WO2022149477A1 - Oxide solid electrolyte, electrode mixture, and all-solid lithium ion battery - Google Patents

Oxide solid electrolyte, electrode mixture, and all-solid lithium ion battery Download PDF

Info

Publication number
WO2022149477A1
WO2022149477A1 PCT/JP2021/047806 JP2021047806W WO2022149477A1 WO 2022149477 A1 WO2022149477 A1 WO 2022149477A1 JP 2021047806 W JP2021047806 W JP 2021047806W WO 2022149477 A1 WO2022149477 A1 WO 2022149477A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
solid electrolyte
active material
electrode active
oxide solid
Prior art date
Application number
PCT/JP2021/047806
Other languages
French (fr)
Japanese (ja)
Inventor
裕 永田
順二 秋本
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Publication of WO2022149477A1 publication Critical patent/WO2022149477A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D5/00Sulfates or sulfites of sodium, potassium or alkali metals in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D7/00Carbonates of sodium, potassium or alkali metals in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Definitions

  • the present invention relates to a solid oxide electrolyte, an electrode mixture, and an all-solid-state lithium-ion battery.
  • Lithium-ion secondary batteries have high energy density and are used in information-related equipment such as personal computers and mobile phones. In recent years, development of high-output and high-capacity lithium-ion secondary batteries for electric vehicles or hybrid vehicles has been promoted.
  • the negative electrode mixture layer, the solid electrolyte layer, and the positive electrode mixture layer are in solid-solid contact, respectively. Therefore, the movement paths of electrons and ions are significantly reduced as compared with the conventional lithium ion secondary battery using an organic electrolytic solution.
  • the oxide solid electrolyte having high conductivity is a hard particle and is not easily deformed, a good contact state between the solid and the solid cannot be obtained even by pressing or the like. Therefore, in the oxide solid electrolyte having high conductivity, the conductivity of electrons or ions between the oxide solid electrolytes is low. Therefore, it is currently required to improve the contact state between solid electrolytes.
  • Patent Document 1 sinters a lithium ion conductive inorganic substance containing 2.6 to 52.0% of ZrO2 component at an oxide-based mass%.
  • the technology to be used is disclosed.
  • Non-Patent Document 1 discloses a technique for sintering glass ceramics having a NASICON type crystal structure.
  • Non-Patent Document 2 discloses a technique for hot-pressing Li 3 BO 3 -Li 2 SO 4 .
  • Patent Document 1 and Non-Patent Document 1 the contact between particles is improved by sintering at a high temperature, but the reaction of the solid electrolyte and the electrode active material at a high temperature causes ionic conductivity and charge / discharge reactivity. There is a problem of deterioration.
  • Patent Document 1 and Non-Patent Document 1 since processing at a high temperature is required, there is a problem that equipment cost and running cost are high.
  • the contact state between particles is improved by hot-pressing a material for which a good contact state between particles cannot be formed at room temperature, but a high temperature is required. There is a problem that equipment cost and running cost are high. Therefore, there is a demand for a solid electrolyte having higher deformability at room temperature than the solid electrolyte disclosed in Non-Patent Document 2.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an oxide solid electrolyte having good deformability at room temperature and having high conductivity.
  • the normal temperature means 20 ° C to 30 ° C.
  • "good deformability at room temperature” means, for example, deformability at which the relative density becomes 95% or more in a press at room temperature and 1 GPa.
  • the oxide solid electrolyte according to one aspect of the present invention is a composite containing lithium sulfate (Li 2 SO 4 ) and lithium carbonate (Li 2 CO 3 ).
  • the molar ratio of the lithium sulfate to the lithium carbonate (Li 2 SO 4 : Li 2 CO 3 ) is 20:80 to 80:20.
  • the position of the exothermic peak is 200 ° C. or less, and the conductivity is 1.0 ⁇ 10 -7 S / cm or more.
  • the oxide solid electrolyte according to (1) above is composed of a group consisting of lithium chloride, lithium bromide, lithium iodide, lithium borate, lithium phosphate, lithium nitrate, lithium silicate, and lithium aluminate. At least one selected may be further included.
  • the electrode mixture according to one aspect of the present invention is With the oxide solid electrolyte according to (1) or (2) above, Electrode active material and With conductive material Including The mass ratio of the oxide solid electrolyte, the electrode active material, and the conductive material (oxide solid electrolyte: electrode active material: conductive material) is 20 to 80:20 to 80: 0 to 30.
  • the all-solid-state lithium-ion battery according to one aspect of the present invention contains the oxide solid electrolyte according to the above (1) or (2).
  • the all-solid-state lithium-ion battery according to (4) above may include a solid electrolyte layer containing the oxide solid electrolyte.
  • the all-solid lithium-ion battery according to (4) or (5) above may include a positive electrode active material layer containing the oxide solid electrolyte or a negative electrode active material layer containing the oxide solid electrolyte.
  • the positive electrode active material layer contains the oxide solid electrolyte, the positive electrode active material, and the positive electrode conductive material.
  • the mass ratio (oxide solid electrolyte: positive electrode active material: positive electrode conductive material) of the oxide solid electrolyte, the positive electrode active material, and the positive electrode conductive material is 20 to 80:20 to 80: 0 to 30. You may. (8) In the all-solid lithium-ion battery according to (6) or (7) above, the negative electrode active material layer contains the oxide solid electrolyte, the negative electrode active material, and the negative electrode conductive material. The mass ratio (oxide solid electrolyte: negative electrode active material: negative electrode conductive material) of the oxide solid electrolyte, the negative electrode active material, and the negative electrode conductive material is 20 to 80:20 to 80: 0 to 30. You may.
  • an oxide solid electrolyte, an electrode mixture, and an all-solid-state lithium-ion battery having good deformability at room temperature and high conductivity.
  • the oxide solid electrolyte of the present disclosure is a composite containing lithium sulfate (Li 2 SO 4 ) and lithium carbonate (Li 2 CO 3 ).
  • the composite means a composite obtained by mixing a raw material containing lithium sulfate and lithium carbonate, for example, with a planetary ball mill.
  • the oxide solid electrolyte of the present disclosure contains lithium sulfate and lithium carbonate, so that good conductivity and good deformability can be obtained.
  • the molar ratio of lithium sulfate to the lithium carbonate (Li 2 SO 4 : Li 2 CO 3 ) is 20:80 to 80:20).
  • the solid oxide electrolyte of the present disclosure contains lithium sulfate (Li 2 SO 4 ) and lithium carbonate (Li 2 CO 3 ), and the molar ratio of lithium sulfate to lithium carbonate (Li 2 SO 4 : Li 2 CO 3 ). Is from 20:80 to 80:20.
  • the oxide solid electrolyte has good deformability at room temperature.
  • a more preferable molar ratio of lithium sulfate to lithium carbonate is 30:70 to 70:30.
  • the total content of lithium sulfate and lithium carbonate is preferably 30% by mass to 100% by mass.
  • the total content of lithium sulfate and lithium carbonate is in the above range, better deformability at room temperature can be obtained, which is preferable.
  • the total content of lithium sulfate and lithium carbonate is 40% by mass to 100% by mass.
  • the solid oxide electrolyte of the present disclosure is at least one selected from the group consisting of lithium chloride, lithium bromide, lithium iodide, lithium borate, lithium phosphate, lithium nitrate, lithium silicate, and lithium aluminate. Further, it is preferable to include it. Higher conductivity by further comprising at least one selected from the group consisting of lithium chloride, lithium bromide, lithium iodide, lithium borate, lithium phosphate, lithium nitrate, lithium silicate, and lithium aluminate. Is preferable because it can be obtained.
  • the total content of lithium chloride, lithium bromide, lithium iodide, lithium borate, lithium phosphate, lithium nitrate, lithium silicate, and lithium aluminome in the solid oxide electrolyte of the present disclosure is 0% by mass to 70% by mass. % Is preferable. If the total content of lithium chloride, lithium bromide, lithium iodide, lithium borate, lithium phosphate, lithium nitrate, lithium silicate, and lithium aluminate is within the above range, better conductivity can be obtained. It is preferable because it can be used. More preferably, the total content of lithium chloride, lithium bromide, lithium iodide, lithium borate, lithium phosphate, lithium nitrate, lithium silicate, and lithium aluminate is 0% by mass to 60% by mass.
  • the chemical composition of the oxide solid electrolyte of the present disclosure is, for example, an energy-dispersed X-ray mounted on an electrolytic emission type transmission electron microscope (TEM) in a cross section of a positive electrode, a solid electrolyte layer, or a negative electrode of a lithium ion secondary battery. It can be quantified by a spectroscope (EDX) and Raman spectroscopy.
  • TEM transmission electron microscope
  • the position of the exothermic peak is 200 ° C or less in the curve obtained by differential scanning calorimetry
  • the solid oxide electrolyte of the present disclosure has an exothermic peak of 200 ° C. or lower in the curve (DSC curve) obtained by differential scanning calorimetry (DSC) measurement.
  • DSC curve differential scanning calorimetry
  • a more preferable position of the exothermic peak is 190 ° C. or lower.
  • the lower limit of the position of the exothermic peak is not particularly limited, but may be, for example, 80 ° C. or higher. If there are a plurality of exothermic peaks on the DSC curve, the position of the peak with the largest calorific value is defined as the exothermic peak position.
  • the oxide solid electrolyte of the present disclosure preferably has a calorific value of 5 J / g or more at the exothermic peak of 200 ° C. or lower obtained in the DSC curve.
  • a calorific value of 5 J / g or more at the exothermic peak of 200 ° C. or lower obtained in the DSC curve.
  • a more preferable calorific value is 10 J / g or more.
  • a more preferable calorific value is 15 J / g or more.
  • the upper limit of the calorific value of the exothermic peak is not particularly limited, but may be, for example, 500 J / g or less.
  • the exothermic peak of the oxide solid electrolyte of the present disclosure can be measured by, for example, the following method.
  • a glove box filled with an inert gas for example, Ar
  • an oxide solid electrolyte about 10 mg
  • an Al sealed sample container (GCA-0017 manufactured by Hitachi High-Tech Science Co., Ltd.) and sealed.
  • a differential scanning calorimeter for example, DSC6200 manufactured by Seiko Instruments
  • the DSC of the oxide solid electrolyte is measured. You can get a curve.
  • the position of the exothermic peak and the calorific value of the oxide solid electrolyte can be obtained.
  • the peak position and calorific value can be calculated using, for example, the software attached to the differential scanning calorimeter DSC6200.
  • the conductivity of the oxide solid electrolyte of the present disclosure is 1.0 ⁇ 10 -7 S / cm or more. If the conductivity of the oxide solid electrolyte is less than 1.0 ⁇ 10 -7 S / cm, the characteristics of the all-solid-state lithium-ion battery may deteriorate.
  • the conductivity of the more preferable solid oxide electrolyte is 2.0 ⁇ 10 -7 S / cm or more.
  • a more preferable conductivity of the oxide solid electrolyte is 4.0 ⁇ 10 -7 S / cm or more.
  • the conductivity of the oxide solid electrolyte of the present disclosure can be measured by, for example, the following method.
  • an argon gas atmosphere glove box put Al foil or Au foil punched to a diameter of 10 mm in a tablet molder with a diameter of 10 mm (for example, manufactured by Nippon Kogaku), put solid electrolyte powder on it, smooth it, and then add more.
  • An Al foil or Au foil punched to a diameter of 10 mm is put in and pressed at room temperature at 1 GPa for 30 minutes to obtain pellets for measuring a solid electrolyte. The obtained pellets are placed in a flat cell and sealed to form a cell for conductivity measurement.
  • an impedance measuring device for example, Solartron Impedance Analyzer A1260 applies a voltage of 50 mV and a measurement frequency of 1 Hz to 32 MHz.
  • the conductivity can be calculated from the resistance value at the low frequency end of the semi-arc of the obtained Nyquist plot.
  • the oxide solid electrolyte of the present disclosure is excellent in deformability at room temperature.
  • the relative density represented by the following formula (1) becomes 95% or more. More preferably, the relative density when pressed at 1 GPa at room temperature is 98% or more. More preferably, the relative density when pressed at 1 GPa at room temperature is 99% or more.
  • the relative density of the oxide solid electrolyte of the present disclosure can be measured by the following method.
  • an argon gas atmosphere glove box put Al foil or Au foil punched to a diameter of 10 mm in a tablet molder with a diameter of 10 mm (for example, manufactured by Nippon Kogaku), put solid electrolyte powder from above, and after leveling, further diameter.
  • Al foil or Au foil punched to 10 mm is put in and pressed at room temperature at 1 GPa for 30 minutes to obtain pellets for relative density measurement. It can be calculated by dividing the density of the obtained pellets by the theoretical density calculated from the density (g / cm 3 ) and the mass (g) of each raw material as in the above equation (1).
  • the shape of the oxide solid electrolyte of the present disclosure is not particularly limited, but for example, granules are preferable.
  • the method for producing the oxide solid electrolyte of the present disclosure is not particularly limited, and examples thereof include a solid phase synthesis method, a dry mechanical milling treatment, a wet mechanical milling treatment, a melt quenching method, and a sol-gel method.
  • a dry mechanical milling treatment is particularly preferable.
  • the oxide solid electrolyte of the present disclosure can be obtained by mixing the raw material of the oxide solid electrolyte with zirconia balls at 370 rpm for 60 hours. The production conditions can be appropriately adjusted by measuring the DSC of the obtained solid oxide electrolyte and confirming the position of the exothermic peak and the calorific value.
  • the electrode mixture of the present disclosure includes the oxide solid electrolyte, the electrode active material and the conductive material of the present disclosure.
  • the electrode mixture will be described below.
  • the electrode active material is not particularly limited as long as it is used in a lithium ion secondary battery.
  • the electrode active material (positive electrode active material) used for the positive electrode is not particularly limited as long as it is a material capable of reversibly releasing and storing lithium ions and capable of electron transport.
  • As a positive electrode active material lithium transition metal oxides such as lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, and lithium iron phosphorus oxide, and sulfur-based active materials such as sulfur and its discharge products, lithium sulfide and lithium polysulfide. And so on.
  • the positive electrode active material may be composed of only one of the above materials, or may be composed of two or more of the above materials.
  • the electrode active material (negative electrode active material) used for the negative electrode is not particularly limited as long as it is a material capable of reversibly releasing and storing lithium ions and capable of electron transport.
  • the negative electrode active material include carbonaceous materials such as natural graphite, artificial graphite, resin charcoal, carbon fiber, activated charcoal, hard carbon, and soft carbon; tin, tin alloy, silicon, silicon alloy, gallium, gallium alloy, indium, etc. Alloy-based materials mainly composed of indium alloys, aluminum, aluminum alloys, etc .; conductive polymers such as polyacene, polyacetylene, polypyrrole, etc .; metallic lithium: lithium titanium composite oxide (for example, Li 4 Ti 5 O 12 ) and the like can be mentioned.
  • the negative electrode active material may be composed of only one of the above materials, or may be composed of two or more of the above materials.
  • a conductive auxiliary agent that can be generally used for a lithium ion secondary battery and an all-solid-state lithium ion secondary battery can be used.
  • the conductive material (positive electrode conductive material) used for the positive electrode include carbon black such as acetylene black and kechen black; carbon fiber; vapor phase carbon fiber; graphite powder; carbon nanotube and carbon material such as activated charcoal. be able to.
  • the conductive material may be composed of only one of the above materials, or may be composed of two or more of the above materials.
  • Examples of the conductive material (negative electrode conductive material) used for the negative electrode include carbon black such as acetylene black and kechen black; carbon fiber; vapor phase carbon fiber; graphite powder; carbon nanotube and carbon material such as activated charcoal. be able to.
  • the conductive material may be composed of only one of the above materials, or may be composed of two or more of the above materials.
  • Electrode active material Conductive material
  • the mass ratio of the oxide solid electrolyte of the present disclosure, the electrode active material, and the conductive material is 20 to 80:20 to 80: 0 to 30.
  • the mass ratio of the oxide solid electrolyte of the present disclosure, the electrode active material, and the conductive material is 20 to 80:20 to 80: 0 to 30.
  • the mass ratio of the oxide solid electrolyte: the negative electrode active material: the negative electrode conductive material is 20 to 80:20 to 80: 0 to 30.
  • the content of the oxide solid electrolyte in the electrode mixture of the present disclosure is preferably 20% by mass to 80% by mass. Further, the content of the electrode active material in the electrode mixture of the present disclosure is preferably 20% by mass to 80% by mass.
  • the content of the conductive material in the electrode mixture of the present disclosure is preferably 0% by mass to 30% by mass. The content of the more preferable conductive material is 0% by mass to 25% by mass.
  • the electrode mixture of the present disclosure may further contain a binder.
  • the binder is not particularly limited, but a thermoplastic resin, a thermosetting resin and the like can be used, and for example, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyfluorovinylidene (PVDF), styrene butadiene rubber, tetra.
  • the content of the binder in the electrode mixture of the present disclosure is preferably 0% by mass to 10% by mass. Within this range, the active material or the like can be retained while maintaining the conductivity of the electrode mixture.
  • a more preferable binder content is 0% by mass to 5% by mass.
  • the ratio of each component in the electrode mixture is, for example, in the cross section of the positive electrode or the negative electrode of the lithium ion secondary battery, the energy dispersion type X-ray spectrometer (EDX) mounted on the electrolytic emission type transmission electron microscope (TEM) and Raman. It can be quantified by spectroscopy and combustion decomposition method.
  • EDX energy dispersion type X-ray spectrometer
  • TEM electrolytic emission type transmission electron microscope
  • Raman Raman
  • the method for producing the electrode mixture of the present disclosure is not particularly limited as long as the oxide solid electrolyte, the electrode active material and the conductive material are uniformly mixed.
  • Examples of the method for producing the electrode mixture of the present disclosure include a dry mechanical milling treatment, a wet mechanical milling treatment, and a melt quenching method.
  • the all-solid-state lithium-ion battery 100 includes a solid electrolyte layer 11, a positive electrode mixture layer 12, a negative electrode mixture layer 13, a positive electrode current collector 14, and a negative electrode current collector 15.
  • the all-solid-state lithium-ion battery 100 includes the oxide solid electrolyte of the present disclosure. That is, the all-solid lithium-ion battery 100 contains the oxide solid electrolyte of the present disclosure in at least one of the solid electrolyte layer 11, the positive electrode active material layer 12, and the positive electrode active material layer 12.
  • each part will be described.
  • the solid electrolyte layer 11 is a layer formed between the positive electrode active material layer 12 and the negative electrode active material layer 13.
  • the solid electrolyte layer 11 contains a solid electrolyte.
  • a solid electrolyte other than the oxide solid electrolyte of the present disclosure may be used.
  • the solid electrolyte other than the oxide solid electrolyte of the present disclosure include lithium aluminum titanium phosphorus oxide (LATP), lithium aluminum germanium phosphorus oxide (LAGP), lithium lanthanum zirconium oxide (LLZ) and the like.
  • These solid electrolytes may be used alone or in admixture of two or more, or may be combined with the oxide solid electrolytes of the present disclosure.
  • the thickness of the solid electrolyte layer 11 can be appropriately selected.
  • the thickness of the solid electrolyte layer 11 is preferably 200 ⁇ m or less, for example.
  • the lithium ion conductivity of the solid electrolyte other than the oxide solid electrolyte of the present disclosure is preferably 1.0 ⁇ 10 -5 S / cm or more, more preferably 1.0 ⁇ 10 -4 S / cm or more. be. Within this range, the battery characteristics of the all-solid-state lithium-ion battery 100 are further improved.
  • the solid electrolyte layer 11 may further contain a binder.
  • the binder is not particularly limited, but a thermoplastic resin, a thermosetting resin and the like can be used, and for example, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyfluorovinylidene (PVDF), styrene butadiene rubber, tetra.
  • the content of the binder in the solid electrolyte layer 11 of the present disclosure is preferably 0% by mass to 10% by mass. Within this range, the solid electrolyte and the like can be retained while maintaining the conductivity of the electrode mixture. A more preferable binder content is 0% by mass to 5% by mass.
  • the positive electrode active material layer 12 is formed on the positive electrode current collector 14.
  • the positive electrode active material layer 12 contains a solid electrolyte, an electrode active material, and a conductive material.
  • the positive electrode active material layer 12 will be described.
  • the thickness of the positive electrode active material layer 12 can be appropriately selected.
  • the thickness of the positive electrode active material layer 12 is preferably 200 ⁇ m or less, for example.
  • the oxide solid electrolyte of the present disclosure may be contained, or a solid electrolyte other than the oxide solid electrolyte of the present disclosure may be contained.
  • the solid electrolyte other than the oxide solid electrolyte of the present disclosure include lithium aluminum titanium phosphorus oxide (LATP), lithium aluminum germanium phosphorus oxide (LAGP), lithium lanthanum zirconium oxide (LLZ) and the like.
  • the solid electrolyte other than the above-mentioned oxide solid electrolyte of the present disclosure may be used alone or in combination of two or more, or may be combined with the oxide solid electrolyte of the present disclosure.
  • the lithium ion conductivity of the solid electrolyte other than the oxide solid electrolyte of the present disclosure is preferably 1.0 ⁇ 10 -5 S / cm or more, more preferably 1.0 ⁇ 10 -4 S / cm or more. be. Within this range, the battery characteristics of the all-solid-state lithium-ion battery 100 are further improved.
  • the electrode active material (positive electrode active material) used for the positive electrode is not particularly limited as long as it is a material capable of reversibly releasing and storing lithium ions and capable of electron transport.
  • a positive electrode active material for example, lithium transition metal oxides such as lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, and lithium iron phosphorus oxide, and sulfur-based active materials such as sulfur and its discharge products, lithium sulfide and lithium polysulfide. And so on.
  • the positive electrode active material may be composed of only one of the above materials, or may be composed of two or more of the above materials.
  • the positive electrode conductive material a conductive auxiliary agent that can be generally used for a lithium ion secondary battery and an all-solid-state lithium ion secondary battery can be used.
  • the positive electrode conductive material include carbon black such as acetylene black and kechen black; carbon fiber; vapor phase carbon fiber; graphite powder; carbon nanotube and carbon material such as activated charcoal.
  • the conductive material may be composed of only one of the above materials, or may be composed of two or more of the above materials.
  • the oxide solid electrolyte of the present disclosure is used when the total mass of the oxide solid electrolyte, the positive electrode active material, and the positive electrode conductive material is 100.
  • the mass ratio of the positive electrode active material and the positive electrode conductive material is preferably 20 to 80:20 to 80: 0 to 30. If the mass ratio of the oxide solid electrolyte of the present disclosure, the positive electrode active material, and the positive electrode conductive material is in the above range, higher battery characteristics can be obtained.
  • the content of the oxide solid electrolyte in the positive electrode active material layer 12 is preferably 20% by mass to 80% by mass. Further, the content of the positive electrode active material in the positive electrode active material layer 12 is preferably 20% by mass to 80% by mass.
  • the content of the positive electrode conductive material in the positive electrode active material layer 12 is preferably 0% by mass to 30% by mass. The content of the positive electrode conductive material is more preferably 0% by mass to 25% by mass.
  • the positive electrode active material layer 12 may further contain the binder used in the electrode mixture of the present disclosure.
  • the negative electrode active material layer 13 is formed on the negative electrode current collector 15.
  • the negative electrode active material layer 13 contains a solid electrolyte, a negative electrode active material, and a negative electrode conductive material.
  • the negative electrode active material layer 13 will be described.
  • the thickness of the negative electrode active material layer 13 can be appropriately selected.
  • the thickness of the negative electrode active material layer 13 is preferably 200 ⁇ m or less, for example.
  • the oxide solid electrolyte of the present disclosure may be contained, or a solid electrolyte other than the oxide solid electrolyte of the present disclosure may be contained.
  • the solid electrolyte other than the oxide solid electrolyte of the present disclosure include lithium aluminum titanium phosphorus oxide (LATP), lithium aluminum germanium phosphorus oxide (LAGP), lithium lanthanum zirconium oxide (LLZ) and the like.
  • the solid electrolyte other than the above-mentioned oxide solid electrolyte of the present disclosure may be used alone or in combination of two or more, or may be combined with the oxide solid electrolyte of the present disclosure.
  • the lithium ion conductivity of the solid electrolyte other than the oxide solid electrolyte of the present disclosure is preferably 1.0 ⁇ 10 -5 S / cm or more, more preferably 1.0 ⁇ 10 -4 S / cm or more. be. Within this range, the battery characteristics of the all-solid-state lithium-ion battery 100 are further improved.
  • the negative electrode active material is not particularly limited as long as it can reversibly release and occlude lithium ions and can transport electrons.
  • the negative electrode active material include carbonaceous materials such as natural graphite, artificial graphite, resin charcoal, carbon fiber, activated charcoal, hard carbon, and soft carbon; tin, tin alloy, silicon, silicon alloy, gallium, gallium alloy, indium, etc. Alloy-based materials mainly composed of indium alloys, aluminum, aluminum alloys, etc .; conductive polymers such as polyacene, polyacetylene, polypyrrole, etc .; metallic lithium: lithium titanium composite oxide (for example, Li 4 Ti 5 O 12 ) and the like can be mentioned.
  • the negative electrode active material may be composed of only one of the above materials, or may be composed of two or more of the above materials.
  • the negative electrode conductive material a conductive auxiliary agent that can be generally used for a lithium ion secondary battery and an all-solid-state lithium ion secondary battery can be used.
  • the positive electrode conductive material include carbon black such as acetylene black and kechen black; carbon fiber; vapor phase carbon fiber; graphite powder; carbon nanotube and carbon material such as activated charcoal.
  • the conductive material may be composed of only one of the above materials, or may be composed of two or more of the above materials.
  • the oxide solid electrolyte of the present disclosure is used when the total mass of the oxide solid electrolyte, the negative electrode active material, and the negative electrode conductive material is 100.
  • the mass ratio of the negative electrode active material and the negative electrode conductive material is 20 to 80:20 to 80: 0 to 30. If the mass ratio of the oxide solid electrolyte of the present disclosure, the negative electrode active material, and the negative electrode conductive material is in the above range, higher battery characteristics can be obtained.
  • the content of the oxide solid electrolyte in the negative electrode active material layer 13 is preferably 20% by mass to 80% by mass. Further, the content of the negative electrode active material in the negative electrode active material layer 13 is preferably 20% by mass to 80% by mass.
  • the content of the negative electrode conductive material in the negative electrode active material layer 13 is preferably 0% by mass to 30% by mass. A more preferable content of the negative electrode conductive material is 0% by mass to 25% by mass.
  • the negative electrode active material layer 13 may further contain the binder used in the electrode mixture of the present disclosure.
  • the positive electrode current collector 14 is provided so as to be in contact with the positive electrode active material layer 12. The presence of the positive electrode current collector 14 facilitates the extraction of electricity from the positive electrode active material layer 12.
  • a known positive electrode current collector can be used, and examples thereof include Al and SUS. Further, the thickness and shape of the positive electrode current collector 14 can be appropriately selected.
  • the negative electrode current collector 15 is provided so as to be in contact with the negative electrode active material layer 13. The presence of the negative electrode current collector 15 facilitates the extraction of electricity from the negative electrode active material layer 13.
  • a known negative electrode current collector can be used, and examples thereof include Cu. If the negative electrode active material layer 13 has high electron conductivity, the negative electrode current collector 15 may not be provided. Further, the thickness and shape of the negative electrode current collector 15 can be appropriately selected.
  • the all-solid-state lithium-ion battery 100 can be manufactured by a known method.
  • the positive electrode current collector 14 is provided, but if the electron conductivity of the positive electrode active material layer 12 is high, the positive electrode current collector 14 may not be provided.
  • the negative electrode current collector 15 is provided, but if the negative electrode active material layer 13 has high electron conductivity, the negative electrode current collector 15 may not be provided.
  • the conditions in the examples are one condition example adopted for confirming the feasibility and effect of the present invention, and the present invention is based on this one condition example. Not limited.
  • the present invention can adopt various conditions as long as the gist of the present invention is not deviated and the object of the present invention is achieved.
  • Example 1 Lithium sulfate (manufactured by Wako Pure Chemical Industries, Ltd.) and lithium carbonate (manufactured by Rare Metallic) were weighed at 543 mg of lithium sulfate and 157 mg of lithium carbonate so as to have a molar ratio of 70:30.
  • Example 1 by using a planetary ball mill (Premium Line P-7 manufactured by Frilsch), weighing lithium sulfate and lithium carbonate are placed in an 80 ml pot together with about 120 g of 5 mm zirconia balls and mixed at a revolution speed of 370 rpm for 60 hours. Oxide solid electrolyte was obtained.
  • Example 2 After weighing 828 mg of lithium sulfate and 372 mg of lithium carbonate so that the molar ratio of lithium sulfate and lithium carbonate is 60:40, they are mixed under the same conditions as in Example 1 to obtain the oxide solid electrolyte of Example 2. rice field.
  • Example 3 Lithium sulfate and lithium carbonate were weighed at 359 mg of lithium sulfate and 241 mg of lithium carbonate so that the molar ratio was 50:50, and then mixed under the same conditions as in Example 1 to obtain the oxide solid electrolyte of Example 3. rice field.
  • Example 4 After weighing 299 mg of lithium sulfate and 301 mg of lithium carbonate so that the molar ratio of lithium sulfate and lithium carbonate was 40:60, they were mixed under the same conditions as in Example 1 to obtain the oxide solid electrolyte of Example 4. ..
  • Example 5 After weighing 273 mg of lithium sulfate and 427 mg of lithium carbonate so that the molar ratio of lithium sulfate and lithium carbonate was 30:70, they were mixed under the same conditions as in Example 1 to obtain the oxide solid electrolyte of Example 5. ..
  • Example 6 Lithium sulfate, lithium carbonate, and lithium iodide (manufactured by Sigma Aldrich) were weighed with 717 mg of lithium sulfate, 321 mg of lithium carbonate, and 162 mg of lithium iodide so that the molar ratio was 54:36:10. Mixing was performed under the same conditions to obtain the oxide solid electrolyte of Example 6.
  • Example 7 Lithium sulfate, lithium carbonate, and lithium iodide were weighed at 614 mg of lithium sulfate, 275 mg of lithium carbonate, and 311 mg of lithium iodide so as to have a molar ratio of 48:32:20, and then mixed under the same conditions as in Example 1. The oxide solid electrolyte of Example 7 was obtained.
  • Example 8 Lithium sulfate, lithium carbonate, and lithium iodide were weighed at 518 mg of lithium sulfate, 232 mg of lithium carbonate, and 450 mg of lithium iodide so as to have a molar ratio of 42:28:30, and then mixed under the same conditions as in Example 1. The oxide solid electrolyte of Example 8 was obtained.
  • Example 9 Lithium sulfate, lithium carbonate, and lithium iodide were weighed at 428 mg of lithium sulfate, 192 mg of lithium carbonate, and 280 mg of lithium iodide so as to have a molar ratio of 36:24:40, and then mixed under the same conditions as in Example 1. The oxide solid electrolyte of Example 9 was obtained.
  • Example 10 Lithium sulfate, lithium carbonate, and lithium iodide were weighed at 345 mg of lithium sulfate, 155 mg of lithium carbonate, and 700 mg of lithium iodide so as to have a molar ratio of 30:20:50, and then mixed under the same conditions as in Example 1. The oxide solid electrolyte of Example 10 was obtained.
  • Example 11 Lithium sulfate, lithium carbonate, and lithium chloride (manufactured by Sigma Aldrich) were weighed with 746 mg of lithium sulfate, 334 mg of lithium carbonate, and 120 mg of lithium chloride so as to have a molar ratio of 48:32:20, and then the same conditions as in Example 1. To obtain the oxide solid electrolyte of Example 11.
  • Example 12 Lithium sulfate, lithium carbonate, and lithium chloride were weighed at 722 mg of lithium sulfate, 323 mg of lithium carbonate, and 155 mg of lithium chloride so as to have a molar ratio of 45:30:25, and then mixed under the same conditions as in Example 1 to Example. Twelve oxide solid electrolytes were obtained.
  • Example 13 Lithium sulfate, lithium carbonate, and lithium chloride were weighed at 696 mg of lithium sulfate, 312 mg of lithium carbonate, and 192 mg of lithium chloride so as to have a molar ratio of 42:28:30, and then mixed under the same conditions as in Example 1 to Example. Thirteen oxide solid electrolytes were obtained.
  • Example 14 Lithium sulfate, lithium carbonate, and lithium chloride were weighed at 639 mg of lithium sulfate, 287 mg of lithium carbonate, and 274 mg of lithium chloride so as to have a molar ratio of 36:24:40, and then mixed under the same conditions as in Example 1 to Example. 14 oxide solid electrolytes were obtained.
  • Example 15 Lithium sulfate, lithium carbonate, and lithium bromide (manufactured by Sigma Aldrich) were weighed at 338 mg of lithium sulfate, 151 mg of lithium carbonate, and 111 mg of lithium bromide so as to have a molar ratio of 48:32:20, and then the same as in Example 1. The mixture was mixed under the conditions of (1) to obtain the oxide solid electrolyte of Example 15.
  • Example 16 Lithium sulfate, lithium carbonate, and lithium bromide were weighed at 636 mg of lithium sulfate, 285 mg of lithium carbonate, and 279 mg of lithium bromide so as to have a molar ratio of 45:30:25, and then mixed under the same conditions as in Example 1. The oxide solid electrolyte of Example 16 was obtained.
  • Example 17 Lithium sulfate, lithium carbonate, and lithium bromide were weighed at 596 mg of lithium sulfate, 267 mg of lithium carbonate, and 336 mg of lithium bromide so as to have a molar ratio of 42:28:30, and then mixed under the same conditions as in Example 1 to carry out. The oxide solid electrolyte of Example 17 was obtained.
  • Example 18 Lithium sulfate, lithium carbonate, and lithium bromide were weighed at 258 mg of lithium sulfate, 116 mg of lithium carbonate, and 226 mg of lithium bromide so as to have a molar ratio of 36:24:40, and then mixed under the same conditions as in Example 1. The oxide solid electrolyte of Example 18 was obtained.
  • Example 19 Lithium sulfate, lithium carbonate, and lithium phosphate (manufactured by Sigma Aldrich) were weighed at 530 mg of lithium sulfate, 237 mg of lithium carbonate, and 233 mg of lithium bromide so as to have a molar ratio of 48:32:20, and then the same as in Example 1. The mixture was mixed under the conditions of (1) to obtain the oxide solid electrolyte of Example 19.
  • Example 20 Lithium sulfate, lithium carbonate, and lithium nitrate (manufactured by Sigma Aldrich) were weighed at 585 mg of lithium sulfate, 262 mg of lithium carbonate, and 153 mg of lithium bromide so as to have a molar ratio of 48:32:20, and then the same as in Example 1. The mixture was mixed under the conditions to obtain the oxide solid electrolyte of Example 20.
  • Comparative Example 1 After weighing 1040 mg of lithium borate and 160 mg of lithium sulfate so that lithium borate (manufactured by Toyoshima Seisakusho Co., Ltd.) and lithium sulfate have a molar ratio of 90:10, they are mixed under the same conditions as in Example 1 and compared with Comparative Example 1. A solid electrolyte was obtained.
  • Comparative Example 2 The solid electrolyte of Comparative Example 1 was heat-treated at 285 ° C. for 1 hour in an argon atmosphere to obtain the solid electrolyte of Comparative Example 2.
  • Positive electrode mixture 1 As the positive electrode active material, 60 mg of lithium nickel cobalt manganese oxide (LiNi 1/3 Co 1/3 Mn 1/3 O 2 , manufactured by BASF Toda Battery Materials Co., Ltd.) and 40 mg of the oxide solid electrolyte of Example 2 were weighed and menowed. By mixing in a dairy pot, a powdery positive electrode mixture 1 was obtained.
  • Powdery positive electrode mixture 2 was obtained by weighing and mixing in the same manner as in the positive electrode mixture 1 except that the oxide solid electrolyte of Example 13 was used instead of the oxide solid electrolyte of Example 2.
  • Litive electrode mixture 3 As the positive electrode active material, 60 mg of lithium sulfide (manufactured by Mitsuwa Chemical Co., Ltd.), 120 mg of the oxide solid electrolyte of Example 13, and 20 mg of activated carbon (MSC-30) were weighed. Using a planetary ball mill (Premium Line P-7 manufactured by Frillsch), lithium sulfide weighed together with about 40 g of 5 mm zirconia balls, the oxide solid electrolyte of Example 13, and activated carbon were placed in a 45 ml pot, and the revolution speed was 370 rpm for 2 hours. By mixing, a powdery positive electrode mixture 3 was obtained.
  • Electrode mixture 5 As the positive electrode active material, 60 mg of lithium sulfide, 60 mg of the oxide solid electrolyte of Example 13, and 20 mg of activated carbon (MSC-30) were weighed. Using a planetary ball mill (Premium Line P-7 manufactured by Frillsch), lithium sulfide weighed together with about 40 g of 5 mm zirconia balls, the oxide solid electrolyte of Example 13, and activated carbon were placed in a 45 ml pot, and the revolution speed was 370 rpm for 2 hours. Mixed. The obtained powder and the solid electrolyte of Example 13 were weighed so as to have a mass ratio of 70:30, and mixed in a mortar to obtain a powdery positive electrode mixture 5.
  • a planetary ball mill Premium Line P-7 manufactured by Frillsch
  • Comparative positive electrode mixture 1 A comparative positive electrode mixture 1 was obtained by weighing and mixing in the same manner as in the positive electrode mixture 1 except that the solid electrolyte of Comparative Example 2 was used instead of the oxide solid electrolyte of Example 2.
  • Comparative positive electrode mixture 2 Lithium aluminum germanium phosphorus oxide (LAGP, manufactured by Toyoshima Seisakusho Co., Ltd.) was used as the oxide solid electrolyte in place of the solid electrolyte of Example 2, and the mixture was weighed and mixed in the same manner as in the positive electrode mixture 1 to form a powder. Comparative positive electrode mixture 2 was obtained.
  • LAGP Lithium aluminum germanium phosphorus oxide
  • Comparative positive electrode mixture 3 Lithium aluminum titanium phosphorus oxide (LATP, manufactured by Toyoshima Seisakusho Co., Ltd.) was used as the oxide solid electrolyte in place of the solid electrolyte of Example 2, and the mixture was weighed and mixed in the same manner as in the positive electrode mixture 1 to form a powder. Comparative positive electrode mixture 3 was obtained.
  • Electrode mixture 1 Weigh 50 mg of lithium titanium oxide (Li 4 Ti 5 O 12 (LTO), manufactured by Ishihara Sangyo Co., Ltd.) and 50 mg of the oxide solid electrolyte of Example 2 as the negative electrode active material, and mix them in a Menou dairy pot to form a powdered negative electrode. Combined material 1 was obtained.
  • Li 4 Ti 5 O 12 Li 4 Ti 5 O 12
  • the powdery negative electrode mixture 2 was obtained by mixing in a Menou dairy pot under the same conditions as the negative electrode mixture 1 except that 50 mg of the oxide solid electrolyte of Example 8 was weighed instead of the oxide solid electrolyte of Example 2. Obtained.
  • Negative electrode mixture 4 As the negative electrode active material, 50 mg of silicon (manufactured by Nikola Co., Ltd.) and 50 mg of the oxide solid electrolyte of Example 13 were weighed and mixed in an agate mortar to obtain a powdery negative electrode mixture 4.
  • Nitative electrode mixture 5 A powdery negative electrode mixture 5 was obtained by weighing and mixing in the same manner as the positive electrode mixture 3 except that silicon was used as the negative electrode active material instead of lithium sulfide as the positive electrode active material.
  • Nitative electrode mixture 6 A powdery negative electrode mixture 6 was obtained by weighing and mixing in the same manner as the positive electrode mixture 5 except that silicon was used as the negative electrode active material instead of lithium sulfide as the positive electrode active material.
  • the composite product 1 and 80Li 2 S-20P 2 S 5 in which the solid electrolyte (E) (5Li 2 S-GeS 2 -P 2 S 5 ) was fired at 510 ° C. for 8 hours from the upper side of the ceramic cylindrical tube jig. was mixed with a ball mill at 500 rpm for 10 hours at a mass ratio of 90:10, and 80 mg of the mixed composite was added.
  • a cylindrical jig (positive electrode current collector) made of SKD11 was inserted and pressed at a pressure of 720 MPa for 3 minutes to form a positive electrode layer having a diameter of 10 mm ⁇ and a thickness of about 0.1 mm.
  • the SKD11 cylindrical jig (negative electrode current collector) inserted from the bottom was pulled out, and a 0.20 mm thick lithium sheet (manufactured by Honjo Metal Co., Ltd.) was punched to a diameter of 8 mm ⁇ with a punch.
  • an impedance measuring device (Solartron Impedance Analyzer A1260) was used to measure the applied voltage at an applied voltage of 100 mV and a measurement frequency of 1 Hz to 32 MHz. The rate was calculated. Table 1 summarizes the conductivity and relative density of each solid electrolyte.
  • Examples 1 to 20 oxide solid electrolytes contain Li 2 SO 4 and Li 2 CO 3 , and the molar ratio of Li 2 SO 4 to Li 2 CO 3 is 20: 80 to 80 :. Since it was 20 and had an exothermic peak of 200 ° C. or lower in the DSC curve, the relative density of the pellets obtained by pressing at room temperature and 1 GPa was 95% or more. Further, the solid electrolytes of Examples 1 to 20 had a conductivity of 1.0 ⁇ 10 -7 S / cm or more.
  • the solid electrolytes of Comparative Examples 1 and 2 did not have an exothermic peak of 200 ° C. or lower in the DSC curve. Therefore, the relative density of the pellets obtained by pressing at room temperature and 1 GPa was less than 95%, and the deformability at room temperature was inferior.
  • the positive electrode mixture 1 to 6 using the oxide solid electrolyte of the examples had excellent battery characteristics as compared with the comparative positive electrode mixture 1 to 3.
  • the negative electrode mixture and the full cell using the oxide solid electrolyte of the example also had excellent battery characteristics.
  • the oxide solid electrolyte of the present disclosure As the positive electrode, the negative electrode, and the solid electrolyte layer of the all-solid lithium ion battery, the positive electrode, the negative electrode, the solid electrolyte layer, and the full cell, which show good battery characteristics, can be pressed only at room temperature. Can be produced with. Since electrodes and full cells can be formed by a very simple method, the oxide solid electrolyte of the present invention and the electrode mixture using the same are suitable materials for mass production, and therefore have high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Conductive Materials (AREA)

