WO2022149367A1 - パワーモジュール - Google Patents

パワーモジュール Download PDF

Info

Publication number
WO2022149367A1
WO2022149367A1 PCT/JP2021/043362 JP2021043362W WO2022149367A1 WO 2022149367 A1 WO2022149367 A1 WO 2022149367A1 JP 2021043362 W JP2021043362 W JP 2021043362W WO 2022149367 A1 WO2022149367 A1 WO 2022149367A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm portion
terminal
supply pipe
discharge pipe
power module
Prior art date
Application number
PCT/JP2021/043362
Other languages
English (en)
French (fr)
Inventor
哲矢 松岡
雄太 橋本
和哉 竹内
朋樹 小澤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022149367A1 publication Critical patent/WO2022149367A1/ja
Priority to US18/334,429 priority Critical patent/US20230328938A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20936Liquid coolant with phase change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20327Accessories for moving fluid, for connecting fluid conduits, for distributing fluid or for preventing leakage, e.g. pumps, tanks or manifolds

Definitions

  • an electric vehicle including an inverter, a housing, and a heat sink is known.
  • the inverter is connected to the motor via a three-phase wire.
  • the housing has a pair of legs and a connecting portion that connects them.
  • a connecting part is located between the pair of legs. Coolant flows through each of the pair of legs and the connecting portion.
  • the heat sink is provided between the pair of legs.
  • the heat sink is placed side by side with the connecting part.
  • An inverter is provided between the upper surface of the heat sink and the connecting portion.
  • the purpose of this disclosure is to provide a power module in which the increase in physique is suppressed.
  • the power module is A semiconductor element, a terminal connected to the semiconductor element, and a semiconductor module having a resin portion covering each of the semiconductor element and the terminal, It has a cooling unit provided in the semiconductor module so as to be heat conductive, a supply pipe for supplying a refrigerant inside the cooling unit, and a cooler having a discharge pipe for discharging the refrigerant flowing inside the cooling unit.
  • the supply pipe and the discharge pipe are separated from each other in the horizontal direction orthogonal to the line-up direction of the semiconductor module and the cooling unit.
  • the supply pipe and the discharge pipe face the semiconductor module in the vertical direction orthogonal to each of the arrangement direction and the horizontal direction.
  • the in-vehicle system 100 constitutes a system for an electric vehicle.
  • the in-vehicle system 100 includes a battery 200, a power conversion unit 300, and a motor 400.
  • the in-vehicle system 100 has a plurality of ECUs (not shown). These plurality of ECUs send and receive signals to and from each other via bus wiring. A plurality of ECUs cooperate to control an electric vehicle. By controlling the plurality of ECUs, the power running and regeneration of the motor 400 according to the SOC of the battery 200 are controlled. SOC is an abbreviation for state of charge. ECU is an abbreviation for electronic control unit.
  • Battery 200 has a plurality of secondary batteries. These plurality of secondary batteries form a battery stack connected in series. The SOC of this battery stack corresponds to the SOC of the battery 200.
  • a lithium ion secondary battery, a nickel hydrogen secondary battery, an organic radical battery and the like can be adopted.
  • the power conversion device 500 included in the power conversion unit 300 performs power conversion between the battery 200 and the motor 400.
  • the power conversion device 500 converts the DC power of the battery 200 into AC power.
  • the power conversion device 500 converts the AC power generated by the power generation (regeneration) of the motor 400 into DC power.
  • the motor 400 is connected to the axle of an electric vehicle (not shown).
  • the rotational energy of the motor 400 is transmitted to the traveling wheels of the electric vehicle via the axle.
  • the rotational energy of the traveling wheel is transmitted to the motor 400 via the axle.
  • the motor 400 is referred to as MG.
  • the motor 400 is powered by AC power supplied from the power converter 500. As a result, propulsive force is applied to the traveling wheels. Further, the motor 400 is regenerated by the rotational energy transmitted from the traveling wheels. The AC power generated by this regeneration is converted into DC power by the power conversion device 500. This DC power is supplied to the battery 200. This DC power is also supplied to various electric loads mounted on electric vehicles.
  • the power converter 500 includes an inverter.
  • the inverter converts the DC power of the battery 200 into AC power. This AC power is supplied to the motor 400.
  • the inverter also converts the AC power generated by the motor 400 into DC power. This DC power is supplied to the battery 200 and various electric loads.
  • the power conversion device 500 includes a P bus bar 501 and an N bus bar 502.
  • a battery 200 is connected to these P bus bars 501 and N bus bars 502.
  • the P-bus bar 501 is connected to the positive electrode of the battery 200.
  • the N bus bar 502 is connected to the negative electrode of the battery 200.
  • the power conversion device 500 includes a U-phase bus bar 503, a V-phase bus bar 504, and a W-phase bus bar 505.
  • the motor 400 is connected to these U-phase bus bars 503, V-phase bus bars 504, and W-phase bus bars 505.
  • the connection portions of various bus bars are indicated by white circles. These connection parts are electrically connected by, for example, bolts or welding.
  • the power conversion device 500 includes a smoothing capacitor 570 and a U-phase semiconductor module 511 to a W-phase semiconductor module 513.
  • the smoothing capacitor 570 has two electrodes.
  • a P bus bar 501 is connected to one of these two electrodes.
  • the N bus bar 502 is connected to the other of the two electrodes.
  • Each of the U-phase semiconductor modules 511 to W-phase semiconductor modules 513 has a high-side switch 521 and a low-side switch 531. Further, each of the U-phase semiconductor modules 511 to W-phase semiconductor modules 513 has a high-side diode 521a and a low-side diode 531a.
  • the high side switch 521 and the low side switch 531 correspond to active elements.
  • an n-channel MOSFET is used as the high-side switch 521 and the low-side switch 531. As shown in FIG. 1, the source electrode of the high side switch 521 and the drain electrode of the low side switch 531 are connected. As a result, the high side switch 521 and the low side switch 531 are connected in series.
  • the cathode electrode of the high side diode 521a is connected to the drain electrode of the high side switch 521.
  • the anode electrode of the high side diode 521a is connected to the source electrode of the high side switch 521.
  • the high-side diode 521a is connected in anti-parallel to the high-side switch 521.
  • the cathode electrode of the low side diode 531a is connected to the drain electrode of the low side switch 531.
  • the anode electrode of the low-side diode 531a is connected to the source electrode of the low-side switch 531.
  • the low-side diode 531a is connected in anti-parallel to the low-side switch 531.
  • the high-side switch 521 and the high-side diode 521a shown above are formed on the first semiconductor chip.
  • the low-side switch 531 and the low-side diode 531a are formed on the second semiconductor chip.
  • the high-side diode 521a may be a body diode of the high-side switch 521 or a diode different from the body diode.
  • the low-side diode 531a may be the body diode of the low-side switch 531 or may be another diode.
  • the semiconductor chip on which the switch and diode are formed may be different.
  • the drain terminal 540a is connected to the drain electrode of the high side switch 521.
  • the source terminal 540b is connected to the source electrode of the low side switch 531.
  • the midpoint terminal 540c is connected to the midpoint between the high side switch 521 and the low side switch 531.
  • a gate terminal 540d is connected to each gate electrode of the high side switch 521 and the low side switch 531.
  • the drain electrode and the source electrode correspond to the first electrode and the second electrode.
  • the drain terminal 540a, the source terminal 540b, and the midpoint terminal 540c are included in the first terminal and the second terminal.
  • the gate terminal 540d is included in the control terminal.
  • All of the semiconductor chips described so far and some of the terminals are coated and protected by the coating resin 520.
  • the tip end side of the terminal is exposed from the coating resin 520.
  • the tip of this terminal is connected to the P bus bar 501 to the W phase bus bar 505 and the control board 580.
  • the tip of the drain terminal 540a is connected to the P bus bar 501.
  • the tip of the source terminal 540b is connected to the N bus bar 502.
  • the high side switch 521 and the low side switch 531 are sequentially connected in series from the P bus bar 501 to the N bus bar 502.
  • the midpoint terminal 540c of the U-phase semiconductor module 511 is connected to the U-phase stator coil of the motor 400 via the U-phase bus bar 503.
  • the midpoint terminal 540c of the V-phase semiconductor module 512 is connected to the V-phase stator coil via the V-phase bus bar 504.
  • the midpoint terminal 540c of the W-phase semiconductor module 513 is connected to the W-phase stator coil via the W-phase bus bar 505.
  • the gate terminals 540d of each of the high-side switch 521 and the low-side switch 531 included in each of the U-phase semiconductor modules 511 to W-phase semiconductor modules 513 are connected to the control board 580.
  • This control board 580 includes a gate driver.
  • the control board 580 or another board contains one of a plurality of ECUs.
  • the control board 580 is referred to as CB.
  • the ECU generates a control signal.
  • This control signal is input to the gate driver.
  • the gate driver amplifies the control signal and outputs it to the gate terminal 540d.
  • the high side switch 521 and the low side switch 531 are controlled to open and close.
  • the ECU generates a pulse signal as a control signal.
  • the ECU adjusts the on-duty ratio and frequency of this pulse signal.
  • the on-duty ratio and frequency are determined based on the output of a current sensor or rotation angle sensor (not shown), the target torque of the motor 400, the SOC of the battery 200, and the like.
  • the high-side switch 521 and the low-side switch 531 included in the three-phase semiconductor module are PWM-controlled by the output of the control signal from the ECU.
  • the power converter 500 generates a three-phase alternating current.
  • the ECU stops, for example, the output of the control signal.
  • the AC power generated by the power generation passes through the diode provided in the three-phase semiconductor module.
  • AC power is converted to DC power.
  • the type of switch provided in each of the U-phase semiconductor modules 511 to W-phase semiconductor modules 513 is not particularly limited.
