JP5336900B2 - Coin identification device and coin identification method - Google Patents

Coin identification device and coin identification method Download PDF

Info

Publication number
JP5336900B2
JP5336900B2 JP2009081129A JP2009081129A JP5336900B2 JP 5336900 B2 JP5336900 B2 JP 5336900B2 JP 2009081129 A JP2009081129 A JP 2009081129A JP 2009081129 A JP2009081129 A JP 2009081129A JP 5336900 B2 JP5336900 B2 JP 5336900B2
Authority
JP
Japan
Prior art keywords
coin
sensor
coins
diameter
mutual induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009081129A
Other languages
Japanese (ja)
Other versions
JP2010231705A (en
Inventor
直樹 富垣
裕文 鎌谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Glory Ltd
Original Assignee
Glory Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glory Ltd filed Critical Glory Ltd
Priority to JP2009081129A priority Critical patent/JP5336900B2/en
Publication of JP2010231705A publication Critical patent/JP2010231705A/en
Application granted granted Critical
Publication of JP5336900B2 publication Critical patent/JP5336900B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Coins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coin discriminating device for correctly discriminating denominations of coins even between the denominations in which the coins are almost equal in diameter and thickness but the coins are made of different materials without being affected by deformation or dust attachment due to secular usage of the coins. <P>SOLUTION: Two types of material sensors being a mutual induction type diameter material sensor 5 and a resonance type material sensor 7 are arranged along a conveyance path 3 of a coin 1. A detection system of the mutual induction type is different from that of the resonance type, so that combinations of both signals indicating the material of respective coins disperse in a two-dimensional manner. Then, even when the respective coins are deformed, abraded, or the like, it is relatively easy to set a threshold for material determination, the materials of respective coins are correctly discriminated, and the denominations can be correctly discriminated. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、硬貨の径、材質及び材厚を磁気センサで検出して硬貨の金種、真偽等を識別する硬貨識別装置に関し、特に、径と材厚とがほぼ等しい硬貨であっても材質を材質センサで精度良く検出して、硬貨識別機能の向上を図った硬貨識別装置に関する。   The present invention relates to a coin discriminating apparatus that detects the diameter, material, and thickness of a coin with a magnetic sensor and discriminates the denomination, authenticity, etc. of the coin. The present invention relates to a coin discriminating apparatus in which a material is accurately detected by a material sensor to improve a coin discriminating function.

従来、硬貨の径、材質及び材厚を磁気センサで検出する硬貨識別装置として、特許文献1に記載されたものがある。このものは、硬貨が搬送ベルトにより搬送される搬送通路に、上流から順に、径センサ、共振型の第1の材質/材厚センサ、第2の材質/材厚センサを配置すると共に、第1の材質/材厚センサはどの硬貨が通過する場合にも検出する位置に、共振型の第2の材質/材厚センサについては径の大きい硬貨が通過する場合に限り検出する位置に配置する構成として、硬貨の径を径センサで検出すると共に、硬貨の材質、材厚をその検出対象の硬貨の大小に拘わらず、2個の材質/材厚センサで良好に検出するようにしている。   Conventionally, as a coin discriminating device that detects the diameter, material, and thickness of a coin with a magnetic sensor, there is one described in Patent Document 1. In this case, a diameter sensor, a resonance type first material / material thickness sensor, and a second material / material thickness sensor are arranged in order from the upstream in a conveyance path through which coins are conveyed by a conveyance belt. The material / material thickness sensor is arranged at a position to detect when any coin passes, and the resonance type second material / material thickness sensor is arranged at a position to detect only when a coin having a large diameter passes. As described above, the diameter of the coin is detected by a diameter sensor, and the material and thickness of the coin are well detected by two material / material thickness sensors regardless of the size of the coin to be detected.

しかしながら、前記従来の硬貨識別装置では、硬貨の材質の検出については、2個の材質/材厚センサで検出するものの、この両センサは何れも共振方式で検出する共振型であった。この共振型センサは、コイルのLとコンデンサのCとで共振を起こさせ、その共振電流により発生させた磁場を硬貨が通過すると、共振周波数が変化し、交番電流が流れ難くなって、コイルの両端電圧が低下することを利用して、この電圧の変化を検出する方式であって、硬貨の材質の導電率が低いほど、硬貨の厚みが厚いほどセンサの出力変化量が大きい特性を有する。従って、共振型センサを用いれば、その出力変化量により硬貨の材質を識別できる。しかし、この共振型センサでは、硬貨の金種を識別するための閾値の設定について、特に硬貨の径及び厚さはほぼ等しくて材質のみが異なる金種間でも正確に識別できるように設定した場合であっても、それら硬貨の経年使用による変形や埃の付着などがあると、その両金種を常に高精度で正確に識別することができなくなる欠点がある。   However, in the conventional coin discriminating apparatus, although the material of the coin is detected by two material / material thickness sensors, both of these sensors are of a resonance type that detects by a resonance method. In this resonance type sensor, resonance occurs between the coil L and the capacitor C, and when the coin passes through the magnetic field generated by the resonance current, the resonance frequency changes and the alternating current hardly flows. This is a method for detecting the change in voltage by utilizing the decrease in voltage at both ends, and has a characteristic that the output change amount of the sensor is larger as the conductivity of the material of the coin is lower and the thickness of the coin is thicker. Therefore, if the resonance type sensor is used, the material of the coin can be identified by the output change amount. However, in this resonance type sensor, when setting the threshold value for identifying the denomination of coins, particularly when the diameter and thickness of the coins are almost the same, and even when the denominations are different, only the material is different, Even so, if there are deformations due to aging of these coins or adhesion of dust, both denominations cannot always be accurately identified with high accuracy.

また、他の硬貨識別装置の構成として、特許文献2に記載されたものがある。このものには、バイカラー硬貨の識別に関する構成が記載される。バイカラー硬貨とは、硬貨の中心に位置するコア部の金属と周辺に位置するリング部の金属とが異なる構造を持つ硬貨である。このバイカラー硬貨の識別に関し、前記特許文献2では、硬貨の搬送通路の摺動面側に反射型センサを配置し、その一次コイルに例えば250kHzの高周波の励磁信号を供給し、2次コイルからの検出信号のうちエッジ部の信号波形に変曲点がある場合、即ち、バイカラー硬貨のコア部とリング部との接合部での電気的な断続を表面電流の増減信号として捉えることができる場合に、バイカラー硬貨であると判定する構成を採用している。   Moreover, there exists what was described in patent document 2 as a structure of another coin identification apparatus. This includes a configuration relating to the identification of bicolor coins. The bicolor coin is a coin having a structure in which the metal of the core portion located in the center of the coin and the metal of the ring portion located in the periphery are different. Regarding the identification of this bicolor coin, in Patent Document 2, a reflective sensor is disposed on the sliding surface side of the coin conveyance path, and a high-frequency excitation signal of, for example, 250 kHz is supplied to the primary coil, from the secondary coil. When there is an inflection point in the signal waveform of the edge portion of the detection signal, that is, the electrical continuity at the junction between the core portion and the ring portion of the bicolor coin can be regarded as an increase / decrease signal of the surface current. In some cases, a configuration for determining that the coin is a bicolor coin is adopted.

しかしながら、搬送通路を搬送されている硬貨の搬送速度は、常に均一速度ではなく、実際上は、一時滞留して遅くなることもある。このため、特許文献2の記載技術では、反射型センサのエッジ部の信号波形での変曲点を検出するものの、バイカラー硬貨の接合部が反射センサの検出部に到達した時にちょうど速度が一時低下した場合などでは、そのエッジ部の信号波形での変曲点を高精度に検出することが困難な場合も生じる。
特許第3718619号明細書 特許第3908473号明細書
However, the transfer speed of the coins being transferred through the transfer path is not always a uniform speed, and in practice, the transfer speed may be temporarily reduced. For this reason, in the technique described in Patent Document 2, an inflection point is detected in the signal waveform of the edge portion of the reflective sensor, but when the joint portion of the bicolor coin reaches the detection portion of the reflective sensor, the speed is just temporary. In the case of a decrease, it may be difficult to detect the inflection point in the signal waveform at the edge portion with high accuracy.
Japanese Patent No. 3718619 Japanese Patent No. 3908473

以上のように、従来の硬貨識別装置では、共振型の材質センサを用いた硬貨の材質判定について、硬貨の径及び厚さがほぼ等しく材質のみが異なる類似金種間でも正確に識別できるように閾値設定した場合であっても、それ等硬貨の経年劣化や変形などに起因して、類似金種間での金種識別が正確に行い得なくなる欠点があった。   As described above, the conventional coin discriminating apparatus can accurately discriminate even between similar denominations of coins having substantially the same diameter and thickness and different materials only in the coin material judgment using the resonance type material sensor. Even when the threshold value is set, there is a drawback that it is impossible to accurately identify denominations between similar denominations due to aging or deformation of such coins.

また、バイカラー硬貨の判定については、搬送通路での硬貨の実際の搬送速度のばらつきに起因する場合などでは、高精度な識別が困難な場合があるという欠点があった。   In addition, the determination of bicolor coins has a drawback in that it may be difficult to identify with high accuracy, for example, due to variations in actual conveyance speed of coins in the conveyance path.

本発明の目的は、材質のみが異なる類似金種間でも、それ等の材質の相違を確実に区別して、常に正確に金種識別し得るようにすることにある。   An object of the present invention is to make it possible to accurately distinguish between denominations of different materials with certainty by always distinguishing the differences in the materials.

また、本発明では、前記の目的に加えて、センサに含まれる硬貨搬送速度のばらつきに起因する変動を排除したり、バイカラー硬貨のリング部での出力信号の値を正確に捉えて、バイカラー硬貨を確実に識別することにある。   In addition to the above object, the present invention eliminates fluctuations caused by variations in the coin conveyance speed included in the sensor, or accurately captures the value of the output signal at the ring portion of the bicolor coin, The goal is to identify color coins reliably.

前記の目的を達成するため、本発明では、共振型の材質センサと相互誘導型の材質センサとの2種を組合せて、硬貨の材質を高精度に検出する。ここで、相互誘導型の材質センサは、1次コイルを励磁し、2次コイルで一次コイルが発生した磁束を受け、その両コイル間に硬貨が進入すると、渦電流が発生して、2次コイルが受ける磁束が減少するため、この磁束の変化を電圧変化として検出する方式であって、硬貨の材質の導電率が高いほど、硬貨の厚みが厚いほどセンサの出力変化量が大きい特性を有する。つまり、前記共振型センサでは導電率が低いほどセンサの出力変化量が大きいのに対し、この相互誘導型の材質センサでは、逆に、導電率が高いほど出力変化量が大きい特性を有する点に着目し、この二種の材質センサの出力信号を2次元で組み合せると、各金種の硬貨の材質が2次元的に分散するため、材質判定用の閾値を比較的設定し易いことを利用する。   In order to achieve the above object, in the present invention, a material of a coin is detected with high accuracy by combining two types of a resonance type material sensor and a mutual induction type material sensor. Here, the mutual induction type material sensor excites the primary coil, receives the magnetic flux generated by the primary coil in the secondary coil, and when a coin enters between the two coils, an eddy current is generated and the secondary coil is generated. Since the magnetic flux received by the coil is reduced, this change in the magnetic flux is detected as a voltage change. The higher the conductivity of the coin material, the thicker the coin, the greater the output change of the sensor. . That is, the resonance sensor has a characteristic that the lower the conductivity is, the larger the output change amount of the sensor is. On the contrary, this mutual induction type material sensor has a characteristic that the higher the conductivity is, the larger the output change amount is. Pay attention and use the fact that when the output signals of these two types of material sensors are combined in two dimensions, the coin material of each denomination is distributed two-dimensionally, so the threshold for determining the material is relatively easy to set. To do.

また、前記の目的に加えて、センサ出力信号に含まれる2つの特徴量を捉え、これ等の特徴量には各々硬貨の搬送速度のばらつきに起因する変動が存在するが、その2つの特徴量の比率を算出して、硬貨搬送速度のばらつきを排除したり、バイカラー硬貨のリング部での出力信号の値が極く小さい場合には、他のセンサのリング部での出力信号を参考に正確に把握して、バイカラー硬貨を識別する。   Further, in addition to the above-mentioned purpose, two feature amounts included in the sensor output signal are captured, and these feature amounts each include fluctuations caused by variations in the coin conveyance speed. If the ratio of the coin transport speed is eliminated or the output signal value at the ring part of the bicolor coin is extremely small, refer to the output signal at the ring part of another sensor. Know exactly and identify bicolor coins.

具体的に、請求項1記載の発明の硬貨識別装置は、硬貨を片寄せた状態で1枚ずつ間隔を空けて搬送する搬送通路と、前記搬送通路の硬貨摺動面に面して配置された反射型磁気センサと、前記搬送通路の一端部を挟持するように配設された第1の透過型センサ及びこの第1の透過型センサと前記搬送通路を隔てて対向する位置で前記搬送通路の他端部を挟持するように配設された第2の透過型センサから成り、前記硬貨の材質を相互誘導方式で検出する相互誘導型の材質センサと、前記相互誘導型の材質センサよりも前記搬送通路の下流側の位置において、共振方式で硬貨の厚みを検出する共振型の材厚センサと、前記相互誘導型の材質センサよりも前記搬送通路の下流側の位置において、前記相互誘導型の材質センサとは別途に、硬貨の材質を共振方式で検出する共振型の材質センサとを備えたことを特徴とする。   Specifically, the coin identifying device according to the first aspect of the present invention is arranged to face the coin sliding surface of the transport passage and the transport passage for transporting the coins one by one with the coins being separated. The reflection type magnetic sensor, the first transmission type sensor disposed so as to sandwich one end of the conveyance path, and the conveyance path at a position facing the first transmission type sensor across the conveyance path. A mutual transmission type material sensor that detects the material of the coin by a mutual induction method, and a mutual induction type material sensor. A resonance-type material thickness sensor that detects the thickness of a coin by a resonance method at a position downstream of the conveyance path, and the mutual induction type at a position downstream of the conveyance path from the mutual induction type material sensor. Separately from the material sensor of the coin material Characterized in that a and a material sensor resonant detecting in a resonant manner.

請求項2記載の発明は、前記請求項1記載の硬貨識別装置において、前記第1の透過型センサ、前記反射型磁気センサ及び前記第2の透過型センサが前記搬送通路に直行する方向で直線状に配列され、これ等の3つのセンサの共用励磁コイルが前記第1の透過型センサと前記第2の透過型センサとのコア間で巻回されると共に、前記相互誘導型の材質センサは、前記硬貨の径を相互誘導方式で検出する相互誘導型の径センサを兼用し、前記相互誘導型の材質センサの励磁コイルには複数種類の周波数の励磁信号が印加されて、前記相互誘導型の材質センサと相互誘導型の径センサとの両動作をすることを特徴とする。   According to a second aspect of the present invention, in the coin identifying device according to the first aspect, the first transmission type sensor, the reflection type magnetic sensor, and the second transmission type sensor are linear in a direction perpendicular to the conveyance path. A common excitation coil for these three sensors is wound between the cores of the first transmission type sensor and the second transmission type sensor, and the mutual induction type material sensor is The mutual induction type diameter sensor that detects the diameter of the coin by a mutual induction method is also used, and excitation signals of a plurality of types of frequencies are applied to the excitation coil of the mutual induction type material sensor, and the mutual induction type Both the material sensor and the mutual induction type diameter sensor are operated.