Abstract

This oxide solid electrolyte is a composite containing lithium sulfate (Li2SO4) and lithium carbonate (Li2CO3), wherein: the molar ratio (Li2SO4:Li2CO3) of the lithium sulfate and the lithium carbonate is 20:80 to 80:20; in the curve obtained by differential scanning calorimetry, the position of an exothermic peak is 200 °C or less; and the oxide solid electrolyte has a conductivity of 1.0×10-7 S/cm or more.

Description

酸化物固体電解質、電極合材、および全固体リチウムイオン電池Oxide solid electrolyte, electrode mixture, and all-solid-state lithium-ion battery
 本発明は、酸化物固体電解質、電極合材、および全固体リチウムイオン電池に関する。本願は、2021年1月8日に、日本に出願された特願2021-002328号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a solid oxide electrolyte, an electrode mixture, and an all-solid-state lithium-ion battery. This application claims priority based on Japanese Patent Application No. 2021-002328 filed in Japan on January 8, 2021, and the contents thereof are incorporated herein by reference.
 リチウムイオン2次電池は、エネルギー密度が高く、パソコン、携帯電話などの情報関連機器等に使用されている。近年、電気自動車またはハイブリッド自動車向けに高出力かつ高容量のリチウムイオン2次電池の開発が進められている。 Lithium-ion secondary batteries have high energy density and are used in information-related equipment such as personal computers and mobile phones. In recent years, development of high-output and high-capacity lithium-ion secondary batteries for electric vehicles or hybrid vehicles has been promoted.
 しかし、現在のリチウムイオン2次電池は、可燃性の有機電解液を用いているので、リチウムイオン2次電池が異常発熱した際に発火しやすいという問題がある。実際、携帯機器でリチウムイオン2次電池を原因とする発火事故が起こっており、安全性の改善が強く求められている。 However, since the current lithium-ion secondary battery uses a flammable organic electrolytic solution, there is a problem that the lithium-ion secondary battery tends to ignite when it overheats. In fact, ignition accidents caused by lithium-ion secondary batteries have occurred in mobile devices, and there is a strong demand for improved safety.
 リチウムイオン2次電池の安全性を改善する技術としては、固体電解質を用いる技術がある。しかし、固体電解質を用いた全固体リチウムイオン2次電池の場合、負極合材層、固体電解質層、及び正極合材層がそれぞれ固体―固体接触となる。そのため、有機電解液を使用する従来のリチウムイオン2次電池と比較して、電子およびイオンの移動経路は著しく少なくなる。特に、導電率の高い酸化物固体電解質は、硬い粒子であり変形しにくいので、プレスなどをしても固体-固体間の良好な接触状態を得ることができない。そのため、導電率が高い酸化物固体電解質では、酸化物固体電解質間の電子またはイオンの伝導性が低い。よって、現在、固体電解質間の接触状態を改善することが求められている。 As a technique for improving the safety of a lithium ion secondary battery, there is a technique using a solid electrolyte. However, in the case of an all-solid lithium ion secondary battery using a solid electrolyte, the negative electrode mixture layer, the solid electrolyte layer, and the positive electrode mixture layer are in solid-solid contact, respectively. Therefore, the movement paths of electrons and ions are significantly reduced as compared with the conventional lithium ion secondary battery using an organic electrolytic solution. In particular, since the oxide solid electrolyte having high conductivity is a hard particle and is not easily deformed, a good contact state between the solid and the solid cannot be obtained even by pressing or the like. Therefore, in the oxide solid electrolyte having high conductivity, the conductivity of electrons or ions between the oxide solid electrolytes is low. Therefore, it is currently required to improve the contact state between solid electrolytes.
 固体電解質間の接触状態を改善する技術としては、特許文献1には、酸化物基準の質量%で、ZrO成分を2.6~52.0%含有するリチウムイオン伝導性無機物質を焼結する技術が開示されている。非特許文献1には、NASICON型の結晶構造を持つガラスセラミックスを焼結する技術が開示されている。非特許文献2には、LiBO-LiSOを熱プレスする技術が開示されている。 As a technique for improving the contact state between solid electrolytes, Patent Document 1 sinters a lithium ion conductive inorganic substance containing 2.6 to 52.0% of ZrO2 component at an oxide-based mass%. The technology to be used is disclosed. Non-Patent Document 1 discloses a technique for sintering glass ceramics having a NASICON type crystal structure. Non-Patent Document 2 discloses a technique for hot-pressing Li 3 BO 3 -Li 2 SO 4 .
日本国特開2012-246196号公報Japanese Patent Application Laid-Open No. 2012-246196
 特許文献1および非特許文献1の場合、高温で焼結させて粒子間の接触を改善しているが、固体電解質および電極活物質の高温での反応により、イオン電導性および充放電反応性が低下するという問題がある。加えて、特許文献1および非特許文献1の場合、高温での処理が必要となるので、設備費用およびランニングコストが高くなるという問題がある。また、非特許文献2の技術では、常温では良好な粒子間接触状態が形成できていない材料を熱プレスすることで、粒子間の接触状態を改善しているが、高温を必要とするため、設備費用およびランニングコストが高くなるという問題がある。そのため、非特許文献2に開示された固体電解質よりも常温において、より高い変形性を有する固体電解質が求められている。 In the case of Patent Document 1 and Non-Patent Document 1, the contact between particles is improved by sintering at a high temperature, but the reaction of the solid electrolyte and the electrode active material at a high temperature causes ionic conductivity and charge / discharge reactivity. There is a problem of deterioration. In addition, in the case of Patent Document 1 and Non-Patent Document 1, since processing at a high temperature is required, there is a problem that equipment cost and running cost are high. Further, in the technique of Non-Patent Document 2, the contact state between particles is improved by hot-pressing a material for which a good contact state between particles cannot be formed at room temperature, but a high temperature is required. There is a problem that equipment cost and running cost are high. Therefore, there is a demand for a solid electrolyte having higher deformability at room temperature than the solid electrolyte disclosed in Non-Patent Document 2.
 本発明は、上記の課題を鑑みてなされた発明であり、常温での良好な変形性を有し、かつ、導電率が高い酸化物固体電解質を提供することを主目的とする。ここで、常温とは20℃~30℃をいう。また、「常温での良好な変形性」とは、例えば、常温、1GPaのプレスにおいて相対密度が95%以上となる変形性をいう。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an oxide solid electrolyte having good deformability at room temperature and having high conductivity. Here, the normal temperature means 20 ° C to 30 ° C. Further, "good deformability at room temperature" means, for example, deformability at which the relative density becomes 95% or more in a press at room temperature and 1 GPa.
 前記課題を解決するために、本発明は以下の手段を提案している。
(1)本発明の一態様に係る酸化物固体電解質は、硫酸リチウム(LiSO)と炭酸リチウム(LiCO)とを含む複合物であって、
 前記硫酸リチウムと前記炭酸リチウムとのモル比(LiSO:LiCO)が20:80~80:20であり、
 示差走査熱量測定で得られる曲線において、発熱ピークの位置が200℃以下であり、 導電率が1.0×10-7S/cm以上である。
(2)上記(1)に記載の酸化物固体電解質は、塩化リチウム、臭化リチウム、ヨウ化リチウム、ホウ酸リチウム、リン酸リチウム、硝酸リチウム、ケイ酸リチウム、およびアルミン酸リチウムからなる群より選択される少なくとも1種をさらに含んでもよい。
(3)本発明の一態様に係る電極合材は、
 上記(1)または(2)に記載の酸化物固体電解質と、
 電極活物質と、
 導電材と、
を含み、
 前記酸化物固体電解質と、前記電極活物質と、前記導電材と、の質量比(酸化物固体電解質:電極活物質:導電材)が20~80:20~80:0~30である。
(4)本発明の一態様に係る全固体リチウムイオン電池は、上記(1)または(2)に記載の酸化物固体電解質を含む。
(5)上記(4)に記載の全固体リチウムイオン電池は、前記酸化物固体電解質を含む固体電解質層を備えてもよい。
(6)上記(4)または(5)に記載の全固体リチウムイオン電池は、前記酸化物固体電解質を含む正極活物質層または前記酸化物固体電解質を含む負極活物質層を備えてもよい。
(7)上記(6)に記載の全固体リチウムイオン電池は、前記正極活物質層が、前記酸化物固体電解質、正極活物質および正極導電材を含み、
 前記酸化物固体電解質と、前記正極活物質と、前記正極導電材と、の質量比(酸化物固体電解質:正極活物質:正極導電材)が20~80:20~80:0~30であってもよい。
(8)上記(6)または(7)に記載の全固体リチウムイオン電池は、前記負極活物質層が、前記酸化物固体電解質、負極活物質および負極導電材を含み、
 前記酸化物固体電解質と、前記負極活物質と、前記負極導電材と、の質量比(酸化物固体電解質:負極活物質:負極導電材)が20~80:20~80:0~30であってもよい。
In order to solve the above problems, the present invention proposes the following means.
(1) The oxide solid electrolyte according to one aspect of the present invention is a composite containing lithium sulfate (Li 2 SO 4 ) and lithium carbonate (Li 2 CO 3 ).
The molar ratio of the lithium sulfate to the lithium carbonate (Li 2 SO 4 : Li 2 CO 3 ) is 20:80 to 80:20.
In the curve obtained by differential scanning calorimetry, the position of the exothermic peak is 200 ° C. or less, and the conductivity is 1.0 × 10 -7 S / cm or more.
(2) The oxide solid electrolyte according to (1) above is composed of a group consisting of lithium chloride, lithium bromide, lithium iodide, lithium borate, lithium phosphate, lithium nitrate, lithium silicate, and lithium aluminate. At least one selected may be further included.
(3) The electrode mixture according to one aspect of the present invention is
With the oxide solid electrolyte according to (1) or (2) above,
Electrode active material and
With conductive material
Including
The mass ratio of the oxide solid electrolyte, the electrode active material, and the conductive material (oxide solid electrolyte: electrode active material: conductive material) is 20 to 80:20 to 80: 0 to 30.
(4) The all-solid-state lithium-ion battery according to one aspect of the present invention contains the oxide solid electrolyte according to the above (1) or (2).
(5) The all-solid-state lithium-ion battery according to (4) above may include a solid electrolyte layer containing the oxide solid electrolyte.
(6) The all-solid lithium-ion battery according to (4) or (5) above may include a positive electrode active material layer containing the oxide solid electrolyte or a negative electrode active material layer containing the oxide solid electrolyte.
(7) In the all-solid lithium-ion battery according to (6) above, the positive electrode active material layer contains the oxide solid electrolyte, the positive electrode active material, and the positive electrode conductive material.
The mass ratio (oxide solid electrolyte: positive electrode active material: positive electrode conductive material) of the oxide solid electrolyte, the positive electrode active material, and the positive electrode conductive material is 20 to 80:20 to 80: 0 to 30. You may.
(8) In the all-solid lithium-ion battery according to (6) or (7) above, the negative electrode active material layer contains the oxide solid electrolyte, the negative electrode active material, and the negative electrode conductive material.
The mass ratio (oxide solid electrolyte: negative electrode active material: negative electrode conductive material) of the oxide solid electrolyte, the negative electrode active material, and the negative electrode conductive material is 20 to 80:20 to 80: 0 to 30. You may.
 本開示の上記態様によれば、常温での良好な変形性を有し、かつ、導電率が高い酸化物固体電解質、電極合材および全固体リチウムイオン電池を提供することができる。 According to the above aspect of the present disclosure, it is possible to provide an oxide solid electrolyte, an electrode mixture, and an all-solid-state lithium-ion battery having good deformability at room temperature and high conductivity.
本開示の一実施形態に係る全固体リチウムイオン電池の断面模式図である。It is sectional drawing of the all-solid-state lithium ion battery which concerns on one Embodiment of this disclosure.
<酸化物固体電解質>
 本開示の酸化物固体電解質について、説明する。なお、以下に例示する実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、以下の実施形態から変更、改良することができる。
<Oxide solid electrolyte>
The oxide solid electrolyte of the present disclosure will be described. It should be noted that the embodiments exemplified below are for facilitating the understanding of the present invention, and are not for limiting the interpretation of the present invention. The present invention can be modified or improved from the following embodiments without departing from the spirit of the present invention.
 (硫酸リチウム(LiSO)と炭酸リチウム(LiCO)とを含む複合物)
 本開示の酸化物固体電解質は、硫酸リチウム(LiSO)と、炭酸リチウム(LiCO)とを含む複合物である。ここで、複合物とは、硫酸リチウムと炭酸リチウムとを含む原料を、例えば、遊星ボールミルで混合し、複合化したものをいう。本開示の酸化物固体電解質は、硫酸リチウムと炭酸リチウムとを含むことで、良好な導電率および良好な変形性が得られる。
(Composite containing lithium sulfate (Li 2 SO 4 ) and lithium carbonate (Li 2 CO 3 ))
The oxide solid electrolyte of the present disclosure is a composite containing lithium sulfate (Li 2 SO 4 ) and lithium carbonate (Li 2 CO 3 ). Here, the composite means a composite obtained by mixing a raw material containing lithium sulfate and lithium carbonate, for example, with a planetary ball mill. The oxide solid electrolyte of the present disclosure contains lithium sulfate and lithium carbonate, so that good conductivity and good deformability can be obtained.
(硫酸リチウムと前記炭酸リチウムとのモル比(LiSO:LiCO)が20:80~80:20)
 本開示の酸化物固体電解質は、硫酸リチウム(LiSO)と炭酸リチウム(LiCO)とを含み、硫酸リチウムと炭酸リチウムとのモル比(LiSO:LiCO)が20:80~80:20である。硫酸リチウムと炭酸リチウムとのモル比が上記の範囲であれば、酸化物固体電解質は、常温での良好な変形性を有する。より好ましい硫酸リチウムと炭酸リチウムとのモル比は、30:70~70:30である。
(The molar ratio of lithium sulfate to the lithium carbonate (Li 2 SO 4 : Li 2 CO 3 ) is 20:80 to 80:20).
The solid oxide electrolyte of the present disclosure contains lithium sulfate (Li 2 SO 4 ) and lithium carbonate (Li 2 CO 3 ), and the molar ratio of lithium sulfate to lithium carbonate (Li 2 SO 4 : Li 2 CO 3 ). Is from 20:80 to 80:20. When the molar ratio of lithium sulfate to lithium carbonate is in the above range, the oxide solid electrolyte has good deformability at room temperature. A more preferable molar ratio of lithium sulfate to lithium carbonate is 30:70 to 70:30.
 本開示の酸化物固体電解質において、硫酸リチウムおよび炭酸リチウムの合計含有量が、30質量%~100質量%であることが好ましい。硫酸リチウムおよび炭酸リチウムの合計含有量が上記の範囲であれば、常温でのより良好な変形性を得ることができるので好ましい。より好ましい硫酸リチウムおよび炭酸リチウムの合計含有量は、40質量%~100質量%である。 In the solid oxide electrolyte of the present disclosure, the total content of lithium sulfate and lithium carbonate is preferably 30% by mass to 100% by mass. When the total content of lithium sulfate and lithium carbonate is in the above range, better deformability at room temperature can be obtained, which is preferable. More preferably, the total content of lithium sulfate and lithium carbonate is 40% by mass to 100% by mass.
(塩化リチウム、臭化リチウム、ヨウ化リチウム、ホウ酸リチウム、リン酸リチウム、硝酸リチウム、ケイ酸リチウム、およびアルミン酸リチウムからなる群より選択される少なくとも1種)
 本開示の酸化物固体電解質は、塩化リチウム、臭化リチウム、ヨウ化リチウム、ホウ酸リチウム、リン酸リチウム、硝酸リチウム、ケイ酸リチウム、およびアルミン酸リチウムからなる群より選択される少なくとも1種をさらに含むことが好ましい。塩化リチウム、臭化リチウム、ヨウ化リチウム、ホウ酸リチウム、リン酸リチウム、硝酸リチウム、ケイ酸リチウム、およびアルミン酸リチウムからなる群より選択される少なくとも1種をさらに含むことで、より高い導電率を得ることができるので好ましい。
(At least one selected from the group consisting of lithium chloride, lithium bromide, lithium iodide, lithium borate, lithium phosphate, lithium nitrate, lithium silicate, and lithium aluminate)
The solid oxide electrolyte of the present disclosure is at least one selected from the group consisting of lithium chloride, lithium bromide, lithium iodide, lithium borate, lithium phosphate, lithium nitrate, lithium silicate, and lithium aluminate. Further, it is preferable to include it. Higher conductivity by further comprising at least one selected from the group consisting of lithium chloride, lithium bromide, lithium iodide, lithium borate, lithium phosphate, lithium nitrate, lithium silicate, and lithium aluminate. Is preferable because it can be obtained.
 本開示の酸化物固体電解質における塩化リチウム、臭化リチウム、ヨウ化リチウム、ホウ酸リチウム、リン酸リチウム、硝酸リチウム、ケイ酸リチウム、およびアルミン酸リチウムの合計含有量は、0質量%~70質量%であることが好ましい。塩化リチウム、臭化リチウム、ヨウ化リチウム、ホウ酸リチウム、リン酸リチウム、硝酸リチウム、ケイ酸リチウム、およびアルミン酸リチウムの合計含有量が上記の範囲であれば、より良好な導電率を得ることができるので好ましい。より好ましい塩化リチウム、臭化リチウム、ヨウ化リチウム、ホウ酸リチウム、リン酸リチウム、硝酸リチウム、ケイ酸リチウム、およびアルミン酸リチウムの合計含有量は、0質量%~60質量%である。 The total content of lithium chloride, lithium bromide, lithium iodide, lithium borate, lithium phosphate, lithium nitrate, lithium silicate, and lithium aluminome in the solid oxide electrolyte of the present disclosure is 0% by mass to 70% by mass. % Is preferable. If the total content of lithium chloride, lithium bromide, lithium iodide, lithium borate, lithium phosphate, lithium nitrate, lithium silicate, and lithium aluminate is within the above range, better conductivity can be obtained. It is preferable because it can be used. More preferably, the total content of lithium chloride, lithium bromide, lithium iodide, lithium borate, lithium phosphate, lithium nitrate, lithium silicate, and lithium aluminate is 0% by mass to 60% by mass.
 本開示の酸化物固体電解質の化学組成は、例えば、リチウムイオン2次電池の正極、固体電解質層、または負極の断面において、電解放出型透過電子顕微鏡(TEM)に搭載されたエネルギー分散型X線分光装置(EDX)とラマン分光法にて定量することができる。 The chemical composition of the oxide solid electrolyte of the present disclosure is, for example, an energy-dispersed X-ray mounted on an electrolytic emission type transmission electron microscope (TEM) in a cross section of a positive electrode, a solid electrolyte layer, or a negative electrode of a lithium ion secondary battery. It can be quantified by a spectroscope (EDX) and Raman spectroscopy.
(示差走査熱量測定で得られる曲線において、発熱ピークの位置が200℃以下)
 本開示の酸化物固体電解質は、示差走査熱量測定(DSC)測定において得られる曲線(DSC曲線)において、200℃以下の発熱ピークを有する。DSC曲線において、発熱ピークの位置が200℃以下であることで、酸化物固体電解質の良好な変形性が得られる。より好ましい発熱ピークの位置は、190℃以下である。発熱ピークの位置の下限は特に限定されないが、例えば、80℃以上としてもよい。なお、DSC曲線上に複数の発熱ピークがある場合は、最も発熱量の大きいピークの位置を発熱ピーク位置とする。
(The position of the exothermic peak is 200 ° C or less in the curve obtained by differential scanning calorimetry)
The solid oxide electrolyte of the present disclosure has an exothermic peak of 200 ° C. or lower in the curve (DSC curve) obtained by differential scanning calorimetry (DSC) measurement. When the position of the exothermic peak is 200 ° C. or lower in the DSC curve, good deformability of the oxide solid electrolyte can be obtained. A more preferable position of the exothermic peak is 190 ° C. or lower. The lower limit of the position of the exothermic peak is not particularly limited, but may be, for example, 80 ° C. or higher. If there are a plurality of exothermic peaks on the DSC curve, the position of the peak with the largest calorific value is defined as the exothermic peak position.
 本開示の酸化物固体電解質は、DSC曲線において得られる200℃以下の発熱ピークの発熱量が5J/g以上であることが好ましい。DSC曲線において得られる200℃以下の発熱ピークの発熱量が上記の範囲であれば、より高い変形性が得られるので好ましい。より好ましい発熱量は、10J/g以上である。さらに好ましい発熱量は15J/g以上である。発熱ピークの発熱量の上限は特に限定されてないが、例えば、500J/g以下としてもよい。 The oxide solid electrolyte of the present disclosure preferably has a calorific value of 5 J / g or more at the exothermic peak of 200 ° C. or lower obtained in the DSC curve. When the calorific value of the exothermic peak of 200 ° C. or lower obtained in the DSC curve is in the above range, higher deformability can be obtained, which is preferable. A more preferable calorific value is 10 J / g or more. A more preferable calorific value is 15 J / g or more. The upper limit of the calorific value of the exothermic peak is not particularly limited, but may be, for example, 500 J / g or less.
