WO2022149495A1 - Coin identification device and coin identification method - Google Patents
Coin identification device and coin identification method Download PDFInfo
- Publication number
- WO2022149495A1 WO2022149495A1 PCT/JP2021/048229 JP2021048229W WO2022149495A1 WO 2022149495 A1 WO2022149495 A1 WO 2022149495A1 JP 2021048229 W JP2021048229 W JP 2021048229W WO 2022149495 A1 WO2022149495 A1 WO 2022149495A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coin
- feature amount
- material feature
- point
- data
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 48
- 239000000463 material Substances 0.000 claims abstract description 346
- 230000005291 magnetic effect Effects 0.000 claims abstract description 106
- 238000001514 detection method Methods 0.000 claims abstract description 98
- 230000008569 process Effects 0.000 claims abstract description 25
- 239000011162 core material Substances 0.000 description 24
- 238000010586 diagram Methods 0.000 description 18
- 230000010355 oscillation Effects 0.000 description 13
- 230000008859 change Effects 0.000 description 11
- 238000005070 sampling Methods 0.000 description 10
- 239000010410 layer Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000002344 surface layer Substances 0.000 description 6
- 230000004907 flux Effects 0.000 description 5
- 239000000696 magnetic material Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007688 edging Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D5/00—Testing specially adapted to determine the identity or genuineness of coins, e.g. for segregating coins which are unacceptable or alien to a currency
- G07D5/02—Testing the dimensions, e.g. thickness, diameter; Testing the deformation
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D5/00—Testing specially adapted to determine the identity or genuineness of coins, e.g. for segregating coins which are unacceptable or alien to a currency
- G07D5/08—Testing the magnetic or electric properties
Definitions
- This disclosure relates to a coin identification device and a coin identification method.
- a coin processing machine that performs processing such as counting coins is equipped with a coin identification device including a plurality of sensors for performing coin identification processing.
- a coin identification device including a plurality of sensors for performing coin identification processing.
- a ring detection sensor which is a magnetic sensor in which a resonance circuit is connected to a coil and detects the material of the outer edge of a coin, and a resonance circuit are connected to the coil to detect the material of the central portion of the coin.
- a coin identification device that includes a core detection sensor, which is a magnetic sensor, and determines whether or not a coin is a bimetal coin based on the output of the ring detection sensor and the core detection sensor is disclosed.
- Patent Document 2 includes a reflection type magnetic sensor including a primary coil and a secondary coil, and bicolor coins are obtained from the output of the secondary coil when a high frequency (250 kHz) signal is applied to the primary coil.
- a coin identification device for detection is disclosed.
- a signal of 250 kHz is applied as a high frequency to the primary coil of the reflective magnetic sensor, but in the reflective magnetic sensor, the frequency of the signal applied to the primary coil is increased. Is difficult, and it is not easy to actually measure bicolor coins with a reflective magnetic sensor at this level of frequency, and it is difficult to actually commercialize it. This is because the higher the frequency of the signal applied to the primary coil, the more difficult it is to detect the phase shift between the phase of the signal applied to the primary coil and the phase of the signal detected by the secondary coil.
- the present disclosure has been made in view of the above situation, and an object of the present disclosure is to provide a coin identification device and a coin identification method capable of accurately identifying bimetal coins with a simpler configuration.
- the coin identification device includes a resonance type coil, a magnetic sensor for detecting the magnetic characteristics of the conveyed coin, and the output of the magnetic sensor.
- a first waveform generator that generates first waveform data representing a material feature amount that is a feature amount that changes according to the material of the coin, and a first material feature amount corresponding to the outer edge of the coin from the first waveform data.
- the first material detection unit for detecting the above, the second material detection unit for detecting the second material feature amount corresponding to the center of the coin from the first waveform data, the first material feature amount, and the second material. It is provided with an identification processing unit that performs identification processing of coins based on a feature amount.
- the first material detection unit has a first-order differential processing unit that differentially processes the first waveform data to generate first-order differential data, and a second-order differential data that differentially processes the first-order differential data to generate second-order differential data.
- the first-order differential processing unit may be included, and the first material feature amount may be detected based on the first-order differential data and the second-order differential data.
- the first material detection unit detects a first point in which the differential value is less than a predetermined first threshold value in the first-order differential data and the differential value exceeds a predetermined second threshold value in the second-order differential data. May be good.
- the first material detection unit is the first in the first waveform data.
- the first material feature amount may be detected based on a plurality of material feature amounts from the point to the second point.
- the first material detection unit determines the material feature amount of the first waveform data at the point where the differential value is the smallest among the predetermined number of points from the first point to the second point in the first-order differential data. It may be detected as the first material feature amount.
- the coin identification device may further include a second waveform generation unit that generates second waveform data representing a distance feature amount, which is a feature amount that changes according to the unevenness of the coin, from the output of the magnetic sensor. ..
- the second material detection unit may detect the third point and the fourth point corresponding to both ends of the coin in the transport direction in the second waveform data, and the third point and the third point and the fourth point in the first waveform data.
- the material feature amount at the central point between the fifth and sixth points corresponding to the fourth point may be detected as the second material feature amount.
- the identification processing unit may determine whether or not the coin is a bimetal coin based on the first material feature amount and the second material feature amount.
- the coin identification device may further include a storage unit for storing reference data relating to the respective material feature amounts of the outer edge portion and the central portion of the genuine bimetal coin, and the identification processing unit may further include the first material feature. The amount and the second material feature amount may be compared with the reference data.
- the identification processing unit may determine that the coin is a genuine bimetal coin.
- the identification processing unit may determine the denomination of the coin by comparing the first material feature amount and the second material feature amount with the reference data.
- the bimetal coin may be at least one of a bicolor coin and a bicolor clad coin.
- the bimetal coin may be a bicolor coin.
- the coin identification method is a coin identification method using a magnetic sensor, wherein the magnetic sensor includes a resonance type coil, and a step of detecting the magnetic characteristics of the coin conveyed by the magnetic sensor, and From the output of the magnetic sensor, a step of generating a first waveform data representing a material feature amount, which is a feature amount that changes according to the material of the coin, and a first step corresponding to the outer edge of the coin from the first waveform data. Based on the step of detecting the material feature amount, the step of detecting the second material feature amount corresponding to the center of the coin from the first waveform data, and the first material feature amount and the second material feature amount. It comprises a step of performing a coin identification process.
- the steps for detecting the first material feature amount are a step of differentiating the first waveform data to generate first-order differential data and a step of differentiating the first-order differential data to generate second-order differential data. And may be included, and the first material feature amount may be detected based on the first-order differential data and the second-order differential data.
- the step of detecting the first material feature amount is the first waveform data when a predetermined number of points whose differential value is less than the first threshold value are continuous from the first point to the second point in the first-order differential data.
- the first material feature amount may be detected based on a plurality of material feature amounts from the first point to the second point in.
- the step of detecting the first material feature amount is the step of detecting the first waveform data at the point where the differential value is the smallest among the predetermined number of points from the first point to the second point in the first-order differential data.
- the material feature amount may be detected as the first material feature amount.
- the coin identification method may further include a step of generating second waveform data representing a distance feature amount, which is a feature amount that changes according to the unevenness of the coin, from the output of the magnetic sensor.
- the third point and the fourth point corresponding to both ends of the coin in the transport direction may be detected by the second waveform data, and the first waveform data may be used to detect the third point and the fourth point.
- the material feature amount of the central point between the fifth point and the sixth point corresponding to the third point and the fourth point, respectively, may be detected as the second material feature amount.
- the coin In the step of performing the identification process, it may be determined whether or not the coin is a bimetal coin based on the first material feature amount and the second material feature amount.
- the first material feature amount and the second material feature amount may be compared with the reference data relating to the respective material feature amounts of the outer edge portion and the central portion of the genuine bimetal coin.
- the coin In the step of performing the identification process, if the first material feature amount and the second material feature amount match the reference data, the coin may be determined to be the genuine bimetal coin.
- the denomination of the coin may be determined by comparing the first material feature amount and the second material feature amount with the reference data.
- the bimetal coin may be at least one of a bicolor coin and a bicolor clad coin.
- the bimetal coin may be a bicolor coin.
- (A) is a schematic plan view showing a coin surface of a bicolor coin
- (b) is a schematic cross-sectional view of a bicolor coin
- (A) is a schematic plan view showing a coin surface of a clad coin (plating)
- (b) is a schematic cross-sectional view of a clad coin (plating)
- (c) is a clad coin (three-layer structure).
- It is a plan schematic diagram which shows the coin surface of
- (d) is a cross-sectional schematic diagram of a clad coin (three-layer structure).
- (A) is a plan view showing a coin surface of a bicolor clad coin
- (b) is a sectional schematic view of a bicolor clad coin.
- the present disclosure will be described by taking as an example a coin identification device and a coin identification method for coins as money.
- the coins subject to the present disclosure include coins as money and game machines. Also includes coins used in.
- the following description is an example of a coin identification device and a coin identification method.
- the coin identification device and the coin identification method according to the present disclosure can identify bimetal coins, which are coins composed of two or more kinds of materials, but also identify monometal coins, which are coins composed of one kind of material. It is possible to do. In the following, the case of identifying bimetal coins will be mainly described.
- FIG. 1A is a schematic plan view showing a coin surface of a bicolor coin
- FIG. 1B is a schematic cross-sectional view of a bicolor coin
- FIG. 2A is a schematic plan view showing a coin surface of a clad coin (plating)
- FIG. 2B is a schematic cross-sectional view of a clad coin (plating)
- FIG. 2C is a clad.
- It is a plane schematic diagram which shows the coin surface of a coin (three-layer structure)
- FIG. 2 (d) is a cross-sectional schematic diagram of a clad coin (three-layer structure).
- FIG. 1A is a schematic plan view showing a coin surface of a bicolor coin
- FIG. 1B is a schematic cross-sectional view of a bicolor coin
- FIG. 2A is a schematic plan view showing a coin surface of a clad coin (plating)
- FIG. 2B is a schematic cross-sectional view of a
- FIG. 3A is a schematic plan view showing the coin surface of the bicolor clad coin
- FIG. 3B is a schematic cross-sectional view of the bicolor clad coin.
- Bimetallic coins include bicolor coins, clad coins, and bicolor clad coins
- the coin identification device and coin identification method according to the present disclosure can identify bicolor coins and bicolor clad coins. Yes, especially bicolor coins can be identified.
- the bicolor coin 51 has a different material (metal or metal) between the circular core portion 51a at the center and the ring portion 51b at the outer edge portion surrounding the core portion 51a. It is formed by using an alloy), and is formed by fitting the core portion 51a into the ring portion 51b. As shown in FIGS.
- the clad coin 52 is formed by using different materials (metals or alloys) for the core material 52a and the surface layer 52b covering the core material 52a.
- a circular core material (base material) 52a is plated and engraved.
- the clad coin 52 is formed by punching a plate having a three-layer structure into a circular shape to form a surface layer 52b, a core material 52a, and a surface layer 52b, and engraving the surface layer 52b. You may. As shown in FIGS.
- the bicolor clad coin 53 has a central circular core portion 53a having a clad coin structure and a ring portion of an outer edge portion surrounding the core portion 53a. It is formed by using a material (metal or alloy) different from that of 53b, and is formed by fitting the core portion 53a into the ring portion 53b.
- the core portion 53a in the bicolor clad coin 53 is formed by using a different material (metal or alloy) between the core material 53a1 and the surface layer 53a2 covering the core material 53a1.
- the core portion 53a may be a core material 53a1 plated with a surface layer 53a2, or may be a plate having a three-layer structure punched out in a circular shape.
- the central portion (core portion) and the outer edge portion (ring portion) of the bicolor coin or the bicolor clad coin may be referred to as an inner portion and an outer portion of the bimetal coin, respectively.
- a high-frequency magnetic sensor is placed at a position where the inner portion and the outer portion of the bimetallic coin pass, and the positions of the inner portion and the outer portion are estimated from the sensor output from the arrival of the coin to the passage.
- FIGS. 4 and 5 are schematic views illustrating the configuration of the coin identification device according to the first embodiment
- FIG. 4 is a view of a coin transport path from above
- FIG. 5 is FIG. It is sectional drawing in AB line. 4 and 5 show XYZ coordinate systems that are orthogonal to each other.
- the coin identification device 1 according to the present embodiment includes a single magnetic sensor 10 arranged in the transport path 110 of the coin processing device.
- the coins C are conveyed in the transport direction (+ X direction in FIG. 4) one by one on the transport path 110 of the coin processor by means of transport (not shown, for example, fins) of the coin processor. Will be done.
- the transport path 110 has a smooth transport surface 111 that supports the lower surface of the coin C, and a guide surface 112 that is in contact with the peripheral surface of the coin C and guides the coin C in a one-sided manner.
- the transport surface 111 is parallel to the XY plane in FIG. 4, and the coin C is offset to the end of the transport path 110 on the guide surface 112 side (in the ⁇ Y direction in FIG. 4), that is, , It is conveyed on the conveying surface 111 in a state of being in contact with the guide surface 112.
- the magnetic sensor 10 includes a resonance type coil 11 (hereinafter, may be simply referred to as a coil 11) arranged below the transport path 110 (in the ⁇ Z direction in FIG. 5), and the coin C is conveyed through the transport path 110. Detects the magnetic properties of.
- the magnetic sensor 10 including the resonance type coil 11 can apply a signal having a higher frequency to the coil 11 than the reflection type magnetic sensor, and even in that case, a coin as will be described later from the output of the magnetic sensor 10. It is possible to detect the material (material feature amount) of each part of.
- control circuit for the magnetic sensor 10 does not require a complicated circuit as compared with the conventional one, and for example, a circuit for a ring detection sensor or a core detection sensor disclosed in Patent Document 1 can be used. Therefore, in the present embodiment, the bimetal coin can be detected with a simpler sensor configuration and circuit configuration than before, so that space saving and cost reduction can be achieved.
- the magnetic sensor 10 includes a cylindrical pot core 12.
- the pot core 12 is an E-shaped core made of a magnetic material in a cross-sectional view, and a winding is wound around the central axis of the pot core 12 to form a coil 11.
- the width of the coil 11 is designed to be smaller than the width of each of the inner portion Ba and the outer portion Bb of the bimetal coin B.
- the magnetic sensor 10 generates a magnetic field (magnetic flux) in the transport path 110 according to the oscillation frequency given by the resonance circuit (see FIG. 13 described later), and changes the magnetic field when the coin C passes through the transport path 110.
- the resonance circuit is connected to the coil 11 and resonates with the coil 11 at a high frequency suitable for detecting the material of the coin C. Specifically, it resonates at a frequency of 1 to 2 MHz, more specifically 1.4 to 1.5 MHz.
- the material near the surface of the coin C can be effectively detected, so that bimetal coins, particularly bicolor clad coins, can be detected more effectively.
- the resolution of the magnetic sensor 10 can be improved.
- the coil 11 of the magnetic sensor 10 is arranged with a gap between it and the guide surface 112 in the width direction of the transport path 110. Therefore, when the coin C is conveyed in a state of being offset to the guide surface 112 side, one outer edge portion, the central portion, and the other outer edge portion of the coin C sequentially pass over the coil 11 (in the magnetic field by the coil 11). However, the output signal of the magnetic sensor 10 also changes. That is, the magnetic sensor 10 outputs a signal according to the material of the outer edge portion and the central portion of the coin C. In this way, the magnetic sensor 10 detects the materials of the inner portion Ba and the outer portion Bb of the bimetal coin B.
- the output of the magnetic sensor 10 is attenuated (amplitude decreases), and the higher the conductivity of the coin C, the more the attenuation factor of the output. Will grow.
- FIG. 6 is a block diagram illustrating an example of the configuration of the coin identification device according to the first embodiment.
- the first waveform generation unit 21, the first material detection unit 22, the second material detection unit 23, and the identification processing unit 24 It is equipped with.
- the first waveform generation unit 21, the first material detection unit 22, the second material detection unit 23, and the identification processing unit 24 function by executing the corresponding programs by the control unit 20 described later.
- the first waveform generation unit 21 generates first waveform data representing a material feature amount from the output of the magnetic sensor 10. More specifically, the first waveform generation unit 21 generates the first waveform data based on the outputs of the magnetic sensors 10 at consecutive different timings. Therefore, the first waveform data shows the time change of the material feature amount. For example, the first waveform data may be generated based on a time series (digital signal) obtained by sampling the output (analog signal) of the magnetic sensor 10 at a predetermined time interval.
- the material feature amount is a feature amount that changes depending on the material of the coin, particularly the surface material.
- FIG. 7 is a graph schematically showing an example of the first waveform data generated by the first waveform generation unit.
- FIG. 7 shows an example in the case where a bimetal coin is detected, and the side cross section of the bimetal coin B (inner portion Ba and outer portion Bb) is shown at the corresponding position in the graph at the upper part.
- the first waveform data is data representing a material feature amount with respect to time
- the horizontal axis of FIG. 7 represents the time direction.
- the first waveform data is also data representing the amount of material features with respect to the position of the coins in the transport direction. In this case, FIG. 7 shows.
- the horizontal axis represents the position of the coin in the transport direction.
- the material feature amount is the intrusion portion of the coin (bimetal coin B), the center of the outer portion Bb of the bimetal coin B, and the joint between the inner portion Ba and the outer portion Bb of the bimetal coin B.
- the positions of the inner portion Ba and the outer portion Bb of the bimetal coin B are detected from the material feature amount.
- FIG. 8 is a graph showing the relationship between the material (conductivity) of the coin and the material feature amount.
- the first waveform data is generated by, for example, the following method.
- the magnetic sensor 10 outputs a change in the voltage of the resonance circuit and a change in the oscillation frequency of the resonance circuit by transporting coins in the vicinity of the resonance type coil 11. These vary depending on the material of the coin, especially the conductivity.
- the amount of material features changes according to the conductivity of the coin. From these things, the material feature amount can be obtained from the output of the magnetic sensor 10. That is, there is a predetermined relationship between the voltage of the resonant circuit, the oscillation frequency of the resonant circuit, and the material (conductivity) of the coin.
- the material (conductivity) of the coin there is a predetermined relationship between the material (conductivity) of the coin and the amount of material features. Specifically, as shown in FIG. 8, the larger the conductivity of the coin, the smaller the material feature amount. Therefore, a table based on the three-way relationship between the voltage and oscillation frequency of the resonance circuit and the material (conductivity) of the coin, and a table showing the relationship between the material (conductivity) of the coin and the material feature amount.
- the material (conductivity) of the coin can be obtained by collating the output of the magnetic sensor 10, that is, the voltage and oscillation frequency of the resonance circuit with the former table, and the material (conductivity) can be referred to as the latter table. By collating, the material characteristic amount of the coin can be obtained.
- the first waveform data can be generated by obtaining the material feature amount at each timing by using the voltage and the oscillation frequency of the resonance circuit related to the outputs of the magnetic sensors 10 having different consecutive timings and these tables. can.
- the relationship shown in FIG. 8 was obtained by collecting data in advance using various coins having different materials (conductivity).
- the first material detection unit 22 detects the first material feature amount corresponding to the outer edge portion of the coin, here, the outer portion of the bimetal coin, from the first waveform data.
- the second material detection unit 23 detects the second material feature amount corresponding to the central portion of the coin, here, the inner portion of the bimetal coin, from the first waveform data.
- the first waveform data has a characteristic showing a characteristic change according to each part of the bimetal coin. Therefore, the first material detection unit 22 has a material characteristic of a point corresponding to the outer part of the bimetal coin. The amount can be accurately detected as the first material feature amount, and the second material detection unit 23 can accurately detect the material feature amount at the point corresponding to the inner part of the bimetal coin as the second material feature amount. can.
- the identification processing unit 24 performs coin identification processing based on the first material feature amount and the second material feature amount detected by the first material detection unit 22 and the second material detection unit 23, respectively. Since the first material feature amount and the second material feature amount accurately indicate the material feature amount at the points corresponding to the outer part and the inner part of the bimetal coin, respectively, the identification processing unit 24 accurately identifies the bimetal coin. It is possible to do.
- the identification processing unit 24 may determine whether or not the coin is a bimetal coin based on the first material feature amount and the second material feature amount. Further, the material of the outer portion and the inner portion of the bimetal coin may be determined.
- FIG. 9 is a block diagram illustrating the configuration of the first material detection unit according to the first embodiment.
- the first material detection unit 22 has a first-order differential processing unit 22a that differentially processes the first waveform data to generate first-order differential data, and a second-order differential processing unit 22a that differentially processes the first-order differential data to generate second-order differential data.
- the second-order differential processing unit 22b that generates the differential data may be included, and the first-order material feature amount may be detected based on the first-order differential data and the second-order differential data.
- FIG. 10 is a graph schematically showing another example of the first waveform data generated by the first waveform generator.
- FIG. 10 shows an example when a bimetal coin is detected.
