WO2022148152A1 - 消融装置和射频消融设备 - Google Patents

消融装置和射频消融设备 Download PDF

Info

Publication number
WO2022148152A1
WO2022148152A1 PCT/CN2021/132339 CN2021132339W WO2022148152A1 WO 2022148152 A1 WO2022148152 A1 WO 2022148152A1 CN 2021132339 W CN2021132339 W CN 2021132339W WO 2022148152 A1 WO2022148152 A1 WO 2022148152A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrodes
ablation
ablation device
protective sheath
Prior art date
Application number
PCT/CN2021/132339
Other languages
English (en)
French (fr)
Inventor
周庆亮
马志伟
王宇
刘晓芳
马帅
孟坚
Original Assignee
北京迈迪顶峰医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110026546.4A external-priority patent/CN114748153A/zh
Priority claimed from CN202120055067.0U external-priority patent/CN216090742U/zh
Application filed by 北京迈迪顶峰医疗科技股份有限公司 filed Critical 北京迈迪顶峰医疗科技股份有限公司
Publication of WO2022148152A1 publication Critical patent/WO2022148152A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor

Definitions

  • the present disclosure is based on a Chinese patent application with an application number of 202110026546.4, an application date of January 8, 2021, a public name of "ablation device and radiofrequency ablation equipment” and an application number of 202120055067.0, and the application date of January 8, 2021, Priority is claimed on the basis of a Chinese patent application published entitled “Radiofrequency Ablation Device", the disclosure of which is hereby incorporated into this disclosure in its entirety.
  • the present disclosure relates to the field of medical devices, and in particular, to an ablation device and a radiofrequency ablation device.
  • Ablation is a common measure for the treatment of atrial fibrillation.
  • the principle is to create one or more ablation lines in the heart tissue, causing tissue necrosis and cutting off abnormal electrical signal conduction for the treatment of atrial fibrillation.
  • Surgical ablation is characterized by excellent curative effect and low postoperative recurrence rate, but its obvious shortcomings are large trauma and slow postoperative recovery.
  • Medical interventional ablation is favored by more and more patients because of its small trauma and fast recovery, but medical ablation is point ablation, and its biggest drawback is that it is difficult to form a complete ablation line; Wall work, the ablation depth is limited, and it is difficult to ensure complete dehydration and degeneration of the tissue from the inside to the outside.
  • the ablation power is small and the ablation is not complete, but the power is high and it is difficult to control. There are excessive ablation tissue necrosis or even burning through and burning leakage. Therefore, the success rate of medical interventional ablation is much lower than that of surgery.
  • the main purpose of the present disclosure is to provide an ablation device and radiofrequency ablation equipment to solve the problems of current surgical ablation with relatively large trauma, slow postoperative recovery, limited use angle, and inconvenient operation; to solve the current medical interventional ablation energy constant , the output power cannot be adjusted according to the ablation effect in a timely manner, resulting in the problem of overburning or impermeability; to solve the problem that the current medical and surgical ablation equipment requires additional equipment for mapping after ablation, and the operation is cumbersome.
  • a first aspect of the present disclosure provides an ablation device, comprising: a first electrode assembly, the first electrode assembly including a first electrode tip, the first electrode tip having a first electrode; and a first electrode assembly Two electrode assemblies, the second electrode assembly includes a second electrode tip having a second electrode; wherein the first electrode and the second electrode cooperate with each other to pass through the second electrode An electrode and the second electrode ablate the tissue to be ablated between the first electrode and the second electrode.
  • the ablation device further comprises: an ablation circuit on which both the first electrode and the second electrode are disposed to pass the test of the first electrode and the second electrode The impedance between the electrodes modulates the radio frequency energy between the first electrode and the second electrode for ablation.
  • both the first electrodes and the second electrodes are multiple, and the multiple first electrodes and the multiple second electrodes are arranged in cooperation with each other.
  • the first electrode tip and the second electrode tip are both strip-shaped, and a plurality of the first electrodes are arranged at intervals along the extending direction of the first electrode tip, A plurality of second electrodes are arranged at intervals along the extending direction of the second electrode tip.
  • each of the first electrode and the second electrode has 2 to 10 electrodes.
  • the first electrode tip includes a positioning member, and the first electrode tip is positioned on the epicardium by the positioning member.
  • the first electrode tip is strip-shaped, the positioning members are multiple, and the positioning members are arranged along the extending direction of the first electrode tip.
  • the first electrode tip includes a first protective sheath, and at least part of the first electrode is disposed in the first protective sheath; the positioning members are multiple, multiple The positioning pieces are arranged in pairs, and two pairs of the positioning pieces are arranged on opposite sides of the first protective sheath; and/or, a plurality of the positioning pieces are arranged on one of the first protective sheaths. side.
  • the first protective sheath is made of a flexible material.
  • the first electrode has an electrode surface disposed toward the tissue to be ablated
  • the first protective sheath has a protective sheath surface disposed toward the tissue to be ablated; wherein, the electrode The surface is located on the side of the protective sheath surface close to the tissue to be ablated.
  • the multiple first electrodes are arranged at intervals along the extending direction of the first electrode tip; the electrode surfaces of the multiple first electrodes are the same as the The minimum distances between the protective sheath surfaces are all the same.
  • both the electrode surface and the protective sheath surface are flat.
  • the positioning member is a suction cup structure.
  • the first electrode tip includes a first protective sheath, and at least part of the first electrode is disposed in the first protective sheath; A plurality of the first electrodes are arranged at intervals along the extending direction of the first electrode tip; at least one of the plurality of first electrodes is provided with a cooling hole for circulating a cooling fluid; and/ Or a cooling pipe for circulating cooling fluid is arranged in the first protective sheath.
  • At least one of the plurality of first electrodes is provided with 1 to 4 cooling holes.
  • the first electrode tip includes a first magnetic member
  • the second electrode tip includes a second magnetic member
  • the first magnetic member cooperates with the second magnetic member , so that the first electrode end and the second electrode end are relatively fixed.
  • the first magnetic member and the second magnetic member are attracted to each other.
  • both the first magnetic member and the second magnetic member are multiple, the first electrode tip and the second electrode tip are both strip-shaped, and the multiple The first magnetic members are arranged at intervals along the extending direction of the first electrode tip, and a plurality of the second magnetic members are arranged at intervals along the extending direction of the second electrode tip.
  • first electrodes and multiple second electrodes there are multiple first electrodes and multiple second electrodes, multiple first magnetic members and multiple first electrodes are alternately arranged at intervals, and multiple first magnetic elements are arranged at intervals. The two magnetic elements are alternately and spaced apart from the plurality of second electrodes.
  • the adjacent first electrodes and the first magnetic members are provided in insulation, and the adjacent second electrodes and the second magnetic members are provided in insulation.
  • the opposite surfaces between the adjacent first electrodes and the first magnetic members are all sprayed with insulating paint, or the adjacent first electrodes and the first magnetic members are sprayed with insulating paint.
  • An insulating separator is arranged between the parts; the opposite surfaces between the adjacent second electrodes and the second magnetic parts are sprayed with insulating paint, or, the adjacent second electrodes and the second magnetic parts are sprayed with insulating paint.
  • An insulating partition is arranged between the magnetic parts.
  • the outer surfaces of the first magnetic member and the second magnetic member are both coated with an insulating layer.
  • the first electrode, the first magnetic member, the second electrode, and the second magnetic member are all connected to independent energization circuits for individual control.
  • the energization circuits of the two first electrodes are independently set to form a mapping electrode pair, so as to use the energization circuits to detect the tissue to be ablated after ablation and/or, there are multiple second electrodes, and the energization circuits of the two second electrodes are independently set to form a mapping electrode pair, so as to use the energization circuits to detect the ablation to be ablated after ablation
  • the electrical signal transmission of the tissue; and/or, the energization circuits of the first electrode and the second electrode are independently set to form a mapping electrode pair, so as to use the energization circuit to detect the electrical signal transmission after the ablation of the tissue to be ablated happening.
  • the first electrode tip and the second electrode tip are both plural.
  • the second electrode tip includes a second protective sheath, and the second electrode is disposed on the second protective sheath; the second electrode is made of a metal material, and the The metal material includes at least one of the following materials: platinum, platinum-based alloy, tantalum, and gold-plated beryllium bronze; and/or the second protective sheath is made of a developing material, and the component of the developing material includes barium sulfate.
  • the second electrodes are arranged at intervals along the extending direction of the second protective sheath, sleeved on the second protective sheath, and the surface of the electrode is higher than the surface of the second protective sheath.
  • the first electrode tip includes a first protective sheath, and opposite sides of the first protective sheath are provided with shielding side eaves.
  • a second aspect of the present disclosure provides a radio frequency ablation device, comprising a radio frequency host and an ablation device connected to the radio frequency host, wherein the ablation device is the ablation device of the first aspect of the present disclosure.
  • the radio frequency host is connected to both the first electrode and the second electrode to detect the impedance between the first electrode and the second electrode, and according to the The detected impedance information adjusts the radio frequency power between the first electrode and the second electrode.
  • the ablation device includes a first electrode assembly and a second electrode assembly
  • the first electrode assembly includes a first electrode tip with a first electrode
  • the second electrode assembly includes a second electrode with a second electrode. and the first electrode and the second electrode are opposite to each other, so that the tissue to be ablated located between the first electrode and the second electrode is ablated by the first electrode and the second electrode.
  • the first electrode assembly and the second electrode assembly are used as epicardial electrodes and endocardial electrodes, respectively, so that the first electrode assembly and the second electrode assembly act on the epicardium and the endocardium, respectively, to achieve Simultaneously ablate the epicardium and the endocardium, thereby achieving a good ablation effect; it can be seen that the use of the ablation device can solve the problem that the ablation effect of the ablation device in the prior art is not ideal.
  • the first electrode assembly can be used independently to act on the epicardium to achieve the ablation effect
  • the second electrode assembly can be used independently to act on the endocardium to achieve the ablation effect.
  • a single electrode assembly or a working electrode assembly can perform timely mapping to monitor the ablation effect. And it is the problem of point-like mapping, which improves the effect of surgical ablation.
  • the ablation device in the present disclosure can realize hybrid ablation of internal and surgical techniques. This technique has little trauma, which solves the problems of large trauma and slow recovery in the prior art for surgical ablation. Simultaneous ablation adjusts the output power by testing the actual impedance between tissues, which is accurate and safe, and the machine alarms when the impedance reaches a certain resistance value to complete the ablation to avoid excessive ablation.
  • FIG. 1 shows a schematic structural diagram of a state of a first embodiment of a first electrode assembly of an ablation device according to an optional embodiment of the present disclosure
  • FIG. 2 shows a schematic structural diagram of another state of the first embodiment of the first electrode assembly of the ablation device according to an optional embodiment of the present disclosure
  • FIG. 3 shows a schematic diagram of the internal structure in the first electrode tip of the first electrode assembly of the ablation device in FIG. 1;
  • FIG. 4 shows a cross-sectional view of the first electrode tip of the first electrode assembly of the ablation device of FIG. 3;
  • FIG. 5 shows a schematic structural diagram of the shielding side eaves of the first electrode assembly of the ablation device in FIG. 1;
  • FIG. 6 shows a cross-sectional view of another embodiment of the first electrode tip of the first electrode assembly of the ablation device of FIG. 1;
  • FIG. 7 shows a schematic structural diagram of a first embodiment of a second electrode assembly of an optional ablation device according to the present disclosure
  • FIG. 8 shows a partial enlarged view of the second electrode assembly of the ablation device of FIG. 7;
  • FIG. 9 shows an enlarged view of part A of the second electrode assembly of the ablation device of FIG. 8;
  • FIG. 10 shows a schematic structural diagram of a radio frequency host of an optional radio frequency ablation device according to the present disclosure
  • FIG. 11 shows an assembly diagram between a radio frequency host and an ablation device of an optional radio frequency ablation device according to the present disclosure
  • FIG. 12 shows a schematic diagram of the ablation device in the present disclosure when the tissue to be ablated is ablated
  • FIG. 13 shows a diagram of the cooperation between the first electrode and the second electrode and the tissue to be ablated in an embodiment of the ablation device in the present disclosure
  • FIG. 14 shows a schematic diagram of ablation in one state of the ablation device of the present disclosure
  • FIG. 15 shows an ablation schematic diagram of another state of the ablation device of the present disclosure
  • FIG. 16 shows a schematic diagram of the wiring between the radio frequency host and the first electrode assembly and the second electrode assembly of the radio frequency ablation device of the present disclosure
  • FIG. 17 shows a schematic structural diagram of the second embodiment of the first electrode assembly of the ablation device of the present disclosure
  • FIG. 18 shows a schematic structural diagram of the second embodiment of the second electrode assembly of the ablation device of the present disclosure
  • FIG. 19 shows a diagram of the cooperation between the first electrode and the second electrode and the tissue to be ablated in another embodiment of the ablation device of the present disclosure.
  • a first electrode assembly comprising
  • a second electrode assembly 200.
  • radio frequency host 311, ablation interface; 312, electromagnetic interface; 313, display screen; 320, ablation circuit; 330, ablation range; 340, tissue to be ablated.
  • the ablation device includes a first electrode assembly 100 and a second electrode assembly 200, the first electrode assembly 100 includes a first electrode tip 110, and the first electrode tip 110 has a first electrode 111;
  • the two-electrode assembly 200 includes a second electrode tip 210, and the second electrode tip 210 has a second electrode 211; wherein the first electrode 111 and the second electrode 211 are disposed opposite to each other, so as to pass through the pair of the first electrode 111 and the second electrode 211.
  • the tissue to be ablated 340 located between the first electrode 111 and the second electrode 211 is ablated.
  • the ablation device includes a first electrode assembly 100 and a second electrode assembly 200 , the first electrode assembly 100 includes a first electrode tip 110 having a first electrode 111 , and the second electrode assembly 200 includes a first electrode tip 110 having a first electrode 111 .
  • the second electrode tip 210 of the second electrode 211, and the first electrode 111 and the second electrode 211 are disposed opposite to each other, so as to be located between the first electrode 111 and the second electrode 211 through the pair of the first electrode 111 and the second electrode 211
  • the tissue to be ablated 340 is ablated.
  • the first electrode assembly 100 and the second electrode assembly 200 are used as epicardial electrodes and endocardial electrodes, respectively, so that the first electrode assembly 100 and the second electrode assembly 200 act on the epicardium and the heart, respectively.
  • the use of the ablation device can solve the problem that the current endocardium and surgical ablation are unilateral wall-mounted work, the ablation depth is limited, and it is difficult to achieve a good ablation effect.
  • the problem of complete dehydration and transmural tissue penetration from the inside to the outside is ensured, and the problem that the ablation effect of the ablation device in the prior art is not ideal is solved.
  • the ablation device in the present disclosure can realize hybrid ablation of internal and surgical techniques. This technique has little trauma and solves the problems of large trauma and slow recovery in the prior art for surgical ablation. Simultaneous ablation adjusts the output power by testing the actual impedance between tissues, which is accurate and safe, and the machine alarms when the impedance reaches a certain resistance value to complete the ablation to avoid excessive ablation.
  • the ablation device further includes an ablation circuit 320, and the first electrode 111 and the second electrode 211 are both disposed on the ablation circuit 320, so as to adjust the first electrode 111 by testing the impedance between the first electrode 111 and the second electrode 211
  • the ablation is performed by the radio frequency energy between the second electrode 211 .
  • the machine alarms that the ablation is completed to avoid excessive ablation, so as to solve the problem that the unilateral ablation depth of the interventional ablation in the prior art is limited and it is difficult to guarantee the tissue It solves the problem of complete dehydration and degeneration from the inside to the outside, and solves the problem that the radio frequency power is not easy to control. Low power will cause incomplete ablation, and excessive power will cause excessive ablation, tissue necrosis and even burn through and leakage.
  • the impedance of the tissue to be ablated between the electrodes changes from low to high; in the first stage of ablation, the impedance of the tissue to be ablated between the electrodes gradually increases, and the RF power remains unchanged to accelerate the intracellular molecules. Vibration; in the second stage of ablation, as the impedance of the ablated tissue between the electrodes increases, the radio frequency power gradually increases, and when the impedance of the ablated tissue between the electrodes increases to its first preset value, the radio frequency power It also increases to its preset maximum value.
  • the cells are rapidly dehydrated to produce irreversible changes; in the third stage of ablation, as the impedance of the ablated tissue between the electrodes continues to increase, the RF power gradually decreases. , to ensure the completeness of ablation and prevent the phenomenon of tissue surface scab or damage to the patient caused by the high-power output of the radio frequency; until the impedance of the ablated tissue between the electrodes increases to its second preset value, the end of the ablation is prompted.
  • first electrodes 111 and multiple second electrodes 211 there are multiple first electrodes 111 and multiple second electrodes 211, and multiple first electrodes 111 and multiple second electrodes 211 are arranged in cooperation with each other; by setting multiple first electrodes 111 and multiple second electrodes 211
  • the electrodes 111 and the plurality of second electrodes 211 are used so that the plurality of first electrodes 111 and the plurality of second electrodes 211 can act on their corresponding tissues at the same time, so as to enhance the ablation effect and improve the ablation efficiency.
  • the first electrode tip 110 and the second electrode tip 210 are both strip-shaped, the plurality of first electrodes 111 are arranged at intervals along the extending direction of the first electrode tip 110 , and the plurality of second electrodes 211 are arranged along the second The extension directions of the electrode tips 210 are arranged at intervals, and each first electrode 111 and its corresponding second electrodes 211 are arranged in pairs; tissue, so as to form a complete ablation line, ensure the ablation effect and improve the ablation efficiency; and arrange the plurality of first electrodes 111 at intervals and the plurality of second electrodes 211 at intervals, which can avoid the gap between two adjacent first electrodes 111. , and the two adjacent second electrodes 211 influence each other.
  • the first electrodes 111 and the second electrodes 211 are 2 to 10 each.
  • each electrode is relatively independent, that is, the number of working electrodes can be controlled.
  • the first electrode tip 110 further includes a positioning member 117 , and the first electrode tip 110 is positioned on the epicardium through the positioning member 117 .
  • the positioning members 117 are arranged in pairs, and each pair of positioning members 117 works relatively independently during operation, that is, the number of positioning members to work can be determined according to actual needs.
  • the positioning member 117 is a suction cup structure.
  • the first electrode tip 110 further includes a first protective sheath 113 , and at least part of the first electrode 111 is disposed in the first protective sheath 113 ;
  • the extension directions are arranged in the first protective sheath 113 at intervals.
  • the first protective sheath 113 is made of a flexible material. In this way, the first protective sheath 113 can be made to swing in the X-Y-Z direction.
  • the first electrode 111 has an electrode surface 1110 disposed toward the tissue 340 to be ablated
  • the first protective sheath 113 has a protective sheath surface 1130 disposed toward the tissue 340 to be ablated; wherein, the electrode surface 1110 is located on the side of the protective sheath surface 1130 close to the tissue 340 to be ablated.
  • first electrodes 111 there are multiple first electrodes 111, and the multiple first electrodes 111 are arranged at intervals along the extending direction of the first electrode tip 110; between the electrode surfaces 1110 of the multiple first electrodes 111 and the protective sheath surface 1130
  • the minimum distances are the same.
  • the value range of the minimum distance between the electrode surface 1110 of the first electrode 111 and the protective sheath surface 1130 is 0-0.5 mm. The existence of this height difference can make the first electrode fully contact the surface to be ablated to ensure the ablation effect.
