WO2022148161A1 - 电极组件、消融装置和射频消融设备 - Google Patents

电极组件、消融装置和射频消融设备 Download PDF

Info

Publication number
WO2022148161A1
WO2022148161A1 PCT/CN2021/132465 CN2021132465W WO2022148161A1 WO 2022148161 A1 WO2022148161 A1 WO 2022148161A1 CN 2021132465 W CN2021132465 W CN 2021132465W WO 2022148161 A1 WO2022148161 A1 WO 2022148161A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
protective sheath
ablation
electrodes
suction
Prior art date
Application number
PCT/CN2021/132465
Other languages
English (en)
French (fr)
Inventor
周庆亮
张海波
王宇
马志伟
马帅
孟坚
Original Assignee
北京迈迪顶峰医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110026571.2A external-priority patent/CN114748157A/zh
Priority claimed from CN202120046540.9U external-priority patent/CN215349404U/zh
Application filed by 北京迈迪顶峰医疗科技股份有限公司 filed Critical 北京迈迪顶峰医疗科技股份有限公司
Publication of WO2022148161A1 publication Critical patent/WO2022148161A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current

Definitions

  • the present disclosure is based on a Chinese patent application with an application number of 202110026571.2, an application date of January 8, 2021, and a public name of "electrode assembly, ablation device and radiofrequency ablation device” and an application number of 202120046540.9, and the application date of January 2021.
  • a Chinese patent application titled “ablation device and radiofrequency ablation device” was published as the basis, and priority was claimed, and the disclosure of the Chinese patent application is hereby incorporated into the present disclosure as a whole.
  • the present disclosure relates to the field of medical devices, and in particular, to an electrode assembly, an ablation device, and a radiofrequency ablation device.
  • Ablation is a common measure for the treatment of atrial fibrillation.
  • the principle is to create one or more ablation lines in the heart tissue, causing tissue necrosis and cutting off abnormal electrical signal conduction for the treatment of atrial fibrillation.
  • Surgical ablation is characterized by excellent curative effect and low postoperative recurrence rate, but its obvious shortcomings are large trauma and slow postoperative recovery.
  • Medical interventional ablation is favored by more and more patients because of its small trauma and fast recovery, but medical ablation is point ablation, and its biggest drawback is that it is difficult to form a complete ablation line; Wall work, the ablation depth is limited, and it is difficult to ensure complete dehydration and degeneration of the tissue from the inside to the outside.
  • the ablation power is small and the ablation is not complete, but the power is high and it is difficult to control. There are excessive ablation tissue necrosis or even burning through and leakage. Therefore, the success rate of medical interventional ablation is much lower than that of surgery.
  • the main purpose of the present disclosure is to provide an electrode assembly, an ablation device and a radiofrequency ablation device, so as to solve the problems in the prior art that the ablation device is not firmly attached to the tissue to be ablated, the tissue to be ablated is easily detached, and the ablation effect is not ideal .
  • a first aspect of the present disclosure provides an electrode assembly including a first electrode tip, the first electrode tip comprising:
  • the first electrode is disposed in the first protective sheath
  • the first magnetic member is disposed in the first protective sheath, so as to position the first electrode tip through the first magnetic member;
  • the first protective sheath is provided with a first avoidance opening for avoiding the first electrode and a second avoidance opening for avoiding the first magnetic member.
  • the part of the first electrode The structure protrudes from the first avoidance opening to the outside of the first protective sheath, and a part of the structure of the first magnetic member extends from the second avoidance opening to the outside of the first protective sheath.
  • the first protective sheath is strip-shaped, the first electrodes and the first magnetic members are both a plurality, a plurality of the first electrodes and a plurality of the first
  • the magnetic parts are alternately arranged in sequence along the extending direction of the first protective sheath; the first avoidance openings and the second avoidance openings are multiple, and the first avoidance openings and the first electrodes are multiple They are arranged in a one-to-one correspondence; a plurality of the second avoidance openings are arranged in a one-to-one correspondence with a plurality of the first magnetic pieces.
  • a plurality of the first electrodes and a plurality of the first magnetic members are arranged alternately and spaced apart.
  • the energization circuits of the first electrode and the first magnetic member are provided independently for individual control.
  • the first avoidance opening and the second avoidance opening communicate to form a strip-shaped opening together.
  • the first electrode and/or the first magnetic member is provided with a wire laying groove for laying wires, and the wires are used for connecting with the first electrode or the first magnetic element. Magnetic connection.
  • a wire laying groove for laying wires is provided on the inner wall of the first protective sheath, and the wires are used for connecting with the first electrode.
  • the electrode assembly includes:
  • a suction positioning member is disposed on the first protective sheath, so that the first protective sheath is positioned on the tissue to be ablated by the action of the suction positioning member;
  • the filler is arranged in the cavity of the first protective sheath, and at least a part of the filler is arranged in an inflatable and shrinkable manner, so that when the filler is inflated, the part of the first electrode is The structure extrudes the cavity of the first protective sheath through the first avoidance opening.
  • the suction and positioning member is a suction cup structure; and/or the filling member is a balloon structure.
  • the suction positioning member includes a suction inner wall and a suction outer wall, and a suction cavity is formed between the suction inner wall and the suction outer wall, and a suction cavity is formed between the suction inner wall and the suction outer wall.
  • the first suction port and the second suction port are in communication, and the first suction port and the second suction port have the same orientation.
  • the suction inner wall and the suction inner wall are both U-shaped structures, and the suction inner wall and the suction outer wall are arranged around the first protective sheath.
  • the first protective sheath is made of a flexible material; and/or there are multiple first electrode ends.
  • a second aspect of the present disclosure provides an ablation device, comprising a first electrode assembly and a second electrode assembly, wherein the first electrode assembly is the electrode assembly described in the first aspect of the disclosure, and the second electrode assembly including a second electrode tip, the second electrode tip including a second electrode, the second electrode and the first electrode are disposed opposite to the first electrode and the second electrode pair are located on the The tissue to be ablated between the first electrode and the second electrode is ablated.
  • the second electrode tip includes a second magnetic member, and the second magnetic member cooperates with the first magnetic member, so that the first electrode tip and the The second electrode ends are relatively fixed.
  • the first protective sheath is strip-shaped, both the first magnetic member and the second magnetic member are multiple, and a plurality of the first magnetic member and a plurality of the The second magnetic members are arranged in cooperation with each other;
  • the second electrode tip includes a second electrode disposed opposite the first electrode so as to be located at the position by the first electrode and the second electrode pair performing ablation at the site to be ablated between the first electrode and the second electrode;
  • the first electrodes and the second electrodes are multiple, and the multiple first electrodes and the multiple second electrodes are arranged in cooperation with each other; the number of the first avoidance openings is multiple, and the multiple The first avoidance openings are arranged in a one-to-one correspondence with the plurality of first electrodes.
  • the ablation device further comprises:
  • an ablation circuit on which both the first electrode and the second electrode are disposed to adjust the first electrode and the second electrode by testing the impedance between the first electrode and the corresponding second electrode radiofrequency energy between the second electrodes to perform ablation.
  • a third aspect of the present disclosure provides a radio frequency ablation device, including a radio frequency host and an ablation device connected to the radio frequency host, wherein the ablation device is the ablation device described in the second aspect of the present disclosure.
  • the electrode assembly includes a first electrode tip, the first electrode tip includes a first protective sheath, a first electrode and a first magnetic member disposed in the first protective sheath, and the first magnetic member
  • the first electrode tip can be positioned; the first protective sheath is provided with a first avoidance opening for avoiding the first electrode, so that the partial structure of the first electrode extends from the first avoidance opening to the first protective sheath
  • this part of the electrode structure extending out of the first protective sheath can be in contact with the corresponding part to be ablated, so that this part of the electrode structure directly acts on the corresponding part to be ablated.
  • the electrode located in the first protective sheath The structure also acts on the corresponding part to be ablated, thereby ensuring that the first electrode can better act on the corresponding part to be ablated, ensuring the ablation effect and improving the ablation efficiency;
  • the first protective sheath is also provided with a device for performing a The second avoidance opening for avoidance, the part of the structure of the first magnetic member extends from the second avoidance opening to the outside of the first protective sheath, and the part of the first magnetic member extending outside the first protective sheath can be in direct contact with the part to be fixed
  • the first magnetic member located in the first protective sheath also cooperates with the part to be fixed, so that the positioning effect between the first protective sheath and the part to be fixed is more stable, which helps to make the first electrode stably Ablation is performed to ensure the ablation effect; it can be seen that the use of the electrode assembly can solve the problem that the ablation effect of the ablation device in the prior art is not ideal.
  • FIG. 1 shows a schematic structural diagram of an electrode assembly (first electrode assembly) of an optional ablation device according to the present disclosure
  • FIG. 2 shows an internal perspective structural view of an embodiment of the first electrode assembly in FIG. 1;
  • FIG. 3 shows a cross-sectional view of the first electrode assembly in FIG. 2;
  • Figure 4 shows a cross-sectional view of another embodiment of the first electrode assembly in Figure 1;
  • FIG. 5 shows a schematic structural diagram of the shielding side eaves of the first electrode assembly in FIG. 1;
  • FIG. 6 shows a schematic diagram of the structural arrangement of the first electrode assembly in FIG. 1 with fillers
  • FIG. 7 shows a schematic structural diagram of a second electrode assembly of an optional ablation device according to the present disclosure
  • FIG. 8 shows a partial enlarged view of the second electrode assembly of the ablation device of FIG. 7;
  • FIG. 9 shows an enlarged view of part A of the second electrode assembly of the ablation device of FIG. 8;
  • FIG. 10 shows a schematic structural diagram of a radio frequency host of an optional radio frequency ablation device according to the present disclosure
  • FIG. 11 shows an assembly diagram between a radio frequency host and an ablation device of an optional radio frequency ablation device according to the present disclosure
  • FIG. 12 shows a schematic diagram of the ablation device in the present disclosure when the tissue to be ablated is ablated
  • FIG. 13 shows a diagram of the cooperation between the first electrode and the second electrode and the tissue to be ablated in an embodiment of the ablation device in the present disclosure
  • FIG. 14 shows a schematic diagram of ablation in one state of the ablation device of the present disclosure
  • FIG. 15 shows an ablation schematic diagram of another state of the ablation device of the present disclosure
  • FIG. 16 shows a schematic diagram of the wiring between the radio frequency host and the first electrode assembly and the second electrode assembly of the radio frequency ablation device of the present disclosure
  • FIG. 17 shows a schematic structural diagram of the second embodiment of the first electrode assembly of the ablation device of the present disclosure
  • FIG. 18 shows a schematic structural diagram of the second embodiment of the second electrode assembly of the ablation device of the present disclosure
  • FIG. 19 shows a diagram of the cooperation between the first electrode and the second electrode and the tissue to be ablated in another embodiment of the ablation device of the present disclosure.
  • a first electrode assembly comprising
  • suction and positioning member 1171, suction inner wall; 1172, suction outer wall; 1173, suction cavity;
  • a second electrode assembly 200.
  • radio frequency host 311, ablation interface; 312, electromagnetic interface; 313, display screen; 320, ablation circuit; 330, ablation range; 340, tissue to be ablated.
  • the electrode assembly (also referred to as a first electrode assembly) includes a first electrode tip 110 , and the first electrode tip 110 includes a first protective sheath 113 , a second electrode An electrode 111 and a first magnetic member 112.
  • the first electrode 111 is disposed in the first protective sheath 113; 110 for positioning; wherein, the first protective sheath 113 is provided with a first avoidance opening for avoiding the first electrode 111 and a second avoidance opening for avoiding the first magnetic member 112.
  • the part of the first electrode 111 The structure extends from the first avoidance opening to the outside of the first protective sheath 113 , and a part of the structure of the first magnetic member 112 extends from the second avoidance opening to the outside of the first protective sheath 113 .
  • the first electrode assembly includes a first electrode tip 110 , the first electrode tip 110 includes a first protective sheath 113 and the first electrodes 111 and The first magnetic member 112 can position the first electrode tip 110 through the first magnetic member 112; the first protective sheath 113 is provided with a first avoidance opening for avoiding the first electrode 111, so that the first electrode 111 can be avoided.
  • the part of the electrode structure that protrudes from the outside of the first protective sheath 113 can be in contact with the corresponding part to be ablated, so that this part of the electrode structure directly It acts on the corresponding part to be ablated, and at the same time, the electrode structure located in the first protective sheath 113 also acts on the corresponding part to be ablated, thereby ensuring that the first electrode 111 can better act on the corresponding part to be ablated, ensuring the ablation effect.
  • the first protective sheath 113 is also provided with a second avoidance opening for avoiding the first magnetic member 112, and part of the structure of the first magnetic member 112 extends from the second avoidance opening to the first protective sheath 113
  • the part of the first magnetic member 112 extending out of the first protective sheath 113 can directly contact the part to be fixed, and at the same time, the first magnetic member 112 located in the first protective sheath 113 also cooperates with the part to be fixed.
  • the positioning effect between the first protective sheath 113 and the component to be fixed is more stable, which helps to stably perform the ablation of the first electrode 111 to ensure the ablation effect; it can be seen that the use of the first electrode assembly can solve the problem of existing The ablation effect of the medical interventional ablation device in the technology is not ideal.
  • the first protective sheath 113 is strip-shaped, there are multiple first electrodes 111 , and the plurality of first electrodes 111 are arranged at intervals along the extending direction of the first protective sheath 113 ;
  • Each of the first electrodes 111 acts on the corresponding part to be ablated at the same time to form a complete ablation line, ensuring the ablation effect and improving the ablation efficiency; and arranging the plurality of first electrodes 111 at intervals can avoid two adjacent second electrodes 111 .
  • An electrode 111 interacts with each other.
  • the first protective sheath 113 is tubular, and the plurality of first electrodes 111 are disposed in the lumen of the first protective sheath 113 .
  • each first magnetic member 112 is used to separate the corresponding two first electrodes 111 .
  • the plurality of first magnetic members 112 are all disposed in the lumen of the first protective sheath 113 .
  • first avoidance openings There are a plurality of first avoidance openings, and the plurality of first avoidance openings are provided in a one-to-one correspondence with the plurality of first electrodes 111 , so that a part of the structure of each first electrode 111 extends from the corresponding first avoidance opening to the first protection Outer side of sheath 113 .
  • each first magnetic member 112 extends from the corresponding second avoidance opening to the first magnetic member 112 .
  • a protective sheath 113 on the outside.
  • the plurality of first electrodes 111 and the plurality of first magnetic members 112 are arranged alternately and spaced apart.
  • the energization circuits of the first electrode 111 and the first magnetic member 112 are independently set for independent control.
  • the first avoidance opening and the second avoidance opening communicate to form a bar-shaped opening together.
  • the first electrode 111 and/or the first magnetic member 112 are provided with wire laying grooves 120 for accommodating wires, and the wires are used to connect with the first electrode 111 or the first magnetic member 112;
  • a wire laying groove 120 for laying wires is provided on the inner wall of the first protective sheath 113 .
  • the first electrode assembly further includes a suction positioning member 117, and the suction positioning member 117 is disposed on the first protective sheath 113, so that the first protective sheath 113 is positioned on the to-be-to-be-positioned by the suction positioning member 117. Tissue 340 is ablated.
  • the suction positioning members 117 are arranged in pairs, and each pair of suction positioning members 117 works relatively independently during operation, that is, the number of suction positioning members to work can be determined according to actual needs.
  • the suction positioning member 117 is a suction cup structure.
  • the suction positioning member 117 includes a suction inner wall 1171 and a suction outer wall 1172 , and a suction cavity 1173 is formed between the suction inner wall 1171 and the suction outer wall 1172 , and a suction cavity 1173 is formed between the suction inner wall 1171 and the suction outer wall 1172 .
  • the first suction port 1174 and the second suction port 1175 communicate with the suction cavity 1173 , and the orientation of the first suction port 1174 and the second suction port 1175 is the same.
  • Both the suction inner wall 1171 and the suction inner wall 1171 are U-shaped structures, and the suction inner wall 1171 and the suction outer wall 1172 are arranged around the first protective sheath 113 .
  • the suction positioning member 117 further includes an airflow channel 1176 , and the air outlet end of the airflow channel 1176 is communicated with the suction cavity 1173 , so as to fill and draw air into the suction cavity 1173 through the airflow channel 1176 .
  • an arrangement of the plurality of suction positioning members 117 is as follows: the plurality of suction positioning members 117 are arranged at intervals along the extending direction of the first protective sheath 113 , so that the first protective sheath 113 is stably positioned on the On the tissue 340 to be ablated, the positioning effect of the first protective sheath 113 is guaranteed.
  • another arrangement of the multiple suction positioning members 117 is: as shown in FIG. 2 , the multiple suction positioning members 117 are arranged in pairs, and the paired two suction positioning members 117 are respectively They are arranged on opposite sides of the first protective sheath 113 to ensure a good fit between both sides of the first protective sheath 113 and the tissue to be ablated, so that the corresponding first electrodes 111 can better act on The corresponding ablated tissue ensures the ablation effect.
  • a plurality of pairs of suction positioning members 117 are arranged at intervals along the extending direction of the first protective sheath 113, so that the first protective sheath 113 is stably positioned on the tissue 340 to be ablated, so as to ensure the positioning effect of the first protective sheath 113, thereby ensuring the first protective sheath 113.
  • the overall fit between the protective sheath 113 and the tissue to be ablated is such that each first electrode 111 can better act on the corresponding tissue to be ablated, thereby ensuring the ablation effect.
  • the first electrode assembly further includes a filler 116 , the filler 116 is disposed in the cavity of the first protective sheath 113 , and at least a part of the filler 116 is configured to be expandable and contractible, so that when the filler 116 expands At this time, the first electrode 111 is squeezed, and under the squeeze action, part of the structure of the first electrode 111 is pushed out of the cavity of the first protective sheath 113 through the first avoidance opening.
  • a structural form of the filling member 116 is: as shown in FIG. 6 , the filling member 116 is a strip shape, and the filling member 116 extends along the extending direction of the first protective sheath 113 .
  • the filler 116 is an airbag structure, so as to form a pressing effect on the plurality of first electrodes 111 when the airbag structure is inflated and expanded.
  • the fillers 116 work relatively independently during operation, that is, the number of fillers to work can be determined according to actual needs.
  • another structural form of the filler 116 is: there are multiple fillers 116, and the multiple fillers 116 are arranged at intervals along the extending direction of the first protective sheath 113;
  • the electrodes 111 are arranged in a one-to-one correspondence, so that each filler 116 can form a pressing effect on the corresponding first electrode 111 ;
  • each filler 116 is arranged on the side of the corresponding first electrode 111 away from the tissue 340 to be ablated , so that when each filler 116 forms a pressing effect on the corresponding first electrode 111 , each first electrode 111 moves in a direction close to the corresponding tissue 340 to be ablated.
  • each filling member 116 is an airbag structure, so that when the airbag structure is inflated and inflated, the corresponding first electrode 111 is squeezed.
  • the first protective sheath 113 is made of a flexible material; and/or there are multiple first electrode terminals 110 .
  • the present disclosure also provides an ablation device, the ablation device includes a first electrode assembly 100 and a second electrode assembly 200, the first electrode assembly 100 is the above-mentioned first electrode assembly, and the first electrode assembly 100 includes a first electrode tip 110, the first electrode tip 110 includes a first electrode 111, the second electrode assembly 200 includes a second electrode tip 210, the second electrode tip 210 includes a second electrode 211, and the second electrode 211 is disposed opposite to the first electrode 111 , so as to ablate the tissue to be ablated 340 located between the first electrode 111 and the second electrode 211 through the first electrode 111 and the second electrode 211 .
  • the second electrode assembly 200 further includes a second magnetic member 212 , and the plurality of second electrodes 211 and the plurality of second magnetic members 212 are alternately arranged in sequence along the extending direction of the first electrode tip 110 .
  • the first magnetic member 112 of the first electrode assembly 100 cooperates with the second magnetic member 212 so that the first electrode end 110 and the second electrode end 210 of the first electrode assembly 100 are relatively fixed.
  • first electrodes 111 and second electrodes 211 there are multiple first electrodes 111 and second electrodes 211 , there are multiple first magnetic members 112 and second magnetic members 212 , and multiple first magnetic members 112 and multiple first electrodes 111 are staggered.
  • the plurality of second magnetic elements 212 and the plurality of second electrodes 211 are alternately arranged at intervals.
  • the adjacent first electrodes 111 and the first magnetic members 112 are provided in insulation, and the adjacent second electrodes 211 and the second magnetic members 212 are provided in insulation.
  • the opposite surfaces between the adjacent first electrodes 111 and the first magnetic members 112 are sprayed with insulating paint, or an insulating spacer is provided between the adjacent first electrodes 111 and the first magnetic members 112
  • the opposite surfaces between the adjacent second electrodes 211 and the second magnetic members 212 are all sprayed with insulating paint, or an insulating separator is provided between the adjacent second electrodes 211 and the second magnetic members 212 .
  • the insulating baffle and the first protective sheath 113 are integrally designed or separately fixed.
  • the outer surfaces of the first magnetic member 112 and the second magnetic member 212 are covered with insulating layers.
  • the first electrode 111 , the first magnetic member 112 of the first electrode assembly 100 , the second electrode 211 , and the second magnetic member 212 are all connected to independent energization circuits for individual control.
  • the plurality of first electrodes, the second electrodes, the first magnetic member, and the second magnetic member can work independently, so that the magnetism can be adjusted, and the number of the first electrodes for ablation can be adjusted.
  • Two adjacent first electrodes or second electrodes may form an ablation electrode pair to achieve an ablation function.