 本開示の酸化物固体電解質の発熱ピークは、例えば、以下の方法で測定することができる。不活性ガス(例えばAr)で満たされたグローブボックス中で酸化物固体電解質(約10mg)をAl密閉試料容器(日立ハイテクサイエンス社製 GCA-0017)に入れ、密閉する。密閉後の容器を示差走査熱量計(例えば、セイコーインスツルメンツ社製DSC6200)に設置し、温度範囲50℃~300℃、昇温速度10℃/分で測定を行うことで、酸化物固体電解質のDSC曲線を得ることができる。得られたDSC曲線から酸化物固体電解質の発熱ピークの位置と発熱量が得られる。ピーク位置および発熱量は例えば、示差走査熱量計DSC6200に付属するソフトウェアを用いて計算することができる。 The exothermic peak of the oxide solid electrolyte of the present disclosure can be measured by, for example, the following method. In a glove box filled with an inert gas (for example, Ar), an oxide solid electrolyte (about 10 mg) is placed in an Al sealed sample container (GCA-0017 manufactured by Hitachi High-Tech Science Co., Ltd.) and sealed. By installing the sealed container on a differential scanning calorimeter (for example, DSC6200 manufactured by Seiko Instruments) and measuring at a temperature range of 50 ° C to 300 ° C and a temperature rise rate of 10 ° C / min, the DSC of the oxide solid electrolyte is measured. You can get a curve. From the obtained DSC curve, the position of the exothermic peak and the calorific value of the oxide solid electrolyte can be obtained. The peak position and calorific value can be calculated using, for example, the software attached to the differential scanning calorimeter DSC6200.
 (導電率が1.0×10-7S/cm以上)
 本開示の酸化物固体電解質の導電率は、1.0×10-7S/cm以上である。酸化物固体電解質の導電率が1.0×10-7S/cm未満の場合、全固体リチウムイオン電池の特性が低下する場合がある。より好ましい酸化物固体電解質の導電率は2.0×10-7S/cm以上である。さらに好ましい酸化物固体電解質の導電率は、4.0×10-7S/cm以上である。
(Conductivity is 1.0 x 10-7 S / cm or more)
The conductivity of the oxide solid electrolyte of the present disclosure is 1.0 × 10 -7 S / cm or more. If the conductivity of the oxide solid electrolyte is less than 1.0 × 10 -7 S / cm, the characteristics of the all-solid-state lithium-ion battery may deteriorate. The conductivity of the more preferable solid oxide electrolyte is 2.0 × 10 -7 S / cm or more. A more preferable conductivity of the oxide solid electrolyte is 4.0 × 10 -7 S / cm or more.
 本開示の酸化物固体電解質の導電率は、例えば、以下の方法で測定することができる。 アルゴンガス雰囲気グローブボックス内にて、直径10mmの錠剤成形器(例えば、日本分光製)に直径10mmに打ち抜いたAl箔またはAu箔を入れ、その上から固体電解質粉末を入れ、均したのちにさらに直径10mmに打ち抜いたAl箔またはAu箔を入れ、常温で1GPa、30分間プレスすることで固体電解質測定用のペレットを得る。得られたペレットをフラットセル内に配置し、密閉することで導電率測定用セルとし、常温にて、インピーダンス測定装置(例えば、ソーラトロン社インピーダンスアナライザーA1260)にて印加電圧50mV、測定周波数1Hz~32MHzにて測定し、得られたナイキストプロットの半円弧の低周波端の抵抗値から導電率を算出することができる。 The conductivity of the oxide solid electrolyte of the present disclosure can be measured by, for example, the following method. In an argon gas atmosphere glove box, put Al foil or Au foil punched to a diameter of 10 mm in a tablet molder with a diameter of 10 mm (for example, manufactured by Nippon Kogaku), put solid electrolyte powder on it, smooth it, and then add more. An Al foil or Au foil punched to a diameter of 10 mm is put in and pressed at room temperature at 1 GPa for 30 minutes to obtain pellets for measuring a solid electrolyte. The obtained pellets are placed in a flat cell and sealed to form a cell for conductivity measurement. At room temperature, an impedance measuring device (for example, Solartron Impedance Analyzer A1260) applies a voltage of 50 mV and a measurement frequency of 1 Hz to 32 MHz. The conductivity can be calculated from the resistance value at the low frequency end of the semi-arc of the obtained Nyquist plot.
 (相対密度95%以上)
 本開示の酸化物固体電解質は、常温での変形性に優れる。例えば、本開示の酸化物固体電解質を常温で1GPaでプレスした場合、下記の式(1)で表される相対密度が95%以上となる。より好ましくは、常温で1GPaでプレスした場合における相対密度が98%以上である。さらに好ましくは、常温で1GPaでプレスした場合における相対密度が99%以上である。
(Relative density 95% or more)
The oxide solid electrolyte of the present disclosure is excellent in deformability at room temperature. For example, when the oxide solid electrolyte of the present disclosure is pressed at room temperature at 1 GPa, the relative density represented by the following formula (1) becomes 95% or more. More preferably, the relative density when pressed at 1 GPa at room temperature is 98% or more. More preferably, the relative density when pressed at 1 GPa at room temperature is 99% or more.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 本開示の酸化物固体電解質の相対密度は、以下の方法で測定することができる。アルゴンガス雰囲気グローブボックス内にて、直径10mmの錠剤成形器(例えば、日本分光製)に直径10mmに打ち抜いたAl箔またはAu箔を入れ、その上から固体電解質粉末を入れ、均した後にさらに直径10mmに打ち抜いたAl箔またはAu箔を入れ、常温で1GPa、30分間プレスすることで相対密度測定用のペレットを得る。得られたペレットの密度を上記(1)式のように、各原料の密度(g/cm)および質量(g)から計算される理論密度で除することで算出することができる。 The relative density of the oxide solid electrolyte of the present disclosure can be measured by the following method. In an argon gas atmosphere glove box, put Al foil or Au foil punched to a diameter of 10 mm in a tablet molder with a diameter of 10 mm (for example, manufactured by Nippon Kogaku), put solid electrolyte powder from above, and after leveling, further diameter. Al foil or Au foil punched to 10 mm is put in and pressed at room temperature at 1 GPa for 30 minutes to obtain pellets for relative density measurement. It can be calculated by dividing the density of the obtained pellets by the theoretical density calculated from the density (g / cm 3 ) and the mass (g) of each raw material as in the above equation (1).
 本開示の酸化物固体電解質の形状は特に限定されないが、例えば、粒状が好ましい。 The shape of the oxide solid electrolyte of the present disclosure is not particularly limited, but for example, granules are preferable.
(酸化物固体電解質の製造方法)
 本開示の酸化物固体電解質の製造方法は、特に限定されないが、例えば、固相合成法、乾式メカニカルミリング処理、湿式メカニカルミリング処理、溶融急冷法、ゾル・ゲル法等があげられる。本開示の酸化物固体電解質の製造方法としては、特に乾式メカニカルミリング処理が好ましい。例えば、酸化物固体電解質の原料をジルコニアボールとともに370rpmで60時間混合することで本開示の酸化物固体電解質が得られる。製造条件については、得られた酸化物固体電解質のDSC測定を行い、発熱ピークの位置および発熱量を確認することで、適宜調整することができる。
(Manufacturing method of oxide solid electrolyte)
The method for producing the oxide solid electrolyte of the present disclosure is not particularly limited, and examples thereof include a solid phase synthesis method, a dry mechanical milling treatment, a wet mechanical milling treatment, a melt quenching method, and a sol-gel method. As a method for producing the oxide solid electrolyte of the present disclosure, a dry mechanical milling treatment is particularly preferable. For example, the oxide solid electrolyte of the present disclosure can be obtained by mixing the raw material of the oxide solid electrolyte with zirconia balls at 370 rpm for 60 hours. The production conditions can be appropriately adjusted by measuring the DSC of the obtained solid oxide electrolyte and confirming the position of the exothermic peak and the calorific value.
<電極合材>
 本開示の電極合材は、本開示の酸化物固体電解質、電極活物質および導電材を含む。電極合材について、以下、説明する。
<Electrode mixture>
The electrode mixture of the present disclosure includes the oxide solid electrolyte, the electrode active material and the conductive material of the present disclosure. The electrode mixture will be described below.
(活物質)
 電極活物質は、リチウムイオン2次電池で使用されるものであれば特に限定されない。正極に用いる電極活物質(正極活物質)としては、リチウムイオンを可逆的に放出・吸蔵でき、電子輸送が行える材料であれば特に限定されない。正極活物質としては。例えば、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物、リチウム鉄リン酸化物などのリチウム遷移金属酸化物、硫黄及びその放電生成物である硫化リチウム、多硫化リチウム等の硫黄系活物質等が挙げられる。正極活物質は、上記材料の1種単独で構成されてもよいし、2種以上で構成されてもよい。
(Active substance)
The electrode active material is not particularly limited as long as it is used in a lithium ion secondary battery. The electrode active material (positive electrode active material) used for the positive electrode is not particularly limited as long as it is a material capable of reversibly releasing and storing lithium ions and capable of electron transport. As a positive electrode active material. For example, lithium transition metal oxides such as lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, and lithium iron phosphorus oxide, and sulfur-based active materials such as sulfur and its discharge products, lithium sulfide and lithium polysulfide. And so on. The positive electrode active material may be composed of only one of the above materials, or may be composed of two or more of the above materials.
 負極に用いる電極活物質(負極活物質)としては、リチウムイオンを可逆に放出・吸蔵でき、電子輸送が行える材料であれば特に限定されない。負極活物質としては、例えば、天然黒鉛、人造黒鉛、樹脂炭、炭素繊維、活性炭、ハードカーボン、ソフトカーボン等の炭素質材料;スズ、スズ合金、シリコン、シリコン合金、ガリウム、ガリウム合金、インジウム、インジウム合金、アルミニウム、アルミニウム合金等を主体とした合金系材料;ポリアセン、ポリアセチレン、ポリピロール等の導電性ポリマー;金属リチウム:リチウムチタン複合酸化物(例えばLiTi12)等が挙げられる。負極活物質は、上記材料の1種単独で構成されてもよいし、2種以上で構成されてもよい。 The electrode active material (negative electrode active material) used for the negative electrode is not particularly limited as long as it is a material capable of reversibly releasing and storing lithium ions and capable of electron transport. Examples of the negative electrode active material include carbonaceous materials such as natural graphite, artificial graphite, resin charcoal, carbon fiber, activated charcoal, hard carbon, and soft carbon; tin, tin alloy, silicon, silicon alloy, gallium, gallium alloy, indium, etc. Alloy-based materials mainly composed of indium alloys, aluminum, aluminum alloys, etc .; conductive polymers such as polyacene, polyacetylene, polypyrrole, etc .; metallic lithium: lithium titanium composite oxide (for example, Li 4 Ti 5 O 12 ) and the like can be mentioned. The negative electrode active material may be composed of only one of the above materials, or may be composed of two or more of the above materials.
 (導電材)
 導電材は一般的にリチウムイオン2次電池及び全固体型リチウムイオン2次電池に使用可能な導電助剤を用いることができる。正極に用いられる導電材(正極導電材)としては、例えば、アセチレンブラック、ケチェンブラック等のカーボンブラック;カーボンファイバー;気相法炭素繊維;黒鉛粉末;カーボンナノチューブ、活性炭等の炭素材料、を挙げることができる。導電材は、上記材料の1種単独で構成されてもよいし、2種以上で構成されてもよい。
(Conductive material)
As the conductive material, a conductive auxiliary agent that can be generally used for a lithium ion secondary battery and an all-solid-state lithium ion secondary battery can be used. Examples of the conductive material (positive electrode conductive material) used for the positive electrode include carbon black such as acetylene black and kechen black; carbon fiber; vapor phase carbon fiber; graphite powder; carbon nanotube and carbon material such as activated charcoal. be able to. The conductive material may be composed of only one of the above materials, or may be composed of two or more of the above materials.
 負極に用いられる導電材(負極導電材)としては、例えば、アセチレンブラック、ケチェンブラック等のカーボンブラック;カーボンファイバー;気相法炭素繊維;黒鉛粉末;カーボンナノチューブ、活性炭等の炭素材料、を挙げることができる。導電材は、上記材料の1種単独で構成されてもよいし、2種以上で構成されてもよい。 Examples of the conductive material (negative electrode conductive material) used for the negative electrode include carbon black such as acetylene black and kechen black; carbon fiber; vapor phase carbon fiber; graphite powder; carbon nanotube and carbon material such as activated charcoal. be able to. The conductive material may be composed of only one of the above materials, or may be composed of two or more of the above materials.
 本開示の酸化物固体電解質、電極活物質および導電材の質量合計を100としたときに、本開示の酸化物固体電解質と、電極活物質と、導電材と、の質量比(酸化物固体電解質:電極活物質:導電材)は、20~80:20~80:0~30である。本開示の酸化物固体電解質と、電極活物質と、導電材と、の質量比が、上記の範囲であれば、高い電池特性が得られる。なお、正極に本開示の酸化物固体電解質を用いる場合(正極合材)は、酸化物固体電解質:正極活物質:正極導電材の質量比は、20~80:20~80:0~30である。負極に本開示の酸化物固体電解質を用いる場合(負極合材)は、酸化物固体電解質:負極活物質:負極導電材の質量比は、20~80:20~80:0~30である。 When the total mass of the oxide solid electrolyte, the electrode active material and the conductive material of the present disclosure is 100, the mass ratio of the oxide solid electrolyte of the present disclosure, the electrode active material and the conductive material (oxide solid electrolyte). : Electrode active material: Conductive material) is 20 to 80:20 to 80: 0 to 30. When the mass ratio of the oxide solid electrolyte of the present disclosure, the electrode active material, and the conductive material is in the above range, high battery characteristics can be obtained. When the oxide solid electrolyte of the present disclosure is used for the positive electrode (positive electrode mixture), the mass ratio of the oxide solid electrolyte: the positive electrode active material: the positive electrode conductive material is 20 to 80:20 to 80: 0 to 30. be. When the oxide solid electrolyte of the present disclosure is used for the negative electrode (negative electrode mixture), the mass ratio of the oxide solid electrolyte: the negative electrode active material: the negative electrode conductive material is 20 to 80:20 to 80: 0 to 30.
 本開示の電極合材中の酸化物固体電解質の含有量は、20質量%~80質量%が好ましい。また、本開示の電極合材中の電極活物質の含有量は、20質量%~80質量%であることが好ましい。本開示の電極合材中の導電材の含有量は0質量%~30質量%であることが好ましい。より好ましい導電材の含有量は0質量%~25質量%である。本開示の電極合材中の酸化物固体電解質、電極活物質、および導電材の各含有量が上記の範囲であれば、良好な電池特性が得られる。なお、酸化物固体電解質、電極活物質、導電材およびその他の成分の合計で100質量%とする。その他の成分としては、バインダーなどが挙げられる。 The content of the oxide solid electrolyte in the electrode mixture of the present disclosure is preferably 20% by mass to 80% by mass. Further, the content of the electrode active material in the electrode mixture of the present disclosure is preferably 20% by mass to 80% by mass. The content of the conductive material in the electrode mixture of the present disclosure is preferably 0% by mass to 30% by mass. The content of the more preferable conductive material is 0% by mass to 25% by mass. When the contents of the oxide solid electrolyte, the electrode active material, and the conductive material in the electrode mixture of the present disclosure are in the above ranges, good battery characteristics can be obtained. The total of the oxide solid electrolyte, the electrode active material, the conductive material and other components is 100% by mass. Examples of other components include binders and the like.
 本開示の電極合材は、バインダーをさらに含有してもよい。バインダーとしては、特に限定されないが、熱可塑性樹脂や熱硬化性樹脂等を用いることができ、例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、テトラフルオロエチレン-ヘキサフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-クロロトリフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン-ペンタフルオロプロピレン共重合体、プロピレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体、フッ化ビニリデン-パーフルオロメチルビニルエーテル-テトラフルオロエチレン共重合体、エチレン-アクリル酸共重合体、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリアクリル酸リチウム、ポリメタクリル酸、ポリメタクリル酸ナトリウム、ポリメタクリル酸リチウム等が挙げられる。これらのバインダーは、単独で使用しても良いし、2種以上を併用してもよい。 The electrode mixture of the present disclosure may further contain a binder. The binder is not particularly limited, but a thermoplastic resin, a thermosetting resin and the like can be used, and for example, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyfluorovinylidene (PVDF), styrene butadiene rubber, tetra. Fluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, Vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE resin), polychlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene Polymers, ethylene-chlorotrifluoroethylene copolymer (ECTFE), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethylvinyl ether-tetrafluoroethylene copolymer, ethylene- Examples thereof include acrylic acid copolymers, polyacrylic acid, sodium polyacrylic acid, lithium polyacrylic acid, polymethacrylic acid, sodium polymethacrylate, and lithium polymethacrylate. These binders may be used alone or in combination of two or more.
 本開示の電極合材におけるバインダーの含有量は0質量%~10質量%であることが好ましい。この範囲であれば、電極合材の導電性を維持しつつ、活物質などを保持できる。より好ましいバインダーの含有量は、0質量%~5質量%である。 The content of the binder in the electrode mixture of the present disclosure is preferably 0% by mass to 10% by mass. Within this range, the active material or the like can be retained while maintaining the conductivity of the electrode mixture. A more preferable binder content is 0% by mass to 5% by mass.
 電極合材中の各成分比は、例えば、リチウムイオン2次電池の正極または負極の断面において、電解放出型透過電子顕微鏡(TEM)に搭載されたエネルギー分散型X線分光装置(EDX)とラマン分光法及び燃焼分解法にて定量することができる。 The ratio of each component in the electrode mixture is, for example, in the cross section of the positive electrode or the negative electrode of the lithium ion secondary battery, the energy dispersion type X-ray spectrometer (EDX) mounted on the electrolytic emission type transmission electron microscope (TEM) and Raman. It can be quantified by spectroscopy and combustion decomposition method.
(電極合材の製造方法)
 本開示の電極合材の製造方法は、酸化物固体電解質、電極活物質および導電材が均一に混合されていれば、特に限定されない。本開示の電極合材の製造方法としては、例えば、乾式メカニカルミリング処理、湿式メカニカルミリング処理、溶融急冷法などが挙げられる。
(Manufacturing method of electrode mixture)
The method for producing the electrode mixture of the present disclosure is not particularly limited as long as the oxide solid electrolyte, the electrode active material and the conductive material are uniformly mixed. Examples of the method for producing the electrode mixture of the present disclosure include a dry mechanical milling treatment, a wet mechanical milling treatment, and a melt quenching method.
<全固体リチウムイオン電池>
 次に、図1を参照し、本開示の一実施形態に係る全固体リチウムイオン電池100を説明する。全固体リチウムイオン電池100は、固体電解質層11、正極合材層12、負極合材層13、正極集電体14、負極集電体15を備える。全固体リチウムイオン電池100は、本開示の酸化物固体電解質を含む。即ち、全固体リチウムイオン電池100は、固体電解質層11、正極活物質層12、および正極活物質層12の少なくともいずれか1つの層に本開示の酸化物固体電解質を含む。以下、各部について説明する。
<All-solid-state lithium-ion battery>
Next, with reference to FIG. 1, the all-solid-state lithium-ion battery 100 according to the embodiment of the present disclosure will be described. The all-solid-state lithium-ion battery 100 includes a solid electrolyte layer 11, a positive electrode mixture layer 12, a negative electrode mixture layer 13, a positive electrode current collector 14, and a negative electrode current collector 15. The all-solid-state lithium-ion battery 100 includes the oxide solid electrolyte of the present disclosure. That is, the all-solid lithium-ion battery 100 contains the oxide solid electrolyte of the present disclosure in at least one of the solid electrolyte layer 11, the positive electrode active material layer 12, and the positive electrode active material layer 12. Hereinafter, each part will be described.