  • this switch for example, an IGBT can be adopted instead of the MOSFET.
  • the types of switches provided in each of the U-phase semiconductor modules 511 to W-phase semiconductor modules 513 may be the same or different.
  • the material for forming the semiconductor chip on which the semiconductor element such as a switch or diode is formed is not particularly limited.
  • a semiconductor such as Si or a wide-gap semiconductor such as SiC can be appropriately adopted.
  • each semiconductor module may include a plurality of high-side switches 521 connected in parallel and a plurality of low-side switches 531 connected in parallel. Also in this configuration, diodes are connected in antiparallel to each of the plurality of switches.
  • the configuration of the power conversion unit 300 will be described.
  • the three directions orthogonal to each other are defined as the x direction, the y direction, and the z direction.
  • the x direction corresponds to the lateral direction.
  • the y direction corresponds to the vertical direction.
  • the z direction corresponds to the alignment direction.
  • Each of the U-phase semiconductor module 511 to the W-phase semiconductor module 513 has the above-mentioned coating resin 520.
  • the coating resin 520 is made of, for example, an epoxy resin.
  • the coating resin 520 is molded by, for example, a transfer molding method. All of the semiconductor chips described so far and some of the various terminals are integrally coated with the coating resin 520.
  • the coating resin 520 corresponds to the resin portion.
  • the coating resin 520 has a flat shape having a thin thickness in the z direction.
  • the coating resin 520 has a rectangular cuboid shape having six faces.
  • the coating resin 520 has a left surface 520a and a right surface 520b separated in the x direction, an upper surface 520c and a lower surface 520d arranged apart in the y direction, and a first main surface 520e and a second main surface arranged apart in the z direction. It has 520f.
  • the tips of the drain terminal 540a, the source terminal 540b, and the midpoint terminal 540c are exposed from the lower surface 520d.
  • the tip ends of these three terminals extend in the y direction so as to be separated from the lower surface 520d.
  • the drain terminal 540a, the source terminal 540b, and the midpoint terminal 540c are arranged in order in the x direction.
  • the tip of the gate terminal 540d is exposed from the upper surface 520c.
  • the tip end side of the gate terminal 540d extends in the y direction so as to be separated from the upper surface 520c, then bends and extends in the z direction toward the first main surface 520e side.
  • the conductive portion is covered with the coating resin 520.
  • the rest of the conductive portion is exposed from each of the first main surface 520e and the second main surface 520f of the coating resin 520.
  • the conductive portion has a function of conducting heat to the outside of the coating resin 520 of the heat generated by the semiconductor chip. Further, the conductive portion of the present embodiment also functions to connect the high side switch 521 and the low side switch 531 in series.
  • the power conversion unit 300 has a cooler 700 shown in FIGS. 4 to 7 in addition to the power conversion device 500.
  • the cooler 700 functions to cool each of the U-phase semiconductor modules 511 to W-phase semiconductor modules 513 described above.
  • the cooler 700 has a supply pipe 710, a discharge pipe 720, and a cooling unit 730.
  • the supply pipe 710 and the discharge pipe 720 are connected via a cooling unit 730.
  • Refrigerant is supplied to the supply pipe 710. This refrigerant flows from the supply pipe 710 to the discharge pipe 720 via the inside of the cooling unit 730.
  • the supply pipe 710 and the discharge pipe 720 extend in the z direction, respectively.
  • the supply pipe 710 and the discharge pipe 720 are separated from each other in the x direction.
  • the cooling unit 730 has a flat shape with a thin thickness in the z direction.
  • the cooling unit 730 has an opposing portion 731, a first arm portion 732, and a second arm portion 733.
  • the first arm portion 732 and the second arm portion 733 are connected to the facing portion 731, respectively.
  • Each of these three components has a hollow in which the refrigerant flows. The hollow of each of these three components communicates.
  • the supply pipe 710 is connected to the first arm portion 732.
  • the discharge pipe 720 is connected to the second arm portion 733. Due to this configuration, the refrigerant supplied from the supply pipe 710 flows to the facing portion 731 via the first arm portion 732. The refrigerant flowing through the facing portion 731 flows into the discharge pipe 720 via the second arm portion 733. The flow direction of this refrigerant is indicated by a solid arrow in FIG.
  • the facing portions 731 are the first side surface 731a and the second side surface 731b which are arranged apart from each other in the x direction, the third side surface 731c and the fourth side surface 731d which are arranged apart from each other in the y direction, and the outer surface 731e which is arranged apart from each other in the z direction. And an inner surface 731f.
  • the first side surface 731a and the second side surface 731b correspond to the two side surfaces.
  • the third side surface 731c and the fourth side surface 731d correspond to the two end faces.
  • the first arm portion 732 and the second arm portion 733 are each connected to the fourth side surface 731d of the facing portion 731.
  • the first arm portion 732 and the second arm portion 733 are separated from each other in the x direction. In the x direction, the first arm portion 732 is located closer to the first side surface 731a than the second arm portion 733.
  • the second arm portion 733 is located on the second side surface 731b side of the first arm portion 732.
  • the first arm portion 732 and the second arm portion 733 each extend in the y direction so as to be separated from the fourth side surface 731d.
  • the first arm portion 732 and the second arm portion 733 each have an upper outer surface 730a and a lower inner surface 730b arranged in the z direction.
  • the upper outer surface 730a is flush with the outer surface 731e.
  • the facing portion 731 side of the lower inner surface 730b is flush with the inner surface 731f.
  • the tip side of the lower inner surface 730b separated from the facing portion 731 in the y direction slightly protrudes from the inner surface 731f in the direction away from the upper outer surface 730a in the z direction.
  • the supply pipe 710 is connected to a portion of the lower inner surface 730b of the first arm portion 732 that slightly protrudes from the inner surface 731f.
  • the discharge pipe 720 is connected to a portion of the lower inner surface 730b of the second arm portion 733 that slightly protrudes from the inner surface 731f.
  • the supply pipe 710 is connected to the lower inner surface 730b on the distal end side of the first arm portion 732.
  • the discharge pipe 720 is connected to the lower inner surface 730b on the tip end side of the second arm portion 733.
  • the extension direction of each of the first arm portion 732 and the second arm portion 733 and the extension direction of each of the supply pipe 710 and the discharge pipe 720 are in an intersecting relationship. Therefore, the flow direction of the refrigerant flowing in the supply pipe 710 is changed at the connection point between the supply pipe 710 and the first arm portion 732. The flow direction of the refrigerant flowing in the second arm portion 733 is changed at the connection point between the second arm portion 733 and the discharge pipe 720.
  • each of the first arm portion 732 and the second arm portion 733 is referred to as an extension portion 734.
  • the tip side of each of the first arm portion 732 and the second arm portion 733 is referred to as a pipe connecting portion 735.
  • the flow direction of the refrigerant is changed at the pipe connecting portion 735.
  • ⁇ Position of supply pipe and discharge pipe in x direction> For example, as shown in FIG. 5, the length of the extension portion 734 in the x direction is constant at L1. On the other hand, the length of the pipe connecting portion 735 in the x direction is indefinite. The portion of the pipe connecting portion 735 to which the supply pipe 710 and the discharge pipe 720 are connected is circular in a plane orthogonal to the z direction. In FIG. 5, the supply pipe 710 and the discharge pipe 720 are shown by broken lines.
  • the outer diameters of the supply pipe 710 and the discharge pipe 720 are longer than the length of the extension portion 734 in the x direction. Therefore, the longest length L2 in the x direction of the pipe connecting portion 735 is longer than the longest length L1 in the x direction of the extension portion 734.
  • the entire extension portion 734 is located in a part of the projection region of the pipe connecting portion 735 in the y direction.
  • the fourth side surface 731d is located in the non-overlapping region NOA that does not overlap with the extension portion 734 in the projection region of the pipe connecting portion 735 in the y direction.
  • the region between the pipe connecting portion 735 and the fourth side surface 731d in the non-overlapping region NOA is shown surrounded by a two-dot chain line.
  • the fourth side surface 731d where the non-overlapping region NOA of the pipe connecting portion 735 is located is located between the first side surface 731a and the second side surface 731b in the x direction.
  • the connected extension portion 734 of the pipe connecting portion 735 extends in the y direction from the fourth side surface 731d.
  • the positions of the pipe connecting portions 735 of the first arm portion 732 and the second arm portion 733 in the x direction are between the first side surface 731a and the second side surface 731b. All x-direction positions of the first arm portion 732 and the second arm portion 733 are located between the first side surface 731a and the second side surface 731b. All x-direction positions of the supply pipe 710 connected to the first arm portion 732 and the discharge pipe 720 connected to the second arm portion 733 are between the first side surface 731a and the second side surface 731b. There is.
  • the portion of the third side surface 731c that partitions the hollow through which the refrigerant flows is shorter in length in the x direction than the portion of the fourth side surface 731d that partitions the hollow through which the refrigerant flows. This is for smooth flow of the refrigerant from the first arm portion 732 to the facing portion 731 and the flow of the refrigerant from the facing portion 731 to the second arm portion 733.
  • each of the first side surface 731a and the second side surface 731b extends in a direction inclined with respect to the y direction in a plane orthogonal to the z direction.
  • Each of the first side surface 731a and the second side surface 731b gradually extends as the separation distance between the first side surface 731a and the second side surface 731b increases from the third side surface 731c toward the fourth side surface 731d in the y direction. , Inclined and extended.