  • first electrodes 111 there are multiple first electrodes 111, and the energization circuits of the two first electrodes 111 are independently set to form a mapping electrode pair, so as to use the energization circuits to detect the transmission of electrical signals of the tissue to be ablated 340 after ablation; And/or, there are multiple second electrodes 211, and the energization circuits of the two second electrodes 211 are independently set to form a mapping electrode pair, so as to use the energization circuits to detect the electrical signal transmission of the tissue 340 to be ablated after ablation; and/or Or, the energization circuits of the first electrode 111 and the second electrode 211 are independently set to form a mapping electrode pair, so as to use the energization circuit to detect the transmission of electrical signals after the ablation of the tissue 340 to be ablated.
  • mapping the polarities of the two first electrodes 111 forming the mapping electrode pair are different, and the voltage across the voltage is set to form a current, thereby realizing mapping; the polarities of the two second electrodes 211 forming the mapping electrode pair are different, Set across voltage to form current, and then realize mapping; the polarities of the first electrode and the second electrode that form the pair of mapping electrodes are different, and set across voltage to form current, and then realize mapping
  • both the first electrode tip 110 and the second electrode tip 210 of the first electrode assembly 100 are multiple.
  • the ablation device further includes an ablation circuit 320 , and the first electrode 111 and the second electrode 211 are both disposed on the ablation circuit 320 to adjust the impedance by testing the impedance between the first electrode 111 and the corresponding second electrode 211 Ablation is performed by radio frequency energy between the first electrode 111 and the second electrode 211 .
  • the first electrode assembly 100 and the second electrode assembly 200 are used as epicardial electrodes and endocardial electrodes, respectively, so that the first electrode assembly 100 and the second electrode assembly 200 act on the epicardium and the heart, respectively membrane to achieve simultaneous epicardium and endocardium ablation for good ablation results.
  • the ablation device in the present disclosure can realize hybrid ablation of internal and surgical techniques. This technique has little trauma, which solves the problems of large trauma and slow recovery in the prior art for surgical ablation. Simultaneous ablation adjusts the output power by testing the actual impedance between tissues, which is accurate and safe, and the machine alarms when the impedance reaches a certain resistance value to complete the ablation to avoid excessive ablation.
  • the impedance between the first electrode 111 and the second electrode 211 can be tested in real time, and according to the real-time detection of the impedance between the first electrode 111 and the second electrode 211 Impedance to adjust the radio frequency energy between the first electrode 111 and the second electrode 211 for ablation, and after the impedance reaches a certain resistance value, the machine alarms that the ablation is completed, to avoid excessive ablation, to solve the unilateral ablation depth of the interventional ablation in the prior art It is limited and difficult to ensure the complete dehydration and degeneration of the tissue from the inside to the outside. At the same time, it solves the problem that the radio frequency power is not easy to control. Low power will cause incomplete ablation, and excessive power will cause excessive ablation, tissue necrosis or even burn through and leakage. Phenomenon.
  • the impedance of the tissue to be ablated between the electrodes changes from low to high; in the first stage of ablation, the impedance of the tissue to be ablated between the electrodes gradually increases, and the RF power remains unchanged to accelerate the intracellular molecules. Vibration; in the second stage of ablation, as the impedance of the ablated tissue between the electrodes increases, the radio frequency power gradually increases, and when the impedance of the ablated tissue between the electrodes increases to its first preset value, the radio frequency power It also increases to its preset maximum value.
  • the cells are rapidly dehydrated to produce irreversible changes; in the third stage of ablation, as the impedance of the ablated tissue between the electrodes continues to increase, the RF power gradually increases. It is decreased to ensure the completeness of ablation and prevent the phenomenon of scarring on the tissue surface or damage to the patient caused by the high power output of the radio frequency; until the impedance of the ablated tissue between the electrodes increases to its second preset value, the end of the ablation is prompted.
  • both the first electrodes 111 and the second electrodes 211 are multiple, and the multiple first electrodes 111 and the multiple second electrodes 211 are arranged in cooperation with each other; A plurality of first electrodes 111 and a plurality of second electrodes 211, so that the plurality of first electrodes 111 and the plurality of second electrodes 211 can act on their corresponding tissues at the same time, so as to enhance the ablation effect and improve the ablation efficiency.
  • the first electrode terminal 110 and the second electrode terminal 210 are both strip-shaped, the plurality of first electrodes 111 are arranged at intervals along the extending direction of the first electrode terminal 110 , and the plurality of second electrodes 211 are arranged along the extending direction of the first electrode terminal 110 .
  • the extension directions of the second electrode terminals 210 are arranged at intervals, and each of the first electrodes 111 and the corresponding second electrodes 211 are arranged in pairs; Corresponding tissue to form a complete ablation line to ensure the ablation effect; and the plurality of first electrodes 111 are arranged at intervals, and the plurality of second electrodes 211 are arranged at intervals, which can avoid the phase difference between two adjacent first electrodes 111.
  • the two adjacent second electrodes 211 influence each other.
  • the second electrode tip 210 includes a second magnetic member 212, and the first magnetic member 112 and the second magnetic member 212 are matched to make the first electrode tip 110 and the second electrode tip 210 relatively fixed. , so that the first electrodes 111 of the first electrode tip 110 can be disposed opposite to the corresponding second electrodes 211 of the second electrode tip 210 .
  • first magnetic members 112 there are multiple first magnetic members 112 , multiple second magnetic members 212 , the multiple first magnetic members 112 are arranged at intervals along the extending direction of the first electrode tip 110 , and the multiple second magnetic members 212 are arranged at intervals along the extending direction of the second electrode tip 210 to ensure the overall fixing effect between the first electrode tip 110 and the second electrode tip 210 .
  • the ablation device in this embodiment ablation principle of the tissue 340 to be ablated, and can reflect the ablation range 330 of the ablation device.
  • the first magnetic member 112 and the second magnetic member 212 work relatively independently, that is, the number of the magnetic members to work can be determined according to actual needs.
  • the magnetic force of the magnetic piece is controllable and adjustable, a small magnetic force is used in the initial positioning, and a large magnetic force is used in the final positioning, so that the inner and outer two electrode assemblies are flexible in the initial positioning and firm in the final positioning, so as to ensure the electrode assembly.
  • the first magnetic member 112 is an electromagnet; and/or the second magnetic member 212 is an electromagnet.
  • the opposite sides of the first protective sheath 113 are provided with shielding side eaves 115 to form shielding protection for the plurality of first electrodes 111 and the plurality of first magnetic members 112 inside the first protective sheath 113 . It can prevent the blood in the epicardial tissue from entering the area between the first protective sheath 113 and the epicardium during the ablation process and affect the tightness between the first protective sheath 113 and the epicardium, and avoid the first protective sheath 113 during ablation. The measurement accuracy of the resistance value between the electrode and the second electrode affects the ablation effect.
  • the shielding side eave 115 by setting the shielding side eave 115, the tissue fluid outside the ablation line and liquids such as physiological saline can be shielded from entering the ablation tissue, so as to avoid the measurement accuracy of the resistance value between the first electrode and the second electrode during ablation, thereby affecting the ablation effect.
  • the shielding side eave 115 is strip-shaped, and the shielding side eave 115 extends along the extending direction of the first protective sheath 113 .
  • the outer wall surface of the first protective sheath 113 is arc-shaped or polygonal.
  • the second electrode tip 210 includes a second protective sheath 214 , and the second electrode 211 is disposed on the second protective sheath 214 ; wherein the second electrode tip 210 includes The developing member 213, the developing member 213 is disposed on the second protective sheath 214, so as to mark the position of the second electrode end 210 by the developing member 213; and/or, the second electrode 211 is made of a metal developing material, and the metal developing material includes At least one of the following materials: platinum, platinum-based alloy, tantalum, gold-plated beryllium bronze; and/or, the second protective sheath 214 is made of a developing material, and the developing material is made of barium sulfate BaSO4.
  • the plurality of second magnetic members 212 and the plurality of second electrodes 211 are both sleeved on the second protective sheath 214 ; optionally, the plurality of second magnetic members 212 and the plurality of second electrodes 211 are The extending directions of the second protective sheaths 214 are arranged in a staggered manner, so that the plurality of second electrodes 211 are arranged at intervals, that is, each second magnetic member 212 is used to separate the corresponding two second electrodes 211 .
  • each pair of the first magnetic member 112 and the second magnetic member 212 works relatively independently, that is, the number of the magnetic members to work can be determined according to actual needs.
  • the magnetic force of the magnetic parts is controllable and adjustable.
  • a small magnetic force is used in the initial positioning, and a larger magnetic force is used in the final positioning, so that the inner and outer two electrode assemblies are flexible at the initial positioning and firm after the final positioning, so as to ensure the fit of the electrodes. , so as to ensure the ablation effect.
  • the plurality of second magnetic members 212 and the plurality of second electrodes 211 are all annular structures, or have cross-sectional structures such as polygonal, V-shaped, D-shaped, and arched.
  • the cross section of the second electrode 211 is a polygon, such as a square.
  • the developing member 213 , the second electrode 211 with a developing function, and the second protective sheath 214 with a developing function can indicate the position when the second electrode assembly 200 enters the ablation tissue.
  • the number of the developing members 213 on the second electrode end 210 is 3-6, and the number of the developing members 213 may be set independently or the second electrode 211 may have a developing function.
  • the outer walls of the developing member 213 and the second protective sheath 214 are flush to prevent damage to the patient during the operation.
  • the developing member 213 may be absent, or there may be multiple developing members 213, and the multiple developing members 213 are arranged at intervals along the extending direction of the second protective sheath 214; and/or, the outer surface of the second protective sheath 214
  • the first surface portion and the second surface portion connected to the first surface portion are formed by dividing into a portion corresponding to the developing member 213.
  • the first surface portion is a concave structure, and the developing member 213 is sleeved on the first surface portion.
  • the developing member 213 The outer surface is flush with the second surface portion or lower than the second surface portion.
  • the first electrode assembly 100 is first fixed on the epicardium through the positioning member, then the second electrode assembly 200 enters the heart, and the second electrode assembly 200 is placed in the endocardium through the indication of the developing member 213.
  • the tissue corresponding to the electrode assembly 100 and then synchronously and sequentially turn on the first pair of magnetic members, the second pair of magnetic members and the third pair of magnetic members located at the first electrode end 110 and the second electrode end 210.
  • two sets of electrodes Complete initial positioning. After completing the initial positioning, the two electrode assemblies then turn on the remaining magnetic parts in pairs to complete the final positioning.
  • each electrode is relatively independent, that is, the number of working electrodes can be controlled.
  • the first electrode 111 has an electrode surface 1110 disposed toward the tissue 340 to be ablated
  • the first protective sheath 113 has a protective sheath surface 1130 disposed toward the tissue 340 to be ablated; wherein, the electrode surface 1110 is located on the side of the protective sheath surface 1130 close to the tissue 340 to be ablated.
  • first electrodes 111 there are multiple first electrodes 111, and the multiple first electrodes 111 are arranged at intervals along the extending direction of the first electrode tip 110; between the electrode surfaces 1110 of the multiple first electrodes 111 and the protective sheath surface 1130
  • the minimum distances are the same.
  • the value range of the minimum distance between the electrode surface 1110 of the first electrode 111 and the protective sheath surface 1130 is 0-0.5 mm.
  • the existence of this height difference can make the first electrode 111 fully contact the surface to be ablated to ensure the ablation effect.
  • the height difference between the electrode surface 1110 of the first electrode 111 and the protective sheath surface 1130 is preferably 0.2 mm.
  • the electrode surface 1110 and the protective sheath surface 1130 are both flat surfaces.
  • the multiple first electrodes 111 are arranged at intervals along the extending direction of the first electrode tip 110; At least one of the first electrodes 111 in the 111 is provided with a cooling hole 1112 for circulating a cooling fluid; and/or a cooling pipe for circulating a cooling fluid is provided in the first protective sheath 113 .
  • the cooling holes 1112 are provided for local cooling during the ablation process, so as to protect other tissues other than the ablated tissue from being damaged. By arranging the cooling channel, cooling can be performed on the side of the first electrode 111 .
  • At least one of the plurality of first electrodes 111 is provided with 1 to 4 cooling holes 1112 .
  • the number of cooling holes on each first electrode 111 is 0-4 to ensure temperature control during ablation.
  • the present disclosure also provides a radio frequency ablation device.
  • the radio frequency ablation device includes a radio frequency host 310 and the above-mentioned ablation device, and the ablation device is connected to the radio frequency host 310 .
  • the radio frequency host 310 is provided with a display screen 313 , and the display screen 313 is used to display the measured ablation between the two corresponding first electrodes 111 and the second electrodes 211 Tissue impedance and/or RF power.
  • the radio frequency host 310 is further provided with an ablation interface 311, the first electrode assembly 100 and the second electrode assembly 200 each include a plurality of lead assemblies, and each lead assembly includes a lead connector and a plurality of parallel connectors connected to the lead connector.
  • each wire is used to connect with the corresponding electrode;
  • the ablation interface 311 has a first ablation interface part and a second ablation interface part, and the first ablation interface part has a plurality of wire connectors for inserting the first electrode assembly 100 a plurality of first ablation interfaces, the second ablation interface portion has a plurality of second ablation interfaces for inserting a plurality of lead wires of the second electrode assembly 200, so as to connect to the
  • the corresponding first electrodes 111 and the corresponding second electrodes 211 provide suitable radio frequency power.
  • the radio frequency host 310 is further provided with an electromagnetic interface 312, and the first electrode assembly 100 and the second electrode assembly 200 each include a plurality of The electromagnet assembly, each electromagnet assembly includes an electromagnetic joint and a plurality of electromagnetic wires connected in parallel with the electromagnetic joint, and each electromagnetic wire is used to connect with the corresponding electromagnet;
  • the electromagnetic interface 312 has a first electromagnetic interface part and a second electromagnetic The interface part, the first electromagnetic interface part has a plurality of first magnetic interfaces for inserting a plurality of electromagnetic joints of the first electrode assembly 100 , and the second electromagnetic interface part has a plurality of electromagnetic joints for the second electrode assembly 200
  • the plurality of second magnetic interfaces are inserted to supply power to the corresponding first magnetic member 112 and the corresponding second magnetic member 212 through each of the first magnetic interface and each second magnetic interface, so that the corresponding first magnetic member 112 and The attraction force is generated between the corresponding second magnetic members 212 .
  • the electrode assembly includes a first electrode tip 110 including a first protective sheath 113 and a first electrode disposed in the first protective sheath 113 111 and the first magnetic member 112, the first electrode tip 110 can be positioned by the first magnetic member 112; the first protective sheath 113 is provided with a first avoidance opening for avoiding the first electrode 111, so that the When a part of the structure of an electrode 111 protrudes from the first avoidance opening to the outside of the first protective sheath 113, the part of the electrode structure protruding from the outside of the first protective sheath 113 can contact the corresponding part to be ablated, so that this part of the electrode can be The structure directly acts on the corresponding part to be ablated, and at the same time, the electrode structure located in the first protective sheath 113 also acts on the corresponding part to be ablated, thereby ensuring that the first electrode 111 can better act on the corresponding part to be ablated, ensuring
  • the positioning effect between the first protective sheath 113 and the component to be fixed is more stable, which helps to make the first electrode 111 perform ablation stably to ensure the ablation effect; it can be seen that the use of the first electrode assembly can solve the problem of the current situation.
  • the ablation effect of the medical interventional ablation device in the prior art is not ideal.
  • the ablation device includes a first electrode assembly having a first electrode tip and a second electrode assembly having a second electrode tip.
  • the first electrode assembly and the second electrode assembly can be used independently, and the first electrode tip includes a first protective sheath and a plurality of first electrodes disposed on the first protective sheath;
  • An electrode is arranged at intervals along the extending direction of the first protective sheath, that is, a plurality of first electrodes simultaneously act on the epicardial tissue to form a complete ablation line.
  • the first protective sheath is made of a flexible material, the existing The angle of surgical instruments is limited and the operation is inconvenient.
  • the first electrode and the second electrode of the ablation device are arranged opposite to each other, so that the tissue to be ablated located between the first electrode and the second electrode is ablated by the first electrode and the second electrode.
  • the first electrode assembly and the second electrode assembly are used as epicardial electrodes and endocardial electrodes, respectively, so that the first electrode assembly and the second electrode assembly act on the epicardium and the endocardium, respectively, to achieve Simultaneously ablate the epicardium and endocardium to achieve a good ablation effect, solve the problem that the energy of medical interventional ablation is constant, and the output power cannot be adjusted according to the ablation effect in a timely manner, resulting in overburning or wall impermeability and cardiac surgery is dynamic ablation, but surgery The ablation trauma is relatively large and the postoperative recovery is slow; thereby achieving a good ablation effect and improving ablation efficiency; it can be seen that the use of the ablation device can solve the problem of unsatisfactory ablation effect of the ablation device in the prior
  • the ablation device of the present disclosure includes the above-mentioned electrode assembly (first electrode assembly), so the ablation device has at least the same technical effect as the electrode assembly.
  • the radio frequency ablation device of the present disclosure includes the above-mentioned ablation device, so the radio frequency ablation device has at least the same technical effect as the ablation device.
  • the ablation device includes a first electrode assembly 100 having a first electrode tip 110 and a second electrode assembly 200 having a second electrode tip 210 .
  • An electrode tip 110 includes a first protective sheath 113, a first electrode 111 and a first magnetic member 112, the first electrode 111 is disposed in the first protective sheath 113; the first magnetic member 112 is disposed in the first protective sheath 113;
  • the second electrode tip 210 includes a second magnetic member 212, and the second magnetic member 212 cooperates with the first magnetic member 112, so that the first electrode tip 110 and the second electrode tip 210 are relatively fixed; the first protection
  • the sheath 113 is provided with a first avoidance opening for avoiding the first electrode 111 and a second avoidance opening for avoiding the first magnetic member 112.
  • Part of the structure of the first electrode 111 extends from the first avoidance opening to the end. Outside the first protective sheath 113 , a part of the structure of the first magnetic member 112 protrudes from the second avoidance opening to the outside of the first protective sheath 113 .
  • the ablation device includes a first electrode assembly 100 having a first electrode tip 110 and a second electrode assembly 200 having a second electrode tip 210, the first electrode tip 110 including a first protection
  • the first protective sheath 113 is provided with a first avoidance opening for avoiding the first electrode 111, so that part of the structure of the first electrode 111 is formed by
  • the first avoidance opening extends to the outside of the first protective sheath 113, the part of the electrode structure extending out of the first protective sheath 113 can be in contact with the corresponding part to be ablated, so that this part of the electrode structure directly acts on the corresponding part to be ablated.
  • the electrode structure located in the first protective sheath 113 also acts on the corresponding part to be ablated, thereby ensuring that the first electrode 111 can better act on the corresponding part to be ablated, ensuring the ablation effect and improving the ablation efficiency;
  • the first protective sheath 113 is also provided with a second avoidance opening for avoiding the first magnetic member 112, and a part of the structure of the first magnetic member 112 extends from the second avoidance opening to the outside of the first protective sheath 113, and extends out.
  • the part of the first magnetic member 112 on the outside of the first protective sheath 113 can be in direct contact with the component to be fixed, and at the same time, the first magnetic component 112 located in the first protective sheath 113 also cooperates with the component to be fixed, thereby securing the first protective
  • the positioning effect between the sheath 113 and the component to be fixed is more stable, which helps the first electrode 111 to perform ablation stably to ensure the ablation effect; it can be seen that the use of the ablation device can solve the ablation of the ablation device in the prior art The problem of unsatisfactory effect.
  • the first protective sheath 113 is strip-shaped.
  • both the first magnetic members 112 and the second magnetic members 212 are multiple, and the multiple first magnetic members 112 and the multiple second magnetic members 212 are arranged in cooperation with each other , so that each first magnetic member 112 is matched with the corresponding second magnetic member 212 , so that the fixing effect of the first electrode terminal 110 and the second electrode terminal 210 is relatively stable.
  • each first magnetic member 112 extends from the corresponding second avoidance opening to the first magnetic member 112 .
  • a protective sheath 113 on the outside.
  • the second electrode tip 210 includes a second electrode 211 , and the second electrode 211 is disposed opposite to the first electrode 111 so as to be located on the first electrode 111 and the second electrode by the pair of the first electrode 111 and the second electrode 211 .
  • the site to be ablated between the electrodes 211 is ablated.
  • the ablation device further includes an ablation circuit 320 , and the first electrode 111 and the second electrode 211 are both disposed on the ablation circuit 320 to adjust the impedance between the first electrode 111 and the corresponding second electrode 211 by testing Ablation is performed by radio frequency energy between the first electrode 111 and the second electrode 211 .
  • the first electrode assembly 100 and the second electrode assembly 200 are used as epicardial electrodes and endocardial electrodes, respectively, so that the first electrode assembly 100 and the second electrode assembly 200 act on the epicardium and the heart, respectively membrane to achieve simultaneous epicardium and endocardium ablation for good ablation results.
