参数、信道探测参考信号(sounding reference signal,SRS)资源。第二参数包括以下至少一项:准共址(quasi-colocation,QCL)信息、带宽分量(bandwidth part,BWP)参数。
在该可能的实现方式中,在网络设备对终端设备的公共波束管理过程中,终端设备可以根据波束配置信息包括的配置参数确定该一个或多个公共波束的波束类型。无需通过其他信息或字段指示一个或多个公共波束的波束类型,减少网络资源的开销。例如,信令开销、指示比特开销。
另一种可能的实现方式中,波束指示信息通过第一下行控制信息(downlink control information,DCI)携带;当满足第一条件时,且第一DCI对应的混合自动重传请求(hybrid automatic repeat request,HARQ)反馈结果为确认字符(acknowledgement,ACK),表示波束指示信息指示的一个或多个公共波束指示成功;
第一条件包括以下一项或多项的组合:
终端设备上报支持公共波束功能;
网络设备将终端设备的公共波束功能配置为开启状态;
第一DCI没有调度物理下行共享信道(physical downlink shared channel,PDSCH);
第一DCI调度PDSCH且终端设备采用动态混合自动重传请求确认(hybrid automatic repeat request acknowledgement,HARQ-ACK)码本进行HARQ反馈;
第一DCI指示的一个或多个公共波束与终端设备当前使用的公共波束不同。
在该可能的实现方式中,示出了波束指示信息指示的一个或多个公共波束指示成功的可能的情况。具体通过终端设备针对第一DCI的HARQ反馈结果或针对第一DCI调度的PDSCH的HARQ反馈结果表示波束指示信息指示的一个或多个公共波束指示成功。
另一种可能的实现方式中,波束指示信息指示的一个或多个公共波束指示成功之后,第一DCI指示的公共波束在第一时刻加上第一时间偏移后的第一个时隙生效;第一时刻为收到第一DCI的时刻,或者为终端设备发送第一DCI对应的HARQ反馈结果的时刻;第一DCI对应的HARQ反馈结果为针对第一DCI反馈的HARQ反馈结果或针对第一DCI调度的PDSCH反馈的HARQ反馈结果。
在该可能的实现方式中,波束指示信息指示的一个或多个公共波束指示成功之后,网络设备和终端设备可以确定第一DCI指示的公共波束的生效时间,并在该生效时间切换到该公共波束,从而实现网络设备与终端设备之间通过该公共波束进行传输。
另一种可能的实现方式中,波束指示信息通过第一DCI携带,当满足第二条件时,且第一DCI对应的HARQ反馈结果为确认字符(acknowledgement,ACK)或否定确认字符(non-acknowledgement,NACK),表示波束指示信息指示的一个或多个公共波束指示成功;
第二条件包括以下一项或多项的组合:
终端设备上报支持公共波束功能;
网络设备将终端设备的公共波束功能配置为开启状态;
第一DCI调度了PDSCH;
终端设备采用半静态HARQ-ACK码本进行HARQ反馈;
第一DCI指示的一个或多个公共波束与终端设备当前使用的公共波束不同。
在该可能的实现方式中,示出了波束指示信息指示的一个或多个公共波束指示成功的另一种可能的情况。具体通过终端设备针对第一DCI调度的PDSCH的HARQ反馈结果表示波束指示信息指示的一个或多个公共波束指示成功。
另一种可能的实现方式中,波束指示信息指示的一个或多个公共波束指示成功之后,第一DCI指示的公共波束在第一时刻加上第一时间偏移后的第一个时隙生效;第一时刻为终端设备接收到第一DCI的时刻,或者为终端设备发送第一DCI对应的HARQ反馈结果的时刻;第一DCI对应的HARQ反馈结果为针对第一DCI调度的PDSCH反馈的HARQ反馈结果。
在该可能的实现方式中,波束指示信息指示的一个或多个公共波束指示成功之后,网络设备和终端设备可以确定第一DCI指示的公共波束的生效时间,并在该生效时间切换到该公共波束,从而实现网络设备与终端设备之间通过该公共波束进行传输。
另一种可能的实现方式中,波束指示信息通过第一DCI携带;第一DCI包括公共波束指示字段,公共波束指示字段用于指示一种波束类型的公共波束;该方法还包括:
终端设备根据波束配置信息确定公共波束指示字段指示的公共波束的波束类型;或者,
终端设备根据波束激活信息确定公共波束指示字段指示的公共波束的波束类型;或者,
终端设备根据第一DCI确定公共波束指示字段指示的公共波束的波束类型。
在该可能的实现方式中,针对第一DCI包括的公共波束指示字段指示一种波束类型的公共波束的情况,提出了多种终端设备确定该公共波束指示字段指示的波束类型的具体实现方式,提升了方案的多样性和可行性。
另一种可能的实现方式中,该终端设备根据波束配置信息确定公共波束指示字段指示的公共波束的波束类型,包括:
若网络设备通过波束配置信息将终端设备的公共波束模式配置为联合公共波束模式、或波束配置信息包括联合公共波束的配置信息,则终端设备确定公共波束指示字段指示的波束类型为联合公共波束;或者,
若网络设备通过波束配置信息将终端设备的公共波束模式配置为独立公共波束模式、或波束配置信息包括独立公共波束的配置信息,则终端设备确定公共波束指示字段指示的公共波束的波束类型为上行公共波束或下行公共波束。
在该可能的实现方式,提供了终端设备根据波束配置信息确定公共波束指示字段指示的波束类型的具体过程,为方案的实现提供基础。也就是通过波束配置信息配置的波束类型间接确定公共波束指示字段指示的波束类型。
另一种可能的实现方式中,终端设备根据波束激活信息确定公共波束指示字段指示的公共波束的波束类型,包括:
若波束激活信息用于激活联合公共波束,则终端设备确定公共波束指示字段指示的公共波束的波束类型为联合公共波束;或者,
若波束激活信息用于激活独立公共波束,则终端设备确定公共波束指示字段指示的公共波束的波束类型为上行公共波束或下行公共波束。
在该可能的实现方式中,提供了终端设备根据波束激活信息确定公共波束指示字段指示的公共波束的波束类型的具体过程。也就是通过激活的公共波束的波束类型间接确定公共波束指示字段指示的波束类型。
另一种可能的实现方式中,该公共波束指示字段的前x个比特或后x个比特或第一DCI包括的第一指示字段用于指示公共波束指示字段指示的公共波束的波束类型,x为大于或等于1的整数;
波束类型包括以下任一种:联合公共波束、上行公共波束、下行公共波束;或者,
波束类型包括以下任一种:上行公共波束、下行公共波束。
在该可能的实现方式中,提供了通过第一DCI或公共波束指示字段指示公共波束的波束类型的具体实现方式。
另一种可能的实现方式中,波束指示信息通过第一DCI携带,第一DCI包括公共波束指示字段,公共波束指示字段包括一个或两个子字段;该方法还包括:
终端设备根据波束配置信息配置的公共波束的波束类型确定公共波束指示字段包括的子字段的数量、和/或,子字段指示的波束类型。
在该可能的实现方式中,终端设备可以根据波束配置信息配置的公共波束的波束类型确定公共波束指示字段包括的子字段的数量以及分别指示的波束类型。
另一种可能的实现方式中,如果波束配置信息配置的波束类型为联合公共波束,则公共波束指示字段包括一个子字段,该一个子字段用于指示联合公共波束;
如果波束配置信息配置的波束类型为独立公共波束,则公共波束指示字段包括两个子字段,该两个子字段用于指示上行公共波束和下行公共波束。
在该可能的实现方式中,提供了通过波束配置信息配置的公共波束的波束类型确定子字段的数量的具体过程。
另一种可能的实现方式中,若公共波束指示字段包括两个子字段,则该两个子字段中的第一个子字段用于指示上行公共波束,两个子字段中的第二个子字段用于指示下行公共波束;或者,两个子字段中的第一个子字段用于指示下行公共波束,两个子字段中的第二个子字段用于指示上行公共波束。
在该可能的实现方式,针对公共波束指示字段包括两个子字段的情况,可以通过一些预设的通信协议规定该两个子字段分别指示的公共波束的波束类型。
另一种可能的实现方式中,若公共波束指示字段包括两个子字段,该方法还包括:
终端设备根据波束配置信息确定两个子字段分别指示的波束类型;或者,
终端设备根据波束激活信息确定两个子字段分别指示的波束类型;或者,
终端设备根据第一DCI确定所述两个子字段分别指示的波束类型。
在该可能的实现方式中,针对公共波束指示字段包括两个子字段的情况,提供了终端 设备确定两个子字段分别指示的波束类型的多种可能的实现方式,提升了方案的多样性。
另一种可能的实现方式中,波束配置信息包括上行公共波束集合和下行公共波束集合;终端设备根据波束配置信息确定两个子字段分别指示的波束类型,包括:
终端设备根据上行公共波束集合和下行公共波束集合的配置先后顺序确定两个子字段分别指示的波束类型;或者,
终端设备根据上行公共波束集合和所述下行公共波束集合分别对应的集合索引大小顺序确定两个子字段分别指示的波束类型。
在该可能的实现方式中,提供了终端设备结合波束配置信息确定两个子字段分别对应的波束类型的具体过程,从而提升了方案的完整性和可行性。
另一种可能的实现方式中,终端设备根据波束激活信息确定两个子字段分别指示的波束类型,包括:终端设备根据波束激活信息激活的上行公共波束和下行公共波束的排列先后顺序确定两个子字段分别指示的波束类型。
在该可能的实现方式中,提供了终端设备结合波束激活信息确定两个子字段分别对应的波束类型的具体过程,从而提升了方案的完整性和多样性。
另一种可能的实现方式中,终端设备根据第一DCI确定两个子字段分别指示的波束类型,包括:终端设备根据公共波束指示字段中的前x个比特或后x个比特或所述第一DCI包括的第二指示字段确定两个子字段中的第一个子字段指示的波束类型和第二个子字段指示的波束类型。
在该可能的实现方式中,提供了终端设备结合第一DCI包括的第二指示字段或公共波束字段确定两个子字段分别指示的波束类型的具体过程。
另一种可能的实现方式中,波束指示信息通过第一DCI携带;若第一DCI不包括公共波束指示字段,所述方法还包括:
若波束激活信息用于激活一个公共波束,终端设备采用波束激活信息激活的公共波束进行传输;或者,
若波束激活信息用于激活多个公共波束,终端设备采用所述多个公共波束中波束索引最大的,或波束索引最小的,或排序最靠前的,或排序最靠后的,或对应的公共波束指示字段值最小的,或对应的公共波束指示字段值最大的公共波束进行传输。
在该可能的实现方式中,如果波束指示信息不包括公共波束指示字段,也就是波束指示信息不指示公共波束,那么终端设备可以结合波束激活信息确定采用对应的公共波束进行传输。这样不会由于波束指示信息不指示公共波束而导致终端设备与网络设备之间无法进行正常的通信,提升了通信系统的性能。
另一种可能的实现方式中,该方法还包括:
若公共波束指示信息指示的公共波束与第二公共波束相同,终端设备忽略波束指示信息;
第二公共波束包括以下任一项:终端设备当前采用的公共波束、终端设备在时间上最近一次指示或生效的公共波束。
在该可能的实现方式中,当波束指示信息指示的公共波束与终端设备当前使用的公共 波束一致时,(即终端设备不需要更新公共波束),而波束指示信息包括的公共波束指示字段仍指示公共波束时,终端设备可以忽略该波束指示信息。这样终端设备不会更新该公共波束,以避免不必要的网络资源开销。
另一种可能的实现方式中,若波束指示信息指示相同波束类型的K个公共波束,并且网络设备为终端设备配置K个第一资源或K个第一资源集合;该方法还包括:
终端设备将K个公共波束作为K个第一资源或K个第一资源集合对应的波束;
K个公共波束与K个第一资源或K个第一资源集合一一对应,K个第一资源集合中每个第一资源集合包括第一资源,K个公共波束分别用于对应的第一资源的传输;
K个公共波束按照波束指示信息的指示顺序或K个公共波束的波束索引大小顺序排序;
K个第一资源或K个第一资源集合按照资源配置顺序或资源索引大小顺序排序;
第一资源包括以下任一种:未配置重复(repetitoin参数和传输信息(transmitting,information,trs-Info)参数的信道状态信息参考信号(channel status information reference signal,CSI-RS),码本(codebook)类型的SRS,非码本(nonCodebook类型)的SRS,nonCodebook类型的SRS关联的CSI-RS。
在该可能的实现方式中,针对波束指示信息指示相同波束类型的K个公共波束,并且网络设备为终端设备配置K个第一资源或K个第一资源集合的情况,终端设备为K个第一资源或K个资源集合确定对应的公共波束,以便于对应的第一资源的传输。
另一种可能的实现方式中,波束指示信息用于网络设备在终端设备初始接入之后第一次向终端设备指示公共波束;在波束指示信息指示的公共波束生效之前,该方法还包括:终端设备采用初始接入时采用的同步信号-广播信道测量资源块(synchronization signal and PBCH block,SSB)波束进行传输。
在该可能的实现方式中,波束指示信息用于网络设备在终端设备初始接入之后第一次向终端设备指示公共波束。在该波束指示信息指示的公共波束生效之前,提供了终端设备采用公共波束进行传输的一种具体的实现方式,以便于终端设备与网络设备之间的通信。不会因为波束指示信息指示的公共波束未生效导致终端设备与网络设备无法进行正常的通信,提升通信系统的性能。
另一种可能的实现方式中,波束指示信息用于网络设备在终端设备发生波束失败之后第一次向终端设备指示公共波束;在终端设备完成波束失败恢复之后,波束指示信息指示的公共波束生效之前,该方法还包括:终端设备采用终端设备在波束失败恢复过程中向网络设备上报的波束进行传输。
在该可能的实现方式中,在该波束指示信息指示的公共波束生效之前,提供了终端设备采用公共波束进行传输的具体实现方式,以便于终端设备与网络设备之间的通信。不会因为波束指示信息指示的公共波束未生效导致终端设备与网络设备无法进行正常的通信,提升通信系统的性能。
另一种可能的实现方式中,波束指示信息用于网络设备在终端设备初始接入之后第一次向终端设备指示公共波束;在终端设备初始接入之后,终端设备接收到波束激活信息之前,该方法还包括:终端设备采用初始接入时采用的SSB波束进行传输;在终端设备接收 到波束激活信息之后,波束指示信息指示的公共波束生效之前,该方法还包括:终端设备采用波束激活信息激活的第一个公共波束或最后一个公共波束进行传输;或者,终端设备采用波束激活信息激活的公共波束中公共波束指示字段值最大或最小的公共波束进行传输。
在该可能的实现方式中,在该波束指示信息指示的公共波束生效之前,提供了终端设备采用公共波束进行传输的另一种具体实现方式,以便于终端设备与网络设备之间的通信。不会因为波束指示信息指示的公共波束未生效导致终端设备与网络设备无法进行正常的通信,提升通信系统的性能。
另一种可能的实现方式中,波束指示信息通过第一DCI携带,第一DCI还调度第一PDSCH数据;该方法还包括:若网络设备所述第一PDSCH数据的时刻早于第一DCI指示的公共波束生效的时刻,终端设备采用第三公共波束接收来自网络设备的第一PDSCH数据;第三公共波束包括以下任一项:若网络设备在终端设备初始接入之后或完成波束失败恢复之后,第一次向终端设备指示的公共波束已经生效,第三公共波束为当前使用的公共波束,或者为最近一次生效或指示的公共波束;若网络设备在终端设备初始接入之后,第一次向终端设备指示的公共波束未生效,第三公共波束为初始接入时终端设备采用的SSB波束;若网络设备在终端设备完成波束失败恢复之后,第一次向终端设备指示的公共波束未生效,第三公共波束为波束失败恢复时终端设备上报给网络设备的波束。
在该可能的实现方式中,波束指示信息通过第一DCI携带,第一DCI还调度第一PDSCH数据。若网络设备发送第一PDSCH数据的时刻在第一DCI指示的公共波束生效的时刻之前,终端设备采用第三公共波束进行传输。这样不会因为波束指示信息指示的公共波束未生效导致终端设备与网络设备无法进行正常的通信,提升通信系统的性能。
另一种可能的实现方式中,若网络设备发送第一DCI调度的第一PDSCH数据的时刻与网络设备发送第一DCI的时刻之间的时间间隔大于或等于预设门限值,且网络设备发送第一PDSCH数据的时刻早于第一DCI指示的公共波束生效的时刻,第三公共波束还包括第一DCI指示的公共波束。
另一种可能的实现方式中,该方法还包括:终端设备接收来自网络设备的第二DCI;若网络设备发送第二DCI调度的第二PDSCH数据的时刻与网络设备发送第二DCI的时刻之间的时间间隔小于预设门限值,终端设备采用第四公共波束接收来自网络设备的第二PDSCH数据;
第四公共波束包括以下任一项:若网络设备在终端设备初始接入之后或完成波束失败恢复之后,第一次向终端设备指示的公共波束已经生效,第四公共波束为当前使用的公共波束,或者为最近一次生效或指示的公共波束;若网络设备在终端设备初始接入之后,第一次向终端设备指示的公共波束未生效,第四公共波束为初始接入时终端设备采用的SSB波束;若网络设备在终端设备完成波束失败恢复之后,第一次向终端设备指示的公共波束未生效,第四公共波束为波束失败恢复时终端设备上报给网络设备的波束。
在该可能的实现方式中,若网络设备发送第二DCI调度的第二PDSCH数据的时刻与网络设备发送第二DCI的时刻之间的时间间隔小于预设门限值,终端设备采用第四公共波束接收第二PDSCH数据。这样不会因为波束指示信息指示的公共波束未生效导致终端设备与 网络设备无法进行正常的通信,提升通信系统的性能。
本申请第二方面提供一种波束管理方法,该方法包括:
网络设备向终端设备发送波束配置信息。波束配置信息包括一个或多个公共波束的配置信息。该一个或多个公共波束包括以下任一种:用于上行传输或下行传输的独立公共波束;用于上行传输和下行传输的联合公共波束。网络设备向终端设备发送波束激活信息。该波束激活信息用于激活一个或多个公共波束中的部分公共波束。网络设备向终端设备发送波束指示信息。该波束指示信息用于指示部分公共波束中的一个或多个公共波束。
上述技术方案中,限定了网络设备为终端设备配置的公共波束的波束类型。对于终端设备来说,不能同时被配置独立公共波束和联合公共波束。由于联合公共波束可以同时用于上行传输和下行传输,因此如果网络设备为终端设备配置了联合公共波束,则没有必要再为终端设备配置独立公共波束,从而避免波束资源的浪费,提高波束资源的利用率。由于独立公共波束可以用于上行传输或下行传输,因此如果网络设备为终端设备配置了独立公共波束,则没有必要再为终端设备配置联合公共波束,从而避免波束资源的浪费,提高波束资源的利用率。
一种可能的实现方式中,波束配置信息包括第一公共波束的配置参数;若第一公共波束的配置参数包括第一参数且不包括第二参数,第一公共波束为上行公共波束;或者,若第一公共波束的配置参数包括第二参数且不包括第一参数,第一公共波束为下行公共波束;或者,若第一公共波束的配置参数包括第一参数和所述第二参数,第一公共波束为联合公共波束;第一参数包括以下至少一项:用于确定上行发送波束的参考信号资源,空间关系信息、上行功率控制参数、SRS资源;第二参数包括以下至少一项:QCL信息、BWP参数。
在该可能的实现方式中,在网络设备对终端设备的公共波束管理过程中,终端设备可以根据波束配置信息包括的配置参数确定该一个或多个公共波束的波束类型。无需通过其他信息或字段指示一个或多个公共波束的波束类型,减少网络资源的开销。例如,信令开销、指示比特开销。
另一种可能的实现方式中,波束指示信息通过第一DCI携带;当满足第一条件时,且第一DCI对应的HARQ反馈结果为ACK,表示波束指示信息指示的一个或多个公共波束指示成功;
第一条件包括以下一项或多项的组合:
终端设备上报支持公共波束功能;
网络设备将终端设备的公共波束功能配置为开启状态;
第一DCI没有调度PDSCH;
第一DCI调度PDSCH且终端设备采用动态HARQ-ACK码本进行HARQ反馈;
第一DCI指示的一个或多个公共波束与终端设备当前使用的公共波束不同。
在该可能的实现方式中,示出了波束指示信息指示的一个或多个公共波束指示成功的可能的情况。具体通过终端设备针对第一DCI的HARQ反馈结果或针对第一DCI调度的PDSCH的HARQ反馈结果表示波束指示信息指示的一个或多个公共波束指示成功。
另一种可能的实现方式中,波束指示信息指示的一个或多个公共波束指示成功之后, 第一DCI指示的公共波束在第一时刻加上第一时间偏移后的第一个时隙生效;第一时刻为收到第一DCI的时刻,或者为终端设备发送第一DCI对应的HARQ反馈结果的时刻;
第一DCI对应的HARQ反馈结果为针对第一DCI反馈的HARQ反馈结果或针对第一DCI调度的PDSCH反馈的HARQ反馈结果。
在该可能的实现方式中,波束指示信息指示的一个或多个公共波束指示成功之后,网络设备和终端设备可以确定第一DCI指示的公共波束的生效时间,并在该生效时间切换到该公共波束,从而实现网络设备与终端设备之间通过该公共波束进行传输。
另一种可能的实现方式中,波束指示信息通过第一DCI携带,当满足第二条件时,且第一DCI对应的HARQ反馈结果为ACK或NACK,表示波束指示信息指示的一个或多个公共波束指示成功;
第二条件包括以下一项或多项的组合:
终端设备上报支持公共波束功能;
网络设备将终端设备的公共波束功能配置为开启状态;
第一DCI调度了PDSCH;
终端设备采用半静态HARQ-ACK码本进行HARQ反馈;
第一DCI指示的一个或多个公共波束与所述终端设备当前使用的公共波束不同。
在该可能的实现方式中,示出了波束指示信息指示的一个或多个公共波束指示成功的另一种可能的情况。具体通过终端设备针对第一DCI调度的PDSCH的HARQ反馈结果表示波束指示信息指示的一个或多个公共波束指示成功。
另一种可能的实现方式中,波束指示信息指示的一个或多个公共波束指示成功之后,第一DCI指示的公共波束在第一时刻加上第一时间偏移后的第一个时隙生效;
第一时刻为终端设备接收到第一DCI的时刻,或者为终端设备发送第一DCI对应的HARQ反馈结果的时刻;第一DCI对应的HARQ反馈结果为针对第一DCI调度的PDSCH反馈的HARQ反馈结果。
在该可能的实现方式中,波束指示信息指示的一个或多个公共波束指示成功之后,网络设备和终端设备可以确定第一DCI指示的公共波束的生效时间,并在该生效时间切换到该公共波束,从而实现网络设备与终端设备之间通过该公共波束进行传输。
另一种可能的实现方式中,波束指示信息通过第一DCI携带,第一DCI包括公共波束指示字段,公共波束指示字段用于指示一种波束类型的公共波束;
公共波束指示字段指示的公共波束的波束类型通过所述波束配置信息确定;或者,
公共波束指示字段指示的公共波束的波束类型通过所述波束激活信息确定;或者,
公共波束指示字段指示的公共波束的波束类型通过所述第一DCI确定。
在该可能的实现方式中,针对第一DCI包括的公共波束指示字段指示一种波束类型的公共波束的情况,提出了指示该公共波束指示字段指示的波束类型的具体实现方式,提升了方案的多样性和可行性。
另一种可能的实现方式中,若网络设备通过波束配置信息将终端设备的公共波束模式配置为联合公共波束模式、或波束配置信息包括联合公共波束的配置信息,则公共波束指 示字段指示的波束类型为联合公共波束;或者,
若网络设备通过波束配置信息将终端设备的公共波束模式配置为独立公共波束模式、或波束配置信息包括独立公共波束的配置信息,则公共波束指示字段指示的公共波束的波束类型为上行公共波束或下行公共波束。
在该可能的实现方式,提供了通过波束配置信息确定公共波束指示字段指示的波束类型的具体过程,为方案的实现提供基础。也就是通过波束配置信息配置的波束类型间接确定公共波束指示字段指示的波束类型。
另一种可能的实现方式中,若波束激活信息用于激活联合公共波束,则公共波束指示字段指示的公共波束的波束类型为联合公共波束;或者,
若波束激活信息用于激活独立公共波束,则公共波束指示字段指示的公共波束的波束类型为上行公共波束或下行公共波束。
在该可能的实现方式中,提供了通过波束激活信息确定公共波束指示字段指示的公共波束的波束类型的具体过程。也就是通过激活的公共波束的波束类型间接确定公共波束指示字段指示的波束类型。
另一种可能的实现方式中,公共波束指示字段的前x个比特或后x个比特或第一DCI包括的第一指示字段用于指示公共波束指示字段指示的公共波束的波束类型,x为大于或等于1的整数;
波束类型包括以下任一种:联合公共波束、上行公共波束、下行公共波束;或者,
波束类型包括以下任一种:上行公共波束、下行公共波束。
在该可能的实现方式中,提供了通过第一DCI或公共波束指示字段指示公共波束指示字段指示的公共波束的波束类型的具体实现方式。
另一种可能的实现方式中,波束指示信息通过第一DCI携带,第一DCI包括公共波束指示字段,公共波束指示字段包括一个或两个子字段;
公共波束指示字段包括的子字段的数量和/或子字段指示的波束类型通过波束配置信息配置的波束类型确定。
在该可能的实现方式中,通过波束配置信息配置的公共波束的波束类型指示公共波束指示字段包括的子字段的数量以及分别指示的波束类型。
另一种可能的实现方式中,如果波束配置信息配置的波束类型为联合公共波束,则公共波束指示字段包括一个子字段,该一个子字段用于指示联合公共波束;或者,
如果波束配置信息配置的波束类型为独立公共波束,则公共波束指示字段包括两个子字段,两个子字段用于指示上行公共波束和下行公共波束。
在该可能的实现方式中,提供了通过波束配置信息配置的公共波束的波束类型确定子字段的数量的具体过程。
另一种可能的实现方式中,若公共波束指示字段包括两个子字段,则两个子字段中的第一个子字段用于指示所述上行公共波束,两个子字段中的第二个子字段用于指示下行公共波束;或者,两个子字段中的第一个子字段用于指示下行公共波束,两个子字段中的第二个子字段用于指示上行公共波束。
在该可能的实现方式,针对公共波束指示字段包括两个子字段的情况,可以通过一些预设的通信协议规定该两个子字段分别指示的公共波束的波束类型。
另一种可能的实现方式中,若公共波束指示字段包括两个子字段,两个子字段分别指示的波束类型通过波束配置信息或波束激活信息或第一DCI确定。
在该可能的实现方式中,针对公共波束指示字段包括两个子字段的情况,提供了指示两个子字段分别指示的波束类型的多种可能的实现方式,提升了方案的多样性。
另一种可能的实现方式中,波束配置信息包括上行公共波束集合和下行公共波束集合;
两个子字段分别指示的波束类型通过上行公共波束集合和下行公共波束集合的配置先后顺序确定;或者,
两个子字段分别指示的波束类型上行公共波束集合和下行公共波束集合分别对应的集合索引大小顺序确定。
在该可能的实现方式中,提供了通过波束配置信息包括的上行公共波束集合和下行公共波束集合的配置顺序或集合索引大小顺序确定两个子字段分别对应的波束类型的技术方案,从而提升了方案的完整性和可行性。
另一种可能的实现方式中,两个子字段分别指示的波束类型通过波束激活信息激活的上行公共波束和下行公共波束的排列先后顺序确定。
在该可能的实现方式中,提供了通过波束激活信息的公共波束的激活顺序确定两个子字段分别对应的波束类型的技术方案,从而提升了方案的完整性和多样性。
另一种可能的实现方式中,两个子字段分别指示的波束类型通过公共波束指示字段中的前x个比特或后x个比特或所述第一DCI包括的第二指示字段确定。
另一种可能的实现方式中,波束指示信息通过第一DCI携带;若第一DCI不包括公共波束指示字段,该方法还包括:
若波束激活信息用于激活一个公共波束,网络设备采用波束激活信息激活的公共波束进行传输;或者,
若波束激活信息用于激活多个公共波束,网络设备采用多个公共波束中波束索引最大的,或波束索引最小的,或排序最靠前的,或排序最靠后的,或对应的公共波束指示字段值最小的,或对应的公共波束指示字段值最大的公共波束进行传输。
在该可能的实现方式中,如果波束指示信息不包括公共波束指示字段,也就是波束指示信息不指示公共波束,那么网络设备可以结合波束激活信息确定采用对应的公共波束进行传输。这样不会由于波束指示信息不指示公共波束而导致终端设备与网络设备之间无法进行正常的通信,提升了通信系统的性能。
另一种可能的实现方式中,若波束指示信息指示相同波束类型的K个公共波束,并且网络设备为终端设备配置K个第一资源或K个第一资源集合,则K个公共波束为K个第一资源或K个第一资源集合对应的波束;K个公共波束与K个第一资源或K个第一资源集合一一对应,K个第一资源集合中每个第一资源集合包括第一资源,K个公共波束分别用于对应的第一资源的传输;
K个公共波束按照波束指示信息的指示顺序或K个公共波束的波束索引大小顺序排序;
K个第一资源或K个第一资源集合按照资源配置顺序或资源索引大小顺序排序;
第一资源包括以下任一种:未配置repetitoin参数和trs-Info参数的CSI-RS,codebook类型的探测参考信号SRS,nonCodebook类型的SRS,nonCodebook类型的SRS关联的CSI-RS。
在该可能的实现方式中,针对波束指示信息指示相同波束类型的K个公共波束,并且网络设备为终端设备配置K个第一资源或K个第一资源集合的情况,该K个公共波束分别为该K个第一资源或K个资源集合对应的公共波束,以便于对应的第一资源的传输。
另一种可能的实现方式中,波束指示信息用于网络设备在终端设备初始接入之后第一次向终端设备指示公共波束;在波束指示信息指示的公共波束生效之前,该方法还包括:网络设备采用终端设备初始接入时采用的SSB波束与终端设备进行传输。
在该可能的实现方式中,在该波束指示信息指示的公共波束生效之前,网络设备采用终端设备初始接入时采用的SSB波束与终端设备进行传输,以便于终端设备与网络设备之间的通信。这样不会因为波束指示信息指示的公共波束未生效导致终端设备与网络设备无法进行正常的通信,提升通信系统的性能。
另一种可能的实现方式中,波束指示信息用于网络设备在终端设备发生波束失败之后第一次向终端设备指示公共波束;在终端设备完成波束失败恢复之后,波束指示信息指示的公共波束生效之前,该方法还包括:网络设备采用终端设备在波束失败恢复过程中向网络设备上报的波束进行传输。
在该可能的实现方式中,在该波束指示信息指示的公共波束生效之前,提供了网络设备采用公共波束进行传输的具体实现方式,以便于终端设备与网络设备之间的通信。不会因为波束指示信息指示的公共波束未生效导致终端设备与网络设备无法进行正常的通信,提升通信系统的性能。
另一种可能的实现方式中,波束指示信息用于网络设备在终端设备初始接入之后第一次向终端设备指示公共波束;在终端设备初始接入之后,网络设备发送波束激活信息之前,该方法还包括:网络设备采用初始接入时采用的SSB波束进行传输;在网络设备发送波束激活信息之后,波束指示信息指示的公共波束生效之前,该方法还包括:网络设备采用波束激活信息激活的第一个公共波束或最后一个公共波束进行传输;或者,网络设备采用波束激活信息激活的公共波束中公共波束指示字段值最大或最小的公共波束进行传输。
在该可能的实现方式中,在该波束指示信息指示的公共波束生效之前,提供了网络设备采用公共波束进行传输的另一种具体实现方式,以便于终端设备与网络设备之间的通信。不会因为波束指示信息指示的公共波束未生效导致终端设备与网络设备无法进行正常的通信,提升通信系统的性能。
另一种可能的实现方式中,波束指示信息通过第一DCI携带,第一DCI还调度第一PDSCH数据;该方法还包括:若网络设备发送第一PDSCH数据的时刻早于第一DCI指示的公共波束生效的时刻,网络设备采用第三公共波束向网络设备发送第一PDSCH数据;第三公共波束包括以下任一项:若网络设备在终端设备初始接入之后或完成波束失败恢复之后,第一次向终端设备指示的公共波束已经生效,第三公共波束为当前使用的公共波束,或者为最近一次生效或指示的公共波束;若网络设备在终端设备初始接入之后,第一次向终端设备 指示的公共波束未生效,第三公共波束为初始接入时终端设备采用的SSB波束;若网络设备在终端设备完成波束失败恢复之后,第一次向终端设备指示的公共波束未生效,第三公共波束为波束失败恢复时终端设备上报给网络设备的波束。
在该可能的实现方式中,波束指示信息通过第一DCI携带,第一DCI还调度第一PDSCH数据。若网络设备发送第一PDSCH数据的时刻在第一DCI指示的公共波束生效的时刻之前,网络设备采用第三公共波束进行传输。这样不会因为波束指示信息指示的公共波束未生效导致终端设备与网络设备无法进行正常的通信,提升通信系统的性能。
另一种可能的实现方式中,若网络设备发送第一DCI调度的第一PDSCH数据的时刻与网络设备发送所述第一DCI的时刻之间的时间间隔大于或等于预设门限值,且网络设备发送第一PDSCH数据的时刻早于第一DCI指示的公共波束生效的时刻,第三公共波束还包括第一DCI指示的公共波束。
另一种可能的实现方式中,该方法还包括:网络设备向终端设备发送第二DCI;若网络设备发送第二DCI调度的第二PDSCH数据的时刻与网络设备发送第二DCI的时刻之间的时间间隔小于预设门限值,网络设备采用第四公共波束向终端设备发送第二PDSCH数据;若网络设备在终端设备初始接入之后或完成波束失败恢复之后,第一次向终端设备指示的公共波束已经生效,第四公共波束为当前使用的公共波束,或者为最近一次生效或指示的公共波束;若网络设备在终端设备初始接入之后,第一次向终端设备指示的公共波束未生效,第四公共波束为初始接入时终端设备采用的SSB波束;若网络设备在终端设备完成波束失败恢复之后,第一次向终端设备指示的公共波束未生效,第四公共波束为波束失败恢复时终端设备上报给网络设备的波束。
在该可能的实现方式中,若网络设备发送第二DCI调度的第二PDSCH数据的时刻与网络设备发送第二DCI的时刻之间的时间间隔小于预设门限值,网络设备采用第四公共波束接收第二PDSCH数据。这样不会因为波束指示信息指示的公共波束未生效导致终端设备与网络设备无法进行正常的通信,提升通信系统的性能。
本申请第三方面提供一种波束管理方法,该方法包括:
终端设备接收来自网络设备的波束配置信息。该波束配置信息包括一个或多个公共波束的配置信息。该波束配置信息包括该一个或多个公共波束的配置参数。若该一个或多个公共波束中每个公共波束的配置参数包括第一参数且不包括第二参数,该每个公共波束为上行公共波束;或者,若该每个公共波束的配置参数包括第二参数且不包括第一参数,该每个公共波束为下行公共波束;或者,若每个公共波束的配置参数包括第一参数和第二参数,该每个公共波束为联合公共波束;第一参数包括以下至少一项:用于确定上行发送波束的参考信号资源,空间关系信息、上行功率控制参数、SRS资源。第二参数包括以下至少一项:QCL信息、BWP参数。终端设备接收来自网络设备的波束激活信息。该波束激活信息用于激活该一个或多个公共波束中的部分公共波束。终端设备接收来自网络设备的波束指示信息。波束指示信息用于指示部分公共波束中的一个或多个公共波束。
上述技术方案中,在网络设备对终端设备的公共波束管理过程中,终端设备可以根据波束配置信息包括的配置参数确定该一个或多个公共波束的波束类型。无需通过其他信息 或字段指示一个或多个公共波束的波束类型,减少网络资源的开销。例如,信令开销、指示比特开销。
本申请第四方面提供一种波束管理方法,该方法包括:
网络设备向终端设备发送波束配置信息。波束配置信息包括一个或多个公共波束的配置信息。该波束配置信息包括该一个或多个公共波束的配置参数。若该一个或多个公共波束中每个公共波束的配置参数包括第一参数且不包括第二参数,该每个公共波束为上行公共波束;或者,若该每个公共波束的配置参数包括第二参数且不包括第一参数,该每个公共波束为下行公共波束;或者,若每个公共波束的配置参数包括第一参数和第二参数,该每个公共波束为联合公共波束;第一参数包括以下至少一项:用于确定上行发送波束的参考信号资源,空间关系信息、上行功率控制参数、SRS资源。第二参数包括以下至少一项:QCL信息、BWP参数。网络设备向终端设备发送波束激活信息。该波束激活信息用于激活一个或多个公共波束中的部分公共波束。网络设备向终端设备发送波束指示信息。该波束指示信息用于指示部分公共波束中的一个或多个公共波束。
在该可能的实现方式中,在网络设备对终端设备的公共波束管理过程中,网络设备可以通过波束配置信息包括的配置参数向终端设备指示该一个或多个公共波束的波束类型。无需通过其他信息或字段指示一个或多个公共波束的波束类型,减少网络资源的开销。例如,信令开销、指示比特开销。
本申请第五方面提供一种波束管理方法,该方法包括:
