WO2022149300A1 - 白癬菌のスクアレンエポキシダーゼ阻害薬に対する耐性を判定する方法及び検査キット - Google Patents

白癬菌のスクアレンエポキシダーゼ阻害薬に対する耐性を判定する方法及び検査キット Download PDF

Info

Publication number
WO2022149300A1
WO2022149300A1 PCT/JP2021/031116 JP2021031116W WO2022149300A1 WO 2022149300 A1 WO2022149300 A1 WO 2022149300A1 JP 2021031116 W JP2021031116 W JP 2021031116W WO 2022149300 A1 WO2022149300 A1 WO 2022149300A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
squalene epoxidase
sequence shown
base sequence
trichophyton
Prior art date
Application number
PCT/JP2021/031116
Other languages
English (en)
French (fr)
Inventor
政太郎 比留間
博光 野口
塁 加納
Original Assignee
学校法人日本大学
政太郎 比留間
博光 野口
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人日本大学, 政太郎 比留間, 博光 野口 filed Critical 学校法人日本大学
Priority to JP2022573906A priority Critical patent/JPWO2022149300A1/ja
Publication of WO2022149300A1 publication Critical patent/WO2022149300A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae

Definitions

  • the present invention relates to a method and a test kit for determining the resistance of Trichophyton to a squalene epoxidase inhibitor.
  • Ringworm is an infectious disease caused by infection of the skin with a fungus called ringworm, and is generally known as athlete's foot, ringworm, etc. Ringworm is highly infectious and causes discomfort such as itching and pain, and deformation of the skin and nails.
  • a method for treating ringworm a method of administering an inhibitor to squalene epoxydase (SQLE), which synthesizes ergosterol, which is one of the constituents of the cell membrane of ringworm, is mainly adopted.
  • SQLLE squalene epoxydase
  • TRF Terbinafine
  • a method for determining the resistance of a scab to a squalene epoxidase inhibitor which is shown in SEQ ID NO: 2 and a primer consisting of the base sequence shown in SEQ ID NO: 1 using the genomic DNA of the target scab as a template.
  • a determination method comprising the step (c) of determining that the subject tinea bacillus is resistant to a squalene epoxidase inhibitor, if any. [2] The determination method according to [1], wherein the squalene epoxidase inhibitor is terbinafine.
  • a test kit for resistance to a squalene epoxidase inhibitor of Trichophyton which comprises a primer consisting of the base sequence shown in SEQ ID NO: 1 and a primer consisting of the base sequence shown in SEQ ID NO: 2.
  • the present invention is a method for determining resistance of a spore-forming bacterium to a squalene epoxidase inhibitor, which comprises a primer consisting of the base sequence shown in SEQ ID NO: 1 using the genomic DNA of the target scab fungus as a template.
  • the Leu393Phe mutation of the nucleic acid sequence of the squalene epoxidase of the target scab which is obtained from the sequence analysis step (b) and the base sequence of the squalene epoxidase gene fragment, with respect to the amino acid sequence shown in SEQ ID NO: 5.
  • / or a determination method comprising the step (c) of determining that the subject tinea bacillus is resistant to a squalene epoxidase inhibitor when having a Phe397Leu mutation.
  • the determination method of the present embodiment is a method of determining the resistance of Trichophyton to a SQLE inhibitor.
  • CSF inhibitors act on QSLE to reduce the activity of oxidizing squalene to 2,3-oxide squalene.
  • a QSLE inhibitor acts on wild-type ringworm, the growth of the ringworm is suppressed.
  • the SQLE inhibitor whose resistance to Trichophyton is determined by the method of the present embodiment is not particularly limited, and examples thereof include terbinafine, naftifine, butenafine, and tolnaftate. Among these, the SQLE inhibitor is preferably terbinafine.
  • Step (a) In step (a), a nucleic acid amplification reaction is carried out using the genomic DNA of the target tinea bacillus as a template and a primer consisting of the nucleotide sequence shown in SEQ ID NO: 1 and a primer consisting of the nucleotide sequence shown in SEQ ID NO: 2.
  • a CSF gene fragment is obtained as an amplification product of the nucleic acid amplification reaction.
  • the target ringworm is a dermatophyte that causes dermatophyte, and the primer having the base sequence shown in SEQ ID NO: 1 and the primer having the base sequence shown in SEQ ID NO: 2 are annealed. Any dermatophyte having a possible CSF locus may be used.
  • the ringworm of interest is preferably of the genus Trichophyton, for example, T.I. interdigate, T.I. rubrum, T.I. tonsurans, T.I. violaceum, T.I. vanbreuseghemii, T.W. erinacei, T.I. simii, T.I. gloriae, T.I.
  • the target ringworm is T.I. interdigate, T.I. rubrum, T.I. It is preferably indotineae, and T.I. rubrum or T.I. It is more preferable to be indotineae.
  • the ringworm may be, for example, a ringworm that infects an individual animal, and examples of the animal include humans, dogs, cats, rats, mice, cows, pigs, sheep, and horses.
  • the tinea bacillus is preferably a tinea bacillus collected from nails, desquamation, hair, etc. at a lesion site of a human tinea pedis patient.
  • the genomic DNA of the scab that serves as a template for the nucleic acid amplification reaction may be purified or unpurified as long as the nucleic acid amplification reaction is possible.
  • the genomic DNA of Trichophyton may be prepared in advance from the target Trichophyton.
  • the method for preparing genomic DNA can be appropriately selected by those skilled in the art. For example, after immersing nails, desquamation, hair, etc. at the lesion site of ringworm in a buffer solution, proteins are removed from the buffer solution after immersion by phenol extraction, and then ethanol precipitation is performed to obtain the genome of Trichophyton. DNA may be obtained.
  • the genomic DNA of Trichophyton may be obtained from nails, desquamation, hair, etc.
  • the ringworm may be directly put into the reaction solution for amplifying the gene fragment, and the genomic DNA eluted from the ringworm lysed in the reaction solution may be used as a template for the nucleic acid amplification reaction.
  • SQLE is an enzyme that oxidizes squalene to 2,3-oxide squalene.
  • 2,3-oxidesqualene is converted to ergosterol, one of the constituents of the cell membrane.
  • nucleotide sequence of the SQLE gene of the Trichophyton rubrum CBS118892 strain is the sequence shown in SEQ ID NO: 3.
  • sequence shown in SEQ ID NO: 3 is the sequence corresponding to 825602-824071 of NCBI RefSeq ID NW_0034562432.1.
  • the nucleic acid amplification reaction using the genomic DNA of the target ringworm as a template is preferably carried out by PCR.
  • PCR a primer consisting of the base sequence shown in SEQ ID NO: 1 (hereinafter, also referred to as "primer 1”) and a primer consisting of the base sequence shown in SEQ ID NO: 2 (hereinafter, also referred to as "primer 2”) are used.
  • Primer 1 is a forward primer
  • primer 2 is a reverse primer.
  • Each sequence is as follows.
  • the reaction solution for PCR may be a reaction solution known to those skilled in the art.
  • DNA polymerase Taq DNA polymerase, etc.
  • dNTP mixture dATP, dCTP, dGTP, dTTP
  • magnesium salt MgCl 2 , etc.
  • the template DNA is the genomic DNA of Trichophyton rubrum
  • about 390 bases can be obtained by performing PCR using a primer consisting of the base sequence shown in SEQ ID NO: 1 and a primer consisting of the base sequence shown in SEQ ID NO: 2.
  • a pair of DNA fragments is amplified.
  • the PCR conditions are not particularly limited as long as the conditions are such that the CSF gene fragment is amplified.
  • a DNA fragment is usually amplified by performing a denaturation step, an annealing step, and a DNA extension step a plurality of times in this order.
