WO2022151119A1 - 数据传输方法、设备及存储介质 - Google Patents

数据传输方法、设备及存储介质 Download PDF

Info

Publication number
WO2022151119A1
WO2022151119A1 PCT/CN2021/071637 CN2021071637W WO2022151119A1 WO 2022151119 A1 WO2022151119 A1 WO 2022151119A1 CN 2021071637 W CN2021071637 W CN 2021071637W WO 2022151119 A1 WO2022151119 A1 WO 2022151119A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
data
time unit
symbols
information
Prior art date
Application number
PCT/CN2021/071637
Other languages
English (en)
French (fr)
Inventor
崔胜江
贺传峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/071637 priority Critical patent/WO2022151119A1/zh
Priority to CN202180069685.3A priority patent/CN116326095A/zh
Publication of WO2022151119A1 publication Critical patent/WO2022151119A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to communication technologies, and in particular, to a data transmission method, device, and storage medium.
  • NR new radio
  • 5th generation, 5G fifth generation
  • a single scheduling or authorized data can be used in continuous A transmission mechanism that performs repeated transmissions in multiple time slots.
  • the number of times the data is repeatedly transmitted is semi-statically configured.
  • the system applies a flexible time slot structure, if some time slots in the multiple time slots that need to carry data cannot meet the data mapping requirements due to the uplink and downlink structures of the time slots, the time slots that do not meet the data mapping requirements data will not be transmitted. This makes the actual number of repeated transmissions of data less than the configured number of repeated transmissions, and the expected effect of repeated transmission cannot be achieved.
  • Embodiments of the present application provide a data transmission method, device, and storage medium, so as to improve the reliability of data transmission.
  • the embodiments of the present application can provide a data transmission method, which is applied to a terminal device, and the method includes:
  • the terminal device receives first information from the network device, where the first information is used to indicate repeated transmission of the first data N times, the first information includes first indication information, and the first indication information is used to indicate that in the first time unit
  • the first data is transmitted in the first data, and the first time unit is a time unit in the N candidate time units of the first data, and the first time unit includes at least two kinds of symbols in an uplink symbol, a downlink symbol and a flexible symbol, where N is greater than or equal to 2;
  • the terminal device sends or receives the first data in at least one time unit among the N candidate time units according to the first information, and the at least one time unit includes the first time unit.
  • the embodiments of the present application may further provide a data transmission method, which is applied to a network device, and the method includes:
  • the network device sends first information to the terminal device, where the first information is used to indicate repeated transmission of the first data N times, the first information includes first indication information, and the first indication information is used to indicate the transmission in the first time unit
  • the first time unit is one time unit in N candidate time units of the first data, and the first time unit includes at least two kinds of symbols among uplink symbols, downlink symbols and flexible symbols, wherein , N is greater than or equal to 2;
  • the network device sends or receives the first data in at least one time unit among the N candidate time units, and the at least one time unit includes the first time unit.
  • the embodiments of the present application may further provide a terminal device, including:
  • a transceiver unit configured to receive first information from a network device, where the first information is used to instruct repeating the transmission of the first data N times, the first information includes first indication information, and the first indication information is used to indicate that in the first
  • the first data is transmitted in a time unit, where the first time unit is a time unit in the N candidate time units of the first data, and the first time unit includes at least two of an uplink symbol, a downlink symbol and a flexible symbol symbol, where N is greater than or equal to 2;
  • a processing unit configured to determine, according to the first information, to send or receive the first data in at least one time unit among the N candidate time units, where the at least one time unit includes the first time unit.
  • the transceiver unit is further configured to send or receive the first data in at least one time unit among the N candidate time units.
  • the embodiments of the present application may further provide a network device, including:
  • a processing unit configured to determine first information, where the first information is used to indicate that the first data is repeatedly transmitted N times, the first information includes first indication information, and the first indication information is used to indicate that the first data is transmitted in the first time unit
  • the first time unit is one time unit in N candidate time units of the first data, and the first time unit includes at least two kinds of symbols among uplink symbols, downlink symbols and flexible symbols, wherein , N is greater than or equal to 2;
  • a transceiver unit configured to send the first information to the terminal device
  • the transceiver unit is further configured to send or receive the first data in at least one time unit among the N candidate time units, where the at least one time unit includes the first time unit.
  • the embodiments of the present application may further provide a terminal device, including:
  • processors memories, interfaces for communicating with network devices
  • the memory stores computer-executed instructions
  • the processor executes the computer-executable instructions stored in the memory, so that the processor executes the data transmission method provided in any one of the first aspects.
  • the embodiments of the present application may further provide a network device, including:
  • Processor memory, interface for communication with terminal equipment
  • the memory stores computer-executed instructions
  • the processor executes the computer-executable instructions stored in the memory, so that the processor executes the data transmission method provided in any one of the second aspects.
  • an embodiment of the present application provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, are used to implement the data transfer method.
  • an embodiment of the present application provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, are used to implement any one of the second aspect the data transfer method.
  • an embodiment of the present application provides a program, which, when the program is executed by a processor, is used to execute the data transmission method according to any one of the above first aspects.
  • an embodiment of the present application further provides a program, which, when the program is executed by a processor, is used to execute the data transmission method according to any one of the above second aspects.
  • the above-mentioned processor may be a chip.
  • an embodiment of the present application provides a computer program product, including program instructions, where the program instructions are used to implement any one of the data transmission methods of the first aspect.
  • an embodiment of the present application provides a computer program product, including program instructions, where the program instructions are used to implement any one of the data transmission methods of the second aspect.
  • an embodiment of the present application provides a chip, including: a processing module and a communication interface, where the processing module can execute any one of the data transmission methods of the first aspect.
  • the chip also includes a storage module (eg, memory), the storage module is used for storing instructions, the processing module is used for executing the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to perform the first aspect. Any one of the data transmission methods.
  • a storage module eg, memory
  • the storage module is used for storing instructions
  • the processing module is used for executing the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to perform the first aspect. Any one of the data transmission methods.
  • an embodiment of the present application provides a chip, including: a processing module and a communication interface, where the processing module can execute the data transmission method of any one of the second aspect.
  • the chip also includes a storage module (eg, memory), the storage module is used for storing instructions, the processing module is used for executing the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to perform the second aspect Any one of the data transmission methods.
  • a storage module eg, memory
  • the storage module is used for storing instructions
  • the processing module is used for executing the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to perform the second aspect Any one of the data transmission methods.
  • FIG. 1 is a schematic diagram of a communication system applicable to an embodiment of the present application
  • Fig. 2 is a schematic flow chart of the data transmission method provided by the present application.
  • FIG. 3 is a schematic diagram of a valid symbol of repeated transmission of first data provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a valid symbol of repeated transmission of the first data provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a valid symbol of repeated transmission of the first data provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a valid symbol of repeated transmission of the first data provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a valid symbol of repeated transmission of the first data provided by an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of an example of a communication device of the present application.
  • FIG. 9 is a schematic structural diagram of an example of a terminal device of the present application.
  • FIG. 10 is a schematic structural diagram of an example of a network device of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunications system
  • WiMAX worldwide interoperability for microwave access
  • FIG. 1 is a schematic diagram of a communication system 100 suitable for an embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 101 in FIG. 1 ; the communication system 100 may also include at least one terminal device, such as the terminal devices 102 to 107 in FIG. 1 .
  • the terminal devices 102 to 107 may be mobile or stationary.
  • Each of the network device 101 and one or more of the end devices 102 to 107 may communicate over a wireless link.
  • the data transmission method provided in this embodiment of the present application may be used to transmit data between the network device and the terminal device.
  • direct communication between terminal devices is possible.
  • D2D technology can be used to realize direct communication between terminal devices.
  • D2D, V2X and other technologies may be used for direct communication between terminal devices 105 and 106 and between terminal devices 105 and 107 .
  • Terminal device 106 and terminal device 107 may communicate with terminal device 105 individually or simultaneously.
  • the data transmission method provided by the embodiment of the present application may be used to transmit data.
  • the terminal device in this embodiment of the present application may be a user equipment (user equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal device, A wireless communication device, user agent or user equipment.
  • UE user equipment
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless communication
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the terminal device may also be a terminal device in an Internet of Things (IoT) system.
  • IoT Internet of Things
  • IoT is an important part of the future development of information technology, and its main technical feature is that items pass through communication technology Connect with the network, so as to realize the intelligent network of human-machine interconnection and interconnection of things.
  • the network device in this embodiment of the present application may be a device for communicating with terminal devices, and the network device may be an evolved base station (evolutional nodeB, eNB or eNodeB) in an LTE system, or a cloud radio access network (cloud radio access network).
  • evolutional nodeB eNB or eNodeB
  • cloud radio access network cloud radio access network
  • radio access network (CRAN) scenario or the network device may be a relay station, an access point, a vehicle-mounted device, a network device in a 5G network, or a network device in a future evolved PLMN network, etc.
  • This application implements Examples are not limited.
  • a flexible time slot structure is introduced in the NR system, that is, the symbols in a time slot can be configured as symbols with flexible attributes in addition to uplink symbols (uplink, UL) and downlink (downlink, DL) symbols. .
  • flexible symbols have the following characteristics:
  • the flexible symbol indicates that the direction of the symbol is undetermined, and it can be changed to a downlink symbol or an uplink symbol through other signaling;
  • Flexible symbols can also represent symbols reserved for future use for forward compatibility
  • the flexible symbol is used for the transceiving conversion of the terminal equipment, similar to the guard period (GP) symbol in the LTE time division duplexing (TDD) system, the terminal equipment can complete the transceiving conversion during the flexible symbol period.
  • GP guard period
  • TDD time division duplexing
  • a time slot may include one uplink and downlink transition points (for example, the formats corresponding to indices 3 to 10 and 92 to 96 in Table 1) or two uplink and downlink transition points (for example, indices 46 to 54 in Table 1) corresponding format).
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • RRC radio resource control
  • Aggregation factor pdsch-AggregationFactor and PUSCH aggregation factor pusch-AggregationFactor two parameters.
  • the PDSCH aggregation factor and the PUSCH aggregation factor are used to control the number of repeated transmissions of PDSCH and PUSCH user data respectively (1 by default, if the information element (IE) appears, it can be configured to be 2/4/8 times).
  • IE information element
  • the same symbol allocation scheme will be used in pdsch-AggregationFactor or pusch-AggregationFactor consecutive time slots (indicated by the starting symbol and symbol length that carry the scheduled data).
  • the same data transport block (TB) is sent in each time slot, and the corresponding redundancy version (RV) of each TB of data sent is as follows
  • the downlink control information (downlink control information, DCI) of the PDSCH that is scheduled to carry the downlink data indicates the identifier RV id of the RV.
  • the DCI of the PUSCH that is scheduled to carry the uplink data indicates the identifier RV id of the RV.
  • Table 2 shows the redundancy version settings when pdsch-AggregationFactor>1
  • Table 3 shows the redundancy version settings when pusch-AggregationFactor>1.
  • the symbol carrying the data can be determined by instructing the SLIV by the network device.