- FIG. 11 is a graph schematically showing an example of the first waveform data, the first-order differential data, and the second-order differential data.
- FIG. 11 shows an example in the case where a bimetal coin is detected, and the side cross section of the bimetal coin B (inner portion Ba and outer portion Bb) is shown at the corresponding position in the graph at the upper part.
- the first waveform data in FIG. 11 corresponds to the first waveform data sandwiched between the broken lines in FIG.
- the first waveform data shows a stable region in which the fluctuation of the value is small in the region corresponding to the center of the outer portion and the center of the inner portion of the bimetal coin (the region surrounded by a circle in the figure).
- the first-order differential data represents the gradient information of the first waveform data (slope of the waveform)
- the second-order differential data is the gradient intensity of the first waveform data (slope of the waveform). It represents the rate of change) and the direction of the slope (whether the waveform is rotating clockwise or counterclockwise).
- the sign of the second-order differential data changes, the rotation direction of the waveform of the first waveform data changes. Therefore, the slope of the waveform of the first waveform data can be quantified and its shape can be evaluated.
- the first-order differential processing unit 22a and the second-order differential processing unit 22b the first material feature amount can be obtained more accurately from the material feature amount in the stable region, and the material feature of the outer portion Bb is enhanced. It can be detected with high accuracy.
- the first-order differential processing unit 22a may simultaneously perform differential processing on the first waveform data and noise removal (for example, sine wave filter correction processing) on the first waveform data.
- the second-order differential processing unit 22b may simultaneously perform differential processing on the first-order differential data and noise removal (for example, sinusoidal filter correction processing) on the first-order differential data.
- the differential value is less than the predetermined first threshold Th1 in the first-order differential data, and the differential value exceeds the predetermined second threshold Th2 in the second-order differential data.
- the first point P1 may be detected. This prevents the region containing the extreme value of the first waveform data (see FIG. 7) caused by the combined portion of the bimetal coin B from being erroneously detected as the stable region corresponding to the outer portion Bb of the bimetal coin B. It is possible to do. Therefore, since the stable region corresponding to the outer portion Bb of the bimetal coin B can be detected more reliably, the material characteristics of the outer portion Bb can be detected with higher accuracy.
- the first threshold value Th1 can be appropriately set, but can be, for example, 30 to 50% (for example, 40%) of the minimum differential value (for example, Min in FIG. 11) of the first-order differential data. By setting it to 30 to 50%, it is possible to make it less susceptible to fluctuations in the coin transport speed, so even if the coin transport speed fluctuates, the material characteristics of the outer portion Bb can be made more accurate. Can be detected.
- the second threshold value Th2 can be appropriately set, but can be, for example, 5 to 25% (for example, 10%) of the maximum differential value (for example, Max in FIG. 11) of the second-order differential data.
- the first material detection unit 22 may search for points having a first threshold value of less than Th1 in order from the start of the first-order differential data, and if a point having a first threshold value of less than Th1 is found, the point is found. It may be determined whether or not the differential value of the second-order differential data at the point exceeds the second threshold value Th2. As a result, if it exceeds, the point may be determined as the first point P1. If it does not exceed, the search process and the determination process may be repeated in the same manner for the first-order differential data after that point until the first point P1 is detected.
- the first material detection unit 22 has a predetermined number n (n is 2 or more) from the first point P1 to the second point P2 where the differential value is less than the first threshold Th1 in the first-order differential data.
- n is 2 or more
- the first material feature amount may be detected based on a plurality of material feature amounts from the first point P1 to the second point P2 in the first waveform data.
- the predetermined number n from the first point P1 to the second point P2 can be appropriately set, but may be, for example, 3 to 10 (for example, 5).
- the first material detection unit 22 may perform the following processing. That is, first, the number of points count is set to 1 (first step). Next, it is determined whether or not the number of points count is smaller than the predetermined number n (second step). If it is small (second step: Yes), it is determined whether or not the differential value of the first-order differential data of the point next to the first point P1 is less than the first threshold Th1 (third step). If it is less than the first threshold Th1 (third step: Yes), the number of points count is incremented by +1 (fourth step), and the process returns to the second step.
- the point finally determined to be less than the first threshold Th1 in the third step is the second point.
- the first material feature amount is detected based on a plurality of material feature amounts from the first point P1 to the second point P2. If it is determined in the third step that the threshold value is not less than Th1 (third step: No), the first material detection unit 22 may newly detect the first point P1 as described above. good.
- the first material detection unit 22 has the smallest differential value among the predetermined number n points from the first point P1 to the second point P2 in the first-order differential data (in FIG. 11).
- the material feature amount (SMx in FIG. 11) of the first waveform data in Px) may be detected as the first material feature amount.
- the second material detection unit 23 may detect, for example, the second material feature amount corresponding to the central portion of the coin, here, the inner portion of the bimetal coin, from the first waveform data by the following method. That is, first, the first waveform data is monitored, and the point where the material feature amount changes by a predetermined amount or more from the material feature amount in the standby state before the coin arrives at the magnetic sensor 10 is set as the "medium-filled” point. If a predetermined number of material features similar to those in standby are consecutive at the points after the above point, the first point of the continuous predetermined number of points is regarded as the "medium missing" point. Then, the material feature amount at the central point between the "medium-filled" point and the "medium-excluded” point is detected as the second material feature amount.
- FIG. 12 is a flowchart illustrating an example of the operation of the coin identification device according to the first embodiment.
- the magnetic sensor 10 detects the magnetic characteristics of the coins to be conveyed (step S11).
- the first waveform generation unit 21 generates first waveform data representing the material feature amount from the output of the magnetic sensor 10 (step S12).
- the first material detection unit 22 detects the first material feature amount corresponding to the outer edge portion of the coin (the outer portion of the bimetal coin) from the first waveform data generated in step S12 (step S13).
- the second material detection unit 23 detects the second material feature amount corresponding to the central portion of the coin (inner portion of the bimetal coin) from the first waveform data generated in step S12 (step S14).
- steps S13 and S14 may be opposite or simultaneous.
- the identification processing unit 24 performs coin identification processing based on the first material feature amount detected in step S13 and the second material feature amount detected in step S14 (step S15), and the coin identification device. The operation of 1 ends.
- FIG. 13 is a flowchart illustrating an example of the operation of the first material detection unit according to the first embodiment.
- the first material detection unit 22 (step S13) may detect the first material feature amount according to the flow shown in FIG.
- the first-order differential processing unit 22a differentially processes the first waveform data to generate the first-order differential data (step S21).
- the second-order differential processing unit 22b differentially processes the first-order differential data to generate the second-order differential data (step S22).
- the first material detection unit 22 detects the first point P1 whose differential value is less than a predetermined first threshold value in the first-order differential data and whose differential value exceeds a predetermined second threshold value in the second-order differential data. (Step S23).
- the first material detection unit 22 determines whether or not the points whose differential value is less than the first threshold value are continuous from the first point P1 to the second point P2 by a predetermined number n (step S24). In the case of a predetermined number of consecutive cases (step S24: Yes), the first material feature amount is detected based on a plurality of material feature amounts from the first point P1 to the second point P2 in the first waveform data (step S25), and the first step. 1 The process of detecting the material feature amount is completed.
- step S25 for example, the first material detection unit 22 has the material feature amount of the first waveform data at the point Px having the smallest differential value among the points from the first point P1 to the second point P2 in the first-order differential data.
- SMx is detected as the first material feature amount.
- step S24 when the points where the differential value is less than the first threshold value are not continuous by a predetermined number n from the first point P1 (step S24: No), the first material detection unit 22 has the differential value as the first threshold value.
- the processing of steps S23 and S24 is repeated until the points less than or equal to are continuous from the first point P1 to the second point P2 by a predetermined number of n. That is, from the data after the points detected up to step S24, the first material detection unit 22 detects a new first point P1 satisfying the above conditions (step S23), and the point where the differential value is less than the first threshold value is. , It is determined whether or not the new first point P1 to the second point P2 are continuous by a predetermined number n (step S24).
- FIG. 14 is a block diagram illustrating an example of the configuration of the magnetic sensor according to the first embodiment.
- the magnetic sensor 10 may further include a resonance circuit 13 and a detection circuit 14, as shown in FIG.
- the resonance circuit (LC resonance circuit) 13 is connected to the coil 11 and includes an AC power supply that excites the coil 11 connected to the coil 11 and a capacitor connected in parallel to the coil 11.
- the frequency of the AC power supply is set to the oscillation frequency (resonance frequency) peculiar to the coil 11 and the resonance circuit 13, and the resonance circuit 13 has a high frequency (resonance frequency) suitable for detecting the material of the coin together with the coil 11 as described above. Specifically, it resonates at 1 to 2 MHz, more specifically 1.4 to 1.5 MHz).
- an AC voltage (sine wave) is applied to the coil 11 by the resonance circuit 13, and an AC magnetic flux is generated in the transport path 110.
- an induced current eddy current
- the output (voltage and oscillation frequency) of the resonance circuit 13 changes according to this change in magnetic flux.
- the detection circuit 14 is connected to the resonance circuit 13, and includes an amplifier circuit that amplifies the output of the resonance circuit 13 and a direct current conversion circuit that converts the output (alternating current) of the amplifier circuit into direct current.
- FIG. 15 is a block diagram illustrating another example of the configuration of the coin identification device according to the first embodiment.
- the coin identification device 1 includes the above-mentioned magnetic sensor 10, a first waveform generation unit 21, a first material detection unit 22 (first-order differential processing unit 22a and second-order differential processing unit 22b), a second material detection unit 23, and identification processing.
- an AD converter 30, a storage unit 40, and a control unit (arithmetic processing unit) 20 may be further provided.
- the AD converter 30 is connected to the magnetic sensor 10 (detection circuit 14), samples analog signals input from the detection circuit 14 of the magnetic sensor 10 at predetermined time intervals, and makes a time series (digital signal). Convert. Sampling by the AD converter 30 is performed for a period before the coin arrives at the magnetic sensor 10 and after passing through the magnetic sensor 10.
- the storage unit 40 is composed of, for example, a storage device such as a RAM (RandomAccessMemory), a ROM (ReadOnlyMemory), a flash memory, an HDD (HardDiskDrive), an SSD (SolidStateDrive), and various data (for example,). Thresholds, tables, reference data, etc.) and programs are configured to be writable and readable.
- a storage device such as a RAM (RandomAccessMemory), a ROM (ReadOnlyMemory), a flash memory, an HDD (HardDiskDrive), an SSD (SolidStateDrive), and various data (for example,). Thresholds, tables, reference data, etc.) and programs are configured to be writable and readable.
- the control unit 20 is a controller that controls each unit of the coin identification device 1, and is controlled by, for example, a program for realizing various processes, a CPU (Central Processing Unit) that executes the program, and the CPU. It is composed of various hardware (for example, FPGA (Field Programmable Gate Array)) and the like.
- the control unit 20 acquires sampling data (time series) sampled by the AD converter 30 from the AD converter 30 and stores it in the storage unit 40.
- control unit 20 has the above-mentioned first waveform generation unit 21, first material detection unit 22 (first-order differential processing unit 22a and second-order differential processing unit 22b), and second material detection unit 22. It can function as 23 and the identification processing unit 24.
- the first waveform generation unit 21 generates the first waveform data based on the sampling data stored in the storage unit 40, that is, the time series in which the output of the magnetic sensor 10 is sampled at a predetermined time interval.
- the storage unit 40 may store reference data relating to the respective material feature amounts of the outer portion and the inner portion of the genuine bimetallic coin, and the identification processing unit 24 may store the first material detection unit 22 and the second material detection. The first material feature amount and the second material feature amount detected by the unit 23 may be compared with this reference data, respectively. This makes it possible to determine with high accuracy the denomination (and authenticity) of the coin and whether or not the coin is a bimetal coin (particularly a bicolor coin or a bicolor clad coin).
- the reference data is the permissible range of the material feature amount set based on the material feature amount detected from the outer part and the inner part of the genuine bimetallic coin (that is, the permissible amount of the material feature amount of the outer part of the genuine bimetal coin).
- the range and the permissible range of the material feature amount of the inner part of the bimetallic coin) may be included, and the identification processing unit 24 sets the first material feature amount and the second material feature amount as the corresponding permissible range, respectively. They may be compared, i.e. determined whether they are within or not within the corresponding tolerances.
- the "allowable range of material feature amount” indicates a numerical range of material feature amount that can be accepted as a genuine coin (for example, a bimetal coin) in which the range is set, and is usually used. , A numerical range including the amount of material features detected from a genuine coin (for example, a bimetal coin) and before and after it.
- the identification processing unit 24 determines that the coin is a genuine bimetal coin (for example, a bicolor coin or a bicolor clad coin). You may judge.
- the identification processing unit 24 compares the first material feature amount and the second material feature amount with the corresponding allowable ranges, and if they are included in the corresponding allowable range, the coin is regarded as a genuine bimetal coin. (For example, a bicolor coin or a bicolor clad coin) may be determined.
- the identification processing unit 24 may determine the denomination of the coin by comparing the first material feature amount and the second material feature amount with the reference data.
- the reference data is the permissible range of the material features set based on the material features detected from the outer edge and the center of the genuine coin (that is, the permissible range of the material features of the outer edge of the genuine coin).
- the permissible range of the material feature amount of the central part of the coin may be included for each denomination, and the identification processing unit 24 sets the first material feature amount and the second material feature amount of each denomination, respectively. It may be compared with the corresponding tolerance, i.e., whether it is included in the corresponding tolerance or not. Then, if there is a denomination included in the corresponding allowable range for both the first material feature amount and the second material feature amount, it may be determined that the coin is the denomination.
- the identification processing unit 24 may compare the first material feature amount and the second material feature amount with each other and determine whether or not the material of the outer edge portion of the coin is the same as the material of the central portion of the coin. ..
- the identification processing unit 24 is a coin made of a single material, that is, a monometal coin (if they are the same), or a coin made of two or more materials, that is, a bimetal coin. (If they are not the same) can be determined.
- FIG. 16 is a flowchart illustrating another example of the operation of the coin identification device according to the first embodiment.
- the magnetic sensor 10 detects the magnetic characteristics of the coins to be conveyed, as in the case shown in FIG. 12 (step S11).
- the AD converter 30 samples the output of the magnetic sensor 10 (analog signal input from the detection circuit 14) and converts it into a time series (step S31).
- the first waveform generation unit 21 generates the first waveform data representing the material feature amount from the sampling data (time series) sampled by the AD converter 30 (step S32).
- steps S13 to S15 are executed in the same manner as in the case shown in FIG. 12, and the operation of the coin identification device 1 is completed.
- the first material detection unit 22 (step S13) may detect the first material feature amount according to the flow shown in FIG.
- the identification processing unit 24 may compare the first material feature amount and the second material feature amount with the reference data, and the first material feature amount and the second material feature amount may be compared with the reference data. If is consistent with the reference data, the coin may be determined to be a genuine bimetal coin. Further, the identification processing unit 24 may determine the denomination of the coin by comparing the first material feature amount and the second material feature amount with the reference data. Further, the identification processing unit 24 may compare the first material feature amount and the second material feature amount with each other and determine whether or not the material of the outer edge portion of the coin is the same as the material of the center portion of the coin. good.
- the present embodiment further includes a second waveform generation unit that generates the second waveform data, except that the second material detection unit detects the second material feature amount by using the second waveform data. It is the same as the first embodiment.
- FIG. 17 is a block diagram illustrating an example of the configuration of the coin identification device according to the second embodiment.
- the coin identification device 2 has a magnetic sensor 10, a first waveform generation unit 21, a first material detection unit 22, and a second material detection unit 23, as in the first embodiment. And the identification processing unit 24 is provided, and the second waveform generation unit 25 is further provided.
- the first material detection unit 22 may include a first-order differential processing unit 22a and a second-order differential processing unit 22b, as in the first embodiment.
- the second waveform generation unit 25 generates second waveform data representing the distance feature amount from the output of the magnetic sensor 10. More specifically, the second waveform generation unit 25 generates the second waveform data based on the outputs of the magnetic sensors 10 at consecutive different timings. Therefore, the second waveform data shows the temporal change of the distance feature amount.
- the second waveform data may be generated based on a time series (digital signal) obtained by sampling the output (analog signal) of the magnetic sensor 10 at a predetermined time interval.
- the first waveform generation unit 21 and the second waveform generation unit 25 may generate the first waveform data and the second waveform data, respectively, based on the same output of the magnetic sensor 10, for example, based on the same time series. can.
- the distance feature amount is a feature amount that changes according to the unevenness of the coin, particularly the unevenness of the surface on the magnetic sensor 10 side, and changes according to the distance (interval) between the coin and the resonance type coil 11 of the magnetic sensor 10. do.
- the unevenness may be caused by, for example, engraving or edging of a coin.
- FIG. 18 is a graph schematically showing an example of the second waveform data generated by the second waveform generator.
- FIG. 18 shows an example when a bimetal coin is detected, and a side cross section of the bimetal coin B (inner portion Ba and outer portion Bb) is shown at a corresponding position in the graph at the upper part.
- the second waveform data is data representing a distance feature amount with respect to time
- the horizontal axis of FIG. 18 represents the time direction.
- the second waveform data is also data representing a distance feature amount with respect to a position in the transport direction of the coins. In this case, FIG. 18 shows.
- the horizontal axis represents the position of the coin in the transport direction.
- the value of the distance feature tends to change sharply immediately after entering the medium and immediately before leaving the medium. That is, the distance feature amount increases sharply when the coin (bimetal coin B) overlaps the resonance type coil 11, and decreases sharply immediately before the coin (bimetal coin B) passes through the resonance type coil 11. Using this characteristic, the positions of both ends of the coin are detected from the distance features. Further, the distance feature amount tends to decrease at the abutment portion of the bimetal coin B.
- FIG. 19 is a graph showing the relationship between the distance between the coin and the resonant coil and the distance feature amount.
- the second waveform data is generated by, for example, the following method.
- the magnetic sensor 10 outputs a change in the voltage of the resonance circuit and a change in the oscillation frequency of the resonance circuit by transporting coins in the vicinity of the resonance type coil 11. These vary depending on the distance (interval) between the coin and the resonant coil 11. Further, the distance feature amount changes according to the distance between the coin and the resonance type coil 11. From these things, the distance feature amount can be obtained from the output of the magnetic sensor 10.
- the distance between the coin and the resonance type coil 11 can be obtained, and the coins can be obtained. And by collating the distance between the resonance type coils 11 with the latter table, the distance feature amount of the coin can be obtained. Then, the second waveform data can be generated by obtaining the distance feature amount at each timing by using the voltage and the oscillation frequency of the resonance circuit related to the outputs of the magnetic sensors 10 having different consecutive timings and these tables. can.
- the second material detection unit 23 is based on the second waveform data generated by the second waveform generation unit 25, and from the first waveform data generated by the first waveform generation unit 21, the central portion of the coin.
- the second material feature amount corresponding to the inner portion of the bimetal coin is detected.
- FIG. 20 is a graph schematically showing another example of the first waveform data generated by the first waveform generator.
- FIG. 20 is the same as that of FIG. 10, and shows an example when a bimetal coin is detected.
- the second material detection unit 23 may detect the third point P3 and the fourth point P4 corresponding to both ends of the coin in the transport direction from the second waveform data. More specifically, the points where the distance feature amount exceeds the predetermined third threshold value Th3 may be searched in order from the start and end of the second waveform data, and the points where the distance feature amount exceeds the third threshold value Th3 may be searched for at the third point P3 and, respectively. It may be determined as the fourth point P4. Then, as shown in FIG.
- the second material detection unit 23 is a central point between the fifth point P5 and the sixth point P6 corresponding to the third point P3 and the fourth point P4 in the first waveform data, respectively.
- the material feature amount of Pc may be detected as the second material feature amount. This makes it possible to detect the second material feature amount from the overall image of the first and second waveform data, and it is possible to detect the material feature of the inner portion of the bimetal coin with high accuracy.
- FIG. 21 is a flowchart illustrating an example of the operation of the coin identification device according to the second embodiment.
- steps S11 to S12 are executed as in the case of the first embodiment.
- the second waveform generation unit 25 generates the second waveform data representing the distance feature amount from the output of the magnetic sensor 10 (step S41).
- step S12 and step S41 may be opposite or simultaneous.
- the first material detection unit 22 executes the process of step S13.
- the first material detection unit 22 (step S13) may detect the first material feature amount according to the flow shown in FIG.
- the second material detection unit 23 detects the second material feature amount corresponding to the center of the coin from the first waveform data generated in step S12 based on the second waveform data generated in step S41. (Step S42).
- step S13 and step S42 may be opposite or simultaneous.
- the identification processing unit 24 performs coin identification processing based on the first material feature amount detected in step S13 and the second material feature amount detected in step S42 (step S15), and the coin identification device. The operation of 2 ends.