  • the height difference between the electrode surface 1110 of the first electrode 111 and the protective sheath surface 1130 is preferably 0.2 mm.
  • the electrode surface 1110 and the protective sheath surface 1130 are both flat surfaces.
  • the multiple first electrodes 111 are arranged at intervals along the extending direction of the first electrode tip 110; At least one of the first electrodes 111 in the 111 is provided with a cooling hole 114 for circulating a cooling fluid; and/or, a cooling pipe for circulating a cooling fluid is provided in the first protective sheath 113 .
  • the cooling holes 114 are provided for local cooling during the ablation process, so as to protect the ablated tissue from being excessively burned.
  • At least one of the plurality of first electrodes 111 is provided with 1 to 4 cooling holes 114 .
  • the number of cooling holes on each first electrode 111 is 0-4 to ensure temperature control during ablation.
  • the first protective sheath 113 is tubular, and the plurality of first electrodes 111 are disposed in the lumen of the first protective sheath 113 .
  • the positioning member 117 includes a suction inner wall 1171 and a suction outer wall 1172 , and a suction cavity 1173 and a suction cavity are formed between the suction inner wall 1171 and the suction outer wall 1172 .
  • the first suction port 1174 and the second suction port 1175 communicate with each other at 1173 , and the orientation of the first suction port 1174 and the second suction port 1175 is the same.
  • Both the suction inner wall 1171 and the suction inner wall 1171 are U-shaped structures, and the suction inner wall 1171 and the suction outer wall 1172 are arranged around the first protective sheath 113 .
  • the positioning member 117 further includes an air passage 1176 , and the air outlet end of the air passage 1176 is communicated with the suction cavity 1173 , so as to fill and draw air into the suction cavity 1173 through the air passage 1176 .
  • the multiple positioning members 117 are arranged along the extending direction of the first electrode tip 110 , so that the first electrode tip 110 is stably positioned on the epicardium and ensures that the first electrode tip 110 is stably positioned on the epicardium. 110 positioning effect.
  • a plurality of positioning members 117 are arranged in pairs, and the paired two positioning members 117 are respectively arranged on opposite sides of the first protective sheath 113 to ensure that the two sides of the first protective sheath 113 and the tissue to be ablated are in contact with each other.
  • Each of them has a good fit, so that the corresponding first electrode 111 can better act on the corresponding ablated tissue to ensure the ablation effect.
  • a plurality of positioning members 117 are arranged on one side of the first protective sheath 113 to ensure a good fit between one side of the first protective sheath 113 and the tissue to be ablated, so that the corresponding first protective sheath 113 has a good fit.
  • the electrode 111 can better act on the corresponding ablated tissue to ensure the ablation effect.
  • a plurality of pairs of positioning members 117 are arranged at intervals along the extending direction of the first protective sheath 113 to ensure the overall fit between the first protective sheath 113 and the tissue to be ablated, so that each first electrode 111 can better act on the Its corresponding ablated tissue, so as to ensure the ablation effect.
  • the first electrode tip 110 further includes a first magnetic member 112
  • the second electrode tip 210 includes a second magnetic member 212
  • the first magnetic member 112 and the second magnetic member 212 cooperate with each other, so that the An electrode tip 110 and a second electrode tip 210 are relatively fixed, so that the first electrode 111 of the first electrode tip 110 can be disposed opposite to the corresponding second electrode 211 of the second electrode tip 210 .
  • first magnetic members 112 and second magnetic members 212 there are multiple first magnetic members 112 and second magnetic members 212 , the multiple first magnetic members 112 are arranged at intervals along the extending direction of the first electrode tip 110 , and the multiple second magnetic members 212 are arranged along the extending direction of the first electrode tip 110 .
  • the extending directions of the electrode terminals 210 are arranged at intervals to ensure the overall fixing effect between the first electrode terminal 110 and the second electrode terminal 210 .
  • each pair of the first magnetic member 112 and the second magnetic member 212 works relatively independently, that is, the number of the magnetic members to work can be determined according to actual needs.
  • the magnetic force of the magnetic piece is controllable and adjustable, a small magnetic force is used in the initial positioning, and a large magnetic force is used in the final positioning, so that the inner and outer two electrode assemblies are flexible in the initial positioning and firm in the final positioning, so as to ensure the electrode assembly.
  • the plurality of first magnetic members 112 are all disposed in the lumen of the first protective sheath 113 .
  • the first magnetic member 112 is an electromagnet or a permanent magnet
  • the second magnetic member 212 is an electromagnet or a permanent magnet
  • the plurality of first magnetic members 112 are all disposed in the first protective sheath 113 , and the plurality of first magnetic members 112 are disposed at intervals along the extending direction of the first protective sheath 113 .
  • the plurality of first magnetic members 112 and the plurality of first electrodes 111 are alternately arranged along the extending direction of the first protective sheath 113 , so that the plurality of first electrodes 111 are arranged at intervals, that is, each first magnetic member 112 is used to separate the plurality of first electrodes 111 .
  • the corresponding two first electrodes 111 are turned on.
  • each pair of the first magnetic member and the second magnetic member works relatively independently, that is, the number of the magnetic members to work can be determined according to actual needs.
  • the magnetic force of the magnetic parts is controllable and adjustable. A small magnetic force is used in the initial positioning, and a larger magnetic force is used in the final positioning, so that the inner and outer two electrode assemblies are flexible in the initial positioning and firm in the final positioning to ensure the fit of the electrodes. , so as to ensure the ablation effect.
  • the first electrode assembly can perform linear ablation of the epicardium on the epicardium.
  • the opposite sides of the first protective sheath 113 are provided with shielding side eaves 115 to protect the plurality of first electrodes 111 and the plurality of first magnetic fields inside the first protective sheath 113 .
  • Each of the components 112 forms a shielding and protective effect, so as to prevent blood and the like from the epicardial tissue from entering the area between the first protective sheath 113 and the epicardium during the ablation process, thereby affecting the tightness between the first protective sheath 113 and the epicardium. , to avoid the measurement accuracy of the resistance value between the first electrode and the second electrode during ablation, thereby affecting the ablation effect.
  • first electrodes 111 and second electrodes 211 there are multiple first electrodes 111 and second electrodes 211 , multiple first magnetic members 112 and multiple first electrodes 111 are alternately arranged, multiple second magnetic members 212 and multiple second electrodes 111
  • the electrodes 211 are staggered and spaced apart.
  • the adjacent first electrodes 111 and the first magnetic members 112 are provided in insulation, and the adjacent second electrodes 211 and the second magnetic members 212 are provided in insulation.
  • the opposite surfaces between the adjacent first electrodes 111 and the first magnetic members 112 are sprayed with insulating paint, or an insulating spacer is provided between the adjacent first electrodes 111 and the first magnetic members 112
  • the opposite surfaces between the adjacent second electrodes 211 and the second magnetic members 212 are all sprayed with insulating paint, or an insulating separator is provided between the adjacent second electrodes 211 and the second magnetic members 212 .
  • the outer surfaces of the first magnetic member 112 and the second magnetic member 212 are both coated with an insulating layer.
  • the first electrode 111 , the first magnetic member 112 , the second electrode 211 and the second magnetic member 212 are all connected to independent energization circuits for individual control.
  • the plurality of first electrodes, second electrodes, first magnetic parts, and second magnetic parts can work independently, so that the magnetic properties can be adjusted and the number of ablation electrodes can be adjusted.
  • Two adjacent first electrodes or second electrodes may form an ablation electrode pair to achieve an ablation function.
  • first electrodes 111 there are multiple first electrodes 111, and the energization circuits of the two first electrodes 111 are independently set to form a mapping electrode pair, so as to use the energization circuits to detect the transmission of electrical signals of the tissue to be ablated 340 after ablation; And/or, there are multiple second electrodes 211, and the energization circuits of the two second electrodes 211 are independently set to form a mapping electrode pair, so as to use the energization circuits to detect the electrical signal transmission of the tissue 340 to be ablated after ablation; and/or Alternatively, the energization circuits of the first electrode 111 and the second electrode 211 are independently set to form a mapping electrode pair, so as to use the energization circuit to detect the transmission of electrical signals after the ablation of the tissue 340 to be ablated.
  • mapping the polarities of the two first electrodes 111 forming the mapping electrode pair are different, and the voltage across the voltage is set to form a current, thereby realizing mapping; the polarities of the two second electrodes 211 forming the mapping electrode pair are different, The first electrode and the second electrode of the mapping electrode pair are different in polarity, and the voltage is set to form a current, thereby realizing the mapping.
  • both the first electrode tip 110 and the second electrode tip 210 are multiple. Referring to FIGS. 12 to 15 , it can be seen that the ablation device in this embodiment ablation principle of the tissue to be ablated 340 , and can reflect the ablation range 330 of the ablation device.
  • the second electrode tip 210 includes a second protective sheath 214 , and the second electrode 211 is disposed on the second protective sheath 214 ;
  • the second electrode 211 is made of a metal material , the metal material includes at least one of the following materials: platinum, platinum-based alloy, tantalum, gold-plated beryllium bronze; and/or, the second protective sheath 214 is made of a developing material, and the component of the developing material includes barium sulfate BaSO4.
  • the developing member 213 , the second electrode 211 with a developing function, and the second protective sheath 214 with a developing function can indicate the position when the second electrode assembly 200 enters the ablation tissue.
  • the number of developing members 213 on the second electrode end 210 is 1-6, and the number of the developing members 213 may be set independently or the second electrode 211 may have a developing function.
  • the outer walls of the developing member 213 and the second protective sheath 214 are flush to prevent damage to the patient during the operation.
  • the second electrodes 211 are arranged at intervals along the extending direction of the second protective sheath 214 , sleeved on the second protective sheath 214 , and the electrode surface is higher than the surface of the second protective sheath 214 .
  • the developing member 213 may be absent, or there may be a plurality of developing members 213, and the plurality of developing members 213 are arranged at intervals along the extending direction of the second protective sheath 214;
  • the corresponding part forms a first surface part and a second surface part connected to the first surface part, the first surface part is a concave structure, the developing part 213 is sleeved on the first surface part, and the outer surface of the developing part 213 is connected to the second surface part.
  • the surface portion is flush with or lower than the second surface portion.
  • the first electrode assembly 100 is first fixed on the epicardium through the positioning member, then the second electrode assembly 200 enters the heart, and the second electrode assembly 200 is placed in the endocardium through the indication of the developing member 213.
  • the tissue corresponding to the electrode assembly 100 and then turn on the first pair of magnetic elements, the second pair of magnetic elements and the third pair of magnetic elements located at the first electrode end 110 and the second electrode end 210 synchronously and sequentially.
  • two sets of electrodes Complete initial positioning. After completing the initial positioning, the two electrode assemblies then turn on the remaining magnetic parts in pairs to complete the final positioning.
  • the shielding side eave 115 is strip-shaped, and the shielding side eave 115 extends along the extending direction of the first protective sheath 113 .
  • the shielding side eave 115 By setting the shielding side eave 115, the tissue fluid outside the ablation line and liquids such as normal saline can be shielded from entering the ablation tissue, avoiding the measurement accuracy of the resistance value between the first electrode and the second electrode during ablation, thereby affecting the ablation effect.
  • the first electrode 111 and/or the first magnetic member 112 are provided with wire laying grooves 120 for accommodating wires, and the wires are used to connect with the first electrode 111; or, the wire laying grooves 120 for laying wires It is arranged on the inner wall of the first protective sheath 113 .
  • the second electrode tip 210 further includes a second protective sheath, and the plurality of second magnetic members 212 and the plurality of second electrodes 211 are sleeved on the second protective sheath;
  • the plurality of second electrodes 212 and the plurality of second electrodes 211 are alternately arranged along the extending direction of the second protective sheath, so that the plurality of second electrodes 211 are arranged at intervals, that is, each second magnetic member 212 is used to separate the corresponding two second electrodes 211 .
  • the plurality of second magnetic members 212 and the plurality of second electrodes 211 are all annular structures, or have cross-sectional structures such as polygonal, V-shaped, D-shaped, and arched.
  • the cross section of the second electrode 211 is a polygon, for example, a square.
  • the present disclosure also provides a radio frequency ablation device.
  • the radio frequency ablation device includes a radio frequency host 310 and the above-mentioned ablation device, and the ablation device is connected to the radio frequency host 310 .
  • the radio frequency host 310 is provided with a display screen 313 , and the display screen 313 is used to display the measured values of the tissue to be ablated between the two corresponding first electrodes 111 and the second electrodes 211 . Impedance and/or RF power.
  • the radio frequency host 310 is further provided with an ablation interface 311, the first electrode assembly 100 and the second electrode assembly 200 each include a plurality of lead assemblies, and each lead assembly includes a lead connector and a plurality of parallel connection connected to the lead connector. Lead wires, each lead wire is used to connect with the corresponding electrode; the ablation interface 311 has a first ablation interface part and a second ablation interface part, and the first ablation interface part has a plurality of lead wires for inserting the plurality of lead wires of the first electrode assembly 100.
  • the second ablation interface part has a plurality of second ablation interfaces for inserting a plurality of lead wires of the second electrode assembly 200, so as to communicate with the corresponding The first electrode 111 and the corresponding second electrode 211 provide suitable radio frequency power.
  • each electromagnet assembly includes an electromagnetic joint and a plurality of electromagnetic wires connected in parallel with the electromagnetic joint, and each electromagnetic wire is used to connect with the corresponding electromagnet;
  • the electromagnetic interface 312 has a first electromagnetic interface part and a second electromagnetic interface part , the first electromagnetic interface part has a plurality of first magnetic interfaces for inserting a plurality of electromagnetic joints of the first electrode assembly 100 , and the second electromagnetic interface part has a plurality of electromagnetic joints for inserting a plurality of electromagnetic joints of the second electrode assembly 200 a plurality of second magnetic interfaces, so as to supply power to the corresponding first magnetic member 112 and the corresponding second magnetic member 212 through each of the first magnetic An attraction force is generated between the second magnetic members 212 .
  • the ablation device includes a first electrode assembly 100 and a second electrode assembly 200 , the first electrode assembly 100 includes a first electrode tip 110 having a first electrode 111 , and the second electrode assembly 200 includes a first electrode tip 110 having a first electrode 111 .
  • the second electrode tip 210 of the second electrode 211, and the first electrode 111 and the second electrode 211 are disposed opposite to each other, so as to be located between the first electrode 111 and the second electrode 211 through the pair of the first electrode 111 and the second electrode 211
  • the tissue to be ablated 340 is ablated.
  • the first electrode assembly 100 and the second electrode assembly 200 are used as epicardial electrodes and endocardial electrodes, respectively, so that the first electrode assembly 100 and the second electrode assembly 200 act on the epicardium and the heart, respectively
  • the film can be used to simultaneously ablate the epicardium and the endocardium, thereby achieving a good ablation effect; it can be seen that the use of the ablation device can solve the problem of unsatisfactory ablation effect of the ablation device in the prior art.
  • the ablation device in the present disclosure can realize hybrid ablation of internal and surgical techniques. This technique has little trauma, which solves the problems of large trauma and slow recovery in the prior art for surgical ablation. Simultaneous ablation adjusts the output power by testing the actual impedance between tissues, which is accurate and safe, and the machine alarms when the impedance reaches a certain resistance value to complete the ablation to avoid excessive ablation.
  • first electrode assembly can be used independently to act on the epicardium to achieve the ablation effect
  • second electrode assembly can be used independently to act on the endocardium to achieve the ablation effect
  • a single electrode assembly or a working electrode assembly can perform timely mapping to monitor the ablation effect. And it is the problem of point-like mapping, which improves the effect of surgical ablation.
  • the radio frequency ablation device of the embodiment of the present disclosure includes the above-mentioned ablation device, so the radio frequency ablation device has at least the same technical effect as the ablation device.
  • the radio frequency ablation device includes a first electrode assembly 100 and a second electrode assembly 200 , the first electrode assembly 100 includes a first electrode tip 110 , and the first electrode tip 110 has a first electrode 111 ;
  • the second electrode assembly 200 includes a second electrode tip 210, and the second electrode tip 210 has a second electrode 211; wherein the first electrode tip 110 includes a first magnetic member 112, and the second electrode tip 210 includes a second magnetic member
  • the first magnetic member 112 and the second magnetic member 212 are attracted to each other, so that the first electrode end 110 and the second electrode end 210 are relatively fixed, so that the first electrode 111 and the second electrode 211 are positioned in the second
  • the tissue 340 to be ablated between the first electrode 111 and the second electrode 211 is ablated.
  • the radio frequency ablation device includes a first electrode assembly 100 and a second electrode assembly 200 , the first electrode assembly 100 includes a first electrode tip 110 having a first electrode 111 , and the second electrode assembly 200 comprising a second electrode tip 210 having a second electrode 211, the first electrode tip 110 comprising a first magnetic member 112, the second electrode tip 210 comprising a second magnetic member 212, the first magnetic member 112 and the second magnetic member 212 are attracted to each other, so that the first electrode tip 110 and the second electrode tip 210 are relatively fixed, so that the first electrode 111 and the second electrode 211 can be used for ablation between the first electrode 111 and the second electrode 211.
  • Tissue 340 is ablated.
  • the first electrode assembly 100 and the second electrode assembly 200 are used as epicardial electrodes and endocardial electrodes, respectively, so that the first electrode assembly 100 and the second electrode assembly 200 act on the epicardium and the heart, respectively It can be seen that the use of this radiofrequency ablation device can solve the problem that the current endocardium and surgical ablation are unilateral adherent work, and the ablation depth is limited, which is very difficult to achieve. It is difficult to ensure that the tissue is completely dehydrated and transmural from the inside to the outside, and solves the problem that the ablation effect of the radiofrequency ablation device in the prior art is not ideal.
  • the output power cannot be adjusted according to the ablation effect in a timely manner, resulting in the problem of overburning or impermeability.
  • Cardiac surgery is dynamic ablation, which measures impedance and signals in a timely manner. According to the different impedance, the power is adjusted accordingly.
  • surgical ablation is more traumatic and the postoperative recovery is slow.
  • the radio frequency ablation device in the present disclosure is used in combination with the endocardium and the epicardium, and the power changes dynamically in real time, so as to solve the problem of overburning or impermeability, as well as tissue necrosis and even burning through.
  • the radio frequency ablation device in the present disclosure can realize hybrid ablation of internal and surgical techniques. This technique has little trauma and solves the problems of large trauma and slow recovery in the prior art. Combined with synchronous ablation, the output power is adjusted by testing the actual impedance between tissues, which is accurate and safe, and when the impedance reaches a certain resistance value, the machine alarms that the ablation is completed to avoid excessive ablation.
  • the radio frequency ablation device further includes an ablation circuit 320, and both the first electrode 111 and the second electrode 211 are disposed on the ablation circuit 320, so as to adjust the first electrode by testing the impedance between the first electrode 111 and the second electrode 211 The radio frequency energy between 111 and the second electrode 211 performs the ablation.
  • the machine By testing the impedance between the first electrode 111 and the second electrode 211 in real time, and adjusting the radio frequency between the first electrode 111 and the second electrode 211 according to the impedance between the first electrode 111 and the second electrode 211 detected in real time After the power and the impedance reaches a certain resistance value, the machine alarms that the ablation is completed to avoid excessive ablation, so as to solve the problem that the unilateral ablation depth of the interventional ablation in the prior art is limited, and it is difficult to ensure complete dehydration and degeneration of the tissue from the inside to the outside.