(固体電解質層)
 固体電解質層11は、正極活物質層12と負極活物質層13との間に形成される層である。固体電解質層11は、固体電解質を含有する。固体電解質層11に含有される固体電解質としては、本開示の酸化物固体電解質以外の固体電解質を用いてもよい。本開示の酸化物固体電解質以外の固体電解質としては、例えば、リチウムアルミニウムチタンリン酸化物(LATP)、リチウムアルミニウムゲルマニウムリン酸化物(LAGP)、リチウムランタンジルコニウム酸化物(LLZ)などが挙げられる。これらの固体電解質は、1種単独または2種以上を混合してもよいし、また、本開示の酸化物固体電解質と組み合わせてもよい。なお、固体電解質層11の厚さについては適宜選択することができる。固体電解質層11の厚さは例えば200μm以下が好ましい。
(Solid electrolyte layer)
The solid electrolyte layer 11 is a layer formed between the positive electrode active material layer 12 and the negative electrode active material layer 13. The solid electrolyte layer 11 contains a solid electrolyte. As the solid electrolyte contained in the solid electrolyte layer 11, a solid electrolyte other than the oxide solid electrolyte of the present disclosure may be used. Examples of the solid electrolyte other than the oxide solid electrolyte of the present disclosure include lithium aluminum titanium phosphorus oxide (LATP), lithium aluminum germanium phosphorus oxide (LAGP), lithium lanthanum zirconium oxide (LLZ) and the like. These solid electrolytes may be used alone or in admixture of two or more, or may be combined with the oxide solid electrolytes of the present disclosure. The thickness of the solid electrolyte layer 11 can be appropriately selected. The thickness of the solid electrolyte layer 11 is preferably 200 μm or less, for example.
 本開示の酸化物固体電解質以外の固体電解質のリチウムイオン伝導率は、1.0×10-5S/cm以上であるのが好ましく、より好ましくは1.0×10-4S/cm以上である。この範囲であれば、全固体リチウムイオン電池100の電池特性がより向上する。 The lithium ion conductivity of the solid electrolyte other than the oxide solid electrolyte of the present disclosure is preferably 1.0 × 10 -5 S / cm or more, more preferably 1.0 × 10 -4 S / cm or more. be. Within this range, the battery characteristics of the all-solid-state lithium-ion battery 100 are further improved.
 固体電解質層11は、バインダーをさらに含有してもよい。バインダーとしては、特に限定されないが、熱可塑性樹脂や熱硬化性樹脂等を用いることができ、例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、テトラフルオロエチレン-ヘキサフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-クロロトリフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン-ペンタフルオロプロピレン共重合体、プロピレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体、フッ化ビニリデン-パーフルオロメチルビニルエーテル-テトラフルオロエチレン共重合体、エチレン-アクリル酸共重合体、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリアクリル酸リチウム、ポリメタクリル酸、ポリメタクリル酸ナトリウム、ポリメタクリル酸リチウム等が挙げられる。これらのバインダーは、単独で使用しても良いし、2種以上を併用してもよい。 The solid electrolyte layer 11 may further contain a binder. The binder is not particularly limited, but a thermoplastic resin, a thermosetting resin and the like can be used, and for example, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyfluorovinylidene (PVDF), styrene butadiene rubber, tetra. Fluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, Vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE resin), polychlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene Polymers, ethylene-chlorotrifluoroethylene copolymer (ECTFE), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethylvinyl ether-tetrafluoroethylene copolymer, ethylene- Examples thereof include acrylic acid copolymers, polyacrylic acid, sodium polyacrylic acid, lithium polyacrylic acid, polymethacrylic acid, sodium polymethacrylate, and lithium polymethacrylate. These binders may be used alone or in combination of two or more.
 本開示の固体電解質層11におけるバインダーの含有量は0質量%~10質量%であることが好ましい。この範囲であれば、電極合材の導電性を維持しつつ、固体電解質などを保持できる。より好ましいバインダーの含有量は、0質量%~5質量%である。 The content of the binder in the solid electrolyte layer 11 of the present disclosure is preferably 0% by mass to 10% by mass. Within this range, the solid electrolyte and the like can be retained while maintaining the conductivity of the electrode mixture. A more preferable binder content is 0% by mass to 5% by mass.
(正極活物質層)
 正極活物質層12は、正極集電体14上に形成される。正極活物質層12は、固体電解質、電極活物質および導電材を含む。以下、正極活物質層12について説明する。また、正極活物質層12の厚さについては適宜選択することができる。正極活物質層12の厚さとしては例えば、200μm以下が好ましい。
(Positive electrode active material layer)
The positive electrode active material layer 12 is formed on the positive electrode current collector 14. The positive electrode active material layer 12 contains a solid electrolyte, an electrode active material, and a conductive material. Hereinafter, the positive electrode active material layer 12 will be described. Further, the thickness of the positive electrode active material layer 12 can be appropriately selected. The thickness of the positive electrode active material layer 12 is preferably 200 μm or less, for example.
(固体電解質)
 正極活物質層12に含有される固体電解質としては、本開示の酸化物固体電解質を含有してもよいし、本開示の酸化物固体電解質以外の固体電解質を含有してもよい。本開示の酸化物固体電解質以外の固体電解質としては、例えば、リチウムアルミニウムチタンリン酸化物(LATP)、リチウムアルミニウムゲルマニウムリン酸化物(LAGP)、リチウムランタンジルコニウム酸化物(LLZ)などが挙げられる。上記の本開示の酸化物固体電解質以外の固体電解質は、1種単独または2種以上を混合してもよいし、また、本開示の酸化物固体電解質と組み合わせてもよい。
(Solid electrolyte)
As the solid electrolyte contained in the positive electrode active material layer 12, the oxide solid electrolyte of the present disclosure may be contained, or a solid electrolyte other than the oxide solid electrolyte of the present disclosure may be contained. Examples of the solid electrolyte other than the oxide solid electrolyte of the present disclosure include lithium aluminum titanium phosphorus oxide (LATP), lithium aluminum germanium phosphorus oxide (LAGP), lithium lanthanum zirconium oxide (LLZ) and the like. The solid electrolyte other than the above-mentioned oxide solid electrolyte of the present disclosure may be used alone or in combination of two or more, or may be combined with the oxide solid electrolyte of the present disclosure.
 本開示の酸化物固体電解質以外の固体電解質のリチウムイオン伝導率は、1.0×10-5S/cm以上であるのが好ましく、より好ましくは1.0×10-4S/cm以上である。この範囲であれば、全固体リチウムイオン電池100の電池特性がより向上する。 The lithium ion conductivity of the solid electrolyte other than the oxide solid electrolyte of the present disclosure is preferably 1.0 × 10 -5 S / cm or more, more preferably 1.0 × 10 -4 S / cm or more. be. Within this range, the battery characteristics of the all-solid-state lithium-ion battery 100 are further improved.
(正極活物質)
 正極に用いる電極活物質(正極活物質)としては、リチウムイオンを可逆的に放出・吸蔵でき、電子輸送が行える材料であれば特に限定されない。正極活物質としては。例えば、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物、リチウム鉄リン酸化物などのリチウム遷移金属酸化物、硫黄及びその放電生成物である硫化リチウム、多硫化リチウム等の硫黄系活物質等が挙げられる。正極活物質は、上記材料の1種単独で構成されてもよいし、2種以上で構成されてもよい。
(Positive electrode active material)
The electrode active material (positive electrode active material) used for the positive electrode is not particularly limited as long as it is a material capable of reversibly releasing and storing lithium ions and capable of electron transport. As a positive electrode active material. For example, lithium transition metal oxides such as lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, and lithium iron phosphorus oxide, and sulfur-based active materials such as sulfur and its discharge products, lithium sulfide and lithium polysulfide. And so on. The positive electrode active material may be composed of only one of the above materials, or may be composed of two or more of the above materials.
 (正極導電材)
 正極導電材は一般的にリチウムイオン2次電池及び全固体型リチウムイオン2次電池に使用可能な導電助剤を用いることができる。正極導電材としては、例えば、アセチレンブラック、ケチェンブラック等のカーボンブラック;カーボンファイバー;気相法炭素繊維;黒鉛粉末;カーボンナノチューブ、活性炭等の炭素材料、を挙げることができる。導電材は、上記材料の1種単独で構成されてもよいし、2種以上で構成されてもよい。
(Positive electrode conductive material)
As the positive electrode conductive material, a conductive auxiliary agent that can be generally used for a lithium ion secondary battery and an all-solid-state lithium ion secondary battery can be used. Examples of the positive electrode conductive material include carbon black such as acetylene black and kechen black; carbon fiber; vapor phase carbon fiber; graphite powder; carbon nanotube and carbon material such as activated charcoal. The conductive material may be composed of only one of the above materials, or may be composed of two or more of the above materials.
 (酸化物固体電解質と、正極活物質と、正極導電材との質量比:20~80:20~80:0~30)
 正極活物質層12に本開示の酸化物固体電解質が含有される場合、酸化物固体電解質、正極活物質、および正極導電材との質量合計を100としたときに、本開示の酸化物固体電解質と、正極活物質と、正極導電材と、の質量比(酸化物固体電解質:正極活物質:正極導電材)が、20~80:20~80:0~30であることが好ましい。本開示の酸化物固体電解質と、正極活物質と、正極導電材と、の質量比が、上記の範囲であれば、より高い電池特性が得られる。
(Mass ratio of oxide solid electrolyte, positive electrode active material, and positive electrode conductive material: 20 to 80:20 to 80: 0 to 30)
When the positive electrode active material layer 12 contains the oxide solid electrolyte of the present disclosure, the oxide solid electrolyte of the present disclosure is used when the total mass of the oxide solid electrolyte, the positive electrode active material, and the positive electrode conductive material is 100. The mass ratio of the positive electrode active material and the positive electrode conductive material (oxide solid electrolyte: positive electrode active material: positive electrode conductive material) is preferably 20 to 80:20 to 80: 0 to 30. If the mass ratio of the oxide solid electrolyte of the present disclosure, the positive electrode active material, and the positive electrode conductive material is in the above range, higher battery characteristics can be obtained.
 正極活物質層12中の酸化物固体電解質の含有量は、20質量%~80質量%であることが好ましい。また、正極活物質層12中の正極活物質の含有量は20質量%~80質量%であることが好ましい。正極活物質層12中の正極導電材の含有量は0質量%~30質量%であることが好ましい。より好ましい正極導電材の含有量は0質量%~25質量%である。正極活物質層12中の酸化物固体電解質、正極活物質、および正極導電材の含有量が上記の範囲であれば、より良好な電池特性が得られる。なお、酸化物固体電解質、正極活物質、正極導電材およびその他の成分の合計で100質量%とする。その他の成分としては、バインダーなどが挙げられる。 The content of the oxide solid electrolyte in the positive electrode active material layer 12 is preferably 20% by mass to 80% by mass. Further, the content of the positive electrode active material in the positive electrode active material layer 12 is preferably 20% by mass to 80% by mass. The content of the positive electrode conductive material in the positive electrode active material layer 12 is preferably 0% by mass to 30% by mass. The content of the positive electrode conductive material is more preferably 0% by mass to 25% by mass. When the contents of the oxide solid electrolyte, the positive electrode active material, and the positive electrode conductive material in the positive electrode active material layer 12 are in the above range, better battery characteristics can be obtained. The total of the oxide solid electrolyte, the positive electrode active material, the positive electrode conductive material and other components is 100% by mass. Examples of other components include binders and the like.
 正極活物質層12は、本開示の電極合材で用いたバインダーをさらに含有してもよい。 The positive electrode active material layer 12 may further contain the binder used in the electrode mixture of the present disclosure.
(負極活物質層)
 負極活物質層13は、負極集電体15上に形成される。負極活物質層13は、固体電解質、負極活物質および負極導電材を含む。以下、負極活物質層13について説明する。また、負極活物質層13の厚さについては適宜選択することができる。負極活物質層13の厚さとしては例えば、200μm以下が好ましい。
(Negative electrode active material layer)
The negative electrode active material layer 13 is formed on the negative electrode current collector 15. The negative electrode active material layer 13 contains a solid electrolyte, a negative electrode active material, and a negative electrode conductive material. Hereinafter, the negative electrode active material layer 13 will be described. Further, the thickness of the negative electrode active material layer 13 can be appropriately selected. The thickness of the negative electrode active material layer 13 is preferably 200 μm or less, for example.
(固体電解質)
 負極活物質層13に含有される固体電解質としては、本開示の酸化物固体電解質を含有してもよいし、本開示の酸化物固体電解質以外の固体電解質を含有してもよい。本開示の酸化物固体電解質以外の固体電解質としては、例えば、リチウムアルミニウムチタンリン酸化物(LATP)、リチウムアルミニウムゲルマニウムリン酸化物(LAGP)、リチウムランタンジルコニウム酸化物(LLZ)などが挙げられる。上記の本開示の酸化物固体電解質以外の固体電解質は、1種単独または2種以上を混合してもよいし、また、本開示の酸化物固体電解質と組み合わせてもよい。
(Solid electrolyte)
As the solid electrolyte contained in the negative electrode active material layer 13, the oxide solid electrolyte of the present disclosure may be contained, or a solid electrolyte other than the oxide solid electrolyte of the present disclosure may be contained. Examples of the solid electrolyte other than the oxide solid electrolyte of the present disclosure include lithium aluminum titanium phosphorus oxide (LATP), lithium aluminum germanium phosphorus oxide (LAGP), lithium lanthanum zirconium oxide (LLZ) and the like. The solid electrolyte other than the above-mentioned oxide solid electrolyte of the present disclosure may be used alone or in combination of two or more, or may be combined with the oxide solid electrolyte of the present disclosure.
 本開示の酸化物固体電解質以外の固体電解質のリチウムイオン伝導率は、1.0×10-5S/cm以上であるのが好ましく、より好ましくは1.0×10-4S/cm以上である。この範囲であれば、全固体リチウムイオン電池100の電池特性がより向上する。 The lithium ion conductivity of the solid electrolyte other than the oxide solid electrolyte of the present disclosure is preferably 1.0 × 10 -5 S / cm or more, more preferably 1.0 × 10 -4 S / cm or more. be. Within this range, the battery characteristics of the all-solid-state lithium-ion battery 100 are further improved.
(負極活物質)
 負極活物質としては、リチウムイオンを可逆に放出・吸蔵でき、電子輸送が行える材料であれば特に限定されない。負極活物質としては、例えば、天然黒鉛、人造黒鉛、樹脂炭、炭素繊維、活性炭、ハードカーボン、ソフトカーボン等の炭素質材料;スズ、スズ合金、シリコン、シリコン合金、ガリウム、ガリウム合金、インジウム、インジウム合金、アルミニウム、アルミニウム合金等を主体とした合金系材料;ポリアセン、ポリアセチレン、ポリピロール等の導電性ポリマー;金属リチウム:リチウムチタン複合酸化物(例えばLiTi12)等が挙げられる。負極活物質は、上記材料の1種単独で構成されてもよいし、2種以上で構成されてもよい。
(Negative electrode active material)
The negative electrode active material is not particularly limited as long as it can reversibly release and occlude lithium ions and can transport electrons. Examples of the negative electrode active material include carbonaceous materials such as natural graphite, artificial graphite, resin charcoal, carbon fiber, activated charcoal, hard carbon, and soft carbon; tin, tin alloy, silicon, silicon alloy, gallium, gallium alloy, indium, etc. Alloy-based materials mainly composed of indium alloys, aluminum, aluminum alloys, etc .; conductive polymers such as polyacene, polyacetylene, polypyrrole, etc .; metallic lithium: lithium titanium composite oxide (for example, Li 4 Ti 5 O 12 ) and the like can be mentioned. The negative electrode active material may be composed of only one of the above materials, or may be composed of two or more of the above materials.
 (負極導電材)
 負極導電材は一般的にリチウムイオン2次電池及び全固体型リチウムイオン2次電池に使用可能な導電助剤を用いることができる。正極導電材としては、例えば、アセチレンブラック、ケチェンブラック等のカーボンブラック;カーボンファイバー;気相法炭素繊維;黒鉛粉末;カーボンナノチューブ、活性炭等の炭素材料、を挙げることができる。導電材は、上記材料の1種単独で構成されてもよいし、2種以上で構成されてもよい。
(Negative electrode conductive material)
As the negative electrode conductive material, a conductive auxiliary agent that can be generally used for a lithium ion secondary battery and an all-solid-state lithium ion secondary battery can be used. Examples of the positive electrode conductive material include carbon black such as acetylene black and kechen black; carbon fiber; vapor phase carbon fiber; graphite powder; carbon nanotube and carbon material such as activated charcoal. The conductive material may be composed of only one of the above materials, or may be composed of two or more of the above materials.
 (酸化物固体電解質と、負極活物質と、負極導電材との質量比:20~80:20~80:0~30)
 負極活物質層13に本開示の酸化物固体電解質が含有される場合、酸化物固体電解質、負極活物質、および負極導電材との質量合計を100としたときに、本開示の酸化物固体電解質と、負極活物質と、負極導電材と、の質量比(酸化物固体電解質:負極活物質:負極導電材)は、20~80:20~80:0~30である。本開示の酸化物固体電解質と、負極活物質と、負極導電材と、の質量比が、上記の範囲であれば、より高い電池特性が得られる。
(Mass ratio of oxide solid electrolyte, negative electrode active material, and negative electrode conductive material: 20 to 80:20 to 80: 0 to 30)
When the negative electrode active material layer 13 contains the oxide solid electrolyte of the present disclosure, the oxide solid electrolyte of the present disclosure is used when the total mass of the oxide solid electrolyte, the negative electrode active material, and the negative electrode conductive material is 100. The mass ratio of the negative electrode active material and the negative electrode conductive material (oxide solid electrolyte: negative electrode active material: negative electrode conductive material) is 20 to 80:20 to 80: 0 to 30. If the mass ratio of the oxide solid electrolyte of the present disclosure, the negative electrode active material, and the negative electrode conductive material is in the above range, higher battery characteristics can be obtained.
 負極活物質層13中の酸化物固体電解質の含有量は、20質量%~80質量%であることが好ましい。また、負極活物質層13中の負極活物質の含有量は20質量%~80質量%であることが好ましい。負極活物質層13中の負極導電材の含有量は0質量%~30質量%であることが好ましい。より好ましい負極導電材の含有量は0質量%~25質量%である。負極活物質層13中の酸化物固体電解質、負極活物質、および負極導電材の含有量が上記の範囲であれば、より良好な電池特性が得られる。なお、酸化物固体電解質、負極活物質、負極導電材およびその他の成分の合計で100質量%とする。その他の成分としては、バインダーなどが挙げられる。 The content of the oxide solid electrolyte in the negative electrode active material layer 13 is preferably 20% by mass to 80% by mass. Further, the content of the negative electrode active material in the negative electrode active material layer 13 is preferably 20% by mass to 80% by mass. The content of the negative electrode conductive material in the negative electrode active material layer 13 is preferably 0% by mass to 30% by mass. A more preferable content of the negative electrode conductive material is 0% by mass to 25% by mass. When the contents of the oxide solid electrolyte, the negative electrode active material, and the negative electrode conductive material in the negative electrode active material layer 13 are in the above range, better battery characteristics can be obtained. The total of the oxide solid electrolyte, the negative electrode active material, the negative electrode conductive material and other components is 100% by mass. Examples of other components include binders and the like.