- FIG. 22 is a flowchart illustrating an example of the operation of the second material detection unit according to the second embodiment.
- the second material detection unit 23 (step S42) may detect the second material feature amount according to the flow shown in FIG.
- the second material detection unit 23 detects the third point P3 and the fourth point P4 corresponding to both ends of the coin in the transport direction in the second waveform data (step S51).
- the second material detection unit 23 uses the first waveform data to correspond to the third point P3 and the fourth point P4, respectively, at the fifth point P5 and the sixth point P6, and the fifth point P5 and the sixth point P6.
- the process of detecting the center point Pc between the two, detecting the material feature amount of the center point Pc as the second material feature amount (step S52), and detecting the second material feature amount is completed.
- the magnetic sensor 10 may further include a resonance circuit 13 and a detection circuit 14 in addition to the resonance type coil 11.
- FIG. 23 is a block diagram illustrating another example of the configuration of the coin identification device according to the second embodiment.
- the coin identification device 2 includes the above-mentioned magnetic sensor 10, a first waveform generation unit 21, a second waveform generation unit 25, a first material detection unit 22 (first-order differential processing unit 22a and second-order differential processing unit 22b), and a second.
- first material detection unit 22 first-order differential processing unit 22a and second-order differential processing unit 22b
- the material detection unit 23 and the identification processing unit 24 as shown in FIG. 23, even if the AD converter 30, the storage unit 40, and the control unit (arithmetic processing unit) 20 are further provided as in the first embodiment. good.
- control unit 20 executes the above-mentioned first waveform generation unit 21, second waveform generation unit 25, and first material detection unit 22 (first-order differential processing unit 22a and second-order differential processing unit 22b). ), The second material detection unit 23 and the identification processing unit 24 can function.
- the second waveform generation unit 25 generates the second waveform data based on the sampling data stored in the storage unit 40, that is, the time series in which the output of the magnetic sensor 10 is sampled at a predetermined time interval.
- FIG. 24 is a flowchart illustrating another example of the operation of the coin identification device according to the second embodiment.
- steps S11, S31 and S32 are executed as in the case of the first embodiment.
- the second waveform generation unit 25 generates the second waveform data representing the distance feature amount from the sampling data (time series) sampled by the AD converter 30 (step S61).
- step S32 and step S61 may be opposite or simultaneous.
- steps S13, S42 and S15 are executed in the same manner as in the case shown in FIG. 21, and the operation of the coin identification device 2 is completed.
- the first material detection unit 22 (step S13) may detect the first material feature amount according to the flow shown in FIG.
- the second material detection unit 23 may detect the second material feature amount according to the flow shown in FIG.
- the identification processing unit 24 may compare the first material feature amount and the second material feature amount with the reference data, and the first material feature amount and the first material feature amount and the second material feature amount may be compared with the reference data. If the second material feature quantity matches the reference data, the coin may be determined to be a genuine bimetal coin. Further, the identification processing unit 24 may determine the denomination of the coin by comparing the first material feature amount and the second material feature amount with the reference data. Further, the identification processing unit 24 may compare the first material feature amount and the second material feature amount with each other and determine whether or not the material of the outer edge portion of the coin is the same as the material of the center portion of the coin. good.
- the magnetic sensor 10 including the resonance type coil 11 and detecting the magnetic characteristics of the conveyed coin, and the first waveform data representing the material feature amount from the output of the magnetic sensor 10 are obtained.
- the first material detection unit 22 that detects the first material feature amount corresponding to the outer edge portion of the coin from the first waveform data, and from the first waveform data to the center of the coin. Since it is provided with a second material detection unit 23 for detecting the corresponding second material feature amount and an identification processing unit 24 for performing coin identification processing based on the first material feature amount and the second material feature amount, it is more likely to be provided. It is possible to accurately identify bimetal coins with a simple configuration.
- the case of identifying a bimetal coin has been mainly described, but according to the apparatus and method according to the present disclosure, even a monometal coin can be identified. Since the device and method use a stable region where the slope of the waveform of the first waveform data is small, not the difference in material, it is possible to detect the position of the outer edge of the coin regardless of the structure of the coin, and it is possible to detect the position of the outer edge of the coin. It is possible to detect with high accuracy the material characteristics of the outer edge of coins whose internal structure is different from that of bicolor coins such as coins and clad coins.
- FIG. 25 is a graph schematically showing an example of the first waveform data, the first-order differential data, and the second-order differential data.
- FIG. 25 shows an example when a monometal coin is detected, and a side cross section of the monometal coin M is shown at a corresponding position in the graph at the upper part.
- the first material detection unit 22 first-order differential processing unit 22a and second-order differential processing unit 22b
- the first point P1 and the second point P2 can be detected based on the first-order waveform data, the first-order differential data, and the second-order differential data. It can be detected as the first material feature amount corresponding to the outer edge portion of the metal coin M.
- the second material detection unit 23 detects the third point P3 and the fourth point P4 based on the second waveform data, and is based on the first waveform data. Therefore, the material feature amount at the center point Pc between the fifth point P5 and the sixth point P6 can be detected as the second material feature amount corresponding to the central portion of the monometal coin M.
- the magnetic sensor 10 provided with the resonance type coil 11 is used alone as the sensor has been described, but the magnetic sensor 10 may be used in combination with a material sensor (magnetic sensor) having another frequency. .. This makes it possible to detect monometal coins, plated clad coins, three-layer clad coins, bicolor clad coins, and the like.
- the first waveform data and the second waveform are based on the time series in which the output of the magnetic sensor 10 is sampled at predetermined time intervals, that is, based on the data obtained by sampling the output of the magnetic sensor 10 according to time.
- the case of generating data has been described, but the diameter of a coin is detected using a diameter detection sensor (for example, a magnetic sensor or an optical sensor) that detects the diameter of the coin, and the change in the diameter of the coin (output of the diameter detection sensor) is used. Accordingly, the first waveform data and the second waveform data may be generated based on the data obtained by sampling the output of the magnetic sensor 10.
- the case where the first waveform data, the first-order differential data, and the second-order differential data are processed in order from the start is described, but the first waveform data, the first-order differential data, and the second-order differential data are processed from the end, respectively. It may be processed in order, and even in this case, it is possible to detect the material feature amount of each of the outer edge portion and the center portion of the coin by the same method.
- each part or at least a part of the bimetal coin may be composed of a magnetic material (for example, a ferromagnetic material). Even in this case, for example, the above threshold value can be used as it is.
- the present disclosure is a technique useful for accurately identifying bimetal coins with a simpler configuration.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Coins (AREA)
Abstract
A coin identification device of the present disclosure comprises: a magnetic sensor that includes a resonance-type coil and that detects a magnetic characteristic of a coin which is conveyed; a first waveform generation unit that generates, from an output of the magnetic sensor, first waveform data indicating a material feature quantity which is a feature quantity that changes according to the material of a coin; a first material detection unit that detects, from the first waveform data, a first material feature quantity corresponding to an outer edge portion of the coin; a second material detection unit that detects, from the first waveform data, a second material feature quantity corresponding to a center portion of the coin; and an identification processing unit that performs an identification process of the coin on the basis of the first material feature quantity and the second material feature quantity.
Description
本開示は、硬貨識別装置及び硬貨識別方法に関する。
This disclosure relates to a coin identification device and a coin identification method.
従来、硬貨の計数等の処理を行う硬貨処理機には、硬貨の識別処理を行うための複数のセンサを備える硬貨識別装置が搭載されている。また、2種類以上の材料から構成されるバイメタル貨、例えばバイカラー貨といった硬貨の中心部と、その周囲の外縁部とで材質がそれぞれ異なる硬貨が知られている。
Conventionally, a coin processing machine that performs processing such as counting coins is equipped with a coin identification device including a plurality of sensors for performing coin identification processing. Further, there are known coins in which the material is different between the central portion of a bimetal coin composed of two or more kinds of materials, for example, a bicolor coin, and the outer edge portion around the coin.
例えば、特許文献1には、コイルに共振回路が接続され、硬貨の外縁部の材質を検知する磁気センサであるリング検知センサと、コイルに共振回路が接続され、硬貨の中央部の材質を検知する磁気センサであるコア検知センサと、を備え、リング検知センサ及びコア検知センサの出力に基づき、硬貨がバイメタル貨であるか否かを判定する硬貨識別装置が開示されている。
For example, in Patent Document 1, a ring detection sensor, which is a magnetic sensor in which a resonance circuit is connected to a coil and detects the material of the outer edge of a coin, and a resonance circuit are connected to the coil to detect the material of the central portion of the coin. A coin identification device that includes a core detection sensor, which is a magnetic sensor, and determines whether or not a coin is a bimetal coin based on the output of the ring detection sensor and the core detection sensor is disclosed.
また、特許文献2には、1次コイル及び2次コイルを備えた反射型磁気センサを備え、1次コイルに高周波(250kHz)の信号を印加したときの2次コイルの出力からバイカラー貨を検出する硬貨識別装置が開示されている。
Further, Patent Document 2 includes a reflection type magnetic sensor including a primary coil and a secondary coil, and bicolor coins are obtained from the output of the secondary coil when a high frequency (250 kHz) signal is applied to the primary coil. A coin identification device for detection is disclosed.
市場では、バイメタル貨の中心部と同じ材質であり、かつそのバイメタル貨とサイズも酷似しているモノメタル貨が流通しており、特に海外では、バイメタル貨の中心部と外縁部の材質を正確に検出することが必要とされている。
In the market, monometal coins that are made of the same material as the center of the bimetal coin and are very similar in size to the bimetal coin are in circulation. Especially overseas, the material of the center and outer edge of the bimetal coin is accurate. Is required to be detected.
しかしながら、特許文献1に開示の硬貨識別装置では、特許文献1の図2に示されるように、硬貨の外縁部及び中央部の材質を検知するために、周波数が異なるリング検知センサ32及びコア検知センサ33をバイメタル貨の外縁部及び中心部が搬送される位置に配置する必要があるため、これらのセンサを配置するためのスペースや制御回路が必要となり、スペース面及びコスト面に改善の余地があった。
However, in the coin identification device disclosed in Patent Document 1, as shown in FIG. 2 of Patent Document 1, in order to detect the material of the outer edge portion and the central portion of the coin, the ring detection sensor 32 and the core detection having different frequencies are detected. Since it is necessary to arrange the sensor 33 at a position where the outer edge portion and the central portion of the bimetal coin are conveyed, a space and a control circuit for arranging these sensors are required, and there is room for improvement in terms of space and cost. there were.
特許文献2に開示の硬貨識別装置では、反射型磁気センサの1次コイルに高周波として250kHzの信号を印加しているが、反射型磁気センサでは1次コイルに印加する信号の周波数を高くすることは困難であり、このレベルの周波数にて反射型磁気センサで実際にバイカラー貨を測定することは容易ではなく、実際の製品化は困難である。これは、1次コイルに印加する信号の周波数が高くなるほど、1次コイルに印加された信号の位相と、2次コイルで検出された信号の位相のズレを検知し難くなるためである。
In the coin identification device disclosed in Patent Document 2, a signal of 250 kHz is applied as a high frequency to the primary coil of the reflective magnetic sensor, but in the reflective magnetic sensor, the frequency of the signal applied to the primary coil is increased. Is difficult, and it is not easy to actually measure bicolor coins with a reflective magnetic sensor at this level of frequency, and it is difficult to actually commercialize it. This is because the higher the frequency of the signal applied to the primary coil, the more difficult it is to detect the phase shift between the phase of the signal applied to the primary coil and the phase of the signal detected by the secondary coil.
本開示は、上記現状に鑑みてなされたものであり、より簡単な構成でバイメタル貨を精度良く識別することが可能な硬貨識別装置及び硬貨識別方法を提供することを目的とするものである。
The present disclosure has been made in view of the above situation, and an object of the present disclosure is to provide a coin identification device and a coin identification method capable of accurately identifying bimetal coins with a simpler configuration.
上述した課題を解決し、目的を達成するために、本開示に係る硬貨識別装置は、共振型コイルを含み、搬送される硬貨の磁気特性を検出する磁気センサと、前記磁気センサの出力から、硬貨の材質に応じて変化する特徴量である材質特徴量を表す第1波形データを生成する第1波形生成部と、前記第1波形データから、硬貨の外縁部に対応する第1材質特徴量を検出する第1材質検出部と、前記第1波形データから、硬貨の中心部に対応する第2材質特徴量を検出する第2材質検出部と、前記第1材質特徴量及び前記第2材質特徴量に基づいて硬貨の識別処理を行う識別処理部と、を備える。
In order to solve the above-mentioned problems and achieve the object, the coin identification device according to the present disclosure includes a resonance type coil, a magnetic sensor for detecting the magnetic characteristics of the conveyed coin, and the output of the magnetic sensor. A first waveform generator that generates first waveform data representing a material feature amount that is a feature amount that changes according to the material of the coin, and a first material feature amount corresponding to the outer edge of the coin from the first waveform data. The first material detection unit for detecting the above, the second material detection unit for detecting the second material feature amount corresponding to the center of the coin from the first waveform data, the first material feature amount, and the second material. It is provided with an identification processing unit that performs identification processing of coins based on a feature amount.
前記第1材質検出部は、前記第1波形データを微分処理して1階微分データを生成する1階微分処理部と、前記1階微分データを微分処理して2階微分データを生成する2階微分処理部とを含んでもよく、前記1階微分データ及び前記2階微分データに基づいて前記第1材質特徴量を検出してもよい。
The first material detection unit has a first-order differential processing unit that differentially processes the first waveform data to generate first-order differential data, and a second-order differential data that differentially processes the first-order differential data to generate second-order differential data. The first-order differential processing unit may be included, and the first material feature amount may be detected based on the first-order differential data and the second-order differential data.
前記第1材質検出部は、前記1階微分データにおいて微分値が所定の第1閾値未満であり、かつ前記2階微分データにおいて微分値が所定の第2閾値を超える第1地点を検出してもよい。
The first material detection unit detects a first point in which the differential value is less than a predetermined first threshold value in the first-order differential data and the differential value exceeds a predetermined second threshold value in the second-order differential data. May be good.
前記第1材質検出部は、前記1階微分データにおいて微分値が前記第1閾値未満である地点が前記第1地点から第2地点まで所定数連続した場合、前記第1波形データにおける前記第1地点から前記第2地点までの複数の材質特徴量に基づいて前記第1材質特徴量を検出してもよい。
When a predetermined number of points whose differential value is less than the first threshold value are continuous from the first point to the second point in the first-order differential data, the first material detection unit is the first in the first waveform data. The first material feature amount may be detected based on a plurality of material feature amounts from the point to the second point.
前記第1材質検出部は、前記1階微分データにおいて前記第1地点から前記第2地点までの前記所定数の地点のうちで微分値が最も小さい地点における前記第1波形データの材質特徴量を前記第1材質特徴量として検出してもよい。
The first material detection unit determines the material feature amount of the first waveform data at the point where the differential value is the smallest among the predetermined number of points from the first point to the second point in the first-order differential data. It may be detected as the first material feature amount.
前記硬貨識別装置は、前記磁気センサの前記出力から、硬貨の凹凸に応じて変化する特徴量である距離特徴量を表す第2波形データを生成する第2波形生成部を更に備えていてもよい。
The coin identification device may further include a second waveform generation unit that generates second waveform data representing a distance feature amount, which is a feature amount that changes according to the unevenness of the coin, from the output of the magnetic sensor. ..
前記第2材質検出部は、前記第2波形データにて搬送方向における硬貨の両端に対応する第3地点及び第4地点を検出してもよく、前記第1波形データにて前記第3地点及び前記第4地点にそれぞれ対応する第5地点及び第6地点の間の中心地点の材質特徴量を前記第2材質特徴量として検出してもよい。
The second material detection unit may detect the third point and the fourth point corresponding to both ends of the coin in the transport direction in the second waveform data, and the third point and the third point and the fourth point in the first waveform data. The material feature amount at the central point between the fifth and sixth points corresponding to the fourth point may be detected as the second material feature amount.
前記識別処理部は、前記第1材質特徴量及び前記第2材質特徴量に基づいて硬貨がバイメタル貨であるか否かを判定してもよい。
The identification processing unit may determine whether or not the coin is a bimetal coin based on the first material feature amount and the second material feature amount.
前記硬貨識別装置は、真正なバイメタル貨の外縁部及び中心部のそれぞれの材質特徴量に係る基準データを記憶する記憶部を更に備えていてもよく、前記識別処理部は、前記第1材質特徴量及び前記第2材質特徴量を前記基準データと比較してもよい。
The coin identification device may further include a storage unit for storing reference data relating to the respective material feature amounts of the outer edge portion and the central portion of the genuine bimetal coin, and the identification processing unit may further include the first material feature. The amount and the second material feature amount may be compared with the reference data.
前記識別処理部は、前記第1材質特徴量及び前記第2材質特徴量が前記基準データと適合する場合、当該硬貨を前記真正なバイメタル貨であると判定してもよい。
When the first material feature amount and the second material feature amount match the reference data, the identification processing unit may determine that the coin is a genuine bimetal coin.
前記識別処理部は、前記第1材質特徴量及び前記第2材質特徴量を前記基準データと比較することによって、当該硬貨の金種を判定してもよい。
The identification processing unit may determine the denomination of the coin by comparing the first material feature amount and the second material feature amount with the reference data.
前記バイメタル貨は、バイカラー貨及びバイカラー・クラッド貨の少なくとも一方であってもよい。
The bimetal coin may be at least one of a bicolor coin and a bicolor clad coin.
前記バイメタル貨は、バイカラー貨であってもよい。
The bimetal coin may be a bicolor coin.
本開示に係る硬貨識別方法は、磁気センサを用いた硬貨識別方法であって、前記磁気センサは、共振型コイルを含み、前記磁気センサによって、搬送される硬貨の磁気特性を検出するステップと、前記磁気センサの出力から、硬貨の材質に応じて変化する特徴量である材質特徴量を表す第1波形データを生成するステップと、前記第1波形データから、硬貨の外縁部に対応する第1材質特徴量を検出するステップと、前記第1波形データから、硬貨の中心部に対応する第2材質特徴量を検出するステップと、前記第1材質特徴量及び前記第2材質特徴量に基づいて硬貨の識別処理を行うステップと、を備える。
The coin identification method according to the present disclosure is a coin identification method using a magnetic sensor, wherein the magnetic sensor includes a resonance type coil, and a step of detecting the magnetic characteristics of the coin conveyed by the magnetic sensor, and From the output of the magnetic sensor, a step of generating a first waveform data representing a material feature amount, which is a feature amount that changes according to the material of the coin, and a first step corresponding to the outer edge of the coin from the first waveform data. Based on the step of detecting the material feature amount, the step of detecting the second material feature amount corresponding to the center of the coin from the first waveform data, and the first material feature amount and the second material feature amount. It comprises a step of performing a coin identification process.
前記第1材質特徴量を検出するステップは、前記第1波形データを微分処理して1階微分データを生成するステップと、前記1階微分データを微分処理して2階微分データを生成するステップとを含んでもよく、前記1階微分データ及び前記2階微分データに基づいて前記第1材質特徴量を検出してもよい。
The steps for detecting the first material feature amount are a step of differentiating the first waveform data to generate first-order differential data and a step of differentiating the first-order differential data to generate second-order differential data. And may be included, and the first material feature amount may be detected based on the first-order differential data and the second-order differential data.
前記第1材質特徴量を検出するステップは、前記1階微分データにおいて微分値が所定の第1閾値未満であり、かつ前記2階微分データにおいて微分値が所定の第2閾値を超える第1地点を検出してもよい。
In the step of detecting the first material feature amount, the first point where the differential value is less than the predetermined first threshold value in the first-order differential data and the differential value exceeds the predetermined second threshold value in the second-order differential data. May be detected.
前記第1材質特徴量を検出するステップは、前記1階微分データにおいて微分値が前記第1閾値未満である地点が前記第1地点から第2地点まで所定数連続した場合、前記第1波形データにおける前記第1地点から前記第2地点までの複数の材質特徴量に基づいて前記第1材質特徴量を検出してもよい。
The step of detecting the first material feature amount is the first waveform data when a predetermined number of points whose differential value is less than the first threshold value are continuous from the first point to the second point in the first-order differential data. The first material feature amount may be detected based on a plurality of material feature amounts from the first point to the second point in.
前記第1材質特徴量を検出するステップは、前記1階微分データにおいて前記第1地点から前記第2地点までの前記所定数の地点のうちで微分値が最も小さい地点における前記第1波形データの材質特徴量を前記第1材質特徴量として検出してもよい。
The step of detecting the first material feature amount is the step of detecting the first waveform data at the point where the differential value is the smallest among the predetermined number of points from the first point to the second point in the first-order differential data. The material feature amount may be detected as the first material feature amount.