請求項3記載の発明は、前記請求項1記載の硬貨識別装置において、前記搬送通路の所定位置には、前記搬送通路の硬貨片寄せ側に前記共振型の材厚センサが配置され、前記搬送通路の所定位置において硬貨搬送方向と直交する方向で前記搬送通路の硬貨片寄せ側とは反対側に前記共振型の材質センサが配置されることを特徴とする。   According to a third aspect of the present invention, in the coin identification device according to the first aspect, the resonance-type material thickness sensor is disposed at a predetermined position of the conveyance path on the coin pallet side of the conveyance path, and the conveyance The resonance-type material sensor is arranged on the opposite side of the conveyance passage in the direction orthogonal to the coin conveyance direction at a predetermined position of the passage, on the opposite side of the coin separation side.

請求項4記載の発明は、前記請求項2記載の硬貨識別装置を用いた硬貨識別方法であって、前記相互誘導型の材質センサ及び径センサ並びに前記反射型磁気センサを用いて、搬送通路を搬送されてきた硬貨の材質を検出して、その硬貨の金種を仮決定し、その後、前記共振型の材質センサ及び前記共振型の材厚センサの出力信号に基づいて、前記仮決定した硬貨が真貨であることを確認して、前記仮決定した硬貨の金種を確定することを特徴とする。   Invention of Claim 4 is a coin identification method using the coin identification device of the said Claim 2, Comprising: A conveyance path | route is used using the said mutual induction type | mold material sensor and diameter sensor, and the said reflection type magnetic sensor. The material of the coin that has been conveyed is detected, the denomination of the coin is tentatively determined, and then the tentatively determined coin is based on the output signals of the resonance-type material sensor and the resonance-type material thickness sensor. Is determined to be a true coin, and the denomination of the tentatively determined coin is determined.

請求項5記載の発明は、前記請求項1又は2記載の硬貨識別装置において、前記反射型磁気センサは、そのコアの直径が、搬送通路を搬送されてきたバイカラー硬貨のコア部の直径よりも小さく形成されていることを特徴とする。   According to a fifth aspect of the present invention, in the coin identification device according to the first or second aspect, the reflective magnetic sensor has a core diameter that is greater than the diameter of the core portion of the bicolor coin that has been transported through the transport path. Is also formed small.

請求項6記載の発明は、前記請求項1、2及び5の何れか1項に記載の硬貨識別装置を用いた硬貨識別方法であって、硬貨を搬送する搬送通路の下面に反射型の形状センサ及び反射型の材質センサを配置し、前記搬送通路を搬送されてきた硬貨に対する前記反射型の形状センサの出力波形と前記反射型の材質センサの出力波形とに基づいて、前記形状センサの出力波形の立上り部と立下り部とでの第1の所定同一値間の距離と前記材質センサの出力波形の立上り部と立下り部とでの第2の所定同一値間の距離との比率を算出し、前記算出した比率を特徴量として、この特徴量を所定閾値と比較して、前記搬送通路を搬送されてきた硬貨がバイカラー硬貨かどうかを識別することを特徴とする。   Invention of Claim 6 is a coin identification method using the coin identification device of any one of the said Claim 1, 2, and 5, Comprising: A reflection type shape is provided in the lower surface of the conveyance path which conveys a coin. An output of the shape sensor is arranged based on an output waveform of the reflection type sensor and an output waveform of the reflection type material sensor with respect to the coin that has been transferred through the transfer path. The ratio between the distance between the first predetermined identical values at the rising and falling parts of the waveform and the distance between the second predetermined identical values at the rising and falling parts of the output waveform of the material sensor. The calculated ratio is used as a feature amount, and the feature amount is compared with a predetermined threshold value to identify whether or not the coin transported through the transport path is a bicolor coin.

請求項7記載の発明は、前記請求項2又は5記載の硬貨識別装置を用いた硬貨識別方法であって、硬貨を搬送する搬送通路の一端部を挟持するように相互誘導型の径センサの第3の透過型センサを配置し、且つ前記搬送通路の他端部を挟持するように前記相互誘導型の径センサの第4の透過型センサを配置すると共に、搬送通路の下面に反射型の材質センサを配置し、前記搬送通路を搬送されてきた硬貨に対する前記相互誘導型の径センサの出力波形と前記反射型の材質センサの出力波形とに基づいて、前記反射型の材質センサのピーク値をバイメタル硬貨のコア部の材質、相互誘導型の径センサの出力波形のピーク値の所定パーセント値での前記反射型の材質センサの出力信号値を前記バイメタル硬貨のリング部の材質として、前記バイメタル硬貨を識別することを特徴とする。   The invention according to claim 7 is a coin identifying method using the coin identifying apparatus according to claim 2 or 5, wherein the mutual induction type diameter sensor is arranged so as to sandwich one end portion of the conveyance path for conveying coins. A third transmissive sensor is disposed, and a fourth transmissive sensor of the mutual induction type diameter sensor is disposed so as to sandwich the other end of the transport passage, and a reflective type is disposed on the lower surface of the transport passage. Based on the output waveform of the mutual induction type diameter sensor and the output waveform of the reflection type material sensor with respect to the coin that has been arranged in the conveyance path, the peak value of the reflection type material sensor is arranged. The bimetal coin core material, the output signal value of the reflective material sensor at a predetermined percentage of the peak value of the output waveform of the mutual induction type diameter sensor as the ring metal material of the bimetal coin, And wherein the identifying Le coin.

請求項8記載の発明は、前記請求項1、2及び5の何れか1項に記載の硬貨識別装置を用いた硬貨識別方法であって、硬貨を搬送する搬送通路に共振型の材質センサを配置し、前記搬送通路を搬送されてきた硬貨に対する前記共振型の材質センサの出力波形に基づいて、前記共振型の材質センサの出力波形の頂部での2つのピーク値間の距離と、前記出力波形の立上り部と立下り部とでの所定同一値間の距離との比率を算出し、前記算出した比率を特徴量として、この特徴量を所定閾値と比較して、前記搬送通路を搬送されてきた硬貨がバイカラー硬貨かどうかを識別することを特徴とする。   The invention according to claim 8 is a coin identifying method using the coin identifying device according to any one of claims 1, 2, and 5, wherein a resonance type material sensor is provided in a transport path for transporting coins. The distance between two peak values at the top of the output waveform of the resonance-type material sensor based on the output waveform of the resonance-type material sensor with respect to the coins that are disposed and transferred through the transfer path, and the output The ratio of the distance between the same predetermined values at the rising part and the falling part of the waveform is calculated, and the calculated ratio is used as a feature value, and the feature value is compared with a predetermined threshold value. It is characterized by discriminating whether the received coin is a bicolor coin or not.

以上により、請求項1〜8記載の発明では、相互誘導型の材質センサと共振型の材質センサとの出力信号を2次元で組み合せるので、硬貨の径及び厚さがほぼ等しい類似金種間でも、それ等硬貨の材質を示す両信号の組合せが2次元的に分散するので、それ等硬貨の経年劣化や変形などが生じた場合であっても、材質判定用の閾値が比較的設定し易くなって、それ等の材質が正確に識別されることになる。   As described above, according to the first to eighth aspects of the present invention, since the output signals of the mutual induction type material sensor and the resonance type material sensor are combined in two dimensions, the diameters and thicknesses of the coins are substantially equal. However, since the combination of both signals indicating the material of such coins is two-dimensionally distributed, even if such coins deteriorate over time or are deformed, the threshold for determining the material is relatively set. It will be easier to identify these materials accurately.

特に、請求項6及び8記載の発明では、バイメタル硬貨の識別に際し、センサの出力信号から特徴を示す2つの演算値を求め、この2つの演算値から1つの特徴量を求めるので、2つの演算値が各々硬貨搬送速度のばらつきの影響を受けていても、得られた特徴量はその硬貨搬送速度のばらつきが打ち消され、吸収されているので、硬貨搬送速度にばらつきがあっても、バイメタル硬貨を正確に識別することが可能である。   In particular, in the inventions according to claims 6 and 8, when bimetal coins are identified, two calculation values indicating characteristics are obtained from the output signal of the sensor, and one feature value is obtained from these two calculation values. Even if each value is affected by fluctuations in the coin transfer speed, the obtained feature value is absorbed and canceled by the fluctuations in the coin transfer speed. Can be accurately identified.

更に、請求項7記載の発明では、反射型の材質センサのバイメタル硬貨のコア部での信号値は大きいが、リング部での出力信号値は小さく、どの値をもってリング部での信号値とするかが不明であるところ、このリング部での相互誘導型の径センサの信号値は大きいので、この相互誘導型の径センサの出力信号に基づいて反射型の材質センサのリング部での信号値を正確に特定できる。従って、反射型の材質センサのバイメタル硬貨のコア部とリング部との信号値を正確に特定して、バイメタル硬貨を良好に識別することができる。   Furthermore, in the invention of claim 7, the signal value at the core part of the bimetallic coin of the reflective material sensor is large, but the output signal value at the ring part is small, and what value is used as the signal value at the ring part. However, since the signal value of the mutual induction type diameter sensor at this ring part is large, the signal value at the ring part of the reflective type material sensor is based on the output signal of this mutual induction type diameter sensor. Can be accurately identified. Accordingly, it is possible to accurately identify the signal values of the core part and the ring part of the bimetal coin of the reflective material sensor, and to identify the bimetal coin well.

以上説明したように、請求項1〜8記載の発明によれば、硬貨の径及び厚さがほぼ等しい類似金種間において、それ等硬貨の経年劣化や変形などが生じた場合であっても、それ等の材質を正確に区別して識別することが可能である。   As described above, according to the inventions described in claims 1 to 8, even if the coins are deteriorated over time or deformed between similar denominations having substantially the same diameter and thickness. It is possible to accurately distinguish and identify these materials.

特に、請求項6〜8記載の発明によれば、硬貨の搬送速度にばらつきがあったり、センサのバイメタル硬貨のリング部での信号値が小さい場合であっても、それ等に影響されずに、バイメタル硬貨を正確に識別することが可能である。   In particular, according to the inventions described in claims 6 to 8, even when there is a variation in the coin conveyance speed or the signal value at the ring portion of the bimetal coin of the sensor is small, it is not affected by them. It is possible to accurately identify bimetal coins.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の実施形態に係る硬貨識別装置である硬貨識別モジュールの全体構成を示す。同図において、硬貨識別モジュールには、同図中左方向から硬貨1が1枚ずつ間隔を空けて搬送ベルト2によって搬送通路3を搬送されて来る。搬送通路3では硬貨は図1中下側の規制面に片寄せられた状態で搬送される。硬貨識別モジュールの前端部には、前記搬送通路3の硬貨1の直径及び材質を磁気的に検知する相互誘導型の直径材質センサ5が配置されている。この直径材質センサ5の間には、搬送通路3の硬貨摺動面に面して下部に配置されるポッド型の反射型磁気センサ6が内蔵されている。   FIG. 1 shows an overall configuration of a coin identifying module which is a coin identifying apparatus according to an embodiment of the present invention. In the figure, coins 1 are conveyed through the conveyance path 3 by the conveyance belt 2 at intervals from the left in the figure to the coin identification module. In the conveyance path 3, the coins are conveyed in a state of being shifted to the lower regulating surface in FIG. 1. A mutual induction type diameter material sensor 5 that magnetically detects the diameter and material of the coin 1 of the transport passage 3 is disposed at the front end of the coin identification module. Between the diameter material sensors 5, a pod-type reflection type magnetic sensor 6 disposed in the lower part facing the coin sliding surface of the transport passage 3 is incorporated.

また、前記相互誘導型の直径材質センサ5の硬貨搬送方向後方には、硬貨の材質を磁気的に検知する共振型の材質センサ7と、硬貨の材厚を磁気的に検知する共振型の材厚センサ8とが配置される。前記材厚センサ8は、搬送通路3の所定位置において前記硬貨片寄せ側(規制面側)に配置される。一方、材質センサ7は、前記材厚センサ8の配置された硬貨片寄せ側とは反対の方向で硬貨搬送方向と直交する方向に配置されるが、材質センサ7と材厚センサ8との硬貨搬送方向での配置位置は同一位置に設定される。つまり、材質センサ7と材厚センサ8とは、硬貨の各部位を同一タイミングで計測することになるため、その2つの出力信号波形の同一タイミングでの特徴量は硬貨の同一部位での特徴量を表している。   Further, on the rear side of the mutual induction type diameter material sensor 5 in the coin conveyance direction, a resonance type material sensor 7 that magnetically detects the material of the coin, and a resonance type material that magnetically detects the thickness of the coin. A thickness sensor 8 is arranged. The material thickness sensor 8 is disposed on the coin piece side (regulating surface side) at a predetermined position of the transport passage 3. On the other hand, the material sensor 7 is arranged in a direction opposite to the coin piece-shifting side on which the material thickness sensor 8 is arranged and in a direction orthogonal to the coin transport direction, but the coin of the material sensor 7 and the material thickness sensor 8 is arranged. The arrangement position in the transport direction is set to the same position. That is, since the material sensor 7 and the material thickness sensor 8 measure each part of the coin at the same timing, the feature quantity at the same timing of the two output signal waveforms is the feature quantity at the same part of the coin. Represents.

尚、図示しないが、硬貨識別モジュールの入り口手前側には、穴検知センサを兼用した異常接近検知センサ(透過型の光学センサ)が配置されており、搬送通路3を搬送されて来た硬貨を光学的に検知するようになっている。   Although not shown, an abnormal approach detection sensor (transmission type optical sensor) that also serves as a hole detection sensor is arranged on the front side of the entrance of the coin identification module, and the coins that have been transported through the transport path 3 are arranged. It is designed to detect optically.

次に、前記反射型センサ6内蔵の直径材質センサ5の詳細な全体構造を図2に示す。同図の相互誘導型の直径材質センサ5は、断面コの字状の形状をし、中央部の空間底部に硬貨の搬送通路3が形成され、この搬送通路3の外面には外部磁気遮断用のシールド板4が配置されている。前記搬送通路3の一端部及び他端部(図中左端部及び右端部)には、搬送通路3の端部を挟持するように2つの直方体形状の透過型センサ51、52(以下、図中左方の透過型センサを透過Lセンサ51、図中右方の透過型センサを透過Rセンサ52という)が配設されていると共に、搬送通路3の中央部には、この中央部下方に円筒形状の渦電流損失型の反射型センサ6が配設、内蔵されている。前記透過Lセンサ51と透過Rセンサ52と反射型センサ6とは、搬送通路3の図2左右両端部の下方に各々配置したコア53、59間に巻回された励磁コイル54を共有する。透過Lセンサ51は、搬送通路3の図2左端部上方に配置したサイドコア58に巻回された2次コイル55を有し、透過Rセンサ52は搬送通路3の図2右端部上方に配置したサイドコア57に巻回された2次コイル56を有する。また、反射型センサ6は、搬送通路3の中央部下方に配置された円筒型のポットコア61を有し、ポットコア61の内周面には2次コイル62が巻回、埋設されている。   Next, the detailed overall structure of the diameter material sensor 5 built in the reflective sensor 6 is shown in FIG. The mutual induction type diameter material sensor 5 shown in the figure has a U-shaped cross section, and a coin conveyance passage 3 is formed at the bottom of the central space. The shield plate 4 is arranged. At one end and the other end (left end and right end in the figure) of the transport passage 3, two rectangular parallelepiped transmission sensors 51 and 52 (hereinafter referred to in the figure) so as to sandwich the end of the transport passage 3. The left transmissive sensor is referred to as a transmissive L sensor 51, and the right transmissive sensor in the drawing is referred to as a transmissive R sensor 52). An eddy current loss type reflective sensor 6 having a shape is disposed and incorporated. The transmission L sensor 51, the transmission R sensor 52, and the reflection type sensor 6 share the exciting coil 54 wound between the cores 53 and 59 respectively disposed below the left and right ends of FIG. The transmission L sensor 51 has a secondary coil 55 wound around a side core 58 disposed above the left end of the conveyance path 3 in FIG. 2, and the transmission R sensor 52 is disposed above the right end of FIG. The secondary coil 56 is wound around the side core 57. The reflective sensor 6 has a cylindrical pot core 61 disposed below the central portion of the transport passage 3, and a secondary coil 62 is wound and embedded on the inner peripheral surface of the pot core 61.