  • the problem of radio frequency power is not easy to control. Low power will cause incomplete ablation, and excessive power will cause excessive ablation, tissue necrosis, or even burn through and leakage.
  • the impedance of the tissue to be ablated between the electrodes changes from low to high; in the first stage of ablation, the impedance of the tissue to be ablated between the electrodes gradually increases, and the RF power remains unchanged to accelerate the intracellular molecules. Vibration; in the second stage of ablation, as the impedance of the ablated tissue between the electrodes increases, the radio frequency power gradually increases, and when the impedance of the ablated tissue between the electrodes increases to its first preset value, the radio frequency power It also increases to its preset maximum value.
  • the cells are rapidly dehydrated to produce irreversible changes; in the third stage of ablation, as the impedance of the ablated tissue between the electrodes continues to increase, the RF power gradually decreases. , to ensure the completeness of ablation and prevent the phenomenon of tissue surface scab or damage to the patient caused by the high-power output of the radio frequency; until the impedance of the ablated tissue between the electrodes increases to its second preset value, the end of the ablation is prompted.
  • first electrodes 111 and multiple second electrodes 211 there are multiple first electrodes 111 and multiple second electrodes 211, and multiple first electrodes 111 and multiple second electrodes 211 are arranged in cooperation with each other; by setting multiple first electrodes 111 and multiple second electrodes 211
  • the electrodes 111 and the plurality of second electrodes 211 are used so that the plurality of first electrodes 111 and the plurality of second electrodes 211 can act on their corresponding tissues at the same time, so as to enhance the ablation effect and improve the ablation efficiency.
  • the first electrode tip 110 and the second electrode tip 210 are both strip-shaped, the plurality of first electrodes 111 are arranged at intervals along the extending direction of the first electrode tip 110 , and the plurality of second electrodes 211 are arranged along the second
  • the extension directions of the electrode tips 210 are arranged at intervals, and each first electrode 111 and its corresponding second electrodes 211 are arranged in pairs; tissue, so as to form a complete ablation line, ensure the ablation effect and improve the ablation efficiency; and arrange the plurality of first electrodes 111 at intervals and the plurality of second electrodes 211 at intervals, which can avoid the gap between two adjacent first electrodes 111. , and the two adjacent second electrodes 211 influence each other.
  • the first electrodes 111 and the second electrodes 211 are 2 to 10 each.
  • each electrode is relatively independent, that is, the number of working electrodes can be controlled.
  • the first electrode tip 110 further includes a positioning member 117 , and the first electrode tip 110 is positioned on the epicardium through the positioning member 117 .
  • the positioning members 117 are arranged in pairs, and each pair of positioning members 117 works relatively independently during operation, that is, the number of positioning members to work can be determined according to actual needs.
  • the positioning member 117 is a suction cup structure.
  • the first electrode tip 110 further includes a first protective sheath 113 , and at least part of the first electrode 111 is disposed in the first protective sheath 113 ;
  • the extension directions are arranged in the first protective sheath 113 at intervals.
  • the first protective sheath 113 is made of a flexible material. In this way, the first protective sheath 113 can be made to swing in the X-Y-Z direction.
  • the first electrode 111 has an electrode surface 1110 disposed toward the tissue 340 to be ablated
  • the first protective sheath 113 has a protective sheath surface 1130 disposed toward the tissue 340 to be ablated; wherein, the electrode surface 1110 is located on the side of the protective sheath surface 1130 close to the tissue 340 to be ablated.
  • first electrodes 111 there are multiple first electrodes 111, and the multiple first electrodes 111 are arranged at intervals along the extending direction of the first electrode tip 110; between the electrode surfaces 1110 of the multiple first electrodes 111 and the protective sheath surface 1130
  • the minimum distances are the same.
  • the value range of the minimum distance between the electrode surface 1110 of the first electrode 111 and the protective sheath surface 1130 is 0-0.5 mm. The existence of this height difference can make the first electrode fully contact the surface to be ablated to ensure the ablation effect.
  • the height difference between the electrode surface 1110 of the first electrode 111 and the protective sheath surface 1130 is preferably 0.2 mm.
  • the electrode surface 1110 and the protective sheath surface 1130 are both flat surfaces.
  • the multiple first electrodes 111 are arranged at intervals along the extending direction of the first electrode tip 110; At least one of the first electrodes 111 in the 111 is provided with a cooling hole 114 for circulating a cooling fluid; and/or, a cooling pipe for circulating a cooling fluid is provided in the first protective sheath 113 .
  • the cooling holes 114 are provided for local cooling during the ablation process, so as to protect the ablated tissue from being excessively burned.
  • At least one of the plurality of first electrodes 111 is provided with 1 to 4 cooling holes 114 .
  • the number of cooling holes on each first electrode 111 is 0-4 to ensure temperature control during ablation.
  • the first protective sheath 113 is made of a flexible material, so that the first protective sheath 113 can be provided in a bendable manner.
  • the first protective sheath 113 is tubular, and the plurality of first electrodes 111 are disposed in the lumen of the first protective sheath 113 .
  • the positioning member 117 includes a suction inner wall 1171 and a suction outer wall 1172 , and a suction cavity 1173 and a suction cavity are formed between the suction inner wall 1171 and the suction outer wall 1172 .
  • the first suction port 1174 and the second suction port 1175 communicate with each other at 1173 , and the orientation of the first suction port 1174 and the second suction port 1175 is the same.
  • Both the suction inner wall 1171 and the suction inner wall 1171 are U-shaped structures, and the suction inner wall 1171 and the suction outer wall 1172 are arranged around the first protective sheath 113 .
  • the positioning member 117 further includes an air passage 1176 , and the air outlet end of the air passage 1176 is communicated with the suction cavity 1173 , so as to fill and draw air into the suction cavity 1173 through the air passage 1176 .
  • the multiple positioning members 117 are arranged along the extending direction of the first electrode tip 110 , so that the first electrode tip 110 is stably positioned on the epicardium and ensures that the first electrode tip 110 is stably positioned on the epicardium. 110 positioning effect.
  • a plurality of positioning members 117 are arranged in pairs, and the paired two positioning members 117 are respectively arranged on opposite sides of the first protective sheath 113 to ensure that the two sides of the first protective sheath 113 and the tissue to be ablated are in contact with each other.
  • Each of them has a good fit, so that the corresponding first electrode 111 can better act on the corresponding ablated tissue to ensure the ablation effect.
  • a plurality of positioning members 117 are arranged on one side of the first protective sheath 113 to ensure a good fit between one side of the first protective sheath 113 and the tissue to be ablated, so that the corresponding first protective sheath 113 has a good fit.
  • the electrode 111 can better act on the corresponding ablated tissue to ensure the ablation effect.
  • a plurality of pairs of positioning members 117 are arranged at intervals along the extending direction of the first protective sheath 113 to ensure the overall fit between the first protective sheath 113 and the tissue to be ablated, so that each first electrode 111 can better act on the tissue to be ablated. Its corresponding ablated tissue, so as to ensure the ablation effect.
  • first magnetic members 112 and second magnetic members 212 there are multiple first magnetic members 112 and second magnetic members 212 , the multiple first magnetic members 112 are arranged at intervals along the extending direction of the first electrode tip 110 , and the multiple second magnetic members 212 are arranged along the extending direction of the first electrode tip 110 .
  • the extending directions of the electrode terminals 210 are arranged at intervals to ensure the overall fixing effect between the first electrode terminal 110 and the second electrode terminal 210 .
  • each pair of the first magnetic member 112 and the second magnetic member 212 works relatively independently, that is, the number of the magnetic members to work can be determined according to actual needs.
  • the magnetic force of the magnetic piece is controllable and adjustable, a small magnetic force is used in the initial positioning, and a large magnetic force is used in the final positioning, so that the inner and outer two electrode assemblies are flexible in the initial positioning and firm in the final positioning, so as to ensure the electrode assembly.
  • the plurality of first magnetic members 112 are all disposed in the lumen of the first protective sheath 113 .
  • the first magnetic member 112 is an electromagnet or a permanent magnet
  • the second magnetic member 212 is an electromagnet or a permanent magnet
  • the plurality of first magnetic members 112 are all disposed in the first protective sheath 113 , and the plurality of first magnetic members 112 are disposed at intervals along the extending direction of the first protective sheath 113 .
  • the plurality of first magnetic members 112 and the plurality of first electrodes 111 are alternately arranged along the extending direction of the first protective sheath 113 , so that the plurality of first electrodes 111 are arranged at intervals, that is, each first magnetic member 112 is used to separate the plurality of first electrodes 111 .
  • the corresponding two first electrodes 111 are turned on.
  • each pair of the first magnetic member and the second magnetic member works relatively independently, that is, the working quantity of the magnetic members can be determined according to actual needs.
  • the magnetic force of the magnetic parts is controllable and adjustable. A small magnetic force is used in the initial positioning, and a larger magnetic force is used in the final positioning, so that the inner and outer two electrode assemblies are flexible at the initial positioning and firm after the final positioning, so as to ensure the fit of the electrodes. , thereby ensuring the ablation effect.
  • the first electrode assembly can perform linear ablation of the epicardium on the epicardium.
  • the opposite sides of the first protective sheath 113 are provided with shielding side eaves 115 to protect the plurality of first electrodes 111 and the plurality of first magnetic fields inside the first protective sheath 113 .
  • Each of the components 112 forms a shielding and protective effect, so as to prevent blood and the like from the epicardial tissue from entering the area between the first protective sheath 113 and the epicardium during the ablation process, thereby affecting the tightness between the first protective sheath 113 and the epicardium. , to avoid the measurement accuracy of the resistance value between the first electrode and the second electrode during ablation, thereby affecting the ablation effect.
  • first electrodes 111 and second electrodes 211 there are multiple first electrodes 111 and second electrodes 211 , multiple first magnetic members 112 and multiple first electrodes 111 are alternately arranged, multiple second magnetic members 212 and multiple second electrodes 111
  • the electrodes 211 are staggered and spaced apart.
  • the adjacent first electrodes 111 and the first magnetic members 112 are provided in insulation, and the adjacent second electrodes 211 and the second magnetic members 212 are provided in insulation.
  • the opposite surfaces between the adjacent first electrodes 111 and the first magnetic members 112 are sprayed with insulating paint, or an insulating spacer is provided between the adjacent first electrodes 111 and the first magnetic members 112
  • the opposite surfaces between the adjacent second electrodes 211 and the second magnetic members 212 are all sprayed with insulating paint, or an insulating separator is provided between the adjacent second electrodes 211 and the second magnetic members 212 .
  • the outer surfaces of the first magnetic member 112 and the second magnetic member 212 are both coated with an insulating layer.
  • the first electrode 111 , the first magnetic member 112 , the second electrode 211 and the second magnetic member 212 are all connected to independent energization circuits for individual control.
  • first electrodes 111 there are multiple first electrodes 111, and the energization circuits of the two first electrodes 111 are independently set to form a mapping electrode pair, so as to use the energization circuits to detect the transmission of electrical signals of the tissue to be ablated 340 after ablation; And/or, there are multiple second electrodes 211, and the energization circuits of the two second electrodes 211 are independently set to form a mapping electrode pair, so as to use the energization circuits to detect the electrical signal transmission of the tissue 340 to be ablated after ablation; and/or Alternatively, the energization circuits of the first electrode 111 and the second electrode 211 are independently set to form a mapping electrode pair, so as to use the energization circuit to detect the transmission of electrical signals after the ablation of the tissue 340 to be ablated.
  • both the first electrode tip 110 and the second electrode tip 210 are multiple.
  • the ablation device in this embodiment ablation principle of the tissue to be ablated 340 , and can reflect the ablation range 330 of the ablation device.
  • the second electrode tip 210 includes a second protective sheath 214 , and the second electrode 211 is disposed on the second protective sheath 214 ; wherein the second electrode tip 210 includes a second protective sheath 214 .
  • the developing member 213, the developing member 213 is disposed on the second protective sheath 214, so as to mark the position of the second electrode end 210 by the developing member 213; and/or, the second electrode 211 is made of a metal developing material, and the metal developing material includes At least one of the following materials: platinum, platinum-based alloy, tantalum, gold-plated beryllium bronze; and/or, the second protective sheath 214 is made of a developing material, and the developing material is made of barium sulfate (BaSO4).
  • the developing member 213 , the second electrode 211 with a developing function, and the second protective sheath 214 with a developing function can indicate the position when the second electrode assembly 200 enters the ablation tissue.
  • the number of developing members 213 on the second electrode end 210 is 1-6, and the number of the developing members 213 may be set independently or the second electrode 211 may have a developing function.
  • the outer walls of the developing member 213 and the second protective sheath 214 are flush to prevent damage to the patient during the operation.
  • the second electrodes 211 are arranged at intervals along the extending direction of the second protective sheath 214 , are sleeved on the second protective sheath 214 , and make the electrode surface higher than the surface of the second protective sheath 214 .
  • the first surface part and the second surface part connected to the first surface part form the first surface part, the first surface part is a concave structure, the developing part 213 is sleeved on the first surface part, and the outer surface of the developing part 213 is connected to the second surface part.
  • the portion is flush with or lower than the second surface portion.
  • the first electrode assembly 100 is first fixed on the epicardium through the positioning member, then the second electrode assembly 200 enters the heart, and the second electrode assembly 200 is placed in the endocardium through the indication of the developing member 213.
  • the first pair of magnetic parts, the second pair of magnetic parts and the third pair of magnetic parts located at the first electrode end 110 and the second electrode end 210 are turned on synchronously and sequentially.
  • two sets of electrodes Complete initial positioning. After completing the initial positioning, the two electrode assemblies then turn on the remaining magnetic parts in pairs to complete the final positioning.
  • the shielding side eave 115 is strip-shaped, and the shielding side eave 115 extends along the extending direction of the first protective sheath 113 .
  • the shielding side eave 115 By setting the shielding side eave 115, the tissue fluid outside the ablation line and liquids such as normal saline can be shielded from entering the ablation site, avoiding the measurement accuracy of the resistance value between the first electrode and the second electrode during ablation, thereby affecting the ablation effect.
  • the first electrode 111 and/or the first magnetic member 112 are provided with wire laying grooves 120 for accommodating wires, and the wires are used to connect with the first electrode 111; or, the wire laying grooves 120 for laying wires It is arranged on the inner wall of the first protective sheath 113 .
  • the second electrode tip 210 further includes a second protective sheath, and the plurality of second magnetic members 212 and the plurality of second electrodes 211 are sleeved on the second protective sheath;
  • the plurality of second electrodes 212 and the plurality of second electrodes 211 are alternately arranged along the extending direction of the second protective sheath, so that the plurality of second electrodes 211 are arranged at intervals, that is, each second magnetic member 212 is used to separate the corresponding two second electrodes 211 .
  • the plurality of second magnetic members 212 and the plurality of second electrodes 211 are annular structures, or have cross-sectional structures such as square, V-shape, D-shape, and arch.
  • the cross section of the second electrode 211 is a polygon, for example, a square.
  • the radio frequency ablation device of the present disclosure further includes a radio frequency host 310. As shown in FIG. 9, the radio frequency host 310 is connected to both the first electrode 111 and the second electrode 211 to detect the impedance between the first electrode 111 and the second electrode 211, And the radio frequency power between the first electrode 111 and the second electrode 211 is adjusted according to the detected impedance information.
  • the plurality of first electrodes 111 and the plurality of second electrodes 211 are connected to the radio frequency host 310 to detect the impedance of the tissue to be ablated between the corresponding first electrodes 111 and the corresponding second electrodes 211, and determine the impedance of the tissue to be ablated between the corresponding first electrodes 111 and corresponding second electrodes 211.
  • the detected corresponding impedance information adjusts the radio frequency power between the corresponding first electrode 111 and the corresponding second electrode 211 .
  • the radio frequency host 310 is provided with a display screen 313, and the display screen 313 is used to display the measured impedance and/or between the two corresponding first electrodes 111 and the second electrodes 211. or RF power.
  • the radio frequency host 310 is further provided with an ablation interface 311, the first electrode assembly 100 and the second electrode assembly 200 each include a plurality of lead assemblies, and each lead assembly includes a lead connector and a plurality of parallel connection connected to the lead connector. Lead wires, each lead wire is used to connect with the corresponding electrode; the ablation interface 311 has a first ablation interface part and a second ablation interface part, and the first ablation interface part has a plurality of lead wires for inserting the plurality of lead wires of the first electrode assembly 100.
  • the second ablation interface part has a plurality of second ablation interfaces for inserting a plurality of lead wires of the second electrode assembly 200, so as to communicate with the corresponding The first electrode 111 and the corresponding second electrode 211 provide suitable radio frequency power.
  • each electromagnet assembly includes an electromagnetic joint and a plurality of electromagnetic wires connected in parallel with the electromagnetic joint, and each electromagnetic wire is used to connect with the corresponding electromagnet;
  • the electromagnetic interface 312 has a first electromagnetic interface part and a second electromagnetic interface part , the first electromagnetic interface part has a plurality of first magnetic interfaces for inserting a plurality of electromagnetic joints of the first electrode assembly 100 , and the second electromagnetic interface part has a plurality of electromagnetic joints for inserting a plurality of electromagnetic joints of the second electrode assembly 200 a plurality of second magnetic interfaces, so as to supply power to the corresponding first magnetic member 112 and the corresponding second magnetic member 212 through each of the first magnetic An attraction force is generated between the second magnetic members 212 .
  • the radio frequency ablation device includes a first electrode assembly 100 and a second electrode assembly 200, the first electrode assembly 100 includes a first electrode tip 110 having a first electrode 111, and the second electrode
  • the assembly 200 includes a second electrode tip 210 having a second electrode 211, the first electrode tip 110 includes a first magnetic member 112, the second electrode tip 210 includes a second magnetic member 212, the first magnetic member 112 and the second magnetic member 112.
  • the magnetic members 212 are attracted to each other, so that the first electrode end 110 and the second electrode end 210 are relatively fixed, so that the The tissue to be ablated 340 is ablated.
  • the first electrode assembly 100 and the second electrode assembly 200 are used as epicardial electrodes and endocardial electrodes, respectively, so that the first electrode assembly 100 and the second electrode assembly 200 act on the epicardium and the heart, respectively Therefore, the radiofrequency ablation device can solve the problem of unsatisfactory ablation effect of the radiofrequency ablation device in the prior art.
  • the radio frequency ablation device in the embodiment of the present disclosure can realize hybrid ablation of internal and surgical techniques. This technique has little trauma, which solves the problems of large trauma and slow recovery in the prior art for surgical ablation. Combined with synchronous ablation of the endometrium, the output power is adjusted by testing the actual impedance between tissues, which is accurate and safe, and when the impedance reaches a certain resistance value, the machine alarms that the ablation is completed to avoid excessive ablation.
  • the first electrode assembly can be used independently to act on the epicardium to achieve the ablation effect
  • the second electrode assembly can be used independently to act on the endocardium to achieve the ablation effect.
  • a single electrode assembly or a working electrode assembly can perform timely mapping to monitor the ablation effect. And it is the problem of point-like mapping, which improves the effect of surgical ablation.
  • spatially relative terms such as “on”, “over”, “on the surface”, “above”, etc., may be used herein to describe what is shown in the figures.
  • spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “above” or “over” other devices or features would then be oriented “below” or “over” the other devices or features under other devices or constructions”.
  • the exemplary term “above” can encompass both an orientation of "above” and “below.”
  • the device may also be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptions used herein interpreted accordingly.