前記硬貨識別方法は、前記磁気センサの前記出力から、硬貨の凹凸に応じて変化する特徴量である距離特徴量を表す第2波形データを生成するステップを更に備えていてもよい。
The coin identification method may further include a step of generating second waveform data representing a distance feature amount, which is a feature amount that changes according to the unevenness of the coin, from the output of the magnetic sensor.
前記第2材質特徴量を検出するステップは、前記第2波形データにて搬送方向における硬貨の両端に対応する第3地点及び第4地点を検出してもよく、前記第1波形データにて前記第3地点及び前記第4地点にそれぞれ対応する第5地点及び第6地点の間の中心地点の材質特徴量を前記第2材質特徴量として検出してもよい。
In the step of detecting the second material feature amount, the third point and the fourth point corresponding to both ends of the coin in the transport direction may be detected by the second waveform data, and the first waveform data may be used to detect the third point and the fourth point. The material feature amount of the central point between the fifth point and the sixth point corresponding to the third point and the fourth point, respectively, may be detected as the second material feature amount.
前記識別処理を行うステップは、前記第1材質特徴量及び前記第2材質特徴量に基づいて硬貨がバイメタル貨であるか否かを判定してもよい。
In the step of performing the identification process, it may be determined whether or not the coin is a bimetal coin based on the first material feature amount and the second material feature amount.
前記識別処理を行うステップは、前記第1材質特徴量及び前記第2材質特徴量を、真正なバイメタル貨の外縁部及び中心部のそれぞれの材質特徴量に係る基準データと比較してもよい。
In the step of performing the identification process, the first material feature amount and the second material feature amount may be compared with the reference data relating to the respective material feature amounts of the outer edge portion and the central portion of the genuine bimetal coin.
前記識別処理を行うステップは、前記第1材質特徴量及び前記第2材質特徴量が前記基準データと適合する場合、当該硬貨を前記真正なバイメタル貨であると判定してもよい。
In the step of performing the identification process, if the first material feature amount and the second material feature amount match the reference data, the coin may be determined to be the genuine bimetal coin.
前記識別処理を行うステップは、前記第1材質特徴量及び前記第2材質特徴量を前記基準データと比較することによって、当該硬貨の金種を判定してもよい。
In the step of performing the identification process, the denomination of the coin may be determined by comparing the first material feature amount and the second material feature amount with the reference data.
前記バイメタル貨は、バイカラー貨及びバイカラー・クラッド貨の少なくとも一方であってもよい。
The bimetal coin may be at least one of a bicolor coin and a bicolor clad coin.
前記バイメタル貨は、バイカラー貨であってもよい。
The bimetal coin may be a bicolor coin.
本開示によれば、より簡単な構成でバイメタル貨を精度良く識別することが可能な硬貨識別装置及び硬貨識別方法を提供することができる。
According to the present disclosure, it is possible to provide a coin identification device and a coin identification method capable of accurately identifying a bimetal coin with a simpler configuration.
以下、本開示に係る硬貨識別装置及び硬貨識別方法の実施形態を、図面を参照しながら説明する。以下においては、貨幣としての硬貨を対象とする硬貨識別装置及び硬貨識別方法を例として、本開示を説明するが、本開示の対象となる硬貨には、貨幣としての硬貨に加えて、遊技機で使用されるコインも含まれる。なお、以下の説明は、硬貨識別装置及び硬貨識別方法の一例である。
Hereinafter, embodiments of the coin identification device and the coin identification method according to the present disclosure will be described with reference to the drawings. In the following, the present disclosure will be described by taking as an example a coin identification device and a coin identification method for coins as money. However, the coins subject to the present disclosure include coins as money and game machines. Also includes coins used in. The following description is an example of a coin identification device and a coin identification method.
本開示に係る硬貨識別装置及び硬貨識別方法は、2種類以上の材料から構成される硬貨であるバイメタル貨を識別可能であるが、1種類の材料から構成される硬貨であるモノメタル貨も識別することが可能である。以下では、主にバイメタル貨を識別する場合について説明する。
The coin identification device and the coin identification method according to the present disclosure can identify bimetal coins, which are coins composed of two or more kinds of materials, but also identify monometal coins, which are coins composed of one kind of material. It is possible to do. In the following, the case of identifying bimetal coins will be mainly described.
まず、バイメタル貨について説明する。図1(a)は、バイカラー貨の硬貨面を示す平面模式図であり、図1(b)は、バイカラー貨の断面模式図である。図2(a)は、クラッド貨(メッキ)の硬貨面を示す平面模式図であり、図2(b)は、クラッド貨(メッキ)の断面模式図であり、図2(c)は、クラッド貨(3層構造)の硬貨面を示す平面模式図であり、図2(d)は、クラッド貨(3層構造)の断面模式図である。図3(a)は、バイカラー・クラッド貨の硬貨面を示す平面模式図であり、図3(b)は、バイカラー・クラッド貨の断面模式図である。バイメタル貨には、バイカラー貨、クラッド貨、バイカラー・クラッド貨が含まれるが、本開示に係る硬貨識別装置及び硬貨識別方法は、なかでもバイカラー貨及びバイカラー・クラッド貨を識別可能であり、特にバイカラー貨を識別可能である。図1(a)及び図1(b)に示すように、バイカラー貨51は、中心部の円形のコア部分51aと、コア部分51aを囲む外縁部のリング部分51bとで異なる材料(金属又は合金)を用いて形成されたものであり、リング部分51bにコア部分51aを嵌め込んで形成される。図2(a)及び図2(b)に示すように、クラッド貨52は、芯材52aと、芯材52aを覆う表面層52bとで異なる材料(金属又は合金)を用いて形成されたものであり、例えば、円形の芯材(母材)52aにメッキし、刻印したものが挙げられる。図2(c)及び図2(d)に示すように、クラッド貨52は、3層構造の板を円形に打ち抜き表面層52b、芯材52a及び表面層52bを形成し、刻印したものであってもよい。図3(a)及び図3(b)に示すように、バイカラー・クラッド貨53は、クラッド貨の構造を有する中心部の円形のコア部分53aと、コア部分53aを囲む外縁部のリング部分53bとで異なる材料(金属又は合金)を用いて形成されたものであり、リング部分53bにコア部分53aを嵌め込んで形成される。バイカラー・クラッド貨53におけるコア部分53aは、芯材53a1と、芯材53a1を覆う表面層53a2とで異なる材料(金属又は合金)を用いて形成されている。コア部分53aは、芯材53a1に表面層53a2がメッキされたものであってもよいし、3層構造の板を円形に打ち抜いたものであってもよい。
First, a bimetal coin will be described. FIG. 1A is a schematic plan view showing a coin surface of a bicolor coin, and FIG. 1B is a schematic cross-sectional view of a bicolor coin. FIG. 2A is a schematic plan view showing a coin surface of a clad coin (plating), FIG. 2B is a schematic cross-sectional view of a clad coin (plating), and FIG. 2C is a clad. It is a plane schematic diagram which shows the coin surface of a coin (three-layer structure), and FIG. 2 (d) is a cross-sectional schematic diagram of a clad coin (three-layer structure). FIG. 3A is a schematic plan view showing the coin surface of the bicolor clad coin, and FIG. 3B is a schematic cross-sectional view of the bicolor clad coin. Bimetallic coins include bicolor coins, clad coins, and bicolor clad coins, and the coin identification device and coin identification method according to the present disclosure can identify bicolor coins and bicolor clad coins. Yes, especially bicolor coins can be identified. As shown in FIGS. 1A and 1B, the bicolor coin 51 has a different material (metal or metal) between the circular core portion 51a at the center and the ring portion 51b at the outer edge portion surrounding the core portion 51a. It is formed by using an alloy), and is formed by fitting the core portion 51a into the ring portion 51b. As shown in FIGS. 2A and 2B, the clad coin 52 is formed by using different materials (metals or alloys) for the core material 52a and the surface layer 52b covering the core material 52a. For example, a circular core material (base material) 52a is plated and engraved. As shown in FIGS. 2 (c) and 2 (d), the clad coin 52 is formed by punching a plate having a three-layer structure into a circular shape to form a surface layer 52b, a core material 52a, and a surface layer 52b, and engraving the surface layer 52b. You may. As shown in FIGS. 3A and 3B, the bicolor clad coin 53 has a central circular core portion 53a having a clad coin structure and a ring portion of an outer edge portion surrounding the core portion 53a. It is formed by using a material (metal or alloy) different from that of 53b, and is formed by fitting the core portion 53a into the ring portion 53b. The core portion 53a in the bicolor clad coin 53 is formed by using a different material (metal or alloy) between the core material 53a1 and the surface layer 53a2 covering the core material 53a1. The core portion 53a may be a core material 53a1 plated with a surface layer 53a2, or may be a plate having a three-layer structure punched out in a circular shape.
以下、バイカラー貨又はバイカラー・クラッド貨の中心部(コア部)及び外縁部(リング部)を、それぞれ、バイメタル貨のインナー部及びアウター部という場合がある。
Hereinafter, the central portion (core portion) and the outer edge portion (ring portion) of the bicolor coin or the bicolor clad coin may be referred to as an inner portion and an outer portion of the bimetal coin, respectively.
なお、以下の説明において、同一又は同様の機能を有する構成には同一の符号を異なる実施形態及び図面間で共通して適宜用い、その構成についての繰り返しの説明は適宜省略する。
In the following description, the same reference numerals are appropriately used for configurations having the same or similar functions in different embodiments and drawings, and repeated description of the configurations will be omitted as appropriate.
(第1実施形態)
第1実施形態では、高周波の磁気センサをバイメタル貨のインナー部とアウター部が通過する位置に配置し、硬貨が到来してから通過するまでのセンサ出力からインナー部とアウター部の位置を推定してそれらの材質特徴量を取得することによって、単一センサによるバイメタル貨の材質検出を実現する。 (First Embodiment)
In the first embodiment, a high-frequency magnetic sensor is placed at a position where the inner portion and the outer portion of the bimetallic coin pass, and the positions of the inner portion and the outer portion are estimated from the sensor output from the arrival of the coin to the passage. By acquiring those material feature quantities, it is possible to detect the material of bimetallic coins with a single sensor.
第1実施形態では、高周波の磁気センサをバイメタル貨のインナー部とアウター部が通過する位置に配置し、硬貨が到来してから通過するまでのセンサ出力からインナー部とアウター部の位置を推定してそれらの材質特徴量を取得することによって、単一センサによるバイメタル貨の材質検出を実現する。 (First Embodiment)
In the first embodiment, a high-frequency magnetic sensor is placed at a position where the inner portion and the outer portion of the bimetallic coin pass, and the positions of the inner portion and the outer portion are estimated from the sensor output from the arrival of the coin to the passage. By acquiring those material feature quantities, it is possible to detect the material of bimetallic coins with a single sensor.
図4及び図5は、第1実施形態に係る硬貨識別装置の構成を説明する模式図であり、図4は、硬貨の搬送路を上方から見た図であり、図5は、図4のA-B線における断面図である。図4及び図5には互いに直交するXYZ座標系を示している。図4及び図5に示すように、本実施形態に係る硬貨識別装置1は、硬貨処理装置の搬送路110に配置された単一の磁気センサ10を備えている。
4 and 5 are schematic views illustrating the configuration of the coin identification device according to the first embodiment, FIG. 4 is a view of a coin transport path from above, and FIG. 5 is FIG. It is sectional drawing in AB line. 4 and 5 show XYZ coordinate systems that are orthogonal to each other. As shown in FIGS. 4 and 5, the coin identification device 1 according to the present embodiment includes a single magnetic sensor 10 arranged in the transport path 110 of the coin processing device.
硬貨Cは、硬貨処理装置の搬送手段(図示せず、例えばフィン)によって、硬貨処理装置の搬送路110上を、一枚ずつ間隔を空けて、搬送方向(図4中の+X方向)に搬送される。搬送路110は、硬貨Cの下面を支える平滑な搬送面111と、硬貨Cの周面に接して硬貨Cを片寄せ案内する案内面112とを有している。搬送面111は、図4中のXY平面と平行であり、硬貨Cは、搬送路110の案内面112側の端部に(図4中の-Y方向に)片寄せられた状態で、すなわち、案内面112に接触した状態で、搬送面111上を搬送される。
The coins C are conveyed in the transport direction (+ X direction in FIG. 4) one by one on the transport path 110 of the coin processor by means of transport (not shown, for example, fins) of the coin processor. Will be done. The transport path 110 has a smooth transport surface 111 that supports the lower surface of the coin C, and a guide surface 112 that is in contact with the peripheral surface of the coin C and guides the coin C in a one-sided manner. The transport surface 111 is parallel to the XY plane in FIG. 4, and the coin C is offset to the end of the transport path 110 on the guide surface 112 side (in the −Y direction in FIG. 4), that is, , It is conveyed on the conveying surface 111 in a state of being in contact with the guide surface 112.
磁気センサ10は、搬送路110の下方(図5中の-Z方向)に配置された共振型コイル11(以下、単にコイル11という場合がある)を含み、搬送路110を搬送される硬貨Cの磁気特性を検出する。共振型コイル11を含む磁気センサ10は、反射型磁気センサに比べて、より高い周波数の信号をコイル11に印加することが可能であり、その場合でも磁気センサ10の出力から後述するように硬貨の各部の材質(材質特徴量)を検出することができる。また、磁気センサ10用の制御回路としては、従来に比べて複雑な回路は必要ではなく、例えば、特許文献1に開示のリング検知センサ又はコア検知センサ用の回路を使用することができる。したがって、本実施形態では、従来よりも簡単なセンサ構成及び回路構成でバイメタル貨を検出できるため、省スペース化とコスト削減が可能である。
The magnetic sensor 10 includes a resonance type coil 11 (hereinafter, may be simply referred to as a coil 11) arranged below the transport path 110 (in the −Z direction in FIG. 5), and the coin C is conveyed through the transport path 110. Detects the magnetic properties of. The magnetic sensor 10 including the resonance type coil 11 can apply a signal having a higher frequency to the coil 11 than the reflection type magnetic sensor, and even in that case, a coin as will be described later from the output of the magnetic sensor 10. It is possible to detect the material (material feature amount) of each part of. Further, the control circuit for the magnetic sensor 10 does not require a complicated circuit as compared with the conventional one, and for example, a circuit for a ring detection sensor or a core detection sensor disclosed in Patent Document 1 can be used. Therefore, in the present embodiment, the bimetal coin can be detected with a simpler sensor configuration and circuit configuration than before, so that space saving and cost reduction can be achieved.
また、磁気センサ10は、図5に示すように、円筒型のポットコア12を備えている。ポットコア12は、磁性材料からなる断面視E字状のコアであり、ポットコア12の中心軸に巻線が巻回されてコイル11を形成している。硬貨Cの搬送方向において、コイル11の幅(X方向の幅)は、バイメタル貨Bのインナー部Ba及びアウター部Bbのそれぞれの幅より小さく設計されている。
Further, as shown in FIG. 5, the magnetic sensor 10 includes a cylindrical pot core 12. The pot core 12 is an E-shaped core made of a magnetic material in a cross-sectional view, and a winding is wound around the central axis of the pot core 12 to form a coil 11. In the transport direction of the coin C, the width of the coil 11 (width in the X direction) is designed to be smaller than the width of each of the inner portion Ba and the outer portion Bb of the bimetal coin B.
磁気センサ10は、共振回路(後述する図13参照)から与えられる発振周波数に応じて搬送路110に磁界(磁束)を生じさせるとともに、搬送路110を硬貨Cが通過するときの磁界の変化を検知する。共振回路は、コイル11に接続され、コイル11とともに硬貨Cの材質検出に適した高周波数で共振する。具体的には1~2MHz、より詳細には1.4~1.5MHzの周波数で共振する。これにより、硬貨Cの表面近傍の材質を効果的に検出できることから、バイメタル貨、特にバイカラー・クラッド貨をより効果的に検出することができる。また、狭い領域の材質を検出できることから、磁気センサ10の分解能を高めることができる。
The magnetic sensor 10 generates a magnetic field (magnetic flux) in the transport path 110 according to the oscillation frequency given by the resonance circuit (see FIG. 13 described later), and changes the magnetic field when the coin C passes through the transport path 110. Detect. The resonance circuit is connected to the coil 11 and resonates with the coil 11 at a high frequency suitable for detecting the material of the coin C. Specifically, it resonates at a frequency of 1 to 2 MHz, more specifically 1.4 to 1.5 MHz. As a result, the material near the surface of the coin C can be effectively detected, so that bimetal coins, particularly bicolor clad coins, can be detected more effectively. Further, since the material in a narrow region can be detected, the resolution of the magnetic sensor 10 can be improved.
磁気センサ10のコイル11は、搬送路110の幅方向において、案内面112との間に隙間を空けて配置されている。そのため、硬貨Cが案内面112側に片寄せられた状態で搬送されると、コイル11上(コイル11による磁界内)を硬貨Cの一方の外縁部、中央部、他方の外縁部が順次通過し、磁気センサ10の出力信号も変化することになる。すなわち、磁気センサ10は、硬貨Cの外縁部及び中央部の材質に応じた信号を出力する。このようにして、磁気センサ10は、バイメタル貨Bのインナー部Ba及びアウター部Bbの材質を検出する。硬貨Cが非磁性体から構成される場合は、コイル11上に硬貨Cが到来すると、磁気センサ10の出力は減衰し(振幅が減少)、硬貨Cの導電率が高いほど、出力の減衰率は大きくなる。
The coil 11 of the magnetic sensor 10 is arranged with a gap between it and the guide surface 112 in the width direction of the transport path 110. Therefore, when the coin C is conveyed in a state of being offset to the guide surface 112 side, one outer edge portion, the central portion, and the other outer edge portion of the coin C sequentially pass over the coil 11 (in the magnetic field by the coil 11). However, the output signal of the magnetic sensor 10 also changes. That is, the magnetic sensor 10 outputs a signal according to the material of the outer edge portion and the central portion of the coin C. In this way, the magnetic sensor 10 detects the materials of the inner portion Ba and the outer portion Bb of the bimetal coin B. When the coin C is composed of a non-magnetic material, when the coin C arrives on the coil 11, the output of the magnetic sensor 10 is attenuated (amplitude decreases), and the higher the conductivity of the coin C, the more the attenuation factor of the output. Will grow.
図6は、第1実施形態に係る硬貨識別装置の構成の一例を説明するブロック図である。図6に示すように、本実施形態に係る硬貨識別装置1は、磁気センサ10に加えて、第1波形生成部21、第1材質検出部22、第2材質検出部23及び識別処理部24を備えている。第1波形生成部21、第1材質検出部22、第2材質検出部23及び識別処理部24は、後述する制御部20によってそれぞれ対応するプログラムを実行することによって機能する。
FIG. 6 is a block diagram illustrating an example of the configuration of the coin identification device according to the first embodiment. As shown in FIG. 6, in the coin identification device 1 according to the present embodiment, in addition to the magnetic sensor 10, the first waveform generation unit 21, the first material detection unit 22, the second material detection unit 23, and the identification processing unit 24 It is equipped with. The first waveform generation unit 21, the first material detection unit 22, the second material detection unit 23, and the identification processing unit 24 function by executing the corresponding programs by the control unit 20 described later.
第1波形生成部21は、磁気センサ10の出力から、材質特徴量を表す第1波形データを生成する。より詳細には、第1波形生成部21は、連続する異なるタイミングでの磁気センサ10の出力に基づいて、第1波形データを生成する。したがって、第1波形データは、材質特徴量の時間的な変化を示す。例えば、磁気センサ10の出力(アナログ信号)を所定の時間間隔でサンプリングした時系列(デジタル信号)に基づいて、第1波形データを生成してもよい。材質特徴量は、硬貨の材質、特に表面材質に応じて変化する特徴量である。
The first waveform generation unit 21 generates first waveform data representing a material feature amount from the output of the magnetic sensor 10. More specifically, the first waveform generation unit 21 generates the first waveform data based on the outputs of the magnetic sensors 10 at consecutive different timings. Therefore, the first waveform data shows the time change of the material feature amount. For example, the first waveform data may be generated based on a time series (digital signal) obtained by sampling the output (analog signal) of the magnetic sensor 10 at a predetermined time interval. The material feature amount is a feature amount that changes depending on the material of the coin, particularly the surface material.