  • all the positions of the first arm portion 732 and the second arm portion 733 in the x direction are the fourth side surface 731d side of the first side surface 731a and the fourth side surface 731d side of the second side surface 731b. It is between.
  • All x-direction positions of the supply pipe 710 connected to the first arm portion 732 and the discharge pipe 720 connected to the second arm portion 733 are the fourth side surface 731d side and the second side surface 731b of the first side surface 731a. It is between the 4th side surface 731d side of the above.
  • the planar shape of the cooling unit 730 facing the z direction is C-shaped.
  • the enclosed area EA is partitioned by the facing portion 731, the first arm portion 732, and the second arm portion 733 included in the cooling portion 730.
  • This enclosed area EA is partitioned in the y direction by a fourth side surface 731d and a virtual straight line VSL connecting the tip of the first arm portion 732 and the tip of the second arm portion 733.
  • the enclosed area EA is divided in the x direction by an inner surface of the first arm portion 732 on the second arm portion 733 side and an inner surface of the second arm portion 733 on the first arm portion 732 side.
  • the enclosed area EA is shown by hatching with diagonal lines.
  • the virtual straight line VSL is shown by a chain double-dashed line.
  • the cooler 700 is housed together with the power converter 500 in a housing 800 manufactured of, for example, aluminum die casting. Then, as shown in FIG. 6, the facing portion 731 of the cooling portion 730 is arranged to face the wall portion 810 of the housing 800 while being separated in the z direction.
  • a gap is formed (partitioned) between the inner surface 731f of the facing portion 731 and the mounting surface 810a of the wall portion 810.
  • a U-phase semiconductor module 511, a V-phase semiconductor module 512, and a W-phase semiconductor module 513 are provided in this gap.
  • the plurality of semiconductor modules and the cooler 700 are included in the power module 900.
  • the U-phase semiconductor module 511, the V-phase semiconductor module 512, and the W-phase semiconductor module 513 are arranged in order from the first side surface 731a side to the second side surface 731b side in the x direction.
  • the coating resin 520 of these plurality of semiconductor modules is provided in the gap between the facing portion 731 and the wall portion 810.
  • the facing portion 731 of the cooling portion 730 is provided with the urging force indicated by the white arrow in FIG. Due to this urging force, the plurality of semiconductor modules are sandwiched between the facing portion 731 and the wall portion 810.
  • a heat transfer member such as grease is provided between the inner surface 731f of the facing portion 731 and the first main surface 520e of the coating resin 520 of the semiconductor module.
  • a heat transfer member such as grease is provided between the second main surface 520f of the coating resin 520 and the mounting surface 810a.
  • the wall portion 810 on which the semiconductor module is provided does not have to be a part of the housing 800.
  • the semiconductor module may be provided on the wall portion 810 that is separate from the housing 800.
  • a distribution path through which the refrigerant flows may be configured inside the wall portion 810.
  • each of the upper surface 520c side and the lower surface 520d side of the coating resin 520 is provided outside the void.
  • the tip end side of the gate terminal 540d exposed from the upper surface 520c is provided outside the gap.
  • the tip ends of the drain terminal 540a, the source terminal 540b, and the midpoint terminal 540c exposed from the lower surface 520d are provided outside the gap.
  • the gate terminal 540d extends in the y direction so as to be separated from the upper surface 520c, then bends and extends in the z direction so as to be separated from the wall portion 810.
  • the gate terminal 540d faces the third side surface 731c of the facing portion 731 in the y direction.
  • the drain terminal 540a, the source terminal 540b, and the midpoint terminal 540c each extend in the y direction so as to be separated from the lower surface 520d.
  • the positions of the tips of the plurality of terminals protruding from the lower surface 520d in the z direction are located between the inner surface 731f of the facing portion 731 and the mounting surface 810a of the wall portion 810. The tips of these plurality of terminals are aligned with the above-mentioned surrounding area EA in the z direction.
  • the tips of the plurality of terminals protruding from the lower surface 520d face each of the supply pipe 710 and the discharge pipe 720 in the direction along the plane orthogonal to the z direction.
  • the lower surface 520d of the coating resin 520 of the U-phase semiconductor module 511 located on the end side and the drain terminal 540a protruding from the lower surface 520d are each supplied pipe 710 in the y direction. Facing.
  • the lower surface 520d of the coating resin 520 of the W-phase semiconductor module 513 and the midpoint terminal 540c protruding from the lower surface 520d face the discharge pipe 720 in the y direction.
  • phase bus bar is connected to the midpoint terminal 540c. Although not shown, this phase bus bar is also aligned with the surrounding region EA in the z direction. In addition, it is also possible to adopt a configuration in which a part of the phase bus bar is provided in the enclosed area EA.
  • the P bus bar 501 is connected to the drain terminal 540a.
  • the N bus bar 502 is connected to the source terminal 540b.
  • These P bus bars 501 and N bus bars 502 may be arranged side by side with the enclosed area EA in the z direction, or a part thereof may be provided in the enclosed area EA.
  • the supply pipe 710 connected to the first arm portion 732 and the discharge pipe 720 connected to the second arm portion 733 each face the lower surface 520d of the coating resin 520 included in the semiconductor module in the y direction. ..
  • the increase in the body shape of the cooler 700 in the x direction is suppressed.
  • the increase in the body shape of the power module 900 in the x direction is suppressed.
  • all the positions of the first arm portion 732, the supply pipe 710, the second arm portion 733, and the discharge pipe 720 in the x direction are the first side surface 731a and the second side surface 731b of the facing portion 731. It is between. Therefore, the increase in the body shape of the cooler 700 in the x direction is suppressed.
  • the tips of the plurality of terminals protruding from the lower surface 520d of the coating resin 520 included in the semiconductor module face each of the supply pipe 710 and the discharge pipe 720 in the direction along the plane orthogonal to the z direction.
  • the drain terminal 540a of the U-phase semiconductor module 511 faces the supply pipe 710 in the y direction.
  • the midpoint terminal 540c of the W-phase semiconductor module 513 faces the discharge pipe 720 in the y direction.
  • the thermal resistance between the terminal of the semiconductor module and the cooler 700 becomes low. As a result, the temperature rise of the terminal is suppressed.
  • the facing portion 731 provided by the cooling portion 730, the first arm portion 732, the surrounding area EA partitioned by the second arm portion 733, and the tips of a plurality of terminals protruding from the lower surface 520d of the coating resin 520 are aligned in the z direction. I'm out.
  • the air located in the enclosed area EA is easily cooled by the refrigerant flowing in the hollow of the three components provided in the cooling unit 730. This air makes it easier for the tips of the plurality of terminals protruding from the lower surface 520d to cool down.
  • the tip of the gate terminal 540d is exposed from the upper surface 520c of the coated resin 520, and the tips of the drain terminal 540a, the source terminal 540b, and the midpoint terminal 540c are exposed from the lower surface 520d.
  • the tips of the drain terminal 540a, the source terminal 540b, and the midpoint terminal 540c are exposed from the upper surface 520c of the coated resin 520, and the tips of the gate terminal 540d are exposed from the lower surface 520d. ..
  • a part of the part extending in the z direction in this gate terminal 540d is located in the enclosed area EA. This facilitates positive heat exchange between the gate terminal 540d and the air in the enclosed area EA.
  • the power module 900 described in this embodiment includes components equivalent to those of the power module 900 described in the first embodiment. Therefore, it goes without saying that the power module 900 of the present embodiment has the same effect as the power module 900 described in the first embodiment. Therefore, the description is omitted.
  • the combination of terminals exposed from the upper surface 520c and the lower surface 520d is not limited to the configurations shown in the first embodiment and the second embodiment. It is not particularly limited whether the drain terminal 540a, the source terminal 540b, the midpoint terminal 540c, and the gate terminal 540d are exposed from the upper surface 520c or the lower surface 520d.
  • a configuration in which the drain terminal 540a and the source terminal 540b are exposed from the upper surface 520c can also be adopted.
  • the midpoint terminal 540c and the gate terminal 540d are exposed from the lower surface 520d.
  • two midpoint terminals 540c and a gate terminal 540d having the same potential are exposed from the lower surface 520d.
  • FIGS. 12 and 13 a configuration in which the drain terminal 540a, the source terminal 540b, and the gate terminal 540d are exposed from the upper surface 520c can also be adopted. As shown in FIGS. 12 and 13, the number of gate terminals 540d exposed from the upper surface 520c is not particularly limited.
  • two midpoint terminals 540c having the same potential are exposed from the lower surface 520d.
  • two midpoint terminals 540c and a gate terminal 540d having the same potential are exposed from the lower surface 520d.
  • the number of gate terminals 540d exposed from the upper surface 520c and the number of gate terminals 540d exposed from the lower surface 520d may be different or the same.
  • the power conversion device 500 includes an inverter
  • the power converter 500 may include a converter in addition to the inverter.
  • the power conversion unit 300 is included in the in-vehicle system 100 for an electric vehicle.
  • the application of the power conversion unit 300 is not particularly limited to the above example.
  • a configuration in which a power conversion unit 300 is included in a hybrid system including a motor and an internal combustion engine can be adopted.
  • the power conversion unit 300 has a plurality of three-phase semiconductor modules for forming an inverter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inverter Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