Abstract

一种消融装置和射频消融设备,该消融装置包括第一电极组件(100)和第二电极组件(200),第一电极组件(100)包括第一电极端头(110),第一电极端头(110)具有第一电极(111);第二电极组件(200)包括第二电极端头(210),第二电极端头(210)具有第二电极(211);其中,第一电极(111)和第二电极(211)相互配合,以通过第一电极(111)和第二电极(211)对位于第一电极(111)和第二电极(211)之间的待消融组织(340)进行消融。使用本消融装置能够解决现有技术中的消融装置的消融效果不理想的问题。

Description

消融装置和射频消融设备
相关申请的交叉引用
本公开是以申请号为202110026546.4,申请日为2021年1月8日,公开名称为“消融装置和射频消融设备”的中国专利申请和申请号为202120055067.0,申请日为2021年1月8日,公开名称为“射频消融设备”的中国专利申请为基础,并主张其优先权,该中国专利申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及医疗器械领域,具体而言,涉及一种消融装置和射频消融设备。
背景技术
消融是治疗房颤的常见措施,其原理是在心脏组织创建一条或多条消融线,引起组织坏死,切断不正常的电信号传导,用于房颤的治疗。
当前的消融治疗分为外科消融和内科介入消融,外科消融的特点是疗效优,术后复发率低,但是其显而易见的缺点是创伤较大,术后恢复慢。内科的介入式消融因为创伤小、恢复快受到越来越多患者的青睐,但是内科消融是点状消融,其最大的弊端便是很难形成一条完整的消融线;且消融时是单侧贴壁式工作,消融深度有限,很难保证组织由内至外完全脱水、变性,手术中消融功率小时消融不彻底,而功率大了又不易掌控,有消融过度组织坏死甚至烧穿、烧漏现象,故内科介入式消融的成功率较外科低好多。
发明内容
本公开的主要目的在于提供一种消融装置和射频消融设备,以解决当前外科消融创伤较大,术后恢复慢,且使用时角度受限,操作不方便的问题;解决当前内科介入消融能量恒定,无法适时根据消融效果调整输出功率,导致过烧或不透壁问题;解决当前内外科消融设备消融后另需器械进行标测,操作繁琐的问题。
为了实现上述目的,本公开第一方面提供一种消融装置,包括:第一电极组件,所述第一电极组件包括第一电极端头,所述第一电极端头具有第一电极;和第二电极组件,所述第二电极组件包括第二电极端头,所述第二电极端头具有第二电极;其中, 所述第一电极和所述第二电极相互配合,以通过所述第一电极和所述第二电极对位于所述第一电极和所述第二电极之间的待消融组织进行消融。
在一些实施例的消融装置中,消融装置还包括:消融电路,所述第一电极和所述第二电极均设置在所述消融电路上,以通过测试所述第一电极和所述第二电极之间的阻抗调整所述第一电极和所述第二电极之间的射频能量来进行消融。
在一些实施例的消融装置中,所述第一电极和所述第二电极均为多个,多个所述第一电极和多个所述第二电极相互配合设置。
在一些实施例的消融装置中,所述第一电极端头和所述第二电极端头均为条形,多个所述第一电极沿所述第一电极端头的延伸方向间隔布置,多个第二电极沿所述第二电极端头的延伸方向间隔布置。
在一些实施例的消融装置中,所述第一电极和所述第二电极均为2至10个。
在一些实施例的消融装置中,所述第一电极端头包括定位件,所述第一电极端头通过所述定位件定位在心外膜上。
在一些实施例的消融装置中,所述第一电极端头为条形,所述定位件为多个,多个所述定位件沿所述第一电极端头的延伸方向布置。
在一些实施例的消融装置中,所述第一电极端头包括第一保护鞘,所述第一电极的至少部分设置在所述第一保护鞘内;所述定位件为多个,多个所述定位件成对设置,成对的两个所述定位件设置在所述第一保护鞘的相对两侧;和/或,多个所述定位件设置在所述第一保护鞘的一侧。
在一些实施例的消融装置中,所述第一保护鞘由柔性材料制成。
在一些实施例的消融装置中,所述第一电极具有朝向所述待消融组织设置的电极面,所述第一保护鞘具有朝向所述待消融组织设置的保护鞘面;其中,所述电极面位于保护鞘面靠近所述待消融组织的一侧。
在一些实施例的消融装置中,所述第一电极为多个,多个所述第一电极沿所述第一电极端头的延伸方向间隔布置;多个所述第一电极的电极面与所述保护鞘面之间的最小距离均相同。
在一些实施例的消融装置中,所述电极面和所述保护鞘面均为平面。
在一些实施例的消融装置中,所述定位件为吸盘结构。
在一些实施例的消融装置中,所述第一电极端头包括第一保护鞘,所述第一电极的至少部分设置在所述第一保护鞘内;所述第一电极为多个,多个所述第一电极沿所 述第一电极端头的延伸方向间隔布置;多个所述第一电极中的至少一个所述第一电极上设置有用于供冷却流体流通的冷却孔;和/或所述第一保护鞘内设置有供冷却流体流通的冷却管道。
在一些实施例的消融装置中,多个所述第一电极中的至少一个所述第一电极上设置有1至4个所述冷却孔。
在一些实施例的消融装置中,所述第一电极端头包括第一磁性件,所述第二电极端头包括第二磁性件,所述第一磁性件和所述第二磁性件相配合,以使所述第一电极端头和所述第二电极端头相对固定。
在一些实施例的消融装置中,所述第一磁性件和所述第二磁性件相互吸合。
在一些实施例的消融装置中,所述第一磁性件和所述第二磁性件均为多个,所述第一电极端头和所述第二电极端头均为条形,多个所述第一磁性件沿所述第一电极端头的延伸方向间隔布置,多个所述第二磁性件沿所述第二电极端头的延伸方向间隔布置。
在一些实施例的消融装置中,所述第一电极和所述第二电极均为多个,多个所述第一磁性件与多个所述第一电极交错间隔设置,多个所述第二磁性件与多个所述第二电极交错间隔设置。
在一些实施例的消融装置中,相邻的所述第一电极与所述第一磁性件之间绝缘设置,相邻的所述第二电极与所述第二磁性件之间绝缘设置。
在一些实施例的消融装置中,相邻的所述第一电极与所述第一磁性件之间的相对表面均喷涂有绝缘漆,或者相邻的所述第一电极与所述第一磁性件之间设置有绝缘隔板;相邻的所述第二电极与所述第二磁性件之间的相对表面均喷涂有绝缘漆,或者,相邻的所述第二电极与所述第二磁性件之间设置有绝缘隔板。
在一些实施例的消融装置中,所述第一磁性件与所述第二磁性件的外表面均包覆有绝缘层。
在一些实施例的消融装置中,所述第一电极、所述第一磁性件、所述第二电极以及所述第二磁性件均与独立的通电电路连接,以进行单独控制。
在一些实施例的消融装置中,所述第一电极为多个,两个所述第一电极的通电电路独立设置以形成标测电极对,以利用所述通电电路检测消融后的待消融组织的电信号传递情况;和/或,所述第二电极为多个,两个所述第二电极的通电电路独立设置以形成标测电极对,以利用所述通电电路检测消融后的待消融组织的电信号传递情况; 和/或,所述第一电极和所述第二电极的通电电路独立设置以形成标测电极对,以利用所述通电电路检测待消融组织消融后的电信号传递情况。
在一些实施例的消融装置中,所述第一电极端头和所述第二电极端头均为多个。
在一些实施例的消融装置中,所述第二电极端头包括第二保护鞘,所述第二电极设置在所述第二保护鞘上;所述第二电极由金属材料制成,所述金属材料包括以下材料中的至少一种:铂金、铂依合金、钽、镀金铍青铜;和/或,所述第二保护鞘由显影材料制成,所述显影材料的成分包括硫酸钡。
在一些实施例的消融装置中,所述第二电极沿所述第二保护鞘的延伸方向间隔设置,套设在第二保护鞘上,并且使电极表面高于第二保护鞘的表面。
在一些实施例的消融装置中,所述第一电极端头包括第一保护鞘,所述第一保护鞘的相对两侧均设置有遮挡侧檐。
本公开第二方面提供一种射频消融设备,包括射频主机和与所述射频主机连接的消融装置,其中,所述消融装置为本公开第一方面所述的消融装置。
在一些实施例的射频消融设备中,所述射频主机与所述第一电极和所述第二电极均连接,以检测所述第一电极和所述第二电极之间的阻抗,并根据所检测的阻抗信息调整所述第一电极和所述第二电极之间的射频功率。
应用本公开的技术方案,该消融装置包括第一电极组件和第二电极组件,第一电极组件包括具有第一电极的第一电极端头,第二电极组件包括具有第二电极的第二电极端头,并使第一电极和第二电极相对设置,以通过第一电极和第二电极对位于第一电极和第二电极之间的待消融组织进行消融。使用时,将第一电极组件和第二电极组件分别用作心外膜电极和心内膜电极,以使第一电极组件和第二电极组件分别作用于心外膜和心内膜,以实现同时消融心外膜和心内膜,从而实现良好的消融效果;可见,使用本消融装置能够解决现有技术中的消融装置的消融效果不理想的问题。除此之外,第一电极组件可独立使用作用于心外膜实现消融效果,第二电极组件可独立使用作用于心内膜,实现消融效果。
无论心内膜消融或心外膜消融或者心内外模同时消融时,单个电极组件或配合工作的电极组件均可以进行适时标测,监测消融效果,解决当前消融后标测仍需借助外部器械,且是点状标测的问题,提升了手术消融效果。
另外,本公开中的消融装置可以实现内、外科杂交式消融,此技术创伤小,解决了现有技术中外科消融创伤大、恢复慢的难题,同时又可以从心外膜和心内膜联合同 步消融,通过测试组织间的实际阻抗调整输出功率,精确、安全,且阻抗达到一定阻值后机器报警消融完毕,避免过度消融。
附图说明
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1示出了根据本公开的可选的一个实施例中的消融装置的第一电极组件的第一个实施例的一种状态的结构示意图;
图2示出了根据本公开的可选的一个实施例中的消融装置的第一电极组件的第一个实施例的另一种状态的结构示意图;
图3示出了图1中的消融装置第一电极组件的第一电极端头中的内部结构示意图;
图4示出了图3中的消融装置的第一电极组件的第一电极端头的剖视图;
图5示出了图1中的消融装置的第一电极组件的遮挡侧檐的结构示意图;
图6示出了图1中的消融装置的第一电极组件的第一电极端头的另一个实施例的剖视图;
图7示出了根据本公开的可选的一种消融装置的第二电极组件的第一个实施例的结构示意图;
图8示出了图7中的消融装置的第二电极组件的局部放大图;
图9示出了图8中的消融装置的第二电极组件的A部放大图;
图10示出了根据本公开的可选的一种射频消融设备的射频主机的结构示意图;
图11示出了根据本公开的可选的一种射频消融设备的射频主机和消融装置之间的组装图;
图12示出了本公开中的消融装置对待消融组织进行消融处理时的原理图;
图13示出了本公开中的消融装置的一个实施例的第一电极和第二电极与待消融组织之间的配合图;
图14示出了本公开的消融装置的一种状态的消融原理图;
图15示出了本公开的消融装置的另一种状态的消融原理图;
图16示出了本公开的射频消融设备的射频主机与第一电极组件和第二电极组件之间的接线原理图;
图17示出了本公开的消融装置的第一电极组件的第二个实施例的结构示意图;
图18示出了本公开的消融装置的第二电极组件的第二个实施例的结构示意图;
图19示出了本公开的消融装置的另一个实施例的第一电极和第二电极与待消融组织之间的配合图。
其中,上述附图包括以下附图标记:
100、第一电极组件;
110、第一电极端头;111、第一电极;1110、电极面;112、第一磁性件;113、第一保护鞘;1130、保护鞘面;114、冷却孔;115、遮挡侧檐;
117、定位件;1171、吸合内壁;1172、吸合外壁;1173、吸合腔体;
1174、第一吸合端口;1175、第二吸合端口;1176、气流通道;
120、导线铺设槽;
200、第二电极组件;
210、第二电极端头;211、第二电极;212、第二磁性件;213、显影件;214、第二保护鞘;
310、射频主机;311、消融接口;312、电磁接口;313、显示屏;320、消融电路;330、消融范围;340、待消融组织。
具体实施方式
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本公开。
本公开提供了一种消融装置。请参考图1至图19,该消融装置包括第一电极组件100和第二电极组件200,第一电极组件100包括第一电极端头110,第一电极端头110具有第一电极111;第二电极组件200包括第二电极端头210,第二电极端头210具有第二电极211;其中,第一电极111和第二电极211相对设置,以通过第一电极111和第二电极211对位于第一电极111和第二电极211之间的待消融组织340进行消融。
在本公开的消融装置中,该消融装置包括第一电极组件100和第二电极组件200,第一电极组件100包括具有第一电极111的第一电极端头110,第二电极组件200包括具有第二电极211的第二电极端头210,并使第一电极111和第二电极211相对设置,以通过第一电极111和第二电极211对位于第一电极111和第二电极211之间的待消融组织340进行消融。使用时,将第一电极组件100和第二电极组件200分别用 作心外膜电极和心内膜电极,以使第一电极组件100和第二电极组件200分别作用于心外膜和心内膜,以实现同时消融心外膜和心内膜,从而实现良好的消融效果;可见,使用本消融装置能够解决当前内、外科消融时均是单侧贴壁式工作,消融深度有限,很难保证组织由内至外完全脱水、透壁的问题,并解决了现有技术中的消融装置的消融效果不理想的问题。
由于内科介入消融能量恒定,无法适时根据消融效果调整输出功率,导致过烧或不透壁的问题。心外科是动态消融,是适时测阻抗并检测信号,根据阻抗不同,功率相应调整,但外科消融创伤较大,术后恢复慢。本公开中的消融装置心内膜、心外膜联合配对使用,功率动态实时变化,解决过烧或不透壁的问题、以及组织坏死甚至烧穿现象。
可见,本公开中的消融装置可以实现内、外科杂交式消融,此技术创伤小,解决了现有技术中外科消融创伤大、恢复慢的难题,同时又可以从心外膜和心内膜联合同步消融,通过测试组织间的实际阻抗调整输出功率,精确、安全,且阻抗达到一定阻值后机器报警消融完毕,避免过度消融。
可选地,消融装置还包括消融电路320,第一电极111和第二电极211均设置在消融电路320上,以通过测试第一电极111和第二电极211之间的阻抗调整第一电极111和第二电极211之间的射频能量来进行消融。通过使第一电极111和第二电极211相对设置,可以实时测试第一电极111和第二电极211之间的阻抗,并根据实时检测的第一电极111和第二电极211之间的阻抗来调整第一电极111和第二电极211之间的射频功率,且阻抗达到一定阻值后机器报警消融完毕,避免过度消融,以解决现有技术中介入式消融单侧消融深度有限、难以保证组织由内至外完全脱水、变性的问题,同时解决了射频功率不易控制的问题,功率较小会造成消融不彻底,功率过大会造成消融过度,组织坏死甚至烧穿、烧漏现象。
在消融过程中,电极间被消融组织的阻抗由低到高进行变化;在进行消融的第一阶段,电极间被消融组织的阻抗逐渐增大,射频功率保持不变,以加快细胞内分子的震动;在进行消融的第二阶段,随着电极间被消融组织的阻抗的增大,射频功率逐步增大,当电极间被消融组织的阻抗增大到其第一预设值时,射频功率也增大到其预设最大值,在此消融阶段,使得细胞迅速脱水以产生不可逆的变化;在进行消融的第三阶段,随着电极间被消融组织阻抗的继续增大,射频功率逐步降低,以保证消融彻底性的同时预防因射频大功率输出而造成组织表面结痂或者损伤患者的现象;直至电极 间被消融组织阻抗增大到其第二预设值时,提示结束消融。
可选地,如图2和图7所示,第一电极111和第二电极211均为多个,多个第一电极111和多个第二电极211相互配合设置;通过设置多个第一电极111和多个第二电极211,以使得多个第一电极111和多个第二电极211能够同时作用于其相对应的组织,以增强消融效果,并提高消融效率。
可选地,第一电极端头110和第二电极端头210均为条形,多个第一电极111沿第一电极端头110的延伸方向间隔布置,多个第二电极211沿第二电极端头210的延伸方向间隔布置,各个第一电极111与其相对应地第二电极211成对地设置;即通过多个第一电极111和多个第二电极211同时作用于其相对应的组织,以形成一条完整的消融线,保证消融效果、提高消融效率;且使多个第一电极111间隔布置,多个第二电极211间隔布置,可以避免相邻两个第一电极111之间、相邻两个第二电极211之间相互影响。在本实施例中,第一电极111和第二电极211均为2至10个。
可选地,第一电极111和第二电极211工作时是每个电极相对独立的,即可以控制工作电极的数量。