図7は、第1波形生成部によって生成される第1波形データの一例を模式的に示すグラフである。図7は、バイメタル貨を検出した場合の例を示しており、上部にはバイメタル貨B(インナー部Ba及びアウター部Bb)の側断面を当該グラフの対応する位置に図示している。図7に示すように、第1波形データは、時間に対する材質特徴量を表すデータであり、図7の横軸は、時間方向を表す。ただし、磁気センサ10は、通常、所定速度で搬送される硬貨を検出することから、第1波形データは、硬貨の搬送方向における位置に対する材質特徴量を表すデータでもあり、この場合、図7の横軸は、硬貨の搬送方向における位置を表す。
FIG. 7 is a graph schematically showing an example of the first waveform data generated by the first waveform generation unit. FIG. 7 shows an example in the case where a bimetal coin is detected, and the side cross section of the bimetal coin B (inner portion Ba and outer portion Bb) is shown at the corresponding position in the graph at the upper part. As shown in FIG. 7, the first waveform data is data representing a material feature amount with respect to time, and the horizontal axis of FIG. 7 represents the time direction. However, since the magnetic sensor 10 usually detects coins transported at a predetermined speed, the first waveform data is also data representing the amount of material features with respect to the position of the coins in the transport direction. In this case, FIG. 7 shows. The horizontal axis represents the position of the coin in the transport direction.
また、図7に示すように、材質特徴量は、硬貨(バイメタル貨B)の突入部、バイメタル貨Bのアウター部Bb中央、バイメタル貨Bのインナー部Baとアウター部Bbの継目となる篏合部、及び硬貨の中心部(インナー部Ba)中央において、極値を示すか、又は値がほとんど変動しない安定点になる傾向がある。この特性を利用して、材質特徴量からバイメタル貨Bのインナー部Ba及びアウター部Bbの位置を検出する。
Further, as shown in FIG. 7, the material feature amount is the intrusion portion of the coin (bimetal coin B), the center of the outer portion Bb of the bimetal coin B, and the joint between the inner portion Ba and the outer portion Bb of the bimetal coin B. At the center of the portion and the central portion (inner portion Ba) of the coin, there is a tendency to show an extreme value or become a stable point where the value hardly fluctuates. Utilizing this characteristic, the positions of the inner portion Ba and the outer portion Bb of the bimetal coin B are detected from the material feature amount.
図8は、硬貨の材質(導電率)と、材質特徴量との関係を示すグラフである。第1波形データは、例えば、以下の手法で生成される。磁気センサ10は、共振型コイル11の近傍を硬貨が搬送されることにより、共振回路の電圧の変化と、共振回路の発振周波数の変化とを出力する。これらは、硬貨の材質、特に導電率によって変化する。また、硬貨の導電率に応じて材質特徴量は変化する。これらのことから、磁気センサ10の出力から材質特徴量を得ることができる。すなわち、共振回路の電圧と、共振回路の発振周波数と、硬貨の材質(導電率)との間には所定の関係が存在する。また、硬貨の材質(導電率)と材質特徴量との間には所定の関係が存在する。具体的には、図8に示すように、硬貨の導電率が大きくなればなるほど材質特徴量はより小さくなる。したがって、共振回路の電圧及び発振周波数と、硬貨の材質(導電率)との間の三者の関係に基づくテーブルと、硬貨の材質(導電率)と材質特徴量と間の関係を示すテーブルとを予め準備しておき、磁気センサ10の出力、すなわち共振回路の電圧及び発振周波数を前者のテーブルと照合することによって硬貨の材質(導電率)が求まり、材質(導電率)を後者のテーブルと照合することによって硬貨の材質特徴量が求まる。そして、連続する異なるタイミングの磁気センサ10の出力に係る共振回路の電圧及び発振周波数とこれらのテーブルとを用い、それぞれのタイミングにおける材質特徴量を求めることによって、第1波形データを生成することができる。なお、図8に示した関係は、予め材質(導電率)が異なる種々の硬貨を用いてデータを取ることによって得られたものである。
FIG. 8 is a graph showing the relationship between the material (conductivity) of the coin and the material feature amount. The first waveform data is generated by, for example, the following method. The magnetic sensor 10 outputs a change in the voltage of the resonance circuit and a change in the oscillation frequency of the resonance circuit by transporting coins in the vicinity of the resonance type coil 11. These vary depending on the material of the coin, especially the conductivity. In addition, the amount of material features changes according to the conductivity of the coin. From these things, the material feature amount can be obtained from the output of the magnetic sensor 10. That is, there is a predetermined relationship between the voltage of the resonant circuit, the oscillation frequency of the resonant circuit, and the material (conductivity) of the coin. In addition, there is a predetermined relationship between the material (conductivity) of the coin and the amount of material features. Specifically, as shown in FIG. 8, the larger the conductivity of the coin, the smaller the material feature amount. Therefore, a table based on the three-way relationship between the voltage and oscillation frequency of the resonance circuit and the material (conductivity) of the coin, and a table showing the relationship between the material (conductivity) of the coin and the material feature amount. The material (conductivity) of the coin can be obtained by collating the output of the magnetic sensor 10, that is, the voltage and oscillation frequency of the resonance circuit with the former table, and the material (conductivity) can be referred to as the latter table. By collating, the material characteristic amount of the coin can be obtained. Then, the first waveform data can be generated by obtaining the material feature amount at each timing by using the voltage and the oscillation frequency of the resonance circuit related to the outputs of the magnetic sensors 10 having different consecutive timings and these tables. can. The relationship shown in FIG. 8 was obtained by collecting data in advance using various coins having different materials (conductivity).
第1材質検出部22は、第1波形データから、硬貨の外縁部、ここではバイメタル貨のアウター部に対応する第1材質特徴量を検出する。第2材質検出部23は、第1波形データから、硬貨の中心部、ここではバイメタル貨のインナー部に対応する第2材質特徴量を検出する。第1波形データは、上述のように、バイメタル貨の各部に応じて特徴的な変化を示す特性をもつことから、第1材質検出部22は、バイメタル貨のアウター部に対応する地点の材質特徴量を第1材質特徴量として正確に検出することができ、第2材質検出部23は、バイメタル貨のインナー部に対応する地点の材質特徴量を第2材質特徴量として正確に検出することができる。
The first material detection unit 22 detects the first material feature amount corresponding to the outer edge portion of the coin, here, the outer portion of the bimetal coin, from the first waveform data. The second material detection unit 23 detects the second material feature amount corresponding to the central portion of the coin, here, the inner portion of the bimetal coin, from the first waveform data. As described above, the first waveform data has a characteristic showing a characteristic change according to each part of the bimetal coin. Therefore, the first material detection unit 22 has a material characteristic of a point corresponding to the outer part of the bimetal coin. The amount can be accurately detected as the first material feature amount, and the second material detection unit 23 can accurately detect the material feature amount at the point corresponding to the inner part of the bimetal coin as the second material feature amount. can.
識別処理部24は、第1材質検出部22及び第2材質検出部23によってそれぞれ検出された第1材質特徴量及び第2材質特徴量に基づいて硬貨の識別処理を行う。第1材質特徴量及び第2材質特徴量は、それぞれ、バイメタル貨のアウター部及びインナー部に対応する地点の材質特徴量を精度良く示すことから、識別処理部24は、バイメタル貨を精度良く識別することが可能である。
The identification processing unit 24 performs coin identification processing based on the first material feature amount and the second material feature amount detected by the first material detection unit 22 and the second material detection unit 23, respectively. Since the first material feature amount and the second material feature amount accurately indicate the material feature amount at the points corresponding to the outer part and the inner part of the bimetal coin, respectively, the identification processing unit 24 accurately identifies the bimetal coin. It is possible to do.
例えば、識別処理部24は、第1材質特徴量及び第2材質特徴量に基づいて硬貨がバイメタル貨であるか否かを判定してもよい。また、バイメタル貨のアウター部及びインナー部の材質を判定してもよい。
For example, the identification processing unit 24 may determine whether or not the coin is a bimetal coin based on the first material feature amount and the second material feature amount. Further, the material of the outer portion and the inner portion of the bimetal coin may be determined.
以上より、本実施形態では、従来に比べてより簡単な構成でバイメタル貨を精度良く識別することが可能である。
From the above, in the present embodiment, it is possible to accurately identify the bimetal coin with a simpler configuration than in the conventional case.
図9は、第1実施形態に係る第1材質検出部の構成を説明するブロック図である。図9に示すように、第1材質検出部22は、第1波形データを微分処理して1階微分データを生成する1階微分処理部22aと、1階微分データを微分処理して2階微分データを生成する2階微分処理部22bとを含んでいてもよく、1階微分データ及び2階微分データに基づいて第1材質特徴量を検出してもよい。
FIG. 9 is a block diagram illustrating the configuration of the first material detection unit according to the first embodiment. As shown in FIG. 9, the first material detection unit 22 has a first-order differential processing unit 22a that differentially processes the first waveform data to generate first-order differential data, and a second-order differential processing unit 22a that differentially processes the first-order differential data to generate second-order differential data. The second-order differential processing unit 22b that generates the differential data may be included, and the first-order material feature amount may be detected based on the first-order differential data and the second-order differential data.
図10は、第1波形生成部によって生成される第1波形データの別の例を模式的に示すグラフである。図10は、バイメタル貨を検出した場合の例を示している。図11は、第1波形データと、その1階微分データと、その2階微分データの一例を模式的に示すグラフである。図11は、バイメタル貨を検出した場合の例を示しており、上部にはバイメタル貨B(インナー部Ba及びアウター部Bb)の側断面を当該グラフの対応する位置に図示している。図11の第1波形データは、図10の破線で挟まれた第1波形データに対応している。図10に示す例では、第1波形データは、バイメタル貨のアウター部中央及びインナー部中央に対応する領域(図中の円で囲まれた領域)において値の変動が小さい安定な領域を示す。
FIG. 10 is a graph schematically showing another example of the first waveform data generated by the first waveform generator. FIG. 10 shows an example when a bimetal coin is detected. FIG. 11 is a graph schematically showing an example of the first waveform data, the first-order differential data, and the second-order differential data. FIG. 11 shows an example in the case where a bimetal coin is detected, and the side cross section of the bimetal coin B (inner portion Ba and outer portion Bb) is shown at the corresponding position in the graph at the upper part. The first waveform data in FIG. 11 corresponds to the first waveform data sandwiched between the broken lines in FIG. In the example shown in FIG. 10, the first waveform data shows a stable region in which the fluctuation of the value is small in the region corresponding to the center of the outer portion and the center of the inner portion of the bimetal coin (the region surrounded by a circle in the figure).
また、図11に示すように、1階微分データは、第1波形データの勾配情報(当該波形の傾き)を表し、2階微分データは、第1波形データの勾配強度(当該波形の傾きの変化の割合)及び勾配の向き(当該波形が時計回りと反時計回りのいずれの方向に回転しているか)を表すことになる。2階微分データの符号が変化すると、第1波形データの波形の回転方向が変化する。そのため、第1波形データの波形の傾きを定量化し、その形状を評価することができる。また、インナー部Baとアウター部Bbとで材質が異なるバイメタル貨Bでは、アウター部Bbに対応する領域に、波形の傾きが小さく第1波形データが安定的に推移する安定領域が存在する。したがって、1階微分処理部22a及び2階微分処理部22bを含むことによって、第1材質特徴量を安定領域の材質特徴量からより正確に得ることが可能となり、アウター部Bbの材質特徴を高精度に検出することができる。
Further, as shown in FIG. 11, the first-order differential data represents the gradient information of the first waveform data (slope of the waveform), and the second-order differential data is the gradient intensity of the first waveform data (slope of the waveform). It represents the rate of change) and the direction of the slope (whether the waveform is rotating clockwise or counterclockwise). When the sign of the second-order differential data changes, the rotation direction of the waveform of the first waveform data changes. Therefore, the slope of the waveform of the first waveform data can be quantified and its shape can be evaluated. Further, in the bimetal coin B whose material is different between the inner portion Ba and the outer portion Bb, there is a stable region in the region corresponding to the outer portion Bb where the slope of the waveform is small and the first waveform data stably changes. Therefore, by including the first-order differential processing unit 22a and the second-order differential processing unit 22b, the first material feature amount can be obtained more accurately from the material feature amount in the stable region, and the material feature of the outer portion Bb is enhanced. It can be detected with high accuracy.
なお、1階微分処理部22aは、第1波形データに対する微分処理と、第1波形データに対するノイズ除去(例えば正弦波フィルタ補正処理)とを同時に行ってもよい。同様に、2階微分処理部22bは、1階微分データに対する微分処理と、1階微分データに対するノイズ除去(例えば正弦波フィルタ補正処理)とを同時に行ってもよい。
The first-order differential processing unit 22a may simultaneously perform differential processing on the first waveform data and noise removal (for example, sine wave filter correction processing) on the first waveform data. Similarly, the second-order differential processing unit 22b may simultaneously perform differential processing on the first-order differential data and noise removal (for example, sinusoidal filter correction processing) on the first-order differential data.
図11に示すように、第1材質検出部22は、1階微分データにおいて微分値が所定の第1閾値Th1未満であり、かつ2階微分データにおいて微分値が所定の第2閾値Th2を超える第1地点P1を検出してもよい。これにより、バイメタル貨Bの篏合部に起因する第1波形データの極値を含む領域(図7参照)を、バイメタル貨Bのアウター部Bbに対応する安定領域として誤って検出するのを防止することが可能である。したがって、バイメタル貨Bのアウター部Bbに対応する安定領域をより確実に検出できるため、アウター部Bbの材質特徴をより高精度に検出することができる。
As shown in FIG. 11, in the first-order differential data, the differential value is less than the predetermined first threshold Th1 in the first-order differential data, and the differential value exceeds the predetermined second threshold Th2 in the second-order differential data. The first point P1 may be detected. This prevents the region containing the extreme value of the first waveform data (see FIG. 7) caused by the combined portion of the bimetal coin B from being erroneously detected as the stable region corresponding to the outer portion Bb of the bimetal coin B. It is possible to do. Therefore, since the stable region corresponding to the outer portion Bb of the bimetal coin B can be detected more reliably, the material characteristics of the outer portion Bb can be detected with higher accuracy.
第1閾値Th1は、適宜設定可能であるが、例えば、1階微分データの最小微分値(例えば図11中のMin)の30~50%(例えば40%)とすることができる。30~50%とすることによって、硬貨の搬送速度の変動の影響を受け難くすることが可能であるため、硬貨の搬送速度の変動した場合であってもアウター部Bbの材質特徴をより高精度に検出することができる。第2閾値Th2は、適宜設定可能であるが、例えば、2階微分データの最大微分値(例えば図11中のMax)の5~25%(例えば10%)とすることができる。
The first threshold value Th1 can be appropriately set, but can be, for example, 30 to 50% (for example, 40%) of the minimum differential value (for example, Min in FIG. 11) of the first-order differential data. By setting it to 30 to 50%, it is possible to make it less susceptible to fluctuations in the coin transport speed, so even if the coin transport speed fluctuates, the material characteristics of the outer portion Bb can be made more accurate. Can be detected. The second threshold value Th2 can be appropriately set, but can be, for example, 5 to 25% (for example, 10%) of the maximum differential value (for example, Max in FIG. 11) of the second-order differential data.
より詳細には、第1材質検出部22は、1階微分データの始端から順に第1閾値Th1未満である地点を検索してもよく、第1閾値Th1未満である地点が見つかった場合、その地点における2階微分データの微分値が第2閾値Th2を超えるか否かを判定してもよい。その結果、超える場合は、その地点を第1地点P1として決定してもよい。超えない場合は、その地点以降の1階微分データについて、第1地点P1が検出されるまで、同様に検索処理及び判定処理を繰り返してもよい。
More specifically, the first material detection unit 22 may search for points having a first threshold value of less than Th1 in order from the start of the first-order differential data, and if a point having a first threshold value of less than Th1 is found, the point is found. It may be determined whether or not the differential value of the second-order differential data at the point exceeds the second threshold value Th2. As a result, if it exceeds, the point may be determined as the first point P1. If it does not exceed, the search process and the determination process may be repeated in the same manner for the first-order differential data after that point until the first point P1 is detected.
図11に示すように、第1材質検出部22は、1階微分データにおいて微分値が第1閾値Th1未満である地点が第1地点P1から第2地点P2まで所定数n(nは2以上の自然数)だけ連続した場合、第1波形データにおける第1地点P1から第2地点P2までの複数の材質特徴量に基づいて第1材質特徴量を検出してもよい。これにより、瞬間的なノイズを安定領域と誤検知するのを効果的に防止し、第1波形データの安定領域をより効果的に検出できるため、バイメタル貨Bのアウター部Bbの材質特徴を更に高精度に検出することができる。第1地点P1から第2地点P2までの所定数nは、適宜設定可能であるが、例えば、3~10(例えば5)とすることができる。
As shown in FIG. 11, the first material detection unit 22 has a predetermined number n (n is 2 or more) from the first point P1 to the second point P2 where the differential value is less than the first threshold Th1 in the first-order differential data. When only the natural number) is continuous, the first material feature amount may be detected based on a plurality of material feature amounts from the first point P1 to the second point P2 in the first waveform data. As a result, it is possible to effectively prevent the false detection of momentary noise as a stable region and more effectively detect the stable region of the first waveform data. Therefore, the material characteristics of the outer portion Bb of the bimetal coin B are further improved. It can be detected with high accuracy. The predetermined number n from the first point P1 to the second point P2 can be appropriately set, but may be, for example, 3 to 10 (for example, 5).
より詳細には、第1材質検出部22は、以下の処理を行ってもよい。すなわち、まず、地点数カウントを1にセットする(第1ステップ)。次に、地点数カウントが所定数nより小さいか否かを判定する(第2ステップ)。小さい場合は(第2ステップ:Yes)、第1地点P1の次の地点の1階微分データの微分値が第1閾値Th1未満であるか否かを判定する(第3ステップ)。第1閾値Th1未満である場合は(第3ステップ:Yes)、地点数カウントを+1加算し(第4ステップ)、第2ステップに戻る。第2ステップにおいて地点数カウントが所定数nより小さくないと判定された場合(第2ステップ:No)、第3ステップにて最後に第1閾値Th1未満であると判定された地点を第2地点P2とし、第1地点P1から第2地点P2までの複数の材質特徴量に基づいて第1材質特徴量を検出する。なお、第3ステップにて第1閾値Th1未満でないと判定された場合は(第3ステップ:No)、第1材質検出部22は、上述のように新たに第1地点P1を検出してもよい。
More specifically, the first material detection unit 22 may perform the following processing. That is, first, the number of points count is set to 1 (first step). Next, it is determined whether or not the number of points count is smaller than the predetermined number n (second step). If it is small (second step: Yes), it is determined whether or not the differential value of the first-order differential data of the point next to the first point P1 is less than the first threshold Th1 (third step). If it is less than the first threshold Th1 (third step: Yes), the number of points count is incremented by +1 (fourth step), and the process returns to the second step. When it is determined in the second step that the number of points count is not smaller than the predetermined number n (second step: No), the point finally determined to be less than the first threshold Th1 in the third step is the second point. As P2, the first material feature amount is detected based on a plurality of material feature amounts from the first point P1 to the second point P2. If it is determined in the third step that the threshold value is not less than Th1 (third step: No), the first material detection unit 22 may newly detect the first point P1 as described above. good.
図11に示すように、第1材質検出部22は、1階微分データにおいて第1地点P1から第2地点P2までの所定数nの地点のうちで微分値が最も小さい地点(図11中のPx)における第1波形データの材質特徴量(図11中のSMx)を第1材質特徴量として検出してもよい。これにより、第1波形データの安定領域のなかでも特に第1波形データの変動が小さい材質特徴量を検出できるため、バイメタル貨Bのアウター部Bbの材質特徴を特に精度良く検出することができる。
As shown in FIG. 11, the first material detection unit 22 has the smallest differential value among the predetermined number n points from the first point P1 to the second point P2 in the first-order differential data (in FIG. 11). The material feature amount (SMx in FIG. 11) of the first waveform data in Px) may be detected as the first material feature amount. As a result, it is possible to detect the material feature amount in which the fluctuation of the first waveform data is particularly small in the stable region of the first waveform data, so that the material feature of the outer portion Bb of the bimetal coin B can be detected with particular accuracy.
第2材質検出部23は、例えば、以下の方法により、第1波形データから、硬貨の中心部、ここではバイメタル貨のインナー部に対応する第2材質特徴量を検出してもよい。すなわち、まず、第1波形データを監視し、硬貨が磁気センサ10に到来する前の待機時の材質特徴量から材質特徴量が所定量以上変化した地点を「媒体入り」の地点とし、媒体入りの地点以降の地点において、待機時と同程度の材質特徴量が所定数だけ連続した場合、その連続した所定数の地点のうちの初めの地点を「媒体抜け」の地点とする。そして、「媒体入り」の地点及び「媒体抜け」の地点の間の中心地点の材質特徴量を第2材質特徴量として検出する。
The second material detection unit 23 may detect, for example, the second material feature amount corresponding to the central portion of the coin, here, the inner portion of the bimetal coin, from the first waveform data by the following method. That is, first, the first waveform data is monitored, and the point where the material feature amount changes by a predetermined amount or more from the material feature amount in the standby state before the coin arrives at the magnetic sensor 10 is set as the "medium-filled" point. If a predetermined number of material features similar to those in standby are consecutive at the points after the above point, the first point of the continuous predetermined number of points is regarded as the "medium missing" point. Then, the material feature amount at the central point between the "medium-filled" point and the "medium-excluded" point is detected as the second material feature amount.