パワーモジュール(900)は、スイッチを備える(U)相半導体モジュール(511~W)相半導体モジュール(513)と、これらを冷却する冷却器(700)と、を有する。冷却器は、半導体モジュールに熱伝導可能に設けられる冷却部(730)と、冷却部の内部に冷媒を供給する供給管(710)と、冷却部の内部を流動した冷媒を排出する排出管(720)と、を備えている。半導体モジュールと冷却部とはz方向で並んでいる。供給管と排出管はx方向で離間している。供給管と排出管それぞれはy方向で半導体モジュールと対向している。

Description

パワーモジュール 関連出願の相互参照
 この出願は、2021年1月7日に日本に出願された特許出願第2021-001692号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。
 本明細書に記載の開示は、パワーモジュールに関するものである。
 特許文献1に示されるように、インバータ、筐体、および、ヒートシンクを備える電動車両が知られている。インバータは三相線を介してモータと接続されている。
 筐体は一対の脚部とこれらを連結する連結部を有する。一対の脚部の間に連結部が位置している。一対の脚部と連結部それぞれに冷却液が流動する。
 ヒートシンクは一対の脚部の間に設けられる。ヒートシンクは連結部と並んで配置される。このヒートシンクの上面と連結部との間にインバータが設けられている。
特許第6733405号公報
 特許文献1に示される電動車両では、ヒートシンクの側面と脚部との間に三相線が設けられている。そのために一対の脚部の並ぶ方向の体格が増大する虞があった。
 本開示の目的は、体格増大の抑制されたパワーモジュールを提供することである。
 本開示の一態様によるパワーモジュールは、
 半導体素子、半導体素子に接続された端子、および、半導体素子と端子それぞれを被覆する樹脂部を有する半導体モジュールと、
 半導体モジュールに熱伝導可能に設けられる冷却部、冷却部の内部に冷媒を供給する供給管、および、冷却部の内部を流動した冷媒を排出する排出管を備える冷却器と、を有し、
 半導体モジュールと冷却部の並ぶ並び方向に直交する横方向で供給管と排出管とが離間し、
 並び方向と横方向それぞれに直交する縦方向で、供給管および排出管が半導体モジュールと対向している。
 これによればパワーモジュールの横方向の体格の増大が抑制される。
 なお、添付した請求の範囲の括弧内の参照番号は、後述の実施形態に記載の構成との対応関係を示すものに過ぎず、技術的範囲を何ら制限するものではない。
車載システムを示す回路図である。 パワーカードの上面図である。 パワーカードの端面図である。 パワーモジュールの斜視図である。 パワーモジュールの上面図である。 パワーモジュールの側面図である。 パワーモジュールの端面図である。 パワーモジュールの変形例を示す斜視図である。 パワーモジュールの変形例を示す上面図である。 パワーモジュールの変形例を示す上面図である。 パワーモジュールの変形例を示す上面図である。 パワーモジュールの変形例を示す上面図である。 パワーモジュールの変形例を示す上面図である。
 以下、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。
 各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせが可能である。また、特に組み合わせに支障が生じなければ、組み合わせが可能であることを明示していなくても、実施形態同士、実施形態と変形例、および、変形例同士を部分的に組み合せることも可能である。
 (第1実施形態)
 <車載システム>
 先ず、図1に基づいて車載システム100を説明する。この車載システム100は電気自動車用のシステムを構成している。車載システム100は、バッテリ200、電力変換ユニット300、および、モータ400を有する。
 また車載システム100は図示しない複数のECUを有する。これら複数のECUはバス配線を介して相互に信号を送受信している。複数のECUは協調して電気自動車を制御している。複数のECUの制御により、バッテリ200のSOCに応じたモータ400の力行と回生が制御される。SOCはstate of chargeの略である。ECUはelectronic control unitの略である。
 バッテリ200は複数の二次電池を有する。これら複数の二次電池は直列接続された電池スタックを構成している。この電池スタックのSOCがバッテリ200のSOCに相当する。二次電池としてはリチウムイオン二次電池、ニッケル水素二次電池、および、有機ラジカル電池などを採用することができる。
 電力変換ユニット300の備える電力変換装置500はバッテリ200とモータ400との間の電力変換を行う。電力変換装置500はバッテリ200の直流電力を交流電力に変換する。電力変換装置500はモータ400の発電(回生)によって生成された交流電力を直流電力に変換する。
 モータ400は図示しない電気自動車の車軸に連結されている。モータ400の回転エネルギーは車軸を介して電気自動車の走行輪に伝達される。逆に、走行輪の回転エネルギーは車軸を介してモータ400に伝達される。図面においてモータ400をMGと表記している。
 モータ400は電力変換装置500から供給される交流電力によって力行する。これにより推進力が走行輪に付与される。またモータ400は走行輪から伝達される回転エネルギーによって回生する。この回生で発生した交流電力は、電力変換装置500によって直流電力に変換される。この直流電力がバッテリ200に供給される。この直流電力は電気自動車に搭載された各種電気負荷にも供給される。
 <電力変換装置>
 次に電力変換装置500を説明する。電力変換装置500はインバータを含んでいる。インバータはバッテリ200の直流電力を交流電力に変換する。この交流電力がモータ400に供給される。またインバータはモータ400で生成された交流電力を直流電力に変換する。この直流電力がバッテリ200と各種電気負荷に供給される。
 図1に示すように電力変換装置500にはPバスバ501とNバスバ502が含まれている。これらPバスバ501とNバスバ502にバッテリ200が接続される。Pバスバ501はバッテリ200の正極に接続される。Nバスバ502はバッテリ200の負極に接続される。
 また、電力変換装置500にはU相バスバ503、V相バスバ504、および、W相バスバ505が含まれている。これらU相バスバ503、V相バスバ504、および、W相バスバ505にモータ400が接続される。図1では各種バスバの接続部位を白丸で示している。これら接続部位は例えばボルトや溶接などによって電気的に接続されている。
 電力変換装置500は、平滑コンデンサ570と、U相半導体モジュール511~W相半導体モジュール513と、を有する。平滑コンデンサ570は2つの電極を有する。これら2つの電極のうちの一方にPバスバ501が接続されている。2つの電極のうちの他方にNバスバ502が接続されている。
 U相半導体モジュール511~W相半導体モジュール513それぞれは、ハイサイドスイッチ521とローサイドスイッチ531を有する。またU相半導体モジュール511~W相半導体モジュール513それぞれは、ハイサイドダイオード521aとローサイドダイオード531aを有する。ハイサイドスイッチ521とローサイドスイッチ531が能動素子に相当する。
 本実施形態では、ハイサイドスイッチ521とローサイドスイッチ531としてnチャネル型のMOSFETを採用している。図1に示すようにハイサイドスイッチ521のソース電極とローサイドスイッチ531のドレイン電極とが接続されている。これによりハイサイドスイッチ521とローサイドスイッチ531とが直列接続されている。
 また、ハイサイドスイッチ521のドレイン電極にハイサイドダイオード521aのカソード電極が接続されている。ハイサイドスイッチ521のソース電極にハイサイドダイオード521aのアノード電極が接続されている。これによりハイサイドスイッチ521にハイサイドダイオード521aが逆並列接続されている。