终端设备接收来自网络设备的波束配置信息。该波束配置信息包括一个或多个公共波束的配置信息。终端设备接收来自网络设备的波束激活信息。该波束激活信息用于激活该一个或多个公共波束中的部分公共波束。终端设备接收来自网络设备的波束指示信息。波束指示信息用于指示部分公共波束中的一个或多个公共波束;波束指示信息通过第一DCI携带;当满足第一条件时,且第一DCI对应的HARQ反馈结果为ACK,表示波束指示信息指示的一个或多个公共波束指示成功;
第一条件包括以下一项或多项的组合:
终端设备上报支持公共波束功能;
网络设备将终端设备的公共波束功能配置为开启状态;
第一DCI没有调度PDSCH;
第一DCI调度PDSCH且终端设备采用动态HARQ-ACK码本进行HARQ反馈;
第一DCI指示的一个或多个公共波束与终端设备当前使用的公共波束不同。
一种可能的实现方式中,波束指示信息指示的一个或多个公共波束指示成功之后,第一DCI指示的公共波束在第一时刻加上第一时间偏移后的第一个时隙生效;第一时刻为收到第一DCI的时刻,或者为终端设备发送第一DCI对应的HARQ反馈结果的时刻;第一DCI对应的HARQ反馈结果为针对第一DCI反馈的HARQ反馈结果或针对第一DCI调度的PDSCH反馈的HARQ反馈结果。
本申请第六方面提供一种波束管理方法,该方法包括:
网络设备向终端设备发送波束配置信息。波束配置信息包括一个或多个公共波束的配 置信息。网络设备向终端设备发送波束激活信息。该波束激活信息用于激活一个或多个公共波束中的部分公共波束。网络设备向终端设备发送波束指示信息。该波束指示信息用于指示部分公共波束中的一个或多个公共波束;波束指示信息通过第一DCI携带;当满足第一条件时,且第一DCI对应的HARQ反馈结果为ACK,表示波束指示信息指示的一个或多个公共波束指示成功;
第一条件包括以下一项或多项的组合:
终端设备上报支持公共波束功能;
网络设备将终端设备的公共波束功能配置为开启状态;
第一DCI没有调度PDSCH;
第一DCI调度PDSCH且终端设备采用动态HARQ-ACK码本进行HARQ反馈;
第一DCI指示的一个或多个公共波束与终端设备当前使用的公共波束不同。
一种可能的实现方式中,波束指示信息指示的一个或多个公共波束指示成功之后,第一DCI指示的公共波束在第一时刻加上第一时间偏移后的第一个时隙生效;第一时刻为收到第一DCI的时刻,或者为终端设备发送第一DCI对应的HARQ反馈结果的时刻;第一DCI对应的HARQ反馈结果为针对第一DCI反馈的HARQ反馈结果或针对第一DCI调度的PDSCH反馈的HARQ反馈结果。
本申请第七方面提供一种波束管理方法,该方法包括:
终端设备接收来自网络设备的波束配置信息。该波束配置信息包括一个或多个公共波束的配置信息。终端设备接收来自网络设备的波束激活信息。该波束激活信息用于激活该一个或多个公共波束中的部分公共波束。终端设备接收来自网络设备的波束指示信息。波束指示信息用于指示部分公共波束中的一个或多个公共波束;波束指示信息通过第一DCI携带,当满足第二条件时,且第一DCI对应的HARQ反馈结果为ACK或NACK,表示波束指示信息指示的一个或多个公共波束指示成功;
第二条件包括以下一项或多项的组合:
终端设备上报支持公共波束功能;
网络设备将终端设备的公共波束功能配置为开启状态;
第一DCI调度了PDSCH;
终端设备采用半静态HARQ-ACK码本进行HARQ反馈;
第一DCI指示的一个或多个公共波束与终端设备当前使用的公共波束不同。
一种可能的实现方式中,波束指示信息指示的一个或多个公共波束指示成功之后,第一DCI指示的公共波束在第一时刻加上第一时间偏移后的第一个时隙生效;第一时刻为收到第一DCI的时刻,或者为终端设备发送第一DCI对应的HARQ反馈结果的时刻;第一DCI对应的HARQ反馈结果为针对第一DCI调度的PDSCH反馈的HARQ反馈结果。
本申请第八方面提供一种波束管理方法,该方法包括:
网络设备向终端设备发送波束配置信息。波束配置信息包括一个或多个公共波束的配置信息。网络设备向终端设备发送波束激活信息。该波束激活信息用于激活一个或多个公共波束中的部分公共波束。网络设备向终端设备发送波束指示信息。该波束指示信息用于 指示部分公共波束中的一个或多个公共波束;波束指示信息通过第一DCI携带,当满足第二条件时,且第一DCI对应的HARQ反馈结果为ACK或NACK,表示波束指示信息指示的一个或多个公共波束指示成功;
第二条件包括以下一项或多项的组合:
终端设备上报支持公共波束功能;
网络设备将终端设备的公共波束功能配置为开启状态;
第一DCI调度了PDSCH;
终端设备采用半静态HARQ-ACK码本进行HARQ反馈;
第一DCI指示的一个或多个公共波束与终端设备当前使用的公共波束不同。
一种可能的实现方式中,波束指示信息指示的一个或多个公共波束指示成功之后,第一DCI指示的公共波束在第一时刻加上第一时间偏移后的第一个时隙生效;第一时刻为收到第一DCI的时刻,或者为终端设备发送第一DCI对应的HARQ反馈结果的时刻;第一DCI对应的HARQ反馈结果为针对第一DCI调度的PDSCH反馈的HARQ反馈结果。
本申请第九方面提供一种波束管理方法,该方法包括:
终端设备接收来自网络设备的波束配置信息。该波束配置信息包括一个或多个公共波束的配置信息。终端设备接收来自网络设备的波束激活信息。该波束激活信息用于激活该一个或多个公共波束中的部分公共波束。终端设备接收来自网络设备的波束指示信息。波束指示信息用于指示部分公共波束中的一个或多个公共波束;
波束指示信息通过第一DCI携带;第一DCI包括公共波束指示字段,公共波束指示字段用于指示一种波束类型的公共波束;该方法还包括:
终端设备根据波束配置信息确定公共波束指示字段指示的公共波束的波束类型;或者,
终端设备根据波束激活信息确定公共波束指示字段指示的公共波束的波束类型;或者,
终端设备根据第一DCI确定公共波束指示字段指示的公共波束的波束类型。
一种可能的实现方式中,该终端设备根据波束配置信息确定公共波束指示字段指示的公共波束的波束类型,包括:
若网络设备通过波束配置信息将终端设备的公共波束模式配置为联合公共波束模式、或波束配置信息包括联合公共波束的配置信息,则终端设备确定公共波束指示字段指示的波束类型为联合公共波束;或者,
若网络设备通过波束配置信息将终端设备的公共波束模式配置为独立公共波束模式、或波束配置信息包括独立公共波束的配置信息,则终端设备确定公共波束指示字段指示的公共波束的波束类型为上行公共波束或下行公共波束。
另一种可能的实现方式中,终端设备根据波束激活信息确定公共波束指示字段指示的公共波束的波束类型,包括:
若波束激活信息用于激活联合公共波束,则终端设备确定公共波束指示字段指示的公共波束的波束类型为联合公共波束;或者,
若波束激活信息用于激活独立公共波束,则终端设备确定公共波束指示字段指示的公共波束的波束类型为上行公共波束或下行公共波束。
另一种可能的实现方式中,该公共波束指示字段的前x个比特或后x个比特或第一DCI包括的第一指示字段用于指示公共波束指示字段指示的公共波束的波束类型,x为大于或等于1的整数;
波束类型包括以下任一种:联合公共波束、上行公共波束、下行公共波束;或者,
波束类型包括以下任一种:上行公共波束、下行公共波束。
本申请第十方面提供一种波束管理方法,该方法包括:
网络设备向终端设备发送波束配置信息。波束配置信息包括一个或多个公共波束的配置信息。网络设备向终端设备发送波束激活信息。该波束激活信息用于激活一个或多个公共波束中的部分公共波束。网络设备向终端设备发送波束指示信息。该波束指示信息用于指示部分公共波束中的一个或多个公共波束;
波束指示信息通过第一DCI携带,第一DCI包括公共波束指示字段,公共波束指示字段用于指示一种波束类型的公共波束;
公共波束指示字段指示的公共波束的波束类型通过所述波束配置信息确定;或者,
公共波束指示字段指示的公共波束的波束类型通过所述波束激活信息确定;或者,
公共波束指示字段指示的公共波束的波束类型通过所述第一DCI确定。
一种可能的实现方式中,若网络设备通过波束配置信息将终端设备的公共波束模式配置为联合公共波束模式、或波束配置信息包括联合公共波束的配置信息,则公共波束指示字段指示的波束类型为联合公共波束;或者,
若网络设备通过波束配置信息将终端设备的公共波束模式配置为独立公共波束模式、或波束配置信息包括独立公共波束的配置信息,则公共波束指示字段指示的公共波束的波束类型为上行公共波束或下行公共波束。
另一种可能的实现方式中,若波束激活信息用于激活联合公共波束,则公共波束指示字段指示的公共波束的波束类型为联合公共波束;或者,
若波束激活信息用于激活独立公共波束,则公共波束指示字段指示的公共波束的波束类型为上行公共波束或下行公共波束。
另一种可能的实现方式中,公共波束指示字段的前x个比特或后x个比特或第一DCI包括的第一指示字段用于指示公共波束指示字段指示的公共波束的波束类型,x为大于或等于1的整数;
波束类型包括以下任一种:联合公共波束、上行公共波束、下行公共波束;或者,
波束类型包括以下任一种:上行公共波束、下行公共波束。
本申请第十一方面提供一种波束管理方法,该方法包括:
终端设备接收来自网络设备的波束配置信息;该波束配置信息包括一个或多个公共波束的配置信息;终端设备接收来自网络设备的波束激活信息;该波束激活信息用于激活该一个或多个公共波束中的部分公共波束;终端设备接收来自网络设备的波束指示信息;波束指示信息用于指示部分公共波束中的一个或多个公共波束;波束指示信息通过第一DCI携带,第一DCI包括公共波束指示字段,公共波束指示字段包括一个或两个子字段;终端设备根据波束配置信息配置的公共波束的波束类型确定公共波束指示字段包括的子字段的 数量、和/或,子字段指示的波束类型。
另一种可能的实现方式中,如果波束配置信息配置的波束类型为联合公共波束,则公共波束指示字段包括一个子字段,该一个子字段用于指示联合公共波束;或者,
如果波束配置信息配置的波束类型为独立公共波束,则公共波束指示字段包括两个子字段,该两个子字段用于指示上行公共波束和下行公共波束。
另一种可能的实现方式中,若公共波束指示字段包括两个子字段,则该两个子字段中的第一个子字段用于指示上行公共波束,两个子字段中的第二个子字段用于指示下行公共波束;或者,两个子字段中的第一个子字段用于指示下行公共波束,两个子字段中的第二个子字段用于指示上行公共波束。
另一种可能的实现方式中,若公共波束指示字段包括两个子字段,该方法还包括:
终端设备根据波束配置信息确定两个子字段分别指示的波束类型;或者,
终端设备根据波束激活信息确定两个子字段分别指示的波束类型;或者,
终端设备根据第一DCI确定所述两个子字段分别指示的波束类型。
另一种可能的实现方式中,波束配置信息包括上行公共波束集合和下行公共波束集合;终端设备根据波束配置信息确定两个子字段分别指示的波束类型,包括:
终端设备根据上行公共波束集合和下行公共波束集合的配置先后顺序确定两个子字段分别指示的波束类型;或者,
终端设备根据上行公共波束集合和所述下行公共波束集合分别对应的集合索引大小顺序确定两个子字段分别指示的波束类型。
另一种可能的实现方式中,终端设备根据波束激活信息确定两个子字段分别指示的波束类型,包括:终端设备根据波束激活信息激活的上行公共波束和下行公共波束的排列先后顺序确定两个子字段分别指示的波束类型。
另一种可能的实现方式中,终端设备根据第一DCI确定两个子字段分别指示的波束类型,包括:终端设备根据公共波束指示字段中的前x个比特或后x个比特或所述第一DCI包括的第二指示字段确定两个子字段中的第一个子字段指示的波束类型和第二个子字段指示的波束类型。
本申请第十二方面提供一种波束管理方法,该方法包括:
网络设备向终端设备发送波束配置信息。波束配置信息包括一个或多个公共波束的配置信息;网络设备向终端设备发送波束激活信息。该波束激活信息用于激活一个或多个公共波束中的部分公共波束;网络设备向终端设备发送波束指示信息;该波束指示信息用于指示部分公共波束中的一个或多个公共波束;波束指示信息通过第一DCI携带,第一DCI包括公共波束指示字段,公共波束指示字段包括一个或两个子字段;公共波束指示字段包括的子字段的数量和/或子字段指示的波束类型通过波束配置信息配置的波束类型确定。
另一种可能的实现方式中,如果波束配置信息配置的波束类型为联合公共波束,则公共波束指示字段包括一个子字段,该一个子字段用于指示联合公共波束;或者,
如果波束配置信息配置的波束类型为独立公共波束,则公共波束指示字段包括两个子字段,两个子字段用于指示上行公共波束和下行公共波束。
另一种可能的实现方式中,若公共波束指示字段包括两个子字段,则两个子字段中的第一个子字段用于指示所述上行公共波束,两个子字段中的第二个子字段用于指示下行公共波束;或者,两个子字段中的第一个子字段用于指示下行公共波束,两个子字段中的第二个子字段用于指示上行公共波束。
另一种可能的实现方式中,若公共波束指示字段包括两个子字段,两个子字段分别指示的波束类型通过波束配置信息或波束激活信息或第一DCI确定。
另一种可能的实现方式中,波束配置信息包括上行公共波束集合和下行公共波束集合;
两个子字段分别指示的波束类型通过上行公共波束集合和下行公共波束集合的配置先后顺序确定;或者,
两个子字段分别指示的波束类型上行公共波束集合和下行公共波束集合分别对应的集合索引大小顺序确定。
另一种可能的实现方式中,两个子字段分别指示的波束类型通过波束激活信息激活的上行公共波束和下行公共波束的排列先后顺序确定。
另一种可能的实现方式中,两个子字段分别指示的波束类型通过公共波束指示字段中的前x个比特或后x个比特或所述第一DCI包括的第二指示字段确定。
本申请第十三方面提供一种波束管理方法,该方法包括:
终端设备接收来自网络设备的波束配置信息;该波束配置信息包括一个或多个公共波束的配置信息;终端设备接收来自网络设备的波束激活信息;该波束激活信息用于激活该一个或多个公共波束中的部分公共波束;网络设备向终端设备发送的DCI不包括公共波束指示字段;若波束激活信息用于激活一个公共波束,终端设备采用波束激活信息激活的公共波束进行传输;若波束激活信息用于激活多个公共波束,终端设备采用所述多个公共波束中波束索引最大的,或波束索引最小的,或排序最靠前的,或排序最靠后的,或对应的公共波束指示字段值最小的,或对应的公共波束指示字段值最大的公共波束进行传输。
本申请第十四方面提供一种波束管理方法,该方法包括:
网络设备向终端设备发送波束配置信息。波束配置信息包括一个或多个公共波束的配置信息;网络设备向终端设备发送波束激活信息。该波束激活信息用于激活一个或多个公共波束中的部分公共波束;网络设备向终端设备发送的DCI不包括公共波束指示字段;若波束激活信息用于激活一个公共波束,网络设备采用波束激活信息激活的公共波束进行传输;若波束激活信息用于激活多个公共波束,网络设备采用所述多个公共波束中波束索引最大的,或波束索引最小的,或排序最靠前的,或排序最靠后的,或对应的公共波束指示字段值最小的,或对应的公共波束指示字段值最大的公共波束进行传输。
本申请第十五方面提供一种波束管理方法,该方法包括:
终端设备接收来自网络设备的波束配置信息;该波束配置信息包括一个或多个公共波束的配置信息;终端设备接收来自网络设备的波束激活信息;该波束激活信息用于激活该一个或多个公共波束中的部分公共波束;终端设备接收来自网络设备的波束指示信息;波束指示信息用于指示部分公共波束中的一个或多个公共波束;
若公共波束指示信息指示的公共波束与第二公共波束相同,终端设备忽略波束指示信 息;第二公共波束包括以下任一项:终端设备当前采用的公共波束、终端设备在时间上最近一次指示或生效的公共波束。
本申请第十六方面提供一种波束管理方法,该方法包括:
终端设备接收来自网络设备的波束配置信息;该波束配置信息包括一个或多个公共波束的配置信息;终端设备接收来自网络设备的波束激活信息;该波束激活信息用于激活该一个或多个公共波束中的部分公共波束;终端设备接收来自网络设备的波束指示信息。波束指示信息用于指示部分公共波束中的一个或多个公共波束;若波束指示信息指示相同波束类型的K个公共波束,并且网络设备为终端设备配置K个第一资源或K个第一资源集合;终端设备将K个公共波束作为K个第一资源或K个第一资源集合对应的波束;
K个公共波束与K个第一资源或K个第一资源集合一一对应,K个第一资源集合中每个第一资源集合包括第一资源,K个公共波束分别用于对应的第一资源的传输;
K个公共波束按照波束指示信息的指示顺序或K个公共波束的波束索引大小顺序排序;
K个第一资源或K个第一资源集合按照资源配置顺序或资源索引大小顺序排序;
第一资源包括以下任一种:未配置repetitoin参数和trs-Info参数的CSI-RS,codebook类型的SRS,nonCodebook类型的SRS,nonCodebook类型的SRS关联的CSI-RS。
本申请第十七方面提供一种波束管理方法,该方法包括:
网络设备向终端设备发送波束配置信息。波束配置信息包括一个或多个公共波束的配置信息;网络设备向终端设备发送波束激活信息;该波束激活信息用于激活一个或多个公共波束中的部分公共波束;网络设备向终端设备发送波束指示信息;该波束指示信息用于指示部分公共波束中的一个或多个公共波束;
若波束指示信息指示相同波束类型的K个公共波束,并且网络设备为终端设备配置K个第一资源或K个第一资源集合,则K个公共波束分别为K个第一资源或K个第一资源集合对应的波束;
K个公共波束与K个第一资源或K个第一资源集合一一对应,K个第一资源集合中每个第一资源集合包括第一资源,K个公共波束分别用于对应的第一资源的传输;
K个公共波束按照波束指示信息的指示顺序或K个公共波束的波束索引大小顺序排序;
K个第一资源或K个第一资源集合按照资源配置顺序或资源索引大小顺序排序;
第一资源包括以下任一种:未配置repetitoin参数和trs-Info参数的CSI-RS,codebook类型的SRS,nonCodebook类型的SRS,nonCodebook类型的SRS关联的CSI-RS。
本申请第十八方面提供一种波束管理方法,该方法包括:
终端设备接收来自网络设备的波束配置信息;该波束配置信息包括一个或多个公共波束的配置信息;终端设备接收来自网络设备的波束激活信息;该波束激活信息用于激活该一个或多个公共波束中的部分公共波束。终端设备接收来自网络设备的波束指示信息;波束指示信息用于指示部分公共波束中的一个或多个公共波束;波束指示信息用于网络设备在终端设备初始接入之后第一次向终端设备指示公共波束;在波束指示信息指示的公共波束生效之前,终端设备采用初始接入时采用的SSB波束进行传输。
本申请第十九方面提供一种波束管理方法,该方法包括:
网络设备向终端设备发送波束配置信息;波束配置信息包括一个或多个公共波束的配置信息;网络设备向终端设备发送波束激活信息;该波束激活信息用于激活一个或多个公共波束中的部分公共波束;网络设备向终端设备发送波束指示信息;该波束指示信息用于指示部分公共波束中的一个或多个公共波束;波束指示信息用于网络设备在终端设备初始接入之后第一次向终端设备指示公共波束;在波束指示信息指示的公共波束生效之前,网络设备采用终端设备初始接入时采用的SSB波束进行传输。
本申请第二十方面提供一种波束管理方法,该方法包括:
终端设备接收来自网络设备的波束配置信息;该波束配置信息包括一个或多个公共波束的配置信息;终端设备接收来自网络设备的波束激活信息;该波束激活信息用于激活该一个或多个公共波束中的部分公共波束;终端设备接收来自网络设备的波束指示信息。波束指示信息用于指示部分公共波束中的一个或多个公共波束;波束指示信息用于网络设备在终端设备发生波束失败之后第一次向终端设备指示公共波束;在终端设备完成波束失败恢复之后,波束指示信息指示的公共波束生效之前,终端设备采用终端设备在波束失败恢复过程中向网络设备上报的波束进行传输。
本申请第二十一方面提供一种波束管理方法,该方法包括:
网络设备向终端设备发送波束配置信息;波束配置信息包括一个或多个公共波束的配置信息;网络设备向终端设备发送波束激活信息;该波束激活信息用于激活一个或多个公共波束中的部分公共波束;网络设备向终端设备发送波束指示信息;该波束指示信息用于指示部分公共波束中的一个或多个公共波束;
波束指示信息用于网络设备在终端设备发生波束失败之后第一次向终端设备指示公共波束。在终端设备完成波束失败恢复之后,波束指示信息指示的公共波束生效之前,网络设备采用终端设备在波束失败恢复过程中向网络设备上报的波束进行传输。
本申请第二十二方面提供一种波束管理方法,该方法包括:
终端设备接收来自网络设备的波束配置信息;该波束配置信息包括一个或多个公共波束的配置信息;终端设备接收来自网络设备的波束激活信息;该波束激活信息用于激活该一个或多个公共波束中的部分公共波束;终端设备接收来自网络设备的波束指示信息;波束指示信息用于指示部分公共波束中的一个或多个公共波束;
波束指示信息用于网络设备在终端设备初始接入之后第一次向终端设备指示公共波束。在终端设备初始接入之后,终端设备接收到波束激活信息之前,终端设备采用初始接入时采用的SSB波束进行传输;
在终端设备接收到波束激活信息之后,波束指示信息指示的公共波束生效之前,终端设备采用波束激活信息激活的第一个公共波束或最后一个公共波束进行传输;或者,终端设备采用波束激活信息激活的公共波束中公共波束指示字段值最大或最小的公共波束进行传输。
本申请第二十三方面提供一种波束管理方法,该方法包括:
网络设备向终端设备发送波束配置信息;波束配置信息包括一个或多个公共波束的配置信息;网络设备向终端设备发送波束激活信息;该波束激活信息用于激活一个或多个公 共波束中的部分公共波束;网络设备向终端设备发送波束指示信息;该波束指示信息用于指示部分公共波束中的一个或多个公共波束;
波束指示信息用于网络设备在终端设备初始接入之后第一次向终端设备指示公共波束。在终端设备初始接入之后,网络设备向终端设备发送波束激活信息之前,网络设备采用终端设备初始接入时采用的SSB波束进行传输;
在网络设备向终端设备发送波束激活信息之后,波束指示信息指示的公共波束生效之前,网络设备采用波束激活信息激活的第一个公共波束或最后一个公共波束进行传输;或者,网络设备采用波束激活信息激活的公共波束中公共波束指示字段值最大或最小的公共波束进行传输。
本申请第二十四方面提供一种波束管理方法,该方法包括:
终端设备接收来自网络设备的波束配置信息。该波束配置信息包括一个或多个公共波束的配置信息;终端设备接收来自网络设备的波束激活信息;该波束激活信息用于激活该一个或多个公共波束中的部分公共波束;终端设备接收来自网络设备的波束指示信息。波束指示信息用于指示部分公共波束中的一个或多个公共波束;
波束指示信息通过第一DCI携带,第一DCI还调度第一PDSCH数据;
若网络设备所述第一PDSCH数据的时刻早于第一DCI指示的公共波束生效的时刻,终端设备采用第三公共波束接收来自网络设备的第一PDSCH数据;
第三公共波束包括以下任一项:若网络设备在终端设备初始接入之后或完成波束失败恢复之后,第一次向终端设备指示的公共波束已经生效,第三公共波束为当前使用的公共波束,或者为最近一次生效或指示的公共波束;若网络设备在终端设备初始接入之后,第一次向终端设备指示的公共波束未生效,第三公共波束为初始接入时终端设备采用的SSB波束;若网络设备在终端设备完成波束失败恢复之后,第一次向终端设备指示的公共波束未生效,第三公共波束为波束失败恢复时终端设备上报给网络设备的波束。
一种可能的实现方式中,若网络设备发送第一DCI调度的第一PDSCH数据的时刻与网络设备发送第一DCI的时刻之间的时间间隔大于或等于预设门限值,且网络设备发送第一PDSCH数据的时刻早于第一DCI指示的公共波束生效的时刻,第三公共波束还包括第一DCI指示的公共波束。
本申请第二十五方面提供一种波束管理方法,该方法包括:
网络设备向终端设备发送波束配置信息;波束配置信息包括一个或多个公共波束的配置信息;网络设备向终端设备发送波束激活信息;该波束激活信息用于激活一个或多个公共波束中的部分公共波束;网络设备向终端设备发送波束指示信息;该波束指示信息用于指示部分公共波束中的一个或多个公共波束;
波束指示信息通过第一DCI携带,第一DCI还调度第一PDSCH数据;
若网络设备所述第一PDSCH数据的时刻早于第一DCI指示的公共波束生效的时刻,网络设备采用第三公共波束接收来自网络设备的第一PDSCH数据;
第三公共波束包括以下任一项:若网络设备在终端设备初始接入之后或完成波束失败恢复之后,第一次向终端设备指示的公共波束已经生效,第三公共波束为当前使用的公共 波束,或者为最近一次生效或指示的公共波束;若网络设备在终端设备初始接入之后,第一次向终端设备指示的公共波束未生效,第三公共波束为初始接入时终端设备采用的SSB波束;若网络设备在终端设备完成波束失败恢复之后,第一次向终端设备指示的公共波束未生效,第三公共波束为波束失败恢复时终端设备上报给网络设备的波束。
一种可能的实现方式中,若网络设备发送第一DCI调度的第一PDSCH数据的时刻与网络设备发送第一DCI的时刻之间的时间间隔大于或等于预设门限值,且网络设备发送第一PDSCH数据的时刻早于第一DCI指示的公共波束生效的时刻,第三公共波束还包括第一DCI指示的公共波束。
本申请第二十六方面提供一种波束管理方法,该方法包括:
终端设备接收来自网络设备的波束配置信息;该波束配置信息包括一个或多个公共波束的配置信息;终端设备接收来自网络设备的波束激活信息;该波束激活信息用于激活该一个或多个公共波束中的部分公共波束。终端设备接收来自网络设备的第一DCI;第一DCI用于指示部分公共波束中的一个或多个公共波束;
终端设备接收来自网络设备的第二DCI;
若网络设备发送第二DCI调度的第二PDSCH数据的时刻与网络设备发送第二DCI的时刻之间的时间间隔小于预设门限值,终端设备采用第四公共波束接收来自网络设备的第二PDSCH数据;
第四公共波束包括以下任一项:若网络设备在终端设备初始接入之后或完成波束失败恢复之后,第一次向终端设备指示的公共波束已经生效,第四公共波束为当前使用的公共波束,或者为最近一次生效或指示的公共波束;若网络设备在终端设备初始接入之后,第一次向终端设备指示的公共波束未生效,第四公共波束为初始接入时终端设备采用的SSB波束;若网络设备在终端设备完成波束失败恢复之后,第一次向终端设备指示的公共波束未生效,第四公共波束为波束失败恢复时终端设备上报给网络设备的波束。
本申请第二十七方面提供一种波束管理方法,该方法包括:
网络设备向终端设备发送波束配置信息;波束配置信息包括一个或多个公共波束的配置信息;网络设备向终端设备发送波束激活信息;该波束激活信息用于激活一个或多个公共波束中的部分公共波束;网络设备向终端设备发送第一DCI;该第一DCI用于指示部分公共波束中的一个或多个公共波束;
网络设备向终端设备发送第二DCI;
若网络设备发送第二DCI调度的第二PDSCH数据的时刻与网络设备发送第二DCI的时刻之间的时间间隔小于预设门限值,网络设备采用第四公共波束接收来自网络设备的第二PDSCH数据;
第四公共波束包括以下任一项:若网络设备在终端设备初始接入之后或完成波束失败恢复之后,第一次向终端设备指示的公共波束已经生效,第四公共波束为当前使用的公共波束,或者为最近一次生效或指示的公共波束;若网络设备在终端设备初始接入之后,第一次向终端设备指示的公共波束未生效,第四公共波束为初始接入时终端设备采用的SSB波束;若网络设备在终端设备完成波束失败恢复之后,第一次向终端设备指示的公共波束 未生效,第四公共波束为波束失败恢复时终端设备上报给网络设备的波束。
本申请第二十八方面提供一种终端设备,该终端设备包括:
接收单元,用于接收来自网络设备的波束配置信息,波束配置信息包括一个或多个公共波束的配置信息;一个或多个公共波束包括以下任一种:用于上行传输或下行传输的独立公共波束;用于上行传输和下行传输的联合公共波束;接收来自网络设备的波束激活信息,波束激活信息用于激活一个或多个公共波束中的部分公共波束;接收来自网络设备的波束指示信息,波束指示信息用于指示部分公共波束中的一个或多个公共波束。
一种可能的实现方式中,波束配置信息包括第一公共波束的配置参数;
若第一公共波束的配置参数包括第一参数且不包括第二参数,第一公共波束为上行公共波束;
若第一公共波束的配置参数包括第二参数且不包括第一参数,第一公共波束为下行公共波束;
若第一公共波束的配置参数包括第一参数和第二参数,第一公共波束为联合公共波束;
第一参数包括以下至少一项:用于确定上行发送波束的参考信号资源,空间关系信息、上行功率控制参数、SRS资源;
第二参数包括以下至少一项:QCL信息、BWP参数。
另一种可能的实现方式中,波束指示信息通过第一DCI携带;当满足第一条件时,且第一DCI对应的HARQ反馈结果为ACK,表示波束指示信息指示的一个或多个公共波束指示成功;
第一条件包括以下一项或多项的组合:
终端设备上报支持公共波束功能;
网络设备将终端设备的公共波束功能配置为开启状态;
第一DCI没有调度PDSCH;
第一DCI调度PDSCH且终端设备采用动态HARQ-ACK码本进行HARQ反馈;
第一DCI指示的一个或多个公共波束与终端设备当前使用的公共波束不同。
另一种可能的实现方式中,当波束指示信息指示的一个或多个公共波束指示成功之后,第一DCI指示的公共波束在第一时刻加上第一时间偏移后的第一个时隙生效;
第一时刻为收到第一DCI的时刻,或者为终端设备发送第一DCI对应的HARQ反馈结果的时刻;
第一DCI对应的HARQ反馈结果为针对第一DCI反馈的HARQ反馈结果或针对第一DCI调度的PDSCH反馈的HARQ反馈结果。
另一种可能的实现方式中,波束指示信息通过第一DCI携带,当满足第二条件时,且第一DCI对应的HARQ反馈结果为ACK或NACK,表示波束指示信息指示的一个或多个公共波束指示成功;
第二条件包括以下一项或多项的组合:
终端设备上报支持公共波束功能;
网络设备将终端设备的公共波束功能配置为开启状态;
第一DCI调度了物理下行共享信道PDSCH;
终端设备采用半静态HARQ-ACK码本进行HARQ反馈;
第一DCI指示的一个或多个公共波束与终端设备当前使用的公共波束不同。
另一种可能的实现方式中,波束指示信息指示的一个或多个公共波束指示成功之后,第一DCI指示的公共波束在第一时刻加上第一时间偏移后的第一个时隙生效;
第一时刻为收到第一DCI的时刻,或者为终端设备发送第一DCI对应的HARQ反馈结果的时刻;
第一DCI对应的HARQ反馈结果为针对第一DCI调度的PDSCH反馈的HARQ反馈结果。
另一种可能的实现方式中,波束指示信息通过第一DCI携带;第一DCI包括公共波束指示字段,公共波束指示字段用于指示一种波束类型的公共波束;终端设备还包括处理单元;处理单元用于:
根据波束配置信息确定公共波束指示字段指示的公共波束的波束类型;或者,
根据波束激活信息确定公共波束指示字段指示的公共波束的波束类型;或者,
根据第一DCI确定公共波束指示字段指示的公共波束的波束类型。
另一种可能的实现方式中,处理单元具体用于:
若网络设备通过波束配置信息将终端设备的公共波束模式配置为联合公共波束模式、或波束配置信息包括联合公共波束的配置信息,则确定公共波束指示字段指示的波束类型为联合公共波束;
若网络设备通过波束配置信息将终端设备的公共波束模式配置为独立公共波束模式、或波束配置信息包括独立公共波束的配置信息,则确定公共波束指示字段指示的公共波束的波束类型为上行公共波束或下行公共波束。
另一种可能的实现方式中,处理单元具体用于:
若波束激活信息用于激活联合公共波束,则确定公共波束指示字段指示的公共波束的波束类型为联合公共波束;
若波束激活信息用于激活独立公共波束,则确定公共波束指示字段指示的公共波束的波束类型为上行公共波束或下行公共波束。
另一种可能的实现方式中,公共波束指示字段的前x个比特或后x个比特或第一DCI包括的第一指示字段用于指示公共波束指示字段指示的公共波束的波束类型,x为大于或等于1的整数;
波束类型包括以下任一种:联合公共波束、上行公共波束、下行公共波束;或者,
波束类型包括以下任一种:上行公共波束、下行公共波束。
另一种可能的实现方式中,波束指示信息通过第一DCI携带,第一DCI包括公共波束指示字段,公共波束指示字段包括一个或两个子字段;终端设备还包括处理单元;处理单元还用于:
根据波束配置信息配置的公共波束的波束类型确定公共波束指示字段包括的子字段的数量、和/或,子字段指示的波束类型。
另一种可能的实现方式中,如果波束配置信息配置的波束类型为联合公共波束,则公 共波束指示字段包括一个子字段,一个子字段用于指示联合公共波束;
如果波束配置信息配置的波束类型为独立公共波束,则公共波束指示字段包括两个子字段,两个子字段用于指示上行公共波束和下行公共波束。
另一种可能的实现方式中,若公共波束指示字段包括两个子字段,则两个子字段中的第一个子字段用于指示上行公共波束,两个子字段中的第二个子字段用于指示下行公共波束;或者,两个子字段中的第一个子字段用于指示下行公共波束,两个子字段中的第二个子字段用于指示上行公共波束。
另一种可能的实现方式中,若公共波束指示字段包括两个子字段;处理单元还用于:
根据波束配置信息确定两个子字段分别指示的波束类型;或者,
根据波束激活信息确定两个子字段分别指示的波束类型;或者,
根据第一DCI确定两个子字段分别指示的波束类型。
另一种可能的实现方式中,波束配置信息包括上行公共波束集合和下行公共波束集合;处理单元具体用于:
根据上行公共波束集合和下行公共波束集合的配置先后顺序确定两个子字段分别指示的波束类型;或者,
根据上行公共波束集合和下行公共波束集合分别对应的集合索引大小顺序确定两个子字段分别指示的波束类型。
另一种可能的实现方式中,处理单元具体用于:
根据波束激活信息激活的上行公共波束和下行公共波束的排列先后顺序确定两个子字段分别指示的波束类型。
另一种可能的实现方式中,处理单元具体用于:
根据公共波束指示字段中的前x个比特或后x个比特或第一DCI包括的第二指示字段确定两个子字段中的第一个子字段指示的波束类型和第二个子字段指示的波束类型。
另一种可能的实现方式中,终端设备还包括处理单元;处理单元还用于:
若波束激活信息用于激活一个公共波束,采用波束激活信息激活的公共波束进行传输;
若波束激活信息用于激活多个公共波束,采用多个公共波束中波束索引最大的,或波束索引最小的,或排序最靠前的,或排序最靠后的,或对应的公共波束指示字段值最小的,或对应的公共波束指示字段值最大的公共波束进行传输。
另一种可能的实现方式中,终端设备还包括处理单元;处理单元还用于:
若公共波束指示信息指示的公共波束与第二公共波束相同,忽略波束指示信息;
第二公共波束包括以下任一项:终端设备当前采用的公共波束、终端设备在时间上最近一次指示或生效的公共波束。
另一种可能的实现方式中,终端设备还包括处理单元;处理单元还用于:
将K个公共波束作为K个第一资源或K个第一资源集合对应的波束;
K个公共波束与K个第一资源或K个第一资源集合一一对应,K个第一资源集合中每个第一资源集合包括第一资源,K个公共波束分别用于对应的第一资源的传输;
K个公共波束按照波束指示信息的指示顺序或K个公共波束的波束索引大小顺序排序;
K个第一资源或K个第一资源集合按照资源配置顺序或资源索引大小顺序排序;
第一资源包括以下任一种:未配置repetitoin参数和trs-Info参数的CSI-RS,codebook类型的SRS,nonCodebook类型的SRS,nonCodebook类型的SRS关联的CSI-RS。
另一种可能的实现方式中,波束指示信息用于网络设备在终端设备初始接入之后第一次向终端设备指示公共波束;终端设备还包括处理单元;
在波束指示信息指示的公共波束生效之前,处理单元用于:
采用初始接入时采用的同步信号块SSB波束进行传输。
另一种可能的实现方式中,波束指示信息用于网络设备在终端设备发生波束失败之后第一次向终端设备指示公共波束;终端设备还包括处理单元;
在终端设备完成波束失败恢复之后,波束指示信息指示的公共波束生效之前,处理单元用于:
采用终端设备在波束失败恢复过程中向网络设备上报的波束进行传输。
另一种可能的实现方式中,波束指示信息用于网络设备在终端设备初始接入之后第一次向终端设备指示公共波束;终端设备还包括处理单元;
在终端设备初始接入之后,终端设备接收到波束激活信息之前,处理单元还用于:
采用初始接入时采用的SSB波束进行传输;
在终端设备接收到波束激活信息之后,波束指示信息指示的公共波束生效之前,处理单元还用于:
采用波束激活信息激活的第一个公共波束或最后一个公共波束进行传输;或者,
采用波束激活信息激活的公共波束中公共波束指示字段值最大或最小的公共波束进行传输。
另一种可能的实现方式中,波束指示信息通过第一DCI携带,第一DCI还调度第一PDSCH数据;终端设备还包括处理单元,处理单元用于:
若网络设备发送第一PDSCH数据的时刻早于第一DCI指示的公共波束生效的时刻,采用第三公共波束接收来自网络设备的第一PDSCH数据;
第三公共波束包括以下任一项:
若网络设备在终端设备初始接入之后或完成波束失败恢复之后,第一次向终端设备指示的公共波束已经生效,第三公共波束为当前使用的公共波束,或者为最近一次生效或指示的公共波束;
若网络设备在终端设备初始接入之后,第一次向终端设备指示的公共波束未生效,第三公共波束为初始接入时终端设备采用的SSB波束;
若网络设备在终端设备完成波束失败恢复之后,第一次向终端设备指示的公共波束未生效,第三公共波束为波束失败恢复时终端设备上报给网络设备的波束。
另一种可能的实现方式中,若网络设备发送第一DCI调度的第一PDSCH数据的时刻与网络设备发送第一DCI的时刻之间的时间间隔大于或等于预设门限值,且网络设备发送第一PDSCH数据的时刻早于第一DCI指示的公共波束生效的时刻,第三公共波束还包括第一DCI指示的公共波束。
另一种可能的实现方式中,接收单元还用于:
接收来自网络设备的第二DCI;
终端设备还包括处理单元,处理单元用于:
若网络设备发送第二DCI调度的第二PDSCH数据的时刻与网络设备发送第二DCI的时刻之间的时间间隔小于预设门限值,采用第四公共波束接收来自网络设备的第二PDSCH数据;
若网络设备在终端设备初始接入之后或完成波束失败恢复之后,第一次向终端设备指示的公共波束已经生效,第四公共波束为当前使用的公共波束,或者为最近一次生效或指示的公共波束;
若网络设备在终端设备初始接入之后,第一次向终端设备指示的公共波束未生效,第四公共波束为初始接入时终端设备采用的SSB波束;
若网络设备在终端设备完成波束失败恢复之后,第一次向终端设备指示的公共波束未生效,第四公共波束为波束失败恢复时终端设备上报给网络设备的波束。
本申请第二十九方面提供一种网络设备,该网络设备包括:
发送单元,用于向终端设备发送波束配置信息,波束配置信息包括一个或多个公共波束的配置信息;一个或多个公共波束包括以下任一种:用于上行传输或下行传输的独立公共波束;用于上行传输和下行传输的联合公共波束;向终端设备发送波束激活信息,波束激活信息用于激活一个或多个公共波束中的部分公共波束;向终端设备发送波束指示信息,波束指示信息用于指示部分公共波束中的一个或多个公共波束。
一种可能的实现方式中,波束配置信息包括第一公共波束的配置参数;
若第一公共波束的配置参数包括第一参数且不包括第二参数,第一公共波束为上行公共波束;
若第一公共波束的配置参数包括第二参数且不包括第一参数,第一公共波束为下行公共波束;
若第一公共波束的配置参数包括第一参数和第二参数,第一公共波束为联合公共波束;
第一参数包括以下至少一项:用于确定上行发送波束的参考信号资源,空间关系信息、上行功率控制参数、SRS资源;
第二参数包括以下至少一项:QCL信息、BWP参数。
另一种可能的实现方式中,波束指示信息通过第一DCI携带;当满足第一条件时,且第一DCI对应的混合自动重传请求HARQ反馈结果为ACK,表示波束指示信息指示的一个或多个公共波束指示成功;
第一条件包括以下一项或多项的组合:
终端设备上报支持公共波束功能;
网络设备将终端设备的公共波束功能配置为开启状态;
第一DCI没有调度物理下行共享信道PDSCH;
第一DCI调度PDSCH且终端设备采用动态混合自动重传请求确认HARQ-ACK码本进行HARQ反馈;
第一DCI指示的一个或多个公共波束与终端设备当前使用的公共波束不同。
另一种可能的实现方式中,波束指示信息指示的一个或多个公共波束指示成功之后,第一DCI指示的公共波束在第一时刻加上第一时间偏移后的第一个时隙生效;
第一时刻为收到第一DCI的时刻,或者为终端设备发送第一DCI对应的HARQ反馈结果的时刻;
第一DCI对应的HARQ反馈结果为针对第一DCI反馈的HARQ反馈结果或针对第一DCI调度的PDSCH反馈的HARQ反馈结果。
另一种可能的实现方式中,波束指示信息通过第一DCI携带,当满足第二条件时,且第一DCI对应的HARQ反馈结果为ACK或NACK,表示波束指示信息指示的一个或多个公共波束指示成功;
第二条件包括以下一项或多项的组合:
终端设备上报支持公共波束功能;
网络设备将终端设备的公共波束功能配置为开启状态;
第一DCI调度了PDSCH;
终端设备采用半静态HARQ-ACK码本进行HARQ反馈;
第一DCI指示的一个或多个公共波束与终端设备当前使用的公共波束不同。
另一种可能的实现方式中,波束指示信息指示的一个或多个公共波束指示成功之后,第一DCI指示的公共波束在第一时刻加上第一时间偏移后的第一个时隙生效;
第一时刻为收到第一DCI的时刻,或者为终端设备发送第一DCI对应的HARQ反馈结果的时刻;
第一DCI对应的HARQ反馈结果为针对第一DCI调度的PDSCH反馈的HARQ反馈结果。
另一种可能的实现方式中,波束指示信息通过第一DCI携带,第一DCI包括公共波束指示字段,公共波束指示字段用于指示一种波束类型的公共波束;
公共波束指示字段指示的公共波束的波束类型通过波束配置信息确定;或者,
公共波束指示字段指示的公共波束的波束类型通过波束激活信息确定;或者,
公共波束指示字段指示的公共波束的波束类型通过第一DCI确定。
另一种可能的实现方式中,若网络设备通过波束配置信息将终端设备的公共波束模式配置为联合公共波束模式、或波束配置信息包括联合公共波束的配置信息,则公共波束指示字段指示的波束类型为联合公共波束;
若网络设备通过波束配置信息将终端设备的公共波束模式配置为独立公共波束模式、或波束配置信息包括独立公共波束的配置信息,则公共波束指示字段指示的公共波束的波束类型为上行公共波束或下行公共波束。
另一种可能的实现方式中,若波束激活信息用于激活联合公共波束,则公共波束指示字段指示的公共波束的波束类型为联合公共波束;
若波束激活信息用于激活独立公共波束,则公共波束指示字段指示的公共波束的波束类型为上行公共波束或下行公共波束。
另一种可能的实现方式中,公共波束指示字段的前x个比特或后x个比特或第一DCI 包括的第一指示字段用于指示公共波束指示字段指示的公共波束的波束类型,x为大于或等于1的整数;
波束类型包括以下任一种:联合公共波束、上行公共波束、下行公共波束;或者,
波束类型包括以下任一种:上行公共波束、下行公共波束。
另一种可能的实现方式中,所述波束指示信息通过第一DCI携带,所述第一DCI包括公共波束指示字段,所述公共波束指示字段包括一个或两个子字段;
所述公共波束指示字段包括的子字段的数量和/或子字段指示的波束类型通过波束配置信息配置的波束类型确定。
另一种可能的实现方式中,如果波束配置信息配置的波束类型为联合公共波束,则公共波束指示字段包括一个子字段,一个子字段用于指示联合公共波束;
如果波束配置信息配置的波束类型为独立公共波束,则公共波束指示字段包括两个子字段,两个子字段用于指示上行公共波束和下行公共波束。
另一种可能的实现方式中,若公共波束指示字段包括两个子字段,则两个子字段中的第一个子字段用于指示上行公共波束,两个子字段中的第二个子字段用于指示下行公共波束;或者,两个子字段中的第一个子字段用于指示下行公共波束,两个子字段中的第二个子字段用于指示上行公共波束。
另一种可能的实现方式中,若公共波束指示字段包括两个子字段,两个子字段分别指示的波束类型通过波束配置信息或波束激活信息或第一DCI确定。
另一种可能的实现方式中,波束配置信息包括上行公共波束集合和下行公共波束集合;
两个子字段分别指示的波束类型通过上行公共波束集合和下行公共波束集合的配置先后顺序确定;或者,
两个子字段分别指示的波束类型上行公共波束集合和下行公共波束集合分别对应的集合索引大小顺序确定。
另一种可能的实现方式中,两个子字段分别指示的波束类型通过波束激活信息激活的上行公共波束和下行公共波束的排列先后顺序确定。
另一种可能的实现方式中,两个子字段分别指示的波束类型通过公共波束指示字段中的前x个比特或后x个比特或第一DCI包括的第二指示字段确定。
另一种可能的实现方式中,波束指示信息通过第一DCI携带;若第一DCI不包括公共波束指示字段;网络设备还包括处理单元,处理单元用于:
若波束激活信息用于激活一个公共波束,采用波束激活信息激活的公共波束进行传输;
若波束激活信息用于激活多个公共波束,采用多个公共波束中波束索引最大的,或波束索引最小的,或排序最靠前的,或排序最靠后的,或对应的公共波束指示字段值最小的,或对应的公共波束指示字段值最大的公共波束进行传输。
另一种可能的实现方式中,若波束指示信息指示相同波束类型的K个公共波束,并且网络设备为终端设备配置K个第一资源或K个第一资源集合,则K个公共波束为K个第一资源或K个第一资源集合对应的波束;
K个公共波束与K个第一资源或K个第一资源集合一一对应,K个第一资源集合中每个 第一资源集合包括第一资源,K个公共波束分别用于对应的第一资源的传输;
K个公共波束按照波束指示信息的指示顺序或K个公共波束的波束索引大小顺序排序;
K个第一资源或K个第一资源集合按照资源配置顺序或资源索引大小顺序排序;
第一资源包括以下任一种:未配置repetitoin参数和trs-Info参数的CSI-RS,codebook类型的SRS,nonCodebook类型的SRS,nonCodebook类型的SRS关联的CSI-RS。
另一种可能的实现方式中,波束指示信息用于网络设备在终端设备初始接入之后第一次向终端设备指示公共波束;网络设备还包括处理单元;在波束指示信息指示的公共波束生效之前,处理单元用于:
采用终端设备初始接入时采用的同步信号块SSB波束与终端设备进行传输。
另一种可能的实现方式中,波束指示信息用于网络设备在终端设备发生波束失败之后第一次向终端设备指示公共波束;网络设备还包括处理单元;
在终端设备完成波束失败恢复之后,波束指示信息指示的公共波束生效之前,处理单元用于:
采用终端设备在波束失败恢复过程中向网络设备上报的波束进行传输。
另一种可能的实现方式中,波束指示信息用于网络设备在终端设备初始接入之后第一次向终端设备指示公共波束;网络设备还包括处理单元;
在终端设备初始接入之后,网络设备发送波束激活信息之前,处理单元用于:
采用初始接入时采用的SSB波束进行传输;
在网络设备发送波束激活信息之后,波束指示信息指示的公共波束生效之前,处理单元还用于:
采用波束激活信息激活的第一个公共波束或最后一个公共波束进行传输;或者,
采用波束激活信息激活的公共波束中公共波束指示字段值最大或最小的公共波束进行传输。
另一种可能的实现方式中,波束指示信息通过第一DCI携带,第一DCI还调度第一PDSCH数据;网络设备还包括处理单元;处理单元还用于:
若网络设备发送第一PDSCH数据的时刻早于第一DCI指示的公共波束生效的时刻,采用第三公共波束向网络设备发送第一PDSCH数据;
第三公共波束包括以下任一项:
若网络设备在终端设备初始接入之后或完成波束失败恢复之后,第一次向终端设备指示的公共波束已经生效,第三公共波束为当前使用的公共波束,或者为最近一次生效或指示的公共波束;
若网络设备在终端设备初始接入之后,第一次向终端设备指示的公共波束未生效,第三公共波束为初始接入时终端设备采用的SSB波束;
若网络设备在终端设备完成波束失败恢复之后,第一次向终端设备指示的公共波束未生效,第三公共波束为波束失败恢复时终端设备上报给网络设备的波束。
另一种可能的实现方式中,若网络设备发送第一DCI调度的第一PDSCH数据的时刻与网络设备发送第一DCI的时刻之间的时间间隔大于或等于预设门限值,且网络设备发送第 一PDSCH数据的时刻早于第一DCI指示的公共波束生效的时刻,第三公共波束还包括第一DCI指示的公共波束。
另一种可能的实现方式中,发送单元还用于:
向终端设备发送第二DCI;
网络设备还包括处理单元,处理单元用于:
若网络设备发送第二DCI调度的第二PDSCH数据的时刻与网络设备发送第二DCI的时刻之间的时间间隔小于预设门限值,采用第四公共波束向终端设备发送第二PDSCH数据;
第四公共波束包括以下任一项:
若网络设备在终端设备初始接入之后或完成波束失败恢复之后,第一次向终端设备指示的公共波束已经生效,第四公共波束为当前使用的公共波束,或者为最近一次生效或指示的公共波束;
若网络设备在终端设备初始接入之后,第一次向终端设备指示的公共波束未生效,第四公共波束为终端设备初始接入时终端设备采用的SSB波束;
若网络设备在终端设备完成波束失败恢复之后,第一次向终端设备指示的公共波束未生效,第四公共波束为波束失败恢复时终端设备上报给网络设备的波束。
本申请第三十方面提供一种通信装置,该通信装置包括:处理器和存储器。该存储器中存储有计算机程序或计算机指令,该处理器用于调用并运行该存储器中存储的计算机程序或计算机指令,使得处理器实现如第一方面、第三方面、第五方面、第七方面、第九方面、第十一方面、第十三方面、第十五方面、第十六方面、第十八方面、第二十方面、第二十二方面、第二十四方面和第二十六方面中的任一方面中的任意一种实现方式。
可选的,该通信装置还包括收发器,该处理器用于控制该收发器收发信号。
本申请第三十一方面提供一种通信装置,该通信装置包括:处理器和存储器。该存储器中存储有计算机程序或计算机指令,该处理器用于调用并运行该存储器中存储的计算机程序或计算机指令,使得处理器实现如第二方面、第四方面、第六方面、第八方面、第十方面、第十二方面、第十四方面、第十七方面、第十九方面、第二十一方面、第二十三方面、第二十五方面和第二十七方面中的任一方面中的任意一种实现方式。
可选的,该通信装置还包括收发器,该处理器用于控制该收发器收发信号。
本申请第三十二方面提供一种包括指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得该计算机执行如第一方面至第二十七方面中的任一方面中的任一种的实现方式。
本申请第三十三方面提供一种计算机可读存储介质,包括计算机指令,当该指令在计算机上运行时,使得计算机执行如第一方面至第二十七方面中的任一方面中的任一种实现方式。
本申请第三十四方面提供一种芯片装置,包括处理器,用于调用该存储器中的计算机程序或计算机指令,以使得该处理器执行上述第一方面至第二十七方面中的任一方面中的任一种实现方式。
可选的,该处理器通过接口与该存储器耦合。
本申请三十五方面提供一种通信系统,该通信系统包括如第二十八方面的终端设备和如第二十九方面的通信装置。
附图说明
图1为本申请实施例波束管理方法适用的无线通信系统的一个示意图;
图2为本申请实施例波束管理适用的无线通信系统的另一个示意图;
图3为本申请实施例波束管理方法适用的用于激活传输配置编号(transmission configuration index,TCI)的媒体接入控制控制元素(medium access control-control element,MAC CE)结构的一个示意图;
图4为本申请实施例波束管理方法适用的用于波束指示的方法的一示例图;
图5示出了本申请实施例波束管理方法的一个实施例示意图;
图6为本申请实施例波束管理方法提供的一种MAC CE结构示意图;
图7为本申请实施例波束管理方法的另一个实施例示意图;
图8为本申请实施例波束管理方法的另一个实施例示意图;
图9为本申请实施例波束管理方法的另一个实施例示意图;
图10为本申请实施例波束管理方法的另一个实施例示意图;
图11为本申请实施例波束管理方法的另一个实施例示意图;
图12为本申请实施例波束管理方法的另一个实施例示意图;
图13为本申请实施例波束管理方法的另一个实施例示意图;
图14为本申请实施例波束管理方法的另一个实施例示意图;
图15为本申请实施例波束管理方法的另一个实施例示意图;
图16A为本申请实施例波束管理方法的另一个实施例示意图;
图16B为本申请实施例波束管理方法的一个场景示意图;
图17A为本申请实施例波束管理方法的另一个实施例示意图;
图17B为本申请实施例波束管理方法的另一个场景示意图;
图18为本申请实施例通信装置的一个结构示意图;
图19为本申请实施例通信装置的另一个结构示意图;
图20为本申请实施例通信装置的另一个结构示意图;
图21为本申请实施例通信装置的另一个结构示意图;
图22为本申请实施例通信装置的另一个结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或新无线(new radio,NR)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)等。
为便于理解本申请实施例,首先结合图1和图2详细说明适用于本申请实施例的通信系统。
图1是适用于本申请实施例的无线通信系统100的一示意图。如图1所示,该无线通信系统100可以包括至少一个网络设备,例如图1所示的网络设备111,该无线通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备121与终端设备122。网络设备和终端设备均可配置多个天线,网络设备与终端设备可使用多天线技术通信。
图2是适用于本申请实施例的无线通信系统200的一示意图。如图2所示,该无线通信系统200可以包括至少一个网络设备,例如图2所示的网络设备211、212、213,该无线通信系统200还可以包括至少一个终端设备,例如图2所示的终端设备221。网络设备和终端设备均可配置多个天线,网络设备与终端设备可使用多天线技术通信。
还应理解,该无线通信系统中的网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,简称AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
还应理解,该无线通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control) 中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
为便于理解本申请实施例,下面首先对本申请中涉及的几个术语做简单介绍。
1、波束
波束在NR协议中的体现可以是空域滤波器(spatial domain filter),或者称为空间滤波器(spatial filter),或者称为空域参数(spatial domain parameter),空间参数(spatial parameter),空域设置(spatial domain setting),空间设置(spatial setting),或准共址(quasi-colocation,QCL)信息,QCL假设,QCL指示等。波束可以通过传输TCI-state参数来指示,或者通过spatial relation参数来指示。因此,本申请中,波束可以替换为空域滤波器,空间滤波器,空域参数,空间参数,空域设置,空间设置,QCL信息,QCL假设,QCL指示,TCI-state(包括上行TCI-state,下行TCI-state),空间关系等。上述术语之间也相互等效。波束也可以替换为其他表示波束的术语,本申请在此不作限定。
用于发送信号的波束可以称为发送波束(transmission beam,Tx beam),也可以称为空域发送滤波器(spatial domain transmission filter),空间发送滤波器(spatial transmission filter),空域发送参数(spatial domain transmission parameter)或者空间发送参数(spatial transmission parameter),空域发送设置(spatial domain transmission setting)或者空间发送设置(spatial transmission setting)。下行发送波束可以通过TCI-state来指示。
用于接收信号的波束可以称为接收波束(reception beam,Rx beam),也可以称为空域接收滤波器(spatial domain reception filter),空间接收滤波器(spatial reception filter),空域接收参数(spatial domain reception parameter)或者空间接收参数(spatial reception parameter),空域接收设置(spatial domain reception setting)或者空间接收设置(spatial reception setting)。上行发送波束可以通过空间关系,或者上行TCI-state,或者SRS资源(表示使用该SRS的发送波束)来指示。因此,上行波束还可以替换为SRS资源。
发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
此外,波束可以是宽波束,或者窄波束,或者其他类型的波束。形成波束的技术可以是波束赋形技术或者其他技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术、混合数字波束赋形技术、或者混合模拟波束赋形技术等。
波束一般和资源对应,例如进行波束测量时,网络设备通过不同的资源来测量不同的波束,终端设备反馈测得的资源质量,网络设备就知道对应的波束的质量。当数据传输时,波束信息也是通过其对应的资源来进行指示的。例如,网络设备通过DCI中的TCI字段,来指示终端设备物理下行共享信道(physical downlink sharing channel,PDSCH)波束的信 息。
在可能实现的一种方式中,将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或者多个天线端口,用于传输数据信道、控制信道和探测信号等。形成一个波束的一个或者多个天线端口也可以看作是一个天线端口集。
2、TCI-state(用于指示下行波束)
网络设备可以生成不同的波束,指向不同的传输方向。在下行数据传输中,当网络设备使用一个特定的波束向终端设备发送数据时,需要通知终端设备其使用的发送波束的信息,由此,终端设备才能使用与该发送波束相对应的接收波束来接收网络设备发送的数据。在3GPP R15协议或3GPP R16协议中,网络设备通过DCI中的TCI字段向终端设备指示其使用的发送波束的相关信息。具体的,TCI字段大小为3比特,可以具体表示8个不同的字段值(codepoint)。TCI字段的每个值对应一个TCI-state的索引,一个TCI-state索引可以唯一标识一个TCI-state。一个TCI-state包括若干参数,通过这些参数可以确定发送波束的相关信息。TCI-state是由网络设备配置给各个终端设备的,TCI-state的结构如下所示:
Figure PCTCN2021071810-appb-000001
每个TCI-state包括一个自身的索引tci-StateId,和两个QCL-Info。每个QCL-Info包括一个小区(cell)字段和bwp-Id,分别表示该TCI-state应用于哪个cell的哪个带宽部分(bandwidth part,BWP),即不同cell或相同cell的不同BWP可以配置不同的QCL-Info。QCL-Info还包括一个参考信号(referenceSignal),用于表示与哪个参考信号资源构成准同位(quasi-co-location,QCL)关系。在R15/R16协议中,波束一般是通过其他术语进行代替的。例如,在数据传输和信道测量中,波束都是与参考信号资源对应的,一个波束对应一个参考信号资源。因此,此处表示与哪个参考信号资源构成QCL关系,实质是指与 哪个波束构成QCL关系。QCL关系是指两个参考信号资源(或两个天线端口,天线端口和参考信号资源也是一一对应的)具有某些相同的空间参数,具体哪些空间参数相同取决于该QCL-Info的类型,即QCL-Info的另一个字段qcl-Type。qcl-Type可以有四种取值{typeA,typeB,typeC,typeD}。以typeD为例,typeD表示两个参考信号资源具有相同的空间接收参数信息,即两个波束具有相同的接收波束。TCI-state包括的两个QCL-Info中最多只能有一个是TypeD。
下面以一个示例来具体阐述,基于R15协议或R16协议网络设备是如何通过TCI-state来向一个终端设备指示数据传输波束的接收波束信息的,包括TCI-state的配置,激活和指示。
传输配置编号状态(transmission configuration indexstate,TCI-state)配置:网络设备通过无线资源控制(radio resource control,RRC)信令向终端设备配置多个TCI-state。这些TCI-state均包括一个类型为typeD的QCL-Info。网络设备也可以配置不包括类型为typeD的QCL-info的TCI-state,不过这些TCI-state不是用于数据传输波束的指示,故此处不进一步阐述。
TCI-state激活:网络设备配置多个TCI-state后,还需要通过MAC-CE激活其中8个TCI-state。这8个TCI-state与DCI中的TCI字段的8个值是一一对应的。即,DCI的TCI字段的8个值对应的是哪8个TCI-state,是通过介质访问控制层MAC控制单元CE信令来确定的。图3适用于本申请实施例的用于激活TCI的MAC CE的一种结构示意图。如图3所示,其中字段T0至T(N-2)*8+07分别对应第一步配置的索引分别为0至(N-2)*8+7的各个TCI-state,每个字段的大小为1比特,值可以是0或1。取值为1表示激活该TCI-state,取值为0表示不激活该TCI-state。每个MAC CE理论上可以有8个取值为1的激活字段,其余全为0。这8个取值为1的字段对应的TCI-state即为DCI中TCI字段的8个值对应的8个TCI-state。例如,TCI字段的最小值000对应MAC CE中激活的索引最小的TCI-state,以此类推,一一对应。MACCE的类型有很多,除了用于TCI-state激活的MACCE,还有许多其他用途的MACCE。本申请只涉及用于TCI-state/TCI-state组合激活的MACCE。因此,若无特别说明,本申请所述的MACCE均指这类MACCE。
TCI-state指示:网络设备通过DCI中的TCI字段来指示一个具体的TCI-state。例如,网络设备发送给终端设备的DCI中的TCI字段的值为000,表示数据传输波束采用的000对应的那个TCI-state。该TCI-state内的类型为typeD的那个QCL-Info所包含的referenceSignal是索引为#1的信道状态信息-参考信号(channel state information–reference signal,CSI-RS),表示数据传输采用的波束与索引为#1的CSI-RS对应的接收波束是相同的。索引为#1的CSI-RS对应的接收波束可通过波束测量流程来确定,对终端设备来说是已知的。因此,通过TCI字段的具体取值,终端设备就可以确定数据传输波束对应的接收波束,从而采用相应的接收波束来接收数据。
3、spatial relation(用于指示上行波束)
在当前协议中,上行传输的发送波束通过spatial relation来指示,其功能类似于TCI-state,用于告知终端设备采用什么发送波束来进行上行传输。
Spatial relation也需要先通过RRC进行配置。其配置结构如下所示:
Figure PCTCN2021071810-appb-000002
包括spatial relation的标识,小区标识,目标参考信号资源,路损测量参考信号,功控参数等。其中,目标参考信号资源(可以是SRS、SSB、以及CSI-RS中任一个)用于指示对应的上行波束。如果上行传输采用spatial relation#1,该spatial relation#1中包括一个目标参考信号资源#2,则表示采用该上行传输的发送波束是该目标参考信号的发送波束或接收波束。例如,目标参考信号资源为上行资源SRS时,表示上行传输采用的发送波束是该SRS的发送波束(该SRS的发送波束是已知的)。又例如,目标参考信号资源为SSB、或CSI-RS等下行资源,表示上行传输采用的发送波束是该SSB的接收波束或CSI-RS的接收波束(该SSB的接收波束或CSI-RS的接收波束是已知的)。
网络设备可以为终端设备配置多个spatial relation。然后通过MAC CE激活其中的一个用于对应的数据传输。上行传输包括物理上行控制信道(physical uplink control channel,PUCCH),探测参考信号(sounding reference signal,SRS),物理上行共享信道(physical uplink sharing channel,PUSCH)等,都需要对应的spatial relation。PUCCH的spatial relation是通过MACCE信令指示的。SRS的spatial relation也是通过MACCE信令指示的。PUSCH传输时会关联特定的SRS,并采用该SRS的spatial relation进行传输。
4、panel
Panel是指天线面板,可以是网络设备的天线面板,也可以是终端设备的天线面板。一个天线面板上一般有一个或多个天线,这些天线排列成天线阵列,进行波束赋形,从而形成模拟波束。该天线阵列可以生成指向不同方向的模拟波束。也就是说每个天线面板上都可以形成多个模拟波束,可以通过波束测量来确定该天线面板采用哪个模拟波束是最好的。终端设备可以配备多个天线面板,这些天线面板可以分布在不同的位置,朝向不同的方向,这可以保证无论终端设备朝向哪个方向,都至少有一个天线面板是朝向网络设备的, 可以与网络设备进行数据传输。终端设备可以同时开启所有天线面板进行传输。或者,为了降低终端设备功耗,终端设备也可以一次只采用单个天线面板进行传输,其他未使用的天线面板可以进行关闭。终端设备的天线面板处于打开还是关闭状态一般需要通知给网络设备,也就是说,终端设备和网络设备之间一般需要交互天线面板的状态信息。
在本申请实施例中,若未做出特别说明,天线面板均值终端设备的天线面板。天线面板也可以用panel index等来表示。除此之外,也可以通过其他方式来隐含表示天线面板,例如天线面板也可以通过天线端口(如CSI-RS端口,SRS端口,解调参考信号(demodulation reference signal,DMRS)端口,相位跟踪参考信号(phase tracking reference signal,PTRS)端口,CRS端口,时频跟踪参考信号(tracking reference signal,TRS)端口,SSB端口等)或天线端口组来表征,也可以通过资源(如CSI-RS资源,SRS资源,DMRS资源,PTRS资源,小区参考信号(cell reference signal,CRS)资源,时频跟踪参考信号(tracking reference signal,TRS)资源,SSB资源等)或资源组来表征,也可以通过某个信道表征(如PUCCH,PUSCH,物理随机接入信道(physical random access channel,PRACH),物理下行控制信道(physical downlink sharing channel,PDSCH),物理下行控制信道(physical downlink control channel,PDCCH),物理广播信道(physical broadcast channel,PBCH)等),也可以通过波束,QCL,TCI-state,spatial relation或配置在QCL,TCI-state,spatial relation中的某个index来表征。也可以通过波束组,QCL组,TCI-state组,spatial relation组等来表征。也就是说,本申请中所述的天线面板/panel标识可以换未上述内容的标识。
本申请实施例中,网络设备是一种部署在无线接入网中为终端设备提供无线通信功能的装置。网络设备可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,网络设备的名称可能会有所不同,例如,全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(base transceiver station,BTS),宽带码分多址(wideband code division multiple access,WCDMA)中的节点B(NodeB,NB),长期演进(long term evolution,LTE)中的eNB或eNodeB(evolutional NodeB)。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。网络设备还可以是未来5G网络中的基站设备或者未来演进的公用陆地移动网(public land mobile metwork,PLMN)网络中的网络设备。网络设备还可以是可穿戴设备或车载设备。网络设备还可以传输接收节点(transmission and reception point,TRP)。
本申请实施例中,所涉及到的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。终端可以是移动站(mobile station,MS)、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端等。
5、公共波束
在现有技术中,每个信道都采用单独的波束指示。例如,PDCCH和PDSCH的波束通过TCI-state来指示,PUCCH和PUSCH的波束通过spatial relation来指示。每个信道都有自己对应的波束。在本申请中,定义一种公共波束,同时用于上行和下行的多个信道。
公共波束:多个信道、多种信道、多个参考信号、和/或、多种参考信号共同采用的同一个波束。多个信道或多种信道包括但不限于以下信道中的至少一种:PDCCH、PDSCH、PUCCH、PUSCH、PRACH。参考信号包括但不限于以下信号中的至少一种:SSB、CSI-RS、DMRS、相位跟踪参考信号(phase tracking reference signal,PTRS)、TRS、SRS等。
例如,公共波束具体可以分为以下三个类别。
联合(joint)公共波束:同时用于上行和下行的一个或多个信道或一个或多个参考信号的传输,如PDCCH,PDSCH,PUCCH和PUSCH。
上行公共波束:同时用于上行的多个信道的传输,和/或,同时用于上行的多种信道的传输,和/或,同时用于上行的一个或多个参考信号的传输。例如,PUCCH、PUSCH和SRS。
下行公共波束:同时用于下行的多个信道的传输,和/或,同时用于下行的多种信道的传输,和/或,同时用于下行的一个或多个参考信号的传输。例如PDCCH、PDSCH和CSI-RS。
若无特别说明,后续提到的公共波束可以指其中任意一种。
或者,公共波束可以分为以下两个类别:
联合公共波束:同时用于上行传输和下行传输。例如,同时用于上行的一个或多个信道或参考信号的传输,以及同时用于下行的一个或多个信道或参考信号的传输。例如,PDCCH,PDSCH,PUCCH和PUSCH。
独立(seperate)公共波束:将上行公共波束和下行公共波束合并为一个类型的公共波束,称为独立公共波束。例如,独立公共波束可以为上行公共波束或下行公共波束。
若无特别说明,后续提到的公共波束可以指其中任意一种。
公共波束数量
网络设备可以为终端设备配置、激活、以及指示一个公共波束,所述一个公共波束为联合公共波束。网络设备可以为终端设备配置、激活、以及指示多个公共波束,所述多个公共波束为不同类型的公共波束,例如上行公共波束和下行公共波束,或控制信道公共波束和数据信道公共波束。所述多个公共波束也可以同一类型的公共波束,即可以为终端设备配置、激活、以及指示多个同一类型的公共波束。
公共波束的形式
公共波束可以是一种新定义的结构(不同于现有的TCI-state和spatial relation的结构)。例如,公共波束中包括波束指示的相关信息,包括但不限于以下一种或多种:公共波束ID,逻辑小区ID(cell ID),物理小区ID,频率分量ID(bandwidth part,BWP)确定波束的参考信号资源,准同位(Quasi colocation,QCL)类型,上行功控相关参数(如路损测量参考信号资源,p0,closedLoopIndex等)。
公共波束的应用范围