  • the format configuration of different time slots ie, the ratio of the number of uplink and downlink symbols in the slot
  • the transmission of the uplink data in this time slot will be cancelled. That is to say, if the uplink data is not transmitted in the time slot, the number of repetitions of the actual transmission of the uplink data by the terminal device will be less than the pusch-AggregationFactor. This makes the data transmission unable to achieve the desired coverage enhancement effect.
  • some uplink symbols may not be used in the time slot in which the transmission of the uplink data is cancelled, resulting in a waste of resources.
  • the present application provides a data transmission method, in which a network device can notify a terminal device through indication information that a flexible time slot that does not meet the symbol requirements indicated by SLIV (a flexible time slot includes at least two of an uplink symbol, a downlink symbol and a flexible symbol)
  • the scheduled data is transmitted in the time slot of the symbol), which can improve the reliability of data transmission and reduce the waste of resources.
  • FIG. 2 is a schematic flowchart of a data transmission method 200 provided by an embodiment of the present application.
  • the terminal device receives first information from the network device, where the first information is used to instruct to repeatedly transmit the first data N times.
  • the network device sends the first information to the terminal device.
  • the network device may send configuration information (eg, an RRC message) to the terminal device, where the configuration information is used to configure the number N of repetitions of data transmission.
  • configuration information eg, an RRC message
  • the first data may be uplink data
  • the configuration information is used to configure the repetition times of transmitting uplink data
  • the configuration information may be pusch-AggregationFactor, but the present application is not limited thereto.
  • the first data may be downlink data
  • the configuration information is used to configure the repetition times of transmitting downlink data
  • the configuration information may be pdsch-AggregationFactor, but the application is not limited thereto.
  • the first information is the DCI used to schedule the data channel carrying the first data.
  • a data channel carrying the first data is PUSCH
  • a data channel carrying the first data is PDSCH
  • the terminal device may determine that the first data indicated by the first information is repeatedly transmitted N times according to the number of repetitions N configured by the configuration information, where N is greater than or equal to 2.
  • the first information includes first indication information, the first indication information is used to indicate that the first data is transmitted in a first time unit, the first time unit is a time unit among N candidate time units of the first data, and The first time unit includes at least two kinds of symbols among uplink symbols, downlink symbols and flexible symbols.
  • the first time unit may be referred to as a flexible time unit.
  • the N candidate time units may include one or more first time units.
  • the network device can notify the terminal device to transmit the first data in the flexible time unit through the first indication information, which can improve resource utilization and ensure the reliability of data transmission.
  • the first information includes third indication information, where the third indication information is used to indicate a second time unit, where the second time unit is a first candidate time unit for repeatedly transmitting the first data.
  • the terminal device After receiving the first information, the terminal device can determine the first candidate time unit for transmitting the first data according to the third indication information, and can determine N candidate time units of the first data according to the number of repetitions N.
  • the N candidate time units may be consecutive N time units starting from the second time unit.
  • the time unit in this application may be a frame (frame), a subframe (subframe), a time slot (slot) or a mini-slot (mini-slot).
  • the terminal device may determine, according to the first indication information, a symbol used to carry the first data in the first time unit. Specifically, it may include but not limited to the following embodiments.
  • the first indication information includes a first offset
  • the first offset is the first symbol in the first time unit relative to the first symbol of the candidate symbol group for carrying the first data.
  • the first information further includes second indication information, the second indication information is used to indicate the candidate symbol group of the first data, the second indication information includes first position information and first symbol number information, wherein , the first position information is used to indicate the position of the first symbol of the candidate symbol group in a time unit, and the first symbol number information is used to indicate the number of symbols included in the candidate symbol group.
  • the network device configures the terminal device with three repetitions of uplink data transmission through the RRC message.
  • the network device schedules the PUSCH carrying the first data through DCI (ie, an example of the first information)
  • the terminal device may determine to repeat the transmission of the first data three times.
  • the DCI includes third indication information, which is used to indicate the first candidate time unit (ie, the second time unit) among the three candidate time units of the first data.
  • the DCI is carried in the time unit n-1, and the The three indication information indicates that the second time unit and the time unit n-1 are separated by one time unit, then the second time unit is time unit n, and the three candidate time units of the first data are time units n, n+1 , n+2.
  • the DCI further includes second indication information, where the second indication information indicates a candidate symbol group of the first data, wherein the first position information in the second indication information indicates that the first symbol of the candidate symbol group is symbol 0, the first The symbol number information indicates that the candidate symbol group includes 10 symbols.
  • the terminal device may determine, according to the second indication information, that the candidate symbol group of the first data is 10 consecutive symbols starting from symbol 0, that is, symbol 0 to symbol 9.
  • Time unit n+1 in the three candidate time units is a flexible time unit, including downlink symbols (ie symbols 0, 1, 2), flexible symbols (ie symbol 3) and downlink symbols (ie symbols 4 to 13), That is, the time unit n+1 is an example of the first time unit.
  • the first information sent by the network device includes first indication information, where the first indication information indicates that the first symbol (ie, the first symbol) that carries the first data in the time unit n+1 is relative to the first symbol in the candidate symbol group.
  • the number of symbols offset by the first symbol (ie symbol 0) is 4, that is, the first offset is 4 symbols.
  • the terminal device can determine that the first symbol used to carry the first data in the time unit n+1 is symbol 4 according to the first indication information.
  • the symbol 4 to symbol 13 in the time unit n+1 is the symbol 10 symbols are used to carry the first data, that is, symbols 4 to 13 in the time unit n+1 are valid symbols of the first data.
  • the terminal device can determine to send the first data on the candidate symbol groups in time unit n and time unit n+2, and send the first data on symbols 4 to 13 in time unit n+1.
  • the terminal device sends the first data in the three candidate time units.
  • the present application is not limited to this.
  • the terminal device may determine, according to the indication of the network device, to repeatedly transmit uplink data in four candidate time units of time units n, n+1, n+2, and n+3.
  • the first position information in the first information indicates that the starting symbol of the candidate symbol group is 1, and the first symbol number information indicates that the candidate symbol group includes 6 symbols, then the candidate symbol group is a continuous 6 symbols starting with symbol 1. symbol.
  • the first indication information in the first information indicates that the first offset is 3 symbols.
  • time unit n is a time unit of all uplink symbols, and the terminal device can determine that the candidate symbol group in time unit n is used to carry the uplink data, that is, the candidate symbol group in time unit n is The valid symbols of the uplink data are transmitted; the time unit n+1 is a time unit of all downlink symbols, which does not contain valid symbols for transmitting uplink data, and the terminal device can determine that the uplink data is not transmitted in the time unit n+1.
  • the four candidate time units further include time units n+2 and n+3, two first time units (that is, including two flexible time units), and the first indication information in the first information indicates the first partial If the shift amount is 3 symbols, then the first symbol carrying the uplink data in the flexible time units n+2 and n+3 is separated by 3 symbols from the first symbol (ie, symbol 1) of the candidate symbol group, that is, Symbol 4, in the flexible time unit, consecutive 6 symbols starting with symbol 4 are valid symbols for uplink data, that is, symbols 4 to 9 are used to carry the uplink data.
  • the terminal device can determine that symbols 1 to 6 in time unit n, time unit n+2, and symbols 4 to 9 in time unit n+3 send the uplink data once respectively, and repeat the uplink data 3 times in total data.
  • the present application is not limited to this.
  • the reliability of data transmission can be improved and the resource utilization rate can be improved.
  • the terminal device determines, in the first symbol group in the first time unit, at least one valid symbol used to carry the first data, wherein the first symbol group includes from the first symbol to the The symbols between the last symbols in the first time unit.
  • the first symbol group includes each symbol between the first symbol and the last symbol in the first time unit.
  • the symbols between the first symbol and the last symbol in the first time unit include the first symbol and the last symbol in the first time unit.
  • the network device schedules uplink data to be repeatedly sent three times through the first information, and the terminal device can determine the three candidate time units as time units n, n+1, and n+2 according to the third indication information.
  • the terminal device determines, according to the first position information and the first symbol number information in the first information, that the candidate symbol group for uplink data scheduled by the first information includes 10 symbols starting with symbol 0.
  • the first indication information in the first information indicates that the first offset is 2, and the terminal device may determine that the first symbol (that is, the first symbol) that carries the uplink data in the flexible time unit n+1 is symbol 2, then in the The first symbol group in the time unit n+1 is symbol 2 to symbol 13 .
  • the terminal device can determine in the first symbol group that the available symbols that can be used to transmit uplink symbols are symbols 2 to 7 and symbols 10 to 13, then symbols 2 to 7 and symbols 10 to 13 are the uplink symbols in the time unit n+1. Valid symbols of the data, the terminal device determines to send the uplink data on symbols 2 to 7 and symbols 10 to 13.
  • the candidate symbol groups in time unit n and time unit n+2 are valid symbols of uplink data, and the terminal device determines the candidate symbol groups in time units n and n+2 to send the uplink data.
  • the present application is not limited to this.
  • the first indication information includes second position information, where the second position information is used to indicate the position of the first symbol in the first time unit.
  • the first symbol is the first symbol used to carry the first data in the first time unit.
  • the first indication information in the first information sent by the network device includes second location information, and the second location information indicates that the first symbol in the flexible time unit n+1 is symbol 4, and the terminal device can The second position information determines that valid symbols for sending uplink data in flexible time unit n+1 are symbol 4 to symbol 13.
  • the present application is not limited to this.
  • the second position information in the first information indicates symbol 4, and the terminal device can determine, according to the second position information, in the two flexible time units n+1 and n+2 in the candidate time unit,
  • the first symbol is symbol 4
  • the first symbol group is symbol 4 to symbol 13.
  • the uplink data scheduled by the first information needs to be carried by 6 symbols, and the terminal device can determine in the first symbol group that 6 consecutive symbols starting with symbol 4 are valid symbols of the uplink data, that is, symbols 4 to 9 are: The valid symbols of the uplink data, so the terminal device determines to send the uplink data on symbols 4 to 9 in the flexible time units n+1 and n+2, respectively.
  • the present application is not limited to this.
  • the second position information in the first information indicates symbol 2
  • the terminal device can determine, according to the second position information, that the first symbol in the flexible time unit n+1 is symbol 2
  • the first symbol group is Symbol 2 to symbol 13, in the first symbol group, symbol 2 to symbol 7 and symbol 10 to symbol 13 are uplink symbols, so the terminal device can determine that symbol 2 to symbol 7 and symbol 10 to symbol 13 are valid symbols for the uplink data , the uplink data is sent on the 10 valid symbols in the time unit n+1, but the present application is not limited to this.
  • the first indication information includes second symbol number information
  • the second symbol number information indicates the number of symbols M
  • the terminal device determines in the second symbol group in the first time unit to carry the number of symbols. At least one valid symbol of a data, wherein the second symbol group includes M symbols starting from the first symbol, and M is greater than or equal to 1.
  • the first symbol of the second symbol group is the first symbol in the first time unit by default, then the second symbol group is the first symbol in the first time unit starting with the first symbol. M consecutive symbols of the symbol.