在本实施例中,第一电极端头110还包括定位件117,第一电极端头110通过定位件117定位在心外膜上。可选地,定位件117成对设置,工作时每对定位件117相对独立工作,即可以根据实际需求决定定位件工作的数量。
可选地,定位件117为吸盘结构。
在本实施例中,第一电极端头110还包括第一保护鞘113,第一电极111的至少部分设置在第一保护鞘113内;即多个第一电极111沿第一保护鞘113的延伸方向间隔设置在第一保护鞘113内。
可选地,第一保护鞘113由柔性材料制成。这样,可以使得第一保护鞘113在X-Y-Z方向摆动。
在本实施例中,如图3所示,第一电极111具有朝向待消融组织340设置的电极面1110,第一保护鞘113具有朝向待消融组织340设置的保护鞘面1130;其中,电极面1110位于保护鞘面1130靠近待消融组织340的一侧。
在本实施例中,第一电极111为多个,多个第一电极111沿第一电极端头110的延伸方向间隔布置;多个第一电极111的电极面1110与保护鞘面1130之间的最小距离均相同。第一电极111的电极面1110与保护鞘面1130之间的最小距离的取值范围0-0.5mm,存在此高度差可以使得第一电极与被消融表面充分接触,保证消融效果。 第一电极111的电极面1110与保护鞘面1130之间的高度差取值优先为0.2mm。
在本实施例中,电极面1110和保护鞘面1130均为平面。
为了实现对第一电极端头110的冷却,如图2所示,第一电极111为多个,多个第一电极111沿第一电极端头110的延伸方向间隔布置;多个第一电极111中的至少一个第一电极111上设置有用于供冷却流体流通的冷却孔114;和/或,第一保护鞘113内设置有供冷却流体流通的冷却管道。本实施例通过设置冷却孔114,用于消融过程中局部的降温,用来保护被消融的组织不被过度烧灼。
在本实施例中,多个第一电极111中的至少一个第一电极111上设置有1至4个冷却孔114。每个第一电极111上的冷却孔数量为0-4个,以保证消融过程中温度的控制。
可选地,第一保护鞘113为管状,多个第一电极111均设置在第一保护鞘113的管腔内。
可选地,如图3和图5所示,定位件117包括吸合内壁1171和吸合外壁1172,吸合内壁1171和吸合外壁1172之间形成吸合腔体1173、与吸合腔体1173连通的第一吸合端口1174和第二吸合端口1175,第一吸合端口1174和第二吸合端口1175的朝向相同。
吸合内壁1171和吸合内壁1171均为U形结构,吸合内壁1171和吸合外壁1172环绕第一保护鞘113设置。
定位件117还包括气流通道1176,气流通道1176的出气端与吸合腔体1173连通,以通过气流通道1176向吸合腔体1173内充、抽气。
可选地,定位件117为多个,多个定位件117沿第一电极端头110的延伸方向布置,以使第一电极端头110稳定地定位在心外膜上,保证第一电极端头110的定位效果。
可选地,使多个定位件117成对设置,成对的两个定位件117分别设置在第一保护鞘113的相对两侧,以保证第一保护鞘113的两侧与被消融组织之间均具有良好的贴合度,进而使得相应的第一电极111能够较好地作用于其相对应的被消融组织,保证消融效果。
可选地,多个定位件117设置在第一保护鞘113的一侧,以保证第一保护鞘113的一侧与被消融组织之间均具有良好的贴合度,进而使得相应的第一电极111能够较好地作用于其相对应的被消融组织,保证消融效果。
多对定位件117沿第一保护鞘113的延伸方向间隔布置,以保证第一保护鞘113与被消融组织之间的整体贴合度,以使得各个第一电极111均能够较好地作用于其相对应的被消融组织,从而保证消融效果。
在本实施例中,第一电极端头110还包括第一磁性件112,第二电极端头210包括第二磁性件212,第一磁性件112和第二磁性件212相配合,以使第一电极端头110和第二电极端头210相对固定,进而使得第一电极端头110的第一电极111能够与第二电极端头210的相应的第二电极211相对设置。
可选地,第一磁性件112和第二磁性件212均为多个,多个第一磁性件112沿第一电极端头110的延伸方向间隔布置,多个第二磁性件212沿第二电极端头210的延伸方向间隔布置,以保证第一电极端头110和第二电极端头210之间的整体固定效果。
可选地,每对第一磁性件112和第二磁性件212相对独立工作,即可以根据实际需求决定磁性件工作的数量。
可选地,磁性件的磁力是可控并且可调整的,初定位时使用较小磁力,最终定位时使用较大磁力,使得内外两个电极组件初定位时灵活、最终定位后牢固,保证电极的贴合度,进而保证消融效果。
可选地,多个第一磁性件112均设置在第一保护鞘113的管腔内。
可选地,第一磁性件112为电磁铁或永磁铁;和/或,第二磁性件212为电磁铁或永磁铁。
可选地,如图2所示,多个第一磁性件112均设置在第一保护鞘113内,多个第一磁性件112沿第一保护鞘113的延伸方向间隔设置。可选地,多个第一磁性件112与多个第一电极111沿第一保护鞘113的延伸方向交错布置,以使多个第一电极111间隔布置,即使用各个第一磁性件112隔开相应的两个第一电极111。在工作时,每对第一磁性件和第二磁性件相对独立工作,即可以根据实际需求决定磁性件工作的数量。磁性件的磁力是可控并且可调整的,初定位时使用较小磁力,最终定位时使用较大磁力,使得内外两个电极组件初定位时灵活、最终定位后牢固,保证电极的贴合度,进而保证消融效果。
在第一磁性件112处于非工作状态时,即不通磁时,第一电极组件可以在外膜实现心外膜进行线状消融。
在本实施例中,如图4所示,第一保护鞘113的相对两侧均设置有遮挡侧檐115,以对第一保护鞘113内部的多个第一电极111和多个第一磁性件112均形成遮挡防护 作用,以避免消融过程中心膜组织的血液等进入第一保护鞘113与心脏外膜之间的区域内而影响第一保护鞘113与心脏外膜之间的贴紧程度,避免消融时第一电极和第二电极间电阻值的测量精度,从而影响消融效果。
在一些实施例中,第一电极111和第二电极211均为多个,多个第一磁性件112与多个第一电极111交错间隔设置,多个第二磁性件212与多个第二电极211交错间隔设置。
在一些实施例中,相邻的第一电极111与第一磁性件112之间绝缘设置,相邻的第二电极211与第二磁性件212之间绝缘设置。
在一些实施例中,相邻的第一电极111与第一磁性件112之间的相对表面均喷涂有绝缘漆,或者相邻的第一电极111与第一磁性件112之间设置有绝缘隔板;相邻的第二电极211与第二磁性件212之间的相对表面均喷涂有绝缘漆,或者,相邻的第二电极211与第二磁性件212之间设置有绝缘隔板。绝缘隔板与保护鞘一体化设计或分体固定设定。
在一些实施例中,第一磁性件112与第二磁性件212的外表面均包覆有绝缘层。
在一些实施例中,第一电极111、第一磁性件112、第二电极211以及第二磁性件212均与独立的通电电路连接,以进行单独控制。多个第一电极、第二电极、第一磁性件、第二磁性件可独立工作,进而可以调节磁性,调节消融电极的个数。两个相邻的第一电极或第二电极的可形成消融电极对,以实现消融功能。
在一些实施例中,第一电极111为多个,两个第一电极111的通电电路独立设置以形成标测电极对,以利用通电电路检测消融后的待消融组织340的电信号传递情况;和/或,第二电极211为多个,两个第二电极211的通电电路独立设置以形成标测电极对,以利用通电电路检测消融后的待消融组织340的电信号传递情况;和/或,第一电极111和第二电极211的通电电路独立设置以形成标测电极对,以利用通电电路检测待消融组织340消融后的电信号传递情况。标测时,形成标测电极对的两个第一电极111的极性不同,跨电压设置以形成电流,进而实现标测;形成标测电极对的两个第二电极211的极性不同,跨电压设置以形成电流,进而实现标测形成标测电极对的第一电极和第二电极的极性不同,跨电压设置以形成电流,进而实现标测。
在一些实施例中,第一电极端头110和第二电极端头210均为多个。参照图12至15所示,可以看出本实施例中的消融装置对待消融组织340的消融原理,并可以体现消融装置的消融范围330。
在本实施例中,如图7和图8所示,第二电极端头210包括第二保护鞘214,第二电极211设置在第二保护鞘214上;第二电极211由金属材料制成,金属材料包括以下材料中的至少一种:铂金、铂依合金、钽、镀金铍青铜;和/或,第二保护鞘214由显影材料制成,显影材料的成分包括硫酸钡BaSO4。
本实施例中的显影件213、具有显影作用的第二电极211以及具有显影作用的第二保护鞘214可以在第二电极组件200进入消融组织时的位置指示。可选地,第二电极端头210上的显影件213的数量为1-6个,且可以单独设置也可以是第二电极211带有显影功能。本实施例中的显影件213和第二保护鞘214的鞘体外壁是平齐的,防止手术中对病人造成损伤。
在本实施例中,第二电极211沿第二保护鞘214的延伸方向间隔设置,套设在第二保护鞘214上,并且使电极表面高于第二保护鞘214的表面。显影件213可以没有,显影件213也可以为多个,多个显影件213沿第二保护鞘214的延伸方向间隔设置;和/或,第二保护鞘214的外表面分为与显影件213对应的部分形成第一表面部和与第一表面部连接的第二表面部,第一表面部为凹陷结构,显影件213套设在第一表面部上,显影件213的外表面与第二表面部平齐或低于第二表面部。
在工作时,首先将第一电极组件100通过定位件固定在心外膜上,接着第二电极组件200进入心脏内部,通过显影件213的指示将第二电极组件200放置到心内膜中第一电极组件100对应的组织,然后同步、顺序开启位于第一电极端头110和第二电极端头210的第一对磁性件、第二对磁性件及第三对磁性件,此时两组电极完成初定位。完成初定位后的两个电极组件接着将其余的磁性件成对开启,完成最终的定位。
可选地,遮挡侧檐115为条形,遮挡侧檐115沿第一保护鞘113的延伸方向延伸。通过设置遮挡侧檐115,可遮挡消融线外的组织液及生理盐水等液体进入消融组织,避免消融时第一电极和第二电极间电阻值的测量精度,从而影响消融效果。
可选地,第一电极111和/或第一磁性件112上设置有用于容纳导线的导线铺设槽120,导线用于与第一电极111连接;或者,将用于铺设导线的导线铺设槽120设置在第一保护鞘113的内壁上。
可选地,第二电极端头210还包括第二保护鞘,多个第二磁性件212与多个第二电极211均套设在第二保护鞘上;可选地,多个第二磁性件212与多个第二电极211沿第二保护鞘的延伸方向交错布置,以使多个第二电极211间隔布置,即使用各个第二磁性件212隔开相应的两个第二电极211。
可选地,参照图13和图19,多个第二磁性件212与多个第二电极211均为环状结构,或为多边形、V型、D型、拱形等截面结构。如图19所示,第二电极211的截面为多边形,例如可为方形。
本公开还提供了一种射频消融设备,如图10所示,该射频消融设备包括射频主机310和上述的消融装置,该消融装置与射频主机310连接。
可选地,如图9所示,射频主机310上设置有显示屏313,显示屏313用于显示所测出的两个相对应的第一电极111和第二电极211之间被消融组织的阻抗和/或射频功率。
可选地,射频主机310上还设置有消融接口311,第一电极组件100和第二电极组件200均包括多个导线组件,各个导线组件包括导线接头和与导线接头连接的多个并联设置的导线,各个导线用于与相应的电极连接;消融接口311具有第一消融接口部和第二消融接口部,第一消融接口部具有用于供第一电极组件100的多个导线接头插入的多个第一消融接口,第二消融接口部具有用于供第二电极组件200的多个导线接头插入的多个第二消融接口,以通过各个第一消融接口和各个第二消融接口向相应的第一电极111和相应的第二电极211提供合适的射频功率。
可选地,当第一磁性件112和第二磁性件212均为电磁铁时,射频主机310上还设置有电磁接口312,第一电极组件100和第二电极组件200均包括多个电磁铁组件,各个电磁铁组件包括电磁接头和与电磁接头连接的多个并联设置的电磁线,各个电磁线用于与相应的电磁铁连接;电磁接口312具有第一电磁接口部和第二电磁接口部,第一电磁接口部具有用于供第一电极组件100的多个电磁接头插入的多个第一磁接口,第二电磁接口部具有用于供第二电极组件200的多个电磁接头插入的多个第二磁接口,以通过各个第一磁接口和各个第二磁接口向相应的第一磁性件112和相应的第二磁性件212供电,进而使相应的第一磁性件112和相应的第二磁性件212之间产生吸合力。
从以上的描述中,可以看出,本公开上述的实施例实现了如下技术效果:
在本公开的消融装置中,该消融装置包括第一电极组件100和第二电极组件200,第一电极组件100包括具有第一电极111的第一电极端头110,第二电极组件200包括具有第二电极211的第二电极端头210,并使第一电极111和第二电极211相对设置,以通过第一电极111和第二电极211对位于第一电极111和第二电极211之间的待消融组织340进行消融。使用时,将第一电极组件100和第二电极组件200分别用 作心外膜电极和心内膜电极,以使第一电极组件100和第二电极组件200分别作用于心外膜和心内膜,以实现同时消融心外膜和心内膜,从而实现良好的消融效果,;可见,使用本消融装置能够解决现有技术中的消融装置的消融效果不理想的问题。
另外,本公开中的消融装置可以实现内、外科杂交式消融,此技术创伤小,解决了现有技术中外科消融创伤大、恢复慢的难题,同时又可以从心外膜和心内膜联合同步消融,通过测试组织间的实际阻抗调整输出功率,精确、安全,且阻抗达到一定阻值后机器报警消融完毕,避免过度消融。
除此之外,第一电极组件可独立使用作用于心外膜实现消融效果,第二电极组件可独立使用作用于心内膜,实现消融效果。
无论心内膜消融或心外膜消融或者心内外模同时消融时,单个电极组件或配合工作的电极组件均可以进行适时标测,监测消融效果,解决当前消融后标测仍需借助外部器械,且是点状标测的问题,提升了手术消融效果。
本公开实施例的射频消融设备包括上述的消融装置,因此该射频消融设备至少具有与该消融装置相同的技术效果。
本公开实施例还提供一种射频消融设备。请参考图1至图19,该射频消融设备包括第一电极组件100和第二电极组件200,第一电极组件100包括第一电极端头110,第一电极端头110具有第一电极111;第二电极组件200包括第二电极端头210,第二电极端头210具有第二电极211;其中,第一电极端头110包括第一磁性件112,第二电极端头210包括第二磁性件212,第一磁性件112和第二磁性件212相互吸合,以使第一电极端头110和第二电极端头210相对固定,以通过第一电极111和第二电极211对位于第一电极111和第二电极211之间的待消融组织340进行消融。
在本公开的射频消融设备中,该射频消融设备包括第一电极组件100和第二电极组件200,第一电极组件100包括具有第一电极111的第一电极端头110,第二电极组件200包括具有第二电极211的第二电极端头210,第一电极端头110包括第一磁性件112,第二电极端头210包括第二磁性件212,第一磁性件112和第二磁性件212相互吸合,以使第一电极端头110和第二电极端头210相对固定,以通过第一电极111和第二电极211对位于第一电极111和第二电极211之间的待消融组织340进行消融。使用时,将第一电极组件100和第二电极组件200分别用作心外膜电极和心内膜电极,以使第一电极组件100和第二电极组件200分别作用于心外膜和心内膜,以实现同时消融心外膜和心内膜,从而实现良好的消融效果;可见,使用本射频消融设备能够解 决当前内、外科消融时均是单侧贴壁式工作,消融深度有限,很难保证组织由内至外完全脱水、透壁的问题,并解决了现有技术中的射频消融设备的消融效果不理想的问题。
由于内科介入消融能量恒定,无法适时根据消融效果调整输出功率,导致过烧或不透壁的问题。心外科是动态消融,是适时测阻抗并检测信号,根据阻抗不同,功率相应调整,但外科消融创伤较大,术后恢复慢。本公开中的射频消融设备心内膜、心外膜联合配对使用,功率动态实时变化,解决过烧或不透壁的问题、以及组织坏死甚至烧穿现象。
可见,本公开中的射频消融设备可以实现内、外科杂交式消融,此技术创伤小,解决了现有技术中外科消融创伤大、恢复慢的难题,同时又可以从心外膜和心内膜联合同步消融,通过测试组织间的实际阻抗调整输出功率,精确、安全,且阻抗达到一定阻值后机器报警消融完毕,避免过度消融。