 負極活物質層13は、本開示の電極合材で用いたバインダーをさらに含有してもよい。 The negative electrode active material layer 13 may further contain the binder used in the electrode mixture of the present disclosure.
(正極集電体)
 正極集電体14は、正極活物質層12と接するように設けられる。正極集電体14があることで、正極活物質層12の電気を取り出しやすくなる。正極集電体14としては、公知の正極集電体を用いることができ、例えばAl、SUSなどが挙げられる。また、正極集電体14の厚さ、形状については適宜選択することができる。
(Positive current collector)
The positive electrode current collector 14 is provided so as to be in contact with the positive electrode active material layer 12. The presence of the positive electrode current collector 14 facilitates the extraction of electricity from the positive electrode active material layer 12. As the positive electrode current collector 14, a known positive electrode current collector can be used, and examples thereof include Al and SUS. Further, the thickness and shape of the positive electrode current collector 14 can be appropriately selected.
(負極集電体)
 負極集電体15は、負極活物質層13と接するように設けられる。負極集電体15があることで、負極活物質層13の電気を取り出しやすくなる。負極集電体15としては、公知の負極集電体を用いることができ、例えばCuなどが挙げられる。なお、負極活物質層13の電子伝導性が高い場合は、負極集電体15は設けなくてもよい。また、負極集電体15の厚さ、形状については適宜選択することができる。
(Negative electrode current collector)
The negative electrode current collector 15 is provided so as to be in contact with the negative electrode active material layer 13. The presence of the negative electrode current collector 15 facilitates the extraction of electricity from the negative electrode active material layer 13. As the negative electrode current collector 15, a known negative electrode current collector can be used, and examples thereof include Cu. If the negative electrode active material layer 13 has high electron conductivity, the negative electrode current collector 15 may not be provided. Further, the thickness and shape of the negative electrode current collector 15 can be appropriately selected.
 全固体リチウムイオン電池100は、公知の方法で製造することができる。 The all-solid-state lithium-ion battery 100 can be manufactured by a known method.
 その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。なお、上記の実施形態では、正極集電体14を設けていたが、正極活物質層12の電子伝導性が高い場合は、正極集電体14は設けなくてもよい。また、上記の実施形態では、負極集電体15を設けていたが、負極活物質層13の電子伝導性が高い場合は、負極集電体15は設けなくてもよい。 In addition, it is possible to replace the constituent elements in the embodiment with well-known constituent elements as appropriate without departing from the spirit of the present invention, and the above-mentioned modified examples may be appropriately combined. In the above embodiment, the positive electrode current collector 14 is provided, but if the electron conductivity of the positive electrode active material layer 12 is high, the positive electrode current collector 14 may not be provided. Further, in the above embodiment, the negative electrode current collector 15 is provided, but if the negative electrode active material layer 13 has high electron conductivity, the negative electrode current collector 15 may not be provided.
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, an example of the present invention will be described. The conditions in the examples are one condition example adopted for confirming the feasibility and effect of the present invention, and the present invention is based on this one condition example. Not limited. The present invention can adopt various conditions as long as the gist of the present invention is not deviated and the object of the present invention is achieved.
(実施例1)
 硫酸リチウム(和光純薬社製)と炭酸リチウム(レアメタリック社製)をモル比で70:30となるように硫酸リチウム543mg、炭酸リチウム157mgを秤量した。遊星ボールミル(Frilsch社製Premium Line P-7)を用い、秤量した硫酸リチウムおよび炭酸リチウムを5mmのジルコニアボール約120gとともに80mlのポットに入れ、公転速度370rpmで60時間混合することにより、実施例1の酸化物固体電解質を得た。
(Example 1)
Lithium sulfate (manufactured by Wako Pure Chemical Industries, Ltd.) and lithium carbonate (manufactured by Rare Metallic) were weighed at 543 mg of lithium sulfate and 157 mg of lithium carbonate so as to have a molar ratio of 70:30. Example 1 by using a planetary ball mill (Premium Line P-7 manufactured by Frilsch), weighing lithium sulfate and lithium carbonate are placed in an 80 ml pot together with about 120 g of 5 mm zirconia balls and mixed at a revolution speed of 370 rpm for 60 hours. Oxide solid electrolyte was obtained.
(実施例2)
 硫酸リチウムと炭酸リチウムとをモル比が60:40となるように硫酸リチウム828mg、炭酸リチウム372mgを秤量した後、実施例1と同様の条件で混合し、実施例2の酸化物固体電解質を得た。
(Example 2)
After weighing 828 mg of lithium sulfate and 372 mg of lithium carbonate so that the molar ratio of lithium sulfate and lithium carbonate is 60:40, they are mixed under the same conditions as in Example 1 to obtain the oxide solid electrolyte of Example 2. rice field.
(実施例3)
 硫酸リチウムと炭酸リチウムとをモル比が50:50となるように硫酸リチウム359mg、炭酸リチウム241mgを秤量した後、実施例1と同様の条件で混合し、実施例3の酸化物固体電解質を得た。
(Example 3)
Lithium sulfate and lithium carbonate were weighed at 359 mg of lithium sulfate and 241 mg of lithium carbonate so that the molar ratio was 50:50, and then mixed under the same conditions as in Example 1 to obtain the oxide solid electrolyte of Example 3. rice field.
(実施例4)
 硫酸リチウムと炭酸リチウムとをモル比40:60となるように硫酸リチウム299mg、炭酸リチウム301mgを秤量した後、実施例1と同様の条件で混合し、実施例4の酸化物固体電解質を得た。
(Example 4)
After weighing 299 mg of lithium sulfate and 301 mg of lithium carbonate so that the molar ratio of lithium sulfate and lithium carbonate was 40:60, they were mixed under the same conditions as in Example 1 to obtain the oxide solid electrolyte of Example 4. ..
(実施例5)
 硫酸リチウムと炭酸リチウムとをモル比30:70となるように硫酸リチウム273mg、炭酸リチウム427mgを秤量した後、実施例1と同様の条件で混合し、実施例5の酸化物固体電解質を得た。
(Example 5)
After weighing 273 mg of lithium sulfate and 427 mg of lithium carbonate so that the molar ratio of lithium sulfate and lithium carbonate was 30:70, they were mixed under the same conditions as in Example 1 to obtain the oxide solid electrolyte of Example 5. ..
(実施例6)
 硫酸リチウム、炭酸リチウム、およびヨウ化リチウム(シグマアルドリッチ社製)をモル比が54:36:10となるように硫酸リチウム717mg、炭酸リチウム321mg、ヨウ化リチウム162mgを秤量した後、実施例1と同様の条件で混合し、実施例6の酸化物固体電解質を得た。
(Example 6)
Lithium sulfate, lithium carbonate, and lithium iodide (manufactured by Sigma Aldrich) were weighed with 717 mg of lithium sulfate, 321 mg of lithium carbonate, and 162 mg of lithium iodide so that the molar ratio was 54:36:10. Mixing was performed under the same conditions to obtain the oxide solid electrolyte of Example 6.
(実施例7)
 硫酸リチウム、炭酸リチウム、およびヨウ化リチウムをモル比48:32:20となるように硫酸リチウム614mg、炭酸リチウム275mg、ヨウ化リチウム311mgを秤量した後、実施例1と同様の条件で混合し、実施例7の酸化物固体電解質を得た。
(Example 7)
Lithium sulfate, lithium carbonate, and lithium iodide were weighed at 614 mg of lithium sulfate, 275 mg of lithium carbonate, and 311 mg of lithium iodide so as to have a molar ratio of 48:32:20, and then mixed under the same conditions as in Example 1. The oxide solid electrolyte of Example 7 was obtained.
(実施例8)
 硫酸リチウム、炭酸リチウム、およびヨウ化リチウムをモル比42:28:30となるように硫酸リチウム518mg、炭酸リチウム232mg、ヨウ化リチウム450mgを秤量した後、実施例1と同様の条件で混合し、実施例8の酸化物固体電解質を得た。
(Example 8)
Lithium sulfate, lithium carbonate, and lithium iodide were weighed at 518 mg of lithium sulfate, 232 mg of lithium carbonate, and 450 mg of lithium iodide so as to have a molar ratio of 42:28:30, and then mixed under the same conditions as in Example 1. The oxide solid electrolyte of Example 8 was obtained.
(実施例9)
 硫酸リチウム、炭酸リチウム、およびヨウ化リチウムをモル比36:24:40となるように硫酸リチウム428mg、炭酸リチウム192mg、ヨウ化リチウム280mgを秤量した後、実施例1と同様の条件で混合し、実施例9の酸化物固体電解質を得た。
(Example 9)
Lithium sulfate, lithium carbonate, and lithium iodide were weighed at 428 mg of lithium sulfate, 192 mg of lithium carbonate, and 280 mg of lithium iodide so as to have a molar ratio of 36:24:40, and then mixed under the same conditions as in Example 1. The oxide solid electrolyte of Example 9 was obtained.
(実施例10)
 硫酸リチウム、炭酸リチウム、およびヨウ化リチウムをモル比30:20:50となるように硫酸リチウム345mg、炭酸リチウム155mg、ヨウ化リチウム700mgを秤量した後、実施例1と同様の条件で混合し、実施例10の酸化物固体電解質を得た。
(Example 10)
Lithium sulfate, lithium carbonate, and lithium iodide were weighed at 345 mg of lithium sulfate, 155 mg of lithium carbonate, and 700 mg of lithium iodide so as to have a molar ratio of 30:20:50, and then mixed under the same conditions as in Example 1. The oxide solid electrolyte of Example 10 was obtained.
(実施例11)
 硫酸リチウム、炭酸リチウム、および塩化リチウム(シグマアルドリッチ社製)をモル比48:32:20となるように硫酸リチウム746mg、炭酸リチウム334mg、塩化リチウム120mgを秤量した後、実施例1と同様の条件で混合し、実施例11の酸化物固体電解質を得た。
(Example 11)
Lithium sulfate, lithium carbonate, and lithium chloride (manufactured by Sigma Aldrich) were weighed with 746 mg of lithium sulfate, 334 mg of lithium carbonate, and 120 mg of lithium chloride so as to have a molar ratio of 48:32:20, and then the same conditions as in Example 1. To obtain the oxide solid electrolyte of Example 11.
(実施例12)
 硫酸リチウム、炭酸リチウム、および塩化リチウムをモル比45:30:25となるように硫酸リチウム722mg、炭酸リチウム323mg、塩化リチウム155mgを秤量した後、実施例1と同様の条件で混合し、実施例12の酸化物固体電解質を得た。
(Example 12)
Lithium sulfate, lithium carbonate, and lithium chloride were weighed at 722 mg of lithium sulfate, 323 mg of lithium carbonate, and 155 mg of lithium chloride so as to have a molar ratio of 45:30:25, and then mixed under the same conditions as in Example 1 to Example. Twelve oxide solid electrolytes were obtained.
(実施例13)
 硫酸リチウム、炭酸リチウム、および塩化リチウムをモル比42:28:30となるように硫酸リチウム696mg、炭酸リチウム312mg、塩化リチウム192mgを秤量した後、実施例1と同様の条件で混合し、実施例13の酸化物固体電解質を得た。
(Example 13)
Lithium sulfate, lithium carbonate, and lithium chloride were weighed at 696 mg of lithium sulfate, 312 mg of lithium carbonate, and 192 mg of lithium chloride so as to have a molar ratio of 42:28:30, and then mixed under the same conditions as in Example 1 to Example. Thirteen oxide solid electrolytes were obtained.
 (実施例14)
 硫酸リチウム、炭酸リチウム、および塩化リチウムをモル比36:24:40となるように硫酸リチウム639mg、炭酸リチウム287mg、塩化リチウム274mgを秤量した後、実施例1と同様の条件で混合し、実施例14の酸化物固体電解質を得た。
(Example 14)
Lithium sulfate, lithium carbonate, and lithium chloride were weighed at 639 mg of lithium sulfate, 287 mg of lithium carbonate, and 274 mg of lithium chloride so as to have a molar ratio of 36:24:40, and then mixed under the same conditions as in Example 1 to Example. 14 oxide solid electrolytes were obtained.
(実施例15)
 硫酸リチウム、炭酸リチウム、および臭化リチウム(シグマアルドリッチ社製)をモル比48:32:20となるように硫酸リチウム338mg、炭酸リチウム151mg、臭化リチウム111mgを秤量した後、実施例1と同様の条件で混合し、実施例15の酸化物固体電解質を得た。
(Example 15)
Lithium sulfate, lithium carbonate, and lithium bromide (manufactured by Sigma Aldrich) were weighed at 338 mg of lithium sulfate, 151 mg of lithium carbonate, and 111 mg of lithium bromide so as to have a molar ratio of 48:32:20, and then the same as in Example 1. The mixture was mixed under the conditions of (1) to obtain the oxide solid electrolyte of Example 15.
(実施例16)
 硫酸リチウム、炭酸リチウム、および臭化リチウムをモル比45:30:25となるように硫酸リチウム636mg、炭酸リチウム285mg、臭化リチウム279mgを秤量した後、実施例1と同様の条件で混合し、実施例16の酸化物固体電解質を得た。
(Example 16)
Lithium sulfate, lithium carbonate, and lithium bromide were weighed at 636 mg of lithium sulfate, 285 mg of lithium carbonate, and 279 mg of lithium bromide so as to have a molar ratio of 45:30:25, and then mixed under the same conditions as in Example 1. The oxide solid electrolyte of Example 16 was obtained.
(実施例17)
 硫酸リチウム、炭酸リチウム、臭化リチウムをモル比42:28:30となるように硫酸リチウム596mg、炭酸リチウム267mg、臭化リチウム336mgを秤量した後、実施例1と同様の条件で混合し、実施例17の酸化物固体電解質を得た。
(Example 17)
Lithium sulfate, lithium carbonate, and lithium bromide were weighed at 596 mg of lithium sulfate, 267 mg of lithium carbonate, and 336 mg of lithium bromide so as to have a molar ratio of 42:28:30, and then mixed under the same conditions as in Example 1 to carry out. The oxide solid electrolyte of Example 17 was obtained.
(実施例18)
 硫酸リチウム、炭酸リチウム、および臭化リチウムをモル比36:24:40となるように硫酸リチウム258mg、炭酸リチウム116mg、臭化リチウム226mgを秤量した後、実施例1と同様の条件で混合し、実施例18の酸化物固体電解質を得た。
(Example 18)
Lithium sulfate, lithium carbonate, and lithium bromide were weighed at 258 mg of lithium sulfate, 116 mg of lithium carbonate, and 226 mg of lithium bromide so as to have a molar ratio of 36:24:40, and then mixed under the same conditions as in Example 1. The oxide solid electrolyte of Example 18 was obtained.
(実施例19)
 硫酸リチウム、炭酸リチウム、およびリン酸リチウム(シグマアルドリッチ社製)をモル比48:32:20となるように硫酸リチウム530mg、炭酸リチウム237mg、臭化リチウム233mgを秤量した後、実施例1と同様の条件で混合し、実施例19の酸化物固体電解質を得た。
(Example 19)
Lithium sulfate, lithium carbonate, and lithium phosphate (manufactured by Sigma Aldrich) were weighed at 530 mg of lithium sulfate, 237 mg of lithium carbonate, and 233 mg of lithium bromide so as to have a molar ratio of 48:32:20, and then the same as in Example 1. The mixture was mixed under the conditions of (1) to obtain the oxide solid electrolyte of Example 19.
(実施例20)
 硫酸リチウム、炭酸リチウム、および硝酸リチウム(シグマアルドリッチ社製)をモル比48:32:20となるように硫酸リチウム585mg、炭酸リチウム262mg、臭化リチウム153mgを秤量した後、実施例1と同様の条件で混合し、実施例20の酸化物固体電解質を得た。
(Example 20)
Lithium sulfate, lithium carbonate, and lithium nitrate (manufactured by Sigma Aldrich) were weighed at 585 mg of lithium sulfate, 262 mg of lithium carbonate, and 153 mg of lithium bromide so as to have a molar ratio of 48:32:20, and then the same as in Example 1. The mixture was mixed under the conditions to obtain the oxide solid electrolyte of Example 20.
(比較例1)
 ホウ酸リチウム(豊島製作所社製)と硫酸リチウムをモル比90:10となるようにホウ酸リチウム1040mg、硫酸リチウム160mgを秤量した後、実施例1と同様の条件で混合し、比較例1の固体電解質を得た。
(Comparative Example 1)
After weighing 1040 mg of lithium borate and 160 mg of lithium sulfate so that lithium borate (manufactured by Toyoshima Seisakusho Co., Ltd.) and lithium sulfate have a molar ratio of 90:10, they are mixed under the same conditions as in Example 1 and compared with Comparative Example 1. A solid electrolyte was obtained.
(比較例2)
 比較例1の固体電解質をアルゴン雰囲気下で285℃、1時間熱処理することで比較例2の固体電解質を得た。
(Comparative Example 2)
The solid electrolyte of Comparative Example 1 was heat-treated at 285 ° C. for 1 hour in an argon atmosphere to obtain the solid electrolyte of Comparative Example 2.
(正極合材1)
 正極活物質としてリチウムニッケルコバルトマンガン酸化物(LiNi1/3Co1/3Mn1/3、BASF戸田バッテリーマテリアルズ社製)60mgと実施例2の酸化物固体電解質40mgを秤量し、メノウ乳鉢で混合することで粉末状の正極合材1を得た。
(Positive electrode mixture 1)
As the positive electrode active material, 60 mg of lithium nickel cobalt manganese oxide (LiNi 1/3 Co 1/3 Mn 1/3 O 2 , manufactured by BASF Toda Battery Materials Co., Ltd.) and 40 mg of the oxide solid electrolyte of Example 2 were weighed and menowed. By mixing in a dairy pot, a powdery positive electrode mixture 1 was obtained.
(正極合材2)
 実施例2の酸化物固体電解質の代わりに実施例13の酸化物固体電解質を用いたこと以外、正極合材1と同様の方法で秤量、混合し、粉末状の正極合材2を得た。
(Positive electrode mixture 2)
A powdery positive electrode mixture 2 was obtained by weighing and mixing in the same manner as in the positive electrode mixture 1 except that the oxide solid electrolyte of Example 13 was used instead of the oxide solid electrolyte of Example 2.
(正極合材3)
 正極活物質として硫化リチウム(三津和化学社製)60mg、実施例13の酸化物固体電解質120mg、活性炭(MSC-30)20mgを秤量した。遊星ボールミル(Frilsch社製Premium Line P-7)を用い、5mmのジルコニアボール約40gとともに秤量した硫化リチウム、実施例13の酸化物固体電解質、活性炭を45mlのポットに入れ、公転速度370rpmで2時間混合することにより、粉末状の正極合材3を得た。
(Positive electrode mixture 3)
As the positive electrode active material, 60 mg of lithium sulfide (manufactured by Mitsuwa Chemical Co., Ltd.), 120 mg of the oxide solid electrolyte of Example 13, and 20 mg of activated carbon (MSC-30) were weighed. Using a planetary ball mill (Premium Line P-7 manufactured by Frillsch), lithium sulfide weighed together with about 40 g of 5 mm zirconia balls, the oxide solid electrolyte of Example 13, and activated carbon were placed in a 45 ml pot, and the revolution speed was 370 rpm for 2 hours. By mixing, a powdery positive electrode mixture 3 was obtained.
(正極合材4)
 実施例13の酸化物固体電解質の代わりに実施例16の酸化物固体電解質を用いたこと以外、正極合材3と同様の条件で秤量および混合をし、粉末状の正極合材4を得た。
(Positive electrode mixture 4)
Weighing and mixing under the same conditions as for the positive electrode mixture 3 except that the oxide solid electrolyte of Example 16 was used instead of the oxide solid electrolyte of Example 13, a powdery positive electrode mixture 4 was obtained. ..
(正極合材5)
 正極活物質として硫化リチウム60mg、実施例13の酸化物固体電解質60mg、活性炭(MSC-30)20mgを秤量した。遊星ボールミル(Frilsch社製Premium Line P-7)を用い、5mmのジルコニアボール約40gとともに秤量した硫化リチウム、実施例13の酸化物固体電解質、および活性炭を45mlのポット入れ、公転速度370rpmで2時間混合した。得られた粉体と、実施例13の固体電解質とを質量比が70:30となるように秤量し、乳鉢で混合することで粉末状の正極合材5を得た。
(Positive electrode mixture 5)
As the positive electrode active material, 60 mg of lithium sulfide, 60 mg of the oxide solid electrolyte of Example 13, and 20 mg of activated carbon (MSC-30) were weighed. Using a planetary ball mill (Premium Line P-7 manufactured by Frillsch), lithium sulfide weighed together with about 40 g of 5 mm zirconia balls, the oxide solid electrolyte of Example 13, and activated carbon were placed in a 45 ml pot, and the revolution speed was 370 rpm for 2 hours. Mixed. The obtained powder and the solid electrolyte of Example 13 were weighed so as to have a mass ratio of 70:30, and mixed in a mortar to obtain a powdery positive electrode mixture 5.
(正極合材6)
 実施例13の酸化物固体電解質の代わりに実施例16の酸化物固体電解質を用いたこと以外、正極合材5と同様の条件で秤量および混合をし、粉末状の正極合材6を得た。
(Positive electrode mixture 6)
Weighing and mixing under the same conditions as for the positive electrode mixture 5 except that the oxide solid electrolyte of Example 16 was used instead of the oxide solid electrolyte of Example 13, a powdery positive electrode mixture 6 was obtained. ..
(比較正極合材1)
 実施例2の酸化物固体電解質の代わりに、比較例2の固体電解質を用いたこと以外、正極合材1と同様の方法で秤量、混合し、比較正極合材1を得た。
(Comparative positive electrode mixture 1)
A comparative positive electrode mixture 1 was obtained by weighing and mixing in the same manner as in the positive electrode mixture 1 except that the solid electrolyte of Comparative Example 2 was used instead of the oxide solid electrolyte of Example 2.