  • the number of PCR cycles is preferably 20 times or more, preferably 25 times or more, and more preferably 28 times or more from the viewpoint of obtaining a sufficient amount of CSF gene fragment for sequence analysis.
  • the number of cycles is preferably 45 times or less, more preferably 40 times or less, still more preferably 35 times or less, from the viewpoint of suppressing amplification of regions other than the target CSF gene fragment.
  • the double-stranded DNA contained in the PCR solution is denatured and dissociated into the single-stranded DNA.
  • the temperature of the denaturation step is preferably 90 ° C. or higher, more preferably 92 ° C. or higher, still more preferably 94 ° C. or higher, from the viewpoint of sufficiently denaturating the double-stranded DNA.
  • the temperature of the denaturation step is preferably 99 ° C. or lower, more preferably 98 ° C. or lower, still more preferably 96 ° C. or lower, from the viewpoint of suppressing the inactivation of DNA polymerase in the PCR solution.
  • the time of the denaturation step is preferably 5 seconds or longer, more preferably 10 seconds or longer, still more preferably 20 seconds or longer, from the viewpoint of sufficiently denaturing the double-stranded DNA.
  • the time of the denaturation step is preferably 60 seconds or less, more preferably 40 seconds or less, still more preferably 30 seconds or less, from the viewpoint of suppressing the inactivation of the DNA polymerase in the PCR solution.
  • Primer 1 and Primer 2 are annealed to single-stranded DNA (genome DNA of Squalene monooxygen or amplified CSF gene fragment).
  • the temperature of the annealing step can be appropriately set according to the melting temperature (Tm) of the primer. Normally, the temperature of the annealing step is set to a temperature about 1 to 5 ° C. lower than the Tm of the primer. If the temperature of the annealing step is too high, the primer will not be able to anneal to the template DNA. On the other hand, if the temperature of the annealing step is too low, the probability of non-specific annealing to a region other than the target region increases.
  • the temperature of the annealing step is preferably 58 ° C. or lower, more preferably 57 ° C. or lower.
  • the temperature of the annealing step step is preferably 50 ° C. or higher, more preferably 52 ° C. or higher, still more preferably 54 ° C. or higher, from the viewpoint of suppressing the annealing of Primer 1 and Primer 2 to regions other than the SQLE gene.
  • the annealing step time can usually be 10 to 100 seconds, preferably 20 to 60 seconds, more preferably 25 to 40 seconds.
  • dNTP is continuously bound to the 3'terminal end of the primer annealed to a single-stranded DNA (genome DNA of Squalene monooxygen or an amplified SQLE gene fragment), and the DNA is elongated.
  • the temperature and time of the extension step are not particularly limited as long as the extension of the DNA by the DNA polymerase in the PCR solution proceeds sufficiently, and can be appropriately set according to the type of the DNA polymerase used in the PCR.
  • the temperature of the stretching step is preferably near the optimum temperature of the DNA polymerase. For example, in the case of Taq DNA polymerase, 65 to 75 ° C. is preferable, 68 to 73 ° C. is more preferable, and 71 to 73 ° C. is further preferable.
  • the time of the stretching step is preferably 10 to 150 seconds, more preferably 20 to 120 seconds, and even more preferably 30 to 90 seconds from the viewpoint of sufficiently stretching the DNA.
  • a CSF gene fragment can be obtained as an amplification product of the nucleic acid amplification reaction.
  • Step (b) the DNA sequence of the SQLE gene fragment is analyzed.
  • the method for analyzing the DNA sequence is not particularly limited, and a known method can be used.
  • the analysis of the DNA sequence can be performed by a DNA sequencer, and the DNA sequencer may be, for example, a Sanger method, a dideoxy method or the like applied. More specifically, it may be a diterminator method.
  • the base sequence of the SQLE gene fragment obtained in the step (a) can be obtained.
  • step (c) it is determined whether or not Trichophyton is resistant to the SQLE inhibitor based on the analysis result of the DNA sequence of step (b).
  • the SQLE of Trichophyton that is resistant to the SQLE inhibitor has a mutation that prevents the inhibition of the SQLE activity by the SQLE inhibitor.
  • Such mutations include Leu393Phe and Phe397Leu. Therefore, in the step (c), when the degenerative amino acid sequence of the base sequence of the CSF gene fragment obtained in the step (b) has a mutation of Leu393Phe and / or Phe397Leu, the target tinea bacillus is QUELE. Determined to be resistant to the inhibitor.
  • the amino acid sequence shown in SEQ ID NO: 5 is used as the amino acid sequence of the wild-type SQLE as a reference.
  • the amino acid sequence shown in SEQ ID NO: 5 is the amino acid sequence of SQLE of the Trichophyton rubrum CBS118892 strain.
  • "The amino acid sequence of the SQLE of the subject tinea bacillus determined from the nucleotide sequence of the CSF gene fragment has a Leu393Phe mutation with respect to the amino acid sequence shown in SEQ ID NO: 5" means the amino acid sequence shown in SEQ ID NO: 5.
  • amino acid sequence of the base sequence of the CSF gene fragment was aligned, the amino acid corresponding to Leu at position 393 of the amino acid sequence shown in SEQ ID NO: 5 was replaced with Phe in the amino acid sequence. It means that you are.
  • the amino acid sequence of the SQLE of the subject tinea bacillus determined from the nucleotide sequence of the CSF gene fragment has a Phe397Leu mutation with respect to the amino acid sequence shown in SEQ ID NO: 5" means the amino acid sequence shown in SEQ ID NO: 5.
  • the nucleotide sequence of the SQLE gene of the Trichophyton rubrum CBS118892 strain is the sequence shown in SEQ ID NO: 3.
  • the nucleotide sequence of the coding region of the mRNA encoding SQLE of the CBS118892 strain is the sequence shown in SEQ ID NO: 4. This is the sequence shown in NCBI RefSeq ID XM_00323377.1.
  • the deductive amino acid sequence of SQLE of the CBS118892 strain is the sequence shown in SEQ ID NO: 5. This is an amino acid sequence deduced from the base sequence shown in SEQ ID NO: 4, and is the sequence shown in NCBI RefSeq ID XP_003233845.1.
  • the Trichophyton rubrum mutant strain in which the adenine at position 1179 of the nucleotide sequence shown in SEQ ID NO: 3 is mutated to thymine or cytosine is resistant to QSLE inhibitors.
  • leucine which is the 393rd amino acid of the amino acid sequence of SQLE shown in SEQ ID NO: 5, is mutated to phenylalanine.
  • the Trichophyton rubrum mutant strain in which the 1179th adenine of the base sequence shown in SEQ ID NO: 3 is mutated to thymine or cytosine and the 3rd base of the 1180 to 1182th base of the base sequence shown in SEQ ID NO: 3 is deleted is Resistant to QSLE inhibitors.
  • leucine which is the 393rd amino acid of the amino acid sequence of SQLE shown in SEQ ID NO: 5
  • Tyrosine is deleted.
  • the Trichophyton rubrum mutant strain in which the 1189th thymine of the nucleotide sequence shown in SEQ ID NO: 3 is mutated to cytosine is resistant to QSLE inhibitors (Non-Patent Document 1).
  • a Trichophyton rubrum mutant strain in which cytosine at position 1191 of the nucleotide sequence shown in SEQ ID NO: 3 is mutated to adenine or guanine is resistant to QSLE inhibitors Non-Patent Document 1).
  • phenylalanine which is the 397th amino acid of the amino acid sequence of SQLE shown in SEQ ID NO: 5 is mutated to leucine.
  • step (c) the nucleotide sequence of the QSLE gene fragment of the target tinea bacillus obtained in step (b) is aligned with the nucleotide sequence shown in SEQ ID NO: 3, and the nucleotide sequence shown in SEQ ID NO: 3 is used.