  • the flexible symbols in the second symbol group are valid symbols for transmitting the first data.
  • the terminal device After the terminal device receives the first information, it can be determined that the number of second symbols is 10, starting from symbol 0.
  • the 10 symbols of the initial symbol are the second symbol group, that is, symbol 0 to symbol 9 are the second symbol group, wherein the flexible symbols in the second symbol group are valid symbols for transmitting the first data, then the terminal device can determine the The valid symbols of the first data in the flexible time unit n+1 are symbols 0 to 9, and the terminal device determines to send the first data on symbols 0 to 9 in the time unit n+1, and the first data is sent in the time units n, n+
  • the candidate symbol groups in 2 respectively transmit the first data.
  • the present application is not limited to this.
  • the number of symbols included in the second symbol group may be less than or equal to the number of symbols included in the candidate symbol group.
  • the number of symbols indicated by the second number of symbols information may be less than or equal to the number of symbols indicated by the first number of symbols information.
  • the second symbol group is used to transmit data carried by the first M symbols of the candidate symbol group.
  • all data of the uplink data is transmitted in the M symbols at a code rate higher than that of the uplink symbols in the candidate symbol group.
  • the present application is not limited to this.
  • implementation manner 3 may be combined with implementation manner 1 or implementation manner 2, and the network device and the terminal device may determine the position of the first symbol by using the first offset in The second position information in 2 determines the position of the first symbol, and the number M of symbols included in the second symbol group is determined according to the second symbol number information in the first indication information, so as to determine each symbol of the second symbol group s position.
  • the network device indicates that the candidate symbol group of uplink data scheduled by the first information is symbol 1 to symbol 9, and the network device can indicate through the first indication information that the first offset is 2, or the second location information
  • At least one flexible symbol may be spaced between the uplink and downlink symbols by default, and the terminal device may determine that the position of the first symbol in the flexible time unit n+2 is symbol 3, because the downlink symbols 6 and 7 and the flexibility of the required interval Symbols 5 and 8 cannot be used to transmit uplink data. Therefore, the 7 symbols in the second symbol group include symbols 3 and 4 and symbols 9 to 13 in total.
  • the seven symbols in the flexible time unit may carry part of data of uplink data, for example, the seven symbols in the flexible time unit are used to transmit data carried by the first seven symbols of the candidate symbol group. Or, all data of the uplink data is transmitted in the 7 symbols at a code rate higher than that of the uplink symbols in the candidate symbol group.
  • the present application is not limited to this.
  • the first indication information includes third symbol number information, the third symbol number information is used to indicate the number K of valid symbols used to carry the first data in the first time unit, and the terminal device is in the first time unit. K valid symbols starting from the first symbol are determined in a time unit.
  • the first symbol may be the first symbol in the default first time unit, or determined according to Embodiment 1 or Embodiment 2, and the terminal device may determine the flexible time according to the number of symbols K indicated by the third symbol number information.
  • the symbols used to carry the first data in the unit ie, valid symbols of the first data
  • K symbols starting with the first symbol are K symbols starting with the first symbol. And it is determined that the first data is sent or received on the K symbols in the flexible time unit.
  • the first data is taken as an example of uplink data for description, and the first data may also be downlink data.
  • one valid symbol and receive the downstream data on the at least one valid symbol are not repeated here.
  • At least one valid symbol in the first time unit may carry a demodulation reference signal (demodulation reference signal, DMRS).
  • demodulation reference signal demodulation reference signal
  • the number of symbols used for transmitting the DMRS may be less than or equal to the number of symbols of the DMRS in the time units other than the first time unit in the N candidate time units.
  • the DMRS configuration in the flexible time unit may be obtained by shifting the DMRS configuration in the non-flexible time unit to the at least one valid symbol.
  • no DMRS is carried on at least one valid symbol in the first time unit.
  • the terminal device and the network device can perform joint channel estimation according to the DMRS in other time units.
  • the time unit after the consecutive N candidate time units A time unit that can be used to transmit the first data is determined, so that the number of time units that can repeatedly transmit the first data is N, that is, the number of times of repeated transmission configured by the network device is satisfied.
  • the terminal device and the network device can determine the time unit after the N consecutive candidate time units that is in the same direction as the first data, as the time unit for transmitting the first data, such as the DCI scheduling PDSCH, and determine the full downlink symbol time unit.
  • the DCI schedules the PUSCH and determines the time unit of all uplink symbols.
  • the terminal device and the network device may determine a flexible time unit after the N consecutive candidate time units that includes symbols in the same direction as the DCI scheduling, such as a DCI-scheduled PDSCH, and determine a time unit that includes downlink symbols and/or flexible symbols.
  • the DCI schedules the PUSCH, and determines a time unit including uplink symbols and/or flexible symbols to transmit the first data, until the number of time units used to transmit the first data can meet the number of repeated transmissions of the first data configured by the network device .
  • the present application is not limited to this.
  • the terminal device sends or receives first data in at least one time unit among the N candidate time units according to the first information, where the at least one time unit includes the first time unit.
  • sending or receiving the first data by the terminal device in at least one time unit in the N candidate time units according to the first information includes: the terminal device sending or receiving the first data on at least one valid symbol in the first time unit determined in S210 or First data is received, and the first data is transmitted or received on candidate symbol groups in time units other than the flexible slot among the N candidate time units.
  • the terminal device may, according to the hybrid automatic repeat request (hybrid automatic repeat request, HARQ) time unit offset included in the first information K1, it is determined that the ACK/NACK feedback information of the PDSCH is carried in the K1 th time unit after the last time unit in the N candidate time units for repeated transmission of the first data.
  • hybrid automatic repeat request hybrid automatic repeat request, HARQ
  • the terminal device sends ACK/NACK feedback information to the network device in time unit m+K1.
  • the present application is not limited to this.
  • the network device notifies the terminal device through the first indication information that the first data is transmitted in the flexible time slots in the N candidate time units of the first data, which can improve the reliability of data transmission and improve resource utilization. Further, the network device can indicate the valid symbols used to transmit the first data in the flexible time slot through the first indication information, and the terminal device and the network device can reach a consensus on the symbol for transmitting the first data in the flexible time slot, which further improves the data transmission. reliability.
  • FIG. 8 is a schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 800 may include a processing unit 810 and a transceiver unit 820 .
  • the communication apparatus 800 may correspond to the terminal device in the above method embodiment, that is, the UE, or a chip configured (or used in) the terminal device.
  • the communication apparatus 800 may correspond to the terminal device in the method 200 according to the embodiment of the present application, and the communication apparatus 800 may include a unit for executing the method performed by the terminal device in the method 200 in FIG. 2 .
  • each unit in the communication device 800 and the above-mentioned other operations and/or functions are respectively for realizing the corresponding flow of the method 200 in FIG. 2 .
  • the transceiver unit 820 in the communication device 800 may be an input/output interface or circuit of the chip, and the processing in the communication device 800 Unit 810 may be a processor in a chip.
  • the processing unit 810 of the communication apparatus 800 may be used to process instructions or data to implement corresponding operations.
  • the communication device 800 may further include a storage unit 830, the storage unit 830 may be used to store instructions or data, and the processing unit 810 may execute the instructions or data stored in the storage unit, so as to enable the communication device to implement corresponding operations , the transceiver unit 820 in the communication device 800 in the communication device 800 may correspond to the transceiver 910 in the terminal device 900 shown in FIG. 9 , and the storage unit 830 may correspond to the terminal device 900 shown in FIG. 9 . in the memory.
  • the transceiver unit 820 in the communication apparatus 800 may be implemented through a communication interface (such as a transceiver or an input/output interface), for example, it may correspond to the terminal shown in FIG. 9 .
  • the transceiver 910 in the device 900, the processing unit 810 in the communication device 800 may be implemented by at least one processor, for example, may correspond to the processor 920 in the terminal device 900 shown in FIG.
  • the processing unit 810 may be implemented by at least one logic circuit.
  • the communication apparatus 800 may correspond to the network device in the above method embodiments, for example, or a chip configured (or used in) the network device.
  • the communication apparatus 800 may correspond to the network device in the method 200 according to the embodiment of the present application, and the communication apparatus 800 may include a unit for executing the method performed by the network device in the method 200 in FIG. 2 . Moreover, each unit in the communication apparatus 800 and the above-mentioned other operations and/or functions are respectively for realizing the corresponding flow of the method 200 in FIG. 2 .
  • the transceiver unit 820 in the communication device 800 is an input/output interface or circuit in the chip, and the processing in the communication device 800 Unit 810 may be a processor in a chip.
  • the processing unit 810 of the communication apparatus 800 may be used to process instructions or data to implement corresponding operations.
  • the communication apparatus 800 may further include a storage unit 830, which may be used to store instructions or data, and the processing unit may execute the instructions or data stored in the storage unit 830 to enable the communication apparatus to implement corresponding operations.
  • the storage unit 830 in the communication apparatus 800 may correspond to the memory in the network device 1000 shown in FIG. 10 .
  • the transceiver unit 820 in the communication apparatus 800 may be implemented through a communication interface (such as a transceiver or an input/output interface), for example, may correspond to the network shown in FIG. 10 .
  • the transceiver 1010 in the device 1000, the processing unit 810 in the communication device 800 may be implemented by at least one processor, for example, may correspond to the processor 1020 in the network device 1000 shown in FIG.
  • the processing unit 810 may be implemented by at least one logic circuit.
  • FIG. 9 is a schematic structural diagram of a terminal device 900 provided by an embodiment of the present application.
  • the terminal device 900 may be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the foregoing method embodiments.
  • the terminal device 900 includes a processor 920 and a transceiver 910 .
  • the terminal device 900 further includes a memory.
  • the processor 920, the transceiver 910 and the memory can communicate with each other through an internal connection path to transmit control and/or data signals, the memory is used to store computer programs, and the processor 920 is used to execute the computer in the memory. program to control the transceiver 910 to send and receive signals.
  • the above-mentioned processor 920 and the memory can be combined into a processing device, and the processor 920 is configured to execute the program codes stored in the memory to realize the above-mentioned functions.
  • the memory can also be integrated in the processor 920 or be independent of the processor 920 .
  • the processor 920 may correspond to the processing unit in FIG. 8 .
  • the above transceiver 910 may correspond to the transceiver unit in FIG. 8 .
  • the transceiver 910 may include a receiver (or called receiver, receiving circuit) and a transmitter (or called transmitter, transmitting circuit). Among them, the receiver is used for receiving signals, and the transmitter is used for transmitting signals.
  • the terminal device 900 shown in FIG. 9 can implement various processes involving the terminal device in the embodiment of the method 200 in FIG. 2 .
  • the operations and/or functions of each module in the terminal device 900 are respectively to implement the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 920 may be used to perform the actions described in the foregoing method embodiments that are implemented inside the terminal device, and the transceiver 910 may be used to perform the actions described in the foregoing method embodiments that the terminal device sends to or receives from the network device. action.
  • the transceiver 910 may be used to perform the actions described in the foregoing method embodiments that the terminal device sends to or receives from the network device. action.