 同様にして、ローサイドスイッチ531のドレイン電極にローサイドダイオード531aのカソード電極が接続されている。ローサイドスイッチ531のソース電極にローサイドダイオード531aのアノード電極が接続されている。これによりローサイドスイッチ531にローサイドダイオード531aが逆並列接続されている。
 以上に示したハイサイドスイッチ521とハイサイドダイオード521aが第1半導体チップに形成されている。ローサイドスイッチ531とローサイドダイオード531aが第2半導体チップに形成されている。
 なお、ハイサイドダイオード521aはハイサイドスイッチ521のボディダイオードでもよいし、それとは別のダイオードでもよい。ローサイドダイオード531aはローサイドスイッチ531のボディダイオードでもよいし、それとは別のダイオードでもよい。スイッチとダイオードの形成される半導体チップが異なってもよい。
 ハイサイドスイッチ521のドレイン電極にドレイン端子540aが接続されている。ローサイドスイッチ531のソース電極にソース端子540bが接続されている。ハイサイドスイッチ521とローサイドスイッチ531との間の中点に中点端子540cが接続されている。ハイサイドスイッチ521とローサイドスイッチ531それぞれのゲート電極にゲート端子540dが接続されている。
 ドレイン電極とソース電極が第1電極と第2電極に相当する。ドレイン端子540a、ソース端子540b、および、中点端子540cが第1端子と第2端子に含まれる。ゲート端子540dが制御端子に含まれる。
 これまでに説明した半導体チップの全てと端子の一部が被覆樹脂520によって被覆保護されている。端子の先端側が被覆樹脂520から露出されている。この端子の先端がPバスバ501~W相バスバ505と制御基板580に接続される。
 ドレイン端子540aの先端がPバスバ501に接続されている。ソース端子540bの先端がNバスバ502に接続されている。これによりハイサイドスイッチ521とローサイドスイッチ531とがPバスバ501からNバスバ502へ向かって順に直列接続されている。
 U相半導体モジュール511の中点端子540cがU相バスバ503を介してモータ400のU相ステータコイルに接続されている。V相半導体モジュール512の中点端子540cがV相バスバ504を介してV相ステータコイルに接続されている。W相半導体モジュール513の中点端子540cがW相バスバ505を介してW相ステータコイルに接続されている。
 そして、U相半導体モジュール511~W相半導体モジュール513それぞれに含まれるハイサイドスイッチ521とローサイドスイッチ531それぞれのゲート端子540dが制御基板580に接続されている。
 この制御基板580にゲートドライバが含まれている。この制御基板580若しくは他の基板に複数のECUのうちの1つが含まれている。図面において制御基板580をCBと表記している。
 ECUは制御信号を生成する。この制御信号がゲートドライバに入力される。ゲートドライバは制御信号を増幅し、それをゲート端子540dに出力する。これによりハイサイドスイッチ521とローサイドスイッチ531が開閉制御される。
 ECUは制御信号としてパルス信号を生成している。ECUはこのパルス信号のオンデューティ比と周波数を調整している。このオンデューティ比と周波数は図示しない電流センサや回転角センサの出力、および、モータ400の目標トルクやバッテリ200のSOCなどに基づいて決定される。
 モータ400を力行する場合、ECUからの制御信号の出力によって3相の半導体モジュールの備えるハイサイドスイッチ521とローサイドスイッチ531それぞれがPWM制御される。これにより電力変換装置500で3相交流が生成される。
 モータ400が発電(回生)する場合、ECUは例えば制御信号の出力を停止する。これにより発電によって生成された交流電力が3相の半導体モジュールの備えるダイオードを通る。この結果、交流電力が直流電力に変換される。
 なお、U相半導体モジュール511~W相半導体モジュール513それぞれの備えるスイッチの種類としては特に限定されない。このスイッチとしては、MOSFETに代わって、例えばIGBTを採用することができる。また、U相半導体モジュール511~W相半導体モジュール513それぞれの備えるスイッチの種類は同一でも不同でもよい。
 そして、スイッチやダイオードなどの半導体素子の形成される半導体チップの形成材料は特に限定されない。半導体チップの形成材料としては、例えばSiなどの半導体やSiCなどのワイドギャップ半導体を適宜採用することができる。
 また、各半導体モジュールは並列接続された複数のハイサイドスイッチ521と、並列接続された複数のローサイドスイッチ531を備えてもよい。係る構成においても、複数のスイッチそれぞれにダイオードが逆並列接続されている。
 <電力変換ユニットの構成>
 次に、電力変換ユニット300の構成を説明する。それに当たって、以下においては互いに直交の関係にある3方向をx方向、y方向、z方向とする。x方向が横方向に相当する。y方向が縦方向に相当する。z方向が並び方向に相当する。
 <被覆樹脂>
 U相半導体モジュール511~W相半導体モジュール513それぞれは上記した被覆樹脂520を有している。被覆樹脂520は例えばエポキシ系樹脂からなる。被覆樹脂520は例えばトランスファモールド法により成形されている。これまでに説明した半導体チップの全てと各種端子の一部がこの被覆樹脂520によって一体的に被覆されている。被覆樹脂520が樹脂部に相当する。
 図2と図3に示すように被覆樹脂520はz方向の厚さの薄い扁平形状を成している。被覆樹脂520は6面を有する直方体形状を成している。被覆樹脂520は、x方向で離間して並ぶ左面520aと右面520b、y方向で離間して並ぶ上面520cと下面520d、および、z方向で離間して並ぶ第1主面520eと第2主面520fを有する。
 図2に示すように、本実施形態では下面520dからドレイン端子540a、ソース端子540b、および、中点端子540cそれぞれの先端が露出している。これら3つの端子の先端側は、下面520dから離間する態様でy方向に延びている。左面520aから右面520bに向かって、ドレイン端子540a、ソース端子540b、および、中点端子540cが順にx方向に並んでいる。
 また、上面520cからゲート端子540dの先端が露出している。ゲート端子540dの先端側は、上面520cから離間する態様でy方向に延びた後、屈曲して、第1主面520e側に向かってz方向に延びている。
 図示しないが、半導体チップに接続された導電部の一部が被覆樹脂520によって被覆されている。そしてこの導電部の残りが被覆樹脂520の第1主面520eと第2主面520fそれぞれから露出されている。導電部は半導体チップで生じた熱を被覆樹脂520の外に熱伝導する機能を果たしている。また本実施形態の導電部はハイサイドスイッチ521とローサイドスイッチ531を直列接続する機能も果たしている。
 <冷却器>
 電力変換ユニット300は、電力変換装置500の他に、図4~図7に示す冷却器700を有する。冷却器700はこれまでに説明したU相半導体モジュール511~W相半導体モジュール513それぞれを冷却する機能を果たす。
 図4に示すように冷却器700は供給管710、排出管720、および、冷却部730を有する。供給管710と排出管720は冷却部730を介して連結されている。供給管710に冷媒が供給される。この冷媒は冷却部730の内部を介して供給管710から排出管720へ流れる。
 供給管710と排出管720はそれぞれz方向に延びている。供給管710と排出管720はx方向で離間している。冷却部730はz方向の厚さの薄い扁平形状を成している。
 <冷却部>
 細分化して説明すると、冷却部730は、対向部731と、第1腕部732と、第2腕部733と、を有する。対向部731に第1腕部732と第2腕部733それぞれが連結されている。これら3つの構成要素それぞれは冷媒の流動する中空を有する。これら3つの構成要素それぞれの中空が連通している。
 第1腕部732に供給管710が連結される。第2腕部733に排出管720が連結される。係る構成のため、供給管710から供給された冷媒は、第1腕部732を介して対向部731に流動する。対向部731を流動した冷媒は第2腕部733を介して排出管720に流動する。この冷媒の流動方向は図4において実線矢印で示している。