  • the ablation device in the present disclosure can realize hybrid ablation of internal and surgical techniques. This technique has little trauma, which solves the problems of large trauma and slow recovery in the prior art for surgical ablation. Simultaneous ablation adjusts the output power by testing the actual impedance between tissues, which is accurate and safe, and the machine alarms when the impedance reaches a certain resistance value to complete the ablation to avoid excessive ablation.
  • the impedance between the first electrode 111 and the second electrode 211 can be tested in real time, and according to the real-time detection of the impedance between the first electrode 111 and the second electrode 211 Impedance to adjust the radio frequency energy between the first electrode 111 and the second electrode 211 for ablation, and after the impedance reaches a certain resistance value, the machine alarms that the ablation is completed, to avoid excessive ablation, to solve the unilateral ablation depth of the interventional ablation in the prior art It is limited and difficult to ensure complete dehydration and degeneration of the tissue from the inside to the outside. At the same time, it solves the problem that the radio frequency power is not easy to control. Low power will cause incomplete ablation, and excessive power will cause excessive ablation, tissue necrosis or even burning through and leakage. Phenomenon.
  • the impedance of the tissue to be ablated between the electrodes changes from low to high; in the first stage of ablation, the impedance of the tissue to be ablated between the electrodes gradually increases, and the RF power remains unchanged to accelerate the intracellular molecules. Vibration; in the second stage of ablation, as the impedance of the ablated tissue between the electrodes increases, the radio frequency power gradually increases, and when the impedance of the ablated tissue between the electrodes increases to its first preset value, the radio frequency power It also increases to its preset maximum value.
  • the cells are rapidly dehydrated to produce irreversible changes; in the third stage of ablation, as the impedance of the ablated tissue between the electrodes continues to increase, the RF power gradually increases. It is decreased to ensure the completeness of ablation and prevent the phenomenon of scarring on the tissue surface or damage to the patient caused by the high power output of the radio frequency; until the impedance of the ablated tissue between the electrodes increases to its second preset value, the end of the ablation is prompted.
  • first electrodes 111 and multiple second electrodes 211 there are multiple first electrodes 111 and multiple second electrodes 211, and multiple first electrodes 111 and multiple second electrodes 211 are provided in one-to-one correspondence;
  • the first electrode 111 and the plurality of second electrodes 211 so that the plurality of first electrodes 111 and the plurality of second electrodes 211 can act on their corresponding parts to be ablated at the same time, so as to ensure the ablation effect and improve the ablation efficiency;
  • the plurality of first electrodes 111 are arranged at intervals to avoid mutual influence between two adjacent first electrodes 111 .
  • the plurality of second electrodes 211 are arranged at intervals to avoid mutual influence between two adjacent second electrodes 211 .
  • the plurality of first electrodes 111 are arranged at intervals along the extending direction of the first protective sheath 113; that is, the plurality of first electrodes 111 act on the corresponding parts to be ablated at the same time to form a complete ablation line .
  • the first protective sheath 113 is tubular, and the plurality of first electrodes 111 and the plurality of first magnetic members 112 are disposed in the lumen of the first protective sheath 113 .
  • the plurality of first electrodes 111 and the plurality of first magnetic members 112 are sequentially staggered along the extending direction of the first protective sheath 113 , so that the plurality of first electrodes 111 are arranged at intervals, That is, each of the first magnetic members 112 is used to separate the corresponding two first electrodes 111 .
  • first avoidance openings there are a plurality of first avoidance openings, and the plurality of first avoidance openings are provided in a one-to-one correspondence with the plurality of first electrodes 111 , so that part of the structure of each first electrode 111 protrudes from the corresponding first avoidance openings to the outside of the first protective sheath 113 .
  • the first avoidance opening and the second avoidance opening communicate to form a bar-shaped opening together.
  • the second electrode tip 210 includes a second protective sheath, and the plurality of second electrodes 211 are sheathed on the second protective sheath.
  • the second protective sheath is strip-shaped, and the plurality of second electrodes 211 are arranged at intervals along the extending direction of the second protective sheath; that is, the plurality of second electrodes 211 simultaneously act on the corresponding parts to be ablated to form A complete ablation line.
  • the plurality of first magnetic members 112 are arranged at intervals along the extending direction of the first electrode tip 110
  • the plurality of second magnetic members 212 are arranged at intervals along the extending direction of the second electrode tip 210 to ensure the first The overall fixing effect between the electrode tip 110 and the second electrode tip 210 .
  • each pair of the first magnetic member 112 and the second magnetic member 212 works relatively independently, that is, the number of the magnetic members to work can be determined according to actual needs.
  • the magnetic force of the magnetic piece is controllable and adjustable, a small magnetic force is used in the initial positioning, and a large magnetic force is used in the final positioning, so that the inner and outer two electrode assemblies are flexible in the initial positioning and firm in the final positioning, so as to ensure the electrode assembly.
  • the first magnetic member 112 is an electromagnet; and/or the second magnetic member 212 is an electromagnet.
  • the second electrode tip 210 includes a second protective sheath 214 , and the second electrode 211 is disposed on the second protective sheath 214 ; wherein the second electrode tip 210 includes The developing member 213, the developing member 213 is disposed on the second protective sheath 214, so as to mark the position of the second electrode end 210 by the developing member 213; and/or, the second electrode 211 is made of a metal developing material, and the metal developing material includes At least one of the following materials: platinum, platinum-based alloy, tantalum, gold-plated beryllium bronze; and/or, the second protective sheath 214 is made of a developing material, and the developing material is made of barium sulfate BaSO4.
  • the plurality of second magnetic members 212 are all sleeved on the second protective sheath, and the plurality of second magnetic members 212 are arranged at intervals along the extending direction of the second protective sheath 214 .
  • the plurality of second magnetic members 212 and the plurality of second electrodes 211 are alternately arranged along the extending direction of the second protective sheath, so that the plurality of second electrodes 211 are arranged at intervals, that is, each second magnetic member 212 is used.
  • the corresponding two second electrodes 211 are separated.
  • each pair of the first magnetic member 112 and the second magnetic member 212 works relatively independently, that is, the number of the magnetic members to work can be determined according to actual needs.
  • the magnetic force of the magnetic parts is controllable and adjustable. A small magnetic force is used in the initial positioning, and a larger magnetic force is used in the final positioning, so that the inner and outer two electrode assemblies are flexible at the initial positioning and firm after the final positioning, so as to ensure the fit of the electrodes. , thereby ensuring the ablation effect.
  • the plurality of second magnetic members 212 and the plurality of second electrodes 211 are all annular structures, or have cross-sectional structures such as polygonal, V-shaped, D-shaped, and arched.
  • the cross section of the second electrode 211 is a polygon, for example, a square.
  • the first electrode 111 and/or the first magnetic member 112 are provided with wire laying grooves 120 for accommodating wires, and the wires are used for connection with the first electrode 111; or, the wires for laying wires are laid
  • the groove 120 is provided on the inner wall of the first protective sheath 113 .
  • the ablation device further includes a suction positioning member 117 , and the suction positioning member 117 is disposed on the first protective sheath 113 , so that the first protective sheath 113 is positioned at the position to be ablated by the suction positioning member 117 . part.
  • the suction positioning members 117 are arranged in pairs, and each pair of suction positioning members 117 works relatively independently during operation, that is, the number of suction positioning members to work can be determined according to actual needs.
  • the suction positioning member 117 is a suction cup structure.
  • the suction positioning member 117 includes a suction inner wall 1171 and a suction outer wall 1172 , and a suction cavity 1173 is formed between the suction inner wall 1171 and the suction outer wall 1172 , and a suction cavity 1173 is formed between the suction inner wall 1171 and the suction outer wall 1172 .
  • the first suction port 1174 and the second suction port 1175 communicate with the suction cavity 1173 , and the orientation of the first suction port 1174 and the second suction port 1175 is the same.
  • Both the suction inner wall 1171 and the suction inner wall 1171 are U-shaped structures, and the suction inner wall 1171 and the suction outer wall 1172 are arranged around the first protective sheath 113 .
  • the first electrode 111 has an electrode surface 1110 disposed toward the site to be ablated
  • the first protective sheath 113 has a protective sheath surface 1130 disposed toward the site to be ablated; wherein, the electrode surface 1110 is located on the protective sheath surface 1130 close to the part to be ablated one side of the ablation site.
  • first electrodes 111 there are multiple first electrodes 111, and the multiple first electrodes 111 are arranged at intervals along the extending direction of the first electrode tip 110; between the electrode surfaces 1110 of the multiple first electrodes 111 and the protective sheath surface 1130 The minimum distances are the same.
  • both the electrode surface 1110 and the protective sheath surface 1130 are planar.
  • first electrodes 111 there are multiple first electrodes 111 , and the multiple first electrodes 111 are arranged at intervals along the extending direction of the first electrode tip 110 ; at least one of the multiple first electrodes 111 is provided with a The cooling hole 1112 for circulating the cooling fluid; and/or, the first protective sheath 113 is provided with a cooling pipe for circulating the cooling fluid.
  • At least one of the plurality of first electrodes 111 is provided with 1 to 4 cooling holes 1112 .
  • the second electrode tip 210 includes a second protective sheath 214, and the second electrode 211 is disposed on the second protective sheath 214; wherein, the second electrode tip 210 includes a developing member 213, and the developing member 213 is disposed on the second protective sheath 214. on the second protective sheath 214 to mark the position of the second electrode tip 210 by the developing member 213; and/or, the second electrode 211 is made of a metal developing material, and the metal developing material includes at least one of the following materials: platinum , platinum-based alloy, tantalum, gold-plated beryllium bronze; and/or, the second protective sheath 214 is made of a developing material, and the component of the developing material includes barium sulfate.
  • the developing member 213 may be absent, or there may be multiple developing members 213, and the multiple developing members 213 are arranged at intervals along the extending direction of the second protective sheath 214; and/or, the outer surface of the second protective sheath 214
  • the first surface portion and the second surface portion connected to the first surface portion are formed by dividing into a portion corresponding to the developing member 213.
  • the first surface portion is a concave structure, and the developing member 213 is sleeved on the first surface portion.
  • the developing member 213 The outer surface is flush with the second surface portion or lower than the second surface portion.
  • the suction positioning member 117 further includes an airflow channel 1176 , and the air outlet end of the airflow channel 1176 is communicated with the suction cavity 1173 , so as to fill and draw air into the suction cavity 1173 through the airflow channel 1176 .
  • an arrangement of the plurality of suction positioning members 117 is as follows: the plurality of suction positioning members 117 are arranged at intervals along the extending direction of the first protective sheath 113 , so that the first protective sheath 113 is stably positioned on the On the site to be ablated, the positioning effect of the first protective sheath 113 is guaranteed.
  • another arrangement of the multiple suction positioning members 117 is: as shown in FIG. 2 , the multiple suction positioning members 117 are arranged in pairs, and the paired two suction positioning members 117 are respectively They are arranged on opposite sides of the first protective sheath 113 to ensure a good fit between both sides of the first protective sheath 113 and the tissue to be ablated, so that the corresponding first electrodes 111 can better act on The corresponding ablated tissue ensures the ablation effect.
  • a plurality of pairs of suction positioning members 117 are arranged at intervals along the extension direction of the first protective sheath 113, so that the first protective sheath 113 is stably positioned on the site to be ablated, and the positioning effect of the first protective sheath 113 is ensured, thereby ensuring the first protective sheath 113.
  • the overall fit between the sheath 113 and the tissue to be ablated is such that each first electrode 111 can better act on the corresponding tissue to be ablated, thereby ensuring the ablation effect.
  • the ablation device further includes a filler 116 , the filler 116 is disposed in the cavity of the first protective sheath 113 , and at least a part of the filler 116 is configured to be expandable and contractible, so that when the filler 116 expands A squeezing action is formed on the first electrode 111 , and under the squeezing action, part of the structure of the first electrode 111 is pushed out of the cavity of the first protective sheath 113 through the first avoidance opening.
  • a structural form of the filling member 116 is: as shown in FIG. 6 , the filling member 116 is a strip shape, and the filling member 116 extends along the extending direction of the first protective sheath 113 .
  • the filler 116 is an airbag structure, so as to form a pressing effect on the plurality of first electrodes 111 when the airbag structure is inflated and expanded.
  • the first protective sheath 113 is made of a flexible material; and/or there are multiple first electrode ends 110 .
  • another structural form of the filler 116 is: there are multiple fillers 116, and the multiple fillers 116 are arranged at intervals along the extending direction of the first protective sheath 113;
  • the electrodes 111 are arranged in a one-to-one correspondence, so that each filler 116 can form a pressing effect on the corresponding first electrode 111;
  • each first electrode 111 moves in a direction close to the corresponding part to be ablated.
  • each filling member 116 is an airbag structure, so that when the airbag structure is inflated and inflated, the corresponding first electrode 111 is squeezed.
  • the opposite sides of the first protective sheath 113 are provided with shielding side eaves 115 to form shielding protection for the plurality of first electrodes 111 and the plurality of first magnetic members 112 inside the first protective sheath 113 . It can prevent the blood in the epicardial tissue from entering the area between the first protective sheath 113 and the epicardium during the ablation process and affect the tightness between the first protective sheath 113 and the epicardium, and avoid the first protective sheath 113 during ablation. The measurement accuracy of the resistance value between the electrode 111 and the second electrode 211 affects the ablation effect.
  • the shielding side eave 115 by setting the shielding side eave 115, the tissue fluid outside the ablation line and liquids such as physiological saline can be shielded from entering the ablation site, so as to avoid the measurement accuracy of the resistance value between the first electrode and the second electrode during ablation, thereby affecting the ablation effect.
  • the shielding side eaves 115 are strip-shaped, and the shielding side eaves 115 extend along the extending direction of the first protective sheath 113 .
  • the outer wall surface of the first protective sheath 113 is arc-shaped or polygonal.
  • the developing member 213 , the second electrode 211 with a developing function, and the second protective sheath 214 with a developing function can indicate the position of the second electrode assembly 200 when it enters the ablation site.
  • the number of the developing members 213 on the second electrode end 210 is 3-6, and the number of the developing members 213 may be set independently or the second electrode 211 may have a developing function.
  • the outer walls of the developing member 213 and the second protective sheath 214 are flush to prevent damage to the patient during the operation.
  • the plurality of developing members 213 there are a plurality of developing members 213 , and the plurality of developing members 213 are arranged at intervals along the extending direction of the second protective sheath 214 ; and/or, the outer surface of the second protective sheath 214 is divided into corresponding developing members 213 Part of the first surface part and the second surface part connected to the first surface part are formed, the first surface part is a concave structure, the developing part 213 is sleeved on the first surface part, and the outer surface of the developing part 213 and the second surface part flush with or below the second surface portion.
  • the first electrode assembly 100 is first fixed on the epicardium through the positioning member, then the second electrode assembly 200 enters the heart, and the second electrode assembly 200 is placed in the endocardium through the indication of the developing member 213.
  • the first pair of magnetic parts, the second pair of magnetic parts and the third pair of magnetic parts located at the first electrode end 110 and the second electrode end 210 are turned on synchronously and sequentially.
  • two sets of electrodes Complete initial positioning. After completing the initial positioning, the two electrode assemblies then turn on the remaining magnetic parts in pairs to complete the final positioning.
  • the first electrode 111 and the second electrode 211 are relatively independent when working, that is, the number of working electrodes can be controlled.
  • the first electrode 111 has an electrode surface 1110 disposed toward the site to be ablated
  • the first protective sheath 113 has a protective sheath surface 1130 disposed toward the site to be ablated; wherein, the electrode surface 1110 is located on the The protective sheath surface 1130 is close to the side of the site to be ablated.
  • first electrodes 111 there are multiple first electrodes 111, and the multiple first electrodes 111 are arranged at intervals along the extending direction of the first electrode tip 110; between the electrode surfaces 1110 of the multiple first electrodes 111 and the protective sheath surface 1130
  • the minimum distances are the same.
  • the value range of the minimum distance between the electrode surface 1110 of the first electrode 111 and the protective sheath surface 1130 is 0-0.5 mm.
  • the existence of this height difference can make the first electrode 111 fully contact the surface to be ablated to ensure the ablation effect.
  • the height difference between the electrode surface 1110 of the first electrode 111 and the protective sheath surface 1130 is preferably 0.2 mm.
  • the electrode surface 1110 and the protective sheath surface 1130 are both flat surfaces.
  • the multiple first electrodes 111 are arranged at intervals along the extending direction of the first electrode tip 110; At least one of the first electrodes 111 in the 111 is provided with a cooling hole 1112 for circulating a cooling fluid; and/or a cooling pipe for circulating a cooling fluid is provided in the first protective sheath 113 .
  • the cooling holes 1112 are provided for local cooling during the ablation process, so as to protect other parts other than the ablation site from being damaged. By providing cooling channels, cooling can be performed on the sides of the electrodes.
  • At least one of the plurality of first electrodes 111 is provided with 1 to 4 cooling holes 1112 .
  • the number of cooling holes on each first electrode 111 is 0-4 to ensure temperature control during ablation.
  • the present disclosure also provides a radio frequency ablation device.
  • the radio frequency ablation device includes a radio frequency host 310 and the above-mentioned ablation device, and the ablation device is connected to the radio frequency host 310 .
  • the ablation device in this embodiment ablation principle of the tissue to be ablated 340 , and can reflect the ablation range 330 of the ablation device.
  • the radio frequency host 310 is provided with a display screen 313 , and the display screen 313 is used to display the measured tissue to be ablated between the two corresponding first electrodes and the second electrodes 211 . impedance and/or RF power.
  • the radio frequency host 310 is further provided with an ablation interface 311, the first electrode assembly 100 and the second electrode assembly 200 each include a plurality of lead assemblies, and each lead assembly includes a lead connector and a plurality of parallel connectors connected to the lead connector.
  • each wire is used to connect with the corresponding electrode;
  • the ablation interface 311 has a first ablation interface part and a second ablation interface part, and the first ablation interface part has a plurality of wire connectors for inserting the first electrode assembly 100 a plurality of first ablation interfaces, the second ablation interface portion has a plurality of second ablation interfaces for insertion of a plurality of wire terminals of the second electrode assembly 200, so as to connect to the
  • the corresponding first electrodes 111 and the corresponding second electrodes 211 provide suitable radio frequency power.
  • the radio frequency host 310 is further provided with an electromagnetic interface 312, and the first electrode assembly 100 and the second electrode assembly 200 each include a plurality of The electromagnet assembly, each electromagnet assembly includes an electromagnetic joint and a plurality of electromagnetic wires connected in parallel with the electromagnetic joint, and each electromagnetic wire is used to connect with the corresponding electromagnet;
  • the electromagnetic interface 312 has a first electromagnetic interface part and a second electromagnetic The interface part, the first electromagnetic interface part has a plurality of first magnetic interfaces for inserting a plurality of electromagnetic joints of the first electrode assembly 100 , and the second electromagnetic interface part has a plurality of electromagnetic joints for the second electrode assembly 200
  • the plurality of second magnetic interfaces are inserted to supply power to the corresponding first magnetic member 112 and the corresponding second magnetic member 212 through each of the first magnetic interface and each second magnetic interface, so that the corresponding first magnetic member 112 and The attraction force is generated between the corresponding second magnetic members 212 .
  • the ablation device includes a first electrode assembly 100 having a first electrode tip 110 and a second electrode assembly 200 having a second electrode tip 210, the first electrode tip 110 including a first protection
  • the first protective sheath 113 is provided with a first avoidance opening for avoiding the first electrode 111, so that part of the structure of the first electrode 111 is formed by
  • the first avoidance opening extends to the outside of the first protective sheath 113, the part of the electrode structure extending out of the first protective sheath 113 can be in contact with the corresponding part to be ablated, so that this part of the electrode structure directly acts on the corresponding part to be ablated.
  • the electrode structure located in the first protective sheath 113 also acts on the corresponding part to be ablated, thereby ensuring that the first electrode 111 can better act on the corresponding part to be ablated, ensuring the ablation effect and improving the ablation efficiency;
  • the first protective sheath 113 is also provided with a second avoidance opening for avoiding the first magnetic member 112, and a part of the structure of the first magnetic member 112 extends from the second avoidance opening to the outside of the first protective sheath 113, and extends out.
  • the part of the first magnetic member 112 on the outside of the first protective sheath 113 can be in direct contact with the component to be fixed, and at the same time, the first magnetic component 112 located in the first protective sheath 113 also cooperates with the component to be fixed, thereby securing the first protective
  • the positioning effect between the sheath 113 and the component to be fixed is more stable, which helps the first electrode 111 to perform ablation stably to ensure the ablation effect; it can be seen that the use of the ablation device can solve the ablation of the ablation device in the prior art The problem of unsatisfactory effect.
  • the radio frequency ablation device of the present disclosure includes the above-mentioned ablation device, so the radio frequency ablation device has at least the same technical effect as the ablation device.
  • spatially relative terms such as “on”, “over”, “on the surface”, “above”, etc., may be used herein to describe what is shown in the figures.
  • spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “above” or “over” other devices or features would then be oriented “below” or “over” the other devices or features under other devices or constructions”.
  • the exemplary term “above” can encompass both an orientation of "above” and “below.”
  • the device may also be otherwise oriented, rotated 90 degrees or at other orientations, and the spatially relative descriptions used herein interpreted accordingly.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