前記相互誘導型の直径材質センサ5の透過Lセンサ51及び透過Rセンサ52並びに反射型センサ6の共有励磁コイル54には、高周波(例えば250KHz)と低周波(例えば8KHz)の合成励磁信号が供給される。この合成励磁信号の供給により磁束が発生し、前記透過Lセンサ51、透過Rセンサ52、反射型センサ6の各2次コイル55、56、62と交番する。この磁束中に硬貨が進入すると、高周波(250KHz)の励磁信号成分に基づく磁界や電界が、その硬貨の浅い位置、すなわち、硬貨の表面部分で大きく減衰するため、透過Lセンサ51、透過Rセンサ52の2次コイル55、56の出力信号の高周波(250KHz)成分が硬貨の形状、特に硬貨の径の情報を含んだ信号となる。一方、低周波(8KHz)の励磁信号成分に基づく磁界や電界は硬貨の内部位置まで進入して初めて大きく減衰するため、透過Lセンサ51及び透過Rセンサ52の2次コイル55、56の出力信号の低周波(8KHz)成分は、硬貨の材質の情報を含んだ信号となる。同様に、反射型センサ6の2次コイル62の出力信号の低周波(8KHz)出力は、硬貨の材質の情報や、硬貨断面材質、磁性/非磁性情報を含んだ信号となる。   The transmission L sensor 51 and transmission R sensor 52 of the mutual induction type diameter material sensor 5 and the shared excitation coil 54 of the reflection type sensor 6 are supplied with a combined excitation signal of high frequency (for example, 250 KHz) and low frequency (for example, 8 KHz). Is done. Magnetic flux is generated by the supply of the composite excitation signal, which alternates with the secondary coils 55, 56, and 62 of the transmission L sensor 51, transmission R sensor 52, and reflection type sensor 6. When a coin enters the magnetic flux, a magnetic field and an electric field based on an excitation signal component of high frequency (250 KHz) are greatly attenuated at a shallow position of the coin, that is, a surface portion of the coin. The high frequency (250 KHz) component of the output signals of the 52 secondary coils 55 and 56 is a signal including information on the shape of the coin, particularly the diameter of the coin. On the other hand, since the magnetic field and electric field based on the excitation signal component of low frequency (8 KHz) are attenuated greatly only after entering the internal position of the coin, the output signals of the secondary coils 55 and 56 of the transmission L sensor 51 and the transmission R sensor 52 The low frequency (8 KHz) component of the signal is a signal including information on the material of the coin. Similarly, the low frequency (8 KHz) output of the output signal of the secondary coil 62 of the reflective sensor 6 becomes a signal including information on the material of the coin, cross-sectional material of the coin, and magnetic / nonmagnetic information.

このように、共有励磁コイル54に高周波(250KHz)と低周波(8KHz)との合成励磁信号を供給して、相互誘導型の直径材質センサ5の透過Lセンサ51及び透過Rセンサ52を、相互誘導型材質センサの第1及び第2の2個の透過型センサと、相互誘導型直径センサの2個の透過型センサとして共用している。   In this way, the composite excitation signal of the high frequency (250 KHz) and the low frequency (8 KHz) is supplied to the common excitation coil 54, and the transmission L sensor 51 and the transmission R sensor 52 of the mutual induction type diameter material sensor 5 are mutually connected. The first and second transmissive sensors of the inductive material sensor and the two transmissive sensors of the mutual inductive diameter sensor are shared.

尚、本実施形態では、透過Lセンサ51及び透過Rセンサ52に供給する高周波を250KHz、この両透過センサ51、52及び反射型センサ6に供給する低周波を8KHzとしたが、これ等の具体的な周波数は種々採用可能であり、例えば低周波として4KHz等を採用しても良いのは、勿論である。また、直径材質センサ5は、硬貨の直径を検出するが、半径を検出するセンサとしても良いのは勿論である。   In the present embodiment, the high frequency supplied to the transmission L sensor 51 and the transmission R sensor 52 is 250 KHz, and the low frequency supplied to both the transmission sensors 51 and 52 and the reflective sensor 6 is 8 KHz. Various frequencies can be used. For example, 4 kHz may be used as the low frequency. The diameter material sensor 5 detects the diameter of the coin, but may be a sensor for detecting the radius.

図3は共振型の材質センサ7及び材厚センサ8の巻き線の様子を示している。同図右側に材質センサ7が、同図左側に材厚センサ8が配置される。材質センサ7では、2つの共振コイル71、72が搬走通路3の上面の保持部材73及び搬走通路3の下面本体に埋設される。共振コイル71と共振コイル72とは、発生磁束の方向が同方向となるように直列接続されていて、共振コイル71、72に例えば330KHzの周波数の電流を流して、共振回路を構成するようになっている。   FIG. 3 shows windings of the resonance type material sensor 7 and the material thickness sensor 8. A material sensor 7 is arranged on the right side of the figure and a material thickness sensor 8 is arranged on the left side of the figure. In the material sensor 7, two resonance coils 71 and 72 are embedded in the holding member 73 on the upper surface of the carrying passage 3 and the lower surface main body of the carrying passage 3. The resonance coil 71 and the resonance coil 72 are connected in series so that the direction of the generated magnetic flux is the same direction, and a current having a frequency of, for example, 330 KHz is supplied to the resonance coils 71 and 72 to form a resonance circuit. It has become.

このような構成では、材質センサ7は共振コイル71、72に正弦波を印可することで交流磁束が発生し、上下に対向するコア間に硬貨が進入すると磁束は硬貨による渦電流損で減衰する。そのため、見かけの相互インダクタンスが小さくなることになり、共振周波数が高くなる。また、硬貨1の材質の導電率が高いほどその通過する磁束の変化に応じた渦電流が流れ易く、磁力線が吸収される。   In such a configuration, the material sensor 7 generates an alternating magnetic flux by applying a sine wave to the resonance coils 71 and 72, and when a coin enters between the upper and lower cores, the magnetic flux is attenuated by an eddy current loss caused by the coin. . Therefore, the apparent mutual inductance is reduced, and the resonance frequency is increased. In addition, the higher the conductivity of the material of the coin 1, the easier the eddy current corresponding to the change in the magnetic flux that passes through it, and the magnetic lines of force are absorbed.

共振型の材厚センサ8の構成も前記材質センサ7とほぼ同一であり、搬送通路3の上方及び下方に配置された2つの共振コイル81、82を有する。この両共振コイル81、82の直列接続の仕方は、前記材質センサ7とは逆に、発生磁束の方向が逆方向となるように直列接続される。この共振型の材厚センサ8では、前記材質センサ7の共振コイル71、72に流す電流の周波数(例えば320KHz)とは異なる例えば180KHzの周波数の電流を流して、共振回路を構成する。   The configuration of the resonance type material thickness sensor 8 is substantially the same as that of the material sensor 7 and includes two resonance coils 81 and 82 disposed above and below the conveyance path 3. The resonance coils 81 and 82 are connected in series so that the direction of the generated magnetic flux is opposite to that of the material sensor 7. In the resonance-type material thickness sensor 8, a resonance circuit is configured by flowing a current having a frequency of, for example, 180 KHz, which is different from the frequency (for example, 320 KHz) of a current flowing through the resonance coils 71 and 72 of the material sensor 7.

前記共振型の材質センサ7及び材厚センサ40の検知原理は、要約すると、(a)硬貨が厚くなるに従って磁束の減衰量は増加し、抵抗率が小さいほど出力変化は大きい、(b)周波数、硬貨厚が大きくなれば抵抗率、即ち硬貨材質の影響は小さくなること、(c)検出コイルの出力は、硬貨の径に比例することから、上下に対向するコア間への硬貨の挿入による磁束の変化量ΔΦは、ΔΦ=f(周波数ω、抵抗率ρ、透磁率μi、硬貨厚T)で表すことができる。従って、硬貨通過時のセンサ出力の変化量から硬貨の材質又は材厚を検出することができることになる。   The detection principles of the resonance-type material sensor 7 and the material thickness sensor 40 can be summarized as follows: (a) As the coin becomes thicker, the amount of attenuation of the magnetic flux increases, and as the resistivity decreases, the output change increases. (B) Frequency When the coin thickness is increased, the resistivity, that is, the influence of the coin material is reduced. (C) Since the output of the detection coil is proportional to the diameter of the coin, the coin is inserted between the upper and lower cores. The change amount ΔΦ of the magnetic flux can be expressed by ΔΦ = f (frequency ω, resistivity ρ, permeability μi, coin thickness T). Therefore, the material or thickness of the coin can be detected from the amount of change in the sensor output when the coin passes.

尚、前記相互誘導型の直径材質センサ5及び反射センサ6と、共振型の材質センサ7及び材厚センサ8との各出力信号については、識別対象の硬貨の特徴量が予め各硬貨毎に設けられた閾値領域と比較されて、硬貨の真偽等が識別される。高周波の出力信号では材質による信号差は少ないが、表面層の材質により減衰率が決まり、低周波の出力信号では中間層の材質にも影響を受けるため、各周波数での減衰量を予め決められた閾値領域と比較することにより、硬貨の識別を行うことができる。   For each output signal of the mutual induction type diameter material sensor 5 and the reflection sensor 6, and the resonance type material sensor 7 and the material thickness sensor 8, the characteristic amount of the coin to be identified is previously provided for each coin. The true / false of the coin is identified by comparing with the threshold area. Although the signal difference due to the material is small for high-frequency output signals, the attenuation rate is determined by the material of the surface layer, and for low-frequency output signals, the material of the intermediate layer is also affected, so the attenuation at each frequency can be determined in advance. The coins can be identified by comparing with the threshold region.

本実施形態では、前記硬貨識別モジュールに対して、図4に示す回路構成で励磁及び検出信号処理を行っている。即ち、振動子100からの方形波の発振信号が分周されて低周波(例えば8KHz)及び高周波(例えば250KHz)となったクロックはCPU101から出力され、クロック電圧変換器102で所定電圧(例えば5V)に電圧変換された後、その各周波数のローパスフィルタ(LPF)103a、103bを経て正弦波化されて、電圧ブースター回路104に入力される。電圧ブースター回路104では、前記周波数の異なる2つの正弦波を合成すると共に定電流化して、この合成波を直径材質センサ5と反射センサ6の共用励磁コイル54に供給する。この合成励磁信号の供給によって前記励磁コイル54から同図に破線で示す磁束が発生して、硬貨の搬送通路3を隔てた直径材質センサ5の2つの2次コイル55、56と反射センサ6の2次コイル62とに交差し、この磁束中に硬貨が挿入されると、磁束が変化することになる。   In the present embodiment, excitation and detection signal processing are performed on the coin identification module with the circuit configuration shown in FIG. That is, a clock having a low frequency (for example, 8 KHz) and a high frequency (for example, 250 KHz) obtained by frequency-dividing a square wave oscillation signal from the vibrator 100 is output from the CPU 101, and a predetermined voltage (for example, 5V) is output from the clock voltage converter 102. ) Is converted into a sine wave through low-pass filters (LPF) 103 a and 103 b of the respective frequencies and input to the voltage booster circuit 104. In the voltage booster circuit 104, the two sine waves having different frequencies are combined and converted into a constant current, and the combined wave is supplied to the common excitation coil 54 of the diameter material sensor 5 and the reflection sensor 6. By supplying this synthetic excitation signal, a magnetic flux indicated by a broken line in the figure is generated from the excitation coil 54, and the two secondary coils 55 and 56 of the diameter material sensor 5 and the reflection sensor 6 are separated from the coin conveyance path 3. When a coin is inserted into the magnetic flux that intersects the secondary coil 62, the magnetic flux changes.

直径材質センサ5の一方の2次コイル55での磁束変化は、初段アンプ110で電圧増幅された後、2つの周波数分離器111a、111bで低周波数(8KHz)と高周波数(250KHz)とに周波数分離され、その後段の半波整流器112a、112bで半波整流され、DC化回路113a、113bで直流化されて、CPU101のA/D変換器114で例えば10ビットのデジタル値としてCPU101内に取り込まれる。   The magnetic flux change in one of the secondary coils 55 of the diameter material sensor 5 is amplified in voltage by the first stage amplifier 110, and then the frequency is changed to a low frequency (8 KHz) and a high frequency (250 KHz) by the two frequency separators 111a and 111b. Separated, half-wave rectified by the subsequent half-wave rectifiers 112a and 112b, converted to direct current by the DC conversion circuits 113a and 113b, and taken into the CPU 101 as, for example, a 10-bit digital value by the A / D converter 114 of the CPU 101. It is.

同様に、直径材質センサ5の他方の2次コイル56での磁束変化も、初段アンプ120で電圧増幅された後、2つの周波数分離器121a、121bで低周波数(8KHz)と高周波数(250KHz)とに周波数分離され、その後段の半波整流器122a、122bで半波整流され、DC化回路123a、123bで直流化されて、CPU101のA/D変換器114でデジタル値に変換されてCPU101内に取り込まれる。   Similarly, the magnetic flux change in the other secondary coil 56 of the diameter material sensor 5 is also amplified in voltage by the first stage amplifier 120 and then low frequency (8 KHz) and high frequency (250 KHz) by the two frequency separators 121a and 121b. Are separated by the half-wave rectifiers 122a and 122b in the subsequent stage, converted into direct current by the DC conversion circuits 123a and 123b, converted into a digital value by the A / D converter 114 of the CPU 101, and stored in the CPU 101. Is taken in.

一方、反射センサ6の2次コイル62での磁束変化は、初段アンプ130で電圧増幅された後、1つの周波数分離器131で低周波数(8KHz)成分のみが周波数分離され、その後段の半波整流器132で半波整流され、DC化回路133で直流化されて、CPU101のA/D変換器114でデジタル値に変換されてCPU101内に取り込まれる。   On the other hand, the magnetic flux change in the secondary coil 62 of the reflection sensor 6 is voltage amplified by the first-stage amplifier 130, and then only one low frequency component (8 KHz) is frequency-separated by one frequency separator 131. It is half-wave rectified by the rectifier 132, converted to direct current by the DC circuit 133, converted to a digital value by the A / D converter 114 of the CPU 101, and taken into the CPU 101.