  • TTA codon encoding the 393rd Leu
  • TTC codon encoding the 397th Phe
  • the base corresponding to the 1179th adenine in the base sequence shown in SEQ ID NO: 3 is mutated to thymine or cytosine in the QSLE gene of the target tinea bacillus, that is the case.
  • the target thymine bacterium can be determined to be resistant to the SQLE inhibitor.
  • the base corresponding to the 1179th adenine in the base sequence shown in SEQ ID NO: 3 is mutated to thymine or cytosine, and the base sequence shown in SEQ ID NO: 3 is 1180 to 1182.
  • the target Cytosine bacterium is resistant to the SQLE inhibitor. If the base corresponding to thymine at position 1189 of the nucleotide sequence shown in SEQ ID NO: 3 is mutated to cytosine in the QSLE gene of the target ringworm, the target ringworm is determined to be resistant to the QSLE inhibitor. can do. If the base corresponding to cytosine at position 1191 of the nucleotide sequence shown in SEQ ID NO: 3 is mutated to adenine or guanine in the QSLE gene of the target tinea bacillus, the target tinea bacillus is resistant to the QSLE inhibitor. Then, it can be determined.
  • the base corresponding to the 1179th, 1180th to 1182th, 1189th, and 1191th bases of the base sequence shown in SEQ ID NO: 3 in the base sequence of the QSLE gene fragment of the target tinea bacillus is, for example, an alignment program such as CrustalW. Can be specified by aligning the target base sequence with the base sequence of SEQ ID NO: 3 and the like.
  • the resistance of the target ringworm to the SQLE inhibitor is determined by amplifying the QSLE gene fragment of the target ringworm using the primers 1 and 2 and performing the base sequence analysis. It is not necessary to perform isolation, culture, and susceptibility testing of Trichophyton. Therefore, the susceptibility of Trichophyton to an SQLE inhibitor can be determined easily and in a short time. In addition, by using Primer 1 and Primer 2, only the region containing the mutation involved in QSLE inhibitor resistance can be specifically amplified.
  • the QSLE gene fragment of the syphilis of interest was found to have the Leu393Phe mutation and / or the Phe397Leu mutation in addition to other mutations in the vicinity of these mutations. If so, the Leu393Phe mutation and / or the Phe397Leu mutation may not be detected accurately.
  • the determination method of the present embodiment even when the amplified QSLE gene fragment of the target ringworm has a mutation of other bases in addition to the Leu393Phe mutation and / or the Phe397Leu mutation.
  • the resistance of the ringworm of interest to the SQLE inhibitor can be determined. For example, in addition to the Leu393Phe mutation and / or the Phe397Leu mutation, even when the base corresponding to the 3rd base of the 1180 to 1182th base of the base sequence shown in SEQ ID NO: 3 is deleted, the target tinea bacillus Resistance to QSLE inhibitors can be determined. Before treating ringworm with a drug, it is possible to more quickly and accurately select a drug to be used for treatment by determining the susceptibility of Trichophyton to a SQLE inhibitor by the determination method of the present embodiment. can.
  • the present invention comprises a primer consisting of the base sequence shown in SEQ ID NO: 1 (primer 1) and a primer consisting of the base sequence shown in SEQ ID NO: 2 (primer 2).
  • a test kit for resistance to a drug is provided.
  • Primer 1 and Primer 2 can be synthesized by a known nucleic acid synthesis method such as a phosphoramidite method based on the base sequences shown in SEQ ID NO: 1 and SEQ ID NO: 2.
  • a known nucleic acid synthesis method such as a phosphoramidite method based on the base sequences shown in SEQ ID NO: 1 and SEQ ID NO: 2.
  • reagents necessary for nucleic acid amplification reaction DNA polymerase, dNTP, magnesium salt
  • reagents necessary for base sequence analysis primers, etc. May include.
  • the inspection kit of this embodiment can be used for the determination method of the above embodiment.
  • 111 were male and 99 were female.
  • the age of the patients was 1 to 86 years, and the median age of the patients was 43 years.
  • Table 1 shows the symptoms of 210 patients and the analysis results of the phenotype of Trichophyton obtained from the patients. The number of patients was highest in the order of tinea pedis, tinea pedis, tinea unguium, tinea pedis, tinea pedis, tinea capitis, and tinea capitis.
  • T. Interdigate settlements are known to be flat, white to light brown powdery or villous.
  • T.I. The rubrum settlements are flat, white villous or fluffy, and are known to produce red to brown pigments.
  • 210 Trichophyton samples obtained from patients were classified based on the morphology of the colonies described above and the presence or absence of red pigment production. As a result, 82 samples were collected from T.I. It is intermediate, and 128 samples are T.I. It became clear that it was rubrum.
  • FIG. 1 shows the results of culturing the N74 strain, the N79 strain, the N99 strain, and the N51 strain in a sublodextrose agar medium containing 1 ⁇ g / mL of TRF at 28 ° C. for 2 weeks, respectively.
  • a is an N74 strain
  • b is an N79 strain
  • c is an N99 strain
  • d is an N51 strain. It was confirmed that the N74, N79 and N99 strains grew on the TRF-containing agar medium.
  • TRF-sensitive T.I It was confirmed that the rubrum N51 strain could not grow on the TRF-containing agar medium.
  • the CSF gene fragment was amplified by PCR according to the procedure shown below, and the base sequence of the amplified product was analyzed by sequencing.
  • PCR amplified the target region by repeating a cycle of 95 ° C. for 30 seconds, 56 ° C. for 30 seconds, and 72 ° C. for 1 minute 30 times.
  • the obtained amplification product was developed by electrophoresis using a 2% agarose gel, and the gel was stained with ethidium bromide. From the stained gel, a gel piece containing a DNA fragment of about 390 base pairs was collected, and DNA was purified from the gel piece using an ExoSAP-IT kit (manufactured by USB).
  • a sequencing reaction was carried out using the base sequence of the purified DNA as a template and a primer consisting of SEQ ID NO: 1, and then analyzed by ABI PRISM 3130 DNA Analyzer (manufactured by Thermo Fisher).
  • Table 2 shows the minimum inhibitory concentrations (MIC) of the five strains of Trichophyton against TRF and azoles.
  • ITZ, RVZ, and LCZ indicate itraconazole, labconazole, and luliconazole, respectively.
  • the unit of numerical value of MIC is mg / L.
  • the TRF MIC of the N74 strain was higher than 32 mg / L.
  • the TRF MIC of N79 strain, N99 strain, H30 strain and K2 strain was 32 mg / L.
  • the MICs of itraconazole, labconazole and luliconazole of the N79, N99, H30 and K2 strains were all less than 0.03 mg / L.
  • the MIC of itraconazole of the K2 strain was 0.25 mg / L, and the MIC of labconazole was 0.06 mg / L.
  • the minimum inhibitory concentration for TRF of the NUBS 19906 strain and the NUBS 199007 strain was higher than 32 mg / L.
  • Trichophyton tinea unguium collected from a patient with tinea unguium grows on a TRF-containing sublodextrose agar medium T.I. rubrum (N99-2 strain) was obtained. Mutations in the SQLE gene were analyzed for this strain.
  • the TRF MIC of the N99-2 strain was 32 mg / L.
  • the MICs of itraconazole, labconazole and luliconazole were all less than 0.03 mg / L.
  • the present invention there is provided a method for determining the susceptibility of Trichophyton to a SQLE inhibitor in a simple and short time.
  • the determination method of the present invention can be used to select an appropriate drug in the treatment of ringworm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