可选地,射频消融设备还包括消融电路320,第一电极111和第二电极211均设置在消融电路320上,以通过测试第一电极111和第二电极211之间的阻抗调整第一电极111和第二电极211之间的射频能量进行消融。通过实时测试第一电极111和第二电极211之间的阻抗,并根据实时检测的第一电极111和第二电极211之间的阻抗来调整第一电极111和第二电极211之间的射频功率,且阻抗达到一定阻值后机器报警消融完毕,避免过度消融,以解决现有技术中介入式消融单侧消融深度有限、难以保证组织由内至外完全脱水、变性的问题,同时解决了射频功率不易控制的问题,功率较小会造成消融不彻底,功率过大会造成消融过度,组织坏死甚至烧穿、烧漏现象。
在消融过程中,电极间被消融组织的阻抗由低到高进行变化;在进行消融的第一阶段,电极间被消融组织的阻抗逐渐增大,射频功率保持不变,以加快细胞内分子的震动;在进行消融的第二阶段,随着电极间被消融组织的阻抗的增大,射频功率逐步增大,当电极间被消融组织的阻抗增大到其第一预设值时,射频功率也增大到其预设最大值,在此消融阶段,使得细胞迅速脱水以产生不可逆的变化;在进行消融的第三阶段,随着电极间被消融组织阻抗的继续增大,射频功率逐步降低,以保证消融彻底性的同时预防因射频大功率输出而造成组织表面结痂或者损伤患者的现象;直至电极间被消融组织阻抗增大到其第二预设值时,提示结束消融。
可选地,如图2和图7所示,第一电极111和第二电极211均为多个,多个第一电极111和多个第二电极211相互配合设置;通过设置多个第一电极111和多个第二 电极211,以使得多个第一电极111和多个第二电极211能够同时作用于其相对应的组织,以增强消融效果,并提高消融效率。
可选地,第一电极端头110和第二电极端头210均为条形,多个第一电极111沿第一电极端头110的延伸方向间隔布置,多个第二电极211沿第二电极端头210的延伸方向间隔布置,各个第一电极111与其相对应地第二电极211成对地设置;即通过多个第一电极111和多个第二电极211同时作用于其相对应的组织,以形成一条完整的消融线,保证消融效果、提高消融效率;且使多个第一电极111间隔布置,多个第二电极211间隔布置,可以避免相邻两个第一电极111之间、相邻两个第二电极211之间相互影响。
在本实施例中,第一电极111和第二电极211均为2至10个。
可选地,第一电极111和第二电极211工作时是每个电极相对独立的,即可以控制工作电极的数量。
在本实施例中,第一电极端头110还包括定位件117,第一电极端头110通过定位件117定位在心外膜上。可选地,定位件117成对设置,工作时每对定位件117相对独立工作,即可以根据实际需求决定定位件工作的数量。
可选地,定位件117为吸盘结构。
在本实施例中,第一电极端头110还包括第一保护鞘113,第一电极111的至少部分设置在第一保护鞘113内;即多个第一电极111沿第一保护鞘113的延伸方向间隔设置在第一保护鞘113内。
可选地,第一保护鞘113由柔性材料制成。这样,可以使得第一保护鞘113在X-Y-Z方向摆动。
在本实施例中,如图3所示,第一电极111具有朝向待消融组织340设置的电极面1110,第一保护鞘113具有朝向待消融组织340设置的保护鞘面1130;其中,电极面1110位于保护鞘面1130靠近待消融组织340的一侧。
在本实施例中,第一电极111为多个,多个第一电极111沿第一电极端头110的延伸方向间隔布置;多个第一电极111的电极面1110与保护鞘面1130之间的最小距离均相同。第一电极111的电极面1110与保护鞘面1130之间的最小距离的取值范围0-0.5mm,存在此高度差可以使得第一电极与被消融表面充分接触,保证消融效果。第一电极111的电极面1110与保护鞘面1130之间的高度差取值优先为0.2mm。
在本实施例中,电极面1110和保护鞘面1130均为平面。
为了实现对第一电极端头110的冷却,如图2所示,第一电极111为多个,多个第一电极111沿第一电极端头110的延伸方向间隔布置;多个第一电极111中的至少一个第一电极111上设置有用于供冷却流体流通的冷却孔114;和/或,第一保护鞘113内设置有供冷却流体流通的冷却管道。本实施例通过设置冷却孔114,用于消融过程中局部的降温,用来保护被消融的组织不被过度烧灼。
在本实施例中,多个第一电极111中的至少一个第一电极111上设置有1至4个冷却孔114。每个第一电极111上的冷却孔数量为0-4个,以保证消融过程中温度的控制。
可选地,第一保护鞘113由柔性材料制成,以使第一保护鞘113可弯折地设置。
可选地,第一保护鞘113为管状,多个第一电极111均设置在第一保护鞘113的管腔内。
可选地,如图3和图5所示,定位件117包括吸合内壁1171和吸合外壁1172,吸合内壁1171和吸合外壁1172之间形成吸合腔体1173、与吸合腔体1173连通的第一吸合端口1174和第二吸合端口1175,第一吸合端口1174和第二吸合端口1175的朝向相同。
吸合内壁1171和吸合内壁1171均为U形结构,吸合内壁1171和吸合外壁1172环绕第一保护鞘113设置。
定位件117还包括气流通道1176,气流通道1176的出气端与吸合腔体1173连通,以通过气流通道1176向吸合腔体1173内充、抽气。
可选地,定位件117为多个,多个定位件117沿第一电极端头110的延伸方向布置,以使第一电极端头110稳定地定位在心外膜上,保证第一电极端头110的定位效果。
可选地,使多个定位件117成对设置,成对的两个定位件117分别设置在第一保护鞘113的相对两侧,以保证第一保护鞘113的两侧与被消融组织之间均具有良好的贴合度,进而使得相应的第一电极111能够较好地作用于其相对应的被消融组织,保证消融效果。
可选地,多个定位件117设置在第一保护鞘113的一侧,以保证第一保护鞘113的一侧与被消融组织之间均具有良好的贴合度,进而使得相应的第一电极111能够较好地作用于其相对应的被消融组织,保证消融效果。
多对定位件117沿第一保护鞘113的延伸方向间隔布置,以保证第一保护鞘113 与被消融组织之间的整体贴合度,以使得各个第一电极111均能够较好地作用于其相对应的被消融组织,从而保证消融效果。
可选地,第一磁性件112和第二磁性件212均为多个,多个第一磁性件112沿第一电极端头110的延伸方向间隔布置,多个第二磁性件212沿第二电极端头210的延伸方向间隔布置,以保证第一电极端头110和第二电极端头210之间的整体固定效果。
可选地,每对第一磁性件112和第二磁性件212相对独立工作,即可以根据实际需求决定磁性件工作的数量。
可选地,磁性件的磁力是可控并且可调整的,初定位时使用较小磁力,最终定位时使用较大磁力,使得内外两个电极组件初定位时灵活、最终定位后牢固,保证电极的贴合度,进而保证消融效果。
可选地,多个第一磁性件112均设置在第一保护鞘113的管腔内。
可选地,第一磁性件112为电磁铁或永磁铁;和/或,第二磁性件212为电磁铁或永磁铁。
可选地,如图2所示,多个第一磁性件112均设置在第一保护鞘113内,多个第一磁性件112沿第一保护鞘113的延伸方向间隔设置。可选地,多个第一磁性件112与多个第一电极111沿第一保护鞘113的延伸方向交错布置,以使多个第一电极111间隔布置,即使用各个第一磁性件112隔开相应的两个第一电极111。在工作时,每对第一磁性件和第二磁性件相对独立工作,即可以根据实际需求决定磁性件工作的数量。磁性件的磁力是可控并且可调整的,初定位时使用较小磁力,最终定位时使用较大磁力,使得内外两个电极组件初定位时灵活、最终定位后牢固,保证电极的贴合度,进而保证消融效果。
在第一磁性件112处于非工作状态时,即不通磁时,第一电极组件可以在外膜实现心外膜进行线状消融。在本实施例中,如图4所示,第一保护鞘113的相对两侧均设置有遮挡侧檐115,以对第一保护鞘113内部的多个第一电极111和多个第一磁性件112均形成遮挡防护作用,以避免消融过程中心膜组织的血液等进入第一保护鞘113与心脏外膜之间的区域内而影响第一保护鞘113与心脏外膜之间的贴紧程度,避免消融时第一电极和第二电极间电阻值的测量精度,从而影响消融效果。
在一些实施例中,第一电极111和第二电极211均为多个,多个第一磁性件112与多个第一电极111交错间隔设置,多个第二磁性件212与多个第二电极211交错间隔设置。
在一些实施例中,相邻的第一电极111与第一磁性件112之间绝缘设置,相邻的第二电极211与第二磁性件212之间绝缘设置。
在一些实施例中,相邻的第一电极111与第一磁性件112之间的相对表面均喷涂有绝缘漆,或者相邻的第一电极111与第一磁性件112之间设置有绝缘隔板;相邻的第二电极211与第二磁性件212之间的相对表面均喷涂有绝缘漆,或者,相邻的第二电极211与第二磁性件212之间设置有绝缘隔板。
在一些实施例中,第一磁性件112与第二磁性件212的外表面均包覆有绝缘层。
在一些实施例中,第一电极111、第一磁性件112、第二电极211以及第二磁性件212均与独立的通电电路连接,以进行单独控制。
在一些实施例中,第一电极111为多个,两个第一电极111的通电电路独立设置以形成标测电极对,以利用通电电路检测消融后的待消融组织340的电信号传递情况;和/或,第二电极211为多个,两个第二电极211的通电电路独立设置以形成标测电极对,以利用通电电路检测消融后的待消融组织340的电信号传递情况;和/或,第一电极111和第二电极211的通电电路独立设置以形成标测电极对,以利用通电电路检测待消融组织340消融后的电信号传递情况。
在一些实施例中,第一电极端头110和第二电极端头210均为多个。
参照图12至15所示,可以看出本实施例中的消融装置对待消融组织340的消融原理,并可以体现消融装置的消融范围330。
在本实施例中,如图7和图8所示,第二电极端头210包括第二保护鞘214,第二电极211设置在第二保护鞘214上;其中,第二电极端头210包括显影件213,显影件213设置在第二保护鞘214上,以通过显影件213标记第二电极端头210的位置;和/或,第二电极211由金属显影材料制成,金属显影材料包括以下材料中的至少一种:铂金、铂依合金、钽、镀金铍青铜;和/或,第二保护鞘214由显影材料制成,显影材料的制作材料包括硫酸钡(BaSO4)。
本实施例中的显影件213、具有显影作用的第二电极211以及具有显影作用的第二保护鞘214可以在第二电极组件200进入消融组织时的位置指示。可选地,第二电极端头210上的显影件213的数量为1-6个,且可以单独设置也可以是第二电极211带有显影功能。本实施例中的显影件213和第二保护鞘214的鞘体外壁是平齐的,防止手术中对病人造成损伤。
在本实施例中,第二电极211沿第二保护鞘214的延伸方向间隔设置,套设在第 二保护鞘214上,并且使电极表面高于第二保护鞘214的表面。显影件可以没有,显影件213也可以为多个,多个显影件213沿第二保护鞘214的延伸方向间隔设置;和/或,第二保护鞘214的外表面分为与显影件213对应的部分形成第一表面部和与第一表面部连接的第二表面部,第一表面部为凹陷结构,显影件213套设在第一表面部上,显影件213的外表面与第二表面部平齐或低于第二表面部。
在工作时,首先将第一电极组件100通过定位件固定在心外膜上,接着第二电极组件200进入心脏内部,通过显影件213的指示将第二电极组件200放置到心内膜中第一电极组件100对应的部位,然后同步、顺序开启位于第一电极端头110和第二电极端头210的第一对磁性件、第二对磁性件及第三对磁性件,此时两组电极完成初定位。完成初定位后的两个电极组件接着将其余的磁性件成对开启,完成最终的定位。
可选地,遮挡侧檐115为条形,遮挡侧檐115沿第一保护鞘113的延伸方向延伸。通过设置遮挡侧檐115,可遮挡消融线外的组织液及生理盐水等液体进入消融部位,避免消融时第一电极和第二电极间电阻值的测量精度,从而影响消融效果。
可选地,第一电极111和/或第一磁性件112上设置有用于容纳导线的导线铺设槽120,导线用于与第一电极111连接;或者,将用于铺设导线的导线铺设槽120设置在第一保护鞘113的内壁上。
可选地,第二电极端头210还包括第二保护鞘,多个第二磁性件212与多个第二电极211均套设在第二保护鞘上;可选地,多个第二磁性件212与多个第二电极211沿第二保护鞘的延伸方向交错布置,以使多个第二电极211间隔布置,即使用各个第二磁性件212隔开相应的两个第二电极211。
可选地,参照图13和图19,多个第二磁性件212与多个第二电极211均为环状结构,或为方形、V型、D型、拱形等截面结构。如图19所示,第二电极211的截面为多边形,例如可为方形。
本公开的射频消融设备还包括射频主机310,如图9所示,射频主机310与第一电极111和第二电极211均连接,以检测第一电极111和第二电极211之间的阻抗,并根据所检测的阻抗信息调整第一电极111和第二电极211之间的射频功率。
可选地,多个第一电极111和多个第二电极211均与射频主机310连接,以检测相应的第一电极111和相应的第二电极211之间被消融组织的阻抗,并根据所检测到的相应的阻抗信息调整相应的第一电极111和相应的第二电极211之间的射频功率。
可选地,如图9所示,射频主机310上设置有显示屏313,显示屏313用于显示 所测出的两个相对应的第一电极111和第二电极211之间的阻抗和/或射频功率。
可选地,射频主机310上还设置有消融接口311,第一电极组件100和第二电极组件200均包括多个导线组件,各个导线组件包括导线接头和与导线接头连接的多个并联设置的导线,各个导线用于与相应的电极连接;消融接口311具有第一消融接口部和第二消融接口部,第一消融接口部具有用于供第一电极组件100的多个导线接头插入的多个第一消融接口,第二消融接口部具有用于供第二电极组件200的多个导线接头插入的多个第二消融接口,以通过各个第一消融接口和各个第二消融接口向相应的第一电极111和相应的第二电极211提供合适的射频功率。
可选地,当第一磁性件112和第二磁性件212均为电磁铁时,射频主机310上还设置有电磁接口312,第一电极组件100和第二电极组件200均包括多个电磁铁组件,各个电磁铁组件包括电磁接头和与电磁接头连接的多个并联设置的电磁线,各个电磁线用于与相应的电磁铁连接;电磁接口312具有第一电磁接口部和第二电磁接口部,第一电磁接口部具有用于供第一电极组件100的多个电磁接头插入的多个第一磁接口,第二电磁接口部具有用于供第二电极组件200的多个电磁接头插入的多个第二磁接口,以通过各个第一磁接口和各个第二磁接口向相应的第一磁性件112和相应的第二磁性件212供电,进而使相应的第一磁性件112和相应的第二磁性件212之间产生吸合力。
从以上的描述中,可以看出,本公开上述的实施例实现了如下技术效果:
在本公开实施例的射频消融设备中,该射频消融设备包括第一电极组件100和第二电极组件200,第一电极组件100包括具有第一电极111的第一电极端头110,第二电极组件200包括具有第二电极211的第二电极端头210,第一电极端头110包括第一磁性件112,第二电极端头210包括第二磁性件212,第一磁性件112和第二磁性件212相互吸合,以使第一电极端头110和第二电极端头210相对固定,以通过第一电极111和第二电极211对位于第一电极111和第二电极211之间的待消融组织340进行消融。使用时,将第一电极组件100和第二电极组件200分别用作心外膜电极和心内膜电极,以使第一电极组件100和第二电极组件200分别作用于心外膜和心内膜,以实现同时消融心外膜和心内膜,从而实现良好的消融效果;可见,使用本射频消融设备能够解决现有技术中的射频消融设备的消融效果不理想的问题。
另外,本公开实施例中的射频消融设备可以实现内、外科杂交式消融,此技术创伤小,解决了现有技术中外科消融创伤大、恢复慢的难题,同时又可以从心外膜和心 内膜联合同步消融,通过测试组织间的实际阻抗调整输出功率,精确、安全,且阻抗达到一定阻值后机器报警消融完毕,避免过度消融。除此之外,第一电极组件可独立使用作用于心外膜实现消融效果,第二电极组件可独立使用作用于心内膜,实现消融效果。
无论心内膜消融或心外膜消融或者心内外模同时消融时,单个电极组件或配合工作的电极组件均可以进行适时标测,监测消融效果,解决当前消融后标测仍需借助外部器械,且是点状标测的问题,提升了手术消融效果。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的 任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (30)