また、共振型の材質センサ7は、その1次コイル71と2次コイル72とがその発生磁束を同方向とするように直列接続された状態で、内部にコンデンサを有するLC共振回路140に接続され、このLC共振回路140により前記両コイル71、72に正弦波を印加することにより、交流磁束が発生し、この磁束中に硬貨が進入すると、磁束が変化し、見掛け上の相互インダクタンスが小さくなって共振周波数が高くなる。前記LC共振回路140の出力は半波整流器141で半波整流された後、DC化回路142で直流化されてA/D変換器145でアナログ/デジタル変換され、多ビット(例えば10ビット)のデジタル値となってCPU101に取り込まれる。前記DC化回路142は、デジタル-アナログコンバータ(DAC)146からの調整電圧を受け、DAC146はCPU101から制御信号を受けて調整電圧を変更する。つまり、DC化回路142では、硬貨が磁束中に進入しない待機時にLC発振回路140のDC出力値が負値とならないように半波整流器141の出力にオフセット電圧を与える機能も有する。   The resonance-type material sensor 7 is connected to the LC resonance circuit 140 having a capacitor inside in a state where the primary coil 71 and the secondary coil 72 are connected in series so that the generated magnetic flux is in the same direction. By applying a sine wave to the coils 71 and 72 by the LC resonance circuit 140, an alternating magnetic flux is generated. When a coin enters the magnetic flux, the magnetic flux changes, and the apparent mutual inductance is small. Thus, the resonance frequency is increased. The output of the LC resonance circuit 140 is half-wave rectified by a half-wave rectifier 141, then converted into a direct current by a DC conversion circuit 142, and analog / digital converted by an A / D converter 145, thereby being multi-bit (for example, 10 bits). It becomes a digital value and is taken into CPU101. The DC circuit 142 receives the adjustment voltage from the digital-analog converter (DAC) 146, and the DAC 146 receives the control signal from the CPU 101 and changes the adjustment voltage. In other words, the DC circuit 142 also has a function of giving an offset voltage to the output of the half-wave rectifier 141 so that the DC output value of the LC oscillation circuit 140 does not become a negative value during standby when no coin enters the magnetic flux.

共振型の材厚センサ8は、その1次コイル81と2次コイル82とがその発生磁束を逆方向とするように直列接続された状態で、内部にコンデンサを有するLC共振回路150に接続される。材厚センサ8では、既述の通り、発生する2つの磁束の方向が逆方向になるように直列接続される点が材質センサ7と異なる。LC共振回路150により前記両コイル81、82に正弦波を印加して、交流磁束を発生させ、この磁束中に硬貨が進入した時の磁束変化に応じてLC共振回路150の出力が変化する。LC共振回路150の出力は半波整流器151で半波整流された後、DC化回路152で直流化されてA/D変換器145でA/D変換され、多ビットのデジタル値となってCPU101に取り込まれる。前記DC化回路152は、材質センサ7の回路構成と同様に、DAC146からの調整電圧を受けて、待機時にDC出力値が負値とならないように半波整流器151の出力にオフセット電圧を与える機能も有する。   The resonance type material thickness sensor 8 is connected to an LC resonance circuit 150 having a capacitor inside in a state where the primary coil 81 and the secondary coil 82 are connected in series so that the generated magnetic flux is in the opposite direction. The As described above, the material thickness sensor 8 is different from the material sensor 7 in that it is connected in series so that the directions of two generated magnetic fluxes are opposite to each other. The LC resonance circuit 150 applies a sine wave to both the coils 81 and 82 to generate an alternating magnetic flux, and the output of the LC resonance circuit 150 changes according to the change in magnetic flux when a coin enters the magnetic flux. The output of the LC resonance circuit 150 is half-wave rectified by the half-wave rectifier 151, then converted to direct current by the DC conversion circuit 152, A / D converted by the A / D converter 145, and converted into a multi-bit digital value. Is taken in. Similar to the circuit configuration of the material sensor 7, the DC circuit 152 receives an adjustment voltage from the DAC 146 and applies an offset voltage to the output of the half-wave rectifier 151 so that the DC output value does not become a negative value during standby. Also have.

また、図4では、硬貨識別モジュールの入り口手前に配置される異常接近センサ170は、発光器170aと受光器170bとを有する。発光器170aには、CPU101に備えるD/Aコンバータ175から制御信号を受ける定電流回路176によって所定の定電流が供給される。また、受光器170bで受光した光量は、電流に変換された後、シュミット回路177を介してCPU101に取り込まれる。   Moreover, in FIG. 4, the abnormal approach sensor 170 arrange | positioned just before the entrance of a coin identification module has the light emitter 170a and the light receiver 170b. A predetermined constant current is supplied to the light emitter 170 a by a constant current circuit 176 that receives a control signal from a D / A converter 175 provided in the CPU 101. Further, the amount of light received by the light receiver 170 b is converted into a current and then taken into the CPU 101 through the Schmitt circuit 177.

前記CPU101に取り込まれた直径材質センサ5、反射センサ6、材質センサ7、材厚センサ8及び異常接近センサ170の各出力は、CPU101による硬貨識別処理に供される。CPU101には、硬貨の金種、真偽等の識別に使用するデータ、閾値、各種調整値等を記憶するEEPROM160が接続される。つまり、CPU101は、前記5種のセンサの出力に基づく金種、真偽等の識別に際し、EEPROM160の記憶データである閾値を使用する。   The outputs of the diameter material sensor 5, the reflection sensor 6, the material sensor 7, the material thickness sensor 8, and the abnormal approach sensor 170 captured by the CPU 101 are subjected to a coin identifying process by the CPU 101. Connected to the CPU 101 is an EEPROM 160 for storing data used for identifying coin denomination, authenticity, etc., threshold values, various adjustment values, and the like. That is, the CPU 101 uses the threshold value which is the stored data of the EEPROM 160 in identifying the denomination, authenticity, etc. based on the outputs of the five types of sensors.

次に、前記直径材質センサ5、反射センサ6、材質センサ7、材厚センサ8、異常接近センサ170を用いた金種判別を説明する。図5はこの金種判別のフローチャートを示す。同図では、予め、ステップS1で前記各センサの動作等のチェックを行った後、ステップS2でスタートして、ステップS3で搬送通路3を順次搬送されて来る硬貨が現行500円、100円、50円、10円等であるとの金種の仮決定を行う。この仮金種の決定は、異常接近センサ170の出力により硬貨1の接近を検出した後、相互誘導型の直径材質センサ5の出力(詳しくは、透過Lセンサ51の2次コイル55の出力と透過Rセンサ52の2次コイル56の出力との和)と反射型磁気センサ6の出力とに基づいて行う。例えば直径材質センサ5の出力は図6に示すように、透過Lセンサ51及び透過Rセンサ52の高周波成分出力(250KHz周波数分離器111bの出力)(直径)の減衰率を横軸に、低周波成分出力(8KHz周波数分離器111aの出力)(材質)の減衰率を縦軸にとり、この両出力を組合せて同図に実線で囲む比較的広い7つの閾値領域を設定すると、1円、5円〜現行500円、旧500円の7種の金種を概ね判別できる。尚、センサの出力の「減衰率」は、センサの出力の変化電圧をセンサの出力の待機時の電圧で除した値で示される。以下、この「減衰率」というときは同様の意味である。   Next, denomination determination using the diameter material sensor 5, the reflection sensor 6, the material sensor 7, the material thickness sensor 8, and the abnormal approach sensor 170 will be described. FIG. 5 shows a flowchart of the denomination discrimination. In the figure, after checking the operation of each sensor in step S1 in advance, starting in step S2, the coins that are sequentially conveyed in the conveyance path 3 in step S3 are the current 500 yen, 100 yen, A temporary denomination of 50 yen, 10 yen, etc. is made. This temporary denomination is determined by detecting the approach of the coin 1 based on the output of the abnormal approach sensor 170 and then the output of the mutual induction type diameter material sensor 5 (specifically, the output of the secondary coil 55 of the transmission L sensor 51) This is based on the sum of the output of the secondary coil 56 of the transmission R sensor 52 and the output of the reflective magnetic sensor 6. For example, as shown in FIG. 6, the output of the diameter material sensor 5 is a low frequency with the horizontal axis indicating the attenuation factor of the high frequency component output (output of the 250 KHz frequency separator 111 b) (diameter) of the transmission L sensor 51 and the transmission R sensor 52. Taking the attenuation rate of the component output (output of the 8 KHz frequency separator 111a) (material) on the vertical axis, combining these outputs and setting seven relatively wide threshold regions surrounded by solid lines in the figure, 1 yen, 5 yen ~ The seven types of denominations of the current 500 yen and the old 500 yen can be roughly identified. The “attenuation rate” of the sensor output is indicated by a value obtained by dividing the change voltage of the sensor output by the standby voltage of the sensor output. Hereinafter, the term “attenuation rate” has the same meaning.

金種が仮決定された硬貨については、更にステップS4a〜S4gにおいて、各硬貨別にその硬貨の直径と材質との真偽を判定する。この真偽判定は、直径材質センサ5の前記両出力(直径及び材質)を前記各広い閾値領域内で予め定めた狭い閾値領域と比較して行う。次いで、ステップS5a〜S5gでは、各硬貨別にその硬貨の材質と材厚とを材質センサ7及び材厚センサ8の両出力に基づいて判定し、その真偽を判定する。更に、ステップS6a〜S6gでは、各硬貨別にその硬貨と極く類似した他の硬貨を排除するように追加論理を設定する。この追加論理は、本硬貨識別モジュールに設けた全ての直径材質センサ5、反射センサ6、材質センサ7、材厚センサ8のうち2以上の出力を組合せた閾値領域を設定して行う。   For coins for which the denomination has been tentatively determined, the authenticity of the diameter and material of the coin is determined for each coin in steps S4a to S4g. This true / false determination is performed by comparing the both outputs (diameter and material) of the diameter material sensor 5 with a predetermined narrow threshold region within each of the wide threshold regions. Next, in steps S5a to S5g, the material and thickness of the coin are determined for each coin based on both outputs of the material sensor 7 and the material thickness sensor 8, and the authenticity is determined. Further, in steps S6a to S6g, additional logic is set for each coin so as to exclude other coins that are very similar to the coin. This additional logic is performed by setting a threshold region that combines two or more outputs among all the diameter material sensors 5, the reflection sensor 6, the material sensor 7, and the material thickness sensor 8 provided in the coin identification module.

前記仮決定した各硬貨別に、前記ステップS3〜S6で全ての閾値領域内に入った場合には、ステップS7において、その仮決定した硬貨が真貨であると確定する。   If all the tentatively determined coins enter all the threshold areas in steps S3 to S6, it is determined in step S7 that the tentatively determined coin is a true coin.

一方、前記ステップS3〜S6において、各閾値領域から外れた場合には、その硬貨をリジェクトすることとし、ステップS8でそのリジェクト原因を記憶及び出力する。   On the other hand, in the above-described steps S3 to S6, when deviating from each threshold region, the coin is rejected, and the cause of the rejection is stored and output in step S8.

次に、本実施形態の効果を説明する。図7は10円硬貨の識別結果を示す。同図の横軸は共振型の材質センサ7の出力の減衰率、縦軸は相互誘導方式の直径材質センサ5の低周波成分出力(8KHz周波数分離器111aの出力)(材質)の減衰率である。同図から判るように、共振方式の材質センサ7の出力だけでは、10円真貨と、導電率がこの10円真貨よりも高めで若干分厚いバーレーン国の10FILS硬貨とは区別できず、この10FILS硬貨も10円硬貨であると誤識別してしまうが、相互誘導方式の直径材質センサ5の8KHz成分出力(材質)と共振方式の材質センサ7の出力とを組合せて、実線で囲む閾値領域を設定すると、10円硬貨のみを良好に識別でき、類似貨のバーレーン国の10FILS硬貨を確実に排除することができる。従って、前記図5のステップS4eでの相互誘導方式の直径材質センサ5の8kHz成分出力(材質)を用いた10円硬貨の材質の真偽判定と、ステップS5eでの共振方式の材質センサ7を用いた10円硬貨の材質の真偽判定とを用いると、10円硬貨の類似貨を有効に排除しつつ10円硬貨を良好に識別することが可能となる。   Next, the effect of this embodiment will be described. FIG. 7 shows the identification result of the 10 yen coin. In the figure, the horizontal axis represents the attenuation rate of the output of the resonance type material sensor 7, and the vertical axis represents the attenuation rate of the low frequency component output (output of the 8 KHz frequency separator 111a) (material) of the mutual induction type diameter material sensor 5. is there. As can be seen from the figure, the output of the resonance type material sensor 7 alone cannot distinguish the 10 yen true coin from the 10 FILS coin of Bahrain that has a conductivity slightly higher than the 10 yen true coin. The 10FILS coin is also mistakenly identified as a 10-yen coin, but the 8 KHz component output (material) of the mutual induction type diameter material sensor 5 and the output of the resonance type material sensor 7 are combined and surrounded by a solid line. If it is set, only the 10 yen coin can be identified well, and the 10 FILS coin of the similar Bahrain country can be surely excluded. Therefore, the authenticity determination of the material of the 10 yen coin using the 8 kHz component output (material) of the mutual induction type diameter material sensor 5 in step S4e in FIG. 5 and the resonance type material sensor 7 in step S5e are performed. When the authenticity determination of the material of the used 10 yen coin is used, it becomes possible to identify the 10 yen coin satisfactorily while effectively eliminating similar coins of the 10 yen coin.

加えて、本実施形態では、共振型の材質センサ7と共振型の材厚センサ8とは、硬貨搬送方向と直行する方向で直線状に配置されている。即ち、共振型の材質センサ7と材厚センサ8との硬貨搬送方向での配置位置は、同一位置に設定されている。従って、材質センサ7と材厚センサ8とは、硬貨の各部位を同一タイミングで計測することになるので、その2つの出力信号波形の同一タイミングでの特徴量は硬貨の同一部位での特徴量を表しており、この共振型の材質センサ7と材厚センサ8との両出力の取り扱いが簡易で、硬貨の識別を正確に行うことができる。   In addition, in this embodiment, the resonance type material sensor 7 and the resonance type material thickness sensor 8 are linearly arranged in a direction perpendicular to the coin transport direction. That is, the arrangement positions of the resonance type material sensor 7 and the material thickness sensor 8 in the coin conveyance direction are set to the same position. Accordingly, since the material sensor 7 and the material thickness sensor 8 measure each part of the coin at the same timing, the feature quantity at the same timing of the two output signal waveforms is the feature quantity at the same part of the coin. It is easy to handle both outputs of the resonance type material sensor 7 and the material thickness sensor 8, and the coin can be accurately identified.

更に、本実施形態の効果として別の例を説明する。図8は、日本の1円硬貨とイギリスの旧1ペニー硬貨との分布を示す。×印で示す多数個の1円硬貨と○印で示す多数個の1ペニー硬貨とは、経年使用や埃の付着等によりある程度の広がりをもって分散して分布している。図8の横軸は相互誘導方式の直径材質センサ5の250KHz成分出力(直径)の減衰率であり、縦軸は共振型の材質センサ7の出力の減衰率である。縦軸及び横軸の目盛りは、直径材質センサ5及び材質センサ7の1次コイル54、72と2次コイル55、56、71間の磁束中に硬貨が進入していない待機時での2次コイルの交差磁束量を1として、硬貨が進入した状態での交差磁束量を規格化した値である。図8の分布では、相互誘導方式の直径材質センサ5の250kHz成分出力(直径)と共振方式の材質センサ7の出力とを組合せると、1円硬貨の分布と1ペニー硬貨の分布とは明確に区別できることが判る。   Furthermore, another example will be described as an effect of the present embodiment. FIG. 8 shows the distribution of Japanese one-yen coins and British old one-penny coins. A large number of 1-yen coins indicated by x and a large number of 1-penny coins indicated by ◯ are distributed and distributed with a certain degree of spread due to aging and dust adhesion. The horizontal axis of FIG. 8 is the attenuation factor of the 250 KHz component output (diameter) of the mutual induction type diameter material sensor 5, and the vertical axis is the attenuation rate of the output of the resonance type material sensor 7. The scales on the vertical axis and the horizontal axis indicate the secondary during standby when no coin has entered the magnetic flux between the primary coils 54 and 72 and the secondary coils 55, 56 and 71 of the diameter material sensor 5 and the material sensor 7. This is a value obtained by standardizing the cross magnetic flux amount in a state where a coin has entered, assuming that the cross magnetic flux amount of the coil is 1. In the distribution of FIG. 8, when the output of the 250 kHz component (diameter) of the mutual induction type diameter material sensor 5 and the output of the resonance type material sensor 7 are combined, the distribution of 1 yen coin and the distribution of 1 penny coin are clear. It can be seen that they can be distinguished.