 対向部731は、x方向で離間して並ぶ第1側面731aと第2側面731b、y方向で離間して並ぶ第3側面731cと第4側面731d、および、z方向で離間して並ぶ外面731eと内面731fを有する。第1側面731aと第2側面731bが2つの側面に相当する。第3側面731cと第4側面731dが2つの端面に相当する。
 第1腕部732と第2腕部733それぞれは対向部731の第4側面731dに連結されている。第1腕部732と第2腕部733はx方向で離間している。x方向において、第1腕部732は第2腕部733よりも第1側面731a側に位置している。第2腕部733は第1腕部732よりも第2側面731b側に位置している。
 第1腕部732と第2腕部733それぞれは第4側面731dから離間する態様でy方向に延びている。第1腕部732と第2腕部733それぞれはz方向で並ぶ上外面730aと下内面730bを有する。上外面730aは外面731eと面一になっている。下内面730bの対向部731側は内面731fと面一になっている。しかしながら下内面730bの対向部731からy方向に離間した先端側は内面731fよりも、z方向において上外面730aから離間する方向にわずかながら突起している。
 第1腕部732の下内面730bにおける内面731fよりもわずかに突起した部位に供給管710が連結される。第2腕部733の下内面730bにおける内面731fよりもわずかに突起した部位に排出管720が連結される。換言すれば、第1腕部732の先端側の下内面730bに供給管710が連結される。第2腕部733の先端側の下内面730bに排出管720が連結される。
 第1腕部732と第2腕部733それぞれの延長方向と供給管710と排出管720それぞれの延長方向とが交差関係になっている。そのため、供給管710内を流動した冷媒の流動方向は、供給管710と第1腕部732との連結個所で変更される。第2腕部733内を流動した冷媒の流動方向は、第2腕部733と排出管720との連結個所で変更される。
 以下においては表記を簡便とするため、第1腕部732と第2腕部733それぞれの対向部731側を延長部734と示す。第1腕部732と第2腕部733それぞれの先端側を管連結部735と示す。この管連結部735で冷媒の流動方向が変更される。
 <供給管と排出管のx方向の位置>
 例えば図5に示すように、延長部734のx方向の長さはL1で一定になっている。これに対して管連結部735のx方向の長さは不定になっている。管連結部735における供給管710や排出管720の連結される部位は、z方向に直交する平面において円形を成している。図5では供給管710と排出管720を破線で示している。
 供給管710と排出管720それぞれの外径は延長部734のx方向の長さよりも長くなっている。そのために管連結部735のx方向の最長の長さL2は延長部734のx方向の最長の長さL1よりも長くなっている。
 係るx方向の長さの長短関係、および、延長部734と管連結部735それぞれの形状のため、管連結部735のy方向への投影領域の一部に延長部734の全てが位置している。そして本実施形態では、管連結部735のy方向への投影領域における延長部734と重ならない非重複領域NOAに、第4側面731dが位置している。図5では非重複領域NOAにおける管連結部735と第4側面731dとの間の領域を二点鎖線で囲って示している。
 当然ながらにして、管連結部735の非重複領域NOAの位置する第4側面731dはx方向において第1側面731aと第2側面731bとの間に位置する。そして、管連結部735の連結される延長部734は第4側面731dからy方向に延びている。
 係る構成のため、第1腕部732と第2腕部733それぞれの管連結部735のx方向の位置は、第1側面731aと第2側面731bとの間になっている。第1腕部732と第2腕部733それぞれの全てのx方向の位置は、第1側面731aと第2側面731bとの間になっている。第1腕部732に連結される供給管710と第2腕部733に連結される排出管720それぞれの全てのx方向の位置は、第1側面731aと第2側面731bとの間になっている。
 なお、本実施形態では、第3側面731cにおける冷媒を流動する中空を区画する部位は、第4側面731dにおける冷媒を流動する中空を区画する部位よりもx方向の長さが短くなっている。これは、第1腕部732から対向部731への冷媒の流動と、対向部731から第2腕部733への冷媒の流動をスムースに行わせるためである。
 係る長さの相違のため、例えば図5に示すように、第1側面731aと第2側面731bそれぞれは、z方向に直交する平面において、y方向に対して傾斜した方向に延長している。第1側面731aと第2側面731bそれぞれは、第1側面731aと第2側面731bとの間の離間距離がy方向において第3側面731cから第4側面731dに向かうにしたがって徐々に延長するように、傾斜して延びている。
 そのため、厳密に言うと、第1腕部732と第2腕部733それぞれの全てのx方向の位置は、第1側面731aの第4側面731d側と第2側面731bの第4側面731d側との間になっている。第1腕部732に連結される供給管710と第2腕部733に連結される排出管720それぞれの全てのx方向の位置は、第1側面731aの第4側面731d側と第2側面731bの第4側面731d側との間になっている。
 <囲み領域>
 以上に示した構成のため、図5に示すように、冷却部730のz方向に面する平面形状はC字形状を成している。冷却部730の備える対向部731、第1腕部732、および、第2腕部733によって囲み領域EAが区画されている。
 この囲み領域EAは、y方向において、第4側面731dと、第1腕部732の先端と第2腕部733の先端とを結ぶ仮想直線VSLと、によって区画されている。囲み領域EAは、x方向において、第1腕部732の第2腕部733側の内側面と、第2腕部733の第1腕部732側の内側面と、によって区画されている。図5では囲み領域EAを斜線のハッチングで示している。仮想直線VSLを二点鎖線で示している。
 <パワーモジュール>
 冷却器700は電力変換装置500とともに、例えばアルミダイカストで製造された筐体800に収納される。そして冷却部730の対向部731は、図6に示すように、この筐体800の壁部810とz方向で離間しつつ対向配置される。
 対向部731の内面731fと壁部810の載置面810aとの間に空隙が構成(区画)されている。この空隙にU相半導体モジュール511、V相半導体モジュール512、および、W相半導体モジュール513が設けられる。これら複数の半導体モジュールと冷却器700がパワーモジュール900に含まれている。
 U相半導体モジュール511、V相半導体モジュール512、および、W相半導体モジュール513はx方向において第1側面731a側から第2側面731b側に向かって順に並んでいる。これら複数の半導体モジュールの被覆樹脂520が対向部731と壁部810との間の空隙に設けられている。
 冷却部730の対向部731には、図6において白抜き矢印で示す付勢力が付与される。この付勢力によって、複数の半導体モジュールは対向部731と壁部810との間で挟持されている。
 図示しないが、対向部731の内面731fと半導体モジュールの被覆樹脂520の第1主面520eとの間にグリースなどの伝熱部材が設けられている。同様にして、被覆樹脂520の第2主面520fと載置面810aとの間にグリースなどの伝熱部材が設けられている。係る構成により、半導体モジュールは冷却器700と壁部810とに積極的に熱伝導可能となっている。ただし、上記した伝熱部材はなくともよい。
 なお、半導体モジュールの設けられる壁部810は筐体800の一部でなくともよい。半導体モジュールは筐体800とは別体の壁部810に設けられてもよい。壁部810の内部に冷媒の流動する流通経路が構成されてもよい。