  • the above-mentioned terminal device 900 may further include a power supply for providing power to various devices or circuits in the terminal device.
  • the terminal device 900 may further include one or more of an input unit, a display unit, an audio circuit, a camera, a sensor, etc., and the audio circuit may also include a speaker, a microphone, etc. Wait.
  • FIG. 10 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device 1000 may be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiments.
  • the terminal device 1000 includes a processor 1020 and a transceiver 1010 .
  • the network device 1000 further includes a memory.
  • the processor 1020, the transceiver 1010 and the memory can communicate with each other through an internal connection path to transmit control and/or data signals, the memory is used to store computer programs, and the processor 1020 is used to execute the computer in the memory. program to control the transceiver 1010 to send and receive signals.
  • the network device 1000 shown in FIG. 10 can implement various processes involving the network device in the method 200 in FIG. 2 .
  • the operations and/or functions of each module in the network device 1000 are respectively to implement the corresponding processes in the foregoing method embodiments.
  • network device 1000 shown in FIG. 10 is only a possible architecture of the network device, and should not constitute any limitation to the present application.
  • the methods provided in this application may be applicable to network devices of other architectures.
  • network equipment including CU, DU, and AAU, etc. This application does not limit the specific architecture of the network device.
  • An embodiment of the present application further provides a processing apparatus, including a processor and an interface, where the processor is configured to execute the method in any of the foregoing method embodiments.
  • the above-mentioned processing device may be one or more chips.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or a It is a central processing unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • MCU microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • each step of the above-mentioned method can be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, detailed description is omitted here.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the aforementioned processors may be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • the methods, steps, and logic block diagrams disclosed in the embodiments of this application can be implemented or executed.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code is executed by one or more processors, makes the device including the processor The method in the above embodiment is performed.
  • the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores program codes, and when the program codes are executed by one or more processors, the processing includes the processing
  • the device of the controller executes the method in the above-mentioned embodiment.
  • the present application further provides a system, which includes the aforementioned one or more network devices.
  • the system may further include one or more of the aforementioned terminal devices.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules may be combined or integrated into Another system, or some features can be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of modules may be in electrical, mechanical or other forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种数据传输方法、设备及存储介质,该方法包括:该终端设备接收来自网络设备的第一信息,该第一信息用于指示重复传输N次第一数据,该第一信息包括第一指示信息,该第一指示信息用于指示在第一时间单元中传输该第一数据,该第一时间单元为该第一数据的N个候选时间单元中的时间单元,且该第一时间单元包括上行符号、下行符号和灵活符号中的至少两种符号,其中,N大于或等于2;该终端设备根据该第一信息,在该N个候选时间单元中的至少一个时间单元中发送或接收该第一数据,该至少一个时间单元中包括该第一时间单元。能够提高数据传输的可靠性。

Description

数据传输方法、设备及存储介质 技术领域
本申请实施例涉及通信技术,尤其涉及一种数据传输方法、设备及存储介质。
背景技术
在第五代(5 th generation,5G)移动通信系统新无线(new radio,NR)通信技术中,为了增加覆盖范围、提高传输块的传输可靠性,可以采用单次调度或授权的数据在连续的多个时隙中进行重复传输的传输机制。
然而,在该传输机制中,数据重复传输的次数是半静态配置的。当系统应用灵活时隙结构时,若由于时隙的上、下行结构使得需要承载数据的多个时隙中部分时隙不能够满足该数据的映射需求,则在不满足数据映射需求的时隙中数据将不被传输。这使得实际的数据的重复传输次数将小于配置的重复传输次数,无法达到重复传输预期的效果。
发明内容
本申请实施例提供一种数据传输方法、设备及存储介质,以提高数据传输的可靠性。
第一方面,本申请实施例可提供一种数据传输方法,应用于终端设备,该方法包括:
该终端设备接收来自网络设备的第一信息,该第一信息用于指示重复传输N次第一数据,该第一信息包括第一指示信息,该第一指示信息用于指示在第一时间单元中传输该第一数据,该第一时间单元为该第一数据的N个候选时间单元中的时间单元,且该第一时间单元包括上行符号、下行符号和灵活符号中的至少两种符号,其中,N大于或等于2;
该终端设备根据该第一信息,在该N个候选时间单元中的至少一个时间单元中发送或接收该第一数据,该至少一个时间单元中包括该第一时间单元。
第二方面,本申请实施例还可提供一种数据传输方法,应用于网络设备,该方法包括:
网络设备向终端设备发送第一信息,该第一信息用于指示重复传输N次第一数据,该第一信息包括第一指示信息,该第一指示信息用于指示在第一时间单元中传输该第一数据,该第一时间单元为该第一数据的N个候选时间单元中的一个时间单元,且该第一时间单元包括上行符号、下行符号和灵活符号中的至少两种符号,其中,N大于或等于2;
该网络设备在该N个候选时间单元中的至少一个时间单元中发送或接收该第一数据,该至少一个时间单元中包括该第一时间单元。
第三方面,本申请实施例还可提供一种终端设备,包括:
收发单元,用于接收来自网络设备的第一信息,该第一信息用于指示重复传输N次第一数据,该第一信息包括第一指示信息,该第一指示信息用于指示在第一时间单元中传输该第一数据,该第一时间单元为该第一数据的N个候选时间单元中的时间单元,且该第一时间单元包括上行符号、下行符号和灵活符号中的至少两种符号,其中,N大于或等于2;
处理单元,用于根据该第一信息,确定在该N个候选时间单元中的至少一个时间单元中发送或接收该第一数据,该至少一个时间单元中包括该第一时间单元。
该收发单元还用于在该N个候选时间单元中的至少一个时间单元中发送或接收该第一数据。
第四方面,本申请实施例还可提供一种网络设备,包括:
处理单元,用于确定第一信息,该第一信息用于指示重复传输N次第一数据,该第一信息包括第一指示信息,该第一指示信息用于指示在第一时间单元中传输该第一数据,该 第一时间单元为该第一数据的N个候选时间单元中的一个时间单元,且该第一时间单元包括上行符号、下行符号和灵活符号中的至少两种符号,其中,N大于或等于2;
收发单元,用于向该终端设备发送该第一信息;
该收发单元还用于在该N个候选时间单元中的至少一个时间单元中发送或接收该第一数据,该至少一个时间单元中包括该第一时间单元。
第五方面,本申请实施例还可提供一种终端设备,包括:
处理器、存储器、与网络设备进行通信的接口;
该存储器存储计算机执行指令;
该处理器执行该存储器存储的计算机执行指令,使得该处理器执行如第一方面任一项提供的数据传输方法。
第六方面,本申请实施例还可提供一种网络设备,包括:
处理器、存储器、与终端设备进行通信的接口;
该存储器存储计算机执行指令;
该处理器执行该存储器存储的计算机执行指令,使得该处理器执行如第二方面任一项提供的数据传输方法。
第七方面,本申请实施例提供一种计算机可读存储介质该计算机可读存储介质中存储有计算机执行指令,当该计算机执行指令被处理器执行时用于实现如第一方面任一项该的数据传输方法。
第八方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机执行指令,当该计算机执行指令被处理器执行时用于实现如第二方面任一项该的数据传输方法。
第九方面,本申请实施例提供一种程序,当该程序被处理器执行时,用于执行如上第一方面任一项该的数据传输方法。
第十方面,本申请实施例还提供一种程序,当该程序被处理器执行时,用于执行如上第二方面任一项该的数据传输方法。
可选地,上述处理器可以为芯片。
第十一方面,本申请实施例提供一种计算机程序产品,包括程序指令,程序指令用于实现第一方面任一项该的数据传输方法。
第十二方面,本申请实施例提供一种计算机程序产品,包括程序指令,程序指令用于实现第二方面任一项该的数据传输方法。