  1. 一种消融装置,包括:
    第一电极组件(100),所述第一电极组件(100)包括第一电极端头(110),所述第一电极端头(110)具有第一电极(111);和
    第二电极组件(200),所述第二电极组件(200)包括第二电极端头(210),所述第二电极端头(210)具有第二电极(211);
    其中,所述第一电极(111)和所述第二电极(211)相互配合,以通过所述第一电极(111)和所述第二电极(211)对位于所述第一电极(111)和所述第二电极(211)之间的待消融组织(340)进行消融。
  2. 根据权利要求1所述的消融装置,还包括:
    消融电路(320),所述第一电极(111)和所述第二电极(211)均设置在所述消融电路(320)上,以通过测试所述第一电极(111)和所述第二电极(211)之间的阻抗调整所述第一电极(111)和所述第二电极(211)之间的射频能量来进行消融。
  3. 根据权利要求1或2所述的消融装置,其中,所述第一电极(111)和所述第二电极(211)均为多个,多个所述第一电极(111)和多个所述第二电极(211)相互配合设置。
  4. 根据权利要求3所述的消融装置,其中,所述第一电极端头(110)和所述第二电极端头(210)均为条形,多个所述第一电极(111)沿所述第一电极端头(110)的延伸方向间隔布置,多个第二电极(211)沿所述第二电极端头(210)的延伸方向间隔布置。
  5. 根据权利要求3或4所述的消融装置,其中,所述第一电极(111)和所述第二电极(211)均为2至10个。
  6. 根据权利要求1至5中任一项所述的消融装置,其中,所述第一电极端头(110)包括定位件(117),所述第一电极端头(110)通过所述定位件(117)定位在心外 膜上。
  7. 根据权利要求6所述的消融装置,其中,所述第一电极端头(110)为条形,所述定位件(117)为多个,多个所述定位件(117)沿所述第一电极端头(110)的延伸方向布置。
  8. 根据权利要求6或7所述的消融装置,其中,
    所述第一电极端头(110)包括第一保护鞘(113),所述第一电极(111)的至少部分设置在所述第一保护鞘(113)内;
    所述定位件(117)为多个,多个所述定位件(117)成对设置,成对的两个所述定位件(117)设置在所述第一保护鞘(113)的相对两侧;和/或,多个所述定位件(117)设置在所述第一保护鞘(113)的一侧。
  9. 根据权利要求8所述的消融装置,其中,所述第一保护鞘(113)由柔性材料制成。
  10. 根据权利要求8或9所述的消融装置,其中,所述第一电极(111)具有朝向所述待消融组织(340)设置的电极面(1110),所述第一保护鞘(113)具有朝向所述待消融组织(340)设置的保护鞘面(1130);其中,所述电极面(1110)位于保护鞘面(1130)靠近所述待消融组织(340)的一侧。
  11. 根据权利要求10所述的消融装置,其中,所述第一电极(111)为多个,多个所述第一电极(111)沿所述第一电极端头(110)的延伸方向间隔布置;多个所述第一电极(111)的电极面(1110)与所述保护鞘面(1130)之间的最小距离均相同。
  12. 根据权利要求10或11所述的消融装置,其中,所述电极面(1110)和所述保护鞘面(1130)均为平面。
  13. 根据权利要求6至12中任一项所述的消融装置,其中,所述定位件(117)为吸盘结构。
  14. 根据权利要求1至13中任一项所述的消融装置,其中,所述第一电极端头(110)包括第一保护鞘(113),所述第一电极(111)的至少部分设置在所述第一保护鞘(113)内;
    所述第一电极(111)为多个,多个所述第一电极(111)沿所述第一电极端头(110)的延伸方向间隔布置;多个所述第一电极(111)中的至少一个所述第一电极(111)上设置有用于供冷却流体流通的冷却孔(114);和/或
    所述第一保护鞘(113)内设置有供冷却流体流通的冷却管道。
  15. 根据权利要求14所述的消融装置,其中,多个所述第一电极(111)中的至少一个所述第一电极(111)上设置有1至4个所述冷却孔(114)。
  16. 根据权利要求1至15中任一项所述的消融装置,其中,所述第一电极端头(110)包括第一磁性件(112),所述第二电极端头(210)包括第二磁性件(212),所述第一磁性件(112)和所述第二磁性件(212)相配合,以使所述第一电极端头(110)和所述第二电极端头(210)相对固定。
  17. 根据权利要求16所述的射频消融设备,其中,所述第一磁性件(112)和所述第二磁性件(212)相互吸合。
  18. 根据权利要求16或17所述的消融装置,其中,所述第一磁性件(112)和所述第二磁性件(212)均为多个,所述第一电极端头(110)和所述第二电极端头(210)均为条形,多个所述第一磁性件(112)沿所述第一电极端头(110)的延伸方向间隔布置,多个所述第二磁性件(212)沿所述第二电极端头(210)的延伸方向间隔布置。
  19. 根据权利要求18所述的消融装置,其中,所述第一电极(111)和所述第二电极(211)均为多个,多个所述第一磁性件(112)与多个所述第一电极(111)交错间隔设置,多个所述第二磁性件(212)与多个所述第二电极(211)交错间隔设置。
  20. 根据权利要求19所述的消融装置,其中,相邻的所述第一电极(111)与所述 第一磁性件(112)之间绝缘设置,相邻的所述第二电极(211)与所述第二磁性件(212)之间绝缘设置。
  21. 根据权利要求19或20所述的消融装置,其中,相邻的所述第一电极(111)与所述第一磁性件(112)之间的相对表面均喷涂有绝缘漆,或者相邻的所述第一电极(111)与所述第一磁性件(112)之间设置有绝缘隔板;相邻的所述第二电极(211)与所述第二磁性件(212)之间的相对表面均喷涂有绝缘漆,或者,相邻的所述第二电极(211)与所述第二磁性件(212)之间设置有绝缘隔板。
  22. 根据权利要求17至20中任一项所述的消融装置,其中,所述第一磁性件(112)与所述第二磁性件(212)的外表面均包覆有绝缘层。
  23. 根据权利要求17至22中任一项所述的消融装置,其中,所述第一电极(111)、所述第一磁性件(112)、所述第二电极(211)以及所述第二磁性件(212)均与独立的通电电路连接,以进行单独控制。
  24. 根据权利要求1至23中任一项所述的消融装置,其中,所述第一电极(111)为多个,两个所述第一电极(111)的通电电路独立设置以形成标测电极对,以利用所述通电电路检测消融后的待消融组织(340)的电信号传递情况;和/或,所述第二电极(211)为多个,两个所述第二电极(211)的通电电路独立设置以形成标测电极对,以利用所述通电电路检测消融后的待消融组织(340)的电信号传递情况;和/或,所述第一电极(111)和所述第二电极(211)的通电电路独立设置以形成标测电极对,以利用所述通电电路检测待消融组织(340)消融后的电信号传递情况。
  25. 根据权利要求1至24中任一项所述的消融装置,其中,所述第一电极端头(110)和所述第二电极端头(210)均为多个。
  26. 根据权利要求1至25中任一项所述的消融装置,其中,所述第二电极端头(210)包括第二保护鞘(214),所述第二电极(211)设置在所述第二保护鞘(214)上;
    所述第二电极(211)由金属材料制成,所述金属材料包括以下材料中的至少一 种:铂金、铂依合金、钽、镀金铍青铜;和/或,
    所述第二保护鞘(214)由显影材料制成,所述显影材料的成分包括硫酸钡。
  27. 根据权利要求26所述的消融装置,其中,所述第二电极(211)沿所述第二保护鞘(214)的延伸方向间隔设置,套设在第二保护鞘(214)上,并且使电极表面高于第二保护鞘(214)的表面。
  28. 根据权利要求1至27中任一项所述的消融装置,其中,所述第一电极端头(110)包括第一保护鞘(113),所述第一保护鞘(113)的相对两侧均设置有遮挡侧檐(115)。
  29. 一种射频消融设备,包括射频主机(310)和与所述射频主机(310)连接的消融装置,其中,所述消融装置为权利要求1至28中任一项所述的消融装置。
  30. 根据权利要求31所述的射频消融设备,其中,所述射频主机(310)与所述第一电极(111)和所述第二电极(211)均连接,以检测所述第一电极(111)和所述第二电极(211)之间的阻抗,并根据所检测的阻抗信息调整所述第一电极(111)和所述第二电极(211)之间的射频功率。
PCT/CN2021/132339 2021-01-08 2021-11-23 消融装置和射频消融设备 WO2022148152A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110026546.4A CN114748153A (zh) 2021-01-08 2021-01-08 消融装置和射频消融设备
CN202120055067.0U CN216090742U (zh) 2021-01-08 2021-01-08 射频消融设备
CN202120055067.0 2021-01-08
CN202110026546.4 2021-01-08