一种电极组件、消融装置和射频消融设备,该电极组件包括第一电极端头(110),该第一电极端头(110)包括第一保护鞘(113)、第一电极(111)以及第一磁性件(112),第一电极(111)设置在第一保护鞘(113)内;第一磁性件(112)设置在第一保护鞘(113)内,以通过第一磁性件(112)对第一电极端头(110)进行定位;其中,第一保护鞘(113)上设置有用于对第一电极(111)进行避让的第一避让开口和用于对第一磁性件(112)进行避让的第二避让开口,第一电极(111)的部分结构由第一避让开口伸出至第一保护鞘(113)的外侧,第一磁性件(112)的部分结构由第二避让开口伸出至第一保护鞘(113)的外侧;使用本电极组件能够解决现有技术中的消融装置的消融效果不理想的问题。

Description

电极组件、消融装置和射频消融设备
相关申请的交叉引用
本公开是以申请号为202110026571.2,申请日为2021年1月8日,公开名称为“电极组件、消融装置和射频消融设备”的中国专利申请和申请号为202120046540.9,申请日为2021年1月8日,公开名称为“消融装置和射频消融设备”的中国专利申请为基础,并主张其优先权,该中国专利申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及医疗器械领域,具体而言,涉及一种电极组件、消融装置和射频消融设备。
背景技术
消融是治疗房颤的常见措施,其原理是在心脏组织创建一条或多条消融线,引起组织坏死,切断不正常的电信号传导,用于房颤的治疗。
当前的消融治疗分为外科消融和内科介入消融,外科消融的特点是疗效优,术后复发率低,但是其显而易见的缺点是创伤较大,术后恢复慢。内科的介入式消融因为创伤小、恢复快受到越来越多患者的青睐,但是内科消融是点状消融,其最大的弊端便是很难形成一条完整的消融线;且消融时是单侧贴壁式工作,消融深度有限,很难保证组织由内至外完全脱水、变性,手术中消融功率小时消融不彻底,而功率大了又不易掌控,有消融过度组织坏死甚至烧穿、烧漏现象,故内科介入式消融的成功率较外科低好多。
发明内容
本公开的主要目的在于提供一种电极组件、消融装置和射频消融设备,以解决现有技术中的消融装置与待消融组织贴合不牢固,容易脱开待消融组织且消融效果不理想的问题。
本公开第一方面提供一种电极组件,包括第一电极端头,所述第一电极端头包括:
第一保护鞘;
第一电极,所述第一电极设置在所述第一保护鞘内;
第一磁性件,所述第一磁性件设置在所述第一保护鞘内,以通过所述第一磁性件对所述第一电极端头进行定位;
其中,所述第一保护鞘上设置有用于对所述第一电极进行避让的第一避让开口和用于对所述第一磁性件进行避让的第二避让开口,所述第一电极的部分结构由所述第一避让开口伸出至所述第一保护鞘的外侧,所述第一磁性件的部分结构由所述第二避让开口伸出至所述第一保护鞘的外侧。
在一些实施例的电极组件中,所述第一保护鞘为条形,所述第一电极和所述第一磁性件均为多个,多个所述第一电极和多个所述第一磁性件沿所述第一保护鞘的延伸方向依次交替布置;所述第一避让开口和所述第二避让开口均为多个,多个所述第一避让开口与多个所述第一电极一一对应地设置;多个所述第二避让开口与多个所述第一磁性件一一对应地设置。
在一些实施例的电极组件中,多个所述第一电极和多个所述第一磁性件交错间隔设置。
在一些实施例的电极组件中,所述第一电极和所述第一磁性件的通电电路独立设置,以进行单独控制。
在一些实施例的电极组件中,所述第一避让开口和所述第二避让开口连通以共同形成条形开口。
在一些实施例的电极组件中,所述第一电极和/或所述第一磁性件上设置有用于铺设导线的导线铺设槽,所述导线用于与所述第一电极或所述第一磁性件连接。
在一些实施例的电极组件中,所述第一保护鞘的内壁上设置有用于铺设导线的导线铺设槽,所述导线用于与所述第一电极连接。
在一些实施例的电极组件中,所述电极组件包括:
吸合定位件,所述吸合定位件设置在所述第一保护鞘上,以使所述第一保护鞘通过所述吸合定位件的作用定位在待消融组织;和/或
填充件,所述填充件设置在所述第一保护鞘的腔体内,所述填充件的至少部分可胀缩地设置,以在所述填充件的发生膨胀时将所述第一电极的部分结构由所述第一避让开口挤出所述第一保护鞘的腔体。
在一些实施例的电极组件中,所述吸合定位件为吸盘结构;和/或所述填充件为气囊结构。
在一些实施例的电极组件中,所述吸合定位件包括吸合内壁和吸合外壁,所述吸 合内壁和所述吸合外壁之间形成吸合腔体、与所述吸合腔体连通的第一吸合端口和第二吸合端口,所述第一吸合端口和所述第二吸合端口的朝向相同。
在一些实施例的电极组件中,所述吸合内壁和所述吸合内壁均为U形结构,所述吸合内壁和所述吸合外壁环绕所述第一保护鞘设置。
在一些实施例的电极组件中,所述第一保护鞘由柔性材料制成;和/或,所述第一电极端头为多个。
本公开第二方面提供一种消融装置,包括第一电极组件和第二电极组件,其特征在于,所述第一电极组件为本公开第一方面所述的电极组件,所述第二电极组件包括第二电极端头,所述第二电极端头包括第二电极,所述第二电极与所述第一电极相对设置,以通过所述第一电极和所述第二电极对位于所述第一电极和所述第二电极之间的待消融组织进行消融。
在一些实施例的消融装置中,所述第二电极端头包括第二磁性件,所述第二磁性件和所述第一磁性件相配合,以使所述第一电极端头和所述第二电极端头相对固定。
在一些实施例的消融装置中,所述第一保护鞘为条形,所述第一磁性件和所述第二磁性件均为多个,多个所述第一磁性件和多个所述第二磁性件相互配合地设置;
所述第二避让开口为多个,多个所述第二避让开口与多个所述第一磁性件一一对应地设置。
在一些实施例的消融装置中,所述第二电极端头包括第二电极,所述第二电极与所述第一电极相对设置,以通过所述第一电极和所述第二电极对位于所述第一电极和所述第二电极之间的待消融部位进行消融;
所述第一电极和和所述第二电极均为多个,多个所述第一电极和多个所述第二电极相互配合地设置;所述第一避让开口为多个,多个所述第一避让开口与多个所述第一电极一一对应地设置。
在一些实施例的消融装置中,所述消融装置还包括:
消融电路,所述第一电极和所述第二电极均设置在所述消融电路上,以通过测试所述第一电极和相应的所述第二电极之间的阻抗调整所述第一电极和所述第二电极之间的射频能量来进行消融。
本公开第三方面提供一种射频消融设备,包括射频主机和与所述射频主机连接的消融装置,其中,所述消融装置为本公开第二方面所述的消融装置。
应用本公开的技术方案,该电极组件包括第一电极端头,第一电极端头包括第一 保护鞘以及设置在第一保护鞘内的第一电极和第一磁性件,通过第一磁性件能够对第一电极端头进行定位;第一保护鞘上设置有用于对第一电极进行避让的第一避让开口,以在第一电极的部分结构由第一避让开口伸出至第一保护鞘的外侧时,伸出第一保护鞘外侧的这部分电极结构能够与相应的待消融部分接触,以使这部分电极结构直接作用于相应的待消融部分,同时,位于第一保护鞘内的电极结构也作用于相应的待消融部分,进而保证第一电极能够较好地作用于相应的待消融部分,保证消融效果、提高消融效率;第一保护鞘上还设置有用于对第一磁性件进行避让的第二避让开口,第一磁性件的部分结构由第二避让开口伸出至第一保护鞘的外侧,伸出第一保护鞘外侧的这部分第一磁性件能够与待固定部件直接接触,同时,位于第一保护鞘内的第一磁性件也与待固定部件向配合,进而将第一保护鞘与待固定部件之间的定位效果更加稳定,这有助于使第一电极稳定地进行消融,以保证消融效果;可见,使用本电极组件能够解决现有技术中的消融装置的消融效果不理想的问题。
附图说明
构成本申请的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1示出了根据本公开的可选的一种消融装置的电极组件(第一电极组件)的结构示意图;
图2示出了图1中的第一电极组件的一个实施例的内部透视结构图;
图3示出了图2中的第一电极组件的剖视图;
图4示出了图1中的第一电极组件的另一个实施例的剖视图;
图5示出了图1中的第一电极组件的遮挡侧檐的结构示意图;
图6示出了图1中的第一电极组件的具有填充件的结构设置示意图;
图7示出了根据本公开的可选的一种消融装置的第二电极组件的结构示意图;
图8示出了图7中的消融装置的第二电极组件的局部放大图;
图9示出了图8中的消融装置的第二电极组件的A部放大图;
图10示出了根据本公开的可选的一种射频消融设备的射频主机的结构示意图;
图11示出了根据本公开的可选的一种射频消融设备的射频主机和消融装置之间的组装图;
图12示出了本公开中的消融装置对待消融组织进行消融处理时的原理图;
图13示出了本公开中的消融装置的一个实施例的第一电极和第二电极与待消融组织之间的配合图;
图14示出了本公开的消融装置的一种状态的消融原理图;
图15示出了本公开的消融装置的另一种状态的消融原理图;
图16示出了本公开的射频消融设备的射频主机与第一电极组件和第二电极组件之间的接线原理图;
图17示出了本公开的消融装置的第一电极组件的第二个实施例的结构示意图;
图18示出了本公开的消融装置的第二电极组件的第二个实施例的结构示意图;
图19示出了本公开的消融装置的另一个实施例的第一电极和第二电极与待消融组织之间的配合图。
其中,上述附图包括以下附图标记:
100、第一电极组件;
110、第一电极端头;111、第一电极;1110、电极面;1112、冷却孔;112、第一磁性件;113、第一保护鞘;1130、保护鞘面;115、遮挡侧檐;116、填充件;
117、吸合定位件;1171、吸合内壁;1172、吸合外壁;1173、吸合腔体;
1174、第一吸合端口;1175、第二吸合端口;1176、气流通道;
120、导线铺设槽;
200、第二电极组件;
210、第二电极端头;211、第二电极;212、第二磁性件;213、显影件;214、第二保护鞘;
310、射频主机;311、消融接口;312、电磁接口;313、显示屏;320、消融电路;330、消融范围;340、待消融组织。
具体实施方式
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本公开。
本公开提供了一种电极组件,请参考图1至图19,该电极组件(也称第一电极组件)包括第一电极端头110,第一电极端头110包括第一保护鞘113、第一电极111以及第一磁性件112,第一电极111设置在第一保护鞘113内;第一磁性件112设置在第一保护鞘113内,以通过第一磁性件112对第一电极端头110进行定位;其中, 第一保护鞘113上设置有用于对第一电极111进行避让的第一避让开口和用于对第一磁性件112进行避让的第二避让开口,第一电极111的部分结构由第一避让开口伸出至第一保护鞘113的外侧,第一磁性件112的部分结构由第二避让开口伸出至第一保护鞘113的外侧。
在本公开的第一电极组件中,该第一电极组件包括第一电极端头110,第一电极端头110包括第一保护鞘113以及设置在第一保护鞘113内的第一电极111和第一磁性件112,通过第一磁性件112能够对第一电极端头110进行定位;第一保护鞘113上设置有用于对第一电极111进行避让的第一避让开口,以在第一电极111的部分结构由第一避让开口伸出至第一保护鞘113的外侧时,伸出第一保护鞘113外侧的这部分电极结构能够与相应的待消融部分接触,以使这部分电极结构直接作用于相应的待消融部分,同时,位于第一保护鞘113内的电极结构也作用于相应的待消融部分,进而保证第一电极111能够较好地作用于相应的待消融部分,保证消融效果、提高消融效率;第一保护鞘113上还设置有用于对第一磁性件112进行避让的第二避让开口,第一磁性件112的部分结构由第二避让开口伸出至第一保护鞘113的外侧,伸出第一保护鞘113外侧的这部分第一磁性件112能够与待固定部件直接接触,同时,位于第一保护鞘113内的第一磁性件112也与待固定部件向配合,进而将第一保护鞘113与待固定部件之间的定位效果更加稳定,这有助于使第一电极111稳定地进行消融,以保证消融效果;可见,使用本第一电极组件能够解决现有技术中的内科介入式消融装置的消融效果不理想的问题。
在一些实施例中,如图2所示,第一保护鞘113为条形,第一电极111为多个,多个第一电极111沿第一保护鞘113的延伸方向间隔布置;即通过多个第一电极111同时作用于其相对应的待消融部分,以形成一条完整的消融线,保证消融效果、提高消融效率;且使多个第一电极111间隔布置,可以避免相邻两个第一电极111之间相互影响。
可选地,第一保护鞘113为管状,多个第一电极111均设置在第一保护鞘113的管腔内。
在一些实施例中,如图2所示,第一磁性件112为多个,多个第一电极111和多个第一磁性件112沿第一保护鞘113的延伸方向依次交替布置,以使多个第一电极111间隔布置,即使用各个第一磁性件112隔开相应的两个第一电极111。可选地,多个第一磁性件112均设置在第一保护鞘113的管腔内。
第一避让开口为多个,多个第一避让开口与多个第一电极111一一对应地设置,以使各个第一电极111的部分结构从相应的第一避让开口伸出至第一保护鞘113的外侧。
第二避让开口为多个,多个第二避让开口与多个第一磁性件112一一对应地设置,以使各个第一磁性件112的部分结构从相应的第二避让开口伸出至第一保护鞘113的外侧。
在一些实施例中,多个第一电极111和多个第一磁性件112交错间隔设置。
在一些实施例中,第一电极111和第一磁性件112的通电电路独立设置,以进行单独控制。
在一些实施例中,第一避让开口和第二避让开口连通以共同形成条形开口。
在一些实施例中,第一电极111和/或第一磁性件112上设置有用于容纳导线的导线铺设槽120,导线用于与第一电极111或第一磁性件112连接;或者,将用于铺设导线的导线铺设槽120设置在第一保护鞘113的内壁上。
在本实施例中,第一电极组件还包括吸合定位件117,吸合定位件117设置在第一保护鞘113上,以使第一保护鞘113通过吸合定位件117的作用定位在待消融组织340。
在一些实施例中,吸合定位件117成对设置,工作时每对吸合定位件117相对独立工作,即可以根据实际需求决定吸合定位件工作的数量。
在一些实施例中,吸合定位件117为吸盘结构。
在一些实施例中,如图3和图4所示,吸合定位件117包括吸合内壁1171和吸合外壁1172,吸合内壁1171和吸合外壁1172之间形成吸合腔体1173、与吸合腔体1173连通的第一吸合端口1174和第二吸合端口1175,第一吸合端口1174和第二吸合端口1175的朝向相同。
吸合内壁1171和吸合内壁1171均为U形结构,吸合内壁1171和吸合外壁1172环绕第一保护鞘113设置。
吸合定位件117还包括气流通道1176,气流通道1176的出气端与吸合腔体1173连通,以通过气流通道1176向吸合腔体1173内充、抽气。
可选地,吸合定位件117为多个。
在本实施例中,多个吸合定位件117的一种布置方式为:多个吸合定位件117沿第一保护鞘113的延伸方向间隔布置,以使第一保护鞘113稳定地定位在待消融组织 340上,保证第一保护鞘113的定位效果。
在本实施例中,多个吸合定位件117的另一种布置方式为:如图2所示,使多个吸合定位件117成对设置,成对的两个吸合定位件117分别设置在第一保护鞘113的相对两侧,以保证第一保护鞘113的两侧与被消融组织之间均具有良好的贴合度,进而使得相应的第一电极111能够较好地作用于其相对应的被消融组织,保证消融效果。
多对吸合定位件117沿第一保护鞘113的延伸方向间隔布置,以使第一保护鞘113稳定地定位在待消融组织340上,保证第一保护鞘113的定位效果,进而保证第一保护鞘113与被消融组织之间的整体贴合度,以使得各个第一电极111均能够较好地作用于其相对应的被消融组织,从而保证消融效果。
在本实施例中,第一电极组件还包括填充件116,填充件116设置在第一保护鞘113的腔体内,填充件116的至少部分可胀缩地设置,以在填充件116的发生膨胀时对第一电极111形成挤压作用,并在该挤压作用下,将第一电极111的部分结构由第一避让开口挤出第一保护鞘113的腔体。
在本实施例中,填充件116的一种结构形式为:如图6所示,填充件116为条形,填充件116沿第一保护鞘113的延伸方向延伸。在一些实施例中,填充件116为气囊结构,以在该气囊结构被充气而膨胀时,对多个第一电极111形成挤压作用。
在一些实施例中,工作时填充件116相对独立工作,即可以根据实际需求决定填充件工作的数量。
在本实施例中,填充件116的另一种结构形式为:填充件116为多个,多个填充件116沿第一保护鞘113的延伸方向间隔布置;多个填充件116和多个第一电极111一一对应地设置,以使各个填充件116能够对相应的第一电极111形成挤压作用;各个填充件116均设置在相应的第一电极111的远离待消融组织340的一侧,以实现各个填充件116对相应的第一电极111形成挤压作用时,各个第一电极111朝靠近相应的待消融组织340的方向移动。在一些实施例中,各个填充件116均为气囊结构,以在该气囊结构被充气而膨胀时,对相应的第一电极111形成挤压作用。
在本实施例中,第一保护鞘113由柔性材料制成;和/或,第一电极端头110为多个。
本公开还提供了一种消融装置,该消融装置包括第一电极组件100和第二电极组件200,第一电极组件100为上述的第一电极组件,第一电极组件100包括第一电极端头110,第一电极端头110包括第一电极111,第二电极组件200包括第二电极端头 210,第二电极端头210包括第二电极211,第二电极211与第一电极111相对设置,以通过第一电极111和第二电极211对位于第一电极111和第二电极211之间的待消融组织340进行消融。
在一些实施例中,第二电极组件200还包括第二磁性件212,多个第二电极211和多个第二磁性件212沿第一电极端头110的延伸方向依次交错布置。
在一些实施例中,第一电极组件100的第一磁性件112与第二磁性件212相配合,以使第一电极组件100的第一电极端头110和第二电极端头210相对固定。
在一些实施例中,第一电极111和第二电极211均为多个,第一磁性件112和第二磁性件212为多个,多个第一磁性件112与多个第一电极111交错间隔设置,多个第二磁性件212与多个第二电极211交错间隔设置。