第十三方面,本申请实施例提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行第一方面任一项该的数据传输方法。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行第一方面任一项该的数据传输方法。
第十四方面,本申请实施例提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行第二方面任一项该的数据传输方法。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行第二方面任一项该的数据传输方法。
附图说明
图1是适用于本申请实施例的通信系统的一个示意图;
图2是本申请提供的数据传输方法的一个示意性流程图;
图3是本申请实施例提供的重复传输第一数据的有效符号的一个示意图;
图4是本申请实施例提供的重复传输第一数据的有效符号的一个示意图;
图5是本申请实施例提供的重复传输第一数据的有效符号的一个示意图;
图6是本申请实施例提供的重复传输第一数据的有效符号的一个示意图;
图7是本申请实施例提供的重复传输第一数据的有效符号的一个示意图;
图8是本申请的通信装置的一例的示意性框图;
图9是本申请的终端设备的一例的示意性结构图;
图10是本申请的网络设备的一例的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunications system,UMTS)、全球微波接入互操作性(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR)等。
图1为适用于本申请实施例的通信系统100的示意图。
如图1所示,该通信系统100可以包括至少一个网络设备,如图1中的网络设备101;该通信系统100还可以包括至少一个终端设备,如图1中的终端设备102至107。其中,该终端设备102至107可以是移动的或固定的。网络设备101和终端设备102至107中的一个或多个均可以通过无线链路通信。网络设备和终端设备之间可以采用本申请实施例提供的数据传输方法传输数据。可选地,终端设备之间可以直接通信。例如可以利用D2D技术等实现终端设备之间的直接通信。如图中所示,终端设备105与106之间、终端设备105与107之间,可以利用D2D、V2X等技术直接通信。终端设备106和终端设备107可以单独或同时与终端设备105通信。终端设备与终端设备进行通信时可以采用本申请实施例提供的数据传输方法传输数据。
本申请实施例中的终端设备可以是用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端设备、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动移动网(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是LTE系统中的演进型基站(evolutional nodeB,eNB或eNodeB),还可以是云无线接入网(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、以及5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的说明书、权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面对本申请中涉及到的相关技术和术语进行说明。
一、灵活时隙
NR系统中引入了灵活的时隙结构,即在一个时隙中的符号除了配置为上行符号(uplink,UL)和下行(downlink,DL)符号外,还可以配置为灵活(flexible)属性的符号。其中,灵活符号具有下面的特征:
1.灵活符号表示该符号的方向是未定的,可以通过其他信令将其改变为下行符号或者上行符号;
2.灵活符号也可以表示为了前向兼容性而预留给将来用的符号;
3.灵活符号用于终端设备的收发转换,类似于LTE时分双工(time division duplexing,TDD)系统中的保护间隔(guard period,GP)符号,终端设备可以在灵活符号期间完成收发转换。
在NR系统中,定义了多种灵活时隙格式,例如表1所示,其中包括全下行时隙(例如表1中的索引0对应的格式)、全上行时隙(例如表1中的索引1对应的格式)、全灵活时隙(例如表1中的索引2对应的格式),以及不同下行符号(表1中用D表示)、上行符号(表1中用U表示)、灵活符号(表1中用F表示)个数的时隙格式(例如,表1中索引3至10对应的格式),不同的时隙结构分别对应表1中的一个时隙格式的索引。在一个时隙中,可以包括一个上、下行转换点(例如,表1中索引3至10、92至96对应的格式)或两个上、下行转换点(例如,表1中索引46至54对应的格式)。
表1
Figure PCTCN2021071637-appb-000001
Figure PCTCN2021071637-appb-000002
二、数据重复发送
为了提高数据传输的可靠性,设计了数据重复发送机制。针对物理下行共享信道(physical downlink shared channel,PDSCH)的下行数据传输和物理上行共享信道(physical uplink shared channel,PUSCH)的上行数据传输,无线资源控制(radio resource control,RRC)中分别定义了PDSCH聚合因子pdsch-AggregationFactor和PUSCH聚合因子pusch-AggregationFactor两个参数。PDSCH聚合因子、PUSCH聚合因子分别用来控制PDSCH、PUSCH用户数据的重复发送次数(默认1次,如果该信息元素(information element,IE)出现,则可以配置为2/4/8次)。
当pdsch-AggregationFactor>1或pusch-AggregationFactor>1时,将在pdsch-AggregationFactor或pusch-AggregationFactor个连续的时隙内使用相同的符号分配方案(由承载被调度数据的起始符号和符号长度指示信息(the start and length indicator,SLIV)决定),在每个时隙中发送同一个数据传输块(transport block,TB),每次发送的数据TB时对应的冗余版本(redundancy version,RV)如下表2或表3所示,当该数据为下行数据时,调度承载下行数据的PDSCH的下行控制信息(downlink control information,DCI)指示RV的标识RV id。当该数据为上行数据时,调度承载该上行数据的PUSCH的DCI指示RV的标识RV id。其中,表2是当pdsch-AggregationFactor>1时冗余版本设置,表3是当pusch-AggregationFactor>1时冗余版本设置。
表2
Figure PCTCN2021071637-appb-000003
Figure PCTCN2021071637-appb-000004
表3
Figure PCTCN2021071637-appb-000005
目前,在数据重复传输时,例如以重复传输PUSCH承载的上行数据为例,通过网络设备指示SLIV可以确定承载数据的符号。在pusch-AggregationFactor个连续的时隙中,由于不同时隙的格式配置(即时隙中上、下行符号个数占比)可能不同。若某个时隙中的可用符号不能够满足SLIV指示的符号需求,将取消在该时隙中传输该上行数据。也就是说,不在该时隙中传输该上行数据,终端设备实际传输该上行数据的重复次数将小于pusch-AggregationFactor。这使得数据传输无法达到理想的覆盖增强效果。并且,在取消传输该上行数据的时隙中可能出现一些上行符号未被利用而造成资源浪费的情况。
本申请提供了一种数据传输方法,网络设备可以通过指示信息通知终端设备在不满足SLIV指示的符号需求的灵活时隙(灵活时隙是包含上行符号、下行符号和灵活符号中的至少两种符号的时隙)中传输调度的数据,能够提高数据传输的可靠性,减少资源浪费。
下面结合附图对本申请提供的数据传输方法进行说明。
图2是本申请实施例提供的数据传输方法200的一个示意性流程图。
S210,终端设备接收来自网络设备的第一信息,该第一信息用于指示重复传输N次第一数据。
相应地,网络设备向终端设备发送该第一信息。
在网络设备向该终端设备发送第一信息之前,网络设备可以向终端设备发送配置信息(例如,RRC消息),该配置信息用于配置数据传输的重复次数N。
例如,该第一数据可以是上行数据,该配置信息用于配置传输上行数据的重复次数,该配置信息可以是pusch-AggregationFactor,但本申请不限于此。或者,该第一数据可以是下行数据,该配置信息用于配置传输下行数据的重复次数,该配置信息可以是pdsch-AggregationFactor,但本申请不限于此。
作为示例限定,该第一信息为用于调度承载第一数据的数据信道的DCI。
第一数据为上行数据时承载该第一数据的数据信道为PUSCH,第一数据为下行数据时承载该第一数据的数据信道为PDSCH。
终端设备接收到该第一信息后,可以根据配置信息配置的重复次数N,可以确定该第一信息指示的第一数据重复传输N次,其中N大于或等于2。
该第一信息包括第一指示信息,该第一指示信息用于指示在第一时间单元中传输第一数据,该第一时间单元是第一数据的N个候选时间单元中的时间单元,且该第一时间单元中包括上行符号、下行符号和灵活符号中的至少两种符号。该第一时间单元可以称为灵活时间单元。该N个候选时间单元中可以包括一个或多个第一时间单元。
也就是说,网络设备可以通过该第一指示信息通知终端设备在灵活时间单元中传输第一数据,能够提高资源利用率,保证数据传输的可靠性。
可选地,第一信息包括第三指示信息,该第三指示信息用于指示第二时间单元,该第二时间单元为重复传输该第一数据的第一个候选时间单元。
终端设备接收到该第一信息后,根据该第三指示信息可以确定传输该第一数据的第一个候选时间单元,以及根据重复次数N,可以确定该第一数据的N个候选时间单元。该N个候选时间单元可以是以第二时间单元为起始时间单元的连续N个时间单元。
作为示例非限定,本申请中的时间单元可以是帧(frame)、子帧(subframe)、时隙(slot)或微时隙(mini-slot)。
可选地,终端设备可以根据第一指示信息确定第一时间单元中用于承载第一数据的符号。具体可以包括但不限于以下实施方式。
实施方式一,该第一指示信息中包括第一偏移量,该第一偏移量是第一时间单元中第一符号相对于用于承载第一数据的候选符号组的第一个符号之间间隔的符号个数,其中,第一符号是第一时间单元中用于承载第一数据的第一个符号。
可选地,该第一信息还包括第二指示信息,该第二指示信息用于指示第一数据的候选符号组,该第二指示信息包括第一位置信息和第一符号个数信息,其中,第一位置信息用于指示候选符号组的第一个符号在一个时间单元中的位置,第一符号个数信息用于指示候选符号组包含的符号个数。
例如图3所示,网络设备通过RRC消息为终端设备配置上行数据传输的重复次数为3次。当网络设备通过DCI(即第一信息的一个示例)调度承载第一数据的PUSCH时,终端设备可以确定重复传输3次该第一数据。该DCI包括第三指示信息,用于指示第一数据的3个候选时间单元中的第一个候选时间单元(即第二时间单元),例如该DCI承载在时间单元n-1中,该第三指示信息指示第二时间单元与该时间单元n-1间隔1个时间单元,则该第二时间单元为时间单元n,该第一数据的3个候选时间单元为时间单元n、n+1、n+2。该DCI还包括第二指示信息,该第二指示信息指示第一数据的候选符号组,其中该第二指示信息中的第一位置信息指示候选符号组的第一个符号为符号0,第一符号个数信息指示候选符号组包括10个符号。终端设备根据该第二指示信息可以确定第一数据的候选符号组为以符号0为起始符号的连续10个符号,即符号0至符号9。
该3个候选时间单元中的时间单元n+1为灵活时间单元,包括下行符号(即符号0、1、2)、灵活符号(即符号3)和下行符号(即符号4至符号13),即时间单元n+1为第一时间单元的一个示例。网络设备发送的该第一信息中包括第一指示信息,该第一指示信息指示在该时间单元n+1中承载第一数据的第一个符号(即第一符号)相对于候选符号组中的第一个符号(即符号0)偏移的符号个数为4,即第一偏移量为4个符号。则终端设备可以根据该第一指示信息确定在该时间单元n+1中用于承载第一数据的第一个符号为符号4,因此,时间单元n+1中的符号4至符号13该10个符号用于承载该第一数据,也就是说,该时间单元n+1中的符号4至符号13为第一数据的有效符号。终端设备根据第一信息,可以确定在时间单元n和时间单元n+2中的候选符号组上发送第一数据,在时间单元n+1中的符号4至符号13上发送该第一数据。在S220中,终端设备在该3个候选时间单元发送该第一数据。但本申请不限于此。
再例如图4所示,终端设备根据网络设备的指示可以确定在时间单元n、n+1、n+2、n+3四个候选时间单元重复传输上行数据。第一信息中的第一位置信息指示候选符号组的起始符号为1,第一符号个数信息指示候选符号组包括6个符号,则候选符号组为以符号1为起始符号的连续6个符号。第一信息中的第一指示信息指示第一偏移量为3个符号。在4个候选时间单元中,时间单元n为全上行符号的时间单元,终端设备可以确定时间单元n中的候选符号组用于承载该上行数据,也就是说,时间单元n中候选符号组为传输该上行数据的有效符号;时间单元n+1为全下行符号的时间单元,不包含用于传输上行数据的有效符号,终端设备可以确定在时间单元n+1中不传输该上行数据。以及,该4个候选 时间单元中还包括时间单元n+2、n+3,两个第一时间单元(即包括2个灵活时间单元),第一信息中的第一指示信息指示第一偏移量为3个符号,则在灵活时间单元n+2、n+3中承载该上行数据的第一个符号相对于候选符号组的第一个符号(即符号1)间隔3个符号,即符号4,在灵活时间单元中以符号4为起始符号的连续6个符号为上行数据的有效符号,即符号4至符号9用于承载该上行数据。因此,终端设备可以确定在时间单元n中的符号1至符号6、时间单元n+2和时间单元n+3中的符号4至符号9分别发送一次该上行数据,共重复发送3次该上行数据。但本申请不限于此。通过本申请提供的数据传输方法,能够避免因时间单元n+2、n+3中符号1至符号6中包含上行符号以外的符号而取消上行传输,使得上行数据仅能够在时间单元n中发送1次的情况,能够提高数据传输的可靠性,提高资源利用率。