 図5と図6に示すように、被覆樹脂520の上面520c側と下面520d側それぞれが空隙の外に設けられている。これに伴い、上面520cから露出したゲート端子540dの先端側が空隙の外に設けられている。下面520dから露出したドレイン端子540a、ソース端子540b、および、中点端子540cそれぞれの先端側が空隙の外に設けられている。
 図6に示すように、ゲート端子540dは上面520cから離間するようにy方向に延びた後、屈曲して、壁部810から離間するようにz方向に延びている。ゲート端子540dはy方向において対向部731の第3側面731cと対向している。
 ドレイン端子540a、ソース端子540b、および、中点端子540cそれぞれは下面520dから離間するようにy方向に延びている。これら下面520dから突出した複数の端子における先端のz方向の位置は対向部731の内面731fと壁部810の載置面810aとの間に位置している。そしてこれら複数の端子の先端はz方向において上記した囲み領域EAと並んでいる。
 また、これら下面520dから突出した複数の端子の先端は、図5に示すように、z方向に直交する平面に沿う方向において、供給管710と排出管720それぞれと対向している。特に、図7において重なった領域を破線で示すように、端側に位置するU相半導体モジュール511の被覆樹脂520の下面520dとこの下面520dから突出したドレイン端子540aそれぞれがy方向で供給管710と対向している。W相半導体モジュール513の被覆樹脂520の下面520dとこの下面520dから突出した中点端子540cがy方向で排出管720と対向している。
 上記したように中点端子540cには相バスバが接続される。図示しないが、この相バスバも囲み領域EAとz方向で並んでいる。なお、相バスバの一部が囲み領域EAに設けられる構成を採用することもできる。
 また、ドレイン端子540aにPバスバ501が接続される。ソース端子540bにNバスバ502が接続される。これらPバスバ501とNバスバ502が囲み領域EAとz方向で並んでもよいし、その一部が囲み領域EAに設けられてもよい。
 <作用効果>
 上記したように、第1腕部732に連結される供給管710と第2腕部733に連結される排出管720それぞれが半導体モジュールの備える被覆樹脂520の下面520dとy方向で対向している。これにより冷却器700のx方向の体格の増大が抑制される。パワーモジュール900のx方向の体格の増大が抑制される。
 特に本実施形態では、第1腕部732、供給管710、第2腕部733、および、排出管720それぞれの全てのx方向の位置が、対向部731の第1側面731aと第2側面731bとの間になっている。このために冷却器700のx方向の体格の増大が抑制される。
 また、冷却部730に特化して言えば、第1腕部732と第2腕部733それぞれの全てのx方向の位置が、第1側面731aと第2側面731bとの間になっている。このために冷却部730のx方向の体格の増大が抑制される。
 上記したように、半導体モジュールの備える被覆樹脂520の下面520dから突出した複数の端子の先端が、z方向に直交する平面に沿う方向において、供給管710と排出管720それぞれと対向している。特に、U相半導体モジュール511のドレイン端子540aがy方向で供給管710と対向している。W相半導体モジュール513の中点端子540cがy方向で排出管720と対向している。
 これによれば半導体モジュールの端子と冷却器700との間の熱抵抗が低くなる。これにより端子の昇温が抑制される。
 冷却部730の備える対向部731、第1腕部732、および、第2腕部733によって区画される囲み領域EAと被覆樹脂520の下面520dから突出した複数の端子の先端とがz方向で並んでいる。
 これによれば囲み領域EAに位置する空気が冷却部730の備える3つの構成要素の中空を流動する冷媒によって降温されやすくなる。この空気によって下面520dから突出した複数の端子の先端が降温されやすくなる。
 (第2実施形態)
 次に、第2実施形態を図8と図9に基づいて説明する。
 第1実施形態では、被覆樹脂520の上面520cからゲート端子540dの先端が露出し、下面520dからドレイン端子540a、ソース端子540b、および、中点端子540cそれぞれの先端が露出する例を示した。
 これに対して本実施形態では、被覆樹脂520の上面520cからドレイン端子540a、ソース端子540b、および、中点端子540cそれぞれの先端が露出し、下面520dからゲート端子540dの先端が露出している。
 そしてこのゲート端子540dにおけるz方向に延びる部位の一部が囲み領域EAに位置している。これによりゲート端子540dは囲み領域EAの空気と積極的に熱交換しやすくなる。
 なお本実施形態に記載のパワーモジュール900には、第1実施形態に記載のパワーモジュール900と同等の構成要素が含まれている。そのために本実施形態のパワーモジュール900が第1実施形態に記載のパワーモジュール900と同等の作用効果を奏することは言うまでもない。そのためにその記載を省略する。
 (第1の変形例)
 上面520cと下面520dから露出される端子の組み合わせは、第1実施形態と第2実施形態で示した構成に限定されない。上面520cと下面520dのいずれからドレイン端子540a、ソース端子540b、中点端子540c、および、ゲート端子540dが露出されるのかは特に限定されない。
 例えば図10と図11に示すように、上面520cからドレイン端子540aとソース端子540bが露出される構成を採用することもできる。図10に示す変形例では、下面520dから中点端子540cとゲート端子540dが露出されている。図11に示す変形例では、下面520dから同電位の2つの中点端子540cとゲート端子540dが露出されている。
 例えば図12と図13に示すように、上面520cからドレイン端子540a、ソース端子540b、および、ゲート端子540dが露出される構成を採用することもできる。これら図12と図13に示すように、上面520cから露出されるゲート端子540dの数は特に限定されない。
 図12に示す変形例では、下面520dから同電位の2つの中点端子540cが露出されている。図13に示す変形例では、下面520dから同電位の2つの中点端子540cとゲート端子540dが露出されている。上面520cから露出されるゲート端子540dの数と下面520dから露出されるゲート端子540dの数は不同でも同一でもよい。
 (第2の変形例)
 各実施形態では冷却器700の対向部731と筐体800の壁部810との間に区画された空隙に半導体モジュールが設けられる例を示した。しかしながら、例えば、2つの冷却器700を用意して、2つの対向部731の間の空隙に半導体モジュールが設けられる構成を採用することもできる。
 (第3の変形例)
 各実施形態では冷却器700の対向部731と筐体800の壁部810との間に区画された空隙に複数の半導体モジュールが設けられる例を示した。しかしながら、この空隙に1つの半導体モジュールが設けられる構成を採用することもできる。そしてこの1つの半導体モジュールが供給管710と排出管720のうちの少なくとも一方とy方向で対向する構成を採用することもできる。
 (その他の変形例)
 本実施形態では電力変換装置500にインバータが含まれる例を示した。しかしながら電力変換装置500にはインバータのほかにコンバータが含まれてもよい。
 本実施形態では電力変換ユニット300が電気自動車用の車載システム100に含まれる例を示した。しかしながら電力変換ユニット300の適用としては特に上記例に限定されない。例えばモータと内燃機関を備えるハイブリッドシステムに電力変換ユニット300が含まれる構成を採用することもできる。
 本実施形態では電力変換ユニット300に1つのモータ400が接続される例を示した。しかしながら電力変換ユニット300に複数のモータ400が接続される構成を採用することもできる。この場合、電力変換ユニット300はインバータを構成するための3相の半導体モジュールを複数有する。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態が本開示に示されているが、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範ちゅうや思想範囲に入るものである。