公共波束可以是小区级的,即一个共公波束用于一个小区内多个信道的传输。公共波束可以是BWP级的,用于一个BWP内多个波束的传输。公共波束也可以是跨小区的,即用 于多个小区的多个信道的传输。所述多个小区可以是一个频段(band)内的多个小区。所述多个小区也可以是跨频段的多个小区。所述公共波束可以是控制资源集(control-resource set,CORESET)级的,即该CORESET对应的所有PDCCH,和/或,该CORESET的PDCCH调度的所有PDSCH,和/或,该CORESET的PDCCH调度的所有PUSCH,和/或,该CORESET的PDCCH调度的PDSCH的ACK/NACK传输的PUCCH/PUSCH都采用同一个公共波束。
公共波束也采用TCI-state或spatial relation来表示。例如,下行公共波束通过TCI-state来表示。上行公共波束通过spatial relation来表示。
也就是说,本申请中的公共波束在协议中的体现形式可以是TCI-state或spatial relation,或者其他用于指示上行传输波束的参数,或者其他用于指示下行传输波束的参数。
相对于公共波束,3GPP R15协议和3GPP R16协议中定义的波束,如TCI-state,spatial relation,spatial filter,被称为普通波束。普通波束用于单个信道的传输,不同同时用于多个信道或多个参考信号的传输。网络设备需要为各个信道单独指示一个普通波束来进行传输。
图4是适用于本申请实施例的用于波束指示的方法的示例图。如图4所示,网络设备通过不同的信令为PDCCH,PDSCH,PUCCH,PUSCH分别指示波束。由于每种信道都采用不同的信令,导致较大的信令开销。然而,通常情况下,多个不同的信道对应的波束往往是同一个,没必要分开进行单独指示,浪费信令开销。
请参阅图5,图5为本申请实施例波束管理方法的一个实施例示意图。在图5中,波束管理方法包括:
501、网络设备向终端设备发送波束配置信息。相应的,终端设备接收来自网络设备的波束配置信息。
其中,波束配置信息包括一个或多个公共波束的配置信息。
具体的,网络设备可以通过无线资源控制(radioresourcecontrol,RRC)向终端设备发送波束配置信息。波束配置信息包括一个或多个公共波束的配置参数。波束配置信息包括的一个或多个公共波束的配置参数可以通过一个或多个RRC向终端设备下发。
该一个或多个公共波束的波束类型请参阅前文对公共波束的类别的相关介绍。
502、网络设备向终端设备发送波束激活信息。相应的,终端设备接收来自网络设备的波束激活信息。
其中,波束激活信息用于激活一个或多个公共波束的部分公共波束。
具体的,网络设备通过MAC CE向终端设备波束激活信息,以用于激活一组公共波束。该一组公共波束为上述步骤501中的一个或多个公共波束中的公共波束。该一组公共波束包括一个或多个公共波束。
例如,MAC CE包括该一组公共波束包括的一个或多个公共波束分别对应的波束索引。或者,MAC CE包括比特位图,该比特位图用于标识该一组公共波束。
503、网络设备向终端设备发送波束指示信息。相应的,终端设备接收来自网络设备的波束指示信息。
其中,波束指示信息用于指示该部分公共波束中的一个或多个公共波束。
具体的,网络设备通过第一DCI向终端设备发送波束指示信息。第一DCI用于指示MAC C激活的一组公共波束中的一个或多个公共波束。
终端设备采用波束指示信息指示的公共波束进行传输。如果波束指示信息指示的是下行公共波束,则终端设备将该波束指示信息指示的公共波束作为下行信道或下行参考信号的波束。如果波束指示信息指示的是上行公共波束,则终端设备将该波束指示信息指示的公共波束作为上行信道或上行参考信号的波束。如果波束指示信息指示的是联合公共波束,则终端设备将该波束指示信息指示的公共波束作为上行信道、上行参考信号、下行信道和下行参考信号的波束。
上述图5所示的实施例中,网络设备通过波束配置信息为终端设备配置一个或多个公共波束。网络设备通过波束激活信息为终端设备激活该一个或多个公共波束中的部分公共波束。然后,网络设备通过波束指示信息为终端设备指示该部分公共波束中的一个或多个公共波束。由于公共波束是多个信道或多个信号共同采用的同一个波束,因此可以统一为多个信道或多个信号指示相应的波束。上述图5所示的实施例实现了高效地进行波束指示,避免复杂的指示指令,节省额外的开销。
本申请提供实施一,下面介绍图6介绍本申请提供的实施例一的技术方案。
请参阅图6,图6为本申请实施例波束管理方法的另一个实施例示意图。在图6中,该波束管理方法包括:
601、网络设备向终端设备发送波束配置信息。相应的,终端设备接收来自网络设备的波束配置信息。
步骤601与前述图5所示的实施例中的步骤501类似,具体请参阅前述图5所示的实施例中的步骤501的相关介绍,这里不再赘述。
在一些可能的实现方式中,波束配置信息为终端设备配置的一个或多个公共波束包括第一公共波束。波束配置信息包括第一公共波束的配置参数。若第一公共波束的配置参数包括第一参数且不包括第二参数,第一公共波束为上行公共波束;若第一公共波束的配置参数包括第二参数且不包括第一参数,第一公共波束为下行公共波束;若第一公共波束的配置参数包括第一参数和第二参数,第一公共波束为联合公共波束。
其中,第一参数包括以下至少一项:用于确定上行发送波束的参考信号资源,空间关系信息、上行功率控制参数、信道探测参考信号资源、spatial relation参数、第一QCL信息。第一QCL信息包括typeE或typeF的QCL信息。
其中,第二参数包括以下至少一项:第二QCL信息、带宽分量BWP参数。第二QCL信息包括typeA、typeB、typeC和typeD中的任一种的QCL信息。
例如,上行功率控制参数包括路径损耗测量资源、p0参数、闭环索引(closeloop index)等。BWP参数包括BWP ID。
在一些可能的实现方式中,波束配置信息包括一个或多个公共波束集合。该一个或多个公共波束集合分别包括的公共波束的波束类型不相同。例如,若波束配置信息包括一个公共波束集合,则该公共波束集合包括的公共波束的波束类型为联合公共波束。若波束配 置信息包括两个公共波束集合,则该两个公共波束集合中一个公共波束集合包括的公共波束为上行公共波束,另外一个公共波束集合包括的公共波束为下行公共波束。若波束配置信息包括三个公共波束集合,则该三个公共波束集合中一个公共波束集合包括的波束类型为联合公共波束,一个公共波束集合包括的波束类型为上行公共波束,还有一个公共波束集合包括的波束类型为下行公共波束。
可选的,本实施例还包括步骤601a。步骤601a在步骤601之后执行。
步骤601a:终端设备根据波束配置信息确定网络设备为终端设备配置的一个或多个公共波束的波束类型。
下面示出终端设备确定网络设备为终端设备配置的一个或多个公共波束的波束类型的两种可能的实现方式。对于其他可能的确定方式,本申请仍适用,下述两种可能的确定方式并不属于对本申请的技术方案的限定。
1、终端设备根据波束配置信息包括一个或多个公共波束的配置参数确定一个或多个公共波束的波束类型。
具体的,波束配置信息包括该一个或多个公共波束分别对应的配置参数。终端设备通过一个或多个公共波束中每个公共波束的配置参数是否包括第一参数和第二参数来确定每个公共波束的波束类型。如果该公共波束的配置参数包括第一参数且不包括第二参数,则该公共波束为上行公共波束。如果该公共波束的配置参数包括第二参数且不包括第一参数,则该公共波束为下行公共波束。如果该公共波束的配置参数包括第一参数和第二参数,则该公共波束为联合公共波束。
在一些可能的实现方式中,波束配置信息包括一个或多个公共波束集合。该一个或多个公共波束集合分别包括的公共波束的波束类型不相同。例如,若波束配置信息包括一个公共波束集合,则该公共波束集合包括的公共波束的波束类型为联合公共波束。若波束配置信息包括两个公共波束集合,则该两个公共波束集合中一个公共波束集合包括的公共波束为上行公共波束,另外一个公共波束集合包括的公共波束为下行公共波束。若波束配置信息包括三个公共波束集合,则该三个公共波束集合中一个公共波束集合包括的波束类型为联合公共波束,一个公共波束集合包括的波束类型为上行公共波束,还有一个公共波束集合包括的波束类型为下行公共波束。
2、终端设备根据波束配置信息包括的公共波束集合的数量确定网络设备为终端设备配置的一个或多个公共波束的波束类型。
具体的,终端设备根据波束配置信息中包括的公共波束集合的数量来确定各个公共波束集合中包括的公共波束的波束类型。
例如,如果波束配置信息包括一个公共波束集合,则该公共波束集合中包括的公共波束的波束类型为联合公共波束。
例如,如果波束配置信息包括两个公共波束集合,则这两个公共波束集合中分别包括的公共波束的波束类型分别为上行公共波束和下行公共波束。具体的,该两个公共波束集合中第一个公共波束集合中的公共波束为上行公共波束,该两个公共波束集合中第二个公共波束集合中的公共波束为下行公共波束。或者,该两个公共波束集合中第一个公共波束 集合中的公共波束为下行公共波束,该两个公共波束集合中第二个公共波束集合中的公共波束为上行公共波束。
例如,如果波束配置信息包括三个公共波束集合,那么该三个公共波束集合中第一个公共波束集合包括的公共波束的波束类型为联合公共波束,另外两个公共波束集合包括的公共波束的波束类型分别为上行公共波束和下行公共波束。具体的,第二个公共波束集合中的公共波束为上行公共波束,第三个公共波束集合中的公共波束为下行公共波束。或者,第二个公共波束集合中的公共波束为下行公共波束,第三个公共波束集合中的公共波束为上行公共波束。
或者,如果波束配置信息包括三个公共波束集合,那么第三个公共波束集合包括的公共波束的波束类型为联合公共波束,前两个公共波束集合包括的公共波束的波束类型分别为上行公共波束和下行公共波束。具体的,第一个公共波束集合中的公共波束为上行公共波束,第二个公共波束集合中的公共波束为下行公共波束。或者,第一个公共波束集合中的公共波束为下行公共波束,第二个公共波束集合中的公共波束为上行公共波束。
602、网络设备向终端设备发送波束激活信息。相应的,终端设备接收来自网络设备的波束激活信息。
步骤602与前述图5所示的实施例中的步骤502类似,具体请参阅前述图5所示的实施例中的步骤502的相关介绍,这里不再赘述。
可选的,基于上述步骤601,终端设备可以确定网络设备为终端设备激活的公共波束的波束类型。
603、网络设备向终端设备发送波束指示信息。相应的,终端设备接收来自网络设备的波束指示信息。
步骤603与前述图5所示的实施例中的步骤503类似,具体请参阅前述图5所示的实施例中的步骤503的相关介绍,这里不再赘述。
可选的,基于上述步骤601,终端设备可以确定网络设备向终端指示的公共波束的波束类型。
上述实施例一的技术方案中,在网络设备对终端设备的公共波束管理过程中,终端设备可以根据波束配置信息确定该一个或多个公共波束的波束类型。具体终端设备可以根据波束配置信息包括的配置参数或公共波束集合的数量确定该一个或多个公共波束的波束类型。无需通过其他信息或字段指示一个或多个公共波束的波束类型,减少网络资源的开销。例如,信令开销、指示比特开销。
需要说明的是,上述实施例一仅仅是一种示例,本申请实施例的公共波束的波束类型也可以通过其他形式表征,具体本申请不做限定。
本申请提供实施二,该实施例二包括上述图5所示的实施例中的步骤501至步骤503。
在实施例二的步骤501中,网络设备为终端设备配置的一个或多个公共波束包括以下任一种:用于上行传输或下行传输的独立公共波束、用于上行传输和下行传输的联合公共波束。
本实施例中,网络设备为终端设备配置独立公共波束或联合公共波束。对于终端设备 来说,终端设备不期望同时被配置独立公共波束和联合公共波束。即独立公共波束和联合公共波束不能同时被配置。
那么在实施例二的步骤502和步骤503中,终端设备可以确定网络设备激活的部分公共波束的波束类型,以及网络设备指示的公共波束的波束类型。例如,步骤501中,该一个或多个公共波束包括联合公共波束。那么,终端设备可以确定网络设备激活的公共波束为联合公共波束,确定网络设备指示的公共波束为联合公共波束。
上述实施例二的技术方案中,限定了网络设备为终端设备配置的公共波束的波束类型。对于终端设备来说,不能同时被配置独立公共波束和联合公共波束。由于联合公共波束可以同时用于上行传输和下行传输,因此如果网络设备为终端设备配置了联合公共波束,则没有必要再为终端设备配置独立公共波束,从而避免波束资源的浪费,提高波束资源的利用率。由于独立公共波束可以用于上行传输或下行传输,因此如果网络设备为终端设备配置了独立公共波束,则没有必要再为终端设备配置联合公共波束,从而避免波束资源的浪费,提高波束资源的利用率。
本申请提供实施例三,该实施例三包括上述步骤501至步骤503。
在实施例三的步骤501中,网络设备可以通过公共波束集合的方式为终端设备配置各种波束类型的公共波束。下面示出三种可能的实现方式。需要说明的是,下述三种可能的实现方式仅仅是一种示例,对于其他可能的实现方式同样适用于本申请实施例的技术方案。
配置方式一:波束配置信息包括第一公共波束集合、第二公共波束集合和第三公共波束集合。第一公共波束集合包括联合公共波束。第二公共波束集合包括上行公共波束。第三公共波束集合包括下行公共波束。
在方式一中,终端设备可以通过公共波束集合区分公共波束的波束类型。具体的,在步骤501之后,终端设备根据波束配置信息包括的公共波束集合确定网络设备为终端设备配置的一个或多个公共波束分别对应的波束类型。
不同公共波束集合包括的公共波束可以通过波束索引表示。下面示出两种可能的实现方式。
实现方式1、网络设备通过全局波束索引分别表示第一公共波束集合包括的公共波束、第二公共波束集合包括的公共波束和第三公共波束集合包括的公共波束。不同公共波束集合内的公共波束的波束索引不相同。
例如,第一公共波束集合包括两个联合公共波束,分别对应的波束索引为{#0,#2}。第二公共波束集合包括三个上行公共波束,分别对应的波束索引为{#1,#3,#5}。第三公共波束集合包括两个下行公共波束,分别对应波束索引为{#4,#6}。
在步骤501之后,终端设备根据波束配置信息包括的一个或多个公共波束的波束索引确定该一个或多个公共波束分别对应的波束类型。在步骤502之后,终端设备根据波束激活信息激活的部分公共波束的波束索引确定该部分公共波束的波束类型。在步骤503之后,终端设备根据波束指示信息指示的一个或多个公共波束的波束索引确定波束指示信息指示的一个或多个公共波束分别对应的波束类型。
实现方式2、网络设备通过局部波束索引分别表示第一公共波束集合包括的公共波束、 第二公共波束集合包括的公共波束和第三公共波束集合包括的公共波束。不同公共波束集合内的公共波束的波束索引可以相同。
例如,第一公共波束集合包括两个联合公共波束,分别对应的波束索引为{#0,#1}。第二公共波束集合包括三个上行公共波束,分别对应的波束索引为{#0,#1,#3}。第三公共波束集合包括两个下行公共波束,分别对应的波束索引为{#0,#1}。
配置方式二:波束配置信息包括第四公共波束集合和第五公共波束集合。第四公共波束集合包括联合公共波束集合。第五公共波束集合包括独立公共波束。也就是说上行公共波束和下行公共波束包含在第五公共波束集合。
在方式二中,终端设备可以通过公共波束集合区分公共波束的波束类型。具体的,在步骤501之后,终端设备根据波束配置信息包括的公共波束集合确定网络设备为终端设备配置的一个或多个公共波束分别对应的波束类型。
不同公共波束集合包括的公共波束可以通过波束索引表示。下面示出两种可能的实现方式。
实现方式1、网络设备通过全局波束索引分别表示第四公共波束集合包括的公共波束和第五公共波束集合包括的公共波束。不同公共波束集合内的公共波束的波束索引不相同。
例如,第四公共波束集合包括两个联合公共波束,分别对应的波束索引分别为{#0,#2}。第五公共波束集合包括四个公共波束(包括上行公共波束和下行公共波束),分别对应的波束索引分别为{#1,#3,#4,#5}。
在步骤501之后,终端设备根据波束配置信息包括的一个或多个公共波束的波束索引确定该一个或多个公共波束分别对应的波束类型。在步骤502之后,终端设备根据波束激活信息激活的部分公共波束的波束索引确定该部分公共波束的波束类型。在步骤503之后,终端设备根据波束指示信息指示的一个或多个公共波束的波束索引确定波束指示信息指示的一个或多个公共波束分别对应的波束类型。
实现方式2、网络设备通过局部波束索引分别表示第四公共波束集合包括的公共波束和第五公共波束集合包括的公共波束。不同公共波束集合内的公共波束的波束索引可以相同。
例如,第四公共波束包括两个联合公共波束,分别对应的波束索引分别为{#0,#2}。第五公共波束集合包括四个公共波束(包括上行公共波束和下行公共波束),分别对应的波束索引分别为{#0,#1,#2,#3}。
配置方式三:波束配置信息包括第六公共波束集合,第六公共波束集合包括上行公共波束、下行公共波束和联合公共波束。
在上述实施例三的技术方案中,提供了网络设备为终端设备配置各种类型的公共波束的三种可能的配置方式。即网络设备通过公共波束集合的方式为终端设备配置各种波束类型的公共波束,为方案的实施提供基础。
本申请提供实施例四,实施例四包括上述图5的步骤501至步骤503。
实施例四的步骤502中,可选的,波束激活信息通过MAC CE携带。
一种可能的实现方式中,不同波束类型的公共波束通过不同的MAC CE激活。
在该可能的实现方式中,可选的,终端设备根据MAC CE中包含的公共波束的波束索引 确定该MAC CE激活的公共波束的波束类型。
例如,结合上述实施例三的配置方式一中的实现方式1,终端设备可以根据MACCE包括的公共波束的波束索引确定该MAC CE激活的公共波束的波束类型。例如,公共波束的波束索引为#0,那么终端设备可以确定该公共波束属于第一公共波束集合,即为联合公共波束。
例如,结合上述实施例三的配置方式二中的实现方式1,终端设备可以根据MAC CE包括的公共波束的波束索引确定该MAC CE激活的公共波束的波束类型。例如,公共波束的波束索引为#2,那么终端设备可以确定该公共波束属于第四公共波束集合,即为联合公共波束。例如,公共波束的波束索引为#1,那么终端设备可以确定该公共波束属于第五公共波束集合,即为独立公共波束。而具体该公共波束为上行公共波束还是下行公共波束,具体终端设备还应当结合其他相关字段或其他方式确定。
另一种可能的实现方式中,多种不同波束类型的公共波束通过同一个MAC CE激活。即一个MAC CE可以激活多种不同波束类型的公共波束。
例如,一个MAC CE用于激活一组上行公共波束和一组下行公共波束。下面结合图7示出一种可能的MAC CE的格式。
请参阅图7,图7为本申请实施例提供的MAC CE的一种可能的格式。在图7中,MAC CE中所有的TCI state ID i,1对应第一种波束类型的公共波束,所有的TCI state ID i,2对应第二种波束类型的公共波束。i为大于或等于0且小于或等于N的整数。
第一种波束类型为上行公共波束,第二种波束类型为下行公共波束。或者,第一种波束类型为下行公共波束,第一种波束类型为上行公共波束。
第一种波束类型和第二种波束类型具体可以是通信协议规定的,或者是网络设备通过RRC为终端设备配置的,或者是通过MAC CE的第一个比特(bit)指示的。
由图7可知,每个TCI state ID i,1前的C i字段(1比特),用于指示是否存在TCI state ID i,2
如果MAC CE激活了联合公共波束,激活的联合公共波束与DCI中的公共波束指示字段的各个字段值一一对应。
其中,DCI包括用于上行调度或下行调度的DCI。
本实施例中,联合公共波束只能与用于下行调度的DCI中的公共波束指示字段的字段值进行关联,即只能采用用于下行调度的DCI来指示联合公共波束。或者,联合公共波束只能与用于上行调度的DCI中的公共波束指示字段的字段值进行关联,即只能采用用于上行调度的DCI来指示联合公共波束。或者,联合公共波束可以与用于上行调度的DCI和用于下行调度的DCI中的公共波束指示字段的字段值进行关联,即可以采用用于上行调度的DCI或用于下行调度的DCI来指示联合公共波束。
如果MAC CE分别激活了上行公共波束和下行公共波束,激活的上行公共波束和下行公共波束分别映射到不同类型的DCI的公共波束指示字段值,即与不同类型的DCI中的公共波束字段值关联。
例如,激活的上行公共波束与用于上行调度的DCI中的公共波束指示字段关联,即激活的上行公共波束只能采用用于上行调度的DCI来指示。激活的下行公共波束与用于下行调度的DCI中的公共波束指示字段关联,即激活的下行公共波束只能采用用于下行调度的DCI来 指示。
上述实施例四的技术方案中,提供了通过MAC CE激活一种波束类型的公共波束的技术方案,以及提供了通过一个MAC CE激活多种波束类型的公共波束的技术方案。即提供了一些具体的公共波束激活方式。对于通过一个MAC CE激活多种波束类型的公共波束的技术方案,可以减少网络设备与终端设备用于激活公共波束的信令开销,实现高效地进行波束激活。
本申请提供实施例五。下面结合图8介绍本申请提供的实施例五的技术方案。
请参阅图8,图8为本申请实施例波束管理方法的另一个实施例示意图。在图8中,该波束管理方法包括:
801、网络设备向终端设备发送波束配置信息。相应的,终端设备接收来自网络设备的波束配置信息。
802、网络设备向终端设备发送波束激活信息。相应的,终端设备接收来自网络设备的波束激活信息。
803、网络设备向终端设备发送波束指示信息。相应的,终端设备接收来自网络设备的波束指示信息。
步骤801至步骤803与前述图5所示的实施例中的步骤501至步骤503的相关介绍,具体可以参阅前述图5所示的实施例中的步骤501至步骤502的相关介绍。
可选的,在步骤803中,波束指示信息通过第一DCI携带。下面示出两种表示终端设备成功接收第一DCI的实现方式。
第一种可能的实现方式:当满足第一条件时,且第一DCI对应的HARQ反馈结果为ACK,表示终端设备成功收到第一DCI,或者,表示第一DCI指示的一个或多个公共波束指示成功。
第一条件包括以下一项或多项的组合:
1、终端设备上报支持公共波束功能;
2、网络设备将终端设备的公共波束功能配置为开启状态;
3、第一DCI没有调度PDSCH;
4、第一DCI调度了PDSCH且终端设备采用动态HARQ-ACK码本进行HARQ反馈;
5、第一DCI指示的一个或多个公共波束与终端设备当前使用的公共波束不同。
在该实现方式中,终端设备成功接收第一DCI包括:终端设备接收来自网络设备的第一DCI并对第一DCI译码成功。
可选的,当满足第一条件,且第一DCI对应的HARQ反馈结果为ACK时,第一DCI指示的公共波束在第一时刻加上第一时间偏移后生效;或者,当满足第一条件,且第一DCI对应的HARQ反馈结果为ACK时,该第一DCI指示的公共波束在第一时刻加上第一时间偏移后的第一个时隙生效。
第一时刻为终端设备接收到第一DCI的时刻,或者为终端设备发送第一DCI对应的HARQ反馈结果的时刻,即终端设备反馈上述ACK的时刻。
第一DCI对应的HARQ反馈结果为针对第一DCI反馈的HARQ反馈结果或者针对第一DCI调度的PDSCH反馈的HARQ反馈结果。
第一时刻可以具体为某个时隙,或者为某个符号,或者为某一秒,或者为某一毫秒,具体本申请不做限定。第一时间偏移包括X个时间单元。X为大于或等于1的整数。可选的,时间单元包括一个时隙、一个时隙组,一个符号,一个符号组,或一毫秒。
其中,第一时间偏移为预设的时间偏移,或者为网络设备为终端设备配置的时间偏移,具体本申请不做限定。
在该实现方式中,可选的,上述图8所示的实施例还包括步骤803a至步骤803c。步骤803a至步骤803c在步骤803之后执行。步骤803b与步骤803c之间没有固定的执行顺序,可以先执行步骤803b再执行步骤803c;或者,先执行步骤803c再执行步骤803b;或者依据情况同时执行步骤803b和步骤803c。
步骤803a:终端设备向网络设备发送ACK。
步骤803b:终端设备根据第一时刻和第一时间偏移确定第一DCI指示的公共波束的生效时间。
关于第一时刻和第一时间偏移的相关介绍请参阅前述相关介绍。
步骤803c:网络设备根据第一时刻和第一时间偏移确定第一DCI指示的公共波束的生效时间。
示例一:如果第一DCI没有调度PDSCH,终端设备针对第一DCI进行HARQ反馈。若终端设备成功接收第一DCI,终端设备向网络设备反馈ACK,表示终端设备成功接收第一DCI,或者,表示终端设备成功接收波束指示信息。换句话说,如果第一DCI没有调度PDSCH,且终端设备向网络设备反馈ACK,表示终端设备成功接收第一DCI。
在这种情况下,第一DCI指示的公共波束在第一时刻加上第一时间偏移后生效;或者,第一DCI指示的公共波束在上述第一时刻加上第一时间偏移后的第一个时隙生效。
进一步的,只有在第一DCI指示的公共波束与终端设备当前采用的公共波束或者网络设备前一次向终端设备指示的公共波束不相同时,所述第一DCI指示的公共波束才在第一时刻加上第一时间偏移后生效,或在上述第一时刻加上第一时间偏移后的第一个时隙生效。
示例二:如果第一DCI调度了PDSCH,终端设备可以只针对第一DCI调度的PDSCH进行HARQ反馈。因为终端设备通过第一DCI调度的PDSCH对应的HARQ反馈结果可以通知该网络设备该第一DCI调度的PDSCH以及该第一DCI是否被终端设备成功接收。
当第一DCI调度了PDSCH且终端设备采用动态HARQ-ACK码本进行HARQ反馈,如果终端设备向网络设备反馈ACK,则表示终端设备成功接收第一DCI。如果终端设备向网络设备反馈NACK,则表示终端设备未成功接收第一DCI。当反馈ACK时,第一DCI指示的公共波束在第一时刻加上第一时间偏移后生效,或在上述第一时刻加上第一时间偏移后的第一个时隙生效。
进一步的,只有在第一DCI指示的公共波束与终端设备当前采用的公共波束或者网络设备前一次向终端设备指示的公共波束不相同时,所述第一DCI指示的公共波束才在第一时刻加上第一时间偏移后生效,或在上述第一时刻加上第一时间偏移后的第一个时隙生效。
上述示例一和示例二中,第一DCI用于网络设备在终端设备初始接入后第n+1次向终端设备指示公共波束。终端设备当前采用的公共波束或网络设备前一次向终端设备指示的公共波束是指网络设备在终端设备初始接入后第n次向终端设备指示且生效的公共波束。n 为大于或等于1的整数。
可选的,如果第一DCI指示的公共波束与终端设备当前使用的公共波束相同,那么终端设备可以忽略该第一DCI,并且终端设备无需按照上述示出的公共波束的生效时间确定该公共波束生效。
对于网络设备来说,终端设备接收到第一DCI的时刻可以理解为网络设备发送第一DCI的时刻。终端设备发送第一DCI对应的HARQ反馈结果的时刻可以理解为网络设备接收到第一DCI对应的HARQ反馈结果的时刻。因此,网络设备可以通过第一时刻和第一时间偏移确定第一DCI指示的公共波束的生效时间。这样网络设备与终端设备可以在该生效时间切换到该公共波束上,从而实现网络设备与终端设备之间通过该公共波束进行传输。
第二种可能的实现方式:当满足第二条件时,且第一DCI对应的HARQ反馈结果为ACK或NACK,表示终端设备成功接收到第一DCI,或者,表示第一DCI指示的一个或多个公共波束指示成功。
第二条件包括以下一项或多项的组合:
1、终端设备上报支持公共波束功能;
2、网络设备将终端设备的公共波束公共配置为开启状态;
3、第一DCI调度了PDSCH;
4、终端设备采用半静态HARQ-ACK码本进行HARQ反馈;
5、第一DCI指示的一个或多个公共波束与终端设备当前使用的公共波束不同。
在该实现方式中,终端设备成功接收第一DCI指终端设备接收来自网络设备的第一DCI并对第一DCI译码成功。
可选的,当满足第一条件,且第一DCI对应的HARQ反馈结果为ACK时,第一DCI指示的公共波束在第一时刻加上第一时间偏移后生效;或者,该第一DCI指示的公共波束在第一时刻加上第一时间偏移后的第一个时隙生效。
第一时刻为终端设备接收到第一DCI的时刻,或者为终端设备发送第一DCI对应的HARQ反馈结果的时刻,即终端设备反馈上述ACK或NACK的时刻。
需要说明的是,可选的,若第一时刻为终端设备接收到第一DCI的时刻,第一时间偏移必须大于终端设备接收到第一DCI的时刻与第一DCI对应的HARQ反馈结果发送时刻之间的时间间隔。即第一DCI指示的公共波束的生效时间必须晚于第一DCI对应的HARQ反馈结果的发送时间。
第一时间偏移可以设计为一个固定值,即通信协议规定的值。那么,在实际应用中,应当保证终端设备接收到第一DCI的时刻与第一DCI对应的HARQ反馈结果的发送时间之间的时间间隔要小于该固定值。
如果终端设备接收到第一DCI的时刻与第一DCI对应的HARQ反馈结果的发送时间大于该固定值,则终端设备忽略第一DCI,即第一DCI指示的公共波束不生效,或者推迟一段时间生效。例如,第一DCI指示的公共波束的生效时间推迟为终端设备发送第一DCI对应的HARQ反馈结果的发送时刻后的第一个时隙。
第一DCI对应的HARQ反馈结果为针对第一DCI调度的PDSCH反馈的HARQ反馈结果。
其中,第一时间偏移为预设的时间偏移,或者为网络设备为终端设备配置的时间偏移,具体本申请不做限定。
在该实现方式中,第一时刻可以具体为某个时隙,或者为某个符号,或者为某一秒,或者为某一毫秒,具体本申请不做限定。第一时间偏移包括X个时间单元。X为大于或等于1的整数。可选的,时间单元包括一个时隙、一个时隙组,一个符号,一个符号组、或一毫秒。
在该实现方式中,可选的,上述图8所示的实施例还包括步骤803d至步骤803f。步骤803d至步骤803f在步骤803d之后执行。步骤803e和步骤803f之间没有固定的执行顺序,可以先执行步骤803e再执行步骤803f;或者先执行步骤803e再执行步骤803f;或者依据情况同时执行步骤803e和步骤803f。
步骤803d:终端设备向网络设备发送ACK或NACK。
步骤803e:终端设备根据第一时刻和第一时间偏移确定第一DCI指示的公共波束的生效时间。关于第一时刻和第一时间偏移的相关介绍请参阅前述相关介绍。
步骤803f:网络设备根据第一时刻和第一时间偏移确定第一DCI指示的公共波束的生效时间。
示例三:如果第一DCI调度了PDSCH,终端设备可以只针对第一DCI调度的PDSCH进行HARQ反馈。因为终端设备通过第一DCI调度的PDSCH对应的HARQ反馈结果可以通知该网络设备该第一DCI调度的PDSCH以及该第一DCI是否被终端设备成功接收。
当第一DCI调度了PDSCH且终端设备采用半静态HARQ-ACK码本进行HARQ反馈,终端设备向网络设备反馈ACK或NACK都可以表示终端设备成功接收第一DCI。
因为只有终端设备成功接收第一DCI且终端设备未成功接收第一DCI调度的PDSCH时,终端设备才向网络设备反馈NACK。对于终端设备既未成功接收第一DCI且终端设备未成功接收第一DCI调度的PDSCH的情况,终端设备不向网络设备反馈任何信息。
因此,当第一DCI调度了PDSCH且终端设备采用半静态HARQ-ACK码本进行HARQ反馈,如果终端设备向网络设备反馈ACK或NACK,则表示终端设备成功接收第一DCI。在这种情况下,第一DCI指示的公共波束在第一时刻加上第一时间偏移后生效,或在上述第一时刻加上第一时间偏移后的第一个时隙生效。
进一步的,只有在第一DCI指示的公共波束与终端设备当前采用的公共波束或者网络设备前一次向终端设备指示的公共波束不相同时,所述第一DCI指示的公共波束才在第一时刻加上第一时间偏移后生效,或在上述第一时刻加上第一时间偏移后的第一个时隙生效。
需要说明的是,对于网络设备来说,终端设备接收到第一DCI的时刻可以理解为网络设备发送第一DCI的时刻。终端设备发送第一DCI对应的HARQ反馈结果的时刻可以理解为网络设备接收到第一DCI对应的HARQ反馈结果的时刻。因此,网络设备可以通过第一时刻和第一时间偏移确定第一DCI指示的公共波束的生效时间。这样网络设备与终端设备可以在该生效时间切换到该公共波束上,从而实现网络设备与终端设备之间通过该公共波束进行传输。
上述示例三中,第一DCI用于网络设备在终端设备初始接入后第n+1次向终端设备指示公共波束。终端设备当前采用的公共波束或网络设备前一次向终端设备指示的公共波束 是指网络设备在终端设备初始接入后第n次向终端设备指示且生效的公共波束。n为大于或等于1的整数。
下面介绍如何确定终端设备采用的码本类型。
当网络设备将终端设备的pdsch-HARQ-ACK-Codebook参数配置为动态(dynamic)时,终端设备采用动态HARQ-ACK码本规则进行HARQ反馈。具体的,当终端设备采用动态HARQ-ACK码本时,第一DCI包括下行分配标识(downlink assignment index,DAI)字段或第一DCI包括的DAI字段长度不为0。因此,上述第一条件中,终端设备采用动态HARQ-ACK码本进行HARQ反馈也可以替换为第一DCI中存在DAI字段或第一DCI包括的DAI字段长度不为0。
当网络设备将终端设备的pdsch-HARQ-ACK-Codebook参数配置为非动态时或者半静态(semiStatic)时,终端设备采用半静态HARQ-ACK码本规则进行HARQ反馈。具体的,当终端设备采用半静态HARQ-ACK码本时或当不采用动态HARQ-ACK码本时,第一DCI不包括DAI字段或第一DCI包括的DAI字段长度为0。因此,上述第二条件中,终端设备采用HARQ-ACK半静态码本也可以替换为第一DCI中不存在DAI字段或第一DCI包括的DAI字段长度为0。
上述实施例五的技术方案中,示出了表示终端设备成功接收第一DCI的几种可能情况。具体通过终端设备针对第一DCI的HARQ反馈结果或针对第一DCI调度的PDSCH的HARQ反馈结果指示终端设备成功接收第一DCI。也就是提供了针对多种应用场景下,网络设备确定成功接收第一DCI的具体方式。并且,网络设备和终端设备可以确定第一DCI指示的公共波束的生效时间,并在该生效时间切换到该公共波束,从而实现网络设备与终端设备之间通过该公共波束进行传输。
可选的,上述图5所示的实施例中的步骤503中,波束指示信息通过第一DCI携带。
其中,第一DCI包括公共波束指示字段。公共波束指示字段用于指示一种波束类型的公共波束,终端设备确定公共波束指示字段指示的波束类型的具体过程请参阅后文实施例六的技术方案。或者,公共波束指示字段用于指示两种波束类型的公共波束,终端设备确定公共波束指示字段指示的波束类型的具体过程请参阅后文实施例七的技术方案。
本申请提供实施例六。下面结合图9介绍本申请提供的实施例六的技术方案。
请参阅图9,图9为本申请实施例波束管理方法的另一个实施例示意图。在图9中,波束管理方法包括:
901、网络设备向终端设备发送波束配置信息。相应的,终端设备接收来自网络设备的波束配置信息。
902、网络设备向终端设备发送波束激活信息。相应的,终端设备接收来自网络设备的波束激活信息。
903、网络设备向终端设备发送波束指示信息。相应的,终端设备接收来自网络设备的波束指示信息。
步骤901至步骤903与前述图5所示的实施例中的步骤501至步骤503的相关介绍,具体可以参阅前述图5所示的实施例中的步骤501至步骤502的相关介绍。
可选的,步骤903中,波束指示信息通过第一DCI携带。
第一DCI中的公共波束指示字段的K个字段值可以与波束激活信息激活的K个公共波束 一一对应。例如,当第一DCI中的公共波束指示字段为某个值时,表示该字段值对应的公共波束。
公共波束的波束类型有多种。终端设备先确定公共波束指示字段指示的波束类型,再结合波束激活信息确定具体是哪个或哪些公共波束。
本实施例介绍:针对公共波束指示字段用于指示一种波束类型的公共波束的情况,终端设备如何确定公共波束指示字段指示的波束类型。
下面结合步骤904介绍终端设备确定公共波束指示字段指示的波束类型的过程。可选的,本实施例还包括步骤904。步骤904在步骤903之后执行。
步骤904:终端设备根据波束配置信息确定公共波束指示字段指示的公共波束的波束类型;或者,终端设备根据波束激活信息确定公共波束指示字段指示的公共波束的波束类型;或者,终端设备根据第一DCI确定公共波束指示字段指示的公共波束的波束类型。
具体的,终端设备根据波束配置信息确定公共波束指示字段指示的公共波束的波束类型包括:若网络设备通过波束配置信息将终端设备的公共波束模式配置为联合公共波束模式,或者,波束配置信息包括联合公共波束的配置信息,则终端设备确定公共波束指示字段指示的是联合公共波束;若网络设备通过波束配置信息将终端设备的公共波束模式配置为独立公共波束模式,或者,波束配置信息包括独立公共波束的配置信息,则终端设备确定公共波束指示字段指示的公共波束的波束类型为上行公共波束或下行公共波束。