次に、図12を用いて、本実施形態に係る硬貨識別装置の動作について説明する。図12は、第1実施形態に係る硬貨識別装置の動作の一例を説明するフローチャートである。
Next, the operation of the coin identification device according to the present embodiment will be described with reference to FIG. FIG. 12 is a flowchart illustrating an example of the operation of the coin identification device according to the first embodiment.
図12に示すように、まず、磁気センサ10が、搬送される硬貨の磁気特性を検出する(ステップS11)。
As shown in FIG. 12, first, the magnetic sensor 10 detects the magnetic characteristics of the coins to be conveyed (step S11).
次に、第1波形生成部21が、磁気センサ10の出力から、材質特徴量を表す第1波形データを生成する(ステップS12)。
Next, the first waveform generation unit 21 generates first waveform data representing the material feature amount from the output of the magnetic sensor 10 (step S12).
次に、第1材質検出部22が、ステップS12で生成された第1波形データから、硬貨の外縁部(バイメタル貨のアウター部)に対応する第1材質特徴量を検出する(ステップS13)。
Next, the first material detection unit 22 detects the first material feature amount corresponding to the outer edge portion of the coin (the outer portion of the bimetal coin) from the first waveform data generated in step S12 (step S13).
次に、第2材質検出部23が、ステップS12で生成された第1波形データから、硬貨の中心部(バイメタル貨のインナー部)に対応する第2材質特徴量を検出する(ステップS14)。
Next, the second material detection unit 23 detects the second material feature amount corresponding to the central portion of the coin (inner portion of the bimetal coin) from the first waveform data generated in step S12 (step S14).
なお、ステップS13とステップS14のタイミングは、反対であっても同時であってもよい。
The timings of steps S13 and S14 may be opposite or simultaneous.
その後、識別処理部24が、ステップS13で検出された第1材質特徴量と、ステップS14で検出された第2材質特徴量とに基づいて硬貨の識別処理を行い(ステップS15)、硬貨識別装置1の動作が終了する。
After that, the identification processing unit 24 performs coin identification processing based on the first material feature amount detected in step S13 and the second material feature amount detected in step S14 (step S15), and the coin identification device. The operation of 1 ends.
図13は、第1実施形態に係る第1材質検出部の動作の一例を説明するフローチャートである。第1材質検出部22(ステップS13)は、図13に示すフローに従って第1材質特徴量を検出してもよい。
FIG. 13 is a flowchart illustrating an example of the operation of the first material detection unit according to the first embodiment. The first material detection unit 22 (step S13) may detect the first material feature amount according to the flow shown in FIG.
この場合、まず、1階微分処理部22aが、第1波形データを微分処理して1階微分データを生成する(ステップS21)。
In this case, first, the first-order differential processing unit 22a differentially processes the first waveform data to generate the first-order differential data (step S21).
次に、2階微分処理部22bが、1階微分データを微分処理して2階微分データを生成する(ステップS22)。
Next, the second-order differential processing unit 22b differentially processes the first-order differential data to generate the second-order differential data (step S22).
次に、第1材質検出部22が、1階微分データにおいて微分値が所定の第1閾値未満であり、かつ2階微分データにおいて微分値が所定の第2閾値を超える第1地点P1を検出する(ステップS23)。
Next, the first material detection unit 22 detects the first point P1 whose differential value is less than a predetermined first threshold value in the first-order differential data and whose differential value exceeds a predetermined second threshold value in the second-order differential data. (Step S23).
次に、第1材質検出部22が、微分値が第1閾値未満である地点が第1地点P1から第2地点P2まで所定数nだけ連続するか否かを判定する(ステップS24)。所定数連続する場合(ステップS24:Yes)、第1波形データにおける第1地点P1から第2地点P2までの複数の材質特徴量に基づいて第1材質特徴量を検出し(ステップS25)、第1材質特徴量を検出する処理が終了する。
Next, the first material detection unit 22 determines whether or not the points whose differential value is less than the first threshold value are continuous from the first point P1 to the second point P2 by a predetermined number n (step S24). In the case of a predetermined number of consecutive cases (step S24: Yes), the first material feature amount is detected based on a plurality of material feature amounts from the first point P1 to the second point P2 in the first waveform data (step S25), and the first step. 1 The process of detecting the material feature amount is completed.
ステップS25では、例えば、第1材質検出部22が、1階微分データにおいて第1地点P1から第2地点P2までの地点のうちで微分値が最も小さい地点Pxにおける第1波形データの材質特徴量SMxを第1材質特徴量として検出する。
In step S25, for example, the first material detection unit 22 has the material feature amount of the first waveform data at the point Px having the smallest differential value among the points from the first point P1 to the second point P2 in the first-order differential data. SMx is detected as the first material feature amount.
ステップS24にて、微分値が第1閾値未満である地点が第1地点P1から所定数nだけ連続しない場合は(ステップS24:No)、第1材質検出部22が、微分値が第1閾値未満である地点が第1地点P1から第2地点P2まで所定数nだけ連続するまで、ステップS23及びS24の処理を繰り返す。すなわち、ステップS24までで検出した地点以降のデータから、第1材質検出部22が上記条件を満たす新たな第1地点P1を検出し(ステップS23)、微分値が第1閾値未満である地点が、新たな第1地点P1から第2地点P2まで所定数nだけ連続するかを判定する(ステップS24)。
In step S24, when the points where the differential value is less than the first threshold value are not continuous by a predetermined number n from the first point P1 (step S24: No), the first material detection unit 22 has the differential value as the first threshold value. The processing of steps S23 and S24 is repeated until the points less than or equal to are continuous from the first point P1 to the second point P2 by a predetermined number of n. That is, from the data after the points detected up to step S24, the first material detection unit 22 detects a new first point P1 satisfying the above conditions (step S23), and the point where the differential value is less than the first threshold value is. , It is determined whether or not the new first point P1 to the second point P2 are continuous by a predetermined number n (step S24).
次に、本実施形態に係る硬貨識別装置1のより具体的な実施形態について説明する。
Next, a more specific embodiment of the coin identification device 1 according to the present embodiment will be described.
図14は、第1実施形態に係る磁気センサの構成の一例を説明するブロック図である。磁気センサ10は、共振型コイル11に加えて、図14に示すように、共振回路13及び検出回路14を更に備えていてもよい。
FIG. 14 is a block diagram illustrating an example of the configuration of the magnetic sensor according to the first embodiment. In addition to the resonance type coil 11, the magnetic sensor 10 may further include a resonance circuit 13 and a detection circuit 14, as shown in FIG.
共振回路(LC共振回路)13は、コイル11に接続されており、コイル11に接続されたコイル11を励磁する交流電源と、コイル11に並列に接続されたコンデンサとを含んでいる。交流電源の周波数は、コイル11及び共振回路13に固有の発振周波数(共振周波数)に設定されており、共振回路13は、上述のように、コイル11とともに硬貨の材質検出に適した高周波数(具体的には1~2MHz、より詳細には1.4~1.5MHz)で共振する。このようにして共振回路13によりコイル11に交流電圧(正弦波)を印加して、搬送路110に交流磁束を発生させる。この磁束中に硬貨が進入すると、当該硬貨に誘導電流(渦電流)が発生し、磁束が変化する。その結果、この磁束変化に応じて共振回路13の出力(電圧及び発振周波数)が変化する。
The resonance circuit (LC resonance circuit) 13 is connected to the coil 11 and includes an AC power supply that excites the coil 11 connected to the coil 11 and a capacitor connected in parallel to the coil 11. The frequency of the AC power supply is set to the oscillation frequency (resonance frequency) peculiar to the coil 11 and the resonance circuit 13, and the resonance circuit 13 has a high frequency (resonance frequency) suitable for detecting the material of the coin together with the coil 11 as described above. Specifically, it resonates at 1 to 2 MHz, more specifically 1.4 to 1.5 MHz). In this way, an AC voltage (sine wave) is applied to the coil 11 by the resonance circuit 13, and an AC magnetic flux is generated in the transport path 110. When a coin enters this magnetic flux, an induced current (eddy current) is generated in the coin, and the magnetic flux changes. As a result, the output (voltage and oscillation frequency) of the resonance circuit 13 changes according to this change in magnetic flux.
検出回路14は、共振回路13に接続されており、共振回路13の出力を増幅する増幅回路と、増幅回路の出力(交流)を直流に変換する直流変換回路とを含んでいる。
The detection circuit 14 is connected to the resonance circuit 13, and includes an amplifier circuit that amplifies the output of the resonance circuit 13 and a direct current conversion circuit that converts the output (alternating current) of the amplifier circuit into direct current.
図15は、第1実施形態に係る硬貨識別装置の構成の他の例を説明するブロック図である。硬貨識別装置1は、上述の磁気センサ10、第1波形生成部21、第1材質検出部22(1階微分処理部22a及び2階微分処理部22b)、第2材質検出部23及び識別処理部24に加えて、図15に示すように、ADコンバータ30、記憶部40及び制御部(演算処理部)20を更に備えていてもよい。
FIG. 15 is a block diagram illustrating another example of the configuration of the coin identification device according to the first embodiment. The coin identification device 1 includes the above-mentioned magnetic sensor 10, a first waveform generation unit 21, a first material detection unit 22 (first-order differential processing unit 22a and second-order differential processing unit 22b), a second material detection unit 23, and identification processing. In addition to the unit 24, as shown in FIG. 15, an AD converter 30, a storage unit 40, and a control unit (arithmetic processing unit) 20 may be further provided.
ADコンバータ30は、磁気センサ10(検出回路14)に接続され、磁気センサ10の検出回路14から入力されたアナログ信号を所定時間毎に所定の時間間隔でサンプリングし、時系列(デジタル信号)に変換する。ADコンバータ30によるサンプリングは、硬貨が磁気センサ10に到来する前から磁気センサ10を通過した後の期間、実行される。
The AD converter 30 is connected to the magnetic sensor 10 (detection circuit 14), samples analog signals input from the detection circuit 14 of the magnetic sensor 10 at predetermined time intervals, and makes a time series (digital signal). Convert. Sampling by the AD converter 30 is performed for a period before the coin arrives at the magnetic sensor 10 and after passing through the magnetic sensor 10.
記憶部40は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、HDD(Hard Disk Drive)、SSD(Solid State Drive)等の記憶装置から構成され、各種のデータ(例えば閾値やテーブル、基準データ等)及びプログラムを書き込み及び読み出し可能に構成されている。
The storage unit 40 is composed of, for example, a storage device such as a RAM (RandomAccessMemory), a ROM (ReadOnlyMemory), a flash memory, an HDD (HardDiskDrive), an SSD (SolidStateDrive), and various data (for example,). Thresholds, tables, reference data, etc.) and programs are configured to be writable and readable.
制御部20は、硬貨識別装置1の各部を制御するコントローラであり、例えば、各種の処理を実現するためのプログラムと、該プログラムを実行するCPU(Central Processing Unit)と、該CPUによって制御される各種ハードウェア(例えばFPGA(Field Programmable Gate Array))等によって構成されている。
The control unit 20 is a controller that controls each unit of the coin identification device 1, and is controlled by, for example, a program for realizing various processes, a CPU (Central Processing Unit) that executes the program, and the CPU. It is composed of various hardware (for example, FPGA (Field Programmable Gate Array)) and the like.
制御部20は、ADコンバータ30によりサンプリングされたサンプリングデータ(時系列)をADコンバータ30から取得し、記憶部40に記憶する。
The control unit 20 acquires sampling data (time series) sampled by the AD converter 30 from the AD converter 30 and stores it in the storage unit 40.
制御部20は、対応するプログラムを実行することによって、上述の第1波形生成部21、第1材質検出部22(1階微分処理部22a及び2階微分処理部22b)、第2材質検出部23及び識別処理部24として機能し得る。
By executing the corresponding program, the control unit 20 has the above-mentioned first waveform generation unit 21, first material detection unit 22 (first-order differential processing unit 22a and second-order differential processing unit 22b), and second material detection unit 22. It can function as 23 and the identification processing unit 24.
第1波形生成部21は、記憶部40に記憶されたサンプリングデータ、すなわち磁気センサ10の出力を所定の時間間隔でサンプリングした時系列に基づいて、第1波形データを生成する。
The first waveform generation unit 21 generates the first waveform data based on the sampling data stored in the storage unit 40, that is, the time series in which the output of the magnetic sensor 10 is sampled at a predetermined time interval.
記憶部40は、真正なバイメタル貨のアウター部及びインナー部のそれぞれの材質特徴量に係る基準データを記憶していてもよく、識別処理部24は、第1材質検出部22及び第2材質検出部23によってそれぞれ検出された第1材質特徴量及び第2材質特徴量をこの基準データと比較してもよい。これにより、硬貨の金種(及び真偽)と、硬貨がバイメタル貨(特にバイカラー貨又はバイカラー・クラッド貨)であるか否かとを高精度に判定することができる。
The storage unit 40 may store reference data relating to the respective material feature amounts of the outer portion and the inner portion of the genuine bimetallic coin, and the identification processing unit 24 may store the first material detection unit 22 and the second material detection. The first material feature amount and the second material feature amount detected by the unit 23 may be compared with this reference data, respectively. This makes it possible to determine with high accuracy the denomination (and authenticity) of the coin and whether or not the coin is a bimetal coin (particularly a bicolor coin or a bicolor clad coin).
この場合、基準データは、真正なバイメタル貨のアウター部及びインナー部から検出された材質特徴量に基づき設定された材質特徴量の許容範囲(すなわち真正なバイメタル貨のアウター部の材質特徴量の許容範囲、及びそのバイメタル貨のインナー部の材質特徴量の許容範囲)を含んでいてもよく、識別処理部24は、第1材質特徴量及び第2材質特徴量を、それぞれ、対応する許容範囲と比較する、すなわち対応する許容範囲に含まれるか、含まれないかを判定してもよい。なお、本明細書において、「材質特徴量の許容範囲」とは、当該範囲が設定された真正な硬貨(例えばバイメタル貨)として受け入れ可能な材質特徴量の数値範囲を示すものであり、通常は、真正な硬貨(例えばバイメタル貨)から検出された材質特徴量と、その前後とを含む数値範囲である。
In this case, the reference data is the permissible range of the material feature amount set based on the material feature amount detected from the outer part and the inner part of the genuine bimetallic coin (that is, the permissible amount of the material feature amount of the outer part of the genuine bimetal coin). The range and the permissible range of the material feature amount of the inner part of the bimetallic coin) may be included, and the identification processing unit 24 sets the first material feature amount and the second material feature amount as the corresponding permissible range, respectively. They may be compared, i.e. determined whether they are within or not within the corresponding tolerances. In the present specification, the "allowable range of material feature amount" indicates a numerical range of material feature amount that can be accepted as a genuine coin (for example, a bimetal coin) in which the range is set, and is usually used. , A numerical range including the amount of material features detected from a genuine coin (for example, a bimetal coin) and before and after it.
また、識別処理部24は、第1材質特徴量及び第2材質特徴量が基準データと適合する場合、当該硬貨を真正なバイメタル貨(例えば、バイカラー貨又はバイカラー・クラッド貨)であると判定してもよい。
Further, when the first material feature amount and the second material feature amount match the reference data, the identification processing unit 24 determines that the coin is a genuine bimetal coin (for example, a bicolor coin or a bicolor clad coin). You may judge.
より詳細には、識別処理部24は、第1材質特徴量及び第2材質特徴量を、それぞれ、対応する許容範囲と比較し、対応する許容範囲に含まれる場合、当該硬貨を真正なバイメタル貨(例えば、バイカラー貨又はバイカラー・クラッド貨)であると判定してもよい。
More specifically, the identification processing unit 24 compares the first material feature amount and the second material feature amount with the corresponding allowable ranges, and if they are included in the corresponding allowable range, the coin is regarded as a genuine bimetal coin. (For example, a bicolor coin or a bicolor clad coin) may be determined.
また、識別処理部24は、第1材質特徴量及び第2材質特徴量を基準データと比較することによって、当該硬貨の金種を判定してもよい。
Further, the identification processing unit 24 may determine the denomination of the coin by comparing the first material feature amount and the second material feature amount with the reference data.
この場合、基準データは、真正な硬貨の外縁部及び中心部から検出された材質特徴量に基づき設定された材質特徴量の許容範囲(すなわち真正な硬貨の外縁部の材質特徴量の許容範囲、及びその硬貨の中心部の材質特徴量の許容範囲)を金種毎に含んでいてもよく、識別処理部24は、第1材質特徴量及び第2材質特徴量を、それぞれ、各金種の対応する許容範囲と比較する、すなわち対応する許容範囲に含まれるか、含まれないかを判定してもよい。そして、第1材質特徴量及び第2材質特徴量ともに、対応する許容範囲に含まれる金種が存在する場合は、当該硬貨が当該金種であると判定してもよい。
In this case, the reference data is the permissible range of the material features set based on the material features detected from the outer edge and the center of the genuine coin (that is, the permissible range of the material features of the outer edge of the genuine coin). And the permissible range of the material feature amount of the central part of the coin) may be included for each denomination, and the identification processing unit 24 sets the first material feature amount and the second material feature amount of each denomination, respectively. It may be compared with the corresponding tolerance, i.e., whether it is included in the corresponding tolerance or not. Then, if there is a denomination included in the corresponding allowable range for both the first material feature amount and the second material feature amount, it may be determined that the coin is the denomination.
また、識別処理部24は、第1材質特徴量及び第2材質特徴量を互いに比較し、硬貨の外縁部の材質が硬貨の中心部の材質と同じであるか否かを判定してもよい。これにより、識別処理部24は、硬貨が単一の材質から構成されたもの、すなわちモノメタル貨であるか(同じである場合)、2以上の材質から構成されたもの、すなわちバイメタル貨であるか(同じでない場合)を判定することができる。
Further, the identification processing unit 24 may compare the first material feature amount and the second material feature amount with each other and determine whether or not the material of the outer edge portion of the coin is the same as the material of the central portion of the coin. .. As a result, the identification processing unit 24 is a coin made of a single material, that is, a monometal coin (if they are the same), or a coin made of two or more materials, that is, a bimetal coin. (If they are not the same) can be determined.
次に、図16を用いて、図15に示した本実施形態に係る硬貨識別装置の動作について説明する。図16は、第1実施形態に係る硬貨識別装置の動作の他の例を説明するフローチャートである。
Next, the operation of the coin identification device according to the present embodiment shown in FIG. 15 will be described with reference to FIG. FIG. 16 is a flowchart illustrating another example of the operation of the coin identification device according to the first embodiment.
図16に示すように、まず、図12に示した場合と同様に、磁気センサ10が、搬送される硬貨の磁気特性を検出する(ステップS11)。
As shown in FIG. 16, first, the magnetic sensor 10 detects the magnetic characteristics of the coins to be conveyed, as in the case shown in FIG. 12 (step S11).
次に、ADコンバータ30が、磁気センサ10の出力(検出回路14から入力されたアナログ信号)をサンプリングし、時系列に変換する(ステップS31)。
Next, the AD converter 30 samples the output of the magnetic sensor 10 (analog signal input from the detection circuit 14) and converts it into a time series (step S31).
次に、第1波形生成部21が、ADコンバータ30によりサンプリングされたサンプリングデータ(時系列)から、材質特徴量を表す第1波形データを生成する(ステップS32)。
Next, the first waveform generation unit 21 generates the first waveform data representing the material feature amount from the sampling data (time series) sampled by the AD converter 30 (step S32).
その後、図12に示した場合と同様に、ステップS13~S15の処理を実行し、硬貨識別装置1の動作が終了する。
After that, the processes of steps S13 to S15 are executed in the same manner as in the case shown in FIG. 12, and the operation of the coin identification device 1 is completed.
なお、第1材質検出部22(ステップS13)は、図13に示したフローに従って第1材質特徴量を検出してもよい。
The first material detection unit 22 (step S13) may detect the first material feature amount according to the flow shown in FIG.
また、ステップS15では、上述のように、識別処理部24が、第1材質特徴量及び第2材質特徴量を基準データと比較してもよいし、第1材質特徴量及び第2材質特徴量が基準データと適合する場合、当該硬貨を真正なバイメタル貨であると判定してもよい。また、識別処理部24が、第1材質特徴量及び第2材質特徴量を基準データと比較することによって、当該硬貨の金種を判定してもよい。更に、識別処理部24は、第1材質特徴量及び第2材質特徴量を互いに比較し、当該硬貨の外縁部の材質が硬貨の中心部の材質と同じであるか否かを判定してもよい。
Further, in step S15, as described above, the identification processing unit 24 may compare the first material feature amount and the second material feature amount with the reference data, and the first material feature amount and the second material feature amount may be compared with the reference data. If is consistent with the reference data, the coin may be determined to be a genuine bimetal coin. Further, the identification processing unit 24 may determine the denomination of the coin by comparing the first material feature amount and the second material feature amount with the reference data. Further, the identification processing unit 24 may compare the first material feature amount and the second material feature amount with each other and determine whether or not the material of the outer edge portion of the coin is the same as the material of the center portion of the coin. good.