可选地,该终端设备在该第一时间单元中的第一符号组中,确定用于承载该第一数据的至少一个有效符号,其中,该第一符号组包括由该第一符号至该第一时间单元中的最后一个符号之间的符号。
也就是说,第一符号组中包括该第一符号至第一时间单元中的最后一个符号之间的每个符号。该第一符号至该第一时间单元中的最后一个符号之间的符号中包括第一符号和该第一时间单元中的最后一个符号。
例如图5所示,网络设备通过第一信息调度上行数据重复发送3次,终端设备根据第三指示信息可以确定3个候选时间单元为时间单元n、n+1、n+2。终端设备根据第一信息中的第一位置信息和第一符号个数信息确定第一信息调度的上行数据的候选符号组包括以符号0为起始符号的10个符号。第一信息中的第一指示信息指示第一偏移量为2,终端设备可以确定灵活时间单元n+1中承载该上行数据的第一个符号(即第一符号)为符号2,则在该时间单元n+1中第一符号组为符号2至符号13。终端设备可以在该第一符号组中确定可以用于传输上行符号的可用符号为符号2至7、符号10至13,则符号2至7、符号10至13为时间单元n+1中该上行数据的有效符号,终端设备确定在符号2至7、符号10至13上发送该上行数据。时间单元n和时间单元n+2中候选符号组即为上行数据的有效符号,终端设备确定在时间单元n、n+2中的候选符号组发送该上行数据。但本申请不限于此。
实施方式二,第一指示信息包括第二位置信息,该第二位置信息用于指示第一符号在第一时间单元的位置。其中,该第一符号是第一时间单元中用于承载第一数据的第一个符号。
例如图3所示,网络设备发送的第一信息中的第一指示信息包括第二位置信息,该第二位置信息指示灵活时间单元n+1中第一符号为符号4,终端设备可以根据该第二位置信息确定在灵活时间单元n+1中发送上行数据的有效符号为符号4至符号13。但本申请不限于此。其他信息的确定方式可以参考上述对图3示例的描述,为了简要,在此不再赘述。
再例如图4所示,第一信息中的第二位置信息指示符号4,终端设备可以根据该第二位置信息确定在候选时间单元中的两个灵活时间单元n+1、n+2中,第一符号为符号4,第一符号组为符号4至符号13。第一信息调度的上行数据需要6个符号承载,终端设备可以在第一符号组中确定以符号4为起始符号的连续6个符号为该上行数据的有效符号,即符号4至符号9为该上行数据的有效符号,因此终端设备确定在灵活时间单元n+1、n+2中的符号4至符号9上分别发送该上行数据。但本申请不限于此。其他信息的确定方式可以参考上述对图3示例的描述,为了简要,在此不再赘述。
再例如图5所示,第一信息中的第二位置信息指示符号2,终端设备可以根据该第二位置信息确定灵活时间单元n+1中的第一符号为符号2,第一符号组为符号2至符号13,该第一符号组中符号2至符号7、符号10至符号13为上行符号,因此终端设备可以确定符号2至符号7、符号10至符号13为该上行数据的有效符号,时间单元n+1中的该10 个有效符号上发送该上行数据,但本申请不限于此。
实施方式三,第一指示信息包括第二符号个数信息,该第二符号个数信息指示符号个数M,终端设备在第一时间单元中的第二符号组中,确定用于承载该第一数据的至少一个有效符号,其中,该第二符号组包括以第一符号为起始符号的M个符号,M大于或等于1。
一种可能的实施方式中,默认第二符号组的第一个符号为第一时间单元中的第一个符号,则该第二符号组为第一时间单元中以第一个符号为起始符号的M个连续的符号。
可选地,第二符号组中的灵活符号为用于传输第一数据的有效符号。
例如图6所示,第一指示信息中的第二符号个数信息指示M=10,终端设备接收到第一信息后,根据其中的第二符号个数信息为10可以确定由符号0为起始符号的10个符号为第二符号组,即符号0至符号9为第二符号组,其中第二符号组中的灵活符号为用于传输第一数据的有效符号,则终端设备可以确定在灵活时间单元n+1中第一数据的有效符号为符号0至符号9,终端设备确定在时间单元n+1中的符号0至符号9上发送该第一数据,在时间单元n、n+2中的候选符号组分别发送该第一数据。但本申请不限于此。
可选地,第二符号组包含的符号个数可以小于或等于候选符号组包含的符号个数。
也就是说,第二符号个数信息指示的符号个数可以小于或等于第一符号个数信息指示的符号个数。在第二符号组包含的符号个数小于候选符号组包含的符号个数的情况下,第二符号组用于可以传输候选符号组的前M个符号承载的数据。或者以高于候选符号组中上行符号的码率在该M个符号中传输该上行数据的全部数据。但本申请不限于此。
另一种可能的实施方式中,实施方式三可以结合实施方式一或实施方式二,网络设备和终端设备可以通过实施方式一中的第一偏移量确定第一符号的位置,或者通过实施方式二中的第二位置信息确定第一符号的位置,以及根据第一指示信息中的第二符号个数信息确定第二符号组包含的符号个数M,从而确定第二符号组的每个符号的位置。
例如图7所示,网络设备指示第一信息调度的上行数据的候选符号组为符号1至符号9,且网络设备可以通过第一指示信息指示第一偏移量为2,或者第二位置信息指示符号3通知终端设备灵活时间单元n+1中的第一符号的位置为符号3,终端设备再根据第一信息中的第二符号个数信息指示M=7确定以符号3为起始符号的7个符号为该上行数据的有效符号,终端设备可以确定在该7个符号中发送该上行数据。可选地,可以默认上行与下行符号之间至少间隔一个灵活符号,终端设备可以确定灵活时间单元n+2中的第一符号的位置为符号3,由于下行符号6、7和需要间隔的灵活符号5、8不能够用于传输上行数据,因此,该第二符号组中的7个符号包括符号3、4和符号9至13共7个符号。可选地,灵活时间单元中的该7个符号可以承载上行数据的部分数据,例如灵活时间单元中的该7个符号用于传输候选符号组的前7个符号承载的数据。或者以高于候选符号组中上行符号的码率在该7个符号中传输该上行数据的全部数据。但本申请不限于此。
实施方式四,第一指示信息包括第三符号个数信息,该第三符号个数信息用于指示第一时间单元中用于承载第一数据的有效符号的个数K,该终端设备在第一时间单元中确定以第一符号为起始符号的K个有效符号。
第一符号可以是默认的第一时间单元中的第一个符号,或根据实施方式一或实施方式二确定的,终端设备可以根据第三符号个数信息指示的符号个数K,确定灵活时间单元中用于承载第一数据的符号(即第一数据的有效符号)为以第一符号为起始符号的K个符号。并确定在灵活时间单元中的该K个符号上发送或接收第一数据。
需要说明的是,上述实施方式中,为了便于理解均以第一数据为上行数据为例进行说明,第一数据也可以是下行数据,终端设备可以根据上述实施方式确定用于承载下行数据的至少一个有效符号并在该至少一个有效符号上接收该下行数据。为了简要,在此不再赘述。
可选地,第一时间单元中的至少一个有效符号上可以承载解调参考信号(demodulation reference signal,DMRS)。
用于传输DMRS的符号个数可以小于或等于N个候选时间单元中除第一时间单元以外的时间单元中DMRS的符号个数。可选地,灵活时间单元中的DMRS配置可以是非灵活时间单元中的DMRS配置平移至该至少一个有效符号得到的。
可选地,第一时间单元中的至少一个有效符号上不承载DMRS。
终端设备和网络设备可以根据其他时间单元中的DMRS进行联合信道估计。
可选地,在以第二时间单元为起始时间单元的连续N个候选时间单元中的至少一个时间单元被取消传输该第一数据时,在该连续N个候选时间单元之后的时间单元中确定能够用于传输该第一数据的时间单元,使得能够重复传输第一数据的时间单元的个数为N,即满足网络设备配置的重复传输的次数。
例如,终端设备和网络设备可以确定该连续N个候选时间单元之后的、与第一数据方向相同的时间单元,作为用于传输该第一数据的时间单元,例如DCI调度PDSCH,确定全下行符号的时间单元。DCI调度PUSCH,确定全上行符号的时间单元。或者,终端设备和网络设备可以确定该连续N个候选时间单元之后的、包含与DCI调度方向相同的符号的灵活时间单元,例如DCI调度PDSCH,确定包含下行符号和/或灵活符号的时间单元。DCI调度PUSCH,确定包含上行符号和/或灵活符号的时间单元用于传输该第一数据,直到用于传输第一数据的时间单元的个数能够满足网络设备配置的第一数据的重复传输次数。但本申请不限于此。
S220,终端设备根据该第一信息在N个候选时间单元中的至少一个时间单元发送或接收第一数据,该至少一个时间单元中包括第一时间单元。
具体地,终端设备根据该第一信息在N个候选时间单元中的至少一个时间单元发送或接收第一数据,包括:终端设备在S210中确定的第一时间单元中至少一个有效符号上发送或接收第一数据,以及在该N个候选时间单元中除灵活时隙以外的时间单元中的候选符号组上发送或接收第一数据。
可选地,若第一信息调度的第一数据为承载在PDSCH上的下行数据,终端设备可以根据第一信息中包括的混合自动重传请求(hybrid automatic repeat request,HARQ)时间单元偏移量K1,确定该PDSCH的ACK/NACK反馈信息承载在重复传输第一数据的N个候选时间单元中的最后一个时间单元之后的第K1个时间单元中。
例如,用于传输第一数据的最后一个时间单元为时间单元m,则终端设备在时间单元m+K1中向网络设备发送ACK/NACK反馈信息。但本申请不限于此。
根据本申请的方案,网络设备通过第一指示信息通知终端设备,第一数据的N个候选时间单元中的灵活时隙中传输第一数据,可以提高数据传输的可靠性,提高资源利用率。进一步,网络设备可以通过第一指示信息指示灵活时隙中用于传输第一数据的有效符号,能够是终端设备和网络设备对灵活时隙中传输第一数据的符号达成共识,进一步提高数据传输的可靠性。
以上,结合图2至图7详细说明了本申请实施例提供的方法。以下介绍本申请实施例提供的装置。
图8是本申请实施例提供的通信装置的示意性框图。如图8所示,该通信装置800可以包括处理单元810和收发单元820。
在一种可能的设计中,该通信装置800可对应于上文方法实施例中的终端设备,即UE,或者配置于(或用于)终端设备中的芯片。
应理解,该通信装置800可对应于根据本申请实施例的方法200中的终端设备,该通信装置800可以包括用于执行图2中的方法200中终端设备执行的方法的单元。并且,该通信装置800中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200的相 应流程。
还应理解,该通信装置800为配置于(或用于)终端设备中的芯片时,该通信装置800中的收发单元820可以为芯片的输入/输出接口或电路,该通信装置800中的处理单元810可以为芯片中的处理器。
可选地,通信装置800的该处理单元810可以用于处理指令或者数据,以实现相应的操作。
可选地,通信装置800还可以包括存储单元830,该存储单元830可以用于存储指令或者数据,处理单元810可以执行该存储单元中存储的指令或者数据,以使该通信装置实现相应的操作,该通信装置800中的该通信装置800中的收发单元820为可对应于图9中示出的终端设备900中的收发器910,存储单元830可对应于图9中示出的终端设备900中的存储器。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置800为终端设备时,该通信装置800中的收发单元820为可通过通信接口(如收发器或输入/输出接口)实现,例如可对应于图9中示出的终端设备900中的收发器910,该通信装置800中的处理单元810可通过至少一个处理器实现,例如可对应于图9中示出的终端设备900中的处理器920,该通信装置800中的处理单元810可通过至少一个逻辑电路实现。
在另一种可能的设计中,该通信装置800可对应于上文方法实施例中的网络设备,例如,或者配置于(或用于)网络设备中的芯片。
应理解,该通信装置800可对应于根据本申请实施例的方法200中的网络设备,该通信装置800可以包括用于执行图2中的方法200中网络设备执行的方法的单元。并且,该通信装置800中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200的相应流程。
还应理解,该通信装置800为配置于(或用于)网络设备中的芯片时,该通信装置800中的收发单元820为芯片中的输入/输出接口或电路,该通信装置800中的处理单元810可为芯片中的处理器。
可选地,通信装置800的该处理单元810可以用于处理指令或者数据,以实现相应的操作。
可选地,通信装置800还可以包括存储单元830,该存储单元可以用于存储指令或者数据,处理单元可以执行该存储单元830中存储的指令或者数据,以使该通信装置实现相应的操作。该通信装置800中的存储单元830为可对应于图10中示出的网络设备1000中的存储器。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置800为网络设备时,该通信装置800中的收发单元820为可通过通信接口(如收发器或输入/输出接口)实现,例如可对应于图10中示出的网络设备1000中的收发器1010,该通信装置800中的处理单元810可通过至少一个处理器实现,例如可对应于图10中示出的网络设备1000中的处理器1020,该通信装置800中的处理单元810可通过至少一个逻辑电路实现。