例如,网络设备通过RRC向终端设备发送波束配置信息。即RRC包括波束配置信息。如果网络设备通过RRC将终端设备的公共波束模式配置为联合公共波束模式,或者RRC包括联合公共波束的配置信息,则第一DCI包括的公共波束指示字段指示的是联合公共波束。
如果网络设备通过RRC将终端设备的公共波束模式配置为独立公共波束模式,或者RRC包括独立公共波束的配置信息,则第一DCI包括的公共波束指示字段指示的是上行公共波束或下行公共波束。
而具体公共波束指示字段指示的公共波束是上行公共波束还是下行公共波束,终端设备应当结合第一DCI中的其他字段确定。例如,终端设备可以通过第一DCI中的一个专用字段(如上下行指示字段)指示,或者,通过第一DCI的公共波束字段的前x个比特或后x个比特指示。
如果网络设备通过RRC将终端设备的公共波束模式配置为联合公共波束模式,或者RRC包括联合公共波束的配置信息,上述第一DCI包括的专用字段或上述第一DCI的公共波束字段的前x个比特或后x个比特没有实际意义,终端设备可以忽略。或者,上述终端设备的公共波束模式配置为联合公共波束模式,或者RRC包括联合公共波束的配置信息不存在。x为正整数,如x=1。
具体的,终端设备根据波束激活信息确定公共波束指示字段指示的公共波束的波束类型包括:若波束激活信息用于激活联合公共波束,则终端设备确定公共波束指示信息指示的公共波束的波束类型为联合公共波束;若波束激活信息用于激活独立公共波束,则终端设备确定公共波束指示字段指示的公共波束的波束类型为上行公共波束或下行公共波束。
例如,网络设备通过MAC CE向终端设备发送波束激活信息。即MAC CE包括波束激活信 息。如果MAC CE只激活联合公共波束,则第一DCI包括的公共波束指示字段指示的是联合公共波束;如果MAC CE未激活联合公共波束或MAC CE激活独立公共波束,则第一DCI包括的公共波束指示字段指示的是上行公共波束或下行公共波束。
而公共波束指示字段指示的公共波束是上行公共波束还是下行公共波束,终端设备应当结合第一DCI中的其他字段确定。例如,终端设备可以通过第一DCI中的一个专用字段(如上下行指示字段)指示,或者,通过第一DCI的公共波束字段的前x个比特或后x个比特指示。
如果MAC CE只激活联合公共波束,上述第一DCI包括的专用字段或上述第一DCI的公共波束字段的前x个比特或后x个比特没有实际意义,终端设备可以忽略。或者上述第一DCI包括的专用字段或上述第一DCI的公共波束字段的前x个比特或后不存在。
如果终端设备既收到了用于激活联合公共波束的MAC CE,又收到了激活独立公共波束的MAC CE,终端设备以在时间上较晚接收到的MAC CE为准。即终端设备根据终端设备在时间上较晚接收到的MAC CE确定DCI指示的公共波束的类型。换句话说,用于激活联合公共波束的MAC CE和用于激活独立公共波束的MAC CE会相互覆盖,在时间上终端设备较晚收到的MAC CE会覆盖在时间上终端设备较早收到的MAC CE。
具体的,终端设备根据第一DCI确定公共波束指示字段指示的公共波束的波束类型,包括:终端设备根据第一DCI包括的公共波束指示字段中的前x个比特或第一DCI包括的第一指示字段确定公共波束指示字段指示的公共波束的波束类型。
第一DCI包括的公共波束指示字段中的前x个比特或第一DCI包括的第一指示字段用于指示公共波束指示字段指示的公共波束的波束类型。x为大于或等于1的整数。
具体的,网络设备通过公共波束指示字段中的前x个比特或第一DCI包括的第一指示字段来区分公共波束指示字段指示的公共波束的波束类型。
波束类型包括以下任一种:联合公共波束、上行公共波束、下行公共波束;或者,
波束类型包括以下任一种:上行公共波束、下行公共波束。
终端设备通过上述实施例六的技术方案确定公共波束指示字段指示的公共波束的波束类型。然后,终端设备可以确定公共波束指示字段包括的各个字段值具体指示的公共波束。公共波束指示字段中包括的字段值可以与波束激活信息激活的公共波束一一对应。
例如,公共波束指示字段指示的是下行公共波束,那么该公共波束指示字段中的各个字段值与波束激活信息激活的下行公共波束一一对应。即终端设备可以通过各个字段值确定具体指示哪些下行公共波束。公共波束指示字段指示的是联合公共波束,那么该公共波束指示字段中的各个字段值与波束激活信息激活的联合公共波束一一对应。即终端设备可以通过各个字段值确定具体指示哪些联合公共波束。
上述实施例六的技术方案中,针对公共波束指示字段指示一种波束类型的公共波束的情况,示出了终端设备确定该波束指示字段指示的波束类型的三种可能的实现方式。即终端设备通过上述实施例六的技术方案实现对公共波束指示字段指示的波束类型的确定。并且,终端设备根据公共波束指示字段指示的波束类型、公共波束指示字段包括的各个字段值和波束激活信息确定具体指示的公共波束。这样终端设备与网络设备之间可以通过该公共波束进行传输。
本申请提供实施例七,下面结合图10介绍本申请提供的实施例七的技术方案。
请参阅图10,图10为本申请实施例波束管理方法的另一个实施例示意图。在图10中,波束管理方法包括:
1001、网络设备向终端设备发送波束配置信息。相应的,终端设备接收来自网络设备的波束配置信息。
1002、网络设备向终端设备发送波束激活信息。相应的,终端设备接收来自网络设备的波束激活信息。
1003、网络设备向终端设备发送波束指示信息。相应的,终端设备接收来自网络设备的波束指示信息。
步骤1001至步骤1003与前述图5所示的实施例中的步骤501至步骤503的相关介绍,具体可以参阅前述图5所示的实施例中的步骤501至步骤502的相关介绍。
可选的,步骤1003中的波束指示信息通过第一DCI携带。
第一DCI中的公共波束指示字段的K个字段值可以与波束激活信息激活的K个公共波束一一对应。例如,当第一DCI中的公共波束指示字段为某个值时,表示该字段值对应的公共波束。
公共波束的波束类型有多种,终端设备先确定公共波束指示字段指示的波束类型,再结合波束激活信息确定具体是哪个或哪些公共波束。
本实施例介绍:针对公共波束指示字段用于指示两种波束类型的公共波束的情况,终端设备如何确定公共波束指示字段指示的波束类型。具体的,该公共波束指示字段包括两个子字段,两个子字段分别指示的波束类型不同。终端设备确定该两个子字段分别指示的波束类型。
下面介绍终端设备确定两个子字段分别指示的波束类型的四种可能的实现方式。
一、下面结合步骤1004a介绍实现方式1。可选的,上述图10所示的实施例还包括步骤1004a。步骤1004a在步骤1003之后执行。
步骤1004a:若公共波束指示字段包括两个子字段,则终端设备确定两个子字段中的第一个子字段用于指示上行公共波束,两个子字段中的第二个子字段用于指示下行公共波束;或者,两个子字段中的第一个子字段用于指示下行公共波束,两个子字段中的第二个子字段用于指示上行公共波束。
具体的,两个子字段分别指示的波束类型可以是预设的通信协议规定的。例如,预设的通信协议规定:两个子字段中的第一个子字段用于指示上行公共波束,两个子字段中的第二个子字段用于指示下行公共波束;或者,两个子字段中的第一个子字段用于指示下行公共波束,两个子字段中的第二个子字段用于指示上行公共波束。
那么,终端设备根据预设的通信协议规定可以确定两个子字段中的第一个子字段用于指示上行公共波束,两个子字段中的第二个子字段用于指示下行公共波束;或者,两个子字段中的第一个子字段用于指示下行公共波束,两个子字段中的第二个子字段用于指示上行公共波束。
二、下面结合步骤1004b介绍实现方式2。可选的,上述图10所示的实施例还包括步骤 1004b。步骤1004b在步骤1003之后执行。
步骤1004b:终端设备根据波束配置信息确定两个子字段分别指示的波束类型。
可选的,波束配置信息包括上行公共波束集合和下行公共波束集合。终端设备根据波束配置信息确定两个子字段分别指示的波束类型包括:终端设备根据上行公共波束集合和下行公共波束集合分别对应的配置先后顺序确定上行公共波束和下行公共波束分别对应的子字段;或者,终端设备根据上行公共波束集合和下行公共波束集合分别对应的集合索引大小顺序确定上行公共波束和下行公共波束分别对应的子字段。
具体的,RRC包括波束配置信息。网络设备通过RRC配置该两个子字段分别对应的波束类型。
例如,RRC包括上行公共波束集合和下行公共波束集合。RRC中配置顺序在前的公共波束集合对应的波束类型对应第一个子字段,配置顺序在后的公共波束集合对应的波束类型对应第二个子字段。或者,RRC中配置顺序在后的公共波束集合对应的波束类型对应第一个子字段,配置顺序在前的公共波束集合对应的波束类型对应第二个子字段。例如,RRC中上行公共波束集合的配置顺序下行公共波束集合的配置顺序之前,那么第一个子字段指示上行公共波束,第二个子字段指示下行公共波束。
再例如,RRC包括上行公共波束集合和下行公共波束集合。上行公共波束集合的集合索引小于下行公共波束集合的集合索引,那么第一个子字段指示上行公共波束,第二个子字段指示下行公共波束。或者,上行公共波束集合的集合索引大于下行公共波束集合的集合索引,那么第一个子字段指示下行公共波束,第二个子字段指示上行公共波束。
三、下面结合步骤1004c介绍实现方式3。可选的,上述图10所示的实施例还包括步骤1004c。步骤1004c在步骤1003之后执行。
步骤1004c:终端设备根据波束激活信息确定两个子字段分别指示的波束类型。
具体的,终端设备根据波束激活信息激活的上行公共波束和下行公共波束的排列先后顺序确定上行公共波束和下行公共波束分别对应的子字段。
例如,波束激活信息通过MAC CE携带。在MAC CE激活的公共波束中排序靠前的是上行公共波束,则第一个子字段指示上行公共波束,第二子字段指示下行公共波束。
例如,MAC CE激活的公共波束中排序靠后的是下行公共波束,则第一个子字段指示下行公共波束,第二个子字段指示上行公共波束。
例如,MAC CE激活的第一种公共波束对应第一个子字段,MAC CE激活的第二种公共波束对应第二个子字段。
四、下面结合步骤1004d介绍实现方式4。可选的,上述图10所示的实施例还包括步骤1004d。步骤1004d在步骤1003之后执行。
步骤1004d:终端设备根据第一DCI确定两个子字段分别指示的波束类型。
具体的,第一DCI包括公共波束指示字段。终端设备根据公共波束指示字段中的前x个比特或后x个比特或第一DCI包括的第二指示字段确定该两个子字段中的第一个子字段指示的波束类型和第二个子字段指示的波束类型。
例如,公共波束指示字段的前x个比特或后x个比特指示第一个子字段指示上行公共波 束,第二个子字段指示下行公共波束。
终端设备通过上述实施例七的技术方案确定该两个子字段分别指示的波束类型。然后,终端设备可以确定公共波束指示字段包括的各个字段值具体指示的公共波束。公共波束指示字段中包括的字段值可以与波束激活信息激活的公共波束一一对应。
可选的,在步骤1003之后,在步骤1004a或步骤1004b或步骤1004c或步骤1004d之前,终端设备确定公共波束指示字段包括的子字段数量,和/或,子字段指示的波束类型。下面示出三种可能的确定方式。
确定方式1:终端设备根据所述波束配置信息配置的波束类型确定公共波束指示字段包括的子字段的数量、和/或,子字段指示的波束类型。
公共波束指示字段包括一个或两个子字段。如果网络设备通过波束配置信息将终端设备的公共波束模式配置为联合公共波束模式,或者,波束配置信息配置的波束类型为联合公共波束,则公共波束指示字段包括一个子字段。并且,该一个子字段用于指示联合公共波束。
如果网络设备通过波束配置信息将终端设备的公共波束模式配置为独立公共波束模式,或者,波束配置信息配置的波束类型为独立公共波束,则公共波束指示字段包括两个子字段。该两个子字段分别用于指示上行公共波束和下行公共波束。针对公共波束指示字段包括两个子字段的情况,终端设备执行上述步骤1004a或步骤1004b或步骤1004c或步骤1004d以进一步确定两个子字段分别指示的波束类型。
确定方式2:终端设备根据波束激活信息激活的波束类型确定公共波束指示字段包括的子字段的数量、和/或,子字段指示的波束类型。
如果波束激活信息用于激活联合公共波束,则终端设备确定公共波束指示字段包括一个子字段,即公共波束指示字段不存在第二个子字段。如果波束激活信息没有用于激活联合公共波束,或者,波束激活信息用于激活上行公共波束和下行公共波束,则终端设备确定公共波束指示字段包括两个子字段。针对公共波束指示字段包括两个子字段的情况,终端设备执行上述步骤1004a或步骤1004b或步骤1004c或步骤1004d以进一步确定两个子字段分别指示的波束类型。
如果终端设备既收到了用于激活联合公共波束的MAC CE,又收到了激活独立公共波束的MAC CE,终端设备以在时间上较晚接收到的MAC CE为准。即终端设备根据终端设备在时间上较晚接收到的MAC CE确定DCI指示的公共波束的类型。换句话说,用于激活联合公共波束的MAC CE和用于激活独立公共波束的MAC CE会相互覆盖,在时间上终端设备较晚收到的MAC CE会覆盖在时间上终端设备较早收到的MAC CE。
确定方式3:终端设备根据第一DCI确定公共波束指示字段包括的子字段的数量、和/或,子字段指示的波束类型。
具体的,第一DCI包括公共波束指示字段。终端设备根据公共波束指示字段中的前x个比特或后x个比特或第一DCI包括的第三指示字段确定公共波束指示字段包括的子字段的数量、和/或,子字段指示的波束类型。
例如,公共波束指示字段的前x个比特或后x个比特指示公共波束指示字段包括的子字 段的数量为为1。那么可知,公共波束指示字段包括一个子字段。公共波束指示字段的前x个比特或后x个比特指示公共波束指示字段包括的子字段的数量为2。并且,两个子字段中的第一个子字段指示上行公共波束,第二个子字段指示下行公共波束。
本申请中,若网络设备向终端设备发送的DCI不包括公共波束指示字段,网络设备如何向终端设备指示公共波束。本申请针对该问题提出实施例八的技术方案。下面结合图11介绍本申请提供的实施例八的技术方案。
请参阅图11,图11为本申请实施例波束管理方法的另一个实施例示意图。在图11中,该波束管理方法包括:
1101、网络设备向终端设备发送波束配置信息。相应的,终端设备接收来自网络设备的波束配置信息。
1102、网络设备向终端设备发送波束激活信息。相应的,终端设备接收来自网络设备的波束激活信息。
步骤1101至步骤1102与前述图5所示的实施例中的步骤501至步骤502类似,具体请参阅前述图5所示的实施例中的步骤501至步骤502的相关介绍,这里不再赘述。
本实施例中,由于网络设备向终端设备发送的DCI不包括公共波束指示字段,也就是说DCI只用于调度数据,而不用于指示公共波束。
可选的,图11所示的实施例还包括步骤1103或步骤1104。步骤1103或步骤1104在步骤1102之后执行。
1103、若波束激活信息用于激活一个公共波束,终端设备采用波束激活信息激活的公共波束进行传输。
具体的,波束激活信息通过MAC CE携带。当DCI不存在公共波束指示字段或DCI包括的公共波束指示字段不指示公共波束时,MAC CE只能激活一个公共波束。或者,当DCI不存在公共波束指示字段或DCI包括的公共波束指示字段不指示公共波束时,针对同一种波束类型的公共波束,MAC CE只能激活一个公共波束。
若波束激活信息用于激活一个公共波束,终端设备采用波束激活信息激活的公共波束进行传输,包括:若波束激活信息只用于激活一个公共波束,则终端设备采用波束激活信息激活的公共波束进行传输;或者,
若波束激活信息用于激活一个公共波束,终端设备采用波束激活信息激活的公共波束进行传输,包括:若波束激活信息针对同一波束类型的公共波束只激活一个公共波束,则终端设备采用该波束激活信息激活的该波束类型的公共波束进行传输。
1104、若波束激活信息用于激活多个公共波束,终端设备采用多个公共波束中波束索引最大的、或波束索引最小的、排序最靠前的、或排序最靠后的、或对应的公共波束指示字段值最小的、或对应的公共波束指示字段值最大的公共波束进行传输。
具体的,波束激活信息通过MAC CE携带。当DCI不存在公共波束指示字段或DCI包括的公共波束指示字段不指示公共波束时,如果MAC CE用于激活多个公共波束,终端设备可以采用该多个公共波束中,波束索引最大的、或波束索引最小的、排序最靠前的、或排序最靠后的、或对应的公共波束指示字段值最小的、或对应的公共波束指示字段值最大的公共 波束进行传输。
进一步的,DCI不存在公共波束指示字段或DCI包括的公共波束指示字段不指示公共波束。针对同一波束类型的公共波束,如果MAC CE用于激活多个公共波束,终端设备可以采用该多个公共波束中波束索引最大的、或波束索引最小的、排序最靠前的、或排序最靠后的、或对应的公共波束指示字段值最小的、或对应的公共波束指示字段值最大的公共波束进行传输。其中,多个公共波束分别有对应的公共波束指示字段值。具体可以是通过通信协议规定的。
需要说明的是,网络设备可以通过波束配置信息配置DCI中是否存在公共波束指示字段(例如,TCI字段)。这样终端设备通过波束配置信息可以确定DCI不存在公共波束指示字段。或者,网络设备通过波束激活信息指示DCI中是否存在公共波束指示字段。例如,网络设备通过MAC CE中的一个字段指示DCI是否存在公共波束指示字段。或者,网络设备通过DCI的前x个比特指示该DCI是否用于指示公共波束。
针对DCI不存在公共波束指示字段或DCI包括的公共波束指示字段不用于指示公共波束的情况,网络设备通过实施例八的技术方案实现向终端设备指示公共波束。这样终端设备可以确定对应的公共波束,以用于终端设备与网络设备进行传输。
本申请实施例中,可选的,上述图5所示的波束指示信息通过第一DCI携带。
第一DCI包括公共波束指示字段。当第一DCI指示的公共波束与终端设备当前使用的公共波束一致时,(即终端设备不需要更新公共波束),而第一DCI包括的公共波束指示字段仍指示公共波束时,如何避免终端设备更新公共波束。本申请针对该问题提出实施例九的技术方案。下面结合图12介绍本申请提供的实施例九的技术方案。
请参阅图12,图12为本申请实施例波束管理方法的另一个实施例示意图。在图12中,该波束管理方法包括:
1201、网络设备向终端设备发送波束配置信息。相应的,终端设备接收来自网络设备的波束配置信息。
1202、网络设备向终端设备发送波束激活信息。相应的,终端设备接收来自网络设备的波束激活信息。
1203、网络设备向终端设备发送波束指示信息。相应的,终端设备接收来自网络设备的波束指示信息。
步骤1201至步骤1203与前述图5所示的实施例中的步骤501至步骤503类似,具体可以参阅前述图5所示的实施例中的步骤501至步骤503的相关介绍。
一种可能的实现方式中,波束指示信息通过第一DCI携带。第一DCI包括专用公共波束指示字段值。该专用公共波束指示字段值用于表示该第一DCI不指示任何公共波束。即该专用公共波束指示字段值不对应任何公共波束,而第一DCI的其他公共波束指示字段值用于指示公共波束。终端设备在进行公共波束指示字段值与MAC CE激活的公共波束之间的映射时,终端设备跳过该专用公共波束指示字段值。
例如,该专用公共波束指示字段值为最小的字段值,终端设备跳过该最小的字段值,对第一DCI的其他字段值与MAC CE激活的公共波束进行映射。
例如,该专用公共波束指示字段值为最大的字段值。终端设备跳过该最大的子字段值,对第一DCI的其他字段值与MAC CE激活的公共波束进行映射。
另一种可能的实现方式中,终端设备可以忽略该波束指示信息。基于该实现方式,可选的,本实施例还包括步骤1204。步骤1204在步骤1203之后执行。
步骤1204、若公共波束指示信息指示的公共波束与第二公共波束相同,终端设备忽略该波束指示信息。
其中,第二公共波束包括以下任一项:终端设备当前采用的公共波束、终端设备在时间上最近一次指示或生效的公共波束。
例如,上述步骤1103中的波束指示信息用于网络设备在终端设备初始接入后第n+1次向终端设备指示的公共波束。终端设备在时间上最近一次指示或生效的公共波束包括:终端设备初始接入之后,网络设备第n次向终端设备指示的公共波束,或网络设备第n次向终端设备指示且生效的公共波束。n为大于或等于1的整数。
例如,上述步骤1103中的波束指示信息用于网络设备在终端设备发生波束失败恢复后第n+1次向终端设备指示的公共波束。终端设备在时间上最近一次指示或生效的公共波束包括:终端设备发生波束失败恢复成功之后,网络设备第n次向终端设备指示的公共波束,或网络设备第n次向终端设备指示且生效的公共波束。n为大于或等于1的整数。
具体的,当波束指示信息指示的公共波束与第二公共波束不相同时,终端设备可以直接忽略该波束指示信息。终端设备不需要按照上述图8所示的实施例的生效时间确定该公共波束指示字段指示的公共波束生效。也就是说,只有波束指示信息与终端设备当前使用的公共波束不相同时,或者,与网络设备前一次向终端设备指示的公共波束不相同时,终端设备才根据波束指示信息更新公共波束。
上述实施例九的技术方案中,当波束指示信息指示的公共波束与终端设备当前使用的公共波束一致时,(即终端设备不需要更新公共波束),而波束指示信息包括的公共波束指示字段仍指示公共波束时,终端设备可以根据波束指示信息包括的专用公共波束指示字段值跳过对该专用公共波束指示字段值的映射;或者,终端设备忽略该波束指示信息。这样终端设备不会更新该公共波束,以避免不必要的网络资源开销。例如,终端设备针对该波束指示信息向网络设备反馈ACK或NACK,以及网络设备与终端设备之间确定该公共波束的生效时间等。
本申请提供实施例十,下面结合图13介绍本申请提供的实施例十的技术方案。
请参阅图13,图13为本申请实施例波束管理方法的另一个实施例示意图。在图13中,波束管理方法包括:
1301、网络设备向终端设备发送波束配置信息。相应的,终端设备接收来自网络设备的波束配置信息。
1302、网络设备向终端设备发送波束激活信息。相应的,终端设备接收来自网络设备的波束激活信息。
1303、网络设备向终端设备发送波束指示信息。相应的,终端设备接收来自网络设备的波束指示信息。
步骤1301至步骤1303与前述图5所示的实施例中的步骤501至步骤503类似,具体可以参阅前述图5所示的实施例中的步骤501至步骤503的相关介绍。
若步骤1303的波束指示信息指示相同波束类型的K个公共波束,并且网络设备为终端设备配置K个第一资源或K个第一资源集合。可选的,本实施例还包括步骤1304。
1304、终端设备将K个公共波束作为K个第一资源或K个第一资源集合分别对应的波束。
其中,K个公共波束与K个第一资源或K个第一资源集合一一对应,K个第一资源集合中每个第一资源集合包括第一资源。K为大于或等于2的整数。
具体的,K个公共波束中第一个公共波束用于K个第一资源中第一个第一资源或K个第一资源集合中第一个第一资源集合包括的第一资源的传输。K个公共波束的第二个公共波束用于K个第一资源中第二个第一资源或K个第一资源集合中第二个第一资源集合包括的第一资源的传输,以此类推。第K个公共波束用于第K个第一资源或第K个第一资源集合包括的第一资源的传输。
其中,K个公共波束按照波束激活信息激活的公共波束的激活顺序排序,或者按照波束激活信息激活的公共波束的波束索引大小排序,或者按照波束指示信息中公共波束的指示顺序排序,或者按照波束指示信息指示的公共波束的索引大小顺序排序。
K个第一资源按照第一资源的配置顺序排序,或者按照第一资源的资源索引大小顺序排序。K个第一资源集合按照K个第一资源集合的配置顺序排序,或者按照K个第一资源集合分别包括的第一资源的资源索引大小顺序排序,或者按照K个第一资源集合的集合索引大小顺序排序。
K个公共波束与K个第一资源按照上述任一种排序一一对应。
例如,激活顺序排在第一的公共波束用于配置顺序排在第一的第一资源或第一资源集合的传输。激活排序排在第二的公共波束用于配置顺序排在第二的第一资源或第一资源集合的传输。以此类推,激活顺序排在第K的公共波束用于配置顺序排在第K的第一资源或第一资源集合的传输。
例如,指示顺序排在第一的公共波束用于资源索引大小排在第一的第一资源或第一资源集合的传输。指示顺序排在第二的公共波束用于资源索引大小排在第二的第一资源或第一资源集合的传输。以此类推,指示顺序排在第K的公共波束用于资源索引大小排在第K的第一资源或第一资源集合的传输。
第一资源包括以下任一种:未配置repetitoin参数和trs-Info参数的CSI-RS,codebook类型的SRS,nonCodebook类型的SRS,nonCodebook类型的SRS关联的CSI-RS。
具体的,在多站传输场景下,网络设备通过波束指示信息向终端设备指示多个公共波束。每个公共波束对应一个发送接收站点(transmission and reception point,TRP)的上行信道或下行信道或上行参考信号或下行参考信号。
例如,波束指示信息指示两个上行公共波束,并且网络设备为终端设备配置了两个SRS resource set。那么两个上行公共波束中的第一上行公共波束用于两个SRS resource set中的第一个SRS resource set或索引较小的SRS resource set的传输。两个上行公共波束中的第二上行公共波束用于两个SRS resource set中的第二个SRS resource set或索引较 大的SRS resource set的传输。
第一上行公共波束包括:两个上行公共波束中的第一个上行公共波束,或两个上行公共波束中的波束索引较小的上行公共波束,或两个上行公共波束中对应的公共波束字段值较小的上行公共波束。
第二上行公共波束包括:两个上行公共波束中的第二个上行公共波束,或两个上行公共波束中的波束索引较大的上行公共波束,或两个上行公共波束中对应的公共波束字段值较大的上行公共波束。
其中,SRS resource set包括:codebook类型的SRS resource set、或nonCodebook类型的SRS resource set、或antennaSwitch的SRS resource set、或beamManagement的SRS resource set。
再例如,波束指示信息指示两个下行公共波束,并且网络设备为终端设备配置了两个CSI-RS resource。那么两个下行公共波束中的第一下行公共波束用于两个CSI-RS resource中的第一个CSI-RS resource或索引较小的CSI-RS resource的传输。两个下行公共波束中的第二下行公共波束用于两个CSI-RS resource中的第二个CSI-RS resource或索引较大的CSI-RS resource的传输。其中,两个CSI-RS resource也可以称为两个CSI-RSresource set、或两个CSI-RSresource setting。具体本申请不做限定。
第一下行公共波束包括:两个下行公共波束中的第一个下行公共波束,或两个下行公共波束中的波束索引较小的下行公共波束,或两个下行公共波束中对应的公共波束字段值较小的下行公共波束。
第二下行公共波束包括:两个下行公共波束中的第二个下行公共波束,或两个下行公共波束中的波束索引较大的下行公共波束,或两个下行公共波束中对应的公共波束字段值较大的下行公共波束。
其中,CSI-RS resource set可以为用于波束管理的CSI-RS resource set(即配置了repetition参数的CSI-RS resource set),或者为用于时频跟踪的CSI-RS resource set(即配置了trs-Info的CSI-RS resource set),或者为用于CSI测量的CSI-RS resource set(即未配置repetition参数也未配置trs-Info的CSI-RS resource set)。
再例如,波束指示信息指示两个下行公共波束,并且网络设备为终端设备配置了两个nonCodebook类型的SRS resource set。每个resource set关联了一个CSI-RS。那么,两个下行公共波束中的第三下行公共波束用于两个nonCodebook类型的SRS resource set中的第一个nonCodebook类型的SRS resource set或索引较小的nonCodebook类型的SRS resource set关联的CSI-RS的传输。两个下行公共波束中的第四下行公共波束用于两个nonCodebook类型的SRS resource set中的第二个nonCodebook类型的SRS resource set或索引较大的nonCodebook类型的SRS resource set关联的CSI-RS的传输。
第三下行公共波束包括:两个下行公共波束中的第一个下行公共波束,或两个下行公共波束中的索引较小的下行公共波束,或两个下行公共波束中对应的公共波束字段值较小的下行公共波束。
第四下行公共波束包括:两个下行公共波束中的第二个下行公共波束,或两个下行公 共波束中的索引较大的下行公共波束,或两个下行公共波束中对应的公共波束字段值较大的下行公共波束。
上述实施例十的技术方案中,针对波束指示信息指示相同波束类型的K个公共波束,并且网络设备为终端设备配置K个第一资源或K个第一资源集合的情况,终端设备为K个第一资源或K个资源集合确定对应的公共波束,以便于对应的第一资源的传输。
可选的,上述图5所示的实施例中的步骤503中,波束指示信息用于网络设备在终端设备初始接入之后第一次向终端设备指示公共波束。那么,该波束指示信息指示的公共波束生效之前,终端设备如何与网络设备进行传输。本申请针对该问题提出实施例十一的技术方案。
下面结合图14介绍本申请提供的实施例十一的技术方案。
请参阅图14,图14为本申请实施例波束管理方法的另一个实施例示意图。在图14中,该波束管理方法包括:
1401、网络设备向终端设备发送波束配置信息。相应的,终端设备接收来自网络设备的波束配置信息。
1402、网络设备向终端设备发送波束激活信息。相应的,终端设备接收来自网络设备的波束激活信息。
1403、网络设备向终端设备发送波束指示信息。相应的,终端设备接收来自网络设备的波束指示信息。
步骤1401至步骤1403与前述图5所示的实施例中的步骤501至步骤503类似,具体可以参阅前述图5所示的实施例中的步骤501至步骤503的相关介绍。
本实施例中,可选的,波束指示信息用于网络设备在终端设备初始接入之后第一次向终端设备指示公共波束。那么,在波束指示信息指示的公共波束生效之前,本实施例示出两种终端设备与网络设备之间进行传输的可能的实现方式。
下面结合步骤1404介绍实现方式1。可选的,本实施例还包括步骤1404。
1404、在波束指示信息指示的公共波束生效之前,终端设备采用初始接入时采用的SSB波束进行传输。
例如,波束指示信息用于网络设备在终端设备初始接入之后第一次向终端设备指示上行公共波束,那么终端设备采用初始接入时采用的SSB波束进行上行传输。同理,网络设备采用该SSB波束与该终端设备进行上行传输。
例如,波束指示信息用于网络设备在终端设备初始接入之后第一次向终端设备指示下行公共波束,那么终端设备采用初始接入时采用的SSB波束进行下行接收。同理,网络设备采用该SSB波束向该终端设备进行下行发送。
例如,波束指示信息用于网络设备在终端设备初始接入之后第一次向终端设备指示联合公共波束,那么终端设备采用初始接入时采用的SSB波束进行上行传输和下行接收。同理,网络设备采用该SSB波束与该终端设备进行上行传输,采用该SSB波束向该终端设备进行下行发送。
需要说明的是,步骤1404与步骤1401至步骤1403之间没有固定的执行顺序。图14仅仅 是一种示例。在实际应用中,在波束指示信息指示的公共波束生效之前,终端设备上有数据需要传输,终端设备则执行上述步骤1404。
下面结合步骤1405至步骤1407介绍实现方式2。可选的,本实施例还包括步骤1405至步骤1407。步骤1405在步骤1402之前执行。在该实现方式2中,波束激活信息用于网络设备在终端设备初始接入之后第一次向终端设备激活公共波束。
1405、在终端设备初始接入之后,终端设备接收到的波束激活信息之前,终端设备采用初始接入时采用的SSB波束进行传输。
例如,波束激活信息用于网络设备在终端设备初始接入之后第一次向终端设备激活上行公共波束。在终端设备初始接入之后,终端设备接收到的波束激活信息之前,那么终端设备采用初始接入时采用的SSB波束进行上行传输。同理,网络设备采用该SSB波束与该终端设备进行上行传输。
例如,波束激活信息用于网络设备在终端设备初始接入之后第一次向终端设备激活下行公共波束。在终端设备初始接入之后,终端设备接收到的波束激活信息之前,那么终端设备采用初始接入时采用的SSB波束进行下行接收。同理,网络设备采用该SSB波束向该终端设备进行下行发送。
例如,波束激活信息用于网络设备在终端设备初始接入之后第一次向终端设备激活联合公共波束。或者,波束激活信息用于网络设备在终端设备初始接入之后第一次向终端设备激活上行公共波束和下行公共波束。在终端设备初始接入之后,终端设备接收到的波束激活信息之前,那么终端设备采用初始接入时采用的SSB波束进行上行传输或下行接收。同理,网络设备采用该SSB波束与该终端设备进行上行传输,采用该SSB波束向该终端设备进行下行发送。
1406、在终端设备接收到波束激活信息之后,在波束指示信息指示的公共波束生效之前,若波束激活信息用于激活一个公共波束,终端设备采用波束激活信息激活的公共波束进行传输。
例如,波束激活信息用于网络设备在终端设备初始接入之后第一次向终端设备激活上行公共波束。那么,在终端设备接收到该波束激活信息之后,终端设备可以确定该波束激活信息激活的上行公共波束。终端设备采用该上行公共波束进行上行传输。同理,网络设备采用该SSB波束与该终端设备进行上行传输。
例如,波束激活信息用于网络设备在终端设备初始接入之后第一次向终端设备激活下行公共波束。那么,在终端设备接收到该波束激活信息之后,终端设备可以确定该波束激活信息激活的下行公共波束。终端设备采用该下行公共波束进行下行接收。同理,网络设备采用该SSB波束向该终端设备进行下行发送。
例如,波束激活信息用于网络设备在终端设备初始接入之后第一次向终端设备激活联合公共波束。那么,在终端设备接收到该波束激活信息之后,终端设备可以确定该波束激活信息激活的联合公共波束。终端设备采用该联合公共波束进行上行传输和下行接收。同理,网络设备采用该联合公共波束与该终端设备进行上行传输,采用该联合公共波束向该终端设备进行下行发送。
1407、在终端设备接收到波束激活信息之后,在波束指示信息指示的公共波束生效之前,若波束激活信息用于激活多个公共波束,终端设备采用波束激活信息激活的第一个公共波束或最后一个公共波束进行传输;或者,采用波束激活信息激活的公共波束中公共波束指示字段值最大或最小的公共波束进行传输。
例如,波束激活信息用于网络设备在终端设备初始接入之后第一次向终端设备激活多个上行公共波束。那么,在终端设备接收到该波束激活信息之后,终端设备可以确定该波束激活信息激活的多个上行公共波束。终端设备采用该多个上行公共波束中第一个上行公共波束或最后一个上行公共波束进行上行传输。同理,网络设备采用该多个上行公共波束中第一个上行公共波束或最后一个上行公共波束与该终端设备进行上行传输。
例如,波束激活信息用于网络设备在终端设备初始接入之后第一次向终端设备激活多个下行公共波束。那么,在终端设备接收到该波束激活信息之后,终端设备可以确定该波束激活信息激活的多个下行公共波束。终端设备采用该多个下行公共波束中第一个下行公共波束或最后一个下行公共波束进行下行接收。同理,网络设备采用该多个下行公共波束中第一个下行公共波束或最后一个下行公共波束向终端设备进行下行发送。
例如,波束激活信息用于网络设备在终端设备初始接入之后第一次向终端设备激活多个联合公共波束。那么,在终端设备接收到该波束激活信息之后,终端设备可以确定该波束激活信息激活的多个联合公共波束。终端设备采用该多个联合公共波束中的第一个联合公共波束或最后一个联合公共波束进行上行传输和下行接收。同理,网络设备采用该多个联合公共波束中的第一个联合公共波束或最后一个联合公共波束与终端设备进行上行传输,以及向终端设备进行下行发送。
需要说明的是,上述步骤1406或步骤1407在步骤1402之后执行。步骤1406或步骤1407与步骤1403之间没有固定的执行顺序,图14仅仅是一种示例。在终端设备接收到波束激活信息之后,在波束指示信息指示的公共波束生效之前,如果终端设备上有数据需要传输,则终端设备执行步骤1406或步骤1407。