白癬菌のスクアレンエポキシダーゼ阻害薬に対する耐性を判定する以下の方法を採用する。前記方法は、対象の白癬菌のゲノムDNAを鋳型として、配列番号1に示される塩基配列からなるプライマー及び配列番号2に示される塩基配列からなるプライマーを用いて、核酸増幅反応を行い、スクアレンエポキシダーゼ遺伝子断片を得る工程(a)と、前記スクアレンエポキシダーゼ遺伝子断片の塩基配列を解析する工程(b)と、前記対象の白癬菌のスクアレンエポキシダーゼの演繹アミノ酸配列が、Leu393Phe変異及び/又はPhe397Leu変異を有している場合に、前記対象の白癬菌はスクアレンエポキシダーゼ阻害薬に耐性を有すると判定する工程(c)と、を含む、方法である。

Description

白癬菌のスクアレンエポキシダーゼ阻害薬に対する耐性を判定する方法及び検査キット
 本発明は、白癬菌のスクアレンエポキシダーゼ阻害薬に対する耐性を判定する方法及び検査キットに関する。本願は、2021年1月8日に日本に出願された特願2021-002373号に基づき優先権を主張し、その内容をここに援用する。
 白癬は、白癬菌と呼ばれる真菌が皮膚に感染することによって引き起こされる感染症であり、水虫、たむし等として一般的に知られている。白癬は、感染力が強く、痒み、痛み等の不快感、皮膚、爪の変形等を引き起こす。
 白癬の治療方法として、主に、白癬菌の細胞膜の構成成分のひとつであるエルゴステロールを合成するスクアレンエポキシダーゼ(squalene epoxidase:SQLE)に対する阻害薬を投与する方法が採用されている。
 代表的なSQLE阻害薬としては、テルビナフィン(terbinafine:TRF)が知られているが、近年、TRFに対する耐性を有する白癬菌が報告されている(例えば、非特許文献1を参照)。
 SQLE阻害薬の耐性菌は蔓延する可能性があるため、白癬菌のSQLE阻害薬に対する感受性を判定することは治療薬の選択に有益である。白癬菌のSQLE阻害薬に対する感受性試験の方法としては、患部から白癬菌を分離し、培養した後、SQLE阻害薬存在下で白癬菌を培養してSQLE阻害薬に対する感受性を試験する方法が一般的に知られている。
Yamada T, et al., Antimicrob Agents Chemother 2017;61:e00115-17.
 しかしながら、上述のような従来のSQLE阻害薬感受性試験の実施には、専門的な知識及び技術が必要である。また、感受性試験の結果を得るために1か月以上の時間を要していた。
 そこで、本発明は、白癬菌のSQLE阻害薬に対する耐性を、簡便、かつ、短時間で判定する方法、及び検査キットを提供することを目的とする。
 本発明は、以下の態様を含む。
[1]白癬菌のスクアレンエポキシダーゼ阻害薬に対する耐性を判定する方法であって、対象の白癬菌のゲノムDNAを鋳型として、配列番号1に示される塩基配列からなるプライマー及び配列番号2に示される塩基配列からなるプライマーを用いて、核酸増幅反応を行い、前記核酸増幅反応の増幅産物としてスクアレンエポキシダーゼ遺伝子断片を得る工程(a)と、前記スクアレンエポキシダーゼ遺伝子断片の塩基配列を解析する工程(b)と、前記スクアレンエポキシダーゼ遺伝子断片の塩基配列から求められる前記対象の白癬菌のスクアレンエポキシダーゼのアミノ酸配列が、配列番号5に示されるアミノ酸配列に対して、Leu393Phe変異及び/又はPhe397Leu変異を有している場合に、前記対象の白癬菌はスクアレンエポキシダーゼ阻害薬に耐性を有すると判定する工程(c)と、を含む、判定方法。
[2]前記スクアレンエポキシダーゼ阻害薬は、テルビナフィンである、[1]に記載の判定方法。
[3]配列番号1に示される塩基配列からなるプライマー、及び配列番号2に示される塩基配列からなるプライマー、を含む、白癬菌のスクアレンエポキシダーゼ阻害薬に対する耐性の検査キット。
 本発明によれば、白癬菌のSQLE阻害薬に対する耐性を、簡便、かつ、短時間で判定する方法、及び検査キットを提供することができる。
TRFを1μg/mLで含有するサブローデキストロース寒天培地において、Trichophyton rubrumのN74株、N79株、N99株及びN51株を培養した結果を示す写真である。
[判定方法]
 一実施形態において、本発明は、白癬菌のスクアレンエポキシダーゼ阻害薬に対する耐性を判定する方法であって、対象の白癬菌のゲノムDNAを鋳型として、配列番号1に示される塩基配列からなるプライマー及び配列番号2に示される塩基配列からなるプライマーを用いて、核酸増幅反応を行い、前記核酸増幅反応の増幅産物としてスクアレンエポキシダーゼ遺伝子断片を得る工程(a)と、前記スクアレンエポキシダーゼ遺伝子断片の塩基配列を解析する工程(b)と、前記スクアレンエポキシダーゼ遺伝子断片の塩基配列から求められる前記対象の白癬菌のスクアレンエポキシダーゼのアミノ酸配列が、配列番号5に示されるアミノ酸配列に対して、Leu393Phe変異及び/又はPhe397Leu変異を有している場合に、前記対象の白癬菌はスクアレンエポキシダーゼ阻害薬に耐性を有すると判定する工程(c)と、を含む、判定方法を提供する。
<スクアレンエポキシダーゼ阻害薬(SQLE阻害薬)>
 本実施形態の判定方法は、白癬菌のSQLE阻害薬に対する耐性を判定する方法である。SQLE阻害薬は、SQLEに作用して、スクアレンを2,3-オキシドスクアレンに酸化する活性を低下させる。SQLE阻害薬が野生型の白癬菌に対して作用した場合、その白癬菌の増殖は抑制される。
 本実施形態の方法により白癬菌の耐性が判定されるSQLE阻害薬としては、特に限定されず、例えば、テルビナフィン、ナフチフィン、ブテナフィン、トルナフテート等が挙げられる。これらの中でも、SQLE阻害薬は、テルビナフィンであることが好ましい。
(工程(a))
 工程(a)では、対象の白癬菌のゲノムDNAを鋳型として、配列番号1に示される塩基配列からなるプライマー及び配列番号2に示される塩基配列からなるプライマーを用いて、核酸増幅反応を行い、前記核酸増幅反応の増幅産物としてSQLE遺伝子断片を得る。
<白癬菌>
 本実施形態の判定方法において、対象の白癬菌は、白癬を生じさせる皮膚糸状菌であって、配列番号1に示される塩基配列からなるプライマー及び配列番号2に示される塩基配列からなるプライマーがアニール可能なSQLE遺伝子座を有する皮膚糸状菌であればよい。
 対象の白癬菌は、Trichophyton属であることが好ましく、例えば、T.interdigitale、T.rubrum、T.tonsurans、T.violaceum、T.vanbreuseghemii、T.erinacei、T.simii、T.gloriae、T.mentagrophytes、T.verrucosum、T.indotineae等が挙げられる。
 これらの中でも、対象となる白癬菌は、T.interdigitale、T.rubrum、T.indotineaeであることが好ましく、T.rubrum又はT.indotineaeであることがより好ましい。
 白癬菌は、例えば、動物個体に感染した白癬菌であってもよく、動物としては、ヒト、イヌ、ネコ、ラット、マウス、ウシ、ブタ、ヒツジ、ウマ等が挙げられる。
 白癬菌は、ヒトの白癬症患者の病変部位の爪、落屑、毛髪等から採取された白癬菌であることが好ましい。