Publications (1)

Publication Number Publication Date
WO2022148152A1 true WO2022148152A1 (zh) 2022-07-14

Family

ID=82357149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132339 WO2022148152A1 (zh) 2021-01-08 2021-11-23 消融装置和射频消融设备

Country Status (1)

Country Link
WO (1) WO2022148152A1 (zh)

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5680860A (en) * 1994-07-07 1997-10-28 Cardiac Pathways Corporation Mapping and/or ablation catheter with coilable distal extremity and method for using same
US5823955A (en) * 1995-11-20 1998-10-20 Medtronic Cardiorhythm Atrioventricular valve tissue ablation catheter and method
US20030045871A1 (en) * 2001-08-31 2003-03-06 Jain Mudit K. Ablation system with selectable current path means
CN1494931A (zh) * 2002-05-07 2004-05-12 �Ϳ���ҽҩ��˾ 运行具有双能源的消融发生器的系统
US20040102769A1 (en) * 2002-11-26 2004-05-27 Yitzhack Schwartz Ultrasound pulmonary vein isolation
CN2875353Y (zh) * 2006-03-23 2007-03-07 迈德医疗科技(上海)有限公司 一种射频消融系统
US20090124847A1 (en) * 2007-11-12 2009-05-14 John Richard Doty Combined endocardial and epicardial magnetically coupled ablation device
US20100274238A1 (en) * 2009-04-22 2010-10-28 Klimovitch Gleb V Method and apparatus for radiofrequency ablation with increased depth and/or decreased volume of ablated tissue
CN102274075A (zh) * 2011-05-03 2011-12-14 上海微创电生理医疗科技有限公司 用于热致肾神经调节的多极点状电极导管
CN104414738A (zh) * 2013-08-21 2015-03-18 韦伯斯特生物官能(以色列)有限公司 用于双极消融的适应性电极
CN204814163U (zh) * 2015-01-26 2015-12-02 深圳市信立泰生物医疗工程有限公司 一种肾神经标测和消融导管及系统
CN206910394U (zh) * 2017-01-18 2018-01-23 郑州金港医疗器械有限公司 多电极同步治疗的射频消融仪
CN207627398U (zh) * 2017-05-15 2018-07-20 南京医科大学第一附属医院 双极射频消融转接盒
US20180235689A1 (en) * 2007-01-12 2018-08-23 Atricure, Inc. Ablation system, clamp and method of use
CN208892765U (zh) * 2018-06-14 2019-05-24 贵州省人民医院 一种治疗房颤的射频消融导管
CN210056212U (zh) * 2019-05-14 2020-02-14 江苏省人民医院(南京医科大学第一附属医院) 一种双极射频消融系统
CN210872018U (zh) * 2019-09-24 2020-06-30 上海君联医疗设备有限公司 带可控磁极的射频消融导管
CN215349406U (zh) * 2021-01-08 2021-12-31 北京迈迪顶峰医疗科技股份有限公司 消融装置和射频消融设备
CN215349403U (zh) * 2021-01-08 2021-12-31 北京迈迪顶峰医疗科技股份有限公司 消融装置和射频消融设备
CN215349405U (zh) * 2021-01-08 2021-12-31 北京迈迪顶峰医疗科技股份有限公司 电极组件、消融装置和射频消融设备
CN215349402U (zh) * 2021-01-08 2021-12-31 北京迈迪顶峰医疗科技股份有限公司 消融装置和射频消融设备
CN215349404U (zh) * 2021-01-08 2021-12-31 北京迈迪顶峰医疗科技股份有限公司 消融装置和射频消融设备

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5680860A (en) * 1994-07-07 1997-10-28 Cardiac Pathways Corporation Mapping and/or ablation catheter with coilable distal extremity and method for using same
US5823955A (en) * 1995-11-20 1998-10-20 Medtronic Cardiorhythm Atrioventricular valve tissue ablation catheter and method
US20030045871A1 (en) * 2001-08-31 2003-03-06 Jain Mudit K. Ablation system with selectable current path means
CN1494931A (zh) * 2002-05-07 2004-05-12 �Ϳ���ҽҩ��˾ 运行具有双能源的消融发生器的系统
US20040102769A1 (en) * 2002-11-26 2004-05-27 Yitzhack Schwartz Ultrasound pulmonary vein isolation
CN2875353Y (zh) * 2006-03-23 2007-03-07 迈德医疗科技(上海)有限公司 一种射频消融系统
US20180235689A1 (en) * 2007-01-12 2018-08-23 Atricure, Inc. Ablation system, clamp and method of use
US20090124847A1 (en) * 2007-11-12 2009-05-14 John Richard Doty Combined endocardial and epicardial magnetically coupled ablation device
US20100274238A1 (en) * 2009-04-22 2010-10-28 Klimovitch Gleb V Method and apparatus for radiofrequency ablation with increased depth and/or decreased volume of ablated tissue
CN102274075A (zh) * 2011-05-03 2011-12-14 上海微创电生理医疗科技有限公司 用于热致肾神经调节的多极点状电极导管
CN104414738A (zh) * 2013-08-21 2015-03-18 韦伯斯特生物官能(以色列)有限公司 用于双极消融的适应性电极
CN204814163U (zh) * 2015-01-26 2015-12-02 深圳市信立泰生物医疗工程有限公司 一种肾神经标测和消融导管及系统
CN206910394U (zh) * 2017-01-18 2018-01-23 郑州金港医疗器械有限公司 多电极同步治疗的射频消融仪
CN207627398U (zh) * 2017-05-15 2018-07-20 南京医科大学第一附属医院 双极射频消融转接盒
CN208892765U (zh) * 2018-06-14 2019-05-24 贵州省人民医院 一种治疗房颤的射频消融导管
CN210056212U (zh) * 2019-05-14 2020-02-14 江苏省人民医院(南京医科大学第一附属医院) 一种双极射频消融系统
CN210872018U (zh) * 2019-09-24 2020-06-30 上海君联医疗设备有限公司 带可控磁极的射频消融导管
CN215349406U (zh) * 2021-01-08 2021-12-31 北京迈迪顶峰医疗科技股份有限公司 消融装置和射频消融设备
CN215349403U (zh) * 2021-01-08 2021-12-31 北京迈迪顶峰医疗科技股份有限公司 消融装置和射频消融设备
CN215349405U (zh) * 2021-01-08 2021-12-31 北京迈迪顶峰医疗科技股份有限公司 电极组件、消融装置和射频消融设备
CN215349402U (zh) * 2021-01-08 2021-12-31 北京迈迪顶峰医疗科技股份有限公司 消融装置和射频消融设备
CN215349404U (zh) * 2021-01-08 2021-12-31 北京迈迪顶峰医疗科技股份有限公司 消融装置和射频消融设备

Similar Documents

Publication Publication Date Title
EP3831442A1 (en) Using reversible electroporation on cardiac tissue
CN109661210B (zh) 不可逆电穿孔设备
US10786304B2 (en) Temperature measurement in catheter
US20170172679A1 (en) Magnetically coupling devices for mapping and/or ablating
US20130096549A1 (en) Method and apparatus for precisely controlling the size and shape of radiofrequency ablations
CN101389283A (zh) 消融工具及相关方法
JP2001526554A (ja) 多数個電極式焼灼カテーテル
CN215349405U (zh) 电极组件、消融装置和射频消融设备
WO2019228928A1 (en) Electrosurgical instrument
WO2022148152A1 (zh) 消融装置和射频消融设备
EP3801325B1 (en) Electrosurgical instrument
WO2022148151A1 (zh) 电极组件、消融装置和射频消融设备
CN215349403U (zh) 消融装置和射频消融设备
CN215349406U (zh) 消融装置和射频消融设备
WO2022148161A1 (zh) 电极组件、消融装置和射频消融设备
CN216090742U (zh) 射频消融设备
EP3431029A1 (en) Ablation power supply
WO2022148156A1 (zh) 电极组件、消融装置和射频消融设备
WO2022148159A1 (zh) 电极组件、消融装置和射频消融设备
CN215349402U (zh) 消融装置和射频消融设备
WO2022148155A1 (zh) 电极组件、消融装置和射频消融设备
JP2022024987A (ja) 接触力センサ及び温度センサを有する焦点カテーテルを用いた不可逆的エレクトロポレーションアブレーションの制御
WO2022148153A1 (zh) 电极组件、消融装置和射频消融设备
CN216090743U (zh) 射频消融设备
CN114748153A (zh) 消融装置和射频消融设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917193

Country of ref document: EP

Kind code of ref document: A1