(比較正極合材2)
 実施例2の固体電解質の代わりにリチウムアルミニウムゲルマニウムリン酸化物(LAGP、豊島製作所社製)を酸化物固体電解質として用いたこと以外、正極合材1と同様の方法で秤量、混合し、粉末状の比較正極合材2を得た。
(Comparative positive electrode mixture 2)
Lithium aluminum germanium phosphorus oxide (LAGP, manufactured by Toyoshima Seisakusho Co., Ltd.) was used as the oxide solid electrolyte in place of the solid electrolyte of Example 2, and the mixture was weighed and mixed in the same manner as in the positive electrode mixture 1 to form a powder. Comparative positive electrode mixture 2 was obtained.
(比較正極合材3)
 実施例2の固体電解質の代わりにリチウムアルミニウムチタンリン酸化物(LATP、豊島製作所社製)を酸化物固体電解質として用いたこと以外、正極合材1と同様の方法で秤量、混合し、粉末状の比較正極合材3を得た。
(Comparative positive electrode mixture 3)
Lithium aluminum titanium phosphorus oxide (LATP, manufactured by Toyoshima Seisakusho Co., Ltd.) was used as the oxide solid electrolyte in place of the solid electrolyte of Example 2, and the mixture was weighed and mixed in the same manner as in the positive electrode mixture 1 to form a powder. Comparative positive electrode mixture 3 was obtained.
(負極合材1)
 負極活物質としてリチウムチタン酸化物(LiTi12(LTO)、石原産業社製)50mgと実施例2の酸化物固体電解質50mgを秤量し、メノウ乳鉢で混合することで粉末状の負極合材1を得た。
(Negative electrode mixture 1)
Weigh 50 mg of lithium titanium oxide (Li 4 Ti 5 O 12 (LTO), manufactured by Ishihara Sangyo Co., Ltd.) and 50 mg of the oxide solid electrolyte of Example 2 as the negative electrode active material, and mix them in a Menou dairy pot to form a powdered negative electrode. Combined material 1 was obtained.
(負極合材2)
 実施例2の酸化物固体電解質の代わりに実施例8の酸化物固体電解質50mgを秤量した以外は、負極合材1と同様の条件でメノウ乳鉢で混合することで粉末状の負極合材2を得た。
(Negative electrode mixture 2)
The powdery negative electrode mixture 2 was obtained by mixing in a Menou dairy pot under the same conditions as the negative electrode mixture 1 except that 50 mg of the oxide solid electrolyte of Example 8 was weighed instead of the oxide solid electrolyte of Example 2. Obtained.
(負極合材3)
 負極活物質としてグラファイト(和光純薬社製)50mgと実施例13の酸化物固体電解質50mgを秤量し、メノウ乳鉢で混合することで粉末状の負極合材3を得た。
(Negative electrode mixture 3)
As the negative electrode active material, 50 mg of graphite (manufactured by Wako Pure Chemical Industries, Ltd.) and 50 mg of the oxide solid electrolyte of Example 13 were weighed and mixed in an agate mortar to obtain a powdery negative electrode mixture 3.
(負極合材4)
 負極活物質としてケイ素(二コラ社製)50mgと実施例13の酸化物固体電解質50mgを秤量し、メノウ乳鉢で混合することで粉末状の負極合材4を得た。
(Negative electrode mixture 4)
As the negative electrode active material, 50 mg of silicon (manufactured by Nikola Co., Ltd.) and 50 mg of the oxide solid electrolyte of Example 13 were weighed and mixed in an agate mortar to obtain a powdery negative electrode mixture 4.
(負極合材5)
 正極活物質の硫化リチウムの代わりに負極活物質としてケイ素を用いたこと以外、正極合材3と同様の方法で秤量、混合し、粉末状の負極合材5を得た。
(Negative electrode mixture 5)
A powdery negative electrode mixture 5 was obtained by weighing and mixing in the same manner as the positive electrode mixture 3 except that silicon was used as the negative electrode active material instead of lithium sulfide as the positive electrode active material.
(負極合材6)
 正極活物質の硫化リチウムの代わりに負極活物質としてケイ素を用いたこと以外、正極合材5と同様の方法で秤量、混合し、粉末状の負極合材6を得た。
(Negative electrode mixture 6)
A powdery negative electrode mixture 6 was obtained by weighing and mixing in the same manner as the positive electrode mixture 5 except that silicon was used as the negative electrode active material instead of lithium sulfide as the positive electrode active material.
(電池作製方法-1)
 アルゴンガス雰囲気グローブボックス内にて、直径10mmの錠剤成形器(日本分光)に直径10mmに打ち抜いたAl箔またはCu箔を入れ、その上から正極合材または負極合材を入れ、所定の圧力でプレスすることで正極を作製した。次に、直径15.5mmのSUS板上に得られた電極を置き、その上にリチウム塩を含有するポリエチレンオキサイド系高分子固体電解質膜を貼り付け、その上から対極としてφ12mmに打ち抜いたLi金属箔(厚み0.2mm)を正極と反対側に配置する。これを密閉することで評価用電池とした。なお、正極合材の評価ではすべてAl箔を用い、負極合材の評価ではLTOを含む場合をAl箔、グラファイト及びケイ素の場合、Cu箔を用いた。
(Battery manufacturing method-1)
In an argon gas atmosphere glove box, put an Al foil or Cu foil punched to a diameter of 10 mm in a tablet molder (JASCO Corporation) with a diameter of 10 mm, put a positive electrode mixture or a negative electrode mixture from above, and apply a predetermined pressure. A positive electrode was produced by pressing. Next, the obtained electrode was placed on a SUS plate with a diameter of 15.5 mm, a polyethylene oxide-based polymer solid electrolyte membrane containing a lithium salt was pasted on it, and Li metal punched to φ12 mm as a counter electrode from above. The foil (thickness 0.2 mm) is placed on the opposite side of the positive electrode. This was sealed to make an evaluation battery. In the evaluation of the positive electrode mixture, Al foil was used, and in the evaluation of the negative electrode mixture, Al foil was used when LTO was contained, and Cu foil was used in the case of graphite and silicon.
(電池作製方法-2)
 アルゴンガス雰囲気グローブボックス内にて、セラミックス製の円筒管治具(内径10mmΦ、外径23mmΦ、高さ20mm)の下側から負極集電体としてSKD11製の円筒治具(10mmΦ、高さ10mm)を差し込み、セラミックス製の円筒管治具の上側から固体電解質(E)(5LiS-GeS-Pを510℃で8時間焼成した複合化物1と80LiS-20Pをボールミルにて500rpm、10時間処理した複合化物2を質量比90:10で混合した混合複合化物)80mgを入れた。さらに正極集電体としてSKD11製の円筒治具(10mmΦ、高さ15mm)をセラミックス製の円筒管治具の上側から差し込んで固体電解質(E)を挟み込み、80MPaの圧力で3分間プレスすることにより直径10mmΦ、厚さ約0.6mmの固体電解質層を形成した。次に、上側から差し込んだSKD11製の円筒治具(正極集電体)を一旦抜き取り、セラミックス製の円筒管内の固体電解質層の上に作製した正極合材または負極合材を入れ、再び上側からSKD11製の円筒治具(正極集電体)を差し込み、720MPaの圧力で3分間プレスすることで、直径10mmΦ、厚さ約0.1mmの正極層を形成した。次に、下側から差し込んだSKD11製の円筒治具(負極集電体)を抜き取り、負極として厚さ0.20mmのリチウムシート(本城金属社製)を穴あけポンチで直径8mmΦに打ち抜いたものと厚さ0.3mmのインジウムシート(フルウチ化学社製)を穴あけポンチで直径9mmΦに打ち抜いたものを重ねてセラミックス製の円筒管治具の下側から入れて、再び下側からSKD11製の円筒治具(負極集電体)を差し込み、80MPaの圧力で3分間プレスすることでリチウム-インジウム合金負極を形成した。以上のようにして、下側から順に、負極集電体、リチウム-インジウム合金負極層、固体電解質層、正極層、正極集電体が積層された全固体型リチウムイオン電池を作製した。これを密閉することで評価用電池とした。
(Battery manufacturing method-2)
In the argon gas atmosphere glove box, a cylindrical jig made of SKD11 (10 mmΦ, height 10 mm) as a negative current collector from the lower side of a ceramic cylindrical tube jig (inner diameter 10 mmΦ, outer diameter 23 mmΦ, height 20 mm). The composite product 1 and 80Li 2 S-20P 2 S 5 in which the solid electrolyte (E) (5Li 2 S-GeS 2 -P 2 S 5 ) was fired at 510 ° C. for 8 hours from the upper side of the ceramic cylindrical tube jig. Was mixed with a ball mill at 500 rpm for 10 hours at a mass ratio of 90:10, and 80 mg of the mixed composite was added. Further, by inserting a cylindrical jig (10 mmΦ, height 15 mm) made of SKD11 as a positive electrode current collector from above the cylindrical tube jig made of ceramics, sandwiching the solid electrolyte (E), and pressing at a pressure of 80 MPa for 3 minutes. A solid electrolyte layer having a diameter of 10 mmΦ and a thickness of about 0.6 mm was formed. Next, once the SKD11 cylindrical jig (positive electrode current collector) inserted from the upper side is pulled out, the prepared positive electrode mixture or negative electrode mixture is put on the solid electrolyte layer in the ceramic cylindrical tube, and again from the upper side. A cylindrical jig (positive electrode current collector) made of SKD11 was inserted and pressed at a pressure of 720 MPa for 3 minutes to form a positive electrode layer having a diameter of 10 mmΦ and a thickness of about 0.1 mm. Next, the SKD11 cylindrical jig (negative electrode current collector) inserted from the bottom was pulled out, and a 0.20 mm thick lithium sheet (manufactured by Honjo Metal Co., Ltd.) was punched to a diameter of 8 mmΦ with a punch. And a 0.3 mm thick indium sheet (manufactured by Furuuchi Kagaku Co., Ltd.) punched out to a diameter of 9 mmΦ with a punch, put it in from the bottom of the ceramic cylindrical tube jig, and again from the bottom of the SKD11 cylinder. A jig (negative electrode current collector) was inserted and pressed at a pressure of 80 MPa for 3 minutes to form a lithium-indium alloy negative electrode. As described above, an all-solid-state lithium-ion battery in which a negative electrode current collector, a lithium-indium alloy negative electrode layer, a solid electrolyte layer, a positive electrode layer, and a positive electrode current collector are laminated in this order from the bottom was produced. This was sealed to make an evaluation battery.
(フルセル1)
 アルゴンガス雰囲気グローブボックス内にて、直径10mmの錠剤成形器(日本分光)に直径10mmに打ち抜いたAl箔を入れ、その上から正極合材1の粉末を入れ、400MPaプレスすることで正極層を形成し、その上に固体電解質粉末(比較例2の固体電解質と実施例3の固体電解質とを質量比75:25で乳鉢混合したもの)を入れ400MPaプレスし、さらにその上から負極合材2の粉末とAl箔を入れ、1GPaプレスすることで、正極層-固体電解質層-負極層の3層積層された全固リチウムイオン電池のフルセルを作製した。これを密閉することで評価用電池とした。
(Full cell 1)
In an argon gas atmosphere glove box, put an Al foil punched to a diameter of 10 mm into a tablet molder (Nippon Kogaku) with a diameter of 10 mm, put the powder of the positive electrode mixture 1 from above, and press for 400 MPa to form a positive electrode layer. A solid electrolyte powder (a mixture of the solid electrolyte of Comparative Example 2 and the solid electrolyte of Example 3 in a dairy pot at a mass ratio of 75:25) is placed therein and pressed at 400 MPa, and the negative electrode mixture 2 is further formed. And Al foil were put in and pressed by 1 GPa to prepare a full cell of a solid lithium ion battery in which three layers of a positive electrode layer-a solid electrolyte layer-a negative electrode layer were laminated. This was sealed to make an evaluation battery.
(固体電解質の導電率測定)
 Arガス雰囲気グローブボックス内にて、直径10mmの錠剤成形器(日本分光)に直径10mmに打ち抜いたAl箔またはAu箔を入れ、その上から固体電解質粉末(実施例1~20、比較例1、2)を入れ、均した後にさらに直径10mmに打ち抜いたAl箔またはAu箔を入れ、1GPaで30分間プレスすることで固体電解質測定用のペレットを得た。これを宝泉社製フラットセル内に配置し、密閉することで導電率測定用セルとした。次に、室温にて、インピーダンス測定装置(ソーラトロン社インピーダンスアナライザーA1260)にて印加電圧100mV、測定周波数1Hz~32MHzにて測定し、得られたナイキストプロットの半円弧の低周波端の抵抗値から導電率を算出した。表1に各固体電解質の導電率、相対密度をまとめた。
(Measurement of conductivity of solid electrolyte)
In the Ar gas atmosphere glove box, an Al foil or Au foil punched to a diameter of 10 mm is placed in a tablet molder (Nippon Kogaku) with a diameter of 10 mm, and solid electrolyte powder (Examples 1 to 20, Comparative Example 1) is placed on the Al foil or Au foil. 2) was added, and after leveling, Al foil or Au foil punched to a diameter of 10 mm was further added and pressed at 1 GPa for 30 minutes to obtain pellets for solid electrolyte measurement. This was placed in a flat cell manufactured by Hosen Co., Ltd. and sealed to make a cell for measuring conductivity. Next, at room temperature, an impedance measuring device (Solartron Impedance Analyzer A1260) was used to measure the applied voltage at an applied voltage of 100 mV and a measurement frequency of 1 Hz to 32 MHz. The rate was calculated. Table 1 summarizes the conductivity and relative density of each solid electrolyte.
(相対密度の算出方法)
 1GPaプレスによって得られた固体電解質測定用のペレットの密度を、各原料の密度から計算される理論密度で除する上記(1)式によって算出した。ここで、各原料の密度(g/cm3)はそれぞれ、硫酸リチウム2.22、炭酸リチウム2.11、ヨウ化リチウム4.08、臭化リチウム3.46、塩化リチウム2.07、ホウ酸リチウム2.16、リン酸リチウム2.54、硝酸リチウム2.38として計算した。結果を表1に示す。相対密度95%以上を合格とした。
(Calculation method of relative density)
It was calculated by the above formula (1) in which the density of the pellets for measuring the solid electrolyte obtained by the 1 GPa press was divided by the theoretical density calculated from the density of each raw material. Here, the densities (g / cm3) of each raw material are lithium sulfate 2.22, lithium carbonate 2.11, lithium iodide 4.08, lithium bromide 3.46, lithium chloride 2.07, and lithium borate, respectively. Calculated as 2.16, lithium phosphate 2.54, and lithium nitrate 2.38. The results are shown in Table 1. A relative density of 95% or more was regarded as acceptable.
(固体電解質の発熱ピーク温度)
 Arガスで満たされたグローブボックス中で実施例1~20および比較例1、2の酸化物固体電解質(約10mg)をAl密閉試料容器(日立ハイテクサイエンス社製 GCA-0017)に入れ、密閉した。密閉後の容器を示差走査熱量計(例えば、セイコーインスツルメンツ社製DSC6200)に設置し、温度範囲50℃~300℃、昇温速度10℃/分で測定を行うことで、酸化物固体電解質のDSC曲線を得た。得られたDSC曲線から酸化物固体電解質の発熱ピークの位置と発熱量が得られた。結果を表1に示す。
(Peak temperature of heat generation of solid electrolyte)
The oxide solid electrolytes (about 10 mg) of Examples 1 to 20 and Comparative Examples 1 and 2 were placed in an Al sealed sample container (GCA-0017 manufactured by Hitachi High-Tech Science Co., Ltd.) in a glove box filled with Ar gas and sealed. .. By installing the sealed container on a differential scanning calorimeter (for example, DSC6200 manufactured by Seiko Instruments) and measuring at a temperature range of 50 ° C to 300 ° C and a heating rate of 10 ° C / min, the DSC of the oxide solid electrolyte is measured. I got a curve. From the obtained DSC curve, the position of the exothermic peak and the calorific value of the oxide solid electrolyte were obtained. The results are shown in Table 1.
(正極合材および負極合材の充放電特性評価)
 上記正極合材1~6、比較正極合材1~3を用い、電池作製方法1または2にて作製した評価用電池を充放電装置(ACD-M01A、アスカ電子社製またはHJ1001SD8、北斗電工社製)にて定電流充放電し、電極活物質当たりの初回放電容量または初回充電容量を測定した。正極合材の結果を表2に示す。負極合材の評価の場合は、負極合材1~6を用い、電池作製方法1または2にて作製した評価用電池を用いた。負極合材の測定結果を表3に示す。ここで、充放電特性は正極については放電容量、負極については充電容量を用いた。負極合材5および6を用いた電池については、放電容量を2500mAh/gまでとした。
(Evaluation of charge / discharge characteristics of positive electrode mixture and negative electrode mixture)
Using the positive electrode mixture 1 to 6 and the comparative positive electrode mixture 1 to 3, the evaluation battery manufactured by the battery manufacturing method 1 or 2 is charged and discharged (ACD-M01A, manufactured by Asuka Electronics Co., Ltd. or HJ1001SD8, Hokuto Denko Co., Ltd.). The initial discharge capacity or the initial charge capacity per electrode active material was measured by charging and discharging with a constant current. The results of the positive electrode mixture are shown in Table 2. In the case of evaluation of the negative electrode mixture, the negative electrode mixture 1 to 6 were used, and the evaluation battery produced by the battery manufacturing method 1 or 2 was used. Table 3 shows the measurement results of the negative electrode mixture. Here, as the charge / discharge characteristics, the discharge capacity was used for the positive electrode and the charge capacity was used for the negative electrode. For the batteries using the negative electrode mixture 5 and 6, the discharge capacity was set to 2500 mAh / g.
(フルセルの充放電特性評価)
 上記で作製したフルセルを充放電装置(ACD-M01A、アスカ電子社製またはHJ1001SD8、北斗電工社製)にて定電流充放電し、電極活物質当たりの初回放電容量または初回充電容量を測定した。フルセルの評価結果を表4に示す。ここで、充放電特性はフルセルについては放電容量を用いた。
(Evaluation of full cell charge / discharge characteristics)
The full cell produced above was charged and discharged with a constant current using a charging / discharging device (ACD-M01A, manufactured by Asuka Electronics Co., Ltd. or HJ1001SD8, manufactured by Hokuto Denko Co., Ltd.), and the initial discharge capacity or the initial charge capacity per electrode active material was measured. Table 4 shows the evaluation results of full cells. Here, for the charge / discharge characteristics, the discharge capacity was used for the full cell.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1に示す通り、実施例1~20酸化物固体電解質は、LiSOとLiCOとを含み、LiSOとLiCOとのモル比が20:80~80:20であり、DSC曲線において、200℃以下の発熱ピークを有していたので、常温、1GPaプレスによって得られたペレットの相対密度が95%以上となった。また、実施例1~20酸化物固体電解質は、導電率が1.0×10-7S/cm以上であった。 As shown in Table 1, Examples 1 to 20 oxide solid electrolytes contain Li 2 SO 4 and Li 2 CO 3 , and the molar ratio of Li 2 SO 4 to Li 2 CO 3 is 20: 80 to 80 :. Since it was 20 and had an exothermic peak of 200 ° C. or lower in the DSC curve, the relative density of the pellets obtained by pressing at room temperature and 1 GPa was 95% or more. Further, the solid electrolytes of Examples 1 to 20 had a conductivity of 1.0 × 10 -7 S / cm or more.
 一方、比較例1および2の固体電解質は、DSC曲線において、200℃以下の発熱ピークがなかった。そのため、常温、1GPaプレスによって得られたペレットの相対密度が95%未満であり、常温での変形性が劣位であった。 On the other hand, the solid electrolytes of Comparative Examples 1 and 2 did not have an exothermic peak of 200 ° C. or lower in the DSC curve. Therefore, the relative density of the pellets obtained by pressing at room temperature and 1 GPa was less than 95%, and the deformability at room temperature was inferior.
 表2~4に示すように、実施例の酸化物固体電解質を用いた正極合材1~6は、比較正極合材1~3と比較して、優れた電池特性を有していた。また、同様に実施例の酸化物固体電解質を用いた負極合材およびフルセルも優れた電池特性を有していた。 As shown in Tables 2 to 4, the positive electrode mixture 1 to 6 using the oxide solid electrolyte of the examples had excellent battery characteristics as compared with the comparative positive electrode mixture 1 to 3. Similarly, the negative electrode mixture and the full cell using the oxide solid electrolyte of the example also had excellent battery characteristics.
 本開示の酸化物固体電解質は全固体リチウムイオン電池の正極、負極、固体電解質層として使用することで、良好な電池特性を示す正極、負極、及び、固体電解質層、さらに、フルセルを常温プレスのみで作製することができる。非常に簡便な方法で電極やフルセルを形成できるため、本発明の酸化物固体電解質、及びそれを用いた電極合材は量産に適した材料であるので、産業上の利用可能性が高い。 By using the oxide solid electrolyte of the present disclosure as the positive electrode, the negative electrode, and the solid electrolyte layer of the all-solid lithium ion battery, the positive electrode, the negative electrode, the solid electrolyte layer, and the full cell, which show good battery characteristics, can be pressed only at room temperature. Can be produced with. Since electrodes and full cells can be formed by a very simple method, the oxide solid electrolyte of the present invention and the electrode mixture using the same are suitable materials for mass production, and therefore have high industrial applicability.
 11 固体電解質層、12 正極活物質層、13 負極活物質層、14 正極集電体、15 負極集電体、100 全固体リチウムイオン電池 11 solid electrolyte layer, 12 positive electrode active material layer, 13 negative electrode active material layer, 14 positive electrode current collector, 15 negative electrode current collector, 100 all-solid-state lithium-ion battery