 工程(a)において、核酸増幅反応の鋳型となる白癬菌のゲノムDNAは、核酸増幅反応が可能であれば、精製されたものであってもよく、精製されていないものであってもよい。白癬菌のゲノムDNAは、対象の白癬菌から予め調製したものであってもよい。ゲノムDNAの調製方法は、当業者が適宜選択することができる。
 例えば、白癬症病変部位の爪、落屑、毛髪等を緩衝液等に浸漬した後、フェノール抽出により浸漬後の緩衝液からタンパク質を除去し、続いて、エタノール沈殿を行うことにより、白癬菌のゲノムDNAを得てもよい。
 白癬菌のゲノムDNAは、市販されているDNA分離キット等を用いて、白癬症病変部位の爪、落屑、毛髪等から得られたものであってもよい。
 あるいは、遺伝子断片を増幅させる反応溶液中に白癬菌を直接入れて、反応溶液中で溶菌した白癬菌から溶出したゲノムDNAを核酸増幅反応の鋳型として用いてもよい。
<SQLE遺伝子>
 SQLEは、スクアレンを2,3-オキシドスクアレンに酸化する酵素である。真菌細胞においては、2,3-オキシドスクアレンは、細胞膜の構成成分のひとつであるエルゴステロールに変換される。
 例えば、Trichophyton rubrum CBS118892株のSQLE遺伝子の塩基配列は、配列番号3に示される配列である。配列番号3に示される配列は、NCBI RefSeq ID NW_003456423.1の、825602-824071に対応する配列である。
<核酸増幅反応>
 対象の白癬菌のゲノムDNAを鋳型とする核酸増幅反応は、PCRによって行うことが好ましい。
 PCRにおいては、配列番号1に示される塩基配列からなるプライマー(以下、「プライマー1」ともいう)及び配列番号2に示される塩基配列からなるプライマー(以下、「プライマー2」ともいう)を用いる。プライマー1はフォワードプライマーであり、プライマー2はリバースプライマーである。それぞれの配列は以下の通りである。
 配列番号1: 5’-GTTGACTGGTGGCGGTATG-3’
 配列番号2: 5’-GCTACGGAGTAAAAATGCCG-3’
 PCRの反応溶液は、当業者に公知の反応溶液であってもよい。PCR反応溶液は、例えば、プライマー1、プライマー2及び鋳型DNAに加えて、DNAポリメラーゼ(Taq DNAポリメラーゼ等)、dNTP mixture(dATP、dCTP、dGTP、dTTP)、及びマグネシウム塩(MgCl等)等を含むことができる。
 例えば、鋳型DNAがTrichophyton rubrumのゲノムDNAである場合、配列番号1に示される塩基配列からなるプライマー及び配列番号2に示される塩基配列からなるプライマーを用いて、PCRを行うことにより、約390塩基対のDNA断片が増幅される。
 PCRの条件は、SQLE遺伝子断片が増幅される条件である限り、特に限定されない。
 PCRでは、通常、変性ステップ、アニーリングステップ、及びDNA伸長ステップをこの順で複数回行うことにより、DNA断片を増幅する。
 PCRのサイクル数は、配列解析に十分な量のSQLE遺伝子断片を得る観点から、20回以上が好ましく、25回以上が好ましく、28回以上がより好ましい。サイクル数は、標的のSQLE遺伝子断片以外の領域が増幅することを抑制する観点から、45回以下が好ましく、40回以下がより好ましく、35回以下が更に好ましい。
 変性ステップでは、PCRの溶液中に含まれる2本鎖DNAが、変性して1本鎖DNAに解離する。
 変性ステップの温度は、2本鎖DNAを十分に変性させる観点から、90℃以上が好ましく、92℃以上がより好ましく、94℃以上が更に好ましい。
 変性ステップの温度は、PCR溶液中のDNAポリメラーゼの不活化を抑制する観点から、99℃以下が好ましく、98℃以下がより好ましく、96℃以下が更に好ましい。
 変性ステップの時間は、2本鎖DNAを十分に変性させる観点から、5秒以上が好ましく、10秒以上がより好ましく、20秒以上が更に好ましい。
 変性ステップの時間は、PCR溶液中のDNAポリメラーゼの不活化を抑制する観点から、60秒以下が好ましく、40秒以下がより好ましく、30秒以下が更に好ましい。
 アニーリングステップでは、プライマー1及びプライマー2が、1本鎖状のDNA(白癬菌のゲノムDNA又は増幅されたSQLE遺伝子断片)にアニールする。
 アニーリングステップの温度は、プライマーの融解温度(Tm)に応じて、適宜設定することができる。通常、アニーリングステップの温度は、プライマーのTmよりも1~5℃程度低い温度に設定する。アニーリングステップの温度が高すぎると、プライマーが鋳型DNAにアニールすることができない。一方、アニーリングステップの温度が低すぎると、標的領域以外の領域に非特異的にアニールする確率が高くなる。
 プライマー1のTmは58.5℃であり、プライマー2のTmは57.3℃であることから、アニーリングステップの温度は、58℃以下が好ましく、57℃以下がより好ましい。
 アニーリングステップステップの温度は、プライマー1及びプライマー2がSQLE遺伝子以外の領域にアニールすることを抑制する観点から、50℃以上が好ましく、52℃以上がより好ましく、54℃以上が更に好ましい。
 アニーリングステップの時間は、通常、10~100秒とすることができ、20~60秒が好ましく、25~40秒がより好ましい。
 DNA伸長ステップでは、1本鎖状のDNA(白癬菌のゲノムDNA又は増幅されたSQLE遺伝子断片)にアニールしたプライマーの3’端末端に連続的にdNTPが結合し、DNAが伸長する。
 伸張ステップの温度及び時間は、PCR溶液中のDNAポリメラーゼによるDNAの伸長が十分に進行する限り特に限定されず、PCRで用いるDNAポリメラーゼの種類に応じて、適宜設定することができる。
 伸張ステップの温度は、DNAポリメラーゼの最適温度付近で行うことが好ましく、例えば、Taq DNAポリメラーゼである場合、65~75℃が好ましく、68~73℃がより好ましく、71~73℃が更に好ましい。
 伸張ステップの時間は、DNAの伸長を十分にする観点から、10~150秒が好ましく、20~120秒がより好ましく、30~90秒が更に好ましい。
 工程(a)により、核酸増幅反応の増幅産物として、SQLE遺伝子断片を得ることができる。
(工程(b))
 工程(b)では、SQLE遺伝子断片のDNA配列を解析する。DNA配列の解析方法は特に限定されず、公知の方法で行うことができる。DNA配列の解析は、DNAシーケンサーにより行うことができ、DNAシーケンサーとしては、例えば、サンガー法、ジデオキシ法等を適用したものであってもよい。より具体的には、ダイターミネーター法であってもよい。
 工程(b)により、工程(a)で得たSQLE遺伝子断片の塩基配列を得ることができる。
(工程(c))
 工程(c)では、工程(b)のDNA配列の解析結果に基づいて、白癬菌はSQLE阻害薬に耐性を有するか否かを判定する。
 SQLE阻害薬に耐性を有する白癬菌のSQLEは、SQLE阻害薬によるSQLE活性の阻害を受けなくなるような変異を有すると考えられる。そのような変異としては、Leu393Phe及びPhe397Leuが挙げられる。そこで、工程(c)では、前記工程(b)で得られたSQLE遺伝子断片の塩基配列の演繹アミノ酸配列が、Leu393Phe及び/又はPhe397Leuの変異を有している場合に、対象の白癬菌はSQLE阻害薬に耐性を有すると判定する。