图9是本申请实施例提供的终端设备900的结构示意图。该终端设备900可应用于如图1所示的系统中,执行上述方法实施例中终端设备的功能。如图所示,该终端设备900包括处理器920和收发器910。可选地,该终端设备900还包括存储器。其中,处理器920、收发器910和存储器之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器用于存储计算机程序,该处理器920用于执行该存储器中的该计算机程序,以控制该 收发器910收发信号。
上述处理器920可以和存储器可以合成一个处理装置,处理器920用于执行存储器中存储的程序代码来实现上述功能。具体实现时,该存储器也可以集成在处理器920中,或者独立于处理器920。该处理器920可以与图8中的处理单元对应。
上述收发器910可以与图8中的收发单元对应。收发器910可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图9所示的终端设备900能够实现图2中的方法200实施例中涉及终端设备的各个过程。终端设备900中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述处理器920可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器910可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备900还可以包括电源,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备900还可以包括输入单元、显示单元、音频电路、摄像头和传感器等中的一个或多个,该音频电路还可以包括扬声器、麦克风等。
图10是本申请实施例提供的网络设备的结构示意图,该网络设备1000可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。如图所示,该终端设备1000包括处理器1020和收发器1010。可选地,该网络设备1000还包括存储器。其中,处理器1020、收发器1010和存储器之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器用于存储计算机程序,该处理器1020用于执行该存储器中的该计算机程序,以控制该收发器1010收发信号。
应理解,图10所示的网络设备1000能够实现图2中的方法200中涉及网络设备的各个过程。网络设备1000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
应理解,图10所示出的网络设备1000仅为网络设备的一种可能的架构,而不应对本申请构成任何限定。本申请所提供的方法可适用于其他架构的网络设备。例如,包含CU、DU和AAU的网络设备等。本申请对于网络设备的具体架构不作限定。
本申请实施例还提供了一种处理装置,包括处理器和接口;该处理器用于执行上述任一方法实施例中的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上 述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码由一个或多个处理器执行时,使得包括该处理器的装置执行上述实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码由一个或多个处理器运行时,使得包括该处理器的装置执行上述实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个网络设备。还系统还可以进一步包括前述的一个或多个终端设备。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,该模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (48)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    终端设备接收来自网络设备的第一信息,所述第一信息用于指示重复传输N次第一数据,所述第一信息包括第一指示信息,所述第一指示信息用于指示在第一时间单元中传输所述第一数据,所述第一时间单元为所述第一数据的N个候选时间单元中的时间单元,且所述第一时间单元包括上行符号、下行符号和灵活符号中的至少两种符号,其中,N大于或等于2;
    所述终端设备根据所述第一信息,在所述N个候选时间单元中的至少一个时间单元中发送或接收所述第一数据,所述至少一个时间单元中包括所述第一时间单元。
  2. 根据权利要求1所述的方法,其特征在于,所述第一指示信息包括第一偏移量,所述第一偏移量是在所述第一时间单元中第一符号相对于用于承载所述第一数据的候选符号组的第一个符号之间间隔的符号个数,其中,所述第一符号是所述第一时间单元中用于承载所述第一数据的第一个符号。
  3. 根据权利要求2所述的方法,其特征在于,所述第一信息还包括第二指示信息,所述第二指示信息用于指示所述候选符号组,所述第二指示信息包括第一位置信息和第一符号个数信息,所述第一位置信息用于指示所述候选符号组的第一个符号在一个时间单元中的位置,所述第一符号个数信息用于指示所述候选符号组包含的符号个数。
  4. 根据权利要求1所述的方法,其特征在于,所述第一指示信息包括第二位置信息,所述第二位置信息用于指示第一符号在所述第一时间单元中的位置,其中,所述第一符号是所述第一时间单元中用于承载所述第一数据的第一个符号。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备在所述第一时间单元中的第一符号组中,确定用于承载所述第一数据的至少一个有效符号,其中,所述第一符号组包括由所述第一符号至所述第一时间单元中的最后一个符号之间的符号;
    所述在所述N个候选时间单元中的至少一个时间单元中发送或接收所述第一数据,包括:
    在所述至少一个有效符号上发送或接收所述第一数据。
  6. 根据权利要求2至4中任一项所述的方法,其特征在于,所述第一指示信息还包括第二符号个数信息,所述第二符号个数信息指示符号个数M,M大于或等于1,以及,所述方法还包括:
    所述终端设备在所述第一时间单元中的第二符号组中,确定用于承载所述第一数据的至少一个有效符号,其中,所述第二符号组包括以所述第一符号为起始符号的M个符号;
    所述在所述N个候选时间单元中的至少一个时间单元中发送或接收所述第一数据,包括:
    在所述至少一个有效符号上发送或接收所述第一数据。
  7. 根据权利要求4所述的方法,其特征在于,所述第一指示信息还包括第三符号个数信息,所述第三符号个数信息用于指示所述第一时间单元中用于承载所述第一数据的有效符号的个数K,以及,所述方法还包括:
    所述终端设备在第一时间单元中确定以所述第一符号为起始符号的K个有效符号;
    所述在所述N个候选时间单元中的至少一个时间单元中发送或接收所述第一数据,包括:
    在所述K个有效符号上发送或接收所述第一数据。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第一数据为下行数据,所述至少一个有效符号包括下行符号和/或灵活符号,或者,所述第一数据为上行数据,所述至少 一个有效符号包括上行符号和/或灵活符号。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,所述至少一个有效符号为连续的符号,或者所述至少一个有效符号为不连续的符号。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第一数据承载在物理上行共享信道PUSCH或物理下行共享信道PDSCH上。
  11. 根据权利要求1至8中任一项所述的方法,其特征在于,所述N个候选时间单元中包括一个或多个所述第一时间单元。
  12. 一种数据传输方法,其特征在于,所述方法包括:
    网络设备向终端设备发送第一信息,所述第一信息用于指示重复传输N次第一数据,所述第一信息包括第一指示信息,所述第一指示信息用于指示在第一时间单元中传输所述第一数据,所述第一时间单元为所述第一数据的N个候选时间单元中的一个时间单元,且所述第一时间单元包括上行符号、下行符号和灵活符号中的至少两种符号,其中,N大于或等于2;
    所述网络设备在所述N个候选时间单元中的至少一个时间单元中发送或接收所述第一数据,所述至少一个时间单元中包括所述第一时间单元。
  13. 根据权利要求12所述的方法,其特征在于,所述第一指示信息包括第一偏移量,所述第一偏移量是在所述第一时间单元中第一符号相对于用于承载所述第一数据的候选符号组的第一个符号之间间隔的符号个数,其中,所述第一符号是所述第一时间单元中用于承载所述第一数据的第一个符号。
  14. 根据权利要求13所述的方法,其特征在于,所述第一信息还包括第二指示信息,所述第二指示信息用于指示所述候选符号组,所述第二指示信息包括第一位置信息和第一符号个数信息,所述第一位置信息用于指示所述候选符号组的第一个符号在一个时间单元中的位置,所述第一符号个数信息用于指示所述候选符号组包含的符号个数。
  15. 根据权利要求12所述的方法,其特征在于,所述第一指示信息包括第二位置信息,所述第二位置信息用于指示第一符号在所述第一时间单元中的位置,其中,所述第一符号是所述第一时间单元中用于承载所述第一数据的第一个符号。
  16. 根据权利要求13至15中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备在所述第一时间单元中的第一符号组中,确定用于承载所述第一数据的至少一个有效符号,其中,所述第一符号组包括由所述第一符号至所述第一时间单元中的最后一个符号之间的符号;
    所述在所述N个候选时间单元中的至少一个时间单元中发送或接收所述第一数据,包括:
    在所述至少一个有效符号上发送或接收所述第一数据。
  17. 根据权利要求13至15中任一项所述的方法,其特征在于,所述第一指示信息还包括第二符号个数信息,所述第二符号个数信息指示符号个数M,M大于或等于1,以及,所述方法还包括:
    所述网络设备在所述第一时间单元中的第二符号组中,确定用于承载所述第一数据的至少一个有效符号,其中,所述第二符号组包括以所述第一符号为起始符号的M个符号;
    所述在所述N个候选时间单元中的至少一个时间单元中发送或接收所述第一数据,包括:
    在所述至少一个有效符号上发送或接收所述第一数据。
  18. 根据权利要求15所述的方法,其特征在于,所述第一指示信息还包括第三符号个数信息,所述第三符号个数信息用于指示所述第一时间单元中用于承载所述第一数据的有效符号的个数K,以及,所述方法还包括:
    所述网络设备在第一时间单元中确定以所述第一符号为起始符号的K个有效符号;
    所述在所述N个候选时间单元中的至少一个时间单元中发送或接收所述第一数据,包括:
    在所述K个有效符号上发送或接收所述第一数据。
  19. 根据权利要求17或18所述的方法,其特征在于,所述第一数据为下行数据,所述至少一个有效符号包括下行符号和/或灵活符号,或者,所述第一数据为上行数据,所述至少一个有效符号包括上行符号和/或灵活符号。
  20. 根据权利要求17至19中任一项所述的方法,其特征在于,所述至少一个有效符号为连续的符号,或者所述至少一个有效符号为不连续的符号。
  21. 根据权利要求12至20中任一项所述的方法,其特征在于,所述第一数据承载在物理上行共享信道PUSCH或物理下行共享信道PDSCH上。
  22. 根据权利要求12至21中任一项所述的方法,其特征在于,所述N个候选时间单元中包括一个或多个所述第一时间单元。
  23. 一种数据传输装置,其特征在于,包括:
    收发单元,用于接收来自网络设备的第一信息,所述第一信息用于指示重复传输N次第一数据,所述第一信息包括第一指示信息,所述第一指示信息用于指示在第一时间单元中传输所述第一数据,所述第一时间单元为所述第一数据的N个候选时间单元中的时间单元,且所述第一时间单元包括上行符号、下行符号和灵活符号中的至少两种符号,其中,N大于或等于2;
    处理单元,用于根据所述第一信息,确定在所述N个候选时间单元中的至少一个时间单元中发送或接收所述第一数据,所述至少一个时间单元中包括所述第一时间单元;
    所述收发单元还用于在所述N个候选时间单元中的至少一个时间单元中发送或接收所述第一数据。
  24. 根据权利要求23所述的装置,其特征在于,所述第一指示信息包括第一偏移量,所述第一偏移量是在所述第一时间单元中第一符号相对于用于承载所述第一数据的候选符号组的第一个符号之间间隔的符号个数,其中,所述第一符号是所述第一时间单元中用于承载所述第一数据的第一个符号。
  25. 根据权利要求24所述的装置,其特征在于,所述第一信息还包括第二指示信息,所述第二指示信息用于指示所述候选符号组,所述第二指示信息包括第一位置信息和第一符号个数信息,所述第一位置信息用于指示所述候选符号组的第一个符号在一个时间单元中的位置,所述第一符号个数信息用于指示所述候选符号组包含的符号个数。
  26. 根据权利要求23所述的装置,其特征在于,所述第一指示信息包括第二位置信息,所述第二位置信息用于指示第一符号在所述第一时间单元中的位置,其中,所述第一符号是所述第一时间单元中用于承载所述第一数据的第一个符号。
  27. 根据权利要求24至26中任一项所述的装置,其特征在于,
    所述处理单元还用于在所述第一时间单元中的第一符号组中,确定用于承载所述第一数据的至少一个有效符号,其中,所述第一符号组包括由所述第一符号至所述第一时间单元中的最后一个符号之间的符号;
    所述收发单元具体用于在所述至少一个有效符号上发送或接收所述第一数据。