図9は、前記図8との対比のために、同様に1円硬貨と1ペニー硬貨との分布を、横軸を相互誘導方式の直径材質センサ5の250kHz成分出力(直径)の減衰率、縦軸を相互誘導方式の直径材質センサ5の4kHz成分出力(材質)の減衰率で示した分布図を示す。同図では、真貨の1円硬貨を偽貨であると誤って識別しないように1円硬貨の金種判別用の閾値領域をある程度の許容度を持って同図に破線で囲む閾値領域に設定した場合には、この閾値領域内に多数個の1ペニー硬貨が入って、1ペニー硬貨を1円硬貨であると誤識別する可能性が高くなる。   For comparison with FIG. 8, FIG. 9 similarly shows the distribution of 1-yen coins and 1-penny coins, and the horizontal axis indicates the attenuation rate of the 250 kHz component output (diameter) of the diameter-inductive diameter sensor 5. The vertical axis shows a distribution diagram in which the attenuation factor of the 4 kHz component output (material) of the mutual induction type diameter material sensor 5 is shown. In the figure, the threshold area for discriminating the denomination of 1-yen coins with a certain degree of tolerance is shown in the figure with a certain degree of tolerance so as not to mistakenly identify true 1-yen coins as fake coins. When set, there is a high possibility that a large number of 1 penny coins are included in this threshold region, and the 1 penny coin is erroneously identified as a 1 yen coin.

これに対し、図8に示した分布図では、同図に破線で囲む領域を、真貨を偽貨と誤識別しない程度の閾値領域として設定すると、ほとんど1ペニー硬貨はこの閾値領域には入らず、図9の分布と比較して、金種、偽貨の識別用の閾値領域を容易に設定できることが判る。従って、前記図5のステップS4gでの相互誘導方式の直径材質センサ5の250KHz成分出力を用いた1円硬貨の直径の真偽判定と、ステップS5gでの共振方式の材質センサ7を用いた1円硬貨の材質の真偽判定とを用いると、1円硬貨の類似貨を有効に排除しつつ真貨の1円硬貨を良好に識別することが可能となる。   On the other hand, in the distribution diagram shown in FIG. 8, if the area surrounded by the broken line in the figure is set as a threshold area that does not misidentify true coins as fake coins, almost one penny coin will not enter this threshold area. It can be seen that, compared with the distribution of FIG. 9, a threshold region for identifying denominations and counterfeits can be easily set. Accordingly, the true / false determination of the diameter of the one-yen coin using the 250 KHz component output of the mutual induction type diameter material sensor 5 in step S4g of FIG. 5 and 1 using the resonance type material sensor 7 in step S5g. When the authenticity determination of the material of the yen coin is used, it is possible to successfully identify the true 1-yen coin while effectively excluding similar coins of the 1-yen coin.

但し、図8の分布図でも、同図破線で示す閾値領域のうち右上隅の角部では1ペニー硬貨が入ってしまい、誤識別が生じることになる。そこで、この角部でも誤識別が生じないように対策する必要がある。この対策が前記図5のステップS6gでの類似硬貨を排除するための追加論理である。この追加論理を示すフローチャートを図10に示す。   However, also in the distribution diagram of FIG. 8, one penny coin is entered in the upper right corner of the threshold region indicated by the broken line in FIG. Therefore, it is necessary to take measures to prevent erroneous identification even at this corner. This countermeasure is additional logic for eliminating similar coins in step S6g of FIG. A flowchart showing this additional logic is shown in FIG.

図10は、図8の破線で囲む閾値領域のうち右上隅の角部に位置する閾値領域をCPU101が偽貨(1円硬貨異常)であると判別するための判別フローを示す。同図では、ステップS1において、相互誘導方式の直径材質センサ5の高周波(250kHz)成分出力Xが例えば0.647以下(図8参照)か否かを判別し、X≦0.647の場合には、ステップS2で1円真貨と判定する。ステップS3では、共振方式の材質センサ7の330KHz出力Yが例えば0.636以下か否かを判別し、Y≦0.636の場合には、ステップS2で1円真貨と判定する。ステップS4では、図8に実線の斜め線で示す判定ラインを設定し、前記直径材質センサ5の高周波(250kHz)成分出力Xと共振型の材質センサ7の330KHz出力Yとの組合せで定まる点がこの判定ライン未満か否か判定し、この判定ライン未満の場合にはステップS2で1円真貨と判断する一方、判定ライン以上の場合には、前記両出力X、Yの組合せ点が前記破線で示す閾値領域のうち右上隅の角部に属すると判断して、ステップS5で1円材質異常(偽貨)と判定して、リジェクト(RJ)する。   FIG. 10 shows a determination flow for the CPU 101 to determine that the threshold area located at the upper right corner of the threshold area surrounded by the broken line in FIG. 8 is a fake coin (abnormal 1-yen coin). In the figure, in step S1, it is determined whether or not the high frequency (250 kHz) component output X of the diameter material sensor 5 of the mutual induction method is 0.647 or less (see FIG. 8), and if X ≦ 0.647. Are determined to be 1 yen true coins in step S2. In step S3, it is determined whether or not the 330 KHz output Y of the resonance type material sensor 7 is 0.636 or less, for example. If Y ≦ 0.636, it is determined in step S2 that it is a 1 yen true coin. In step S4, a determination line indicated by a solid diagonal line in FIG. 8 is set, and the point determined by the combination of the high frequency (250 kHz) component output X of the diameter material sensor 5 and the 330 kHz output Y of the resonance type material sensor 7 is determined. It is determined whether or not it is less than this determination line, and if it is less than this determination line, it is determined to be a 1 yen true coin in step S2. Is judged to belong to the corner of the upper right corner of the threshold region shown in FIG.

以上のように、相互誘導方式の直径材質センサ5の高周波成分出力(直径センサの出力)Xと共振型の材質センサ7の出力Yとの組合せによっても、径及び材厚がほぼ等しい金種同士の場合には、誤識別が低い確率で生じることがあるが、前記の判定フローによる閾値領域の見直しにより、誤識別の生じる閾値領域部分では偽貨(材質異常)であると確実に判定できるので、偽貨の排除能力が向上する。   As described above, denominations having substantially the same diameter and material thickness can be obtained by combining the high frequency component output (diameter sensor output) X of the mutual induction type diameter material sensor 5 and the output Y of the resonance type material sensor 7. In this case, misidentification may occur with a low probability, but by reviewing the threshold area according to the determination flow, it is possible to reliably determine that the false threshold (material abnormality) is present in the threshold area where misidentification occurs. , Improving the ability to eliminate fake coins.

また、図11は、前記日本国の7種の硬貨の分布図を示す。同図では、縦軸は相互誘導方式の直径材質センサ5の低周波(8kHz)成分出力の減衰率、横軸は共振型の材質センサ7の出力の減衰率である。同図から判るように、相互誘導方式の直径材質センサ5の低周波(8kHz)成分出力(材質センサの出力)の減衰率のみでは、その出力減衰率が0.500近傍に位置する1円、5円、現行500円の3種の硬貨の識別が困難であり、一方、共振型の材質センサ7の出力の減衰率のみでは、その出力減衰率が0.700近傍に位置する50円、100円、旧500円の3種の硬貨の識別が困難である。しかし、相互誘導方式の直径材質センサ5の低周波(8kHz)成分出力と共振型の材質センサ7との両出力を組み合せると、相互誘導方式の直径材質センサ5の低周波(8kHz)成分信号のみでは識別が困難な1円、5円、現行500円の各硬貨が共振型の材質センサ7によって確実に識別できると共に、共振型の材質センサ7のみでは識別が困難な50円、100円、旧500円の各硬貨が相互誘導方式の直径材質センサ5の低周波(8kHz)成分信号によって確実に識別でき、これ等7種の硬貨を全て良好を識別できることが判る。   FIG. 11 shows a distribution map of the seven types of coins in Japan. In the figure, the vertical axis represents the attenuation rate of the low frequency (8 kHz) component output of the mutual induction type diameter material sensor 5, and the horizontal axis represents the output attenuation rate of the resonance type material sensor 7. As can be seen from the figure, with only the attenuation rate of the low frequency (8 kHz) component output (output of the material sensor) of the diameter material sensor 5 of the mutual induction method, the output attenuation rate is 1 circle located near 0.500, It is difficult to identify the three types of coins of 5 yen and the current 500 yen. On the other hand, with only the output attenuation rate of the resonance-type material sensor 7, the output attenuation rate is 50 yen, 100 located near 0.700. It is difficult to identify three types of coins, yen and old 500 yen. However, when the low frequency (8 kHz) component output of the mutual induction type diameter material sensor 5 and the output of the resonance type material sensor 7 are combined, the low frequency (8 kHz) component signal of the mutual induction type diameter material sensor 5 is combined. The coins of 1 yen, 5 yen, and current 500 yen that are difficult to identify by themselves can be reliably identified by the resonance type material sensor 7, and 50 yen, 100 yen, which are difficult to identify only by the resonance type material sensor 7, It can be seen that the old coins of 500 yen can be reliably identified by the low frequency (8 kHz) component signal of the diameter material sensor 5 of the mutual induction method, and all these seven types of coins can be identified as good.

尚、本実施形態では、識別対象の硬貨の周囲に刻まれたギザを認識するように、搬送通路3に沿ってギザセンサを配置しても良い。ギザセンサを配置すれば、100円硬貨とその偽貨、50円硬貨とその偽貨、旧500円と500WONとを良好に区別することが可能である。   In the present embodiment, a jagged sensor may be arranged along the transport path 3 so as to recognize a jagged carved around the coin to be identified. If a Giza sensor is arranged, it is possible to distinguish well between 100 yen coins and their fake coins, 50 yen coins and their fake coins, old 500 yen and 500 WON.

(第2の実施形態)
次に、本発明の第2の実施形態の硬貨識別装置を説明する。
(Second Embodiment)
Next, a coin identifying device according to a second embodiment of the present invention will be described.

本実施形態の硬貨識別装置は、図1に示した硬貨識別モジュールと全体構成は同様である。異なる点は、反射型センサ6を形状センサ及び材質センサとして使用して、この両センサの出力に基づいてバイカラー硬貨を高精度に検出するものである。即ち、搬送ベルト2上の硬貨1の搬送速度にばらつきが生じた場合にも、その速度ばらつきを形状センサと材質センサとの両信号の組合せで打ち消して、バイカラー硬貨を高精度に認識する。図13に記載するように、バイカラー硬貨180は、その中心に位置するコア部180aと、このコア部180aの周辺に位置するリング部180bとから成り、コア部180aとリング部180bとの材質は異なる。   The coin identification device of the present embodiment has the same overall configuration as the coin identification module shown in FIG. The difference is that the reflective sensor 6 is used as a shape sensor and a material sensor, and bicolor coins are detected with high accuracy based on the outputs of both sensors. That is, even when the conveyance speed of the coin 1 on the conveyance belt 2 varies, the variation in speed is canceled out by a combination of both signals of the shape sensor and the material sensor, and the bicolor coin is recognized with high accuracy. As shown in FIG. 13, the bicolor coin 180 includes a core portion 180a located at the center thereof and a ring portion 180b located around the core portion 180a, and the material of the core portion 180a and the ring portion 180b. Is different.

本実施形態での反射型センサ6の回路構成及び励磁及び検出信号処理を図12に示す。同図において、反射型センサ6の共用励磁コイル54では、図3と同様に、高周波(例えば250KHz)、低周波(例えば8KHz)の合成励磁信号が供給されるが、2次コイル62では、初段アンプ130で電圧増幅された後、2つの周波数分離器131a、131bで高周波(250KHz)成分と低周波(8KHz)成分との両方が周波数分離され、その後、2つの半波整流器132a、132bで半波整流され、2つのDC化回路133a、133bで直流化されて、CPU101のA/D変換器114でデジタル値に変換されてCPU101内に取り込まれる。   FIG. 12 shows a circuit configuration and excitation and detection signal processing of the reflective sensor 6 in this embodiment. In the same figure, the common excitation coil 54 of the reflective sensor 6 is supplied with a composite excitation signal of high frequency (for example, 250 KHz) and low frequency (for example, 8 KHz) as in FIG. After the voltage is amplified by the amplifier 130, both the high frequency (250 KHz) component and the low frequency (8 KHz) component are frequency separated by the two frequency separators 131a and 131b, and then the two half wave rectifiers 132a and 132b are half separated. Wave rectified, converted into direct current by the two DC conversion circuits 133a and 133b, converted into a digital value by the A / D converter 114 of the CPU 101, and taken into the CPU 101.

前記反射型センサ6は、図14に示すように、コア6aの直径が認識対象のバイカラー硬貨180のコア部180aの直径よりも小さく形成されていて、バイカラー硬貨180が反射型センサ6の位置を通過する際、そのコア部180aのみに対する出力信号が得られるように構成される。   As shown in FIG. 14, the reflective sensor 6 is formed such that the diameter of the core 6 a is smaller than the diameter of the core portion 180 a of the bicolor coin 180 to be recognized. When passing through the position, an output signal for only the core portion 180a is obtained.

前記反射型センサ(反射型形状センサ及び反射型材質センサ)6によるバイカラー硬貨識別フローチャートを図15に示す。同図では、ステップS1で所定時間間隔毎に反射型センサ6の2次コイル62からの高周波(250KHz)成分と低周波(8KHz)成分との両データのサンプリングを開始する。このデータサンプリングは、異常接近センサ170が硬貨の進入を検出した信号をトリガーとして、硬貨搬送に同期したクロックを用いて繰り返し行われる。このデータサンプリングの結果の一例を図16に示す。同図は、モノメタル(均一材質)硬貨サンプル(例えば現行500円(ニッケル黄銅貨))の信号波形を示し、高周波成分の信号波形は、硬貨の形状の情報として使用され、実線で示すように高い値が続く平坦部を持ち、この平坦部の長さが硬貨の直径を表す。また、低周波成分の信号波形は、硬貨の表面から内部中心までの材質の情報として使用され、破線で示すように硬貨中心位置付近でピーク値を持つ。図17はバイカラー硬貨サンプルの信号波形を示し、高周波成分の信号波形は、実線で示すように硬貨のリング部とコア部とで異なる材質が影響して変曲点Dを持ち、低周波成分の信号波形は、破線で示すようにリング部とコア部との材質の違いが影響してエッジとコア部との境界付近で波形の傾きが唐突に変化する。   FIG. 15 shows a bicolor coin identification flowchart by the reflective sensor 6 (reflective shape sensor and reflective material sensor). In the figure, sampling of both data of the high frequency (250 KHz) component and the low frequency (8 KHz) component from the secondary coil 62 of the reflective sensor 6 is started at predetermined time intervals in step S1. This data sampling is repeatedly performed using a clock synchronized with the coin transport, triggered by a signal that the abnormal approach sensor 170 detects the entry of the coin. An example of the result of this data sampling is shown in FIG. This figure shows the signal waveform of a monometal (uniform material) coin sample (for example, the current 500 yen (nickel brass coin)), and the signal waveform of the high frequency component is used as information on the shape of the coin, as shown by the solid line It has a flat part followed by a high value, and the length of this flat part represents the diameter of the coin. The signal waveform of the low frequency component is used as information on the material from the surface of the coin to the inner center, and has a peak value in the vicinity of the coin center position as indicated by a broken line. FIG. 17 shows the signal waveform of a bicolor coin sample, and the signal waveform of the high frequency component has an inflection point D due to the influence of different materials in the coin ring and core, as shown by the solid line, and the low frequency component. As shown by the broken line, the signal waveform of FIG. 4 is affected by the difference in material between the ring part and the core part, and the slope of the waveform changes suddenly near the boundary between the edge and the core part.