Claims (8)

  1.  半導体素子(521,531)、前記半導体素子に接続された端子(540a~540d)、および、前記半導体素子と前記端子それぞれを被覆する樹脂部(520)を有する半導体モジュール(511~513)と、
     前記半導体モジュールに熱伝導可能に設けられる冷却部(730)、前記冷却部の内部に冷媒を供給する供給管(710)、および、前記冷却部の内部を流動した冷媒を排出する排出管(720)を備える冷却器(700)と、を有し、
     前記半導体モジュールと前記冷却部の並ぶ並び方向に直交する横方向で前記供給管と前記排出管とが離間し、
     前記並び方向と前記横方向それぞれに直交する縦方向で、前記供給管および前記排出管が前記半導体モジュールと対向しているパワーモジュール。
  2.  前記冷却部は、前記並び方向で前記樹脂部と並ぶ対向部(731)と、前記対向部から前記縦方向に延長する第1腕部(732)と、前記横方向で前記第1腕部と離間し、前記対向部から前記縦方向に延長する第2腕部(733)と、を有し、
     前記供給管は前記並び方向に延長して前記第1腕部に連結され、
     前記排出管は前記並び方向に延長して前記第2腕部に連結されている請求項1に記載のパワーモジュール。
  3.  前記半導体モジュールを複数有し、
     複数の前記半導体モジュールが前記横方向で並び、
     複数の前記半導体モジュールのうちの少なくとも1つが、前記供給管および前記排出管のうちの1つと前記縦方向で対向している請求項2に記載のパワーモジュール。
  4.  前記供給管と前記排出管それぞれの前記横方向の位置は、前記対向部における前記横方向で並ぶ2つの側面(731a,731b)の間である請求項2または請求項3に記載のパワーモジュール。
  5.  前記第1腕部と前記第2腕部それぞれは、前記対向部における前記縦方向で並ぶ2つの端面(731c,731d)のうちの一方から延長し、
     前記第1腕部、前記第2腕部、および、2つの前記端面のうちの一方によって囲まれる囲み領域と、前記端子における前記樹脂部から露出された部位とが前記並び方向で並んでいる請求項2~4いずれか1項に記載のパワーモジュール。
  6.  前記端子における前記樹脂部から露出された部位の一部が前記囲み領域に位置している請求項5に記載のパワーモジュール。
  7.  前記半導体素子には能動素子が含まれ、
     前記端子には、前記能動素子の第1電極に接続される第1端子(540a,540b,540c)と、前記能動素子の第2電極に接続される第2端子(540a,540b,540c)と、前記能動素子の前記第1電極と前記第2電極との間の通電を制御する制御端子(540d)と、が含まれている請求項1~6いずれか1項に記載のパワーモジュール。
  8.  前記第1端子と前記第2端子のうちの一方が前記供給管と前記排出管のうちの一方と前記縦方向で対向している請求項7に記載のパワーモジュール。
PCT/JP2021/043362 2021-01-07 2021-11-26 パワーモジュール WO2022149367A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/334,429 US20230328938A1 (en) 2021-01-07 2023-06-14 Power module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-001692 2021-01-07
JP2021001692A JP2022106585A (ja) 2021-01-07 2021-01-07 パワーモジュール

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/334,429 Continuation US20230328938A1 (en) 2021-01-07 2023-06-14 Power module

Publications (1)

Publication Number Publication Date
WO2022149367A1 true WO2022149367A1 (ja) 2022-07-14

Family

ID=82357667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043362 WO2022149367A1 (ja) 2021-01-07 2021-11-26 パワーモジュール

Country Status (3)

Country Link
US (1) US20230328938A1 (ja)
JP (1) JP2022106585A (ja)
WO (1) WO2022149367A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008118753A (ja) * 2006-11-02 2008-05-22 Hitachi Ltd 電力変換装置
JP2010200433A (ja) * 2009-02-24 2010-09-09 Denso Corp 電力変換装置
JP2013030579A (ja) * 2011-07-28 2013-02-07 Toyota Motor Corp 電力変換装置
JP2018190901A (ja) * 2017-05-10 2018-11-29 株式会社デンソー 電力変換装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008118753A (ja) * 2006-11-02 2008-05-22 Hitachi Ltd 電力変換装置
JP2010200433A (ja) * 2009-02-24 2010-09-09 Denso Corp 電力変換装置
JP2013030579A (ja) * 2011-07-28 2013-02-07 Toyota Motor Corp 電力変換装置
JP2018190901A (ja) * 2017-05-10 2018-11-29 株式会社デンソー 電力変換装置

Also Published As

Publication number Publication date
JP2022106585A (ja) 2022-07-20
US20230328938A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
US10178780B2 (en) Power conversion apparatus and electric vehicle
US11089702B2 (en) Power conversion apparatus and electric vehicle
US8373300B2 (en) Power conversion apparatus and electric vehicle
US8674636B2 (en) Power conversion device
CN101330248A (zh) 电力转换装置
US8354816B2 (en) Power module layout for automotive power converters
WO2022149367A1 (ja) パワーモジュール
US11424689B2 (en) Power conversion device
JP6711141B2 (ja) バスバー構造体
JP7294247B2 (ja) 電気ユニット
JP7294058B2 (ja) 電力変換装置
JP2022106586A (ja) パワーカード、および、パワー部材
US20230395458A1 (en) Semiconductor module and power module including the same
US20240032265A1 (en) Power card
JP7459845B2 (ja) 電力変換装置
JP7306297B2 (ja) 電力変換ユニット
JP7388319B2 (ja) 電力変換装置
JP2022077834A (ja) 半導体モジュール、および、それを含むパワーモジュール
JP7211337B2 (ja) 電力変換装置
WO2023063086A1 (ja) 電力変換装置
CN118077131A (zh) 电力转换装置
JP2021180541A (ja) 電力変換装置
TW202234434A (zh) 逆變器單元、馬達單元及車輛
JP2020195222A (ja) 電力変換ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917589

Country of ref document: EP

Kind code of ref document: A1