 工程(c)において、基準となる野生型SQLEのアミノ酸配列としては、配列番号5に示されるアミノ酸配列を用いる。配列番号5に示されるアミノ酸配列は、Trichophyton rubrum CBS118892株のSQLEのアミノ酸配列である。
 「SQLE遺伝子断片の塩基配列から求められる前記対象の白癬菌のSQLEのアミノ酸配列が、配列番号5に示されるアミノ酸配列に対して、Leu393Phe変異を有する」とは、配列番号5に示されるアミノ酸配列に対して、SQLE遺伝子断片の塩基配列の演繹アミノ酸配列をアライメントしたときに、配列番号5に示されるアミノ酸配列の第393番目のLeuに対応するアミノ酸が、前記演繹アミノ酸配列においてPheに置換されていることをいう。
 「SQLE遺伝子断片の塩基配列から求められる前記対象の白癬菌のSQLEのアミノ酸配列が、配列番号5に示されるアミノ酸配列に対して、Phe397Leu変異を有する」とは、配列番号5に示されるアミノ酸配列に対して、SQLE遺伝子断片の塩基配列の演繹アミノ酸配列をアライメントしたときに、配列番号5に示されるアミノ酸配列の第397番目のPheに対応するアミノ酸が、前記演繹アミノ酸配列においてLeuに置換されていることをいう。
 アライメントは、公知の方法で行うことができ、例えば、clustalW等のアライメントプログラムを用いることができる。
 Trichophyton rubrum CBS118892株のSQLE遺伝子の塩基配列は、配列番号3に示される配列である。
 CBS118892株のSQLEをコードするmRNAのコーディング領域の塩基配列は、配列番号4に示される配列である。これは、NCBI RefSeq ID XM_003233797.1に示される配列である。
 CBS118892株のSQLEの演繹アミノ酸配列は、配列番号5に示される配列である。これは、配列番号4に示される塩基配列から演繹されるアミノ酸配列であり、NCBI RefSeq ID XP_003233845.1に示される配列である。
 配列番号3に示される塩基配列の1179番目のアデニンが、チミン又はシトシンに変異したTrichophyton rubrum変異株は、SQLE阻害薬に耐性を有する。
 この変異株においては、配列番号5に示されるSQLEのアミノ酸配列の第393番目のアミノ酸であるロイシンが、フェニルアラニンに変異している。
 配列番号3に示される塩基配列の1179番目のアデニンが、チミン又はシトシンに変異し、かつ、配列番号3に示される塩基配列の1180~1182番目の3塩基が欠失したTrichophyton rubrum変異株は、SQLE阻害薬に耐性を有する。
 この変異株においては、配列番号5に示されるSQLEのアミノ酸配列の第393番目のアミノ酸であるロイシンが、フェニルアラニンに変異し、かつ、配列番号5に示されるSQLEのアミノ酸配列の第394番目のアミノ酸であるチロシンが欠失している。
 配列番号3に示される塩基配列の1189番目のチミンが、シトシンに変異したTrichophyton rubrum変異株は、SQLE阻害薬に耐性を有する(非特許文献1)。
 配列番号3に示される塩基配列の1191番目のシトシンが、アデニン又はグアニンに変異したTrichophyton rubrum変異株は、SQLE阻害薬に耐性を有する(非特許文献1)。
 これらの変異株においては、配列番号5に示されるSQLEのアミノ配列の第397番目のアミノ酸であるフェニルアラニンが、ロイシンに変異している。
 工程(c)では、工程(b)で得られた対象の白癬菌のSQLE遺伝子断片の塩基配列を、配列番号3に示される塩基配列に対してアライメントし、配列番号3に示される塩基配列の第393番目のLeuをコードするコドン(1177-1179の「TTA」)及び/又は第397番目のPheをコードするコドン(1189-1191の「TTC」)に対応するコドンの変異を確認することで、対象の白癬菌のSQLE阻害薬に対する耐性を判定してもよい。
 工程(b)のDNA配列の解析結果から、対象白癬菌のSQLE遺伝子において、配列番号3に示される塩基配列の1179番目のアデニンに対応する塩基が、チミン又はシトシンに変異していた場合、その対象白癬菌は、SQLE阻害薬に耐性を有すると判定することができる。
 対象白癬菌のSQLE遺伝子において、配列番号3に示される塩基配列の1179番目のアデニンに対応する塩基が、チミン又はシトシンに変異し、かつ、配列番号3に示される塩基配列の1180~1182番目の3塩基に対応する塩基が欠失している場合、その対象白癬菌は、SQLE阻害薬に耐性を有すると判定することができる。
 対象白癬菌のSQLE遺伝子において、配列番号3に示される塩基配列の1189番目のチミンに対応する塩基が、シトシンに変異していた場合、その対象白癬菌は、SQLE阻害薬に耐性を有すると判定することができる。
 対象白癬菌のSQLE遺伝子において、配列番号3に示される塩基配列の1191番目のシトシンに対応する塩基が、アデニン又はグアニンに変異していた場合、その対象白癬菌は、SQLE阻害薬に耐性を有すると判定することができる。
 対象の白癬菌のSQLE遺伝子断片の塩基配列における、配列番号3に示される塩基配列の1179番目、1180~1182番目、1189番目、1191番目の塩基に対応する塩基は、例えば、ClustalW等のアラインメントプログラムを用いて、対象塩基配列と、配列番号3の塩基配列とをアラインメントすること等により特定することができる。
 本実施形態の判定方法によれば、プライマー1及びプライマー2を用いて対象の白癬菌のSQLE遺伝子断片を増幅し、塩基配列解析を行うことにより、対象の白癬菌のSQLE阻害薬に対する耐性を判定することができるため、白癬菌の分離、培養、及び感受性試験を行う必要がない。そのため、白癬菌のSQLE阻害薬に対する感受性を、簡便、かつ、短時間で判定することができる。また、プライマー1及びプライマー2を用いることにより、SQLE阻害薬耐性に関与する変異を含む領域のみを特異的に増幅することができる。
 Leu393Phe変異及び/又はPhe397Leu変異を標的とするプローブを用いたリアルタイムPCRでは、対象の白癬菌のSQLE遺伝子断片が、Leu393Phe変異及び/又はPhe397Leu変異に加えて、これらの変異の近傍に他の変異を有している場合、Leu393Phe変異及び/又はPhe397Leu変異を正確に検出できないおそれがある。これに対し、本実施形態の判定方法によれば、増幅した対象の白癬菌のSQLE遺伝子断片が、Leu393Phe変異及び/又はPhe397Leu変異に加えて、その他の塩基の変異を有する場合であっても、対象の白癬菌のSQLE阻害薬に対する耐性を判定することができる。例えば、Leu393Phe変異及び/又はPhe397Leu変異に加えて、配列番号3に示される塩基配列の1180~1182番目の3塩基に対応する塩基が欠失している場合であっても、対象の白癬菌のSQLE阻害薬に対する耐性を判定することができる。
 薬剤を用いて白癬を治療する前に、本実施形態の判定方法により、白癬菌のSQLE阻害薬に対する感受性を判定することにより、より迅速、且つ、的確に、治療に用いる薬剤を選択することができる。
[検査キット]
 一実施形態において、本発明は、配列番号1に示される塩基配列からなるプライマー(プライマー1)、及び配列番号2に示される塩基配列からなるプライマー(プライマー2)、を含む、白癬菌のSQLE阻害薬に対する耐性の検査キットを提供する。