図15の硬貨判別フローに戻って、ステップS2では、サンプリングした高周波成分及び低周波成分の各データ中のピーク値を検出する。この検出は、具体的には、今回のサンプリング値を前回値と比較し、今回値>前回値ではその値をCPU101に内蔵されたRAM(図示せず)に記憶してピーク値の更新を繰り返すことにより行う。その後、ステップS3でデータサンプリングが終了すると、ステップS4で高周波成分について、多数のサンプリングデータと前記検出したピーク値とを用いて、ピーク値の1/2値以上変化した時間を第1の所定同一値間の距離として算出すると共に、低周波成分について、同様にピーク値の1/2値以上変化した時間を第2の所定同一値間の距離として算出する。この時間は図16及び図17では符号tms、tmq、tbs、tbqで示される。その後、ステップS5で、低周波成分(材質)ピーク1/2時間を高周波成分(形状)ピーク値1/2時間で割ったゾーン値を評価値Zとして、モノメタル硬貨とバイカラー硬貨別に、評価値Zm=a・tmq/tms、Zb=b・tbq/tbs(a及びbは定数)を演算する。そして、これらの評価値Zm、Zbを予め定めた閾値と比較して、モノメタル硬貨かバイカラー硬貨かを判別する。   Returning to the coin discrimination flow of FIG. 15, in step S <b> 2, peak values in each sampled high frequency component and low frequency component data are detected. Specifically, the current sampling value is compared with the previous value, and if the current value> the previous value, the value is stored in a RAM (not shown) built in the CPU 101 and the peak value is repeatedly updated. By doing. Thereafter, when the data sampling is completed in step S3, the time when the high frequency component is changed by more than ½ value of the peak value using a large number of sampling data and the detected peak value in step S4 is the same as the first predetermined value. In addition to calculating the distance between the values, the low frequency component is similarly calculated as the distance between the second predetermined identical values by the time when the peak value has changed by a half value or more. This time is indicated by reference numerals tms, tmq, tbs, and tbq in FIGS. After that, in step S5, evaluation is performed for each monometal coin and bicolor coin with a zone value obtained by dividing the low frequency component (material) peak 1/2 hour by the high frequency component (shape) peak value 1/2 hour as an evaluation value Z. The values Zm = a · tmq / tms and Zb = b · tbq / tbs (a and b are constants) are calculated. Then, the evaluation values Zm and Zb are compared with a predetermined threshold value to determine whether the metal is a monometal coin or a bicolor coin.

反射型センサ6による硬貨の形状、材質の検出に際し、搬送通路3上の硬貨1の搬送速度がばらつくと、モノメタル硬貨であっても、図16の高周波(形状)成分の信号波形は高い値の領域でばらつきが生じ、図17に示したバイカラー硬貨の高周波(形状)成分の信号波形と区別が困難な場合も生じる。しかし、本実施形態では、硬貨の搬送速度のばらつきに応じて高周波成分(形状)と低周波成分(材質)との2つのピーク1/2時間も同様に変動し、その2つのピーク1/2時間同士の比率で評価値Zm、Zbが表現されるので、この評価値Zm、Zbは硬貨の搬送速度のばらつきを打ち消し、吸収した値となる。従って、硬貨の搬送速度のばらつきがあっても、モノメタル硬貨とバイカラー硬貨とを精度良く識別することができる。   When the shape and material of the coin are detected by the reflective sensor 6, if the transport speed of the coin 1 on the transport path 3 varies, the signal waveform of the high-frequency (shape) component in FIG. In some cases, it is difficult to distinguish from the signal waveform of the high-frequency (shape) component of the bicolor coin shown in FIG. However, in the present embodiment, the two peak ½ hours of the high frequency component (shape) and the low frequency component (material) similarly vary according to the variation in the coin conveyance speed, and the two peaks ½. Since the evaluation values Zm and Zb are expressed by the ratio between the times, the evaluation values Zm and Zb are values that cancel and eliminate the variation in the coin conveyance speed. Therefore, even if there is a variation in the coin conveyance speed, it is possible to accurately identify the monometal coin and the bicolor coin.

図18は、2種のモノメタル硬貨サンプル(現行500円硬貨及び旧500円硬貨)と4種のバイカラー硬貨サンプル(サンプルA、B、C及びD)とについて、各々、多数個で算出した前記評価値Zm(=a・tmq/tms)、Zb(=b・tbq/tbs)の分布図を示す。同図では、各サンプルの分布は正規分布となるが、現行500円硬貨では頂点(最大個数)での評価値はゾーン比で「755」、旧500円硬貨では「735」であるのに対し、バイカラー硬貨サンプルAでは評価値は「575」、サンプルBでは「620」、サンプルC、Dでは「445」である。従って、これらのサンプル間では、閾値を「675」辺りに設定すると、現行500円硬貨及び旧500円硬貨(モノメタル硬貨サンプル)と、バイカラー硬貨サンプルA、B、C及びDとを精度良く区別できることが判る。尚、図18の分布図を作成するに当り、硬貨が強磁性のものは信号の変化は非磁性のものとは逆になるので、絶対値で前記評価値を算出する。   FIG. 18 is calculated for a large number of two kinds of monometal coin samples (current 500 yen coin and old 500 yen coin) and four kinds of bicolor coin samples (samples A, B, C, and D). A distribution diagram of the evaluation values Zm (= a · tmq / tms) and Zb (= b · tbq / tbs) is shown. In the figure, the distribution of each sample is a normal distribution, but the evaluation value at the apex (maximum number) is “755” in the zone ratio in the current 500 yen coin, whereas “735” in the old 500 yen coin. The evaluation value is “575” for the bicolor coin sample A, “620” for the sample B, and “445” for the samples C and D. Therefore, between these samples, when the threshold value is set around “675”, the current 500 yen coin and the old 500 yen coin (monometal coin sample) and the bicolor coin samples A, B, C, and D are accurately obtained. It can be seen that they can be distinguished. In creating the distribution diagram of FIG. 18, since the change in the signal is opposite to that in the non-magnetic coin when the coin is ferromagnetic, the evaluation value is calculated as an absolute value.

尚、本実施形態では、評価値Zの算出に際して、反射センサ6の高周波成分(形状)と低周波成分(材質)との2つのピーク1/2時間を用いたが、必ずしもこのピーク1/2時間を用いる必要はなく、硬貨の搬送速度のばらつきをうち消すことが可能である限り例えばピーク1/3時間等も使用できるのは勿論である。   In the present embodiment, when calculating the evaluation value Z, two peak 1/2 times of the high frequency component (shape) and the low frequency component (material) of the reflection sensor 6 are used. It is not necessary to use time, and it is of course possible to use, for example, a peak 1/3 hour as long as it is possible to eliminate variations in the coin conveyance speed.

(第3の実施形態)
続いて、本発明の第3の実施形態の硬貨識別装置を説明する。
(Third embodiment)
Then, the coin identification device of the 3rd Embodiment of this invention is demonstrated.

本実施形態の硬貨識別装置は、図1に示した硬貨識別モジュールと全体構成は同様である。異なる点は、基本的に反射型センサ(材質センサ)6を用いてバイカラー硬貨のコア部とリング部とを判別するが、反射型センサ(材質センサ)6によるリング部の特徴量の抽出を前記図1に示した相互誘導型の直径材質センサ5の高周波成分出力(直径)で補強して、バイカラー硬貨同士の識別を高精度に行うものである。   The coin identification device of the present embodiment has the same overall configuration as the coin identification module shown in FIG. The difference is that the core portion and the ring portion of the bicolor coin are basically discriminated using the reflection type sensor (material sensor) 6, but the feature amount of the ring portion is extracted by the reflection type sensor (material sensor) 6. The bicolor coins are discriminated with high accuracy by reinforcing with the high frequency component output (diameter) of the mutual induction type diameter material sensor 5 shown in FIG.

本実施形態においても、反射型センサ(材質センサ)6は、図14に示したように、コア6aの直径が認識対象のバイカラー硬貨180のコア部180aの直径よりも小さく形成されていて、バイカラー硬貨180が反射型センサ6の位置を通過する際、そのコア部180aのみに対する出力信号が得られるように構成される。   Also in the present embodiment, the reflective sensor (material sensor) 6 is formed such that the diameter of the core 6a is smaller than the diameter of the core portion 180a of the bicolor coin 180 to be recognized, as shown in FIG. When the bicolor coin 180 passes the position of the reflective sensor 6, an output signal for only the core portion 180a is obtained.

次に、本実施形態でのバイカラー硬貨の識別フローチャートを図19に示す。同図において、ステップS1では、異常接近センサ170が硬貨の進入を検出した信号をトリガーとして、硬貨搬送に同期したクロックを用いて相互誘導型の直径材質センサ5の高周波成分出力(直径)と反射型センサ(材質センサ)6の低周波(8KHz)出力とを繰り返しサンプリングすることを開始する。このデータサンプリングの結果の一例を図20に示す。同図において、相互誘導型の直径材質センサ5の高周波成分(250KHz)の減衰量の信号波形は、硬貨の材質×厚さ×径の情報として使用され、実線で示すように左右対称の釣鐘型で硬貨の中央部分で頂点となる。一方、反射型センサ(材質センサ)6の低周波(8KHz)の減衰量の信号波形は、硬貨の表面から内部中芯近傍までの材質の情報として使用され、破線で示すように左右対称の釣鐘型となるが、波形変化の傾きは緩やかであり、相互誘導型の直径材質センサ5の高周波(250KHz)成分の減衰量の信号波形の方が変化は急峻である。   Next, FIG. 19 shows a flowchart for identifying a bicolor coin in the present embodiment. In step S1, the high frequency component output (diameter) and reflection of the mutual induction type diameter material sensor 5 are triggered by using a clock synchronized with the coin transport, using the signal detected by the abnormal approach sensor 170 as the trigger. Sampling of the low frequency (8 KHz) output of the mold sensor (material sensor) 6 is started. An example of the result of this data sampling is shown in FIG. In the figure, the signal waveform of the attenuation amount of the high frequency component (250 KHz) of the mutual induction type diameter material sensor 5 is used as information of the coin material × thickness × diameter, and as shown by a solid line, a symmetrical bell shape It becomes the apex in the central part of the coin. On the other hand, the low-frequency (8 KHz) attenuation signal waveform of the reflective sensor (material sensor) 6 is used as material information from the surface of the coin to the vicinity of the inner core, and as shown by a broken line, a symmetrical bell. However, the gradient of the waveform change is gentler, and the signal waveform of the attenuation amount of the high frequency (250 KHz) component of the mutual induction type diameter material sensor 5 is steeper.

図19のステップS2では、前記直径材質センサ5の高周波成分(250KHz)の減衰量と反射型センサ(材質センサ)6の低周波(8KHz)の減衰量とについて、前記第2の実施形態と同様にピーク値を検出する。その後、ステップS3でデータサンプリングが終了すると、ステップS4で前記反射型センサ(材質センサ)6の低周波信号の減衰量のピーク値Rp(図20参照)を硬貨のコア部の特徴量とすると共に、ステップS5で硬貨のリング部の特徴量を算出する。このリング部の特徴量の算出では、前記直径材質センサ5の高周波成分(250KHz)成分のサンプリング値のうち前記検出したピーク値に対して30%に減少したサンプリング値(図20に示す符号T30)を利用し、このピーク値の30%値と同一タイミングでサンプリングされた反射型センサ(材質センサ)6の信号値(減衰量)Rrを硬貨のリング部の特徴量とする。つまり、反射型センサ(材質センサ)6では、硬貨のリング部での出力値が小さく且つ信号変化の傾きが小さいため、硬貨のリング部での出力値を正確に把握し難い関係上、出力値が大きく且つ信号変化も急峻な直径材質センサ5の高周波(250KHz)成分出力の減衰量を利用し、その30%値と同一タイミングでの反射型センサ(材質センサ)6の出力の減衰量を硬貨のリング部の特徴量としている。   In step S2 of FIG. 19, the high frequency component (250 KHz) attenuation amount of the diameter material sensor 5 and the low frequency (8 KHz) attenuation amount of the reflective sensor (material sensor) 6 are the same as in the second embodiment. The peak value is detected. Thereafter, when the data sampling is completed in step S3, the peak value Rp (see FIG. 20) of the attenuation amount of the low frequency signal of the reflection type sensor (material sensor) 6 is set as the feature amount of the coin core in step S4. In step S5, the feature amount of the coin ring portion is calculated. In the calculation of the characteristic amount of the ring portion, the sampling value reduced to 30% with respect to the detected peak value among the sampling values of the high-frequency component (250 KHz) component of the diameter material sensor 5 (symbol T30 shown in FIG. 20). And the signal value (attenuation amount) Rr of the reflective sensor (material sensor) 6 sampled at the same timing as the 30% value of the peak value is used as the feature amount of the coin ring. That is, in the reflection type sensor (material sensor) 6, since the output value at the coin ring portion is small and the inclination of the signal change is small, it is difficult to accurately grasp the output value at the coin ring portion. The attenuation of the high frequency (250 KHz) component output of the diameter material sensor 5 having a large diameter and a sharp signal change is used, and the attenuation of the output of the reflective sensor (material sensor) 6 at the same timing as the 30% value is determined as a coin. This is the feature value of the ring part.

そして、ステップS6では、前記反射型センサ(材質センサ)6の2つの特徴量(ピーク値Rpと高周波成分ピーク30%タイミング値Rr)の組合せにより、搬送通路3上の硬貨がモノメタル硬貨かバイカラー硬貨かを判別すると共に、バイカラー硬貨の種類をも判別する。   In step S6, whether the coin on the transport path 3 is a monometal coin or a buy-by coin is determined by the combination of the two feature amounts (peak value Rp and high frequency component peak 30% timing value Rr) of the reflective sensor (material sensor) 6. In addition to determining whether it is a color coin, the type of bicolor coin is also determined.

前記反射型センサ(材質センサ)6の2つの特徴量RpとRrとの組合せを6種の硬貨について実測した結果を図21に示す。同図では、モノメタル硬貨サンプル(現行500円硬貨及び旧500円硬貨)と4種のバイカラー硬貨サンプルA、B、C、Dとについて実測した結果を示す。同図の横軸は反射型センサ(材質センサ)6の減衰率のピーク値Rp、縦軸は前記直径材質センサ5の高周波成分(250KHz)の減衰量のピーク値の30%値の位置での反射型センサ(材質センサ)6の出力の減衰率Rrである。同図から判るように、旧500円硬貨とバイカラー硬貨サンプルBとでは、反射型センサ(材質センサ)6のピーク値(コア材質)Rpが同一範囲にあるものの、高周波成分ピーク30%タイミング値(リング材質)Rrの範囲が異なるので、モノメタル硬貨(旧500円硬貨)とバイカラー硬貨サンプルBとを明確に識別可能である。また、旧500円硬貨とバイカラー硬貨サンプルA、C、Dとでは、高周波成分ピーク30%タイミング値(リング材質)Rrの範囲が同一範囲であるものの、ピーク値(コア材質)Rpの範囲が互いに異なるので、これらを識別可能である。このように、反射型センサ(材質センサ)6のピーク値Rpと高周波成分ピーク30%タイミング値Rrとを組合せれば、モノメタル硬貨とバイカラー硬貨との識別、及びバイカラー硬貨間の識別を高精度で行うことが可能である。   FIG. 21 shows the result of actually measuring the combination of the two feature amounts Rp and Rr of the reflective sensor (material sensor) 6 with respect to six types of coins. In the same figure, the measurement result about the monometal coin sample (the current 500 yen coin and the old 500 yen coin) and four types of bicolor coin samples A, B, C, and D is shown. In the figure, the horizontal axis is the peak value Rp of the attenuation rate of the reflective sensor (material sensor) 6, and the vertical axis is the position of the 30% value of the peak value of the attenuation amount of the high-frequency component (250 KHz) of the diameter material sensor 5. This is the attenuation rate Rr of the output of the reflective sensor (material sensor) 6. As can be seen from the figure, in the old 500 yen coin and the bicolor coin sample B, the peak value (core material) Rp of the reflective sensor (material sensor) 6 is in the same range, but the high frequency component peak 30% timing value. (Ring material) Since the range of Rr is different, the monometal coin (old 500 yen coin) and the bicolor coin sample B can be clearly identified. In the old 500 yen coin and the bicolor coin samples A, C, and D, the range of the high frequency component peak 30% timing value (ring material) Rr is the same range, but the range of the peak value (core material) Rp is Since they are different from each other, they can be identified. Thus, by combining the peak value Rp of the reflective sensor (material sensor) 6 and the high frequency component peak 30% timing value Rr, it is possible to distinguish between monometal coins and bicolor coins and between bicolor coins. It is possible to carry out with high accuracy.