上述实施例十一的技术方案中,波束指示信息用于网络设备在终端设备初始接入之后第一次向终端设备指示公共波束。在该波束指示信息指示的公共波束生效之前,提供了终端设备采用公共波束进行传输的两种可能的实现方式,以便于终端设备与网络设备之间的通信。不会因为波束指示信息指示的公共波束未生效导致终端设备与网络设备无法进行正常的通信,提升通信系统的性能。
可选的,上述图5所示的实施例步骤503中,波束指示信息用于网络设备在终端设备发生波束失败之后第一次向终端设备指示公共波束。那么,该波束指示信息指示的公共波束生效之前,终端设备如何与网络设备进行传输。本申请针对该问题提出实施例十二的技术方案。
下面结合图15介绍本申请提供的实施例十二的技术方案。
请参阅图15,图15为本申请实施例波束管理方法的另一个实施例示意图。在图15中,该波束管理方法包括:
1501、网络设备向终端设备发送波束配置信息。相应的,终端设备接收来自网络设备 的波束配置信息。
1502、网络设备向终端设备发送波束激活信息。相应的,终端设备接收来自网络设备的波束激活信息。
1503、网络设备向终端设备发送波束指示信息。相应的,终端设备接收来自网络设备的波束指示信息。
步骤1501至步骤1503与前述图5所示的实施例中的步骤501至步骤503类似,具体可以参阅前述图5所示的实施例中的步骤501至步骤503的相关介绍。
本实施例中,可选的,波束指示信息用于网络设备在终端设备发生波束失败之后第一次向终端设备指示公共波束。本实施例还包括步骤1504。
1504、在终端设备完成波束失败恢复之后,波束指示信息指示的公共波束生效之前,终端设备采用终端设备在波束失败恢复过程中向网络设备上报的波束进行传输。
其中,终端设备采用终端设备在波束失败恢复过程中向网络设备上报的波束进行传输,包括:终端设备采用终端设备在波束失败恢复过程中向网络设备上报的波束进行上行传输和下行接收。同理,网络设备采用该终端设备采用终端设备在波束失败恢复过程中向网络设备上报的波束进行传输与终端设备进行上行传输,以及向终端设备进行下行发送。
需要说明的是,步骤1504与步骤1501至步骤1503之间没有固定的执行顺序。在终端设备完成波束失败恢复之后,波束指示信息指示的公共波束生效之前,只要终端设备上有数据需要传输,终端设备可以执行步骤1504。具体可以是在步骤1501之前执行,也可以是在步骤1501至步骤1503的执行过程中执行步骤1504,或者在步骤1503之后执行步骤1504,具体本申请不做限定。
需要说明的是,上述步骤1504也可以替换为在终端设备接收到波束失败恢复响应消息之后,波束指示信息指示的公共波束生效之前,终端设备采用终端设备在波束失败恢复过程中向网络设备上报的波束进行传输。或者,上述步骤1504也可以替换为终端设备接收到波束失败恢复响应消息的时刻加上预设的时间间隔(例如,28个符号)之后,波束指示信息指示的公共波束生效之前,终端设备采用终端设备在波束失败恢复过程中向网络设备上报的波束进行传输。
上述实施例十二的技术方案中,波束指示信息用于网络设备在终端设备发生波束失败之后第一次向终端设备指示公共波束。在该波束指示信息指示的公共波束生效之前,提供了终端设备采用公共波束进行传输的具体实现方式,以便于终端设备与网络设备之间的通信。不会因为波束指示信息指示的公共波束未生效导致终端设备与网络设备无法进行正常的通信,提升通信系统的性能。
可选的,上述图5所示的实施例中,波束指示信息通过第一DCI携带。第一DCI还调度第一PDSCH数据。若网络设备发送第一PDSCH数据的时刻在第一DCI指示的公共波束生效的时刻之前,那么终端设备如何接收第一PDSCH数据。本申请针对该问题提出实施例十三的技术方案。下面通过图16A介绍本申请提供的实施例十三的技术方案。
请参阅图16A,图16A为本申请实施例波束管理方法的另一个实施例示意图。在图16A中,波束管理方法包括:
1601、网络设备向终端设备发送波束配置信息。相应的,终端设备接收来自网络设备的波束配置信息。
1602、网络设备向终端设备发送波束激活信息。相应的,终端设备接收来自网络设备的波束激活信息。
1603、网络设备向终端设备发送第一DCI。相应的,终端设备接收来自网络设备的第一DCI。
步骤1601至步骤1603与前述图5所示的实施例中的步骤501至步骤503类似,具体可以参阅前述图5所示的实施例中的步骤501至步骤503的相关介绍。
可选的,本实施例还包括步骤1604。步骤1604在步骤1603之后执行。
1604、若网络设备发送第一PDSCH数据的时刻早于第一DCI指示的公共波束生效的时刻,终端设备采用第三公共波束接收第一PDSCH数据。
第一PDSCH数据为第一DCI调度的PDSCH数据。网络设备发送第一PDSCH数据的时刻可以理解为终端设备接收第一PDSCH数据的时刻。
具体的,由于终端设备在接收第一DCI之后,终端设备需要一段时间对第一DCI进行译码。在译码成功后,终端设备才能够确定第一DCI是否调度PDSCH数据,以及PDSCH数据传输采用的波束(即第一DCI指示的公共波束)等。因此,在网络设备发送第一PDSCH数据的时刻早于第一DCI指示的公共波束生效的时刻,终端设备可以采用第三公共波束接收第一PDSCH数据。
本实施例中,第三公共波束包括以下任一项:
一、当满足第三条件时,第三公共波束为当前使用的公共波束,或者为最近一次生效或指示的公共波束。
第三条件包括以下任一项或任多项:
1、终端设备支持公共波束功能;
2、终端设备开启公共波束功能;
3、网络设备在终端设备初始接入之后或完成波束失败恢复之后,第一次向终端设备指示的公共波束已经生效;
波束指示信息用于网络设备在终端设备初始接入之后或完成波束失败恢复之后,第n+1次向终端设备指示公共波束。即终端设备采用当前使用的公共波束为网络设备在终端设备初始接入之后或完成波束失败恢复之后,第n次向终端设备指示公共波束。n为大于或等于1的整数。
终端设备采用最近一次指示的公共波束可以理解为:网络设备在终端设备初始接入之后或完成波束失败恢复之后,第n次向终端设备指示公共波束。
终端设备采用最近一次生效的公共波束可以理解为网络设备在终端设备初始接入之后或完成波束失败恢复之后,第n次向终端设备指示且生效的公共波束。
二、当满足第四条件时,第三公共波束为初始接入时终端设备采用的SSB波束。
第四条件包括以下任一项或任多项:
1、终端设备支持公共波束功能;
2、终端设备开启公共波束功能;
3、网络设备在终端设备初始接入之后,第一次向终端设备指示的公共波束未生效。
需要说明的是,若网络设备在终端设备初始接入之后,第一次向终端设备指示的公共波束未生效,第三公共波束为初始接入时终端设备采用的SSB波束还可以替换为:若网络设备在终端设备初始接入之后,终端设备未接收到步骤1602的波束激活信息,第三公共波束为初始接入时终端设备采用的SSB波束。
本实施例以若网络设备在终端设备初始接入之后,第一次向终端设备指示的公共波束未生效,第三公共波束为初始接入时终端设备采用的SSB波束为例进行说明。
三、当满足第五条件时,所述第三公共波束为所述波束失败恢复时所述终端设备上报给网络设备的波束。
第五条件包括以下任一项或任多项:
1、终端设备支持公共波束功能;
2、终端设备开启公共波束功能;
3、所述网络设备在所述终端设备完成波束失败恢复之后,第一次向所述终端设备指示的公共波束未生效。
四、当满足第六条件时,第三公共波束为波束激活信息激活的公共波束。
第六条件包括以下任一项或任多项:
1、终端设备支持公共波束功能;
2、终端设备开启公共波束功能;
3、网络设备在终端设备初始接入之后,波束激活信息激活一个公共波束。
五、当满足第六条件时,第三公共波束为波束激活信息激活的多个公共波束中的第一个公共波束、或者为最后一个公共波束、或者为对应的公共波束指示字段值最大的公共波束、或者为对应的公共波束指示字段值最小的公共波束。
1、终端设备支持公共波束功能;
2、终端设备开启公共波束功能;
3、网络设备在终端设备初始接入之后,波束激活信息激活多个公共波束。
请参阅图16B,若网络设备发送第一PDSCH数据的时刻在第一DCI指示的公共波束的生效时刻之前(也就是网络设备发送第一PDSCH数据的时刻落在时间段1或时间段2),终端设备可以采用上述示出的任一种第三公共波束进行传输。
进一步地,若网络设备发送第一DCI调度的第一PDSCH数据的时刻与网络设备发送第一DCI的时刻之间的时间间隔大于或等于预设门限值,且网络设备发送第一PDSCH数据的时刻早于第一DCI指示的公共波束生效的时刻,第三公共波束还包括第一DCI指示的公共波束。
其中,网络设备发送第一DCI的时刻可以理解为终端设备接收第一DCI的时刻。预设的门限值为终端设备对第一DCI进行译码所需的时长。如图16B所示,如果网络设备发送第一DCI调度的第一PDSCH数据的时刻落在时间段2,也就是网络设备发送第一PDSCH数据的时刻落入在终端设备对第一DCI译码完成之后的时间段,那么终端设备还可以通过第一DCI指示的公共波束进行传输。
如果网络设备发送第一DCI调度的第一PDSCH数据在第一DCI指示的公共波束的生效时刻之后,那么终端设备采用第一DCI指示的公共波束进行传输。
需要说明的是,上述步骤1604中,公共波束可以为上行公共波束、或者为下行公共波束,或者为联合公共波束。上述图16A所示的实施例仅仅介绍了在第一DCI调度的公共波束生效之前,终端设备如何接收第一PDSCH数据的技术方案。
在实际应用中,上述第一PDSCH数据也可以替换为第一DCI触发的CSI-RS。即若网络设备发送第一DCI触发的CSI-RS的时刻早于第一DCI指示的公共波束生效的时刻,终端设备可以采用上述任一种第三公共波束接收第一DCI触发的CSI-RS。
或者,上述第一PDSCH数据替换为第一PDSCH数据对应的HARQ反馈结果。即若终端设备发送第一PDSCH数据对应的HARQ反馈结果的时刻早于第一DCI指示的公共波束生效的时刻,终端设备可以采用上述任一种第三公共波束向网络设备发送第一PDSCH数据对应的HARQ反馈结果。
或者,上述第一PDSCH数据替换为第一DCI调度的PUSCH。即若所述终端设备发送第一DCI调度的PUSCH的时刻早于第一DCI指示的公共波束生效的时刻,终端设备可以采用上述任一种第三公共波束发送第一DCI调度的PUSCH。
或者,上述第一PDSCH数据替换为第一DCI触发的SRS。即若终端设备发送第一DCI触发的SRS的时刻早于第一DCI指示的公共波束生效的时刻,终端设备可以采用上述任一种第三公共波束向网络设备发送第一DCI触发的SRS。
上述实施例十三的技术方案中,波束指示信息通过第一DCI携带,第一DCI还调度第一PDSCH数据。若网络设备发送第一PDSCH数据的时刻在第一DCI指示的公共波束生效的时刻之前,终端设备采用第三公共波束进行传输。第三公共波束的具体形式请参阅前述实施例十三的相关介绍。也就是终端设备通过实施例十三的技术方案实现了对第一DCI调度的第一PDSCH数据的接收。不会因为波束指示信息指示的公共波束未生效导致终端设备与网络设备无法进行正常的通信,提升通信系统的性能。
本申请提供实施例十四,下面通过图17A介绍本申请提供的实施例十四的技术方案。
请参阅图17A,图17A为本申请实施例波束管理方法的另一个实施例示意图。在图17A中,波束管理方法包括:
1701、网络设备向终端设备发送波束配置信息。相应的,终端设备接收来自网络设备的波束配置信息。
1702、网络设备向终端设备发送波束激活信息。相应的,终端设备接收来自网络设备的波束激活信息。
1703、网络设备向终端设备发送第一DCI。相应的,终端设备接收来自网络设备的第一DCI。
步骤1701至步骤1703与前述图5所示的实施例中的步骤501至步骤503类似,具体可以参阅前述图5所示的实施例中的步骤501至步骤503的相关介绍。
可选的,本实施例还包括步骤1704和步骤1705。步骤1704至步骤1705在步骤1703之后执行。
1704、终端设备接收来自网络设备的第二DCI。
其中,第二DCI用于调度第二PDSCH数据。
1705、若网络设备发送所述第二DCI调度的第二PDSCH数据的时刻与网络设备发送第二DCI的时刻之间的时间间隔小于预设门限值,终端设备采用第四公共波束接收第二PDSCH数据。
具体的,网络设备发送所述第二DCI调度的第二PDSCH数据的时刻可以理解为终端设备接收第二PDSCH数据的时刻。网络设备发送第二DCI的时刻可以理解为终端设备接收第二DCI的时刻。由于终端设备在接收第二DCI之后,终端设备需要一段时间对第二DCI进行译码。在译码成功后,终端设备才能够确定第二DCI是否调度PDSCH数据,以及PDSCH数据传输采用的波束等。预设的门限值即为终端设备对第二DCI进行译码所需的时长。因此,若网络设备发送所述第二DCI调度的第二PDSCH数据的时刻与网络设备发送第二DCI的时刻之间的时间间隔小于预设门限值,终端设备采用第四公共波束接收第二PDSCH数据。
本实施例中,第四公共波束包括以下任一项:
一、当满足第七条件时,第四公共波束为当前使用的公共波束,或者为最近一次生效或指示的公共波束。
第七条件包括以下任一项或任多项:
1、终端设备支持公共波束功能;
2、终端设备开启公共波束功能;
3、网络设备在终端设备初始接入之后或完成波束失败恢复之后,第一次向终端设备指示的公共波束已经生效。
第一DCI用于网络设备在终端设备初始接入之后或完成波束失败恢复之后,第n+1次向终端设备指示公共波束。即终端设备采用当前使用的公共波束为网络设备在终端设备初始接入之后或完成波束失败恢复之后,第n次向终端设备指示公共波束。n为大于或等于1的整数。
终端设备采用最近一次指示的公共波束可以理解为:网络设备在终端设备初始接入之后或完成波束失败恢复之后,第n次向终端设备指示公共波束。
终端设备采用最近一次生效的公共波束可以理解为网络设备在终端设备初始接入之后或完成波束失败恢复之后,第n次向终端设备指示且生效的公共波束。
二、当满足第八条件时,第四公共波束为初始接入时终端设备采用的SSB波束。
第八条件包括以下任一项或任多项:
1、终端设备支持公共波束功能;
2、终端设备开启公共波束功能;
3、网络设备在终端设备初始接入之后,第一次向终端设备指示的公共波束未生效。
需要说明的是,若网络设备在终端设备初始接入之后,第一次向终端设备指示的公共波束未生效,第四公共波束为初始接入时终端设备采用的SSB波束可以替换为:若网络设备在终端设备初始接入之后,终端设备未接收到步骤1602的波束激活信息,第四公共波束为初始接入时终端设备采用的SSB波束。
三、当满足第九条件时,所述第四公共波束为所述波束失败恢复时所述终端设备上报给网络设备的波束。
第九条件包括以下任一项或任多项:
1、终端设备支持公共波束功能;
2、终端设备开启公共波束功能;
3、所述网络设备在所述终端设备完成波束失败恢复之后,第一次向所述终端设备指示的公共波束未生效。
四、当满足第十条件时,第四公共波束为波束激活信息激活的公共波束。
第十条件包括以下任一项或任多项:
1、终端设备支持公共波束功能;
2、终端设备开启公共波束功能;
3、网络设备在终端设备初始接入之后,波束激活信息激活一个公共波束。
五、当满足第十一条件时,第四公共波束为波束激活信息激活的多个公共波束中的第一个公共波束、或者为最后一个公共波束、或者为对应的公共波束指示字段值最大的公共波束、或者为对应的公共波束指示字段值最小的公共波束。
第十一条件包括以下任一项或任多项:
1、终端设备支持公共波束功能;
2、终端设备开启公共波束功能;
3、网络设备在终端设备初始接入之后,波束激活信息激活多个公共波束。
请参阅图17B,网络设备发送第二DCI调度的第二PDSCH数据的时刻与网络设备发送第二DCI的时刻之间的时间间隔小于预设门限值,也就是网络设备发送第二DCI调度的第二PDSCH数据的时刻落入图17B所示的时间段1,终端设备可以采用上述示出的任一种第四公共波束进行传输。
需要说明的是,若网络设备发送第二DCI调度的第二PDSCH数据的时刻与网络设备发送第二DCI的时刻之间的时间间隔大于预设门限值,那么终端设备同样可以采用上述示出的任一种第四公共波束进行传输。
需要说明的是,上述步骤1705中,公共波束可以为上行公共波束、或者为下行公共波束,或者为联合公共波束。上述实施例十四仅仅介绍了在网络设备发送第二DCI调度的第二PDSCH数据的时刻与网络设备发送第二DCI的时刻之间的时间间隔大于预设门限值,终端设备如何接收第二PDSCH数据的技术方案。
在实际应用中,第二PDSCH数据也可以替换为第二DCI触发的CSI-RS。即若网络设备发送第二DCI触发的CSI-RS的时刻与网络设备发送第二DCI的时刻之间的时间间隔小于预设门限值,终端设备可以采用上述任一种第四公共波束接收来自网络设备的第二DCI触发的CSI-RS。
或者,第二PDSCH数据也可以替换为第二PDSCH数据对应的HARQ反馈结果。即若终端设备发送第二PDSCH数据对应的HARQ反馈结果的时刻与网络设备发送第二DCI的时刻之间的时间间隔小于预设门限值,终端设备可以采用上述任一种第四公共波束向网络设备发送第二 PDSCH数据对应的HARQ反馈结果。
或者,上述第二PDSCH数据也可以替换为第二DCI调度的PUSCH。即若终端设备发送第二DCI调度的PUSCH的时刻与网络设备发送第二DCI的时刻之间的时间间隔小于预设门限值,终端设备可以采用上述任一种第四公共波束发送第二DCI调度的PUSCH。
或者,第二PDSCH数据替换为第二DCI触发的SRS。即若终端设备发送第二DCI触发的SRS的时刻与网络设备发送第二DCI的时刻之间的时间间隔小于预设门限值,终端设备可以采用上述任一种第四公共波束向网络设备发送第二DCI触发的SRS。
上述实施例十四的技术方案中,若网络设备发送第二DCI调度的第二PDSCH数据的时刻与网络设备发送第二DCI的时刻之间的时间间隔小于预设门限值,终端设备采用第四公共波束接收第二PDSCH数据。第四公共波束的具体形式请参阅前述实施例十四的相关介绍。也就是终端设备通过实施例十四的技术方案实现了对第二DCI调度的第二PDSCH数据的接收。不会因为波束指示信息指示的公共波束未生效导致终端设备与网络设备无法进行正常的通信,提升通信系统的性能。
应当理解的是,上述实施例一至实施例十四的技术方案可以分别为独立的方案,也可以根据内在逻辑进行自由组合,这些方案都落入本申请的保护范围中。
例如,实施例一的技术方案中,终端设备通过波束配置信息包括的一个或多个公共波束的配置参数确定该一个或多个公共波束的波束类型。在实施例一的技术方案的基础上,可以结合实施例二的技术方案,终端设备可以被配置独立公共波束或联合公共波束。即独立公共波束和联合公共波束不能同时被配置。
再例如,实施例二的技术方案中,示出了针对各种波束类型的公共波束的三种可能的配置方式。在实施例二的技术方案的基础上,可以结合实施例四的技术方案,终端设备可以通过不同MAC CE激活不同波束类型的公共波束,或者,通过同一MAC CE激活多种波束类型的公共波束。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
以上,结合图5、图6、图8、图9、图10、图11、图12、图13、图14、图15、图16A以及图17A详细说明了本申请实施例提供的方法。以下,结合图18至图22详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图18是本申请实施例提供的通信装置的示意性框图。该通信装置1800包括接收单元1801。可选的,通信装置1800还包括处理单元1802和发送单元1803。接收单元1801可以实现相应的通信功能,处理单元1802用于进行数据处理。接收单元1801还可以称为通信接口或通信单元。
可选地,该通信装置1800还可以包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元1802可以读取存储单元中的指令和/或数据,以使得通信装置实现前述方法实施例。
该通信装置1800可以用于执行上文方法实施例中终端设备所执行的动作,这时,该通信装置1800可以为终端设备或者可配置于终端设备的部件。接收单元1801用于执行上文方法实施例中终端设备侧的接收相关的操作,处理单元1802用于执行上文方法实施例中终端设备侧的处理相关的操作。
作为一种示例,该通信装置1800用于执行上文图5所示的实施例中终端设备所执行的动作。接收单元1801用于执行步骤501、步骤502、步骤503。
作为一种示例,该通信装置1800用于执行上文图6所示的实施例中终端设备所执行的动作。接收单元1801用于执行步骤601、步骤602和步骤603。处理单元1802用于执行步骤601a。
作为一种示例,该通信装置1800用于执行上文图8所示的实施例中终端设备所执行的动作。接收单元1801用于执行步骤801、步骤802、步骤803。处理单元1802用于执行步骤803b或步骤803e。发送单元1803用于执行步骤803a或步骤803d。
作为一种示例,该通信装置1800用于执行上文图9所示的实施例中终端设备所执行的动作。接收单元1801用于执行步骤901、步骤902、步骤903。处理单元1802用于执行步骤904。
作为一种示例,该通信装置1800用于执行上文图10所示的实施例中终端设备所执行的动作。接收单元1801用于执行步骤1001、步骤1002、步骤1003。处理单元1802用于执行步骤1004a、步骤1004b、步骤1004c或步骤1004d。
作为一种示例,该通信装置1800用于执行上文图11所示的实施例中终端设备所执行的动作。接收单元1801用于执行步骤1101、以及步骤1102。处理单元1802用于执行步骤1103或步骤1104。
作为一种示例,该通信装置1800用于执行上文图12所示的实施例中终端设备所执行的动作。接收单元1801用于执行步骤1201、步骤1202和步骤1203。处理单元1802用于执行步骤1204。
作为一种示例,该通信装置1800用于执行上文图13所示的实施例中终端设备所执行的动作。接收单元1801用于执行步骤1301、步骤1302和步骤1303。处理单元1802用于执行步骤1304。
作为一种示例,该通信装置1800用于执行上文图14所示的实施例中终端设备所执行的动作。接收单元1801用于执行步骤1401、步骤1402和步骤1403。处理单元1802用于执行步骤1404;或者,处理单元1802用于执行步骤1405和步骤1406,或者步骤1405和步骤1407。
作为一种示例,该通信装置1800用于执行上文图15所示的实施例中终端设备所执行的动作。接收单元1801用于执行步骤1501、步骤1502和步骤1503。处理单元1802用于执行步骤1504。
作为一种示例,该通信装置1800用于执行上文图16A所示的实施例中终端设备所执行的动作。接收单元1801用于执行步骤1601、步骤1602和步骤1603。处理单元1802用于执行步骤1604。
作为一种示例,该通信装置1800用于执行上文图17A所示的实施例中终端设备所执行的动作。接收单元1801用于执行步骤1701、步骤1702、步骤1703和步骤1704。处理单元1802用于执行步骤1705。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
上文实施例中的处理单元1802可以由至少一个处理器或处理器相关电路实现。接收单元1801和发送单元1803可以由收发器或收发器相关电路实现。接收单元1801和发送单元1803还可称为通信单元或通信接口。存储单元可以通过至少一个存储器实现。
图19是本申请实施例提供的通信装置的示意性框图。该通信装置1900包括发送单元1901。可选的,通信装置1900还包括处理单元1902和接收单元1903。发送单元1901可以实现相应的通信功能,处理单元1902用于进行数据处理。发送单元1901还可以称为通信接口或通信单元。
可选地,该通信装置1900还可以包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元1902可以读取存储单元中的指令和/或数据,以使得通信装置实现前述方法实施例。
该通信装置1900可以用于执行上文方法实施例中终端设备所执行的动作,这时,该通信装置1900可以为终端设备或者可配置于终端设备的部件,发送单元1901用于执行上文方法实施例中网络设备侧的发送相关的操作,处理单元1902用于执行上文方法实施例中网络设备侧的处理相关的操作。
作为一种示例,该通信装置1900用于执行上文图5所示的实施例中网络设备所执行的动作。发送单元1901用于执行步骤501、步骤502、步骤503。
作为一种示例,该通信装置1900用于执行上文图6所示的实施例中网络设备所执行的动作。发送单元1901用于执行步骤601、步骤602和步骤603。
作为一种示例,该通信装置1900用于执行上文图8所示的实施例中网络设备所执行的 动作。发送单元1901用于执行步骤801、步骤802、步骤803。处理单元1902用于执行步骤803c或步骤803f。接收单元1903用于执行步骤803a或者步骤803d。
作为一种示例,该通信装置1900用于执行上文图9所示的实施例中网络设备所执行的动作。发送单元1901用于执行步骤901、步骤902、步骤903。
作为一种示例,该通信装置1900用于执行上文图10所示的实施例中网络设备所执行的动作。发送单元1901用于执行步骤1001、步骤1002、步骤1003。
作为一种示例,该通信装置1900用于执行上文图11所示的实施例中网络设备所执行的动作。发送单元1901用于执行步骤1101、以及步骤1102。
作为一种示例,该通信装置1900用于执行上文图12所示的实施例中网络设备所执行的动作。发送单元1901用于执行步骤1201、步骤1202和步骤1203。
作为一种示例,该通信装置1900用于执行上文图13所示的实施例中网络设备所执行的动作。发送单元1901用于执行步骤1301、步骤1302和步骤1303。
作为一种示例,该通信装置1900用于执行上文图14所示的实施例中网络设备所执行的动作。发送单元1901用于执行步骤1401、步骤1402和步骤1403。
作为一种示例,该通信装置1900用于执行上文图15所示的实施例中网络设备所执行的动作。发送单元1901用于执行步骤1501、步骤1502和步骤1503。
作为一种示例,该通信装置1900用于执行上文图16A所示的实施例中终端设备所执行的动作。发送单元1901用于执行步骤1601、步骤1602和步骤1603。
作为一种示例,该通信装置1900用于执行上文图17A所示的实施例中终端设备所执行的动作。发送单元1901用于执行步骤1701、步骤1702、步骤1703和步骤1704。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
上文实施例中的处理单元1902可以由至少一个处理器或处理器相关电路实现。发送单元1901和接收单元1903可以由收发器或收发器相关电路实现。发送单元1901和接收单元1903还可称为通信单元或通信接口。存储单元可以通过至少一个存储器实现。
如图20所示,本申请实施例还提供一种通信装置2000。该通信装置2000包括处理器2010,处理器2010与存储器2020耦合,存储器2020用于存储计算机程序或指令和/或数据,处理器2010用于执行存储器2020存储的计算机程序或指令和/或数据,使得上文方法实施例中的方法被执行。
可选地,该通信装置2000包括的处理器2010为一个或多个。
可选地,如图20所示,该通信装置2000还可以包括存储器2020。
可选地,该通信装置2000包括的存储器2020可以为一个或多个。
可选地,该存储器2020可以与该处理器2010集成在一起,或者分离设置。
可选地,如图20所示,该通信装置2000还可以包括收发器2030,收发器2030用于信号的接收和/或发送。例如,处理器2010用于控制收发器2030进行信号的接收和/或发送。
作为一种方案,该通信装置2000用于实现上文方法实施例中由终端设备执行的操作。
例如,处理器2010用于实现上文方法实施例中由终端设备执行的处理相关的操作,收发器2030用于实现上文方法实施例中由终端设备执行的收发相关的操作。
作为另一种方案,该通信装置2000用于实现上文方法实施例中由网络设备执行的操作。
例如,处理器2010用于实现上文方法实施例中由网络设备执行的处理相关的操作,收发器2030用于实现上文方法实施例中由网络设备执行的收发相关的操作。
本申请实施例还提供一种通信装置2100,该通信装置2100可以是终端设备也可以是芯片。该通信装置2100可以用于执行上述方法实施例中由终端设备所执行的操作。
当该通信装置2100为终端设备时,图21示出了一种简化的终端设备的结构示意图。如图21所示,终端设备包括处理器、存储器、收发器,其中存储器可以存储计算机程序代码,收发器包括发射机2131、接收机2132、射频电路(图中未示出)、天线2133以及输入输出装置(图中未示出)。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图21中仅示出了一个存储器、处理器和收发器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图21所示,终端设备包括处理器2110、存储器2120和收发器2130。处理器2110也可以称为处理单元,处理单板,处理模块、处理装置等,收发器2130也可以称为收发单元、收发机、收发装置等。
可选地,可以将收发器2130中用于实现接收功能的器件视为接收单元,将收发器2130中用于实现发送功能的器件视为发送单元,即收发器2130包括接收器和发送器。收发器有时也可以称为收发机、收发单元、或收发电路等。接收器有时也可以称为接收机、接收单元、或接收电路等。发送器有时也可以称为发射机、发射单元或者发射电路等。
例如,在一种实现方式中,收发器2130用于执行图5中终端设备侧的收发动作。例如,收发器2130用于执行图5中的步骤501、步骤502和步骤503的收发操作。
又如,在一种实现方式中,收发器2130用于执行图6中的步骤601、步骤602和步骤603的收发操作。处理器2110用于执行图6中的步骤601a的处理操作。
又如,在一种实现方式中,收发器2130用于执行图8中的步骤801、步骤802、步骤803、步骤803a、步骤803d的收发操作。处理器2110用于执行步骤803c或步骤803f的处理操作。
又如,在一种实现方式中,收发器2130用于执行图9中步骤901、步骤902、步骤903的收发操作。处理器2110用于执行步骤904的处理操作。
又如,在一种实现方式中,收发器2130用于执行图10中步骤1001、步骤1002、步骤1003的收发操作。处理器2110用于执行步骤1004a、步骤1004b、步骤1004c或步骤1004d的处理操作。
又如,在一种实现方式中,收发器2130用于执行图11中步骤1101、步骤1102的收发操作。处理器2110用于执行步骤1103或步骤1104的处理操作。
又如,在一种实现方式中,收发器2130用于执行图12中步骤1201、步骤1202、步骤1203的收发操作。处理器2110用于执行步骤1204的处理操作。
又如,在一种实现方式中,收发器2130用于执行图13中步骤1301、步骤1302、步骤1303的收发操作。处理器2110用于执行步骤1304的处理操作。
又如,在一种实现方式中,收发器2130用于执行图14中步骤1401、步骤1402、步骤1403的收发操作。处理器2110用于执行步骤1404的处理操作;或者,处理器2110用于执行步骤1405和步骤1406的处理操作;或者,处理器2110用于执行步骤1405和步骤1407的处理操作。
又如,在一种实现方式中,收发器2130用于执行图15中步骤1501、步骤1502、步骤1503的收发操作。处理器2110用于执行步骤1504的处理操作。
又如,在一种实现方式中,收发器2130用于执行图16A中步骤1601、步骤1602、步骤1603的收发操作。处理器2110用于执行步骤1604的处理操作。
又如,在一种实现方式中,收发器2130用于执行图17A中步骤1701、步骤1702、步骤1703、步骤1704的收发操作。处理器2110用于执行步骤1705的处理操作。
应理解,图21仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图21所示的结构。
当该通信装置2100为芯片时,该芯片包括处理器、存储器和收发器。其中,收发器可以是输入输出电路或通信接口;处理器可以为该芯片上集成的处理单元或者微处理器或者集成电路。
本申请实施例还提供一种通信装置2200,该通信装置2200可以是网络设备也可以是芯片。该通信装置2200可以用于执行上述方法实施例中由网络设备所执行的操作。
当该通信装置2200为网络设备时,例如为基站。图22示出了一种简化的基站结构示意图。基站包括2210部分、2220部分以及2230部分。2210部分主要用于基带处理,对基站进行控制等;2210部分通常是基站的控制中心,通常可以称为处理器,用于控制基站执行上述方法实施例中网络设备侧的处理操作。2220部分主要用于存储计算机程序代码和数据。2230部分主要用于射频信号的收发以及射频信号与基带信号的转换;2230部分通常可以称为收发单元、收发机、收发电路、或者收发器等。2230部分的收发单元,也可以称为 收发机或收发器等,其包括天线2233和射频电路(图中未示出),其中射频电路主要用于进行射频处理。可选地,可以将2230部分中用于实现接收功能的器件视为接收机,将用于实现发送功能的器件视为发射机,即2230部分包括接收机2232和发射机2231。接收机也可以称为接收单元、接收器、或接收电路等,发送机可以称为发射单元、发射器或者发射电路等。
2210部分与2220部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,2230部分的收发单元用于执行图5所示实施例中由网络设备执行的收发相关的步骤。
例如,在又一种实现方式中,2210部分的处理器用于执行图8所示实施例中由网络设备执行的处理相关的步骤;2230部分用于执行图8所示实施例中由网络设备执行的收发相关的步骤。
应理解,图22仅为示例而非限定,上述包括处理器、存储器以及收发器的网络设备可以不依赖于图22所示的结构。
当该通信装置2200为芯片时,该芯片包括收发器、存储器和处理器。其中,收发器可以是输入输出电路、通信接口;处理器为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种通信系统,该通信系统包括上文实施例中的网络设备与终端设备。
本申请实施例还提供一种芯片装置,包括处理器,用于调用该存储器中存储的计算机程度或计算机指令,以使得该处理器执行上述图5、图6、图8、图9、图10、图11、图12、图13、图14、图15、图16A以及图17A所示的实施例的波束管理方法。
可选的,该处理器通过接口与存储器耦合。
可选的,该芯片装置还包括存储器,该存储器中存储有计算机程度或计算机指令。
其中,上述任一处提到的处理器,可以是一个通用中央处理器,微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述图5、图6、图8、图9、图10、图11、图12、图13、图14、图15、图16A以及图17A所示的实施例的波束管理方法的程序执行的集成电路。上述任一处提到的存储器可以 为只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
所属领域的技术人员可以清楚地了解到,为描述方便和简洁,上述提供的任一种通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请实施例中,终端设备或网络设备可以包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。其中,硬件层可以包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。操作系统层的操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。应用层可以包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案范围。