Claims (8)

  1.  硫酸リチウム(LiSO)と炭酸リチウム(LiCO)とを含む複合物であって、
     前記硫酸リチウムと前記炭酸リチウムとのモル比(LiSO:LiCO)が20:80~80:20であり、
     示差走査熱量測定で得られる曲線において、発熱ピークの位置が200℃以下であり、
     導電率が1.0×10-7S/cm以上である、酸化物固体電解質。
    A complex containing lithium sulfate (Li 2 SO 4 ) and lithium carbonate (Li 2 CO 3 ).
    The molar ratio of the lithium sulfate to the lithium carbonate (Li 2 SO 4 : Li 2 CO 3 ) is 20:80 to 80:20.
    In the curve obtained by differential scanning calorimetry, the position of the exothermic peak is 200 ° C or less.
    An oxide solid electrolyte having a conductivity of 1.0 × 10 -7 S / cm or more.
  2.  塩化リチウム、臭化リチウム、ヨウ化リチウム、ホウ酸リチウム、リン酸リチウム、硝酸リチウム、ケイ酸リチウム、およびアルミン酸リチウムからなる群より選択される少なくとも1種をさらに含む、請求項1に記載の酸化物固体電解質。 The first aspect of claim 1, further comprising at least one selected from the group consisting of lithium chloride, lithium bromide, lithium iodide, lithium borate, lithium phosphate, lithium nitrate, lithium silicate, and lithium aluminate. Oxide solid electrolyte.
  3.  請求項1または2に記載の酸化物固体電解質と、
     電極活物質と、
     導電材と、
    を含み、
     前記酸化物固体電解質と、前記電極活物質と、前記導電材と、の質量比(酸化物固体電解質:電極活物質:導電材)が20~80:20~80:0~30である、電極合材。
    The oxide solid electrolyte according to claim 1 or 2,
    Electrode active material and
    With conductive material
    Including
    The mass ratio of the oxide solid electrolyte, the electrode active material, and the conductive material (oxide solid electrolyte: electrode active material: conductive material) is 20 to 80:20 to 80: 0 to 30. Mixture.
  4.  請求項1または2に記載の酸化物固体電解質を含む、全固体リチウムイオン電池。 An all-solid-state lithium-ion battery containing the oxide solid electrolyte according to claim 1 or 2.
  5.  前記酸化物固体電解質を含む固体電解質層を備える、請求項4に記載の全固体リチウムイオン電池。 The all-solid-state lithium-ion battery according to claim 4, further comprising a solid electrolyte layer containing the oxide solid electrolyte.
  6.  前記酸化物固体電解質を含む正極活物質層、または前記酸化物固体電解質を含む負極活物質層を備える、請求項4または5に記載の全固体リチウムイオン電池。 The all-solid lithium-ion battery according to claim 4 or 5, further comprising a positive electrode active material layer containing the oxide solid electrolyte or a negative electrode active material layer containing the oxide solid electrolyte.
  7.  前記正極活物質層が、前記酸化物固体電解質、正極活物質および正極導電材を含み、 前記酸化物固体電解質と、前記正極活物質と、前記正極導電材と、の質量比(酸化物固体電解質:正極活物質:正極導電材)が20~80:20~80:0~30である、請求項6に記載の全固体リチウムイオン電池。 The positive electrode active material layer contains the oxide solid electrolyte, the positive electrode active material, and the positive electrode conductive material, and the mass ratio of the oxide solid electrolyte, the positive electrode active material, and the positive electrode conductive material (oxide solid electrolyte). : The all-solid lithium ion battery according to claim 6, wherein the positive electrode active material (positive electrode conductive material) is 20 to 80: 20 to 80: 0 to 30.
  8.  前記負極活物質層が、前記酸化物固体電解質、負極活物質および負極導電材を含み、 前記酸化物固体電解質と、前記負極活物質と、前記負極導電材と、の質量比(酸化物固体電解質:負極活物質:負極導電材)が20~80:20~80:0~30である、請求項6または7に記載の全固体リチウムイオン電池。 The negative electrode active material layer contains the oxide solid electrolyte, the negative electrode active material, and the negative electrode conductive material, and the mass ratio of the oxide solid electrolyte, the negative electrode active material, and the negative electrode conductive material (oxide solid electrolyte). : The all-solid-state lithium ion battery according to claim 6 or 7, wherein the negative electrode active material: negative electrode conductive material) is 20 to 80:20 to 80: 0 to 30.
PCT/JP2021/047806 2021-01-08 2021-12-23 Oxide solid electrolyte, electrode mixture, and all-solid lithium ion battery WO2022149477A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-002328 2021-01-08
JP2021002328A JP2022107399A (en) 2021-01-08 2021-01-08 Oxide solid electrolyte, electrode mixture material, and all-solid lithium ion battery