尚、本実施形態では、反射型センサ(材質センサ)6の高周波成分ピーク30%タイミング値Rrを硬貨のリング部の特徴量としたが、本願発明はこの30%タイミング値には限定されず、その他、直径材質センサ5の高周波成分(250KHz)のサンプリング値が硬貨のリング部での出力値を確実に表わしている限り、高周波成分ピーク20%タイミング値や高周波成分ピーク40%タイミング値などを採用しても良いのは勿論である。   In the present embodiment, the high frequency component peak 30% timing value Rr of the reflective sensor (material sensor) 6 is used as the feature amount of the coin ring portion, but the present invention is not limited to this 30% timing value. In addition, as long as the sampling value of the high frequency component (250 KHz) of the diameter material sensor 5 reliably represents the output value at the coin ring, the high frequency component peak 20% timing value or the high frequency component peak 40% timing value is adopted. Of course, you may do.

(第4の実施形態)
続いて、本発明の第4の実施形態の硬貨識別装置を説明する。
(Fourth embodiment)
Then, the coin identification device of the 4th Embodiment of this invention is demonstrated.

本実施形態の硬貨識別装置は、図1に示した硬貨識別モジュールと全体構成は同様である。異なる点は、共振型の材質センサ7の出力信号を特殊に組み合せて、バイカラー硬貨を良好に識別するものである。即ち、バイカラー硬貨180のコア部180aでの共振型の材質センサ7の信号とリング部180bでの信号とを組み合せて、搬送通路3上の硬貨1の搬送速度のばらつきに拘わらずバイカラー硬貨を高精度に識別するものである。   The coin identification device of the present embodiment has the same overall configuration as the coin identification module shown in FIG. The difference is that the output signal of the resonance type material sensor 7 is specially combined to favorably identify the bicolor coin. That is, by combining the signal of the resonance type material sensor 7 at the core portion 180a of the bicolor coin 180 and the signal at the ring portion 180b, the bicolor coin regardless of the variation in the conveyance speed of the coin 1 on the conveyance path 3. Is identified with high accuracy.

本実施形態のバイカラー硬貨の識別フローを図22に示す。同図において、ステップS1では、異常接近センサ170が硬貨の進入を検出した信号をトリガーとして、硬貨搬送に同期したクロックを用いて共振型材質センサ7の出力を繰り返しサンプリングすることを開始する。このデータサンプリングの結果の一例を図23に示す。同図において、共振型材質センサ7の信号波形(出力の減衰量)は、硬貨の材質×厚さの情報として使用され、モノメタル硬貨(例えば100円硬貨)では硬貨の周縁部に相当する波形の高い値の領域の前後で各々最高値となる角部xを有する。一方、バイカラー硬貨(例えばケニア10シリング硬貨)では、図24に示すように、波形の高い値の領域の前後に各々角部xを有するが、この2つの角部間の距離は図23に示したモノメタル硬貨の波形の角部間の距離よりも短い特徴を有する。   The identification flow of the bicolor coin of this embodiment is shown in FIG. In the figure, in step S1, sampling of the output of the resonance-type material sensor 7 is started using a signal synchronized with the coin transport, using the signal detected by the abnormal approach sensor 170 as the trigger of coins. An example of the result of this data sampling is shown in FIG. In the figure, a signal waveform (attenuation amount of output) of the resonance type material sensor 7 is used as information of coin material × thickness, and in a monometal coin (for example, 100 yen coin), a waveform corresponding to a peripheral portion of the coin. Each of the corners x has the highest value before and after the high value region. On the other hand, as shown in FIG. 24, bicolor coins (for example, Kenyan 10 shilling coins) have corners x before and after the high-value region of the waveform. The distance between the two corners is shown in FIG. It has a feature that is shorter than the distance between the corners of the waveform of the monometal coin shown.

図22のステップS2では、共振型材質センサ7の出力について前記と同様にデータサンプリングを行い、波形の高い値の領域の前後に位置する角部xのピーク値を各々検出する。その後、データサンプリングが終了すると、ステップS3で多数のサンプリングデータ及び前記角部のピーク値xに基づいて、図23及び図24に示すように、両角部間の距離Aを算出すると共に、出力の減衰量がAD値で例えば100以上減衰した2つのサンプリング値間の距離(ゾーン数)Bを算出し、この距離A、Bを使用して特徴量Cを下記式、
特徴量C=距離A/距離B×1000
により演算する。尚、前記距離Bは、搬送速度のばらつきに応じて変動する距離を採用するのが良く、特に前記距離Aの変動に対応して変動するのが望ましい。
In step S2 of FIG. 22, data sampling is performed on the output of the resonance type material sensor 7 in the same manner as described above, and the peak values of the corners x located before and after the high value region of the waveform are detected. Thereafter, when the data sampling is completed, a distance A between the two corners is calculated and output as shown in FIGS. 23 and 24 based on a large number of sampling data and the peak value x of the corner in step S3. A distance (number of zones) B between two sampling values whose attenuation amount is attenuated by 100 or more, for example, is calculated as an AD value, and using this distance A, B, a feature amount C is expressed by the following equation:
Feature C = Distance A / Distance B × 1000
Calculate by It should be noted that the distance B may be a distance that varies in accordance with variations in the conveyance speed, and it is particularly desirable that the distance B varies according to the variation in the distance A.

その後、ステップS4では、前記角部のピーク値xと前記特徴量Cとを各々の閾値と比較して、搬送通路3上の硬貨がモノメタル硬貨かバイカラー硬貨かを識別する。   Thereafter, in step S4, the peak value x of the corner and the feature amount C are compared with respective threshold values to identify whether the coin on the transport path 3 is a monometal coin or a bicolor coin.

硬貨の搬送速度にばらつきが生じると、共振型材質センサ7の出力波形も時間軸方向に伸び又は縮むため、出力波形の両角部間の距離Aも変動する。従って、図23及び図24から判るようにモノメタル硬貨(100円硬貨)とバイカラー硬貨(ケニア10シリング硬貨)とではこの距離Aはケニア10シリング硬貨の方が一般的に短いものの、この距離Aのみを硬貨識別の特徴量として使用すると、波形が時間軸方向に伸びた場合にはケニア10シリング硬貨を100円硬貨として誤識別することがある。   When variation occurs in the coin conveyance speed, the output waveform of the resonance-type material sensor 7 also expands or contracts in the time axis direction, and the distance A between both corners of the output waveform also varies. Accordingly, as can be seen from FIG. 23 and FIG. 24, the distance A is generally shorter for monometal coins (100 yen coins) and bicolor coins (Kenyan 10 shilling coins) than for Kenyan 10 shilling coins. When only A is used as a feature amount for coin identification, when the waveform extends in the time axis direction, a Kenyan 10 shilling coin may be erroneously identified as a 100 yen coin.

しかし、本実施形態では、硬貨の搬送速度のばらつきに応じて伸縮する前記距離Aと距離Bとの比率を特徴量Cとしているので、この特徴量Cは硬貨の搬送速度に依存せず、速度ばらつきを吸収できる。従って、モノメタル硬貨とバイカラー硬貨とを高精度に識別できる。   However, in this embodiment, since the ratio of the distance A and the distance B that expands and contracts according to the variation in the coin transport speed is the feature amount C, the feature amount C does not depend on the coin transport speed, and the speed Variations can be absorbed. Therefore, it is possible to identify the monometal coin and the bicolor coin with high accuracy.

図25は、100円硬貨とケニア10シリング硬貨とについて、硬貨搬送速度のばらつきによる特徴量Cへの影響を実測した結果を示す。同図の横軸は特徴量(減衰率)Cを、縦軸はピーク値(減衰率)を示す。また、搬送速度は525mm/sと630mm/sとの2種類で実測した。同図から判るように、搬送速度が異なっても100円硬貨の特徴量Cのばらつき範囲は同一範囲内に収まり、ケニア10シリング硬貨の特徴量Cのばらつき範囲もほぼ同一範囲内に収まっており、特徴量Cが硬貨の搬送速度に依存しないことが判る。図25の実測結果では、特徴量Cの閾値としてゾーン数で550を採用し、角部のピーク値の閾値としてゾーン数で608を採用すれば、特徴量C<550で且つピーク値>608の排除論理でケニア10シリング硬貨を100円硬貨から確実に排除、識別できる。   FIG. 25 shows the results of actually measuring the influence on the feature amount C due to the variation in the coin conveyance speed for the 100 yen coin and the Kenyan 10 shilling coin. In the figure, the horizontal axis represents a feature amount (attenuation rate) C, and the vertical axis represents a peak value (attenuation rate). Moreover, the conveyance speed was actually measured with two types, 525 mm / s and 630 mm / s. As can be seen from the figure, the variation range of the feature value C of the 100 yen coin is within the same range even if the transport speed is different, and the variation range of the feature value C of the Kenyan 10 shilling coin is also within the same range. It can be seen that the feature amount C does not depend on the coin conveyance speed. In the actual measurement result of FIG. 25, if 550 is adopted as the threshold value of the feature amount C and 608 is adopted as the threshold value of the peak value of the corner, the feature amount C <550 and the peak value> 608 are obtained. With the exclusion logic, Kenyan 10 shilling coins can be reliably excluded and identified from 100 yen coins.

以上説明したように、本発明は、硬貨の径及び厚さがほぼ等しい類似金種間において、それ等硬貨の経年劣化や変形などが生じた場合であっても、それ等の材質を正確に区別して識別することが可能であると共に、硬貨の搬送速度のばらつきなどに拘わらずバイメタル硬貨を正確に識別することが可能であるので、硬貨識別装置として有用である。   As described above, the present invention accurately determines the material of these coins even if they are deteriorated or deformed between similar denominations whose coin diameter and thickness are approximately equal. Since it is possible to distinguish and identify, and it is possible to accurately identify bimetal coins regardless of variations in the coin conveyance speed, it is useful as a coin identifying device.

本発明の第1の実施形態の硬貨識別装置である硬貨識別モジュールの全体概略構成を示す図である。It is a figure which shows the whole schematic structure of the coin identification module which is a coin identification device of the 1st Embodiment of this invention. 同硬貨識別モジュールに備える相互誘導型の直径材質センサの内部構成を示す断面図である。It is sectional drawing which shows the internal structure of the mutual induction type diameter material sensor with which the coin identification module is equipped. 同硬貨識別モジュールに備える共振型の材質センサ及び材厚センサの概略構成を示す図である。It is a figure which shows schematic structure of the resonance type material sensor and material thickness sensor with which the coin identification module is equipped. 同硬貨識別モジュールに備える各種センサの励磁及び検出信号処理系を示すブロック図である。It is a block diagram which shows the excitation of various sensors with which the coin identification module is provided, and a detection signal processing system. 同硬貨識別モジュールでの金種識別のフローチャート図である。It is a flowchart figure of denomination identification in the same coin identification module. 仮金種判定のための閾値領域の設定を説明する図である。It is a figure explaining the setting of the threshold area | region for temporary money type determination. 本実施形態の効果を示し、相互誘導型の材質センサと共振型の材質センサとを用いて10円硬貨とバーレーン10FILS硬貨とを明確に区別できることを説明する図である。It is a figure which shows the effect of this embodiment and demonstrates that a 10-yen coin and a Bahrain 10FILS coin can be clearly distinguished using a mutual induction type material sensor and a resonance type material sensor. 本実施形態の別の効果を示し、相互誘導型の直径センサと共振型の材質センサとの両出力での1円硬貨と1ペニー硬貨との分布を示す図である。It is a figure which shows another effect of this embodiment, and shows distribution of 1 yen coin and 1 penny coin in both outputs of a mutual induction type diameter sensor and a resonance type material sensor. 相互誘導型の直径センサと相互誘導型の材質センサとの両出力での1円硬貨と1ペニー硬貨との分布を示す図である。It is a figure which shows distribution of 1 yen coin and 1 penny coin in both outputs of a mutual induction type diameter sensor and a mutual induction type material sensor. 図8での1円硬貨と1ペニー硬貨とを明確に区別するための追加論理を示すフローチャート図である。It is a flowchart figure which shows the additional logic for clearly distinguishing 1 yen coin and 1 penny coin in FIG. 共振型の材質センサと相互誘導型の材質センサとの両出力での日本国硬貨7金種の分布を示す図である。It is a figure which shows distribution of the Japanese coin 7 denomination in both outputs of a resonance type material sensor and a mutual induction type material sensor. 本発明の第2の実施形態の硬貨識別モジュールに備える反射センサの励磁及び検出信号処理系を示すブロック図である。It is a block diagram which shows the excitation and detection signal processing system of a reflective sensor with which the coin identification module of the 2nd Embodiment of this invention is equipped. バイカラー硬貨の構成を示す図である。It is a figure which shows the structure of a bicolor coin. 同実施形態の反射センサのコアとバイカラー硬貨と大小関係を示す図である。It is a figure which shows the magnitude relationship between the core of the reflective sensor of the embodiment, and a bicolor coin. 同実施形態の反射型センサ(反射型形状センサ及び反射型材質センサ)によるバイカラー硬貨の識別フローチャート図である。It is an identification flowchart figure of the bicolor coin by the reflective sensor (a reflective shape sensor and a reflective material sensor) of the embodiment. 同反射型センサを用いたモノメタル硬貨サンプルのデータサンプリング結果の信号波形図である。It is a signal waveform diagram of the data sampling result of the monometal coin sample using the reflection type sensor. 同反射型センサを用いたバイメタル硬貨サンプルのデータサンプリング結果の信号波形図である。It is a signal waveform diagram of the data sampling result of the bimetal coin sample using the reflection type sensor. 同実施形態において2種のモノメタル硬貨サンプルと4種のバイカラー硬貨サンプルとの両者を明確に区別できる効果を示す図である。It is a figure which shows the effect which can distinguish clearly both 2 types of monometallic coin samples and 4 types of bicolor coin samples in the same embodiment. 本発明の第3の実施形態のの硬貨識別モジュールに備える反射型センサと相互誘導型の直径センサとを用いてバイカラー硬貨を識別するフローチャート図である。It is a flowchart figure which identifies a bicolor coin using the reflection type sensor with which the coin identification module of the 3rd Embodiment of this invention is equipped, and a mutual induction type diameter sensor. 同反射型センサと相互誘導型の直径センサとを用いたバイメタル硬貨サンプルでの信号波形図である。It is a signal waveform diagram in a bimetal coin sample using the same reflection type sensor and a mutual induction type diameter sensor. 同実施形態において2種のモノメタル硬貨サンプルと4種のバイカラー硬貨サンプルとを明確に区別できる効果を示す図である。It is a figure which shows the effect which can distinguish clearly between 2 types of monometallic coin samples and 4 types of bicolor coin samples in the same embodiment. 本発明の第4の実施形態の硬貨識別モジュールに備える共振型の材質センサのみを用いてバイカラー硬貨を識別するフローチャート図である。It is a flowchart figure which identifies a bicolor coin only using the resonance type material sensor with which the coin identification module of the 4th Embodiment of this invention is equipped. 同共振型材質センサを用いたモノメタル硬貨サンプル(100円硬貨)のデータサンプリング結果の信号波形図である。It is a signal waveform diagram of the data sampling result of the monometal coin sample (100 yen coin) using the resonance type material sensor. 同共振型材質センサを用いたバイメタル硬貨サンプル(ケニア10シリング硬貨)のデータサンプリング結果の信号波形図である。It is a signal waveform diagram of the data sampling result of the bimetal coin sample (Kenyan 10 shilling coin) using the resonance type material sensor. 同実施形態において100円硬貨とケニア10シリング硬貨とが硬貨搬送速度のばらつきに拘わらず良好に区別できる効果を説明する図である。It is a figure explaining the effect which 100 yen coin and Kenyan 10 shilling coin can distinguish favorably irrespective of the dispersion | variation in coin conveyance speed in the same embodiment.