(第2実施形態)
本実施形態は、第2波形データを生成する第2波形生成部を更に備え、第2材質検出部が第2波形データを利用して第2材質特徴量を検出することを除いて、実質的に第1実施形態と同じである。図17は、第2実施形態に係る硬貨識別装置の構成の一例を説明するブロック図である。 (Second Embodiment)
The present embodiment further includes a second waveform generation unit that generates the second waveform data, except that the second material detection unit detects the second material feature amount by using the second waveform data. It is the same as the first embodiment. FIG. 17 is a block diagram illustrating an example of the configuration of the coin identification device according to the second embodiment.
本実施形態は、第2波形データを生成する第2波形生成部を更に備え、第2材質検出部が第2波形データを利用して第2材質特徴量を検出することを除いて、実質的に第1実施形態と同じである。図17は、第2実施形態に係る硬貨識別装置の構成の一例を説明するブロック図である。 (Second Embodiment)
The present embodiment further includes a second waveform generation unit that generates the second waveform data, except that the second material detection unit detects the second material feature amount by using the second waveform data. It is the same as the first embodiment. FIG. 17 is a block diagram illustrating an example of the configuration of the coin identification device according to the second embodiment.
本実施形態に係る硬貨識別装置2は、図17に示すように、第1実施形態と同様に、磁気センサ10、第1波形生成部21、第1材質検出部22、第2材質検出部23及び識別処理部24を備えるとともに、第2波形生成部25を更に具備している。
As shown in FIG. 17, the coin identification device 2 according to the present embodiment has a magnetic sensor 10, a first waveform generation unit 21, a first material detection unit 22, and a second material detection unit 23, as in the first embodiment. And the identification processing unit 24 is provided, and the second waveform generation unit 25 is further provided.
なお、第1材質検出部22は、第1実施形態と同様に、1階微分処理部22a及び2階微分処理部22bを含んでいてもよい。
The first material detection unit 22 may include a first-order differential processing unit 22a and a second-order differential processing unit 22b, as in the first embodiment.
第2波形生成部25は、磁気センサ10の出力から、距離特徴量を表す第2波形データを生成する。より詳細には、第2波形生成部25は、連続する異なるタイミングでの磁気センサ10の出力に基づいて、第2波形データを生成する。したがって、第2波形データは、距離特徴量の時間的な変化を示す。例えば、磁気センサ10の出力(アナログ信号)を所定の時間間隔でサンプリングした時系列(デジタル信号)に基づいて、第2波形データを生成してもよい。第1波形生成部21及び第2波形生成部25は、磁気センサ10の同じ出力に基づいて、例えば、同じ時系列に基づいて、それぞれ、第1波形データ及び第2波形データを生成することができる。距離特徴量は、硬貨の凹凸、特に磁気センサ10側の表面の凹凸に応じて変化する特徴量であり、硬貨と磁気センサ10の共振型コイル11との間の距離(間隔)に応じて変化する。凹凸は、例えば、硬貨の刻印や縁取りに起因するものであってもよい。
The second waveform generation unit 25 generates second waveform data representing the distance feature amount from the output of the magnetic sensor 10. More specifically, the second waveform generation unit 25 generates the second waveform data based on the outputs of the magnetic sensors 10 at consecutive different timings. Therefore, the second waveform data shows the temporal change of the distance feature amount. For example, the second waveform data may be generated based on a time series (digital signal) obtained by sampling the output (analog signal) of the magnetic sensor 10 at a predetermined time interval. The first waveform generation unit 21 and the second waveform generation unit 25 may generate the first waveform data and the second waveform data, respectively, based on the same output of the magnetic sensor 10, for example, based on the same time series. can. The distance feature amount is a feature amount that changes according to the unevenness of the coin, particularly the unevenness of the surface on the magnetic sensor 10 side, and changes according to the distance (interval) between the coin and the resonance type coil 11 of the magnetic sensor 10. do. The unevenness may be caused by, for example, engraving or edging of a coin.
図18は、第2波形生成部によって生成される第2波形データの一例を模式的に示すグラフである。図18は、バイメタル貨を検出した場合の例を示しており、上部にはバイメタル貨B(インナー部Ba及びアウター部Bb)の側断面を当該グラフの対応する位置に図示している。図18に示すように、第2波形データは、時間に対する距離特徴量を表すデータであり、図18の横軸は、時間方向を表す。ただし、磁気センサ10は、通常、所定速度で搬送される硬貨を検出することから、第2波形データは、硬貨の搬送方向における位置に対する距離特徴量を表すデータでもあり、この場合、図18の横軸は、硬貨の搬送方向における位置を表す。
FIG. 18 is a graph schematically showing an example of the second waveform data generated by the second waveform generator. FIG. 18 shows an example when a bimetal coin is detected, and a side cross section of the bimetal coin B (inner portion Ba and outer portion Bb) is shown at a corresponding position in the graph at the upper part. As shown in FIG. 18, the second waveform data is data representing a distance feature amount with respect to time, and the horizontal axis of FIG. 18 represents the time direction. However, since the magnetic sensor 10 usually detects coins transported at a predetermined speed, the second waveform data is also data representing a distance feature amount with respect to a position in the transport direction of the coins. In this case, FIG. 18 shows. The horizontal axis represents the position of the coin in the transport direction.
また、図18に示すように、距離特徴量は、媒体入り直後と、媒体抜け直前において、値が急激に変化する傾向がある。すなわち、距離特徴量は、硬貨(バイメタル貨B)が共振型コイル11に重なり出すと急激に増加し、硬貨(バイメタル貨B)が共振型コイル11を通過する直前から急激に減少する。この特性を利用して、距離特徴量から硬貨の両端の位置を検出する。また、距離特徴量は、バイメタル貨Bの篏合部で低下する傾向がある。
Further, as shown in FIG. 18, the value of the distance feature tends to change sharply immediately after entering the medium and immediately before leaving the medium. That is, the distance feature amount increases sharply when the coin (bimetal coin B) overlaps the resonance type coil 11, and decreases sharply immediately before the coin (bimetal coin B) passes through the resonance type coil 11. Using this characteristic, the positions of both ends of the coin are detected from the distance features. Further, the distance feature amount tends to decrease at the abutment portion of the bimetal coin B.
図19は、硬貨及び共振型コイルの間の距離と、距離特徴量との関係を示すグラフである。第2波形データは、例えば、以下の手法で生成される。磁気センサ10は、共振型コイル11の近傍を硬貨が搬送されることにより、共振回路の電圧の変化と、共振回路の発振周波数の変化とを出力する。これらは、硬貨及び共振型コイル11の間の距離(間隔)によって変化する。また、硬貨及び共振型コイル11の間の距離に応じて距離特徴量は変化する。これらのことから、磁気センサ10の出力から距離特徴量を得ることができる。すなわち、共振回路の電圧と、共振回路の発振周波数と、硬貨及び共振型コイル11の間の距離との間には所定の関係が存在する。また、硬貨及び共振型コイル11の間の距離と距離特徴量との間には所定の関係が存在する。具体的には、図19に示すように、硬貨及び共振型コイル11の間の距離が大きくなればなるほど距離特徴量はより小さくなる。硬貨が共振型コイル11から遠くなると、コイル11による磁界から遠くなるためである。したがって、共振回路の電圧及び発振周波数と、硬貨及び共振型コイル11の間の距離との間の三者の関係に基づくテーブルと、硬貨及び共振型コイル11の間の距離と距離特徴量と間の関係を示すテーブルとを予め準備しておき、磁気センサ10の出力、すなわち共振回路の電圧及び発振周波数を前者のテーブルと照合することによって硬貨及び共振型コイル11の間の距離が求まり、硬貨及び共振型コイル11の間の距離を後者のテーブルと照合することによって硬貨の距離特徴量が求まる。そして、連続する異なるタイミングの磁気センサ10の出力に係る共振回路の電圧及び発振周波数とこれらのテーブルとを用い、それぞれのタイミングにおける距離特徴量を求めることによって、第2波形データを生成することができる。なお、図19に示した関係は、予め共振型コイル11と硬貨表面との距離を例えば0mm、0.2mm、0.3mmというように変えてデータを取ることによって得られたものである。また、このような関係を表すテーブルを金種毎に準備しておき、距離特徴量を求める際には対応する金種のテーブルを用いる。
FIG. 19 is a graph showing the relationship between the distance between the coin and the resonant coil and the distance feature amount. The second waveform data is generated by, for example, the following method. The magnetic sensor 10 outputs a change in the voltage of the resonance circuit and a change in the oscillation frequency of the resonance circuit by transporting coins in the vicinity of the resonance type coil 11. These vary depending on the distance (interval) between the coin and the resonant coil 11. Further, the distance feature amount changes according to the distance between the coin and the resonance type coil 11. From these things, the distance feature amount can be obtained from the output of the magnetic sensor 10. That is, there is a predetermined relationship between the voltage of the resonant circuit, the oscillation frequency of the resonant circuit, and the distance between the coin and the resonant coil 11. Further, there is a predetermined relationship between the distance between the coin and the resonance type coil 11 and the distance feature amount. Specifically, as shown in FIG. 19, the larger the distance between the coin and the resonant coil 11, the smaller the distance feature amount. This is because when the coin is far from the resonant coil 11, it is far from the magnetic field generated by the coil 11. Therefore, between the table based on the tripartite relationship between the voltage and oscillation frequency of the resonant circuit and the distance between the coin and the resonant coil 11 and the distance and distance feature between the coin and the resonant coil 11. By preparing in advance a table showing the relationship between the coins and the output of the magnetic sensor 10, that is, collating the voltage and oscillation frequency of the resonance circuit with the former table, the distance between the coin and the resonance type coil 11 can be obtained, and the coins can be obtained. And by collating the distance between the resonance type coils 11 with the latter table, the distance feature amount of the coin can be obtained. Then, the second waveform data can be generated by obtaining the distance feature amount at each timing by using the voltage and the oscillation frequency of the resonance circuit related to the outputs of the magnetic sensors 10 having different consecutive timings and these tables. can. The relationship shown in FIG. 19 was obtained by previously changing the distance between the resonance type coil 11 and the coin surface to, for example, 0 mm, 0.2 mm, 0.3 mm, and collecting data. Further, a table showing such a relationship is prepared for each denomination, and a table of the corresponding denomination is used when obtaining the distance feature amount.
本実施形態では、第2材質検出部23は、第2波形生成部25によって生成された第2波形データに基づき、第1波形生成部21によって生成された第1波形データから、硬貨の中心部、ここではバイメタル貨のインナー部に対応する第2材質特徴量を検出する。
In the present embodiment, the second material detection unit 23 is based on the second waveform data generated by the second waveform generation unit 25, and from the first waveform data generated by the first waveform generation unit 21, the central portion of the coin. Here, the second material feature amount corresponding to the inner portion of the bimetal coin is detected.
図20は、第1波形生成部によって生成される第1波形データの別の例を模式的に示すグラフである。図20は、図10と同じものであり、バイメタル貨を検出した場合の例を示している。例えば、第2材質検出部23は、図18に示したように、第2波形データにて搬送方向における硬貨の両端に対応する第3地点P3及び第4地点P4を検出してもよい。より詳細には、第2波形データの始端及び終端から順に距離特徴量が所定の第3閾値Th3を超える地点をそれぞれ検索してもよく、第3閾値Th3を超える地点をそれぞれ第3地点P3及び第4地点P4として決定してもよい。そして、第2材質検出部23は、図20に示すように、第1波形データにて第3地点P3及び第4地点P4にそれぞれ対応する第5地点P5及び第6地点P6の間の中心地点Pcの材質特徴量を第2材質特徴量として検出してもよい。これにより、第1及び第2波形データの全体像から第2材質特徴量を検出することが可能となり、バイメタル貨のインナー部の材質特徴を高精度に検出することができる。
FIG. 20 is a graph schematically showing another example of the first waveform data generated by the first waveform generator. FIG. 20 is the same as that of FIG. 10, and shows an example when a bimetal coin is detected. For example, as shown in FIG. 18, the second material detection unit 23 may detect the third point P3 and the fourth point P4 corresponding to both ends of the coin in the transport direction from the second waveform data. More specifically, the points where the distance feature amount exceeds the predetermined third threshold value Th3 may be searched in order from the start and end of the second waveform data, and the points where the distance feature amount exceeds the third threshold value Th3 may be searched for at the third point P3 and, respectively. It may be determined as the fourth point P4. Then, as shown in FIG. 20, the second material detection unit 23 is a central point between the fifth point P5 and the sixth point P6 corresponding to the third point P3 and the fourth point P4 in the first waveform data, respectively. The material feature amount of Pc may be detected as the second material feature amount. This makes it possible to detect the second material feature amount from the overall image of the first and second waveform data, and it is possible to detect the material feature of the inner portion of the bimetal coin with high accuracy.
次に、図21を用いて、本実施形態に係る硬貨識別装置の動作について説明する。図21は、第2実施形態に係る硬貨識別装置の動作の一例を説明するフローチャートである。
Next, the operation of the coin identification device according to the present embodiment will be described with reference to FIG. 21. FIG. 21 is a flowchart illustrating an example of the operation of the coin identification device according to the second embodiment.
図21に示すように、まず、第1実施形態の場合と同様に、ステップS11~S12の処理を実行する。
As shown in FIG. 21, first, the processes of steps S11 to S12 are executed as in the case of the first embodiment.
次に、第2波形生成部25が、磁気センサ10の出力から、距離特徴量を表す第2波形データを生成する(ステップS41)。
Next, the second waveform generation unit 25 generates the second waveform data representing the distance feature amount from the output of the magnetic sensor 10 (step S41).
なお、ステップS12とステップS41のタイミングは、反対であっても同時であってもよい。
The timings of step S12 and step S41 may be opposite or simultaneous.
次に、第1実施形態の場合と同様に、第1材質検出部22が、ステップS13の処理を実行する。第1材質検出部22(ステップS13)は、図13に示したフローに従って第1材質特徴量を検出してもよい。
Next, as in the case of the first embodiment, the first material detection unit 22 executes the process of step S13. The first material detection unit 22 (step S13) may detect the first material feature amount according to the flow shown in FIG.
次に、第2材質検出部23が、ステップS41で生成された第2波形データに基づき、ステップS12で生成された第1波形データから、硬貨の中心部に対応する第2材質特徴量を検出する(ステップS42)。
Next, the second material detection unit 23 detects the second material feature amount corresponding to the center of the coin from the first waveform data generated in step S12 based on the second waveform data generated in step S41. (Step S42).
なお、ステップS13とステップS42のタイミングは、反対であっても同時であってもよい。
The timings of step S13 and step S42 may be opposite or simultaneous.
その後、識別処理部24が、ステップS13で検出された第1材質特徴量と、ステップS42で検出された第2材質特徴量とに基づいて硬貨の識別処理を行い(ステップS15)、硬貨識別装置2の動作が終了する。
After that, the identification processing unit 24 performs coin identification processing based on the first material feature amount detected in step S13 and the second material feature amount detected in step S42 (step S15), and the coin identification device. The operation of 2 ends.
図22は、第2実施形態に係る第2材質検出部の動作の一例を説明するフローチャートである。第2材質検出部23(ステップS42)は、図22に示すフローに従って第2材質特徴量を検出してもよい。
FIG. 22 is a flowchart illustrating an example of the operation of the second material detection unit according to the second embodiment. The second material detection unit 23 (step S42) may detect the second material feature amount according to the flow shown in FIG.
この場合、まず、第2材質検出部23が、第2波形データにて搬送方向における硬貨の両端に対応する第3地点P3及び第4地点P4を検出する(ステップS51)。
In this case, first, the second material detection unit 23 detects the third point P3 and the fourth point P4 corresponding to both ends of the coin in the transport direction in the second waveform data (step S51).
続いて、第2材質検出部23が、第1波形データにて第3地点P3及び第4地点P4にそれぞれ対応する第5地点P5及び第6地点P6と、第5地点P5及び第6地点P6の間の中心地点Pcとを検出し、中心地点Pcの材質特徴量を第2材質特徴量として検出し(ステップS52)、第2材質特徴量を検出する処理が終了する。
Subsequently, the second material detection unit 23 uses the first waveform data to correspond to the third point P3 and the fourth point P4, respectively, at the fifth point P5 and the sixth point P6, and the fifth point P5 and the sixth point P6. The process of detecting the center point Pc between the two, detecting the material feature amount of the center point Pc as the second material feature amount (step S52), and detecting the second material feature amount is completed.
次に、本実施形態に係る硬貨識別装置2のより具体的な実施形態について説明する。
Next, a more specific embodiment of the coin identification device 2 according to the present embodiment will be described.
本実施形態においても、第1実施形態と同様に、図14に示したように、磁気センサ10は、共振型コイル11に加えて、共振回路13及び検出回路14を更に備えていてもよい。
In the present embodiment as well, as in the first embodiment, as shown in FIG. 14, the magnetic sensor 10 may further include a resonance circuit 13 and a detection circuit 14 in addition to the resonance type coil 11.
図23は、第2実施形態に係る硬貨識別装置の構成の他の例を説明するブロック図である。硬貨識別装置2は、上述の磁気センサ10、第1波形生成部21、第2波形生成部25、第1材質検出部22(1階微分処理部22a及び2階微分処理部22b)、第2材質検出部23及び識別処理部24に加えて、図23に示すように、第1実施形態と同様に、ADコンバータ30、記憶部40及び制御部(演算処理部)20を更に備えていてもよい。
FIG. 23 is a block diagram illustrating another example of the configuration of the coin identification device according to the second embodiment. The coin identification device 2 includes the above-mentioned magnetic sensor 10, a first waveform generation unit 21, a second waveform generation unit 25, a first material detection unit 22 (first-order differential processing unit 22a and second-order differential processing unit 22b), and a second. In addition to the material detection unit 23 and the identification processing unit 24, as shown in FIG. 23, even if the AD converter 30, the storage unit 40, and the control unit (arithmetic processing unit) 20 are further provided as in the first embodiment. good.
制御部20は、対応するプログラムを実行することによって、上述の第1波形生成部21、第2波形生成部25、第1材質検出部22(1階微分処理部22a及び2階微分処理部22b)、第2材質検出部23及び識別処理部24として機能し得る。
By executing the corresponding program, the control unit 20 executes the above-mentioned first waveform generation unit 21, second waveform generation unit 25, and first material detection unit 22 (first-order differential processing unit 22a and second-order differential processing unit 22b). ), The second material detection unit 23 and the identification processing unit 24 can function.
第2波形生成部25は、記憶部40に記憶されたサンプリングデータ、すなわち磁気センサ10の出力を所定の時間間隔でサンプリングした時系列に基づいて、第2波形データを生成する。
The second waveform generation unit 25 generates the second waveform data based on the sampling data stored in the storage unit 40, that is, the time series in which the output of the magnetic sensor 10 is sampled at a predetermined time interval.
次に、図24を用いて、図23に示した本実施形態に係る硬貨識別装置の動作について説明する。図24は、第2実施形態に係る硬貨識別装置の動作の他の例を説明するフローチャートである。
Next, the operation of the coin identification device according to the present embodiment shown in FIG. 23 will be described with reference to FIG. 24. FIG. 24 is a flowchart illustrating another example of the operation of the coin identification device according to the second embodiment.
まず、第1実施形態の場合と同様に、ステップS11、S31及びS32の処理を実行する。
First, the processes of steps S11, S31 and S32 are executed as in the case of the first embodiment.
次に、第2波形生成部25が、ADコンバータ30によりサンプリングされたサンプリングデータ(時系列)から、距離特徴量を表す第2波形データを生成する(ステップS61)。
Next, the second waveform generation unit 25 generates the second waveform data representing the distance feature amount from the sampling data (time series) sampled by the AD converter 30 (step S61).
なお、ステップS32とステップS61のタイミングは、反対であっても同時であってもよい。
The timings of step S32 and step S61 may be opposite or simultaneous.
その後、図21に示した場合と同様に、ステップS13、S42及びS15の処理を実行し、硬貨識別装置2の動作が終了する。
After that, the processes of steps S13, S42 and S15 are executed in the same manner as in the case shown in FIG. 21, and the operation of the coin identification device 2 is completed.
なお、第1材質検出部22(ステップS13)は、図13に示したフローに従って第1材質特徴量を検出してもよい。
The first material detection unit 22 (step S13) may detect the first material feature amount according to the flow shown in FIG.