 プライマー1及びプライマー2は、配列番号1及び配列番号2に示される塩基配列に基づき、ホスホロアミダイト法等の公知の核酸合成法により合成することができる。
 本実施形態の検査キットは、プライマー1及びプライマー2に加えて、核酸増幅反応に必要な試薬(DNAポリメラーゼ、dNTP、マグネシウム塩)、塩基配列解析に必要な試薬(シーケンス用プライマー)、バッファー類等を含んでいてもよい。
 本実施形態の検査キットは、上記実施形態の判定方法に使用することができる。
 以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。
[実験例1]
 210名の白癬菌感染症患者から採取した白癬菌のそれぞれについて、TRFを含有するサブローデキストロース寒天培地における増殖能を解析した。
 210名の患者のうち、111名は男性であり、99名は女性であった。また、患者の年齢は1~86歳であり、患者の年齢の中央値は43歳であった。
 210名の患者の症状、及び、患者から得られた白癬菌の表現型の解析結果を表1に示す。
 患者数は、足白癬、体部白癬、爪白癬、下腿白癬、手白癬、顔白癬、頭部白癬の順に多かった。
 T.interdigitaleの集落は、平坦であり、白色から薄茶色の粉末状または絨毛状であることが知られている。また、T.rubrumの集落は、平坦であり、白色の絨毛状または綿毛状であり、赤から茶褐色の色素を産生することが知られている。
 患者から得られた210個の白癬菌のサンプルについて、上述の集落の形態、赤色色素産生の有無に基づいて分類した。
 その結果、82個のサンプルはT.interdigitaleであり、128個のサンプルはT.rubrumであることが明らかになった。
Figure JPOXMLDOC01-appb-T000001
 210個の白癬菌のサンプルについて、TRFを1μg/mLで含有するサブローデキストロース寒天培地における増殖能を解析した。その結果、5株(N74株、N79株、N99株、H30株及びK2株)は増殖することが確認された。また、これら5株は、T.rubrumであった。
 N74株、N79株、N99株及びN51株を、それぞれ、28℃で2週間、TRFを1μg/mLで含有するサブローデキストロース寒天培地において培養した結果を図1に示す。
 図1中、aはN74株であり、bはN79株であり、cはN99株であり、dはN51株である。N74株、N79株及びN99株は、TRF含有寒天培地において増殖したことが確認された。これに対し、TRF感受性のT.rubrum N51株は、TRF含有寒天培地において増殖できないことが確認された。
[実験例2]
 実験例1において、TRF耐性を有することが確認された5株について、SQLE遺伝子の配列を解析した。
 上記の5株について、次に示す手順により、PCRによりSQLE遺伝子断片を増幅し、増幅産物の塩基配列をシークエンシングにより解析した。
 まず、10mM Tris-HCl(pH 8.3)、50mM KCl、1.5mM MgCl、0.001% gelatin、200μM dNTP(dATP、dTTP、dGTP、dCTP)、1.0 Unit Taqポリメラーゼ(Takara社製)、1μMの配列番号1からなるプライマー、1μMの配列番号2からなるプライマーを含む30μLの溶液を、PCR反応溶液とした。
 患者から採取した各々の白癬菌から、約100ngのゲノムDNAを各PCR反応溶液中に入れた。
 PCRは、95℃で30秒、56℃で30秒、72℃で1分のサイクルを30回繰り返し、標的領域を増幅した。
 得られた増幅産物を、2%アガロースゲルを用いて電気泳動により展開し、エチジウムブロマイドを用いてゲルを染色した。
 染色したゲルから、約390塩基対のDNA断片を含むゲル小片を採取し、ExoSAP-IT kit(USB社製)を用いて、ゲル小片からDNAを精製した。
 精製したDNAの塩基配列を鋳型として、配列番号1からなるプライマーを用いてシーケンシング反応を行った後、ABI PRISM 3130 DNA Analyzer(Thermofisher社製)にて解析した。
 その結果、N74株及びH30株においては、配列番号3に示される塩基配列の1179番目のアデニンに対応する塩基が、チミンに変異していることが明らかになった。
 N79株、N99株及びK2株においては、配列番号3に示される塩基配列の1179番目のアデニンに対応する塩基が、シトシンに変異していることが明らかになった。
 上記の5株は、いずれも、Leu393Phe変異を有していることが明らかになった。
[実験例3]
 実験例1において、TRF耐性を有することが確認された5株について、TRF及びアゾール類(イトラコナゾール、ラブコナゾール、ルリコナゾール)に対する耐性を解析した。
 5株の白癬菌の、TRF及びアゾール類に対する最小発育阻止濃度(Minimal Inhibitory Concentration, MIC)を表2に示す。
 表2中、ITZ、RVZ、LCZは、それぞれ、イトラコナゾール、ラブコナゾール、ルリコナゾールを示す。MICの数値の単位は、mg/Lである。
 N74株のTRFのMICは、32mg/Lより高かった。N79株、N99株、H30株及びK2株のTRFのMICは、32mg/Lであった。
 N79株、N99株、H30株及びK2株の、イトラコナゾール、ラブコナゾール及びルリコナゾールのMICは、いずれも、0.03mg/L未満であった。
 K2株の、イトラコナゾールのMICは0.25mg/Lであり、ラブコナゾールのMICは0.06mg/Lであった。
Figure JPOXMLDOC01-appb-T000002
[実験例4]
 白癬菌感染症患者から採取した白癬菌から、TRFを含有するサブローデキストロース寒天培地において増殖する、2株のT.indotineae(NUBS19006株及びNUBS19007株)を得た。これらについて、SQLE遺伝子の変異を解析した。
 実験例2と同一の方法で、2株のT.indotineaeのSQLE遺伝子の変異を解析した結果、いずれも、配列番号3に示される塩基配列の1191番目のシトシンに対応する塩基が、アデニンに変異していることが明らかになった。
 また、NUBS19006株及びNUBS19007株の、TRFに対する最小発育阻止濃度は、32mg/Lより高かった。
[実験例5]
 爪白癬症患者から採取した白癬菌から、TRFを含有するサブローデキストロース寒天培地において増殖する、T.rubrum(N99-2株)を得た。この株について、SQLE遺伝子の変異を解析した。
 N99-2株のTRFのMICは、32mg/Lであった。イトラコナゾール、ラブコナゾール及びルリコナゾールのMICは、いずれも、0.03mg/L未満であった。
 実験例2と同一の方法で、N99-2株の変異を解析した結果、配列番号3に示される塩基配列の1179番目のシトシンに対応する塩基が、アデニンに変異していることが明らかになった。更に、N99-2株のゲノムDNAは、配列番号3に示される塩基配列の1180~1182番目の3塩基が欠失していることが明らかになった。
 本発明によれば、白癬菌のSQLE阻害薬に対する感受性を、簡便、かつ、短時間で判定する方法が提供される。本発明の判定方法は、白癬の治療において、適切な薬剤の選択に利用可能である。