在一些实施例中,相邻的第一电极111与第一磁性件112之间绝缘设置,相邻的第二电极211与第二磁性件212之间绝缘设置。
在一些实施例中,相邻的第一电极111与第一磁性件112之间的相对表面均喷涂有绝缘漆,或者相邻的第一电极111与第一磁性件112之间设置有绝缘隔板;相邻的第二电极211与第二磁性件212之间的相对表面均喷涂有绝缘漆,或者,相邻的第二电极211与第二磁性件212之间设置有绝缘隔板。绝缘隔板与第一保护鞘113一体化设计或分体固定设定。
在一些实施例中,第一磁性件112与第二磁性件212的外表面包覆有绝缘层。
在一些实施例中,第一电极111、第一电极组件100的第一磁性件112、第二电极211以及第二磁性件212均与独立的通电电路连接,以进行单独控制。多个第一电极、第二电极、第一磁性件、第二磁性件可独立工作,进而可以调节磁性,调节消融第一电极的个数。两个相邻的第一电极或第二电极可以形成消融电极对,以实现消融功能。
在一些实施例中,第一电极111为多个,两个第一电极111的通电电路独立设置以形成标测电极对,以利用通电电路检测消融后的待消融组织340的电信号传递情况;和/或,第二电极211为多个,两个第二电极211的通电电路独立设置以形成标测电极对,以利用通电电路检测消融后的待消融组织340的电信号传递情况;和/或,第一电极111和第二电极211的通电电路独立设置以形成标测电极对,以利用通电电路检测待消融组织340消融后的电信号传递情况。标测时,形成标测电极对的两个第一电极 111的极性不同,跨电压设置以形成电流,进而实现标测;形成标测电极对的两个第二电极211的极性不同,跨电压设置以形成电流,进而实现标测;形成标测电极对的第一电极和第二电极的极性不同,跨电压设置以形成电流,进而实现标测
在一些实施例中,第一电极组件100的第一电极端头110和第二电极端头210均为多个。
在一些实施例中,消融装置还包括消融电路320,第一电极111和第二电极211均设置在消融电路320上,以通过测试第一电极111和相应的第二电极211之间的阻抗调整第一电极111和第二电极211之间的射频能量来进行消融。
使用时,将第一电极组件100和第二电极组件200分别用作心外膜电极和心内膜电极,以使第一电极组件100和第二电极组件200分别作用于心外膜和心内膜,以实现同时消融心外膜和心内膜,从而实现良好的消融效果。另外,本公开中的消融装置可以实现内、外科杂交式消融,此技术创伤小,解决了现有技术中外科消融创伤大、恢复慢的难题,同时又可以从心外膜和心内膜联合同步消融,通过测试组织间的实际阻抗调整输出功率,精确、安全,且阻抗达到一定阻值后机器报警消融完毕,避免过度消融。
另外,通过使第一电极111和第二电极211相对设置,可以实时测试第一电极111和第二电极211之间的阻抗,并根据实时检测的第一电极111和第二电极211之间的阻抗来调整第一电极111和第二电极211之间的射频能量来进行消融,且阻抗达到一定阻值后机器报警消融完毕,避免过度消融,以解决现有技术中介入式消融单侧消融深度有限、难以保证组织由内至外完全脱水、变性的问题,同时解决了射频功率不易控制的问题,功率较小会造成消融不彻底,功率过大会造成消融过度,组织坏死甚至烧穿、烧漏现象。
在消融过程中,电极间被消融组织的阻抗由低到高进行变化;在进行消融的第一阶段,电极间被消融组织的阻抗逐渐增大,射频功率保持不变,以加快细胞内分子的震动;在进行消融的第二阶段,随着电极间被消融组织的阻抗的增大,射频功率逐步增大,当电极间被消融组织的阻抗增大到其第一预设值时,射频功率也增大到其预设最大值,在此消融阶段,使得细胞迅速脱水以产生不可逆的变化;在进行消融的第三阶段,随着电极间被消融组织的阻抗的继续增大,射频功率逐步降低,以保证消融彻底性的同时预防因射频大功率输出而造成组织表面结痂或者损伤患者的现象;直至电极间被消融组织的阻抗增大到其第二预设值时,提示结束消融。
在一些实施例中,如图2和图8所示,第一电极111和第二电极211均为多个,多个第一电极111和多个第二电极211相互配合地设置;通过设置多个第一电极111和多个第二电极211,以使得多个第一电极111和多个第二电极211能够同时作用于其相对应的组织,以增强消融效果,并提高消融效率。
在一些实施例中,第一电极端头110和第二电极端头210均为条形,多个第一电极111沿第一电极端头110的延伸方向间隔布置,多个第二电极211沿第二电极端头210的延伸方向间隔布置,各个第一电极111与其相对应地第二电极211成对地设置;即通过多个第一电极111和多个第二电极211同时作用于其相对应的组织,以形成一条完整的消融线,保证消融效果;且使多个第一电极111间隔布置,多个第二电极211间隔布置,可以避免相邻两个第一电极111之间、相邻两个第二电极211之间相互影响。
在本实施例中,第二电极端头210包括第二磁性件212,第一磁性件112和第二磁性件212相配合,以使第一电极端头110和第二电极端头210相对固定,进而使得第一电极端头110的第一电极111能够与第二电极端头210的相应的第二电极211相对设置。
在一些实施例中,第一磁性件112为多个,第二磁性件212为多个,多个第一磁性件112沿第一电极端头110的延伸方向间隔布置,多个第二磁性件212沿第二电极端头210的延伸方向间隔布置,以保证第一电极端头110和第二电极端头210之间的整体固定效果。
参照图12至15所示,可以看出本实施例中的消融装置对待消融组织340的消融原理,并可以体现消融装置的消融范围330。
在一些实施例中,第一磁性件112和第二磁性件212相对独立工作,即可以根据实际需求决定磁性件工作的数量。
可选地,磁性件的磁力是可控并且可调整的,初定位时使用较小磁力,最终定位时使用较大磁力,使得内外两个电极组件初定位时灵活、最终定位后牢固,保证电极的贴合度,进而保证消融效果。
可选地,第一磁性件112为电磁铁;和/或,第二磁性件212为电磁铁。
在本实施例中,第一保护鞘113的相对两侧均设置有遮挡侧檐115,以对第一保护鞘113内部的多个第一电极111和多个第一磁性件112均形成遮挡防护作用,以避免消融过程中心膜组织的血液等进入第一保护鞘113与心脏外膜之间的区域内而影响 第一保护鞘113与心脏外膜之间的贴紧程度,避免消融时第一电极和第二电极间电阻值的测量精度,从而影响消融效果。另外,通过设置遮挡侧檐115,可遮挡消融线外的组织液及生理盐水等液体进入消融组织,避免消融时第一电极和第二电极间电阻值的测量精度,从而影响消融效果。
可选地,如图5所示,遮挡侧檐115为条形,遮挡侧檐115沿第一保护鞘113的延伸方向延伸。
可选地,第一保护鞘113的外壁面为弧形或多边形。
在本实施例中,如图8和图9所示,第二电极端头210包括第二保护鞘214,第二电极211设置在第二保护鞘214上;其中,第二电极端头210包括显影件213,显影件213设置在第二保护鞘214上,以通过显影件213标记第二电极端头210的位置;和/或,第二电极211由金属显影材料制成,金属显影材料包括以下材料中的至少一种:铂金、铂依合金、钽、镀金铍青铜;和/或,第二保护鞘214由显影材料制成,所述显影材料的制作材料包括硫酸钡BaSO4。
在一些实施例中,多个第二磁性件212与多个第二电极211均套设在第二保护鞘214上;可选地,多个第二磁性件212与多个第二电极211沿第二保护鞘214的延伸方向交错布置,以使多个第二电极211间隔布置,即使用各个第二磁性件212隔开相应的两个第二电极211。在工作时,每对第一磁性件112和第二磁性件212相对独立工作,即可以根据实际需求决定磁性件工作的数量。磁性件的磁力是可控并且可调整的,初定位时使用较小磁力,最终定位时使用较大磁力,使得内外两个电极组件初定位时灵活、最终定位后牢固,保证电极的贴合度,进而保证消融效果。
可选地,参照图13和图19,多个第二磁性件212与多个第二电极211均为环状结构,或为多边形、V型、D型、拱形等截面结构。如图19所示,第二电极211的截面为多边形,例如可为方形。
本实施例中的显影件213、具有显影作用的第二电极211以及具有显影作用的第二保护鞘214可以在第二电极组件200进入消融组织时的位置指示。可选地,第二电极端头210上的显影件213的数量为3-6个,且可以单独设置也可以是第二电极211带有显影功能。本实施例中的显影件213和第二保护鞘214的鞘体外壁是平齐的,防止手术中对病人造成损伤。
在本实施例中,显影件213可以没有,显影件213也可以为多个,多个显影件213沿第二保护鞘214的延伸方向间隔设置;和/或,第二保护鞘214的外表面分为与显影 件213对应的部分形成第一表面部和与第一表面部连接的第二表面部,第一表面部为凹陷结构,显影件213套设在第一表面部上,显影件213的外表面与第二表面部平齐或低于第二表面部。
在工作时,首先将第一电极组件100通过定位件固定在心外膜上,接着第二电极组件200进入心脏内部,通过显影件213的指示将第二电极组件200放置到心内膜中第一电极组件100对应的组织,然后同步、顺序开启位于第一电极端头110和第二电极端头210的第一对磁性件、第二对磁性件及第三对磁性件,此时两组电极完成初定位。完成初定位后的两个电极组件接着将其余的磁性件成对开启,完成最终的定位。
在一些实施例中,第一电极111和第二电极211工作时是每个电极相对独立的,即可以控制工作电极的数量。
在本实施例中,如图3所示,第一电极111具有朝向待消融组织340设置的电极面1110,第一保护鞘113具有朝向待消融组织340设置的保护鞘面1130;其中,电极面1110位于保护鞘面1130靠近待消融组织340的一侧。
在本实施例中,第一电极111为多个,多个第一电极111沿第一电极端头110的延伸方向间隔布置;多个第一电极111的电极面1110与保护鞘面1130之间的最小距离均相同。第一电极111的电极面1110与保护鞘面1130之间的最小距离的取值范围0-0.5mm,存在此高度差可以使得第一电极111与被消融表面充分接触,保证消融效果。第一电极111的电极面1110与保护鞘面1130之间的高度差取值优先为0.2mm。
在本实施例中,电极面1110和保护鞘面1130均为平面。
为了实现对第一电极端头110的冷却,如图2所示,第一电极111为多个,多个第一电极111沿第一电极端头110的延伸方向间隔布置;多个第一电极111中的至少一个第一电极111上设置有用于供冷却流体流通的冷却孔1112;和/或,第一保护鞘113内设置有供冷却流体流通的冷却管道。本实施例通过设置冷却孔1112,用于消融过程中局部的降温,用来保护消融组织之外的其他组织不被损伤。通过设置冷却通道,可以在第一电极111侧边进行冷却。
在本实施例中,多个第一电极111中的至少一个第一电极111上设置有1至4个冷却孔1112。每个第一电极111上的冷却孔数量为0-4个,以保证消融过程中温度的控制。
本公开还提供了一种射频消融设备,如图11所示,该射频消融设备包括射频主机310和上述的消融装置,该消融装置与射频主机310连接。
在一些实施例中,如图10所示,射频主机310上设置有显示屏313,显示屏313用于显示所测出的两个相对应的第一电极111和第二电极211之间被消融组织的阻抗和/或射频功率。
在一些实施例中,射频主机310上还设置有消融接口311,第一电极组件100和第二电极组件200均包括多个导线组件,各个导线组件包括导线接头和与导线接头连接的多个并联设置的导线,各个导线用于与相应的电极连接;消融接口311具有第一消融接口部和第二消融接口部,第一消融接口部具有用于供第一电极组件100的多个导线接头插入的多个第一消融接口,第二消融接口部具有用于供第二电极组件200的多个导线接头插入的多个第二消融接口,以通过各个第一消融接口和各个第二消融接口向相应的第一电极111和相应的第二电极211提供合适的射频功率。
在一些实施例中,当第一磁性件112和第二磁性件212均为电磁铁时,射频主机310上还设置有电磁接口312,第一电极组件100和第二电极组件200均包括多个电磁铁组件,各个电磁铁组件包括电磁接头和与电磁接头连接的多个并联设置的电磁线,各个电磁线用于与相应的电磁铁连接;电磁接口312具有第一电磁接口部和第二电磁接口部,第一电磁接口部具有用于供第一电极组件100的多个电磁接头插入的多个第一磁接口,第二电磁接口部具有用于供第二电极组件200的多个电磁接头插入的多个第二磁接口,以通过各个第一磁接口和各个第二磁接口向相应的第一磁性件112和相应的第二磁性件212供电,进而使相应的第一磁性件112和相应的第二磁性件212之间产生吸合力。
从以上的描述中,可以看出,本公开上述的实施例实现了如下技术效果:
在本公开的电极组件(第一电极组件)中,该电极组件包括第一电极端头110,第一电极端头110包括第一保护鞘113以及设置在第一保护鞘113内的第一电极111和第一磁性件112,通过第一磁性件112能够对第一电极端头110进行定位;第一保护鞘113上设置有用于对第一电极111进行避让的第一避让开口,以在第一电极111的部分结构由第一避让开口伸出至第一保护鞘113的外侧时,伸出第一保护鞘113外侧的这部分电极结构能够与相应的待消融部分接触,以使这部分电极结构直接作用于相应的待消融部分,同时,位于第一保护鞘113内的电极结构也作用于相应的待消融部分,进而保证第一电极111能够较好地作用于相应的待消融部分,保证消融效果、提高消融效率;第一保护鞘113上还设置有用于对第一磁性件112进行避让的第二避让开口,第一磁性件112的部分结构由第二避让开口伸出至第一保护鞘113的外侧, 伸出第一保护鞘113外侧的这部分第一磁性件112能够与待固定部件直接接触,同时,位于第一保护鞘113内的第一磁性件112也与待固定部件向配合,进而将第一保护鞘113与待固定部件之间的定位效果更加稳定,这有助于使第一电极111稳定地进行消融,以保证消融效果;可见,使用第一电极组件能够解决现有技术中的内科介入式消融装置的消融效果不理想的问题。
应用本公开的技术方案,该消融装置包括具有第一电极端头的第一电极组件和具有第二电极端头的第二电极组件。第一电极组件和第二电极组件可独立使用,第一电极端头包括第一保护鞘和设置于第一保护鞘的多个第一电极;并且,第一保护鞘为条形,多个第一电极沿第一保护鞘的延伸方向间隔布置,即通过多个第一电极同时作用于心外膜组织,以形成一条完整的消融线,当第一保护鞘使用柔性材质时,可以解决现有外科器械使用时角度受限,手术操作不方便的问题。
该消融装置第一电极和第二电极相对设置,以通过第一电极和第二电极对位于第一电极和第二电极之间的待消融组织进行消融。使用时,将第一电极组件和第二电极组件分别用作心外膜电极和心内膜电极,以使第一电极组件和第二电极组件分别作用于心外膜和心内膜,以实现同时消融心外膜和心内膜,从而实现良好的消融效果,解决内科介入消融能量恒定,无法适时根据消融效果调整输出功率,导致过烧或不透壁问题和心外科是动态消融,但外科消融创伤较大,术后恢复慢的问题;从而实现良好的消融效果,并提高消融效率;可见,使用本消融装置能够解决现有技术中的消融装置的消融效果不理想的问题。
本公开的消融装置包括上述的电极组件(第一电极组件),因此该消融装置至少具有与该电极组件相同的技术效果。
本公开的射频消融设备包括上述的消融装置,因此该射频消融设备至少具有与该消融装置相同的技术效果。
本公开提供了一种消融装置,请参考图1至图19,该消融装置包括具有第一电极端头110的第一电极组件100和具有第二电极端头210的第二电极组件200,第一电极端头110包括第一保护鞘113、第一电极111以及第一磁性件112,第一电极111设置在第一保护鞘113内;第一磁性件112设置在第一保护鞘113内;其中,第二电极端头210包括第二磁性件212,第二磁性件212和第一磁性件112相配合,以使第一电极端头110和第二电极端头210相对固定;第一保护鞘113上设置有用于对第一电极111进行避让的第一避让开口和用于对第一磁性件112进行避让的第二避让开 口,第一电极111的部分结构由第一避让开口伸出至第一保护鞘113的外侧,第一磁性件112的部分结构由第二避让开口伸出至第一保护鞘113的外侧。
在本公开的消融装置中,该消融装置包括具有第一电极端头110的第一电极组件100和具有第二电极端头210的第二电极组件200,第一电极端头110包括第一保护鞘113以及设置在第一保护鞘113内的第一电极111和第一磁性件112,第二电极端头210包括第二磁性件212,第二磁性件212和第一磁性件112相配合,以使第一电极端头110和第二电极端头210相对固定;第一保护鞘113上设置有用于对第一电极111进行避让的第一避让开口,以在第一电极111的部分结构由第一避让开口伸出至第一保护鞘113的外侧时,伸出第一保护鞘113外侧的这部分电极结构能够与相应的待消融部分接触,以使这部分电极结构直接作用于相应的待消融部分,同时,位于第一保护鞘113内的电极结构也作用于相应的待消融部分,进而保证第一电极111能够较好地作用于相应的待消融部分,保证消融效果、提高消融效率;第一保护鞘113上还设置有用于对第一磁性件112进行避让的第二避让开口,第一磁性件112的部分结构由第二避让开口伸出至第一保护鞘113的外侧,伸出第一保护鞘113外侧的这部分第一磁性件112能够与待固定部件直接接触,同时,位于第一保护鞘113内的第一磁性件112也与待固定部件向配合,进而将第一保护鞘113与待固定部件之间的定位效果更加稳定,这有助于使第一电极111稳定地进行消融,以保证消融效果;可见,使用本消融装置能够解决现有技术中的消融装置的消融效果不理想的问题。
在一些实施例中,如图2所示,第一保护鞘113为条形。
在一些实施例中,如图2和图8所示,第一磁性件112和第二磁性件212均为多个,多个第一磁性件112和多个第二磁性件212相互配合地设置,以使各个第一磁性件112和相应的第二磁性件212相配合,进而使第一电极端头110和第二电极端头210的固定效果较为稳定。
第二避让开口为多个,多个第二避让开口与多个第一磁性件112一一对应地设置,以使各个第一磁性件112的部分结构从相应的第二避让开口伸出至第一保护鞘113的外侧。
在一些实施例中,第二电极端头210包括第二电极211,第二电极211与第一电极111相对设置,以通过第一电极111和第二电极211对位于第一电极111和第二电极211之间的待消融部位进行消融。
在一些实施例中,消融装置还包括消融电路320,第一电极111和第二电极211 均设置在消融电路320上,以通过测试第一电极111和相应的第二电极211之间的阻抗调整第一电极111和第二电极211之间的射频能量来进行消融。
使用时,将第一电极组件100和第二电极组件200分别用作心外膜电极和心内膜电极,以使第一电极组件100和第二电极组件200分别作用于心外膜和心内膜,以实现同时消融心外膜和心内膜,从而实现良好的消融效果。另外,本公开中的消融装置可以实现内、外科杂交式消融,此技术创伤小,解决了现有技术中外科消融创伤大、恢复慢的难题,同时又可以从心外膜和心内膜联合同步消融,通过测试组织间的实际阻抗调整输出功率,精确、安全,且阻抗达到一定阻值后机器报警消融完毕,避免过度消融。
另外,通过使第一电极111和第二电极211相对设置,可以实时测试第一电极111和第二电极211之间的阻抗,并根据实时检测的第一电极111和第二电极211之间的阻抗来调整第一电极111和第二电极211之间的射频能量来进行消融,且阻抗达到一定阻值后机器报警消融完毕,避免过度消融,以解决现有技术中介入式消融单侧消融深度有限、难以保证组织由内至外完全脱水、变性的问题,同时解决了射频功率不易控制的问题,功率较小会造成消融不彻底,功率过大会造成消融过度,组织坏死甚至烧穿、烧漏现象。
在消融过程中,电极间被消融组织的阻抗由低到高进行变化;在进行消融的第一阶段,电极间被消融组织的阻抗逐渐增大,射频功率保持不变,以加快细胞内分子的震动;在进行消融的第二阶段,随着电极间被消融组织的阻抗的增大,射频功率逐步增大,当电极间被消融组织的阻抗增大到其第一预设值时,射频功率也增大到其预设最大值,在此消融阶段,使得细胞迅速脱水以产生不可逆的变化;在进行消融的第三阶段,随着电极间被消融组织的阻抗的继续增大,射频功率逐步降低,以保证消融彻底性的同时预防因射频大功率输出而造成组织表面结痂或者损伤患者的现象;直至电极间被消融组织的阻抗增大到其第二预设值时,提示结束消融。
可选地,如图2和图8所示,第一电极111和第二电极211均为多个,多个第一电极111和多个第二电极211一一对应地设置;通过设置多个第一电极111和多个第二电极211,以使得多个第一电极111和多个第二电极211能够同时作用于其相对应的待消融部位,以保证消融效果、提高消融效率;且使多个第一电极111间隔布置,可以避免相邻两个第一电极111之间相互影响。多个第二电极211间隔布置,以避免相邻两个第二电极211之间相互影响。
在一些实施例中,多个第一电极111沿第一保护鞘113的延伸方向间隔布置;即通过多个第一电极111同时作用于其相对应的待消融部位,以形成一条完整的消融线。
可选地,第一保护鞘113为管状,多个第一电极111和多个第一磁性件112均设置在第一保护鞘113的管腔内。
在一些实施例中,如图2所示,多个第一电极111和多个第一磁性件112沿第一保护鞘113的延伸方向依次交错布置,以使多个第一电极111间隔布置,即使用各个第一磁性件112隔开相应的两个第一电极111。
可选地,第一避让开口为多个,多个第一避让开口与多个第一电极111一一对应地设置,以使各个第一电极111的部分结构从相应的第一避让开口伸出至第一保护鞘113的外侧。
在一些实施例中,第一避让开口和第二避让开口连通以共同形成条形开口。
在一些实施例中,第二电极端头210包括第二保护鞘,多个第二电极211套设在第二保护鞘上。
可选地,第二保护鞘为条形,多个第二电极211沿第二保护鞘的延伸方向间隔布置;即通过多个第二电极211同时作用于其相对应的待消融部位,以形成一条完整的消融线。
在本实施例中,多个第一磁性件112沿第一电极端头110的延伸方向间隔布置,多个第二磁性件212沿第二电极端头210的延伸方向间隔布置,以保证第一电极端头110和第二电极端头210之间的整体固定效果。
在一些实施例中,每对第一磁性件112和第二磁性件212相对独立工作,即可以根据实际需求决定磁性件工作的数量。
可选地,磁性件的磁力是可控并且可调整的,初定位时使用较小磁力,最终定位时使用较大磁力,使得内外两个电极组件初定位时灵活、最终定位后牢固,保证电极的贴合度,进而保证消融效果。
可选地,第一磁性件112为电磁铁;和/或,第二磁性件212为电磁铁。
在本实施例中,如图8和图9所示,第二电极端头210包括第二保护鞘214,第二电极211设置在第二保护鞘214上;其中,第二电极端头210包括显影件213,显影件213设置在第二保护鞘214上,以通过显影件213标记第二电极端头210的位置;和/或,第二电极211由金属显影材料制成,金属显影材料包括以下材料中的至少一种:铂金、铂依合金、钽、镀金铍青铜;和/或,第二保护鞘214由显影材料制成,显影材 料的制作材料包括硫酸钡BaSO4。
在一些实施例中,多个第二磁性件212均套设在第二保护鞘上,多个第二磁性件212沿第二保护鞘214的延伸方向间隔设置。在一些实施例中,多个第二磁性件212与多个第二电极211沿第二保护鞘的延伸方向交错布置,以使多个第二电极211间隔布置,即使用各个第二磁性件212隔开相应的两个第二电极211。在工作时,每对第一磁性件112和第二磁性件212相对独立工作,即可以根据实际需求决定磁性件工作的数量。磁性件的磁力是可控并且可调整的,初定位时使用较小磁力,最终定位时使用较大磁力,使得内外两个电极组件初定位时灵活、最终定位后牢固,保证电极的贴合度,进而保证消融效果。
可选地,参照图13和图19,多个第二磁性件212与多个第二电极211均为环状结构,或为多边形、V型、D型、拱形等截面结构。如图19所示,第二电极211的截面为多边形,例如可为方形。
在一些实施例中,第一电极111和/或第一磁性件112上设置有用于容纳导线的导线铺设槽120,导线用于与第一电极111连接;或者,将用于铺设导线的导线铺设槽120设置在第一保护鞘113的内壁上。
在本实施例中,该消融装置还包括吸合定位件117,吸合定位件117设置在第一保护鞘113上,以使第一保护鞘113通过吸合定位件117的作用定位在待消融部位。
在一些实施例中,吸合定位件117成对设置,工作时每对吸合定位件117相对独立工作,即可以根据实际需求决定吸合定位件工作的数量。
在一些实施例中,吸合定位件117为吸盘结构。
在一些实施例中,如图3和图4所示,吸合定位件117包括吸合内壁1171和吸合外壁1172,吸合内壁1171和吸合外壁1172之间形成吸合腔体1173、与吸合腔体1173连通的第一吸合端口1174和第二吸合端口1175,第一吸合端口1174和第二吸合端口1175的朝向相同。
吸合内壁1171和吸合内壁1171均为U形结构,吸合内壁1171和吸合外壁1172环绕第一保护鞘113设置。
在一些实施例中,第一电极111具有朝向待消融部位设置的电极面1110,第一保护鞘113具有朝向待消融部位设置的保护鞘面1130;其中,电极面1110位于保护鞘面1130靠近待消融部位的一侧。
在一些实施例中,第一电极111为多个,多个第一电极111沿第一电极端头110 的延伸方向间隔布置;多个第一电极111的电极面1110与保护鞘面1130之间的最小距离均相同。
在一些实施例中,电极面1110和保护鞘面1130均为平面。
在一些实施例中,第一电极111为多个,多个第一电极111沿第一电极端头110的延伸方向间隔布置;多个第一电极111中的至少一个第一电极111上设置有用于供冷却流体流通的冷却孔1112;和/或,第一保护鞘113内设置有供冷却流体流通的冷却管道。
在一些实施例中,多个第一电极111中的至少一个第一电极111上设置有1至4个冷却孔1112。
在一些实施例中,第二电极端头210包括第二保护鞘214,第二电极211设置在第二保护鞘214上;其中,第二电极端头210包括显影件213,显影件213设置在第二保护鞘214上,以通过显影件213标记第二电极端头210的位置;和/或,第二电极211由金属显影材料制成,金属显影材料包括以下材料中的至少一种:铂金、铂依合金、钽、镀金铍青铜;和/或,第二保护鞘214的由显影材料制成,显影材料的成分包括硫酸钡。
在一些实施例中,显影件213可以没有,显影件213也可以为多个,多个显影件213沿第二保护鞘214的延伸方向间隔设置;和/或,第二保护鞘214的外表面分为与显影件213对应的部分形成第一表面部和与第一表面部连接的第二表面部,第一表面部为凹陷结构,显影件213套设在第一表面部上,显影件213的外表面与第二表面部平齐或低于第二表面部。
吸合定位件117还包括气流通道1176,气流通道1176的出气端与吸合腔体1173连通,以通过气流通道1176向吸合腔体1173内充、抽气。
可选地,吸合定位件117为多个。
在本实施例中,多个吸合定位件117的一种布置方式为:多个吸合定位件117沿第一保护鞘113的延伸方向间隔布置,以使第一保护鞘113稳定地定位在待消融部位上,保证第一保护鞘113的定位效果。
在本实施例中,多个吸合定位件117的另一种布置方式为:如图2所示,使多个吸合定位件117成对设置,成对的两个吸合定位件117分别设置在第一保护鞘113的相对两侧,以保证第一保护鞘113的两侧与被消融组织之间均具有良好的贴合度,进而使得相应的第一电极111能够较好地作用于其相对应的被消融组织,保证消融效果。
多对吸合定位件117沿第一保护鞘113的延伸方向间隔布置,以使第一保护鞘113稳定地定位在待消融部位上,保证第一保护鞘113的定位效果,进而保证第一保护鞘113与被消融组织之间的整体贴合度,以使得各个第一电极111均能够较好地作用于其相对应的被消融组织,从而保证消融效果。
在本实施例中,该消融装置还包括填充件116,填充件116设置在第一保护鞘113的腔体内,填充件116的至少部分可胀缩地设置,以在填充件116的发生膨胀时对第一电极111形成挤压作用,并在该挤压作用下,将第一电极111的部分结构由第一避让开口挤出第一保护鞘113的腔体。
在本实施例中,填充件116的一种结构形式为:如图6所示,填充件116为条形,填充件116沿第一保护鞘113的延伸方向延伸。在一些实施例中,填充件116为气囊结构,以在该气囊结构被充气而膨胀时,对多个第一电极111形成挤压作用。
在本实施例中,第一保护鞘113由柔性材料制成;和/或,第一电极端头110为多个。
在本实施例中,填充件116的另一种结构形式为:填充件116为多个,多个填充件116沿第一保护鞘113的延伸方向间隔布置;多个填充件116和多个第一电极111一一对应地设置,以使各个填充件116能够对相应的第一电极111形成挤压作用;各个填充件116均设置在相应的第一电极111的远离待消融部位的一侧,以实现各个填充件116对相应的第一电极111形成挤压作用时,各个第一电极111朝靠近相应的待消融部位的方向移动。在一些实施例中,各个填充件116均为气囊结构,以在该气囊结构被充气而膨胀时,对相应的第一电极111形成挤压作用。
在本实施例中,第一保护鞘113的相对两侧均设置有遮挡侧檐115,以对第一保护鞘113内部的多个第一电极111和多个第一磁性件112均形成遮挡防护作用,以避免消融过程中心膜组织的血液等进入第一保护鞘113与心脏外膜之间的区域内而影响第一保护鞘113与心脏外膜之间的贴紧程度,避免消融时第一电极111和第二电极211间电阻值的测量精度,从而影响消融效果。另外,通过设置遮挡侧檐115,可遮挡消融线外的组织液及生理盐水等液体进入消融部位,避免消融时第一电极和第二电极间电阻值的测量精度,从而影响消融效果。
可选地,如图5所示,遮挡侧檐115为条形,遮挡侧檐115沿第一保护鞘113的延伸方向延伸。
可选地,第一保护鞘113的外壁面为弧形或多边形。
本实施例中的显影件213、具有显影作用的第二电极211以及具有显影作用的第二保护鞘214可以在第二电极组件200进入消融部位时的位置指示。可选地,第二电极端头210上的显影件213的数量为3-6个,且可以单独设置也可以是第二电极211带有显影功能。本实施例中的显影件213和第二保护鞘214的鞘体外壁是平齐的,防止手术中对病人造成损伤。
在本实施例中,显影件213为多个,多个显影件213沿第二保护鞘214的延伸方向间隔设置;和/或,第二保护鞘214的外表面分为与显影件213对应的部分形成第一表面部和与第一表面部连接的第二表面部,第一表面部为凹陷结构,显影件213套设在第一表面部上,显影件213的外表面与第二表面部平齐或低于第二表面部。
在工作时,首先将第一电极组件100通过定位件固定在心外膜上,接着第二电极组件200进入心脏内部,通过显影件213的指示将第二电极组件200放置到心内膜中第一电极组件100对应的部位,然后同步、顺序开启位于第一电极端头110和第二电极端头210的第一对磁性件、第二对磁性件及第三对磁性件,此时两组电极完成初定位。完成初定位后的两个电极组件接着将其余的磁性件成对开启,完成最终的定位。
在一些实施例中,第一电极111和第二电极211工作时是相对独立的,即可以控制工作电极的数量。
在本实施例中,如图3所示,第一电极111具有朝向待消融部位设置的电极面1110,第一保护鞘113具有朝向待消融部位设置的保护鞘面1130;其中,电极面1110位于保护鞘面1130靠近待消融部位的一侧。
在本实施例中,第一电极111为多个,多个第一电极111沿第一电极端头110的延伸方向间隔布置;多个第一电极111的电极面1110与保护鞘面1130之间的最小距离均相同。第一电极111的电极面1110与保护鞘面1130之间的最小距离的取值范围0-0.5mm,存在此高度差可以使得第一电极111与被消融表面充分接触,保证消融效果。第一电极111的电极面1110与保护鞘面1130之间的高度差取值优先为0.2mm。
在本实施例中,电极面1110和保护鞘面1130均为平面。
为了实现对第一电极端头110的冷却,如图2所示,第一电极111为多个,多个第一电极111沿第一电极端头110的延伸方向间隔布置;多个第一电极111中的至少一个第一电极111上设置有用于供冷却流体流通的冷却孔1112;和/或,第一保护鞘113内设置有供冷却流体流通的冷却管道。本实施例通过设置冷却孔1112,用于消融过程中局部的降温,用来保护消融部位之外的其他部位不被损伤。通过设置冷却通道, 可以在电极侧边进行冷却。
在本实施例中,多个第一电极111中的至少一个第一电极111上设置有1至4个冷却孔1112。每个第一电极111上的冷却孔数量为0-4个,以保证消融过程中温度的控制。
本公开还提供了一种射频消融设备,如图11所示,该射频消融设备包括射频主机310和上述的消融装置,该消融装置与射频主机310连接。
参照图12至15所示,可以看出本实施例中的消融装置对待消融组织340的消融原理,并可以体现消融装置的消融范围330。
在一些实施例中,如图10所示,射频主机310上设置有显示屏313,显示屏313用于显示所测出的两个相对应的第一电极和第二电极211之间被消融组织的阻抗和/或射频功率。
在一些实施例中,射频主机310上还设置有消融接口311,第一电极组件100和第二电极组件200均包括多个导线组件,各个导线组件包括导线接头和与导线接头连接的多个并联设置的导线,各个导线用于与相应的电极连接;消融接口311具有第一消融接口部和第二消融接口部,第一消融接口部具有用于供第一电极组件100的多个导线接头插入的多个第一消融接口,第二消融接口部具有用于供第二电极组件200的多个导线接头插入的多个第二消融接口,以通过各个第一消融接口和各个第二消融接口向相应的第一电极111和相应的第二电极211提供合适的射频功率。
在一些实施例中,当第一磁性件112和第二磁性件212均为电磁铁时,射频主机310上还设置有电磁接口312,第一电极组件100和第二电极组件200均包括多个电磁铁组件,各个电磁铁组件包括电磁接头和与电磁接头连接的多个并联设置的电磁线,各个电磁线用于与相应的电磁铁连接;电磁接口312具有第一电磁接口部和第二电磁接口部,第一电磁接口部具有用于供第一电极组件100的多个电磁接头插入的多个第一磁接口,第二电磁接口部具有用于供第二电极组件200的多个电磁接头插入的多个第二磁接口,以通过各个第一磁接口和各个第二磁接口向相应的第一磁性件112和相应的第二磁性件212供电,进而使相应的第一磁性件112和相应的第二磁性件212之间产生吸合力。
从以上的描述中,可以看出,本公开上述的实施例实现了如下技术效果:
在本公开的消融装置中,该消融装置包括具有第一电极端头110的第一电极组件100和具有第二电极端头210的第二电极组件200,第一电极端头110包括第一保护鞘 113以及设置在第一保护鞘113内的第一电极111和第一磁性件112,第二电极端头210包括第二磁性件212,第二磁性件212和第一磁性件112相配合,以使第一电极端头110和第二电极端头210相对固定;第一保护鞘113上设置有用于对第一电极111进行避让的第一避让开口,以在第一电极111的部分结构由第一避让开口伸出至第一保护鞘113的外侧时,伸出第一保护鞘113外侧的这部分电极结构能够与相应的待消融部分接触,以使这部分电极结构直接作用于相应的待消融部分,同时,位于第一保护鞘113内的电极结构也作用于相应的待消融部分,进而保证第一电极111能够较好地作用于相应的待消融部分,保证消融效果、提高消融效率;第一保护鞘113上还设置有用于对第一磁性件112进行避让的第二避让开口,第一磁性件112的部分结构由第二避让开口伸出至第一保护鞘113的外侧,伸出第一保护鞘113外侧的这部分第一磁性件112能够与待固定部件直接接触,同时,位于第一保护鞘113内的第一磁性件112也与待固定部件向配合,进而将第一保护鞘113与待固定部件之间的定位效果更加稳定,这有助于使第一电极111稳定地进行消融,以保证消融效果;可见,使用本消融装置能够解决现有技术中的消融装置的消融效果不理想的问题。
本公开的射频消融设备包括上述的消融装置,因此该射频消融设备至少具有与该消融装置相同的技术效果。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位旋转90度或处于其他方位,并且对这里所使用的空间相对描述作出相应解释。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第 二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (18)

  1. 一种电极组件,包括第一电极端头(110),所述第一电极端头(110)包括:
    第一保护鞘(113);
    第一电极(111),所述第一电极(111)设置在所述第一保护鞘(113)内;
    第一磁性件(112),所述第一磁性件(112)设置在所述第一保护鞘(113)内,以通过所述第一磁性件(112)对所述第一电极端头(110)进行定位;
    其中,所述第一保护鞘(113)上设置有用于对所述第一电极(111)进行避让的第一避让开口和用于对所述第一磁性件(112)进行避让的第二避让开口,所述第一电极(111)的部分结构由所述第一避让开口伸出至所述第一保护鞘(113)的外侧,所述第一磁性件(112)的部分结构由所述第二避让开口伸出至所述第一保护鞘(113)的外侧。
  2. 根据权利要求1所述的电极组件,其中,所述第一保护鞘(113)为条形,所述第一电极(111)和所述第一磁性件(112)均为多个,多个所述第一电极(111)和多个所述第一磁性件(112)沿所述第一保护鞘(113)的延伸方向依次交替布置;所述第一避让开口和所述第二避让开口均为多个,多个所述第一避让开口与多个所述第一电极(111)一一对应地设置;多个所述第二避让开口与多个所述第一磁性件(112)一一对应地设置。
  3. 根据权利要求2所述的电极组件,其中,多个所述第一电极(111)和多个所述第一磁性件(112)交错间隔设置。
  4. 根据权利要求3所述的电极组件,其中,所述第一电极(111)和所述第一磁性件(112)的通电电路独立设置,以进行单独控制。
  5. 根据权利要求1至4任一项所述的电极组件,其中,所述第一避让开口和所述第二避让开口连通以共同形成条形开口。
  6. 根据权利要求1至5任一项所述的电极组件,其中,所述第一电极(111)和/ 或所述第一磁性件(112)上设置有用于铺设导线的导线铺设槽(120),所述导线用于与所述第一电极(111)或所述第一磁性件(112)连接。
  7. 根据权利要求1至6任一项所述的电极组件,其中,所述第一保护鞘(113)的内壁上设置有用于铺设导线的导线铺设槽(120),所述导线用于与所述第一电极(111)连接。
  8. 根据权利要求1至7任一项所述的电极组件,其中,所述电极组件包括:
    吸合定位件(117),所述吸合定位件(117)设置在所述第一保护鞘(113)上,以使所述第一保护鞘(113)通过所述吸合定位件(117)的作用定位在待消融组织;和/或
    填充件(116),所述填充件(116)设置在所述第一保护鞘(113)的腔体内,所述填充件(116)的至少部分可胀缩地设置,以在所述填充件(116)的发生膨胀时将所述第一电极(111)的部分结构由所述第一避让开口挤出所述第一保护鞘(113)的腔体。
  9. 根据权利要求8所述的电极组件,其中,所述吸合定位件(117)为吸盘结构;和/或所述填充件(116)为气囊结构。
  10. 根据权利要求8或9所述的电极组件,其中,所述吸合定位件(117)包括吸合内壁(1171)和吸合外壁(1172),所述吸合内壁(1171)和所述吸合外壁(1172)之间形成吸合腔体(1173)、与所述吸合腔体(1173)连通的第一吸合端口(1174)和第二吸合端口(1175),所述第一吸合端口(1174)和所述第二吸合端口(1175)的朝向相同。
  11. 根据权利要求10所述的电极组件,其中,所述吸合内壁(1171)和所述吸合内壁(1171)均为U形结构,所述吸合内壁(1171)和所述吸合外壁(1172)环绕所述第一保护鞘(113)设置。
  12. 根据权利要求1至11任一项所述的电极组件,其中,所述第一保护鞘(113) 由柔性材料制成;和/或,所述第一电极端头(110)为多个。
  13. 一种消融装置,包括第一电极组件(100)和第二电极组件(200),其特征在于,所述第一电极组件(100)为权利要求1至12中任一项所述的电极组件,所述第二电极组件(200)包括第二电极端头(210),所述第二电极端头(210)包括第二电极(211),所述第二电极(211)与所述第一电极相对设置,以通过所述第一电极和所述第二电极(211)对位于所述第一电极和所述第二电极(211)之间的待消融组织(340)进行消融。
  14. 根据权利要求13所述的消融装置,其中,所述第二电极端头(210)包括第二磁性件(212),所述第二磁性件(212)和所述第一磁性件(112)相配合,以使所述第一电极端头(110)和所述第二电极端头(210)相对固定。
  15. 根据权利要求14所述的消融装置,其中,所述第一保护鞘(113)为条形,所述第一磁性件(112)和所述第二磁性件(212)均为多个,多个所述第一磁性件(112)和多个所述第二磁性件(212)相互配合地设置;
    所述第二避让开口为多个,多个所述第二避让开口与多个所述第一磁性件(112)一一对应地设置。
  16. 根据权利要求13至15任一项所述的消融装置,其中,所述第二电极端头(210)包括第二电极(211),所述第二电极(211)与所述第一电极(111)相对设置,以通过所述第一电极(111)和所述第二电极(211)对位于所述第一电极和所述第二电极(211)之间的待消融部位进行消融;
    所述第一电极(111)和和所述第二电极(211)均为多个,多个所述第一电极(111)和多个所述第二电极(211)相互配合地设置;所述第一避让开口为多个,多个所述第一避让开口与多个所述第一电极(111)一一对应地设置。
  17. 根据权利要求13至16任一项所述的消融装置,其中,所述消融装置还包括:
    消融电路(320),所述第一电极(111)和所述第二电极(211)均设置在所述消融电路(320)上,以通过测试所述第一电极(111)和相应的所述第二电极(211) 之间的阻抗调整所述第一电极(111)和所述第二电极(211)之间的射频能量来进行消融。
  18. 一种射频消融设备,包括射频主机(310)和与所述射频主机(310)连接的消融装置,其中,所述消融装置为权利要求13至17中任一项所述的消融装置。
PCT/CN2021/132465 2021-01-08 2021-11-23 电极组件、消融装置和射频消融设备 WO2022148161A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110026571.2 2021-01-08
CN202110026571.2A CN114748157A (zh) 2021-01-08 2021-01-08 电极组件、消融装置和射频消融设备
CN202120046540.9 2021-01-08
CN202120046540.9U CN215349404U (zh) 2021-01-08 2021-01-08 消融装置和射频消融设备

Publications (1)

Publication Number Publication Date
WO2022148161A1 true WO2022148161A1 (zh) 2022-07-14

Family

ID=82357567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132465 WO2022148161A1 (zh) 2021-01-08 2021-11-23 电极组件、消融装置和射频消融设备

Country Status (1)

Country Link
WO (1) WO2022148161A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1361676A (zh) * 1999-07-21 2002-07-31 塞莫-麦德2000责任有限公司 用于通过射频治疗肿瘤的手术用电探针
US20040143256A1 (en) * 2003-01-21 2004-07-22 Bednarek Michael C. Ablation catheter and electrode
US20080114355A1 (en) * 2006-11-09 2008-05-15 Ncontact Surgical, Inc. Vacuum coagulation probes
US20090012517A1 (en) * 2007-07-03 2009-01-08 Irvine Biomedical, Inc. Magnetically guided catheter
CN211243676U (zh) * 2019-07-29 2020-08-14 杭州诺诚医疗器械有限公司 能够监测消融灶边界温度的消融针组件及消融系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1361676A (zh) * 1999-07-21 2002-07-31 塞莫-麦德2000责任有限公司 用于通过射频治疗肿瘤的手术用电探针
US20040143256A1 (en) * 2003-01-21 2004-07-22 Bednarek Michael C. Ablation catheter and electrode
US20080114355A1 (en) * 2006-11-09 2008-05-15 Ncontact Surgical, Inc. Vacuum coagulation probes
US20090012517A1 (en) * 2007-07-03 2009-01-08 Irvine Biomedical, Inc. Magnetically guided catheter
CN211243676U (zh) * 2019-07-29 2020-08-14 杭州诺诚医疗器械有限公司 能够监测消融灶边界温度的消融针组件及消融系统

Similar Documents

Publication Publication Date Title
CN215349404U (zh) 消融装置和射频消融设备
EP3831442A1 (en) Using reversible electroporation on cardiac tissue
US20230218342A1 (en) Temperature controlled short duration ablation with multiple electrodes
US20100100094A1 (en) Tissue ablation methods
JP2021171658A (ja) 伸縮性灌注管を有するカテーテル
JP2021164638A (ja) Ireのための電極として固体導電性スパインを有するバスケットカテーテル
US20120041437A1 (en) Tissue ablation systems
JP2018515247A (ja) Ac型心臓不可逆的電気穿孔法のための非対称形にバランスされた波形
CN104684500A (zh) 用于消融和电穿孔组织细胞的设备
CN215349405U (zh) 电极组件、消融装置和射频消融设备
KR20210014645A (ko) 전기 외과 기구
AU2015322352B2 (en) Catheter and manufacturing method therefor
WO2022148161A1 (zh) 电极组件、消融装置和射频消融设备
WO2022148155A1 (zh) 电极组件、消融装置和射频消融设备
WO2022148156A1 (zh) 电极组件、消融装置和射频消融设备
CN215349403U (zh) 消融装置和射频消融设备
CN215349406U (zh) 消融装置和射频消融设备
WO2022148159A1 (zh) 电极组件、消融装置和射频消融设备
WO2022148151A1 (zh) 电极组件、消融装置和射频消融设备
WO2022148153A1 (zh) 电极组件、消融装置和射频消融设备
CN215349402U (zh) 消融装置和射频消融设备
BR122015018777A2 (pt) aparelho eletrocirúrgico
WO2022148152A1 (zh) 消融装置和射频消融设备
CN216090743U (zh) 射频消融设备
CN216090742U (zh) 射频消融设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917202

Country of ref document: EP

Kind code of ref document: A1