Claims (105)

  1. 一种波束管理方法,其特征在于,所述方法包括:
    终端设备接收来自网络设备的波束配置信息,所述波束配置信息包括一个或多个公共波束的配置信息;
    所述一个或多个公共波束包括以下任一种:用于上行传输或下行传输的独立公共波束;用于上行传输和下行传输的联合公共波束;
    所述终端设备接收来自所述网络设备的波束激活信息,所述波束激活信息用于激活所述一个或多个公共波束中的部分公共波束;
    所述终端设备接收来自所述网络设备的波束指示信息,所述波束指示信息用于指示所述部分公共波束中的一个或多个公共波束。
  2. 根据权利要求1所述的方法,其特征在于,所述波束配置信息包括第一公共波束的配置参数;
    若所述第一公共波束的配置参数包括第一参数且不包括第二参数,所述第一公共波束为上行公共波束;或者,
    若所述第一公共波束的配置参数包括所述第二参数且不包括所述第一参数,所述第一公共波束为下行公共波束;或者,
    若所述第一公共波束的配置参数包括所述第一参数和所述第二参数,所述第一公共波束为联合公共波束;
    所述第一参数包括以下至少一项:用于确定上行发送波束的参考信号资源,空间关系信息、上行功率控制参数、信道探测参考信号SRS资源;
    所述第二参数包括以下至少一项:准共址QCL信息、带宽分量BWP参数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述波束指示信息通过第一下行控制信息DCI携带;当满足第一条件时,且所述第一DCI对应的混合自动重传请求HARQ反馈结果为确认字符ACK,表示所述波束指示信息指示的一个或多个公共波束指示成功;
    所述第一条件包括以下一项或多项的组合:
    所述终端设备上报支持公共波束功能;
    所述网络设备将所述终端设备的公共波束功能配置为开启状态;
    所述第一DCI没有调度物理下行共享信道PDSCH;
    所述第一DCI调度PDSCH且所述终端设备采用动态混合自动重传请求确认HARQ-ACK码本进行HARQ反馈;
    所述第一DCI指示的一个或多个公共波束与所述终端设备当前使用的公共波束不同。
  4. 根据权利要求3所述的方法,其特征在于,所述波束指示信息指示的一个或多个公共波束指示成功之后,所述第一DCI指示的公共波束在第一时刻加上第一时间偏移后的第一个时隙生效;
    所述第一时刻为收到所述第一DCI的时刻,或者为所述终端设备发送所述第一DCI对应的HARQ反馈结果的时刻;
    所述第一DCI对应的HARQ反馈结果为针对所述第一DCI反馈的HARQ反馈结果或针对 所述第一DCI调度的PDSCH反馈的HARQ反馈结果。
  5. 根据权利要求1或2所述的方法,其特征在于,所述波束指示信息通过第一DCI携带,当满足第二条件时,且所述第一DCI对应的HARQ反馈结果为ACK或否定确认字符NACK,表示所述波束指示信息指示的一个或多个公共波束指示成功;
    所述第二条件包括以下一项或多项的组合:
    所述终端设备上报支持公共波束功能;
    所述网络设备将所述终端设备的公共波束功能配置为开启状态;
    所述第一DCI调度了物理下行共享信道PDSCH;
    所述终端设备采用半静态HARQ-ACK码本进行HARQ反馈;
    所述第一DCI指示的一个或多个公共波束与所述终端设备当前使用的公共波束不同。
  6. 根据权利要求5所述的方法,其特征在于,所述波束指示信息指示的一个或多个公共波束指示成功之后,所述第一DCI指示的公共波束在第一时刻加上第一时间偏移后的第一个时隙生效;
    所述第一时刻为收到所述第一DCI的时刻,或者为所述终端设备发送所述第一DCI对应的HARQ反馈结果的时刻;
    所述第一DCI对应的HARQ反馈结果为针对所述第一DCI调度的PDSCH反馈的HARQ反馈结果。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述波束指示信息通过第一DCI携带;所述第一DCI包括公共波束指示字段,所述公共波束指示字段用于指示一种波束类型的公共波束;所述方法还包括:
    所述终端设备根据所述波束配置信息确定所述公共波束指示字段指示的公共波束的波束类型;或者,
    所述终端设备根据所述波束激活信息确定所述公共波束指示字段指示的公共波束的波束类型;或者,
    所述终端设备根据所述第一DCI确定所述公共波束指示字段指示的公共波束的波束类型。
  8. 根据权利要求7所述的方法,其特征在于,所述终端设备根据所述波束配置信息确定所述公共波束指示字段指示的公共波束的波束类型,包括:
    若所述网络设备通过所述波束配置信息将所述终端设备的公共波束模式配置为联合公共波束模式、或所述波束配置信息包括联合公共波束的配置信息,则所述终端设备确定所述公共波束指示字段指示的波束类型为联合公共波束;或者,
    若所述网络设备通过波束配置信息将所述终端设备的公共波束模式配置为独立公共波束模式、或所述波束配置信息包括所述独立公共波束的配置信息,则所述终端设备确定所述公共波束指示字段指示的公共波束的波束类型为上行公共波束或下行公共波束。
  9. 根据权利要求7所述的方法,其特征在于,所述终端设备根据所述波束激活信息确定所述公共波束指示字段指示的公共波束的波束类型,包括:
    若所述波束激活信息用于激活联合公共波束,则所述终端设备确定所述公共波束指示 字段指示的公共波束的波束类型为联合公共波束;或者
    若所述波束激活信息用于激活独立公共波束,则所述终端设备确定所述公共波束指示字段指示的公共波束的波束类型为上行公共波束或下行公共波束。
  10. 根据权利要求7所述的方法,其特征在于,所述公共波束指示字段的前x个比特或后x个比特或所述第一DCI包括的第一指示字段用于指示所述公共波束指示字段指示的公共波束的波束类型,x为大于或等于1的整数;
    所述波束类型包括以下任一种:联合公共波束、上行公共波束、下行公共波束;或者,所述波束类型包括以下任一种:上行公共波束、下行公共波束。
  11. 根据权利要求1至6中任一项所述的方法,其特征在于,所述波束指示信息通过第一DCI携带,所述第一DCI包括公共波束指示字段,所述公共波束指示字段包括一个或两个子字段;所述方法还包括:
    所述终端设备根据所述波束配置信息配置的公共波束的波束类型确定所述公共波束指示字段包括的子字段的数量,和/或,所述子字段指示的波束类型。
  12. 根据权利要求11所述的方法,其特征在于,如果波束配置信息配置的波束类型为联合公共波束,则所述公共波束指示字段包括一个子字段,所述一个子字段用于指示联合公共波束;或者,
    如果波束配置信息配置的波束类型为独立公共波束,则所述公共波束指示字段包括两个子字段,所述两个子字段用于指示上行公共波束和下行公共波束。
  13. 根据权利要求11或12所述的方法,其特征在于,若所述公共波束指示字段包括两个子字段,则所述两个子字段中的第一个子字段用于指示所述上行公共波束,所述两个子字段中的第二个子字段用于指示所述下行公共波束;或者,所述两个子字段中的第一个子字段用于指示所述下行公共波束,所述两个子字段中的第二个子字段用于指示所述上行公共波束。
  14. 根据权利要求11或12所述的方法,其特征在于,若所述公共波束指示字段包括两个子字段,所述方法还包括:
    所述终端设备根据所述波束配置信息确定所述两个子字段分别指示的波束类型;或者,
    所述终端设备根据所述波束激活信息确定所述两个子字段分别指示的波束类型;或者,
    所述终端设备根据所述第一DCI确定所述两个子字段分别指示的波束类型。
  15. 根据权利要求14所述的方法,其特征在于,所述波束配置信息包括上行公共波束集合和下行公共波束集合;所述终端设备根据所述波束配置信息确定所述两个子字段分别指示的波束类型,包括:
    所述终端设备根据所述上行公共波束集合和所述下行公共波束集合的配置先后顺序确定所述两个子字段分别指示的波束类型;或者,
    所述终端设备根据所述上行公共波束集合和所述下行公共波束集合分别对应的集合索引大小顺序确定所述两个子字段分别指示的波束类型。
  16. 根据权利要求14所述的方法,其特征在于,所述终端设备根据所述波束激活信息确定所述两个子字段分别指示的波束类型,包括:
    所述终端设备根据所述波束激活信息激活的上行公共波束和下行公共波束的排列先后顺序确定所述两个子字段分别指示的波束类型。
  17. 根据权利要求14所述的方法,其特征在于,所述终端设备根据所述第一DCI确定所述两个子字段分别指示的波束类型,包括:
    所述终端设备根据所述公共波束指示字段中的前x个比特或后x个比特或所述第一DCI包括的第二指示字段确定所述两个子字段中的第一个子字段指示的波束类型和第二个子字段指示的波束类型。
  18. 根据权利要求1至17中任一项所述的方法,其特征在于,所述波束指示信息通过第一DCI携带;若所述第一DCI不包括公共波束指示字段,所述方法还包括:
    若所述波束激活信息用于激活一个公共波束,所述终端设备采用所述波束激活信息激活的公共波束进行传输;或者,
    若所述波束激活信息用于激活多个公共波束,所述终端设备采用所述多个公共波束中波束索引最大的,或波束索引最小的,或排序最靠前的,或排序最靠后的,或对应的公共波束指示字段值最小的,或对应的公共波束指示字段值最大的公共波束进行传输。
  19. 根据权利要求1至18中任一项所述的方法,其特征在于,所述方法还包括:
    若所述公共波束指示信息指示的公共波束与第二公共波束相同,所述终端设备忽略所述波束指示信息;
    所述第二公共波束包括以下任一项:所述终端设备当前采用的公共波束、所述终端设备在时间上最近一次指示或生效的公共波束。
  20. 根据权利要求1至19中任一项所述的方法,其特征在于,若所述波束指示信息指示相同波束类型的K个公共波束,并且所述网络设备为所述终端设备配置K个第一资源或K个第一资源集合;所述方法还包括:
    所述终端设备将所述K个公共波束作为所述K个第一资源或所述K个第一资源集合对应的波束,K为大于1的整数;
    所述K个公共波束与所述K个第一资源或所述K个第一资源集合一一对应,所述K个第一资源集合中每个第一资源集合包括所述第一资源,所述K个公共波束分别用于对应的所述第一资源的传输;
    所述K个公共波束按照所述波束指示信息的指示顺序或所述K个公共波束的波束索引大小顺序排序;
    所述K个第一资源或所述K个第一资源集合按照资源配置顺序或资源索引大小顺序排序;
    所述第一资源包括以下任一种:未配置重复repetitoin参数和传输信息trs-Info参数的信道状态信息参考信号CSI-RS,码本codebook类型的探测参考信号SRS,非码本nonCodebook类型的SRS,nonCodebook类型的SRS关联的CSI-RS。
  21. 根据权利要求1至20中任一项所述的方法,其特征在于,所述波束指示信息用于所述网络设备在所述终端设备初始接入之后第一次向所述终端设备指示公共波束;在所述波束指示信息指示的公共波束生效之前,所述方法还包括:
    所述终端设备采用初始接入时采用的同步信号-广播信道测量资源块SSB波束进行传输。
  22. 根据权利要求1至20中任一项所述的方法,其特征在于,所述波束指示信息用于所述网络设备在所述终端设备发生波束失败之后第一次向所述终端设备指示公共波束;
    在所述终端设备完成波束失败恢复之后,所述波束指示信息指示的公共波束生效之前,所述方法还包括:
    所述终端设备采用所述终端设备在波束失败恢复过程中向所述网络设备上报的波束进行传输。
  23. 根据权利要求1至20中任一项所述的方法,其特征在于,所述波束指示信息用于所述网络设备在所述终端设备初始接入之后第一次向所述终端设备指示公共波束;
    在所述终端设备初始接入之后,所述终端设备接收到所述波束激活信息之前,所述方法还包括:
    所述终端设备采用初始接入时采用的SSB波束进行传输;
    在所述终端设备接收到所述波束激活信息之后,所述波束指示信息指示的公共波束生效之前,所述方法还包括:
    所述终端设备采用所述波束激活信息激活的第一个公共波束或最后一个公共波束进行传输;或者,
    所述终端设备采用所述波束激活信息激活的公共波束中公共波束指示字段值最大或最小的公共波束进行传输。
  24. 根据权利要求1至23中任一项所述的方法,其特征在于,所述波束指示信息通过第一DCI携带,所述第一DCI还调度第一PDSCH数据;所述方法还包括:
    若所述网络设备发送所述第一PDSCH数据的时刻早于所述第一DCI指示的公共波束生效的时刻,所述终端设备采用第三公共波束接收来自所述网络设备的所述第一PDSCH数据;
    所述第三公共波束包括以下任一项:
    若所述网络设备在所述终端设备初始接入之后或完成波束失败恢复之后,第一次向所述终端设备指示的公共波束已经生效,所述第三公共波束为当前使用的公共波束,或者为最近一次生效或指示的公共波束;
    若所述网络设备在所述终端设备初始接入之后,第一次向所述终端设备指示的公共波束未生效,所述第三公共波束为所述初始接入时所述终端设备采用的SSB波束;
    若所述网络设备在所述终端设备完成波束失败恢复之后,第一次向所述终端设备指示的公共波束未生效,所述第三公共波束为所述波束失败恢复时所述终端设备上报给网络设备的波束。
  25. 根据权利要求24所述的方法,其特征在于,若所述网络设备发送所述第一DCI调度的第一PDSCH数据的时刻与所述网络设备发送所述第一DCI的时刻之间的时间间隔大于或等于预设门限值,且所述网络设备发送所述第一PDSCH数据的时刻早于所述第一DCI指示的公共波束生效的时刻,所述第三公共波束还包括所述第一DCI指示的公共波束。
  26. 根据权利要求1至25中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的第二DCI;
    若所述网络设备发送所述第二DCI调度的第二PDSCH数据的时刻与所述网络设备发送所述第二DCI的时刻之间的时间间隔小于预设门限值,所述终端设备采用第四公共波束接收来自所述网络设备的所述第二PDSCH数据;
    所述第四公共波束包括以下任一项:
    若所述网络设备在所述终端设备初始接入之后或完成波束失败恢复之后,第一次向所述终端设备指示的公共波束已经生效,所述第四公共波束为当前使用的公共波束,或者为最近一次生效或指示的公共波束;
    若所述网络设备在所述终端设备初始接入之后,第一次向所述终端设备指示的公共波束未生效,所述第四公共波束为所述初始接入时所述终端设备采用的SSB波束;
    若所述网络设备在所述终端设备完成波束失败恢复之后,第一次向所述终端设备指示的公共波束未生效,所述第四公共波束为所述波束失败恢复时所述终端设备上报给所述网络设备的波束。
  27. 一种波束管理方法,其特征在于,所述方法包括:
    网络设备向终端设备发送波束配置信息,所述波束配置信息包括一个或多个公共波束的配置信息;所述一个或多个公共波束包括以下任一种:用于上行传输或下行传输的独立公共波束;用于上行传输和下行传输的联合公共波束;
    所述网络设备向所述终端设备发送波束激活信息,所述波束激活信息用于激活所述一个或多个公共波束中的部分公共波束;
    所述网络设备向所述终端设备发送波束指示信息,所述波束指示信息用于指示所述部分公共波束中的一个或多个公共波束。
  28. 根据权利要求27所述的方法,其特征在于,所述波束配置信息包括第一公共波束的配置参数;
    若所述第一公共波束的配置参数包括第一参数且不包括第二参数,所述第一公共波束为上行公共波束;
    若所述第一公共波束的配置参数包括所述第二参数且不包括所述第一参数,所述第一公共波束为下行公共波束;
    若所述第一公共波束的配置参数包括所述第一参数和所述第二参数,所述第一公共波束为联合公共波束;
    所述第一参数包括以下至少一项:用于确定上行发送波束的参考信号资源,空间关系信息、上行功率控制参数、信道探测参考信号SRS资源;
    所述第二参数包括以下至少一项:准共址QCL信息、带宽分量BWP参数。
  29. 根据权利要求27或28所述的方法,其特征在于,所述波束指示信息通过第一下行控制信息DCI携带;当满足第一条件时,且所述第一DCI对应的混合自动重传请求HARQ反馈结果为确认字符ACK,表示所述波束指示信息指示的一个或多个公共波束指示成功;
    所述第一条件包括以下一项或多项的组合:
    所述终端设备上报支持公共波束功能;
    所述网络设备将所述终端设备的公共波束功能配置为开启状态;
    所述第一DCI没有调度物理下行共享信道PDSCH;
    所述第一DCI调度PDSCH且所述终端设备采用动态混合自动重传请求确认HARQ-ACK码本进行HARQ反馈;
    所述第一DCI指示的一个或多个公共波束与所述终端设备当前使用的公共波束不同。
  30. 根据权利要求29所述的方法,其特征在于,所述波束指示信息指示的一个或多个公共波束指示成功之后,所述第一DCI指示的公共波束在第一时刻加上第一时间偏移后的第一个时隙生效;
    所述第一时刻为收到所述第一DCI的时刻,或者为所述终端设备发送所述第一DCI对应的HARQ反馈结果的时刻;
    所述第一DCI对应的HARQ反馈结果为针对所述第一DCI反馈的HARQ反馈结果或针对所述第一DCI调度的PDSCH反馈的HARQ反馈结果。
  31. 根据权利要求27或28所述的方法,其特征在于,所述波束指示信息通过第一DCI携带,当满足第二条件时,且所述第一DCI对应的HARQ反馈结果为ACK或NACK,表示所述波束指示信息指示的一个或多个公共波束指示成功;
    所述第二条件包括以下一项或多项的组合:
    所述终端设备上报支持公共波束功能;
    所述网络设备将所述终端设备的公共波束功能配置为开启状态;
    所述第一DCI调度了物理下行共享信道PDSCH;
    所述终端设备采用半静态HARQ-ACK码本进行HARQ反馈;
    所述第一DCI指示的一个或多个公共波束与所述终端设备当前使用的公共波束不同。
  32. 根据权利要求31所述的方法,其特征在于,所述波束指示信息指示的一个或多个公共波束指示成功之后,所述第一DCI指示的公共波束在第一时刻加上第一时间偏移后的第一个时隙生效;
    所述第一时刻为收到所述第一DCI的时刻,或者为所述终端设备发送所述第一DCI对应的HARQ反馈结果的时刻;
    所述第一DCI对应的HARQ反馈结果为针对所述第一DCI调度的PDSCH反馈的HARQ反馈结果。
  33. 根据权利要求27至32中任一项所述的方法,其特征在于,所述波束指示信息通过第一DCI携带,所述第一DCI包括公共波束指示字段,所述公共波束指示字段用于指示一种波束类型的公共波束;
    所述公共波束指示字段指示的公共波束的波束类型通过所述波束配置信息确定;或者,
    所述公共波束指示字段指示的公共波束的波束类型通过所述波束激活信息确定;或者,
    所述公共波束指示字段指示的公共波束的波束类型通过所述第一DCI确定。
  34. 根据权利要求33所述的方法,其特征在于,若所述网络设备通过所述波束配置信息将所述终端设备的公共波束模式配置为联合公共波束模式、或所述波束配置信息包括联合公共波束的配置信息,则所述公共波束指示字段指示的波束类型为联合公共波束;或者,
    若所述网络设备通过波束配置信息将所述终端设备的公共波束模式配置为独立公共波束模式、或所述波束配置信息包括所述独立公共波束的配置信息,则所述公共波束指示字段指示的公共波束的波束类型为上行公共波束或下行公共波束。
  35. 根据权利要求33所述的方法,其特征在于,若所述波束激活信息用于激活联合公共波束,则所述公共波束指示字段指示的公共波束的波束类型为联合公共波束;或者,
    若所述波束激活信息用于激活独立公共波束,则所述公共波束指示字段指示的公共波束的波束类型为上行公共波束或下行公共波束。
  36. 根据权利要求33所述的方法,其特征在于,所述公共波束指示字段的前x个比特或后x个比特或所述第一DCI包括的第一指示字段用于指示所述公共波束指示字段指示的公共波束的波束类型,x为大于或等于1的整数;
    所述波束类型包括以下任一种:联合公共波束、上行公共波束、下行公共波束;或者,
    所述波束类型包括以下任一种:上行公共波束、下行公共波束。
  37. 根据权利要求27至32中任一项所述的方法,其特征在于,所述波束指示信息通过第一DCI携带,所述第一DCI包括公共波束指示字段,所述公共波束指示字段包括一个或两个子字段;
    所述公共波束指示字段包括的子字段的数量和/或所述子字段指示的波束类型通过所述波束配置信息配置的波束类型确定。
  38. 根据权利要求37所述的方法,其特征在于,如果波束配置信息配置的波束类型为联合公共波束,则所述公共波束指示字段包括一个子字段,所述一个子字段用于指示联合公共波束;或者,
    如果波束配置信息配置的波束类型为独立公共波束,则所述公共波束指示字段包括两个子字段,所述两个子字段用于指示上行公共波束和下行公共波束。
  39. 根据权利要求37或38所述的方法,其特征在于,若所述公共波束指示字段包括两个子字段,则所述两个子字段中的第一个子字段用于指示所述上行公共波束,所述两个子字段中的第二个子字段用于指示所述下行公共波束;或者,所述两个子字段中的第一个子字段用于指示所述下行公共波束,所述两个子字段中的第二个子字段用于指示所述上行公共波束。
  40. 根据权利要求37或38所述的方法,其特征在于,若所述公共波束指示字段包括两个子字段,所述两个子字段分别指示的波束类型通过所述波束配置信息或所述波束激活信息或所述第一DCI确定。
  41. 根据权利要求40所述的方法,其特征在于,所述波束配置信息包括上行公共波束集合和下行公共波束集合;
    所述两个子字段分别指示的波束类型通过所述上行公共波束集合和所述下行公共波束集合的配置先后顺序确定;或者,
    所述两个子字段分别指示的波束类型所述上行公共波束集合和所述下行公共波束集合分别对应的集合索引大小顺序确定。
  42. 根据权利要求40所述的方法,其特征在于,所述两个子字段分别指示的波束类型 通过所述波束激活信息激活的上行公共波束和下行公共波束的排列先后顺序确定。
  43. 根据权利要求40所述的方法,其特征在于,所述两个子字段分别指示的波束类型通过所述公共波束指示字段中的前x个比特或后x个比特或所述第一DCI包括的第二指示字段确定,x为大于或等于1的整数。
  44. 根据权利要求27至43中任一项所述的方法,其特征在于,所述波束指示信息通过第一DCI携带;若所述第一DCI不包括公共波束指示字段,所述方法还包括:
    若所述波束激活信息用于激活一个公共波束,所述网络设备采用所述波束激活信息激活的公共波束进行传输;或者,
    若所述波束激活信息用于激活多个公共波束,所述网络设备采用所述多个公共波束中波束索引最大的,或波束索引最小的,或排序最靠前的,或排序最靠后的,或对应的公共波束指示字段值最小的,或对应的公共波束指示字段值最大的公共波束进行传输。
  45. 根据权利要求27至44中任一项所述的方法,其特征在于,若所述波束指示信息指示相同波束类型的K个公共波束,并且所述网络设备为所述终端设备配置K个第一资源或K个第一资源集合,则所述K个公共波束为所述K个第一资源或所述K个第一资源集合对应的波束,K为大于1的整数;
    所述K个公共波束与所述K个第一资源或所述K个第一资源集合一一对应,所述K个第一资源集合中每个第一资源集合包括所述第一资源,所述K个公共波束分别用于对应的所述第一资源的传输;
    所述K个公共波束按照所述波束指示信息的指示顺序或所述K个公共波束的波束索引大小顺序排序;
    所述K个第一资源或所述K个第一资源集合按照资源配置顺序或资源索引大小顺序排序;
    所述第一资源包括以下任一种:未配置重复repetitoin参数和传输信息trs-Info参数的信道状态信息参考信号CSI-RS,码本codebook类型的探测参考信号SRS,非码本nonCodebook类型的SRS,nonCodebook类型的SRS关联的CSI-RS。
  46. 根据权利要求27至45中任一项所述的方法,其特征在于,所述波束指示信息用于所述网络设备在所述终端设备初始接入之后第一次向所述终端设备指示公共波束;在所述波束指示信息指示的公共波束生效之前,所述方法还包括:
    所述网络设备采用所述终端设备初始接入时采用的同步信号-广播信道测量资源块SSB波束与所述终端设备进行传输。
  47. 根据权利要求27至45中任一项所述的方法,其特征在于,所述波束指示信息用于所述网络设备在所述终端设备发生波束失败之后第一次向所述终端设备指示公共波束;
    在所述终端设备完成波束失败恢复之后,所述波束指示信息指示的公共波束生效之前,所述方法还包括:
    所述网络设备采用所述终端设备在波束失败恢复过程中向所述网络设备上报的波束进行传输。
  48. 根据权利要求27至45中任一项所述的方法,其特征在于,所述波束指示信息用 于所述网络设备在所述终端设备初始接入之后第一次向所述终端设备指示公共波束;
    在所述终端设备初始接入之后,所述网络设备发送所述波束激活信息之前,所述方法还包括:
    所述网络设备采用初始接入时采用的SSB波束进行传输;
    在所述网络设备发送所述波束激活信息之后,所述波束指示信息指示的公共波束生效之前,所述方法还包括:
    所述网络设备采用所述波束激活信息激活的第一个公共波束或最后一个公共波束进行传输;或者,
    所述网络设备采用所述波束激活信息激活的公共波束中公共波束指示字段值最大或最小的公共波束进行传输。
  49. 根据权利要求27至48中任一项所述的方法,其特征在于,所述波束指示信息通过第一DCI携带,所述第一DCI还调度第一PDSCH数据;所述方法还包括:
    若所述网络设备发送所述第一PDSCH数据的时刻早于所述第一DCI指示的公共波束生效的时刻,所述网络设备采用第三公共波束向所述网络设备发送所述第一PDSCH数据;
    所述第三公共波束包括以下任一项:
    若所述网络设备在所述终端设备初始接入之后或完成波束失败恢复之后,第一次向所述终端设备指示的公共波束已经生效,所述第三公共波束为当前使用的公共波束,或者为最近一次生效或指示的公共波束;
    若所述网络设备在所述终端设备初始接入之后,第一次向所述终端设备指示的公共波束未生效,所述第三公共波束为所述初始接入时所述终端设备采用的SSB波束;
    若所述网络设备在所述终端设备完成波束失败恢复之后,第一次向所述终端设备指示的公共波束未生效,所述第三公共波束为所述波束失败恢复时所述终端设备上报给网络设备的波束。
  50. 根据权利要求49所述的方法,其特征在于,若所述网络设备发送所述第一DCI调度的第一PDSCH数据的时刻与所述网络设备发送所述第一DCI的时刻之间的时间间隔大于或等于预设门限值,且所述网络设备发送所述第一PDSCH数据的时刻早于所述第一DCI指示的公共波束生效的时刻,所述第三公共波束还包括所述第一DCI指示的公共波束。
  51. 根据权利要求27至50中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二DCI;
    若所述网络设备发送所述第二DCI调度的第二PDSCH数据的时刻与所述网络设备发送所述第二DCI的时刻之间的时间间隔小于预设门限值,所述网络设备采用第四公共波束向所述终端设备发送所述第二PDSCH数据;
    所述第四公共波束包括以下任一项:
    若所述网络设备在所述终端设备初始接入之后或完成波束失败恢复之后,第一次向所述终端设备指示的公共波束已经生效,所述第四公共波束为当前使用的公共波束,或者为最近一次生效或指示的公共波束;
    若所述网络设备在所述终端设备初始接入之后,第一次向所述终端设备指示的公共波 束未生效,所述第四公共波束为所述初始接入时所述终端设备采用的SSB波束;
    若所述网络设备在所述终端设备完成波束失败恢复之后,第一次向所述终端设备指示的公共波束未生效,所述第四公共波束为所述波束失败恢复时所述终端设备上报给所述网络设备的波束。
  52. 一种终端设备,其特征在于,所述终端设备包括:
    接收单元,用于接收来自网络设备的波束配置信息,所述波束配置信息包括一个或多个公共波束的配置信息;所述一个或多个公共波束包括以下任一种:用于上行传输或下行传输的独立公共波束;用于上行传输和下行传输的联合公共波束;接收来自所述网络设备的波束激活信息,所述波束激活信息用于激活所述一个或多个公共波束中的部分公共波束;接收来自所述网络设备的波束指示信息,所述波束指示信息用于指示所述部分公共波束中的一个或多个公共波束。
  53. 根据权利要求52所述的终端设备,其特征在于,所述波束配置信息包括第一公共波束的配置参数;
    若所述第一公共波束的配置参数包括第一参数且不包括第二参数,所述第一公共波束为上行公共波束;或者,
    若所述第一公共波束的配置参数包括所述第二参数且不包括所述第一参数,所述第一公共波束为下行公共波束;或者,
    若所述第一公共波束的配置参数包括所述第一参数和所述第二参数,所述第一公共波束为联合公共波束;
    所述第一参数包括以下至少一项:用于确定上行发送波束的参考信号资源,空间关系信息、上行功率控制参数、信道探测参考信号SRS资源;
    所述第二参数包括以下至少一项:准共址QCL信息、带宽分量BWP参数。
  54. 根据权利要求52或53所述的终端设备,其特征在于,所述波束指示信息通过第一下行控制信息DCI携带;当满足第一条件时,且所述第一DCI对应的混合自动重传请求HARQ反馈结果为确认字符ACK,表示所述波束指示信息指示的一个或多个公共波束指示成功;
    所述第一条件包括以下一项或多项的组合:
    所述终端设备上报支持公共波束功能;
    所述网络设备将所述终端设备的公共波束功能配置为开启状态;
    所述第一DCI没有调度物理下行共享信道PDSCH;
    所述第一DCI调度PDSCH且所述终端设备采用动态混合自动重传请求确认HARQ-ACK码本进行HARQ反馈;
    所述第一DCI指示的一个或多个公共波束与所述终端设备当前使用的公共波束不同。
  55. 根据权利要求54所述的终端设备,其特征在于,所述波束指示信息指示的一个或多个公共波束指示成功之后,所述第一DCI指示的公共波束在第一时刻加上第一时间偏移后的第一个时隙生效;
    所述第一时刻为收到所述第一DCI的时刻,或者为所述终端设备发送所述第一DCI对 应的HARQ反馈结果的时刻;
    所述第一DCI对应的HARQ反馈结果为针对所述第一DCI反馈的HARQ反馈结果或针对所述第一DCI调度的PDSCH反馈的HARQ反馈结果。
  56. 根据权利要求52或53所述的终端设备,其特征在于,所述波束指示信息通过第一DCI携带,当满足第二条件时,且所述第一DCI对应的HARQ反馈结果为ACK或否定确认字符NACK,表示所述波束指示信息指示的一个或多个公共波束指示成功;
    所述第二条件包括以下一项或多项的组合:
    所述终端设备上报支持公共波束功能;
    所述网络设备将所述终端设备的公共波束功能配置为开启状态;
    所述第一DCI调度了物理下行共享信道PDSCH;
    所述终端设备采用半静态HARQ-ACK码本进行HARQ反馈;
    所述第一DCI指示的一个或多个公共波束与所述终端设备当前使用的公共波束不同。
  57. 根据权利要求56所述的终端设备,其特征在于,所述波束指示信息指示的一个或多个公共波束指示成功之后,所述第一DCI指示的公共波束在第一时刻加上第一时间偏移后的第一个时隙生效;
    所述第一时刻为收到所述第一DCI的时刻,或者为所述终端设备发送所述第一DCI对应的HARQ反馈结果的时刻;
    所述第一DCI对应的HARQ反馈结果为针对所述第一DCI调度的PDSCH反馈的HARQ反馈结果。
  58. 根据权利要求52至57中任一项所述的终端设备,其特征在于,所述波束指示信息通过第一DCI携带;所述第一DCI包括公共波束指示字段,所述公共波束指示字段用于指示一种波束类型的公共波束;所述终端设备还包括处理单元;所述处理单元用于:
    根据所述波束配置信息确定所述公共波束指示字段指示的公共波束的波束类型;或者,
    根据所述波束激活信息确定所述公共波束指示字段指示的公共波束的波束类型;或者,
    根据所述第一DCI确定所述公共波束指示字段指示的公共波束的波束类型。
  59. 根据权利要求58所述的终端设备,其特征在于,所述处理单元具体用于:
    若所述网络设备通过所述波束配置信息将所述终端设备的公共波束模式配置为联合公共波束模式、或所述波束配置信息包括联合公共波束的配置信息,则确定所述公共波束指示字段指示的波束类型为联合公共波束;或者,
    若所述网络设备通过波束配置信息将所述终端设备的公共波束模式配置为独立公共波束模式、或所述波束配置信息包括所述独立公共波束的配置信息,则确定所述公共波束指示字段指示的公共波束的波束类型为上行公共波束或下行公共波束。
  60. 根据权利要求58所述的终端设备,其特征在于,所述处理单元具体用于:
    若所述波束激活信息用于激活联合公共波束,则确定所述公共波束指示字段指示的公共波束的波束类型为联合公共波束;或者,
    若所述波束激活信息用于激活独立公共波束,则确定所述公共波束指示字段指示的公共波束的波束类型为上行公共波束或下行公共波束。
  61. 根据权利要求58所述的终端设备,其特征在于,所述公共波束指示字段的前x个比特或后x个比特或所述第一DCI包括的第一指示字段用于指示所述公共波束指示字段指示的公共波束的波束类型,x为大于或等于1的整数;
    所述波束类型包括以下任一种:联合公共波束、上行公共波束、下行公共波束;或者,
    所述波束类型包括以下任一种:上行公共波束、下行公共波束。
  62. 根据权利要求52至61中任一项所述的终端设备,其特征在于,所述波束指示信息通过第一DCI携带,所述第一DCI包括公共波束指示字段,所述公共波束指示字段包括一个或两个子字段;所述终端设备还包括处理单元;所述处理单元还用于:
    根据所述波束配置信息配置的公共波束的波束类型确定所述公共波束指示字段包括的子字段的数量、和/或,所述子字段指示的波束类型。
  63. 根据权利要求62所述的终端设备,其特征在于,如果波束配置信息配置的波束类型为联合公共波束,则所述公共波束指示字段包括一个子字段,所述一个子字段用于指示联合公共波束;或者,
    如果波束配置信息配置的波束类型为独立公共波束,则所述公共波束指示字段包括两个子字段,所述两个子字段用于指示上行公共波束和下行公共波束。
  64. 根据权利要求62或63所述的终端设备,其特征在于,若所述公共波束指示字段包括两个子字段,则所述两个子字段中的第一个子字段用于指示所述上行公共波束,所述两个子字段中的第二个子字段用于指示所述下行公共波束;或者,所述两个子字段中的第一个子字段用于指示所述下行公共波束,所述两个子字段中的第二个子字段用于指示所述上行公共波束。
  65. 根据权利要求62或63所述的终端设备,其特征在于,若所述公共波束指示字段包括两个子字段;所述处理单元还用于:
    根据所述波束配置信息确定所述两个子字段分别指示的波束类型;或者,
    根据所述波束激活信息确定所述两个子字段分别指示的波束类型;或者,
    根据所述第一DCI确定所述两个子字段分别指示的波束类型。
  66. 根据权利要求65所述的终端设备,其特征在于,所述波束配置信息包括上行公共波束集合和下行公共波束集合;所述处理单元具体用于:
    根据所述上行公共波束集合和所述下行公共波束集合的配置先后顺序确定所述两个子字段分别指示的波束类型;或者,
    根据所述上行公共波束集合和所述下行公共波束集合分别对应的集合索引大小顺序确定所述两个子字段分别指示的波束类型。
  67. 根据权利要求65所述的终端设备,其特征在于,所述处理单元具体用于:
    根据所述波束激活信息激活的上行公共波束和下行公共波束的排列先后顺序确定所述两个子字段分别指示的波束类型。
  68. 根据权利要求65所述的终端设备,其特征在于,所述处理单元具体用于:
    根据所述公共波束指示字段中的前x个比特或后x个比特或所述第一DCI包括的第二指示字段确定所述两个子字段中的第一个子字段指示的波束类型和第二个子字段指示的波 束类型。
  69. 根据权利要求52至68中任一项所述的终端设备,其特征在于,所述终端设备还包括处理单元;所述处理单元还用于:
    若所述波束激活信息用于激活一个公共波束,采用所述波束激活信息激活的公共波束进行传输;或者,
    若所述波束激活信息用于激活多个公共波束,采用所述多个公共波束中波束索引最大的,或波束索引最小的,或排序最靠前的,或排序最靠后的,或对应的公共波束指示字段值最小的,或对应的公共波束指示字段值最大的公共波束进行传输。
  70. 根据权利要求52至69中任一项所述的终端设备,其特征在于,所述终端设备还包括处理单元;所述处理单元还用于:
    若所述公共波束指示信息指示的公共波束与第二公共波束相同,忽略所述波束指示信息;
    所述第二公共波束包括以下任一项:所述终端设备当前采用的公共波束、所述终端设备在时间上最近一次指示或生效的公共波束。
  71. 根据权利要求52至70中任一项所述的终端设备,其特征在于,所述终端设备还包括处理单元;所述处理单元还用于:
    将所述K个公共波束作为所述K个第一资源或所述K个第一资源集合对应的波束,K为大于1的整数;
    所述K个公共波束与所述K个第一资源或所述K个第一资源集合一一对应,所述K个第一资源集合中每个第一资源集合包括所述第一资源,所述K个公共波束分别用于对应的所述第一资源的传输;
    所述K个公共波束按照所述波束指示信息的指示顺序或所述K个公共波束的波束索引大小顺序排序;
    所述K个第一资源或所述K个第一资源集合按照资源配置顺序或资源索引大小顺序排序;
    所述第一资源包括以下任一种:未配置重复repetitoin参数和传输信息trs-Info参数的信道状态信息参考信号CSI-RS,码本codebook类型的探测参考信号SRS,非码本nonCodebook类型的SRS,nonCodebook类型的SRS关联的CSI-RS。
  72. 根据权利要求52至71中任一项所述的终端设备,其特征在于,所述波束指示信息用于所述网络设备在所述终端设备初始接入之后第一次向所述终端设备指示公共波束;所述终端设备还包括处理单元;
    在所述波束指示信息指示的公共波束生效之前,所述处理单元用于:
    采用初始接入时采用的同步信号-广播信道测量资源块SSB波束进行传输。
  73. 根据权利要求52至71中任一项所述的终端设备,其特征在于,所述波束指示信息用于所述网络设备在所述终端设备发生波束失败之后第一次向所述终端设备指示公共波束;所述终端设备还包括处理单元;
    在所述终端设备完成波束失败恢复之后,所述波束指示信息指示的公共波束生效之前, 所述处理单元用于:
    采用所述终端设备在波束失败恢复过程中向所述网络设备上报的波束进行传输。
  74. 根据权利要求52至71中任一项所述的终端设备,其特征在于,所述波束指示信息用于所述网络设备在所述终端设备初始接入之后第一次向所述终端设备指示公共波束;所述终端设备还包括处理单元;
    在所述终端设备初始接入之后,所述终端设备接收到所述波束激活信息之前,所述处理单元还用于:
    采用初始接入时采用的SSB波束进行传输;
    在所述终端设备接收到所述波束激活信息之后,所述波束指示信息指示的公共波束生效之前,所述处理单元还用于:
    采用所述波束激活信息激活的第一个公共波束或最后一个公共波束进行传输;或者,
    采用所述波束激活信息激活的公共波束中公共波束指示字段值最大或最小的公共波束进行传输。
  75. 根据权利要求52至74中任一项所述的终端设备,其特征在于,所述波束指示信息通过第一DCI携带,所述第一DCI还调度第一PDSCH数据;所述终端设备还包括处理单元,所述处理单元用于:
    若所述网络设备发送所述第一PDSCH数据的时刻早于所述第一DCI指示的公共波束生效的时刻,采用第三公共波束接收来自所述网络设备的所述第一PDSCH数据;
    所述第三公共波束包括以下任一项:
    若所述网络设备在所述终端设备初始接入之后或完成波束失败恢复之后,第一次向所述终端设备指示的公共波束已经生效,所述第三公共波束为当前使用的公共波束,或者为最近一次生效或指示的公共波束;
    若所述网络设备在所述终端设备初始接入之后,第一次向所述终端设备指示的公共波束未生效,所述第三公共波束为所述初始接入时所述终端设备采用的SSB波束;
    若所述网络设备在所述终端设备完成波束失败恢复之后,第一次向所述终端设备指示的公共波束未生效,所述第三公共波束为所述波束失败恢复时所述终端设备上报给网络设备的波束。
  76. 根据权利要求75所述的终端设备,其特征在于,若所述网络设备发送所述第一DCI调度的第一PDSCH数据的时刻与所述网络设备发送所述第一DCI的时刻之间的时间间隔大于或等于预设门限值,且所述网络设备发送所述第一PDSCH数据的时刻早于所述第一DCI指示的公共波束生效的时刻,所述第三公共波束还包括所述第一DCI指示的公共波束。
  77. 根据权利要求52至76中任一项所述的终端设备,其特征在于,所述接收单元还用于:
    接收来自所述网络设备的第二DCI;
    所述终端设备还包括处理单元,所述处理单元用于:
    若所述网络设备发送所述第二DCI调度的第二PDSCH数据的时刻与所述网络设备发送所述第二DCI的时刻之间的时间间隔小于预设门限值,采用第四公共波束接收来自所述网 络设备的所述第二PDSCH数据;
    所述第四公共波束包括以下任一项:
    若所述网络设备在所述终端设备初始接入之后或完成波束失败恢复之后,第一次向所述终端设备指示的公共波束已经生效,所述第四公共波束为当前使用的公共波束,或者为最近一次生效或指示的公共波束;
    若所述网络设备在所述终端设备初始接入之后,第一次向所述终端设备指示的公共波束未生效,所述第四公共波束为所述初始接入时所述终端设备采用的SSB波束;
    若所述网络设备在所述终端设备完成波束失败恢复之后,第一次向所述终端设备指示的公共波束未生效,所述第四公共波束为所述波束失败恢复时所述终端设备上报给所述网络设备的波束。
  78. 一种网络设备,其特征在于,所述网络设备包括:
    发送单元,用于向终端设备发送波束配置信息,所述波束配置信息包括一个或多个公共波束的配置信息;所述一个或多个公共波束包括以下任一种:用于上行传输或下行传输的独立公共波束;用于上行传输和下行传输的联合公共波束;向所述终端设备发送波束激活信息,所述波束激活信息用于激活所述一个或多个公共波束中的部分公共波束;向所述终端设备发送波束指示信息,所述波束指示信息用于指示所述部分公共波束中的一个或多个公共波束。
  79. 根据权利要求78所述的网络设备,其特征在于,所述波束配置信息包括第一公共波束的配置参数;
    若所述第一公共波束的配置参数包括第一参数且不包括第二参数,所述第一公共波束为上行公共波束;
    若所述第一公共波束的配置参数包括所述第二参数且不包括所述第一参数,所述第一公共波束为下行公共波束;
    若所述第一公共波束的配置参数包括所述第一参数和所述第二参数,所述第一公共波束为联合公共波束;
    所述第一参数包括以下至少一项:用于确定上行发送波束的参考信号资源,空间关系信息、上行功率控制参数、信道探测参考信号SRS资源;
    所述第二参数包括以下至少一项:准共址QCL信息、带宽分量BWP参数。
  80. 根据权利要求78或79所述的网络设备,其特征在于,所述波束指示信息通过第一下行控制信息DCI携带;当满足第一条件时,且所述第一DCI对应的混合自动重传请求HARQ反馈结果为确认字符ACK,表示所述波束指示信息指示的一个或多个公共波束指示成功;
    所述第一条件包括以下一项或多项的组合:
    所述终端设备上报支持公共波束功能;
    所述网络设备将所述终端设备的公共波束功能配置为开启状态;
    所述第一DCI没有调度物理下行共享信道PDSCH;
    所述第一DCI调度PDSCH且所述终端设备采用动态混合自动重传请求确认HARQ-ACK码 本进行HARQ反馈;
    所述第一DCI指示的一个或多个公共波束与所述终端设备当前使用的公共波束不同。
  81. 根据权利要求80所述的网络设备,其特征在于,所述波束指示信息指示的一个或多个公共波束指示成功之后,所述第一DCI指示的公共波束在第一时刻加上第一时间偏移后的第一个时隙生效;
    所述第一时刻为收到所述第一DCI的时刻,或者为所述终端设备发送所述第一DCI对应的HARQ反馈结果的时刻;
    所述第一DCI对应的HARQ反馈结果为针对所述第一DCI反馈的HARQ反馈结果或针对所述第一DCI调度的PDSCH反馈的HARQ反馈结果。
  82. 根据权利要求78或79所述的网络设备,其特征在于,所述波束指示信息通过第一DCI携带,当满足第二条件时,且所述第一DCI对应的HARQ反馈结果为ACK或否定确认字符NACK,表示所述波束指示信息指示的一个或多个公共波束指示成功;
    所述第二条件包括以下一项或多项的组合:
    所述终端设备上报支持公共波束功能;
    所述网络设备将所述终端设备的公共波束功能配置为开启状态;
    所述第一DCI调度了物理下行共享信道PDSCH;
    所述终端设备采用半静态HARQ-ACK码本进行HARQ反馈;
    所述第一DCI指示的一个或多个公共波束与所述终端设备当前使用的公共波束不同。
  83. 根据权利要求82所述的网络设备,其特征在于,所述波束指示信息指示的一个或多个公共波束指示成功之后,所述第一DCI指示的公共波束在第一时刻加上第一时间偏移后的第一个时隙生效;
    所述第一时刻为收到所述第一DCI的时刻,或者为所述终端设备发送所述第一DCI对应的HARQ反馈结果的时刻;
    所述第一DCI对应的HARQ反馈结果为针对所述第一DCI调度的PDSCH反馈的HARQ反馈结果。
  84. 根据权利要求78至83中任一项所述的网络设备,其特征在于,所述波束指示信息通过第一DCI携带,所述第一DCI包括公共波束指示字段,所述公共波束指示字段用于指示一种波束类型的公共波束;
    所述公共波束指示字段指示的公共波束的波束类型通过所述波束配置信息确定;或者,
    所述公共波束指示字段指示的公共波束的波束类型通过所述波束激活信息确定;或者,
    所述公共波束指示字段指示的公共波束的波束类型通过所述第一DCI确定。
  85. 根据权利要求84所述的网络设备,其特征在于,若所述网络设备通过所述波束配置信息将所述终端设备的公共波束模式配置为联合公共波束模式、或所述波束配置信息包括联合公共波束的配置信息,则所述公共波束指示字段指示的波束类型为联合公共波束;或者,
    若所述网络设备通过波束配置信息将所述终端设备的公共波束模式配置为独立公共波束模式、或所述波束配置信息包括所述独立公共波束的配置信息,则所述公共波束指示字 段指示的公共波束的波束类型为上行公共波束或下行公共波束。
  86. 根据权利要求84所述的网络设备,其特征在于,若所述波束激活信息用于激活联合公共波束,则所述公共波束指示字段指示的公共波束的波束类型为联合公共波束;或者,
    若所述波束激活信息用于激活独立公共波束,则所述公共波束指示字段指示的公共波束的波束类型为上行公共波束或下行公共波束。
  87. 根据权利要求84所述的网络设备,其特征在于,所述公共波束指示字段的前x个比特或后x个比特或所述第一DCI包括的第一指示字段用于指示所述公共波束指示字段指示的公共波束的波束类型,x为大于或等于1的整数;
    所述波束类型包括以下任一种:联合公共波束、上行公共波束、下行公共波束;或者,
    所述波束类型包括以下任一种:上行公共波束、下行公共波束。
  88. 根据权利要求78至87中任一项所述的网络设备,其特征在于,所述波束指示信息通过第一DCI携带,所述第一DCI包括公共波束指示字段,所述公共波束指示字段包括一个或两个子字段;
    所述公共波束指示字段包括的子字段的数量和/或所述子字段指示的波束类型通过所述波束配置信息配置的波束类型确定。
  89. 根据权利要求88所述的网络设备,其特征在于,如果波束配置信息配置的波束类型为联合公共波束,则所述公共波束指示字段包括一个子字段,所述一个子字段用于指示联合公共波束;或者,
    如果波束配置信息配置的波束类型为独立公共波束,则所述公共波束指示字段包括两个子字段,所述两个子字段用于指示上行公共波束和下行公共波束。
  90. 根据权利要求88或89所述的网络设备,其特征在于,若所述公共波束指示字段包括两个子字段,则所述两个子字段中的第一个子字段用于指示所述上行公共波束,所述两个子字段中的第二个子字段用于指示所述下行公共波束;或者,所述两个子字段中的第一个子字段用于指示所述下行公共波束,所述两个子字段中的第二个子字段用于指示所述上行公共波束。
  91. 根据权利要求88或89所述的网络设备,其特征在于,若所述公共波束指示字段包括两个子字段,所述两个子字段分别指示的波束类型通过所述波束配置信息或所述波束激活信息或所述第一DCI确定。
  92. 根据权利要求91所述的网络设备,其特征在于,所述波束配置信息包括上行公共波束集合和下行公共波束集合;
    所述两个子字段分别指示的波束类型通过所述上行公共波束集合和所述下行公共波束集合的配置先后顺序确定;或者,
    所述两个子字段分别指示的波束类型所述上行公共波束集合和所述下行公共波束集合分别对应的集合索引大小顺序确定。
  93. 根据权利要求91所述的网络设备,其特征在于,所述两个子字段分别指示的波束类型通过所述波束激活信息激活的上行公共波束和下行公共波束的排列先后顺序确定。
  94. 根据权利要求91所述的网络设备,其特征在于,所述两个子字段分别指示的波束 类型通过所述公共波束指示字段中的前x个比特或后x个比特或所述第一DCI包括的第二指示字段确定。
  95. 根据权利要求78至94中任一项所述的网络设备,其特征在于,所述波束指示信息通过第一DCI携带;若所述第一DCI不包括公共波束指示字段;所述网络设备还包括处理单元,所述处理单元用于:
    若所述波束激活信息用于激活一个公共波束,采用所述波束激活信息激活的公共波束进行传输;或者,
    若所述波束激活信息用于激活多个公共波束,采用所述多个公共波束中波束索引最大的,或波束索引最小的,或排序最靠前的,或排序最靠后的,或对应的公共波束指示字段值最小的,或对应的公共波束指示字段值最大的公共波束进行传输。
  96. 根据权利要求78至95中任一项所述的网络设备,其特征在于,若所述波束指示信息指示相同波束类型的K个公共波束,并且所述网络设备为所述终端设备配置K个第一资源或K个第一资源集合,则所述K个公共波束为所述K个第一资源或所述K个第一资源集合对应的波束,K为大于1的整数;
    所述K个公共波束与所述K个第一资源或所述K个第一资源集合一一对应,所述K个第一资源集合中每个第一资源集合包括所述第一资源,所述K个公共波束分别用于对应的所述第一资源的传输;
    所述K个公共波束按照所述波束指示信息的指示顺序或所述K个公共波束的波束索引大小顺序排序;
    所述K个第一资源或所述K个第一资源集合按照资源配置顺序或资源索引大小顺序排序;
    所述第一资源包括以下任一种:未配置重复repetitoin参数和传输信息trs-Info参数的信道状态信息参考信号CSI-RS,码本codebook类型的探测参考信号SRS,非码本nonCodebook类型的SRS,nonCodebook类型的SRS关联的CSI-RS。
  97. 根据权利要求78至96中任一项所述的网络设备,其特征在于,所述波束指示信息用于所述网络设备在所述终端设备初始接入之后第一次向所述终端设备指示公共波束;所述网络设备还包括处理单元;在所述波束指示信息指示的公共波束生效之前,所述处理单元用于:
    采用所述终端设备初始接入时采用的同步信号-广播信道测量资源块SSB波束与所述终端设备进行传输。
  98. 根据权利要求78至96中任一项所述的网络设备,其特征在于,所述波束指示信息用于所述网络设备在所述终端设备发生波束失败之后第一次向所述终端设备指示公共波束;所述网络设备还包括处理单元;
    在所述终端设备完成波束失败恢复之后,所述波束指示信息指示的公共波束生效之前,所述处理单元用于:
    采用所述终端设备在波束失败恢复过程中向所述网络设备上报的波束进行传输。
  99. 根据权利要求78至96中任一项所述的网络设备,其特征在于,所述波束指示信 息用于所述网络设备在所述终端设备初始接入之后第一次向所述终端设备指示公共波束;所述网络设备还包括处理单元;
    在所述终端设备初始接入之后,所述网络设备发送所述波束激活信息之前,所述处理单元用于:
    采用初始接入时采用的SSB波束进行传输;
    在所述网络设备发送所述波束激活信息之后,所述波束指示信息指示的公共波束生效之前,所述处理单元还用于:
    采用所述波束激活信息激活的第一个公共波束或最后一个公共波束进行传输;或者,
    采用所述波束激活信息激活的公共波束中公共波束指示字段值最大或最小的公共波束进行传输。
  100. 根据权利要求78至99中任一项所述的网络设备,其特征在于,所述波束指示信息通过第一DCI携带,所述第一DCI还调度第一PDSCH数据;所述网络设备还包括处理单元;所述处理单元还用于:
    若所述网络设备发送所述第一PDSCH数据的时刻早于所述第一DCI指示的公共波束生效的时刻,采用第三公共波束向所述网络设备发送所述第一PDSCH数据;
    所述第三公共波束包括以下任一项:
    若所述网络设备在所述终端设备初始接入之后或完成波束失败恢复之后,第一次向所述终端设备指示的公共波束已经生效,所述第三公共波束为当前使用的公共波束,或者为最近一次生效或指示的公共波束;
    若所述网络设备在所述终端设备初始接入之后,第一次向所述终端设备指示的公共波束未生效,所述第三公共波束为所述初始接入时所述终端设备采用的SSB波束;
    若所述网络设备在所述终端设备完成波束失败恢复之后,第一次向所述终端设备指示的公共波束未生效,所述第三公共波束为所述波束失败恢复时所述终端设备上报给网络设备的波束。
  101. 根据权利要求100所述的网络设备,其特征在于,若所述网络设备发送所述第一DCI调度的第一PDSCH数据的时刻与所述网络设备发送所述第一DCI的时刻之间的时间间隔大于或等于预设门限值,且所述网络设备发送所述第一PDSCH数据的时刻早于所述第一DCI指示的公共波束生效的时刻,所述第三公共波束还包括所述第一DCI指示的公共波束。
  102. 根据权利要求78至101中任一项所述的网络设备,其特征在于,所述发送单元还用于:
    向所述终端设备发送第二DCI;
    所述网络设备还包括处理单元,所述处理单元用于:
    若所述网络设备发送所述第二DCI调度的第二PDSCH数据的时刻与所述网络设备发送所述第二DCI的时刻之间的时间间隔小于预设门限值,采用第四公共波束向所述终端设备发送所述第二PDSCH数据;
    所述第四公共波束包括以下任一项:
    若所述网络设备在所述终端设备初始接入之后或完成波束失败恢复之后,第一次向所 述终端设备指示的公共波束已经生效,所述第四公共波束为当前使用的公共波束,或者为最近一次生效或指示的公共波束;
    若所述网络设备在所述终端设备初始接入之后,第一次向所述终端设备指示的公共波束未生效,所述第四公共波束为所述初始接入时所述终端设备采用的SSB波束;
    若所述网络设备在所述终端设备完成波束失败恢复之后,第一次向所述终端设备指示的公共波束未生效,所述第四公共波束为所述波束失败恢复时所述终端设备上报给所述网络设备的波束。
  103. 一种通信装置,其特征在于,包括:
    存储器,用于存储计算机指令;
    处理器,用于执行所述存储器中存储的计算机程序或计算机指令,使得所述通信装置执行如权利要求1至26中任一项所述的方法或权利要求1至26中任一项所述的方法,或者,使得所述通信装置执行如权利要求27至51中任一项所述的方法。
  104. 一种通信装置,其特征在于,所述通信装置包括处理器;所述处理器用于调用所述存储器中的计算机程序或计算机指令,以执行如权利要求1至26中任一项所述的方法,或执行如权利要求27至51中任一项所述的方法。
  105. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置执行如权利要求1至26中任一项所述的方法或权利要求27至51中任一项所述的方法。
PCT/CN2021/071810 2021-01-14 2021-01-14 波束管理方法与装置 WO2022151175A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/071810 WO2022151175A1 (zh) 2021-01-14 2021-01-14 波束管理方法与装置
CN202180089638.5A CN116686365A (zh) 2021-01-14 2021-01-14 波束管理方法与装置
EP21918383.7A EP4266786A4 (en) 2021-01-14 2021-01-14 METHOD AND APPARATUS FOR BEAM MANAGEMENT
US18/352,125 US20230361827A1 (en) 2021-01-14 2023-07-13 Beam management method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/071810 WO2022151175A1 (zh) 2021-01-14 2021-01-14 波束管理方法与装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/352,125 Continuation US20230361827A1 (en) 2021-01-14 2023-07-13 Beam management method and apparatus