Publications (1)

Publication Number Publication Date
WO2022149477A1 true WO2022149477A1 (en) 2022-07-14

Family

ID=82357715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047806 WO2022149477A1 (en) 2021-01-08 2021-12-23 Oxide solid electrolyte, electrode mixture, and all-solid lithium ion battery

Country Status (2)

Country Link
JP (1) JP2022107399A (en)
WO (1) WO2022149477A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067631A1 (en) * 2014-10-31 2016-05-06 出光興産株式会社 Sulfide glass and crystalline solid electrolyte production method, crystalline solid electrolyte, sulfide glass and solid-state battery
JP2020064701A (en) * 2017-01-13 2020-04-23 株式会社日立製作所 All-solid battery, and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067631A1 (en) * 2014-10-31 2016-05-06 出光興産株式会社 Sulfide glass and crystalline solid electrolyte production method, crystalline solid electrolyte, sulfide glass and solid-state battery
JP2020064701A (en) * 2017-01-13 2020-04-23 株式会社日立製作所 All-solid battery, and manufacturing method thereof

Also Published As

Publication number Publication date
JP2022107399A (en) 2022-07-21

Similar Documents

Publication Publication Date Title
US10090557B2 (en) Solid-state multi-layer electrolyte, electrochemical cell and battery including the electrolyte, and method of forming same
US10283758B2 (en) Positive-electrode mixture, manufacturing method therefor, and all-solid-state lithium-sulfur battery
US9413033B2 (en) All-solid lithium ion secondary battery
JP6313491B2 (en) All-solid lithium-sulfur battery and method for producing the same
WO2019146295A1 (en) Negative electrode material and battery using same
US9865873B2 (en) Positive electrode mixture and all-solid-state lithium sulfur cell
JP5970284B2 (en) All solid battery
JP5880409B2 (en) Manufacturing method of all-solid lithium secondary battery
WO2011102054A1 (en) Electrode active material for all-solid state rechargeable battery and all-solid state rechargeable battery
JP7042426B2 (en) Solid electrolytes and batteries
JP6936661B2 (en) Manufacturing method of all-solid-state battery
JPWO2019212026A1 (en) Ion-conductive powder, ion-conductive compact, and power storage device
JP2015005452A (en) Positive electrode mixture, and all-solid type lithium sulfur battery
JP6648649B2 (en) Manufacturing method of all solid lithium sulfur battery
CN115088096A (en) Positive electrode material and battery
CN109216780A (en) Fluoride shuttle secondary cell
JP2017157473A (en) Lithium ion secondary battery
WO2011093129A1 (en) Electrode active material for all-solid-state secondary battery, and all-solid-state secondary battery using same
JP2020064701A (en) All-solid battery, and manufacturing method thereof
WO2022149477A1 (en) Oxide solid electrolyte, electrode mixture, and all-solid lithium ion battery
WO2021177382A1 (en) Positive electrode material and battery
CN112768756A (en) Solid electrolyte material, and composite solid electrolyte and all-solid-state battery prepared from same
WO2020175554A1 (en) Positive electrode active material for lithium ion secondary batteries, method for producing positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
JP2021068663A (en) Method for producing positive electrode material
WO2017155011A1 (en) All-solid-state lithium-sulfur battery and production method for same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917697

Country of ref document: EP

Kind code of ref document: A1