また、第2材質検出部23(ステップS42)は、図22に示したフローに従って第2材質特徴量を検出してもよい。
Further, the second material detection unit 23 (step S42) may detect the second material feature amount according to the flow shown in FIG.
また、ステップS15では、第1実施形態の場合と同様に、識別処理部24が、第1材質特徴量及び第2材質特徴量を基準データと比較してもよいし、第1材質特徴量及び第2材質特徴量が基準データと適合する場合、当該硬貨を真正なバイメタル貨であると判定してもよい。また、識別処理部24が、第1材質特徴量及び第2材質特徴量を基準データと比較することによって、当該硬貨の金種を判定してもよい。更に、識別処理部24は、第1材質特徴量及び第2材質特徴量を互いに比較し、当該硬貨の外縁部の材質が硬貨の中心部の材質と同じであるか否かを判定してもよい。
Further, in step S15, as in the case of the first embodiment, the identification processing unit 24 may compare the first material feature amount and the second material feature amount with the reference data, and the first material feature amount and the first material feature amount and the second material feature amount may be compared with the reference data. If the second material feature quantity matches the reference data, the coin may be determined to be a genuine bimetal coin. Further, the identification processing unit 24 may determine the denomination of the coin by comparing the first material feature amount and the second material feature amount with the reference data. Further, the identification processing unit 24 may compare the first material feature amount and the second material feature amount with each other and determine whether or not the material of the outer edge portion of the coin is the same as the material of the center portion of the coin. good.
以上説明したように、上記実施形態は、共振型コイル11を含み、搬送される硬貨の磁気特性を検出する磁気センサ10と、磁気センサ10の出力から、材質特徴量を表す第1波形データを生成する第1波形生成部21と、第1波形データから、硬貨の外縁部に対応する第1材質特徴量を検出する第1材質検出部22と、第1波形データから、硬貨の中心部に対応する第2材質特徴量を検出する第2材質検出部23と、第1材質特徴量及び第2材質特徴量に基づいて硬貨の識別処理を行う識別処理部24と、を備えることから、より簡単な構成でバイメタル貨を精度良く識別することが可能である。
As described above, in the above embodiment, the magnetic sensor 10 including the resonance type coil 11 and detecting the magnetic characteristics of the conveyed coin, and the first waveform data representing the material feature amount from the output of the magnetic sensor 10 are obtained. From the first waveform generation unit 21 to be generated, the first material detection unit 22 that detects the first material feature amount corresponding to the outer edge portion of the coin from the first waveform data, and from the first waveform data to the center of the coin. Since it is provided with a second material detection unit 23 for detecting the corresponding second material feature amount and an identification processing unit 24 for performing coin identification processing based on the first material feature amount and the second material feature amount, it is more likely to be provided. It is possible to accurately identify bimetal coins with a simple configuration.
以下、各実施形態における変形例について説明する。
Hereinafter, modified examples in each embodiment will be described.
上記実施形態では、主にバイメタル貨を識別する場合について説明したが、本開示に係る装置及び方法によればモノメタル貨であっても識別可能である。当該装置及び方法では、材質の違いではなく第1波形データの波形の傾きの小さい安定領域を用いるため、硬貨の構造に関係無く硬貨の外縁部の位置を検出することが可能であり、モノメタル貨やクラッド貨等のバイカラー貨とは内部構造が異なる硬貨の外縁部の材質特徴も高精度に検出することができる。
In the above embodiment, the case of identifying a bimetal coin has been mainly described, but according to the apparatus and method according to the present disclosure, even a monometal coin can be identified. Since the device and method use a stable region where the slope of the waveform of the first waveform data is small, not the difference in material, it is possible to detect the position of the outer edge of the coin regardless of the structure of the coin, and it is possible to detect the position of the outer edge of the coin. It is possible to detect with high accuracy the material characteristics of the outer edge of coins whose internal structure is different from that of bicolor coins such as coins and clad coins.
図25は、第1波形データと、その1階微分データと、その2階微分データの一例を模式的に示すグラフである。図25は、モノメタル貨を検出した場合の例を示しており、上部にはモノメタル貨Mの側断面を当該グラフの対応する位置に図示している。図25に示すように、モノメタル貨Mであっても、第1材質検出部22(1階微分処理部22a及び2階微分処理部22b)は、図11に示した場合と同様に、第1波形データ、1階微分データ及び2階微分データに基づいて、第1地点P1及び第2地点P2を検出でき、1階微分データにおいて微分値が最も小さい地点Pxにおける材質特徴量SMxを、モノメタル貨Mの外縁部に対応する第1材質特徴量として検出することができる。
FIG. 25 is a graph schematically showing an example of the first waveform data, the first-order differential data, and the second-order differential data. FIG. 25 shows an example when a monometal coin is detected, and a side cross section of the monometal coin M is shown at a corresponding position in the graph at the upper part. As shown in FIG. 25, even in the case of the monometal coin M, the first material detection unit 22 (first-order differential processing unit 22a and second-order differential processing unit 22b) is the same as in the case shown in FIG. The first point P1 and the second point P2 can be detected based on the first-order waveform data, the first-order differential data, and the second-order differential data. It can be detected as the first material feature amount corresponding to the outer edge portion of the metal coin M.
また、図18及び図20に示した場合と同様に、第2材質検出部23は、第2波形データに基づいて、第3地点P3及び第4地点P4を検出し、第1波形データに基づいて、第5地点P5及び第6地点P6の間の中心地点Pcにおける材質特徴量を、モノメタル貨Mの中心部に対応する第2材質特徴量として検出することができる。
Further, as in the case shown in FIGS. 18 and 20, the second material detection unit 23 detects the third point P3 and the fourth point P4 based on the second waveform data, and is based on the first waveform data. Therefore, the material feature amount at the center point Pc between the fifth point P5 and the sixth point P6 can be detected as the second material feature amount corresponding to the central portion of the monometal coin M.
上記実施形態では、センサとして、共振型コイル11を備えた磁気センサ10を単独で使用する場合について説明したが、この磁気センサ10を他の周波数の材質センサ(磁気センサ)と併用してもよい。これにより、モノメタル貨、メッキによるクラッド貨、3層構造のクラッド貨、バイカラー・クラッド貨等を検出することが可能である。
In the above embodiment, the case where the magnetic sensor 10 provided with the resonance type coil 11 is used alone as the sensor has been described, but the magnetic sensor 10 may be used in combination with a material sensor (magnetic sensor) having another frequency. .. This makes it possible to detect monometal coins, plated clad coins, three-layer clad coins, bicolor clad coins, and the like.
上記実施形態では、磁気センサ10の出力を所定の時間間隔でサンプリングした時系列に基づいて、すなわち磁気センサ10の出力を時間に応じてサンプリングしたデータに基づいて、第1波形データ及び第2波形データを生成する場合について説明したが、硬貨の径を検出する径検知センサ(例えば磁気センサや光学センサ)を用いて硬貨の径を検出し、硬貨の径の変化(径検知センサの出力)に応じて磁気センサ10の出力をサンプリングしたデータに基づいて、第1波形データ及び第2波形データを生成してもよい。これにより、硬貨の搬送速度が変動した場合や、硬貨が磁気センサ10上で一時的に停止した後で再度動き出した場合であっても、一定の速度で正常に搬送された場合と同様のデータを採取することができる。この場合、磁気センサ10の出力を所定の時間間隔でサンプリングした時系列を採取しておき、径検知センサの出力に基づいて時系列の中から必要な要素のみを選択して用いてもよい。
In the above embodiment, the first waveform data and the second waveform are based on the time series in which the output of the magnetic sensor 10 is sampled at predetermined time intervals, that is, based on the data obtained by sampling the output of the magnetic sensor 10 according to time. The case of generating data has been described, but the diameter of a coin is detected using a diameter detection sensor (for example, a magnetic sensor or an optical sensor) that detects the diameter of the coin, and the change in the diameter of the coin (output of the diameter detection sensor) is used. Accordingly, the first waveform data and the second waveform data may be generated based on the data obtained by sampling the output of the magnetic sensor 10. As a result, even if the transport speed of the coin fluctuates, or if the coin temporarily stops on the magnetic sensor 10 and then starts moving again, the same data as when the coin is normally transported at a constant speed. Can be collected. In this case, a time series in which the output of the magnetic sensor 10 is sampled at a predetermined time interval may be collected, and only necessary elements may be selected and used from the time series based on the output of the diameter detection sensor.
上記実施形態では、第1波形データ、1階微分データ及び2階微分データをそれぞれ始端から順に処理する場合について説明したが、第1波形データ、1階微分データ及び2階微分データをそれぞれ終端から順に処理してもよく、この場合であっても同様の手法により硬貨の外縁部及び中心部それぞれの材質特徴量を検出することが可能である。
In the above embodiment, the case where the first waveform data, the first-order differential data, and the second-order differential data are processed in order from the start is described, but the first waveform data, the first-order differential data, and the second-order differential data are processed from the end, respectively. It may be processed in order, and even in this case, it is possible to detect the material feature amount of each of the outer edge portion and the center portion of the coin by the same method.
上記実施形態では、硬貨が非磁性体から構成される場合について説明したが、本開示に係る装置及び方法によれば硬貨が磁性体(例えば強磁性体)を含む場合であっても同様の手法により当該硬貨の外縁部及び中心部それぞれの材質特徴量を検出可能であり、当該硬貨を識別することができる。例えば、バイメタル貨の各部又は少なくとも一部が、磁性体(例えば強磁性体)から構成されてもよい。この場合であっても、例えば、上述の閾値をそのまま用いることが可能である。
In the above embodiment, the case where the coin is composed of a non-magnetic material has been described, but according to the apparatus and method according to the present disclosure, the same method can be used even when the coin contains a magnetic material (for example, a ferromagnetic material). It is possible to detect the material feature amount of each of the outer edge portion and the central portion of the coin, and the coin can be identified. For example, each part or at least a part of the bimetal coin may be composed of a magnetic material (for example, a ferromagnetic material). Even in this case, for example, the above threshold value can be used as it is.
以上、図面を参照しながら実施形態を説明したが、本開示は、上記実施形態に限定されるものではない。また、各実施形態の構成は、本開示の要旨を逸脱しない範囲において適宜組み合わされてもよいし、変更されてもよい。
Although the embodiments have been described above with reference to the drawings, the present disclosure is not limited to the above embodiments. Further, the configurations of the respective embodiments may be appropriately combined or modified as long as they do not deviate from the gist of the present disclosure.
以上のように、本開示は、より簡単な構成でバイメタル貨を精度良く識別するのに有用な技術である。
As described above, the present disclosure is a technique useful for accurately identifying bimetal coins with a simpler configuration.
As described above, the present disclosure is a technique useful for accurately identifying bimetal coins with a simpler configuration.
Claims (12)
- 共振型コイルを含み、搬送される硬貨の磁気特性を検出する磁気センサと、
前記磁気センサの出力から、硬貨の材質に応じて変化する特徴量である材質特徴量を表す第1波形データを生成する第1波形生成部と、
前記第1波形データから、硬貨の外縁部に対応する第1材質特徴量を検出する第1材質検出部と、
前記第1波形データから、硬貨の中心部に対応する第2材質特徴量を検出する第2材質検出部と、
前記第1材質特徴量及び前記第2材質特徴量に基づいて硬貨の識別処理を行う識別処理部と、
を備えることを特徴とする硬貨識別装置。 A magnetic sensor that includes a resonant coil and detects the magnetic properties of the conveyed coin,
A first waveform generator that generates first waveform data representing a material feature amount that is a feature amount that changes according to the material of the coin from the output of the magnetic sensor.
From the first waveform data, a first material detection unit that detects the first material feature amount corresponding to the outer edge portion of the coin, and a first material detection unit.
From the first waveform data, a second material detection unit that detects the second material feature amount corresponding to the center of the coin, and a second material detection unit.
An identification processing unit that performs coin identification processing based on the first material feature amount and the second material feature amount, and
A coin identification device comprising. - 前記第1材質検出部は、前記第1波形データを微分処理して1階微分データを生成する1階微分処理部と、前記1階微分データを微分処理して2階微分データを生成する2階微分処理部とを含み、前記1階微分データ及び前記2階微分データに基づいて前記第1材質特徴量を検出することを特徴とする請求項1記載の硬貨識別装置。 The first material detection unit has a first-order differential processing unit that differentially processes the first waveform data to generate first-order differential data, and a second-order differential data that differentially processes the first-order differential data to generate second-order differential data. The coin identification device according to claim 1, further comprising a third-order differential processing unit and detecting the first material feature amount based on the first-order differential data and the second-order differential data.
- 前記第1材質検出部は、前記1階微分データにおいて微分値が所定の第1閾値未満であり、かつ前記2階微分データにおいて微分値が所定の第2閾値を超える第1地点を検出することを特徴とする請求項2記載の硬貨識別装置。 The first material detection unit detects a first point in which the differential value is less than a predetermined first threshold value in the first-order differential data and the differential value exceeds a predetermined second threshold value in the second-order differential data. 2. The coin identification device according to claim 2.
- 前記第1材質検出部は、前記1階微分データにおいて微分値が前記第1閾値未満である地点が前記第1地点から第2地点まで所定数連続した場合、前記第1波形データにおける前記第1地点から前記第2地点までの複数の材質特徴量に基づいて前記第1材質特徴量を検出することを特徴とする請求項3記載の硬貨識別装置。 When a predetermined number of points whose differential value is less than the first threshold value are continuous from the first point to the second point in the first-order differential data, the first material detection unit is the first in the first waveform data. The coin identification device according to claim 3, wherein the first material feature amount is detected based on a plurality of material feature amounts from the point to the second point.
- 前記第1材質検出部は、前記1階微分データにおいて前記第1地点から前記第2地点までの前記所定数の地点のうちで微分値が最も小さい地点における前記第1波形データの材質特徴量を前記第1材質特徴量として検出することを特徴とする請求項4記載の硬貨識別装置。 The first material detection unit determines the material feature amount of the first waveform data at the point where the differential value is the smallest among the predetermined number of points from the first point to the second point in the first-order differential data. The coin identification device according to claim 4, wherein the coin identification device is detected as the first material feature amount.
- 前記磁気センサの前記出力から、硬貨の凹凸に応じて変化する特徴量である距離特徴量を表す第2波形データを生成する第2波形生成部を更に備えることを特徴とする請求項1~5のいずれかに記載の硬貨識別装置。 Claims 1 to 5 further include a second waveform generator that generates second waveform data representing a distance feature amount that is a feature amount that changes according to the unevenness of a coin from the output of the magnetic sensor. The coin identification device described in any of the above.
- 前記第2材質検出部は、前記第2波形データにて搬送方向における硬貨の両端に対応する第3地点及び第4地点を検出し、前記第1波形データにて前記第3地点及び前記第4地点にそれぞれ対応する第5地点及び第6地点の間の中心地点の材質特徴量を前記第2材質特徴量として検出することを特徴とする請求項6記載の硬貨識別装置。 The second material detection unit detects the third point and the fourth point corresponding to both ends of the coin in the transport direction in the second waveform data, and the third point and the fourth point in the first waveform data. The coin identification device according to claim 6, wherein the material feature amount of the central point between the fifth point and the sixth point corresponding to the points is detected as the second material feature amount.
- 前記識別処理部は、前記第1材質特徴量及び前記第2材質特徴量に基づいて硬貨がバイメタル貨であるか否かを判定することを特徴とする請求項1~7のいずれかに記載の硬貨識別装置。 The invention according to any one of claims 1 to 7, wherein the identification processing unit determines whether or not the coin is a bimetal coin based on the first material feature amount and the second material feature amount. Coin identification device.
- 真正なバイメタル貨の外縁部及び中心部のそれぞれの材質特徴量に係る基準データを記憶する記憶部を更に備え、
前記識別処理部は、前記第1材質特徴量及び前記第2材質特徴量を前記基準データと比較することを特徴とする請求項1~8のいずれかに記載の硬貨識別装置。 Further equipped with a storage unit for storing reference data relating to the respective material feature amounts of the outer edge portion and the central portion of the genuine bimetal coin.
The coin identification device according to any one of claims 1 to 8, wherein the identification processing unit compares the first material feature amount and the second material feature amount with the reference data. - 前記識別処理部は、前記第1材質特徴量及び前記第2材質特徴量が前記基準データと適合する場合、当該硬貨を前記真正なバイメタル貨であると判定することを特徴とする請求項9記載の硬貨識別装置。 The ninth aspect of the present invention, wherein the identification processing unit determines that the coin is a genuine bimetal coin when the first material feature amount and the second material feature amount match the reference data. Coin identification device.
- 前記識別処理部は、前記第1材質特徴量及び前記第2材質特徴量を前記基準データと比較することによって、当該硬貨の金種を判定することを特徴とする請求項9又は10記載の硬貨識別装置。 The coin according to claim 9 or 10, wherein the identification processing unit determines the denomination of the coin by comparing the first material feature amount and the second material feature amount with the reference data. Identification device.
- 磁気センサを用いた硬貨識別方法であって、
前記磁気センサは、共振型コイルを含み、
前記磁気センサによって、搬送される硬貨の磁気特性を検出するステップと、
前記磁気センサの出力から、硬貨の材質に応じて変化する特徴量である材質特徴量を表す第1波形データを生成するステップと、
前記第1波形データから、硬貨の外縁部に対応する第1材質特徴量を検出するステップと、
前記第1波形データから、硬貨の中心部に対応する第2材質特徴量を検出するステップと、
前記第1材質特徴量及び前記第2材質特徴量に基づいて硬貨の識別処理を行うステップと、
を備えることを特徴とする硬貨識別方法。
It is a coin identification method using a magnetic sensor.
The magnetic sensor includes a resonant coil.
The step of detecting the magnetic characteristics of the coins to be conveyed by the magnetic sensor,
From the output of the magnetic sensor, a step of generating first waveform data representing a material feature amount, which is a feature amount that changes depending on the material of the coin, and
From the first waveform data, a step of detecting the first material feature amount corresponding to the outer edge of the coin, and
From the first waveform data, a step of detecting the second material feature amount corresponding to the center of the coin, and
A step of identifying coins based on the first material feature amount and the second material feature amount, and
A coin identification method comprising.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-001053 | 2021-01-06 | ||
JP2021001053A JP2022106203A (en) | 2021-01-06 | 2021-01-06 | Coin identification device and coin identification method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022149495A1 true WO2022149495A1 (en) | 2022-07-14 |
Family
ID=82357904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/048229 WO2022149495A1 (en) | 2021-01-06 | 2021-12-24 | Coin identification device and coin identification method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022106203A (en) |
WO (1) | WO2022149495A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014182539A (en) * | 2013-03-19 | 2014-09-29 | Nippon Conlux Co Ltd | Coin identification device |
-
2021
- 2021-01-06 JP JP2021001053A patent/JP2022106203A/en active Pending
- 2021-12-24 WO PCT/JP2021/048229 patent/WO2022149495A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014182539A (en) * | 2013-03-19 | 2014-09-29 | Nippon Conlux Co Ltd | Coin identification device |
Also Published As
Publication number | Publication date |
---|---|
JP2022106203A (en) | 2022-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6471030B1 (en) | Coin sensing apparatus and method | |
US6047808A (en) | Coin sensing apparatus and method | |
JP5468401B2 (en) | Coin sensor, effective value calculation method, and coin identification device | |
EP3605479B1 (en) | Magnetism detection apparatus, coin identification apparatus, and magnetism detection method of magnetism detection apparatus | |
WO2022149495A1 (en) | Coin identification device and coin identification method | |
JP5336900B2 (en) | Coin identification device and coin identification method | |
JPWO2003019105A1 (en) | Metal body identification device and metal body identification method | |
EP3059711A1 (en) | Coin identification device | |
JP6952681B2 (en) | Magnetic detector, coin detector and magnetic detector | |
JP4584194B2 (en) | Discoid metal identification device | |
US9865115B2 (en) | Coin processing device | |
JP5359716B2 (en) | Coin identification device | |
JP2888657B2 (en) | Coin hole presence / absence determination device and coin hole presence / absence determination method | |
JP5623827B2 (en) | Coin identification device | |
JP6834419B2 (en) | Coin identification device | |
JP5924737B2 (en) | Coin identification device | |
JP2011180958A (en) | Detection unit for coin identification device | |
JP5458614B2 (en) | Coin identification device | |
JP2985402B2 (en) | Coin identification device | |
JP2012128500A (en) | Method and device for measuring magnetic print | |
JP3610261B2 (en) | Coin identification device | |
JP5245309B2 (en) | Coin identification device | |
JP2010218156A (en) | Coin identification device | |
JP2007048250A (en) | Bimetal coin and coin selector for the bimetal coin | |
JP2001338321A (en) | Coin identifying device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21917715 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21917715 Country of ref document: EP Kind code of ref document: A1 |