Publications (1)

Publication Number Publication Date
WO2022151175A1 true WO2022151175A1 (zh) 2022-07-21

Family

ID=82447796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071810 WO2022151175A1 (zh) 2021-01-14 2021-01-14 波束管理方法与装置

Country Status (4)

Country Link
US (1) US20230361827A1 (zh)
EP (1) EP4266786A4 (zh)
CN (1) CN116686365A (zh)
WO (1) WO2022151175A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109952719A (zh) * 2016-09-28 2019-06-28 Idac控股公司 用于波束成形的系统信息传输的方法和系统
CN110249573A (zh) * 2017-02-01 2019-09-17 三星电子株式会社 用于无线通信系统中的波束管理的装置和方法
CN110418412A (zh) * 2018-04-28 2019-11-05 华为技术有限公司 一种波束管理方法、中继收发节点、终端和基站

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022082386A1 (zh) * 2020-10-19 2022-04-28 华为技术有限公司 一种无线通信的方法与装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109952719A (zh) * 2016-09-28 2019-06-28 Idac控股公司 用于波束成形的系统信息传输的方法和系统
CN110249573A (zh) * 2017-02-01 2019-09-17 三星电子株式会社 用于无线通信系统中的波束管理的装置和方法
CN110418412A (zh) * 2018-04-28 2019-11-05 华为技术有限公司 一种波束管理方法、中继收发节点、终端和基站

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUTUREWEI: "Enhancement on multi-beam operation", 3GPP DRAFT; R1-2007546, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051945273 *
See also references of EP4266786A4 *

Also Published As

Publication number Publication date
CN116686365A (zh) 2023-09-01
EP4266786A4 (en) 2024-02-21
EP4266786A1 (en) 2023-10-25
US20230361827A1 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
US11425697B2 (en) Dynamic management of uplink control signaling resources in wireless network
US20210219336A1 (en) Data Transmission Method And Apparatus
CN103209483B (zh) 传输上行控制信息的方法、用户设备和基站
WO2020207269A1 (zh) 干扰测量的方法和装置
CN110932820B (zh) 发送和接收上行控制信息的方法以及通信装置
WO2021155608A1 (zh) 信息传输方法及相关装置
WO2022077478A1 (zh) 一种基于波束的通信方法以及相关装置
WO2018099328A1 (zh) 通信方法、基站和终端设备
CN113678558B (zh) 信息传输方法及相关装置
WO2022052576A1 (en) Method and device for tci state indication and application
US20230262678A1 (en) Wireless communication method and apparatus
WO2023051188A1 (zh) 分组管理方法和通信装置
US20230188197A1 (en) Data Transmission Method and Communication Apparatus
CN109923813A (zh) 信道状态信息反馈的方法与装置
WO2022151175A1 (zh) 波束管理方法与装置
CN113439398A (zh) 优化的多重连接和数据复制
WO2023072116A1 (zh) 波束使用方法以及相关装置
JP2022512206A (ja) キャリアアグリゲーションシステムの通信方法、端末、およびネットワークデバイス
WO2024032767A1 (zh) 上行传输方法以及相关装置
WO2023093621A1 (zh) 通信方法以及通信装置
WO2023011529A1 (zh) 一种波束生效时间确定方法、装置、终端和网络设备
WO2024032640A1 (zh) 传输配置指示tci模式配置方法、tci状态指示方法及装置
WO2023208145A1 (zh) 一种信息传输方法及装置
WO2023178482A1 (zh) 信息传输方法、终端设备和网络设备
WO2023093352A1 (zh) 一种用于信道状态信息csi上报的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918383

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180089638.5

Country of ref document: CN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023014102

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021918383

Country of ref document: EP

Effective date: 20230719

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023014102

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230713