Claims (3)

  1.  白癬菌のスクアレンエポキシダーゼ阻害薬に対する耐性を判定する方法であって、
     対象の白癬菌のゲノムDNAを鋳型として、配列番号1に示される塩基配列からなるプライマー及び配列番号2に示される塩基配列からなるプライマーを用いて、核酸増幅反応を行い、前記核酸増幅反応の増幅産物としてスクアレンエポキシダーゼ遺伝子断片を得る工程(a)と、
     前記スクアレンエポキシダーゼ遺伝子断片の塩基配列を解析する工程(b)と、
     前記スクアレンエポキシダーゼ遺伝子断片の塩基配列から求められる前記対象の白癬菌のスクアレンエポキシダーゼのアミノ酸配列が、配列番号5に示されるアミノ酸配列に対して、Leu393Phe変異及び/又はPhe397Leu変異を有している場合に、前記対象の白癬菌はスクアレンエポキシダーゼ阻害薬に耐性を有すると判定する工程(c)と、を含む、判定方法。
  2.  前記スクアレンエポキシダーゼ阻害薬は、テルビナフィンである、請求項1に記載の判定方法。
  3.  配列番号1に示される塩基配列からなるプライマー、及び配列番号2に示される塩基配列からなるプライマー、を含む、白癬菌のスクアレンエポキシダーゼ阻害薬に対する耐性の検査キット。
PCT/JP2021/031116 2021-01-08 2021-08-25 白癬菌のスクアレンエポキシダーゼ阻害薬に対する耐性を判定する方法及び検査キット WO2022149300A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022573906A JPWO2022149300A1 (ja) 2021-01-08 2021-08-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-002373 2021-01-08
JP2021002373 2021-01-08

Publications (1)

Publication Number Publication Date
WO2022149300A1 true WO2022149300A1 (ja) 2022-07-14

Family

ID=82357849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031116 WO2022149300A1 (ja) 2021-01-08 2021-08-25 白癬菌のスクアレンエポキシダーゼ阻害薬に対する耐性を判定する方法及び検査キット

Country Status (2)

Country Link
JP (1) JPWO2022149300A1 (ja)
WO (1) WO2022149300A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006133701A2 (en) * 2005-06-14 2006-12-21 Statens Serum Institut Pcr diagnostics of dermatophytes and other pathogenic fungi
JP2019526631A (ja) * 2016-08-29 2019-09-19 シャンバチャー、カール エフ.SCHANBACHER,Carl,F. 皮膚真菌感染症の処置のための方法及び組成物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006133701A2 (en) * 2005-06-14 2006-12-21 Statens Serum Institut Pcr diagnostics of dermatophytes and other pathogenic fungi
JP2019526631A (ja) * 2016-08-29 2019-09-19 シャンバチャー、カール エフ.SCHANBACHER,Carl,F. 皮膚真菌感染症の処置のための方法及び組成物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SINGH ASHUTOSH, ET AL.: "High terbinafine resistance in Trichophyton interdigitale isolates in Delhi, India harbouring mutations in the squalene epoxidase gene", MYCOSES, vol. 61, 27 April 2018 (2018-04-27), pages 477 - 484, XP055949131, DOI: 10.1111/myc.12772 *
YAMADA TSUYOSHI, MAEDA MARI, ALSHAHNI MOHAMED MAHDI, TANAKA REIKO, YAGUCHI TAKASHI, BONTEMS OLYMPIA, SALAMIN KARINE, FRATTI MARINA: "Terbinafine Resistance of Trichophyton Clinical Isolates Caused by Specific Point Mutations in the Squalene Epoxidase Gene", ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 61, no. 7, 1 July 2017 (2017-07-01), US , XP055949132, ISSN: 0066-4804, DOI: 10.1128/AAC.00115-17 *

Also Published As

Publication number Publication date
JPWO2022149300A1 (ja) 2022-07-14

Similar Documents

Publication Publication Date Title
Dilhari et al. Evaluation of the impact of six different DNA extraction methods for the representation of the microbial community associated with human chronic wound infections using a gel-based DNA profiling method
US20040048281A1 (en) Method for amplifying quinolone-resistance-determining-regions and identifying polymorphic variants thereof
CN108034745B (zh) 一种同时检测四种念珠菌的引物探针组合和试剂盒
CN107034277A (zh) 一种检测低丰度基因突变的方法
Crucitti et al. Molecular typing of the actin gene of Trichomonas vaginalis isolates by PCR–restriction fragment length polymorphism
CN113278717B (zh) 一种靶向测序法检测血流感染的引物池、试剂盒及方法
CN105200040B (zh) 一种用于在单细胞水平上同时检测多种耳聋基因的试剂盒
JP2020036614A (ja) 核酸増幅法
WO2022149300A1 (ja) 白癬菌のスクアレンエポキシダーゼ阻害薬に対する耐性を判定する方法及び検査キット
WO2019160136A1 (ja) ブリ類の性識別方法
CN114574609B (zh) 检测毛霉菌病病原体的试剂盒及方法
Jahanshiri et al. Genotyping of Candida albicans isolates from oropharyngeal candidiasis in head and neck cancer patients in Iran: Molecular epidemiology and SAP2 gene expression
CN113913530A (zh) 一种与绵羊体高相关的分子标记及其应用
TW200804604A (en) Detection method for koi herpes virus (KHV)
JP2022113576A (ja) マラセチアのアゾール系抗真菌薬に対する耐性を判定する方法及び検査キット
Mohei et al. Discovery of the human homolog of sex-determining region (SRY) gene in dioecious plants
EP1952145B1 (en) A method for specific detection of legionella pneumophila
JP2019068815A (ja) 核酸増幅法
JP3447302B2 (ja) 臨床試料における耐性菌細胞の検出法
KR102615877B1 (ko) 난축맛돈 돼지육 판별용 조성물 및 이의 용도
AU2010330688B2 (en) Hyperprimers
Pegoraro et al. Sequence comparison of mitochondrial tRNA genes and origin of light strand replication in Bos taurus and Nellore (Bos indicus) breeds
Bae et al. Probe-based qPCR Assay for Rapid Detection of Predominant Candida glabrata Sequence Type in Korea
CN112239791A (zh) 一种人类免疫缺陷病毒检测试剂盒
JP2006129807A (ja) 高gc含量反復配列増幅用長鎖ポリメラーゼチェインリアクション法およびそれを用いた顔面肩甲上腕型筋ジストロフィ診断法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917525

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022573906

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917525

Country of ref document: EP

Kind code of ref document: A1