  28. 根据权利要求24至26中任一项所述的装置,其特征在于,所述第一指示信息还包括第二符号个数信息,所述第二符号个数信息指示符号个数M,M大于或等于1,以及,
    所述处理单元还用于在所述第一时间单元中的第二符号组中,确定用于承载所述第一数据的至少一个有效符号,其中,所述第二符号组包括以所述第一符号为起始符号的M个符号;
    所述收发单元具体用于在所述至少一个有效符号上发送或接收所述第一数据。
  29. 根据权利要求26所述的装置,其特征在于,所述第一指示信息还包括第三符号个 数信息,所述第三符号个数信息用于指示所述第一时间单元中用于承载所述第一数据的有效符号的个数K,以及,
    所述处理单元还用于在第一时间单元中确定以所述第一符号为起始符号的K个有效符号;
    所述收发单元具体用于在所述K个有效符号上发送或接收所述第一数据。
  30. 根据权利要求28或29所述的装置,其特征在于,所述第一数据为下行数据,所述至少一个有效符号包括下行符号和/或灵活符号,或者,所述第一数据为上行数据,所述至少一个有效符号包括上行符号和/或灵活符号。
  31. 根据权利要求28至30中任一项所述的装置,其特征在于,所述至少一个有效符号为连续的符号,或者所述至少一个有效符号为不连续的符号。
  32. 根据权利要求23至31中任一项所述的装置,其特征在于,所述第一数据承载在物理上行共享信道PUSCH或物理下行共享信道PDSCH上。
  33. 根据权利要求23至32中任一项所述的装置,其特征在于,所述N个候选时间单元中包括一个或多个所述第一时间单元。
  34. 一种数据传输装置,其特征在于,包括:
    处理单元,用于确定第一信息,所述第一信息用于指示重复传输N次第一数据,所述第一信息包括第一指示信息,所述第一指示信息用于指示在第一时间单元中传输所述第一数据,所述第一时间单元为所述第一数据的N个候选时间单元中的一个时间单元,且所述第一时间单元包括上行符号、下行符号和灵活符号中的至少两种符号,其中,N大于或等于2;
    收发单元,用于向终端设备发送所述第一信息;
    所述收发单元还用于在所述N个候选时间单元中的至少一个时间单元中发送或接收所述第一数据,所述至少一个时间单元中包括所述第一时间单元。
  35. 根据权利要求34所述的装置,其特征在于,所述第一指示信息包括第一偏移量,
    所述第一偏移量是在所述第一时间单元中第一符号相对于用于承载所述第一数据的候选符号组的第一个符号之间间隔的符号个数,
    其中,所述第一符号是所述第一时间单元中用于承载所述第一数据的第一个符号。
  36. 根据权利要求35所述的装置,其特征在于,所述第一信息还包括第二指示信息,所述第二指示信息用于指示所述候选符号组,所述第二指示信息包括第一位置信息和第一符号个数信息,所述第一位置信息用于指示所述候选符号组的第一个符号在一个时间单元中的位置,所述第一符号个数信息用于指示所述候选符号组包含的符号个数。
  37. 根据权利要求34所述的装置,其特征在于,所述第一指示信息包括第二位置信息,所述第二位置信息用于指示第一符号在所述第一时间单元中的位置,其中,所述第一符号是所述第一时间单元中用于承载所述第一数据的第一个符号。
  38. 根据权利要求35至37中任一项所述的装置,其特征在于,
    所述处理单元还用于在所述第一时间单元中的第一符号组中,确定用于承载所述第一数据的至少一个有效符号,其中,所述第一符号组包括由所述第一符号至所述第一时间单元中的最后一个符号之间的符号;
    所述收发单元具体用于在所述至少一个有效符号上发送或接收所述第一数据。
  39. 根据权利要求35至37中任一项所述的装置,其特征在于,所述第一指示信息还包括第二符号个数信息,所述第二符号个数信息指示符号个数M,M大于或等于1,以及,
    所述处理单元还用于在所述第一时间单元中的第二符号组中,确定用于承载所述第一数据的至少一个有效符号,其中,所述第二符号组包括以所述第一符号为起始符号的M个符号;
    所述收发单元具体用于在所述至少一个有效符号上发送或接收所述第一数据。
  40. 根据权利要求37所述的装置,其特征在于,所述第一指示信息还包括第三符号个数信息,所述第三符号个数信息用于指示所述第一时间单元中用于承载所述第一数据的有效符号的个数K,以及,
    所述处理单元还用于在第一时间单元中确定以所述第一符号为起始符号的K个有效符号;
    所述收发单元具体用于在所述K个有效符号上发送或接收所述第一数据。
  41. 根据权利要求39或40所述的装置,其特征在于,所述第一数据为下行数据,所述至少一个有效符号包括下行符号和/或灵活符号,或者,所述第一数据为上行数据,所述至少一个有效符号包括上行符号和/或灵活符号。
  42. 根据权利要求39至41中任一项所述的装置,其特征在于,所述至少一个有效符号为连续的符号,或者所述至少一个有效符号为不连续的符号。
  43. 根据权利要求34至42中任一项所述的装置,其特征在于,所述第一数据承载在物理上行共享信道PUSCH或物理下行共享信道PDSCH上。
  44. 根据权利要求34至43中任一项所述的装置,其特征在于,所述N个候选时间单元中包括一个或多个所述第一时间单元。
  45. 一种通信设备,其特征在于,包括:
    处理器、存储器、与终端设备进行通信的接口;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求1至22中任一项所述的通信方法。
  46. 一种计算机可读存储介质,其特征在于,包括计算机程序,当其由一个或多个处理器执行时,使得包括所述处理器的装置执行如权利要求1至22中任一项所述的方法。
  47. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序,当所述计算机程序被运行时,使得计算机执行如权利要求1至22中任一项所述的方法。
  48. 一种芯片,其特征在于,包括至少一个处理器和通信接口;
    所述通信接口用于接收输入所述芯片的信号或从所述芯片输出的信号,所述处理器与所述通信接口通信且通过逻辑电路或执行代码指令用于实现如权利要求1至22中任一项所述的方法。
PCT/CN2021/071637 2021-01-14 2021-01-14 数据传输方法、设备及存储介质 WO2022151119A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/071637 WO2022151119A1 (zh) 2021-01-14 2021-01-14 数据传输方法、设备及存储介质
CN202180069685.3A CN116326095A (zh) 2021-01-14 2021-01-14 数据传输方法、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/071637 WO2022151119A1 (zh) 2021-01-14 2021-01-14 数据传输方法、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022151119A1 true WO2022151119A1 (zh) 2022-07-21

Family

ID=82446727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071637 WO2022151119A1 (zh) 2021-01-14 2021-01-14 数据传输方法、设备及存储介质

Country Status (2)

Country Link
CN (1) CN116326095A (zh)
WO (1) WO2022151119A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110035529A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种资源配置的方法和通信装置
US20200162208A1 (en) * 2018-11-21 2020-05-21 Electronics And Telecommunications Research Institute Method for transmitting and receiving data channel in communication system and apparatus for the same
US20200267756A1 (en) * 2019-02-15 2020-08-20 Qualcomm Incorporated Physical uplink shared channel repetition across slot boundary
CN111757501A (zh) * 2019-03-29 2020-10-09 北京三星通信技术研究有限公司 用户设备、基站及数据传输的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110035529A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种资源配置的方法和通信装置
US20200162208A1 (en) * 2018-11-21 2020-05-21 Electronics And Telecommunications Research Institute Method for transmitting and receiving data channel in communication system and apparatus for the same
US20200267756A1 (en) * 2019-02-15 2020-08-20 Qualcomm Incorporated Physical uplink shared channel repetition across slot boundary
CN111757501A (zh) * 2019-03-29 2020-10-09 北京三星通信技术研究有限公司 用户设备、基站及数据传输的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Enhancements on multi-TRP/panel transmission", 3GPP DRAFT; R1-1910073, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 5 October 2019 (2019-10-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051788880 *

Also Published As

Publication number Publication date
CN116326095A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
CN110912649B (zh) 用户装备设备、电子装置和计算机可读存储介质
TWI775790B (zh) 傳輸數據的方法、終端設備和網絡設備
US12047982B2 (en) Communication method and communications apparatus
WO2020143732A1 (zh) 发送和接收反馈信道的方法以及装置
WO2022057568A1 (zh) 数据传输方法和装置
WO2014110759A1 (en) Flexible usage of special subframe for long term evolution time division duplex downlink-uplink
WO2019028773A1 (zh) 无线通信的方法、网络设备和终端设备
US20230345465A1 (en) Repetition Indication for Physical Uplink Control Channel Enhancement
WO2021072662A1 (zh) 一种混合自动重传请求反馈方法及装置
WO2019023998A1 (zh) 设备对设备通信的方法、终端设备和网络设备
WO2022141299A1 (zh) 参考信号资源的传输方法、设备及存储介质
CN114793189B (zh) 一种联合信道估计方法及通信装置
TWI542181B (zh) 傳送與接收上行鏈路控制通道資訊的方法及系統
WO2021159539A1 (zh) 一种信道的接收机会确定方法及通信装置
WO2019090720A1 (zh) 传输数据的方法和设备
WO2018076326A1 (zh) 用于上行载波聚合的通信方法和装置
WO2022151119A1 (zh) 数据传输方法、设备及存储介质
TWI754061B (zh) 無線通信方法和設備
WO2023280298A1 (zh) 一种反馈方式的确定方法、装置、芯片及模组设备
WO2019137405A1 (zh) 一种信息传输方法、装置以及计算机可读存储介质
WO2022170976A1 (zh) 一种数据传输方法及通信装置
WO2022077514A1 (zh) 一种通信方法及装置
CN107710664A (zh) 传输数据的方法、终端和基站
WO2021027904A1 (zh) 无线通信的方法和装置以及通信设备
WO2021204275A1 (zh) 一种反馈信息的发送方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918331

Country of ref document: EP

Kind code of ref document: A1