1 硬貨
2 搬送ベルト
3 搬送通路
5 相互誘導型直径材質センサ
51 透過Lセンサ
52 透過Rセンサ
54 励磁コイル
55、56 2次コイル
6 反射センサ
6a コア
62 2次コイル
7 共振型材質センサ
71、72 共振コイル
8 共振型材厚センサ
81、82 共振コイル
101 CPU
140、150 LC共振回路
180 バイカラー硬貨
180a コア部
180b リング部
DESCRIPTION OF SYMBOLS 1 Coin 2 Conveyance belt 3 Conveyance path 5 Mutual induction type diameter material sensor 51 Transmission L sensor 52 Transmission R sensor 54 Excitation coil 55, 56 Secondary coil 6 Reflection sensor 6a Core 62 Secondary coil 7 Resonance type material sensor 71, 72 Resonance Coil 8 Resonance type material thickness sensor 81, 82 Resonance coil 101 CPU
140, 150 LC resonance circuit 180 Bicolor coin 180a Core part 180b Ring part

Claims (8)

硬貨を片寄せた状態で1枚ずつ間隔を空けて搬送する搬送通路と、
前記搬送通路の硬貨摺動面に面して配置された反射型磁気センサと、
前記搬送通路の一端部を挟持するように配設された第1の透過型センサ及びこの第1の透過型センサと前記搬送通路を隔てて対向する位置で前記搬送通路の他端部を挟持するように配設された第2の透過型センサから成り、前記硬貨の材質を相互誘導方式で検出する相互誘導型の材質センサと、
前記相互誘導型の材質センサよりも前記搬送通路の下流側の位置において、共振方式で硬貨の厚みを検出する共振型の材厚センサと、
前記相互誘導型の材質センサよりも前記搬送通路の下流側の位置において、前記相互誘導型の材質センサとは別途に、硬貨の材質を共振方式で検出する共振型の材質センサとを備えた
ことを特徴とする硬貨識別装置。
A transport path for transporting the coins one by one with the coins being separated,
A reflective magnetic sensor disposed facing the coin sliding surface of the transport passage;
A first transmissive sensor disposed so as to sandwich one end portion of the transport passage, and the other end portion of the transport passage are sandwiched at a position facing the first transmissive sensor across the transport passage. A mutual inductive type material sensor that detects the material of the coin by a mutual induction method.
A resonance-type material thickness sensor that detects the thickness of a coin by a resonance method at a position on the downstream side of the conveyance path from the mutual induction-type material sensor;
A resonance type material sensor for detecting the material of coins by a resonance method is provided separately from the mutual induction type material sensor at a position downstream of the mutual induction type material sensor. A coin identification device characterized by the above.
前記請求項1記載の硬貨識別装置において、
前記第1の透過型センサ、前記反射型磁気センサ及び前記第2の透過型センサが前記搬送通路に直行する方向で直線状に配列され、これ等の3つのセンサの共用励磁コイルが前記第1の透過型センサと前記第2の透過型センサとのコア間で巻回されると共に、
前記相互誘導型の材質センサは、前記硬貨の径を相互誘導方式で検出する相互誘導型の径センサを兼用し、前記相互誘導型の材質センサの励磁コイルには複数種類の周波数の励磁信号が印加されて、前記相互誘導型の材質センサと相互誘導型の径センサとの両動作をする
ことを特徴とする硬貨識別装置。
The coin identification device according to claim 1,
The first transmission type sensor, the reflection type magnetic sensor, and the second transmission type sensor are linearly arranged in a direction perpendicular to the transport path, and a common excitation coil for these three sensors is the first excitation sensor. And is wound between the cores of the transmission type sensor and the second transmission type sensor,
The mutual induction type material sensor also serves as a mutual induction type diameter sensor that detects the diameter of the coin by a mutual induction method, and excitation signals of a plurality of types of frequencies are present in the excitation coil of the mutual induction type material sensor. Applied to the mutual induction type material sensor and the mutual induction type diameter sensor, both operations are performed.
前記請求項1記載の硬貨識別装置において、
前記搬送通路の所定位置には、前記搬送通路の硬貨片寄せ側に前記共振型の材厚センサが配置され、
前記搬送通路の所定位置において硬貨搬送方向と直交する方向で前記搬送通路の硬貨片寄せ側とは反対側に前記共振型の材質センサが配置される
ことを特徴とする硬貨識別装置。
The coin identification device according to claim 1,
The resonance-type material thickness sensor is arranged at a predetermined position of the transport passage on the coin shunting side of the transport passage,
The coin identification device, wherein the resonance-type material sensor is arranged on the opposite side of the transport passage in the direction orthogonal to the coin transport direction at a predetermined position of the transport passage.
前記請求項2記載の硬貨識別装置を用いた硬貨識別方法であって、
前記相互誘導型の材質センサ及び径センサ並びに前記反射型磁気センサを用いて、搬送通路を搬送されてきた硬貨の材質を検出して、その硬貨の金種を仮決定し、
その後、前記共振型の材質センサ及び前記共振型の材厚センサの出力信号に基づいて、前記仮決定した硬貨が真貨であることを確認して、前記仮決定した硬貨の金種を確定する
ことを特徴とする硬貨識別方法。
A coin identifying method using the coin identifying device according to claim 2,
Using the mutual induction type material sensor and the diameter sensor and the reflection type magnetic sensor, the material of the coin that has been transported through the transport path is detected, and the denomination of the coin is provisionally determined,
Then, based on the output signals of the resonance type material sensor and the resonance type material thickness sensor, it is confirmed that the tentatively determined coin is a true coin, and the denomination of the tentatively determined coin is determined. Coin identification method characterized by the above.
前記請求項1又は2記載の硬貨識別装置において、
前記反射型磁気センサは、
そのコアの直径が、搬送通路を搬送されてきたバイカラー硬貨のコア部の直径よりも小さく形成されている
ことを特徴とする硬貨識別装置。
In the coin identification device according to claim 1 or 2,
The reflective magnetic sensor is
The coin identification device, wherein the diameter of the core is smaller than the diameter of the core portion of the bicolor coin that has been conveyed through the conveyance path.
前記請求項1、2及び5の何れか1項に記載の硬貨識別装置を用いた硬貨識別方法であって、
硬貨を搬送する搬送通路の下面に反射型の形状センサ及び反射型の材質センサを配置し、
前記搬送通路を搬送されてきた硬貨に対する前記反射型の形状センサの出力波形と前記反射型の材質センサの出力波形とに基づいて、前記形状センサの出力波形の立上り部と立下り部とでの第1の所定同一値間の距離と前記材質センサの出力波形の立上り部と立下り部とでの第2の所定同一値間の距離との比率を算出し、
前記算出した比率を特徴量として、この特徴量を所定閾値と比較して、前記搬送通路を搬送されてきた硬貨がバイカラー硬貨かどうかを識別する
ことを特徴とする硬貨識別方法。
A coin identifying method using the coin identifying device according to any one of claims 1, 2, and 5.
A reflective shape sensor and a reflective material sensor are arranged on the lower surface of the transport passage for transporting coins,
Based on the output waveform of the reflection-type shape sensor and the output waveform of the reflection-type material sensor for the coin that has been transferred through the transfer path, the rising and falling portions of the output waveform of the shape sensor Calculating the ratio between the distance between the first predetermined identical values and the distance between the second predetermined identical values at the rising and falling parts of the output waveform of the material sensor;
Using the calculated ratio as a feature amount, comparing the feature amount with a predetermined threshold value, it is identified whether or not the coin that has been transported through the transport path is a bicolor coin.
前記請求項2又は5記載の硬貨識別装置を用いた硬貨識別方法であって、
硬貨を搬送する搬送通路の一端部を挟持するように相互誘導型の径センサの第3の透過型センサを配置し、且つ前記搬送通路の他端部を挟持するように前記相互誘導型の径センサの第4の透過型センサを配置すると共に、
搬送通路の下面に反射型の材質センサを配置し、
前記搬送通路を搬送されてきた硬貨に対する前記相互誘導型の径センサの出力波形と前記反射型の材質センサの出力波形とに基づいて、前記反射型の材質センサのピーク値をバイメタル硬貨のコア部の材質、相互誘導型の径センサの出力波形のピーク値の所定パーセント値での前記反射型の材質センサの出力信号値を前記バイメタル硬貨のリング部の材質として、前記バイメタル硬貨を識別する
ことを特徴とする硬貨識別方法。
A coin identifying method using the coin identifying device according to claim 2 or 5,
A third transmission type sensor of a mutual induction type diameter sensor is disposed so as to sandwich one end portion of the transport passage for transporting coins, and the mutual induction type diameter is disposed so as to sandwich the other end portion of the transport passage. Arranging a fourth transmissive sensor of the sensor;
A reflective material sensor is placed on the lower surface of the transport path,
Based on the output waveform of the mutual induction type diameter sensor and the output waveform of the reflective material sensor for the coin that has been transported through the transport path, the peak value of the reflective material sensor is determined based on the core portion of the bimetallic coin. Identifying the bimetal coin using the output signal value of the reflective material sensor at a predetermined percentage of the peak value of the output waveform of the mutual induction type diameter sensor as the material of the ring portion of the bimetal coin. A characteristic coin identification method.
前記請求項1、2及び5の何れか1項に記載の硬貨識別装置を用いた硬貨識別方法であって、
硬貨を搬送する搬送通路に共振型の材質センサを配置し、
前記搬送通路を搬送されてきた硬貨に対する前記共振型の材質センサの出力波形に基づいて、前記共振型の材質センサの出力波形の頂部での2つのピーク値間の距離と、前記出力波形の立上り部と立下り部とでの所定同一値間の距離との比率を算出し、
前記算出した比率を特徴量として、この特徴量を所定閾値と比較して、前記搬送通路を搬送されてきた硬貨がバイカラー硬貨かどうかを識別する
ことを特徴とする硬貨識別方法。
A coin identifying method using the coin identifying device according to any one of claims 1, 2, and 5.
A resonance type material sensor is arranged in the conveyance path for conveying coins,
Based on the output waveform of the resonance-type material sensor with respect to the coins conveyed through the transfer path, the distance between two peak values at the top of the output waveform of the resonance-type material sensor and the rise of the output waveform Calculating the ratio of the distance between predetermined identical values at the part and the falling part,
Using the calculated ratio as a feature amount, comparing the feature amount with a predetermined threshold value, it is identified whether or not the coin that has been transported through the transport path is a bicolor coin.
JP2009081129A 2009-03-30 2009-03-30 Coin identification device and coin identification method Expired - Fee Related JP5336900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009081129A JP5336900B2 (en) 2009-03-30 2009-03-30 Coin identification device and coin identification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009081129A JP5336900B2 (en) 2009-03-30 2009-03-30 Coin identification device and coin identification method

Publications (2)

Publication Number Publication Date
JP2010231705A JP2010231705A (en) 2010-10-14
JP5336900B2 true JP5336900B2 (en) 2013-11-06

Family

ID=43047423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009081129A Expired - Fee Related JP5336900B2 (en) 2009-03-30 2009-03-30 Coin identification device and coin identification method

Country Status (1)

Country Link
JP (1) JP5336900B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101383424B1 (en) 2013-03-21 2014-04-08 주식회사 엘지씨엔에스 Coin handling apparatus
US11054488B2 (en) 2016-03-25 2021-07-06 Glory, Ltd. Magnetic detection apparatus, coin recognition unit and magnetic detection method
JP6875904B2 (en) * 2017-03-29 2021-05-26 グローリー株式会社 Magnetic detector and magnetic detection method using magnetic detector
JP7267037B2 (en) * 2019-02-28 2023-05-01 グローリー株式会社 Magnetic detection device and coin identification device
JP7547839B2 (en) * 2020-07-31 2024-09-10 沖電気工業株式会社 DETECTION APPARATUS, COIN VALIDATION APPARATUS, AND DETECTION PROGRAM

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3718619B2 (en) * 2000-06-09 2005-11-24 グローリー工業株式会社 Coin identification device
JP3908473B2 (en) * 2001-03-16 2007-04-25 グローリー株式会社 Metal piece identification device made of multiple materials
JP4157320B2 (en) * 2002-04-24 2008-10-01 グローリー株式会社 Coin identification device
JP2004220114A (en) * 2003-01-09 2004-08-05 Japan Mint Coin-like object, and its identifying method and device
JP4351484B2 (en) * 2003-06-25 2009-10-28 グローリー株式会社 Coin identification sensor

Also Published As

Publication number Publication date
JP2010231705A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
EP0057972B1 (en) A device for detecting a metal strip embedded in paper
JP5336900B2 (en) Coin identification device and coin identification method
JPH02268391A (en) Coin sorter
JP5178243B2 (en) Coin identification device
US20040129771A1 (en) Device for accepting banknotes
JP4157335B2 (en) Coin identification device and coin identification sensor used therefor
EP3059711B1 (en) Coin identification device
JP3908473B2 (en) Metal piece identification device made of multiple materials
CN216435041U (en) Reflection-type magnetic detection device, inductive sensor and coin discrimination and sorting system
KR101957868B1 (en) Coin processing device
JP3718619B2 (en) Coin identification device
JP5034573B2 (en) Coin identification method and identification apparatus
JPH09245214A (en) Coin discrimination device having temperature compensation function for coin processing machine
JP5359716B2 (en) Coin identification device
JP2008003666A (en) Coin recognition device
EP1241636A2 (en) Coin discriminator for coin made of plural materials
KR101328637B1 (en) Apparatus for identifying coin
JP5346205B2 (en) Coin identification device and coin identification method
CN108122323B (en) Coin identification device
JP3201185B2 (en) Coin identification device
JP2002279474A (en) Abrasion resisting material and coin discriminating sensor in coin conveying passage
CN113611035A (en) Reflection-type magnetic detection device, inductive sensor, sorting system and control method
JP2011180958A (en) Detection unit for coin identification device
JP5347606B2 (en) Coin identification device
KR20240086077A (en) Coin identification device using magnetic material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120120

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees