WO2022147951A1 - 背光单元的控制方法、显示面板及显示装置 - Google Patents

背光单元的控制方法、显示面板及显示装置 Download PDF

Info

Publication number
WO2022147951A1
WO2022147951A1 PCT/CN2021/097123 CN2021097123W WO2022147951A1 WO 2022147951 A1 WO2022147951 A1 WO 2022147951A1 CN 2021097123 W CN2021097123 W CN 2021097123W WO 2022147951 A1 WO2022147951 A1 WO 2022147951A1
Authority
WO
WIPO (PCT)
Prior art keywords
subfield
driving
backlight
driving mode
backlight unit
Prior art date
Application number
PCT/CN2021/097123
Other languages
English (en)
French (fr)
Inventor
陈小龙
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Priority to US17/429,728 priority Critical patent/US20230178037A1/en
Publication of WO2022147951A1 publication Critical patent/WO2022147951A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0237Switching ON and OFF the backlight within one frame
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving

Definitions

  • the present application relates to the field of display technology, and in particular, to a control method of a backlight unit, a display panel and a display device.
  • Matrix A for short
  • the AM Mini-LED backlight uses a constant voltage to drive the LED light board.
  • the LED light board When the LED light board is on, it will heat up and cause the temperature to rise.
  • FIG. 1A it is a schematic diagram of the relationship between the ambient temperature T and the forward conduction voltage V f in the LED lamp panel.
  • the abscissa is the ambient temperature T
  • the ordinate is the forward conduction voltage V f .
  • the forward conduction voltage of the LED lamp panel is V fa ; when the ambient temperature is T b (T b >T a ) , the forward conduction voltage of the LED lamp panel is V fa .
  • FIG. 1A when the ambient temperature T increases, the required electric field decreases because the number of electron-hole pairs increases with the increase of the ambient temperature T, resulting in a decrease in the forward conduction voltage V f .
  • FIG. 1B it is a schematic diagram of the relationship between the ambient temperature T, the driving current I and the forward conduction voltage V f in the LED lamp panel. Among them, the abscissa is the driving current I, and the ordinate is the forward conduction voltage V f . It can be seen from FIG.
  • Figure 1C it is a numerical table of the brightness and power of AM Mini-LED TV products under different ambient temperatures.
  • the ambient temperature is in the range of (0°C ⁇ 40°C)
  • the brightness of the LED panel increases, and the power P of the LED panel also increases
  • the temperature is in the range of (40°C ⁇ 50°C)
  • the brightness of the LED lamp panel tends to be stable after reaching thermal equilibrium, and the power P of the LED lamp panel continues to increase at this time.
  • the increase of the driving current I of the LED lamp means that the power consumption increases, and the temperature rises along with it, and this cycle is repeated until the thermal equilibrium.
  • the brightness of the LED light board will increase with the increase of the current, which means that with the increase of the brightness time of the LED light board, the brightness of the LED light board will increase until the brightness of the LED light board is stable after thermal equilibrium.
  • the AM Mini- The power of LED TV products also changes and increases with the brightness, which leads to the problem of excessive power.
  • AM Mini-LED TV products will have the problem of excessive power when the ambient temperature is high, and the brightness will shift as the ambient temperature increases.
  • the AM Mini-LED TV products of the current technology will have the problem of exceeding the power standard when the ambient temperature is high, and the brightness will shift as the ambient temperature increases.
  • An embodiment of the present application provides a control method for a backlight unit, and the control method includes the following steps:
  • the driving mode is a first backlight driving mode
  • the first backlight driving mode includes a first driving subfield
  • each of the The first driving subfield is composed of a bright subfield and a dark subfield.
  • the driving mode is an initial backlight driving mode of constant voltage driving
  • the initial backlight driving The method includes an initial driving subfield corresponding to the first driving subfield, each of the initial driving subfields is composed of a bright subfield or a dark subfield, and the bright subfield in each of the first driving subfields The sum of the time and the time of the dark subfield is equal to the time of the corresponding initial driving subfield.
  • the method further includes:
  • the driving mode when the ambient temperature is higher than or equal to the first reference temperature reference value but smaller than the second reference temperature reference value, the driving mode is the first backlight driving mode, and when the ambient temperature is high When being equal to or equal to the second reference temperature reference value, the driving mode is the second backlight driving mode;
  • the second backlight driving mode has a first driving subfield corresponding to the first driving subfield of the first backlight driving mode, and the bright subfield of the second backlight driving mode occupies the first driving subfield.
  • the time ratio of the driving subfield is smaller than the time ratio of the bright subfield in the first backlight driving mode to the first driving subfield.
  • the method further includes:
  • the driving mode is the nth backlight driving mode
  • the nth The ratio of the time of the bright subfield in the backlight driving mode to the first driving subfield is smaller than the time of the bright subfield in the (n-1)th backlight driving mode D(n-1) accounting for the first driving subfield
  • n is a positive integer greater than 2.
  • Subfield time methods include:
  • S203 Adjust the time of the bright subfield or the time of the dark subfield in the first driving subfield in the first backlight driving mode or the second backlight driving mode according to the detection result, so that the backlight The brightness value of the unit is consistent with the brightness value of the backlight unit driven in the corresponding temperature range by the backlight driving method of the previous stage.
  • the S203 further includes:
  • the first backlight driving mode is obtained by outputting a plurality of the first driving sub-fields with different durations in a preset sequence, and the plurality of the first driving sub-fields are passed through the backlight unit.
  • Each of the light-emitting units of a frame is divided into a division step in the light-emitting process; the division step also includes:
  • the light-emitting unit of the backlight unit is a sub-millimeter light-emitting diode.
  • An embodiment of the present application provides a control method for a backlight unit, wherein the control method includes the following steps:
  • the driving mode when the ambient temperature is higher than or equal to the first reference temperature reference value, the driving mode is a first backlight driving mode, and the first backlight driving mode includes a first driving subfield, each of the The first driving subfield is composed of a bright subfield and a dark subfield;
  • the data voltage in the bright subfield period is a high potential
  • the data voltage in the dark subfield period is a low potential
  • the driving mode is an initial backlight driving mode of constant voltage driving
  • the initial backlight driving The method includes an initial driving subfield corresponding to the first driving subfield, each of the initial driving subfields is composed of a bright subfield or a dark subfield, and the bright subfield in each of the first driving subfields The sum of the time and the time of the dark subfield is equal to the time of the corresponding initial driving subfield.
  • the method further includes:
  • the driving mode when the ambient temperature is higher than or equal to the first reference temperature reference value but smaller than the second reference temperature reference value, the driving mode is the first backlight driving mode, and when the ambient temperature is high When being equal to or equal to the second reference temperature reference value, the driving mode is the second backlight driving mode;
  • the second backlight driving mode has a first driving subfield corresponding to the first driving subfield of the first backlight driving mode, and the bright subfield of the second backlight driving mode occupies the first driving subfield.
  • the time ratio of the driving subfield is smaller than the time ratio of the bright subfield in the first backlight driving mode to the first driving subfield.
  • the method further includes:
  • the driving mode is the nth backlight driving mode
  • the nth The ratio of the time of the bright subfield in the backlight driving mode to the first driving subfield is smaller than the time of the bright subfield in the (n-1)th backlight driving mode D(n-1) accounting for the first driving subfield
  • n is a positive integer greater than 2.
  • Subfield time methods include:
  • S203 Adjust the time of the bright subfield or the time of the dark subfield in the first driving subfield in the first backlight driving mode or the second backlight driving mode according to the detection result, so that the backlight The brightness value of the unit is consistent with the brightness value of the backlight unit driven in the corresponding temperature range by the backlight driving method of the previous stage.
  • the S203 further includes:
  • the first backlight driving mode is obtained by outputting a plurality of the first driving subfields with different durations in a preset sequence, and a plurality of the first driving sub-fields are outputted in a preset order.
  • the subfields are formed by dividing each of the light-emitting units in the backlight unit by a dividing step during the light-emitting process of one frame; the dividing step further includes:
  • the light-emitting unit of the backlight unit is a sub-millimeter light-emitting diode.
  • An embodiment of the present application further provides a display panel, the display panel includes: a temperature detection module, a memory for storing instructions, a controller for executing the instructions to implement the method according to any one of the above, and a backlight unit.
  • the memory includes any one of a read-only memory, a random access memory, a magnetic disk, or an optical disk.
  • the backlight unit has a plurality of partitions, each of the partitions is provided with a light-emitting unit, and the light-emitting unit is a sub-millimeter light-emitting diode.
  • Embodiments of the present application further provide a display device, including the above-mentioned display panel.
  • control method, display panel and display device of the backlight unit control the brightness of the light emitted by the light-emitting unit of the backlight unit based on the unequal molecular field, and adjust each The time of the bright subfield or the dark subfield of each driving subfield at different ambient temperatures makes the brightness displayed by the display device consistent at different ambient temperatures, so as to improve the brightness stability of the display device, and further make the backlight brightness of the display device less bright. It will shift as the ambient temperature increases, further avoiding the problem of the power exceeding the standard of the display device.
  • 1A is a schematic diagram of the relationship between the ambient temperature T and the forward conduction voltage V f in the LED lamp panel;
  • FIG. 1B is a schematic diagram of the relationship between the ambient temperature T, the driving current I and the forward conduction voltage V f in the LED lamp panel;
  • Figure 1C is a numerical table of the brightness and power of AM Mini-LED TV products at different ambient temperatures
  • FIG. 2 is a flowchart of a control method of a backlight unit provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of different backlight driving modes corresponding to a display device provided in an embodiment of the present application under different ambient temperature ranges;
  • 4A is a schematic diagram of a gate waveform of an unequal sub-field backlight control using an initial backlight drive mode D0 according to an embodiment of the present application;
  • FIG. 4B is a schematic diagram of gate waveforms of unequal subfield backlight control using different backlight driving methods according to an embodiment of the present application
  • 5A is a flowchart of a method for calculating a bright subfield time and a dark subfield time in each first driving subfield provided by an embodiment of the present application;
  • 5B is a flowchart of a method for determining the bright subfield time and the dark subfield time of each first driving subfield in the first backlight driving mode D1 provided by the embodiment of the present application;
  • FIG. 7 is a structural block diagram of a pixel compensation device of a display device of the present application.
  • the embodiments of the present application are aimed at the technical problem of the display device in the prior art, the brightness of the light emitting unit of the backlight unit is shifted as the ambient temperature increases, which further causes the power of the display device to exceed the standard. This embodiment can solve the problem.
  • FIG. 2 is a flowchart of a control method of a backlight unit provided by an embodiment of the present application.
  • the control method of the backlight unit is applied to a display panel, the display panel includes a backlight panel, and the control method includes the following steps:
  • the S10 further includes:
  • a temperature detection module is added to the entire display panel, and the ambient temperature T is obtained through the temperature detection module; wherein, the light-emitting unit of the backlight unit is preferably a mini-LED.
  • the S20 further includes:
  • the driving mode is an initial backlight driving mode D0 of constant voltage driving, and the initial backlight driving mode D0 includes an initial driver
  • Each of the initial driving subfields consists of a bright subfield or a dark subfield.
  • the data voltage in the bright subfield period is a high potential
  • the data voltage in the dark subfield period is a low potential
  • the driving mode of the light emitting unit of the backlight unit is the first A backlight driving mode D1
  • the first backlight driving mode D1 includes a first driving subfield corresponding to the initial driving subfield, each of the first driving subfields is composed of a bright subfield and a dark subfield, each A sum of the time of the bright subfield and the time of the dark subfield in the first driving subfield is equal to the time of the corresponding initial driving subfield.
  • the driving mode is the second backlight driving mode D2; the second backlight driving mode D2
  • the bright subfield of the second backlight driving mode D2 occupies the time of the first driving subfield
  • the ratio is smaller than the time ratio of the bright subfield in the first backlight driving mode D1 to the first driving subfield.
  • the drive mode is the nth backlight drive mode Dn; the nth backlight drive mode Dn has a first drive subfield corresponding to the first drive subfield of the first backlight drive mode D1, so The time ratio of the bright subfield of the nth backlight driving mode Dn to the first driving subfield is smaller than that of the bright subfield of the (n-1)th backlight driving mode D(n-1) accounting for the first driving subfield.
  • S30 Determine the driving mode of the light emitting unit of the backlight unit according to the comparison result.
  • the S30 further includes:
  • the driving mode is the initial backlight driving mode D0 of constant voltage driving, and the initial backlight driving mode D0 is adopted
  • the driving process of driving the backlight unit is as follows:
  • the backlight unit has a plurality of partitions, and each of the partitions is provided with a light-emitting unit; Controller, Tcon) or field editable array (Field Programmable Gate Array, FPGA) to obtain the backlight data of each partition.
  • the backlight data of each partition is obtained through algorithm processing based on the data information of the picture to be displayed.
  • the backlight data includes the data of the 0th bit to the data of the M-1th bit, and the data of the 0th bit to the M-1th bit are 0 or 1.
  • the 0th bit is the lowest bit, and the M-1th bit is the highest bit.
  • Each of the backlight units may emit light of different brightness.
  • the backlight unit can emit 128 kinds of light with different brightness, that is, the brightness corresponding to the gray scale of 0-127.
  • the backlight unit can emit 256 kinds of light with different brightness.
  • the backlight unit can emit light with 1024 different brightnesses.
  • One of the backlight units may be composed of one backlight module, or may be formed by splicing a plurality of independently controlled backlight modules.
  • Each of the backlight units has a plurality of partitions. Each partition is provided with the same number of inorganic light emitting diodes connected in series, and the inorganic light emitting diodes are preferably Mini-LEDs.
  • the inorganic light emitting diodes include red inorganic light emitting diodes, blue light inorganic light emitting diodes, and green light inorganic light emitting diodes, and the inorganic light emitting diodes may also include white light inorganic light emitting diodes.
  • Each of the backlight units further includes a plurality of parallel scan lines and a plurality of parallel data lines, and the scan lines are insulated from the data lines and intersect perpendicularly.
  • Each light-emitting unit is connected to a scan line and a data line, the same row of light-emitting units is connected to the same scan line, and the same column of light-emitting units is connected to the same data line.
  • the light-emitting unit of each partition is divided into a plurality of initial driving sub-fields with different durations during the light-emitting process of one frame, and each of the initial driving sub-fields corresponds to one bit of data.
  • the light-emitting unit of each partition is divided into M initial driving subfields with different durations in the light-emitting process of one frame, and the duration of the i-th initial driving subfield is the same as that of the M initial driving subfields.
  • the ratio of the total duration of the initial driving subfield is 2 i-1 /2 M
  • the i-th initial driving sub-field corresponds to the i-1-th bit data
  • i is an integer greater than or equal to 1 and less than or equal to M
  • M is an integer greater than or equal to 2.
  • the duration of the i-th initial driving subfield is equal to 2 i-1 t/2 M , where t is the duration of one frame.
  • the number of the initial driving sub-fields of the light-emitting units of each partition in one frame depends on the gray level of the backlight unit.
  • the gray level of the backlight unit is 7 levels, then the number of the initial driving sub-fields is 7, and the backlight
  • the gray level of the unit 20 is 8, and the number of the initial driving subfields is 8.
  • the durations of the M initial driving subfields are different from each other, and each initial driving subfield corresponds to one bit of data.
  • the duration of different bits indicates the contribution of different bits to the backlight brightness, that is, indicates the weight of different bits. The longer the duration corresponding to each initial driving subfield, the greater the weight it occupies.
  • a plurality of the initial driving subfields with different durations corresponding to each partition are output in a preset order. Specifically, the first to the M-th initial driving sub-field are sequentially output, and in the i-th initial driving sub-field, the light-emitting unit inputs the i-th initial driving sub-field once.
  • the i-1th bit data corresponding to the field outputs the i-th initial driving subfield. Multiple bits of data are either 0 or 1.
  • the light-emitting unit When the data of the i-1th bit is 1, the light-emitting unit is in the bright state for the duration corresponding to the i-th initial driving subfield (the data voltage data outputs a high potential at this time); the data of the i-1th bit is When it is 0, the light-emitting unit is in a dark state for the duration corresponding to the i-th subfield (at this time, the data voltage data outputs a low level).
  • the initial backlight driving mode D0 is divided into a plurality of initial driving sub-fields with different durations according to the backlight data of each partition of the backlight unit, and each initial driving sub-field corresponds to one bit of data, so that the Different bits of data have different contributions to the brightness of the backlight, that is, the weights of different bits, and the accumulation effect of light over time is used to enable multiple partitions of the backlight unit to emit multiple lights of different brightness.
  • Technology backlight unit can reduce power consumption, and the use of active control can reduce control signals, thereby achieving cost reduction.
  • the control method of the backlight unit using the initial backlight driving mode D0 will be described in detail below with reference to specific embodiments, taking a backlight unit of 240Hz and 7bit gray scale as an example.
  • the time of each frame is 4.16ms, which is divided into 7 parts.
  • the duration of the first initial driving subfield SF1 is 32.5us, corresponding to the data 1 of the 0th bit B[0]; the second initial driving subfield
  • the duration of SF2 is twice the duration of the first initial driving subfield SF1, which is 65us, corresponding to the data 0 of the first bit B[1];
  • the duration of the third initial driving subfield SF3 is the second initial driving
  • the duration of subfield SF2 is twice as long as 130us, corresponding to the data 1 of the second bit B[2];
  • the duration of the fourth initial driving subfield SF4 is 260us, corresponding to the data 1 of the third bit B[3] ;
  • the duration of the fifth initial drive subfield SF5 is 520us, corresponding to the data 0 of the 4th bit B[4];
  • the duration of the sixth initial drive subfield SF6 is 1.04ms, corresponding to the 5th bit B
  • FIG. 4A it is a schematic diagram of the gate waveform of the unequal subfield backlight control using the initial backlight driving mode D0 in the embodiment of the present application.
  • the backlight unit is in the bright state in the first initial driving subfield SF1, the third initial driving subfield SF3, and the fourth initial driving subfield SF4 (the data voltage outputs a high potential, and these three subfields are in a bright state).
  • the backlight current in the area is the largest); at the same time, the remaining 4 initial driving subfields are in the dark state (the data voltage outputs a low potential, and the backlight current in these 4 subareas is the smallest).
  • using the initial backlight driving mode D0 to drive the backlight unit can indicate the contribution of different bits to the backlight brightness through the display duration of different bits, that is, the weight of different bits, so as to realize the brightness control of a partition.
  • the driving of the light emitting unit of the backlight unit is the first backlight driving mode D1.
  • the first backlight driving mode D1 is formed by outputting a plurality of the first driving subfields with different durations in a preset order.
  • Each of the light-emitting units in the backlight unit is formed by dividing the light-emitting unit of one frame by a dividing step; the dividing step further includes:
  • the driving process of using the first backlight driving mode D1 to drive the backlight unit is similar to the driving process of using the initial backlight driving mode D0 to drive the backlight panel, and the driving process is as follows:
  • the backlight data of each partition is obtained from Tcon or FPGA; secondly, the light-emitting unit of each partition is divided into a plurality of first driving subfields with different durations in the light-emitting process of one frame. A subfield corresponds to one bit of data; finally, a plurality of the first driving subfields with different durations corresponding to each partition are output in a preset order.
  • the difference between the first driving subfield and the initial driving subfield is only that each of the first driving subfields is composed of a bright subfield and a dark subfield, and each of the first driving subfields is composed of a bright subfield and a dark subfield.
  • the sum of the time of the bright subfield and the time of the dark subfield is equal to the corresponding time of the initial driving subfield.
  • the bright subfield time T D1,1 of the first first driving subfield of the first backlight driving mode D1, the bright and dark subfield time T D1,1, the dark sum and the initial backlight The time T D0,1 of the first initial driving subfield of the driving mode D0 is equal; the bright subfield time T D1,2 of the second first driving subfield of the first backlight driving mode D1, bright and dark
  • the subfield time T D1, 2, the dark sum is equal to the time T D0 , 2 of the second initial driving subfield of the initial backlight driving mode D0.
  • the driving mode is the second backlight driving Mode D2
  • the second backlight driving mode D2 has a first driving subfield corresponding to the first driving subfield of the first backlight driving mode D1.
  • the difference between the second backlight driving mode D2 and the first backlight driving mode D1 is only that the time ratio of the bright subfield in the second backlight driving mode D2 to the first driving subfield is smaller than the time ratio of the bright subfield in the first backlight driving mode D1 to the first driving subfield.
  • the bright subfield time T D2,1 of the first first driving subfield of the second backlight driving mode D2 the bright and dark subfield time T D2,1, the dark sum and the initial backlight
  • the time T D0,1 of the first initial driving subfield of the driving mode D0 is equal.
  • the drive mode is the nth backlight drive mode Dn, and the time ratio of the bright subfield to the first drive subfield of the nth backlight drive mode Dn is less than the (n ⁇ 1)th backlight drive mode D( The time ratio of the bright subfield to the first driving subfield of n ⁇ 1), where n is a positive integer greater than 2.
  • the bright subfield time T D3,i of the i-th second type driving subfield of the third backlight driving mode D3, the bright and dark subfield time T D3,i, dark The sum is equal to the time T D0,i of the i-th initial driving subfield of the initial backlight driving mode D0, and the time ratio of the bright subfield of the third backlight driving mode D3 to the first driving subfield
  • the time ratio of the bright subfield in the second backlight driving mode D2 to the first driving subfield is smaller than that in the first driving subfield, as shown in FIG. 4B .
  • a method for obtaining the time of the bright subfield and the time of the dark subfield in the first driving subfield in the first backlight driving mode D1 or the second backlight driving mode D2 include:
  • S203 Adjust the time of the bright subfield or the time of the dark subfield in the first driving subfield in the first backlight driving mode D1 or the second backlight driving mode D2 according to the detection result, so that all The brightness value of the backlight unit is consistent with the brightness value of the backlight unit driven in the corresponding temperature range by the backlight driving mode of the previous stage.
  • the Nth The time of the dark subfield in the first driving subfield until the brightness value when the backlight unit displays 2N-1 grayscale is equal to the initial brightness value; if the backlight unit displays 2N-1 grayscale When the brightness value of the gray scale is less than the initial brightness value, the time of the dark subfield in the Nth first driving subfield is reduced until the brightness value when the backlight unit displays 2 N-1 gray scales is equal to The initial brightness value; wherein N is a positive integer greater than or equal to 1.
  • the method for obtaining the bright subfield time and the dark subfield time of each of the first driving subfields in the first backlight driving mode D1 will be described in detail below with reference to specific embodiments.
  • the second driving subfield can be obtained.
  • the bright subfield time and the dark subfield time of each of the first driving subfields in the backlight driving mode D2 and the nth backlight driving mode Dn (n is a positive integer greater than 2).
  • FIG. 5B it is a flowchart of the method for obtaining the bright subfield time and the dark subfield time of each first driving subfield in the first backlight driving mode D1 according to the embodiment of the present application.
  • the specific method steps are as follows:
  • S201 first, drive the light-emitting unit of the backlight unit according to the initial backlight driving mode D0 , wherein the highest temperature in the temperature range corresponding to the initial backlight driving mode D0 is less than the ambient temperature T. After that, drive the Nth initial driving subfield to be bright in the initial backlight driving mode D0, so that the backlight panel corresponding to the backlight unit displays 2 N-1 gray scales (N is a positive integer greater than or equal to 1, And N is at most the number of the initial driving subfields corresponding to the initial backlight driving mode D0).
  • the duration of the first initial driving subfield SF1 is 32.5us; the second The duration of the first initial driving subfield SF2 is twice the duration of the first initial driving subfield SF1, which is 65us; the duration of the third initial driving subfield SF3 is twice the duration of the second initial driving subfield SF2 , is 130us; the duration of the fourth initial driving subfield SF4 is 260us; the duration of the fifth initial driving subfield SF5 is 520us; the duration of the sixth initial driving subfield SF6 is 1.04ms; the seventh initial driving subfield The duration of field SF7 is 2.08ms.
  • the luminance value L D0,N corresponding to the Nth initial drive subfield when it is on can be measured by the luminance, and the corresponding luminance value L D0 of the Nth initial drive subfield, L D0, N is determined to be a known number.
  • T D1,N, bright T D0,N -T D1,N, dark
  • the time T D1 of the bright subfield in the Nth first driving subfield in the first backlight driving mode D1 can be obtained, N, bright .
  • the ambient temperature T satisfies temp1 ⁇ T ⁇ temp2
  • the control method of the backlight unit drives the backlight unit in the first backlight mode D1
  • each first driving subfield in the first backlight mode D1 includes a bright subfield 61 and a dark subfield 61.
  • the first backlight mode D1 adjusts the time when each of the first driving subfields in the backlight unit is in a bright state in different time periods, so that the brightness displayed by the display device under different ambient temperatures is consistent, To achieve the purpose of improving the stability of backlight brightness.
  • the present application also provides a display panel.
  • FIG. 7 is a schematic diagram of a frame of a display panel provided by an embodiment of the present application.
  • the display panel 70 includes a temperature detection module 71 , a memory 72 for storing instructions, a controller 73 for executing the instructions to implement any of the above methods, and a backlight unit 74 .
  • the memory 72 may include: a read only memory (ROM, Read Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk or an optical disk, and the like.
  • ROM read only memory
  • RAM random access memory
  • magnetic disk or an optical disk and the like.
  • the present application further provides a display device including the above-mentioned display panel.
  • control method, display panel, and display device of the backlight unit control the brightness of the light emitted by the light-emitting unit of the backlight unit based on the unequal molecular field, and adjust each subfield of the backlight unit by adjusting The time of the bright subfield or the dark subfield at different ambient temperatures makes the brightness of the display device consistent under different ambient temperatures, so as to improve the brightness stability of the display device, so that the backlight brightness of the display device does not change with the ambient temperature.
  • the rise and offset of the display device further avoid the problem of the power exceeding the standard of the display device.

Abstract

本申请提供一种背光单元的控制方法、显示面板及显示装置,该控制方法包括:通过温度侦测模块获取环境温度;比较环境温度与第一基准温度参考值;根据比较结果确定背光单元的发光单元的驱动方式;当环境温度高于或等于第一基准温度参考值时,驱动方式包括第一驱动子场,每一第一驱动子场由亮子场和暗子场构成。

Description

背光单元的控制方法、显示面板及显示装置 技术领域
本申请涉及显示技术领域,具体涉及一种背光单元的控制方法、显示面板及显示装置。
背景技术
随着信息化社会的蓬勃发展,人们对信息显示的需求越来越迫切、广泛,要求也越来越严苛。面板产业显示技术自20世纪90年代开始迅速发展并逐步走向成熟。由于平板显示其具有清晰度高、图像色彩好、省电、轻薄、便于携带等优点,已被广泛应用于上述信息显示产品中,因此具有广阔的市场前景。面板产业驱动技术的日益成熟,机遇与挑战也随之而来。由于液晶显示屏(Liquid Crystal Display,LCD)背光的局限性,如功耗大、对比度低等缺点,于是迫使背光朝着局部可控制(Local dimming)的方向发展。
现有的次毫米发光二极管(mini Light Emitting Diode,简称mini-LED)背光采用静态驱动或被动矩阵式(Passive Matrix,简称PM)驱动方案实现的背光Local Dimming。由于每一区需要单独使用一根数据线(data line)控制,因此分区数量普遍低于2000分区且所需驱动芯片过多,产品成本高。因此,唯有找到降低成本的技术方案,才有机会在市场上见到实际的量产品。基于主动矩阵式(Active Matrix,简称AM)的Mini-LED背光单元驱动方法成为一种有效减少LED驱动芯片数量以实现降本的方案。
目前AM Mini-LED背光采用恒压方式驱动LED灯板,LED灯板亮后会发热导致温度上升。如图1A所示,为LED灯板中环境温度T与正向导通电压V f的关系曲线示意图。其中,横坐标为环境温度T,纵坐标为正向导通电压V f。通过图1A可知,在环境温度为T a时,LED灯板的正向导通电压为V fa;在环境温度为T b(T b>T a)时,LED灯板的正向导通电压为V fb(V fb<V fa)。由图1A可知,当环境温度T上升时,由于电子空穴对的数量随着环境温度T上升而增加,从而需要的电场会降低,导致正向导通电压V f下降。如图1B所示,为LED灯板中环境温度T、驱动电流I以及正向导通电压V f之间的关系曲线示意图。其中,横坐标为驱动电流I,纵坐标为正向导通电压V f。通过图1B可知,在同一正向导通电压下,环境温度为T a时的驱动电流为I 1,环境温度为T b(T b>T a)时的驱动电流为I 2(I 1<I 2)。通过图1B可知,在恒压状态下,高温导致LED灯板的驱动电流I增大。
如图1C所示,为AM Mini-LED的 TV产品在不同环境温度下的亮度及功率的数值表。由图1C可知,当环境温度在(0℃~40℃)范围内时,随着环境温度T的升高,LED灯板的亮度升高,同时LED灯板的功率P也不断增高;当环境温度在(40℃~50℃)范围内时,随着环境温度T的升高,LED灯板的亮度达到热平衡后趋于稳定,此时LED灯板的功率P还不断增高。由于LED灯板的恒压驱动方式电压不变,LED灯的驱动电流I增大即意味着功耗增大,随之温度上升,如此循环直至热平衡。同时,LED灯板的亮度会随电流的增大而增大,即意味着随LED灯板亮度时间的增加,LED灯的亮度会上升,直到热平衡后LED灯板亮度稳定,此时AM Mini-LED的 TV产品的功率也随着亮度的改变和增大,导致功率发生超标问题。综上所述,AM Mini-LED的TV产品在环境温度较高时会存在功率超标问题,且亮度会随着环境温度升高而偏移。
因此,有必要提供一种背光单元的控制方法、显示面板及显示装置,以克服上述缺陷。
技术问题
当前技术的AM Mini-LED的TV产品在环境温度较高时会存在功率超标问题,且亮度会随着环境温度升高而偏移。
技术解决方案
本申请实施例提供一种背光单元的控制方法,所述控制方法包括如下步骤:
S10,通过温度侦测模块获取环境温度;
S20,比较所述环境温度与第一基准温度参考值;
S30,根据比较结果确定所述背光单元的发光单元的驱动方式;
其中,当所述环境温度高于或等于所述第一基准温度参考值时,所述驱动方式为第一背光驱动方式,所述第一背光驱动方式包括第一驱动子场,每一所述第一驱动子场由亮子场和暗子场构成。
在本申请实施例提供的背光单元的控制方法中,当所述环境温度低于所述第一基准温度参考值时,所述驱动方式为恒压驱动的初始背光驱动方式,所述初始背光驱动方式包括与所述第一驱动子场相对应的初始驱动子场,每一所述初始驱动子场由亮子场或暗子场构成,每一所述第一驱动子场内所述亮子场的时间和所述暗子场的时间总和与相对应的所述初始驱动子场的时间相等。
在本申请实施例提供的背光单元的控制方法中,在所述S10与所述S30之间,还包括:
S21,比较所述环境温度与第二基准温度参考值,所述第二基准温度参考值高于所述第一基准温度参考值;
其中,当所述环境温度高于或等于所述第一基准温度参考值而小于所述第二基准温度参考值时,所述驱动方式为所述第一背光驱动方式,当所述环境温度高于或等于所述第二基准温度参考值时,所述驱动方式为第二背光驱动方式;
所述第二背光驱动方式具有与所述第一背光驱动方式的所述第一驱动子场相对应的第一驱动子场,所述第二背光驱动方式的所述亮子场占所述第一驱动子场的时间比值小于所述第一背光驱动方式的所述亮子场占所述第一驱动子场的时间比值。
在本申请实施例提供的背光单元的控制方法中,在所述S10与所述S30之间,还包括:
S21,比较所述环境温度与第(n+1)基准温度参考值,所述第(n+1)基准温度参考值高于第n基准温度参考值;
其中,当所述环境温度高于或等于所述第n基准温度参考值而小于所述第(n+1)基准温度参考值时,所述驱动方式为第n背光驱动方式,所述第n背光驱动方式的所述亮子场占所述第一驱动子场的时间比值小于第(n-1)背光驱动方式D(n-1)的所述亮子场占所述第一驱动子场的时间比值,其中,n为大于2的正整数。
在本申请实施例提供的背光单元的控制方法中,获取所述第一背光驱动方式或所述第二背光驱动方式中的所述第一驱动子场中所述亮子场的时间和所述暗子场的时间的方法包括:
S201,根据上一级所述驱动方式驱动所述背光单元的所述发光单元,其中,所述上一级所述驱动方式对应的温度范围内的最高温度小于所述环境温度;
S202,检测所述背光单元的亮度值是否大于以上一级所述背光驱动方式在对应的所述温度范围内驱动所述背光单元的亮度值;
S203,根据检测结果调整所述第一背光驱动方式或所述第二背光驱动方式中的所述第一驱动子场中所述亮子场的时间或所述暗子场的时间,使得所述背光单元的所述亮度值与上一级所述背光驱动方式在对应的所述温度范围内驱动所述背光单元的亮度值一致。
在本申请实施例提供的背光单元的控制方法中,所述S203还包括:
S2031,若所述背光单元显示2 N-1灰阶时的亮度值大于上一级所述背光驱动方式在对应的所述温度范围内驱动所述背光单元的初始亮度值,则增加第N个所述第一驱动子场中所述暗子场的时间,直至所述背光单元显示2 N-1灰阶时的亮度值等于所述初始亮度值;若所述背光单元显示2 N-1灰阶时的亮度值小于所述初始亮度值,则减少第N个所述第一驱动子场中所述暗子场的时间,直至所述背光单元显示2 N-1灰阶时的亮度值等于所述初始亮度值;其中N为大于或等于1的正整数。
在一些实施例中,所述第一背光驱动方式经多个具有不同时长的所述第一驱动子场按照预设顺序输出而成,多个所述第一驱动子场经所述背光单元中的每一所述发光单元在一帧的发光过程中采用切分步骤分割而成;所述切分步骤还包括:
将所述背光单元中的每一所述发光单元在一帧的发光过程切分为M个具有不同时长的所述第一驱动子场,第i个所述第一驱动子场的时长与M个所述第一驱动子场的时长总和的比值为2 i-1 /2 M,第i个所述第一驱动子场对应第i-1比特位的数据,i为大于或等于1且小于或等于M的整数,M为大于或等于2的整数。
在本申请实施例提供的背光单元的控制方法中,所述背光单元的发光单元为次毫米发光二极管。
本申请实施例提供一种背光单元的控制方法,其中,所述控制方法包括如下步骤:
S10,通过温度侦测模块获取环境温度;
S20,比较所述环境温度与第一基准温度参考值;
S30,根据比较结果确定所述背光单元的发光单元的驱动方式;
其中,当所述环境温度高于或等于所述第一基准温度参考值时,所述驱动方式为第一背光驱动方式,所述第一背光驱动方式包括第一驱动子场,每一所述第一驱动子场由亮子场和暗子场构成;
其中,所述亮子场时间段内的数据电压为高电位,所述暗子场时间段内的所述数据电压为低电位。
在本申请实施例提供的背光单元的控制方法中,当所述环境温度低于所述第一基准温度参考值时,所述驱动方式为恒压驱动的初始背光驱动方式,所述初始背光驱动方式包括与所述第一驱动子场相对应的初始驱动子场,每一所述初始驱动子场由亮子场或暗子场构成,每一所述第一驱动子场内所述亮子场的时间和所述暗子场的时间总和与相对应的所述初始驱动子场的时间相等。
在本申请实施例提供的背光单元的控制方法中,在所述S10与所述S30之间,还包括:
S21,比较所述环境温度与第二基准温度参考值,所述第二基准温度参考值高于所述第一基准温度参考值;
其中,当所述环境温度高于或等于所述第一基准温度参考值而小于所述第二基准温度参考值时,所述驱动方式为所述第一背光驱动方式,当所述环境温度高于或等于所述第二基准温度参考值时,所述驱动方式为第二背光驱动方式;
所述第二背光驱动方式具有与所述第一背光驱动方式的所述第一驱动子场相对应的第一驱动子场,所述第二背光驱动方式的所述亮子场占所述第一驱动子场的时间比值小于所述第一背光驱动方式的所述亮子场占所述第一驱动子场的时间比值。
在本申请实施例提供的背光单元的控制方法中,在所述S10与所述S30之间,还包括:
S21,比较所述环境温度与第(n+1)基准温度参考值,所述第(n+1)基准温度参考值高于第n基准温度参考值;
其中,当所述环境温度高于或等于所述第n基准温度参考值而小于所述第(n+1)基准温度参考值时,所述驱动方式为第n背光驱动方式,所述第n背光驱动方式的所述亮子场占所述第一驱动子场的时间比值小于第(n-1)背光驱动方式D(n-1)的所述亮子场占所述第一驱动子场的时间比值,其中,n为大于2的正整数。
在本申请实施例提供的背光单元的控制方法中,获取所述第一背光驱动方式或所述第二背光驱动方式中的所述第一驱动子场中所述亮子场的时间和所述暗子场的时间的方法包括:
S201,根据上一级所述驱动方式驱动所述背光单元的所述发光单元,其中,所述上一级所述驱动方式对应的温度范围内的最高温度小于所述环境温度;
S202,检测所述背光单元的亮度值是否大于以上一级所述背光驱动方式在对应的所述温度范围内驱动所述背光单元的亮度值;
S203,根据检测结果调整所述第一背光驱动方式或所述第二背光驱动方式中的所述第一驱动子场中所述亮子场的时间或所述暗子场的时间,使得所述背光单元的所述亮度值与上一级所述背光驱动方式在对应的所述温度范围内驱动所述背光单元的亮度值一致。
在本申请实施例提供的背光单元的控制方法中,所述S203还包括:
S2031,若所述背光单元显示2 N-1灰阶时的亮度值大于上一级所述背光驱动方式在对应的所述温度范围内驱动所述背光单元的初始亮度值,则增加第N个所述第一驱动子场中所述暗子场的时间,直至所述背光单元显示2 N-1灰阶时的亮度值等于所述初始亮度值;若所述背光单元显示2 N-1灰阶时的亮度值小于所述初始亮度值,则减少第N个所述第一驱动子场中所述暗子场的时间,直至所述背光单元显示2 N-1灰阶时的亮度值等于所述初始亮度值;其中N为大于或等于1的正整数。
在本申请实施例提供的背光单元的控制方法中,所述第一背光驱动方式经多个具有不同时长的所述第一驱动子场按照预设顺序输出而成,多个所述第一驱动子场经所述背光单元中的每一所述发光单元在一帧的发光过程中采用切分步骤分割而成;所述切分步骤还包括:
将所述背光单元中的每一所述发光单元在一帧的发光过程切分为M个具有不同时长的所述第一驱动子场,第i个所述第一驱动子场的时长与M个所述第一驱动子场的时长总和的比值为2 i-1 /2 M,第i个所述第一驱动子场对应第i-1比特位的数据,i为大于或等于1且小于或等于M的整数,M为大于或等于2的整数。
在本申请实施例提供的背光单元的控制方法中,所述背光单元的发光单元为次毫米发光二极管。本申请实施例还提供一种显示面板,所述显示面板包括:温度侦测模块、用于存储指令的存储器、用于执行所述指令以实现如上任一项的所述方法的控制器以及背光单元。
在本申请实施例提供的显示面板中,所述存储器包括只读存储器、随机存取记忆体、磁盘或者光盘中的任意一种。
在本申请实施例提供的显示面板中,所述背光单元具有多个分区,每个所述分区设置有发光单元,所述发光单元为次毫米发光二极管。本申请实施例又提供一种显示装置,包括如上所述的显示面板。
有益效果
相较于现有技术,本申请实施例所提供的背光单元的控制方法、显示面板及显示装置,基于非等分子场控制背光单元的发光单元发出的光的亮度,并通过调整背光单元的每个驱动子场在不同环境温度时亮子场或暗子场的时间,使显示装置在不同环境温度下表现出来的亮度一致,达到提升显示装置亮度稳定性的目的,进一步使得显示装置的背光亮度不会随着环境温度的升高而偏移,进一步避免了显示装置的功率超标问题。
附图说明
图1A为LED灯板中环境温度T与正向导通电压V f的关系曲线示意图;
图1B为LED灯板中环境温度T、驱动电流I以及正向导通电压V f之间的关系曲线示意图;
图1C为AM Mini-LED的 TV产品在不同环境温度下的亮度及功率的数值表;
图2为本申请实施例提供的背光单元的控制方法流程图;
图3为本申请实施例提供的显示装置在不同环境温度范围下对应的不同背光驱动方式的示意图;
图4A为本申请实施例中采用初始背光驱动方式D0的非等子场背光控制的栅极波形示意图;
图4B为本申请实施例提供的采用不同背光驱动方式的非等子场背光控制的栅极波形示意图;
图5A为本申请实施例提供的计算每一个第一驱动子场中亮子场时间和暗子场时间的方法流程图;
图5B为本申请实施例提供的第一背光驱动方式D1中每一个第一驱动子场的亮子场时间和暗子场时间求法流程图;
图6为本申请实施例提供的第一背光驱动方式D1显示B=(0001101)B灰阶时的栅极电压端和数据电压端的波形示意图;
图7为本申请显示设备的像素补偿装置的结构框图。
本发明的实施方式
本申请实施例针对现有技术的显示装置,随着环境温度升高造成背光单元的发光单元的亮度偏移,进一步导致显示装置的功率超标的技术问题,本实施例能够解决该缺陷。
请参阅图2,图2为本申请实施例提供的背光单元的控制方法流程图。其中,背光单元的控制方法应用于显示面板,所述显示面板包括背光灯板,所述控制方法包括如下步骤:
S10,通过温度侦测模块获取环境温度T。
具体地,所述S10还包括:
首先,在显示面板的整机上增加温度侦测模块,通过温度侦测模块获取环境温度T;其中,所述背光单元的发光单元优选为mini-LED。
S20,比较所述环境温度T与第一基准温度参考值temp1。
具体地,所述S20还包括:
当所述环境温度T低于所述第一基准温度参考值temp1时(T<temp1),所述驱动方式为恒压驱动的初始背光驱动方式D0,所述初始背光驱动方式D0包括初始驱动子场,每一所述初始驱动子场由亮子场或暗子场构成。
具体地,所述亮子场时间段内的数据电压为高电位,所述暗子场时间段内的所述数据电压为低电位。
当所述环境温度T高于或等于所述第一基准温度参考值temp1而小于第二基准温度参考值temp2时(temp1≤T<temp2)时,所述背光单元的发光单元的驱动方式为第一背光驱动方式D1,所述第一背光驱动方式D1包括与所述初始驱动子场相对应的第一驱动子场,每一所述第一驱动子场由亮子场和暗子场构成,每一所述第一驱动子场内所述亮子场的时间和所述暗子场的时间总和与相对应的所述初始驱动子场的时间相等。
当所述环境温度T高于或等于所述第二基准温度参考值temp2而小于第三基准温度参考值temp3时,所述驱动方式为第二背光驱动方式D2;所述第二背光驱动方式D2具有与所述第一背光驱动方式D1的所述第一驱动子场相对应的第一驱动子场,所述第二背光驱动方式D2的所述亮子场占所述第一驱动子场的时间比值小于所述第一背光驱动方式D1的所述亮子场占所述第一驱动子场的时间比值。
优选地,当所述环境温度T高于或等于第n基准温度参考值tempn而小于第(n+1)基准温度参考值temp(n+1)时(tempn≤T<temp(n+1)),所述驱动方式为第n背光驱动方式Dn;所述第n背光驱动方式Dn具有与所述第一背光驱动方式D1的所述第一驱动子场相对应的第一驱动子场,所述第n背光驱动方式Dn的所述亮子场占所述第一驱动子场的时间比值小于第(n-1)背光驱动方式D(n-1)的所述亮子场占所述第一驱动子场的时间比值,其中,n为大于2的正整数,如图3所示。
S30,根据比较结果确定所述背光单元的发光单元的驱动方式。
具体地,所述S30还包括:
具体地,当所述环境温度T低于所述第一基准温度参考值temp1时(T<temp1),所述驱动方式为恒压驱动的初始背光驱动方式D0,采用所述初始背光驱动方式D0驱动所述背光单元的驱动过程如下所述:
所述背光单元具有多个分区,每个所述分区设置有发光单元;首先从时序控制器(Time Controller,Tcon)或现场可编辑阵列(Field Programmable Gate Array,FPGA)获取每个分区的背光数据。每个分区的背光数据是基于待显示画面的数据信息通过算法处理得到。背光数据包括第0比特位的数据至第M-1比特位的数据,第0比特位的数据至第M-1比特位的数据为0或1。第0比特位为最低比特位,第M-1比特位是最高比特位。
每个所述背光单元可以发出不同亮度的光。例如所述背光单元的灰阶级为7比特位时,所述背光单元可以发出128种不同亮度的光,即0-127灰阶对应的亮度。所述背光单元的灰阶级为8时,所述背光单元可以发出256种不同亮度的光。所述背光单元的灰阶级为10时,所述背光单元可以发出1024种不同亮度的光。
一个所述背光单元可以由一个背光模组组成,也可以由多个独立控制的背光模组拼接而成。每个所述背光单元具有多个分区。每个分区设置有相同数量且串联的无机发光二极管,无机发光二极管优选为Mini-LED。无机发光二极管包括红光无机发光二极管、蓝光无机发光二极管以及绿光无机发光二极管,无机发光二极管还可以包括白光无机发光二极管。
每个所述背光单元还包括多个平行的扫描以及多个平行的数据线,扫描线与数据线绝缘且垂直相交。每个发光单元与一个扫描线以及一个数据线连接,同一行发光单元与同一条扫描线连接,同一列发光单元与同一数据线连接。
其次,将每个分区的发光单元在一帧的发光过程切分为多个具有不同时长的初始驱动子场,每个所述初始驱动子场对应一个比特位的数据。
具体地,将每个所述分区的发光单元在一帧的发光过程切分为M个具有不同时长的所述初始驱动子场,第i个所述初始驱动子场的时长与M个所述初始驱动子场的时长总和的比值为2 i-1/2 M,第i个所述初始驱动子场对应第i-1比特位的数据,i为大于或等于1且小于或等于M的整数,M为大于或等于2的整数。第i个所述初始驱动子场的时长等于2 i-1 t/2 M,t为一帧的时间。
每个分区的发光单元在一帧时长的所述初始驱动子场的数目取决于背光单元的灰阶级,背光单元的灰阶级为7级,则所述初始驱动子场的数目为7个,背光单元20的灰阶级为8级,则初始驱动子场的数目为8个。M个初始驱动子场的时长互相不同,每个初始驱动子场对应一个比特位的数据。不同比特位的时长表明不同比特位对背光亮度的贡献,即表示不同比特位的权重。每个初始驱动子场对应的时长越长,则所占权重越大。
最后,将对应每个分区的多个具有不同时长的所述初始驱动子场按照预设顺序输出。具体地,依次输出第1个所述初始驱动子场至第M个所述初始驱动子场,且在第i个所述初始驱动子场时,所述发光单元输入一次第i个初始驱动子场对应的第i-1比特位的数据,输出第i个初始驱动子场。多个比特位的数据为0或1。第i-1比特位的数据为1时,发光单元在第i个所述初始驱动子场对应的时长处于亮态(此时数据电压data输出高电位);第i-1比特位的数据为0时,发光单元在第i个子场对应的时长处于暗态(此时数据电压data输出低电位)。
所述初始背光驱动方式D0通过所述背光单元的每个分区的背光数据分为多个具有不同时长的初始驱动子场显示,每个所述初始驱动子场对应一个比特位的数据,以使不同比特位的数据对背光亮度的贡献不同,即占不同比特位的权重,利用光在时长上的积累效应以使所述背光单元的多个分区能发出多个不同亮度的光,相对于传统技术背光单元,可以降低功耗,且采用主动式控制可减少控制信号,从而实现降本。
以下结合具体实施例对采用所述初始背光驱动方式D0的背光单元的控制方法进行详述,以240Hz、7bit灰阶的背光单元为例。
对于背光单元20中的一个分区,前端时序控制器TCON或FPGA提供7bit数据B=(0001101) B,其中,1表示第0比特位B[0]的数据,0表示第1比特位B[1]的数据,1表示第2比特位B[2]的数据,1表示第3比特位B[3]的数据,0表示第4比特位B[4]的数据,0表示第5比特位B[5]的数据,0表示第6比特位B[6]的数据。
每一帧的时间是4.16ms,将其划分为7份,第一个初始驱动子场SF1的时长是32.5us,对应第0比特位B[0]的数据1;第二个初始驱动子场SF2的时长是第一个初始驱动子场SF1的时长的2倍,为65us,对应第1比特位B[1]的数据0;第三个初始驱动子场SF3的时长是第二个初始驱动子场SF2的时长的2倍,为130us,对应第2比特位B[2]的数据1;第四个初始驱动子场SF4的时长为260us,对应第3比特位B[3]的数据1;第五个初始驱动子场SF5的时长为520us,对应第4比特位B[4]的数据0;第六个初始驱动子场SF6的时长为1.04ms,对应第5比特位B[5]的数据0;第七个初始驱动子场SF7的时长为2.08ms,对应第6比特位B[6]的数据0。
如图4A所述,为本申请实施例中采用初始背光驱动方式D0的非等子场背光控制的栅极波形示意图。其中,背光单元在所述第1个初始驱动子场SF1、所述第3个初始驱动子场SF3以及所述第4个初始驱动子场SF4为亮态(数据电压输出高电位,这3个子区域中的背光电流最大);同时,其余4个初始驱动子场为暗态(数据电压输出低电位,这4个子区域中的背光电流最小)。
如此,采用初始背光驱动方式D0驱动背光单元可以通过不同比特位的显示时长表明不同比特位对背光亮度的贡献,即表示不同比特位的权重,从而实现一个分区的亮度控制。
具体地,当所述环境温度T高于或等于所述第一基准温度参考值temp1而小于第二基准温度参考值temp2时(temp1≤T<temp2)时,所述背光单元的发光单元的驱动方式为第一背光驱动方式D1,所述第一背光驱动方式D1经多个具有不同时长的所述第一驱动子场按照预设顺序输出而成,多个所述第一驱动子场经所述背光单元中的每一所述发光单元在一帧的发光过程中采用切分步骤分割而成;所述切分步骤还包括:
将所述背光单元中的每一所述发光单元在一帧的发光过程切分为M个具有不同时长的所述第一驱动子场,第i个所述第一驱动子场的时长与M个所述第一驱动子场的时长总和的比值为2 i-1 /2 M,第i个所述第一驱动子场对应第i-1比特位的数据,i为大于或等于1且小于或等于M的整数,M为大于或等于2的整数。
采用所述第一背光驱动方式D1驱动所述背光单元的驱动过程与采用所述初始背光驱动方式D0驱动所述背光灯板的驱动过程类似,其驱动过程如下所述:
首先从Tcon或FPGA获取每个分区的背光数据;其次,将每个分区的发光单元在一帧的发光过程切分为多个具有不同时长的第一驱动子场,每个所述第一驱动子场对应一个比特位的数据;最后,将对应每个分区的多个具有不同时长的所述第一驱动子场按照预设顺序输出。
其中,所述第一驱动子场与所述初始驱动子场的不同之处仅在于,每一所述第一驱动子场由亮子场和暗子场构成,每一所述第一驱动子场内所述亮子场的时间和所述暗子场的时间总和与相对应的所述初始驱动子场的时间相等。
具体地,所述第一背光驱动方式D1的第1个所述第一驱动子场的亮子场时间T D1,1, 和暗子场时间T D1,1, 的和与所述初始背光驱动方式D0的第1个初始驱动子场的时间T D0,1相等;所述第一背光驱动方式D1的第2个所述第一驱动子场的亮子场时间T D1,2, 和暗子场时间T D1,2, 的和与所述初始背光驱动方式D0的第2个初始驱动子场的时间T D0,2相等。
具体地,当所述环境温度T高于或等于所述第二基准温度参考值temp2而小于第三基准温度参考值temp3时(temp2≤T<temp3)时,所述驱动方式为第二背光驱动方式D2,所述第二背光驱动方式D2具有与所述第一背光驱动方式D1的所述第一驱动子场相对应的第一驱动子场。
其中,所述第二背光驱动方式D2与所述第一背光驱动方式D1的不同之处仅在于,所述第二背光驱动方式D2的所述亮子场占所述第一驱动子场的时间比值小于所述第一背光驱动方式D1的所述亮子场占所述第一驱动子场的时间比值。
具体地,所述第二背光驱动方式D2的第1个所述第一驱动子场的亮子场时间T D2,1, 和暗子场时间T D2,1, 的和与所述初始背光驱动方式D0的第1个初始驱动子场的时间T D0,1相等。
优选地,当所述环境温度T高于或等于第n基准温度参考值tempn而小于第(n+1)基准温度参考值temp(n+1)时(tempn≤T<temp(n+1)),所述驱动方式为第n背光驱动方式Dn,所述第n背光驱动方式Dn的所述亮子场占所述第一驱动子场的时间比值小于第(n-1)背光驱动方式D(n-1)的所述亮子场占所述第一驱动子场的时间比值,其中,n为大于2的正整数。
在一优选实施例中,当n=3时,第三背光驱动方式D3的第i个第二类驱动子场的亮子场时间T D3,i, 和暗子场时间T D3,i, 的和与所述初始背光驱动方式D0的第i个初始驱动子场的时间T D0,i相等,所述第三背光驱动方式D3的所述亮子场占所述第一驱动子场的时间比值小于所述第二背光驱动方式D2的所述亮子场占所述第一驱动子场的时间比值,如图4B所示。
如图5A所示,获取所述第一背光驱动方式D1或所述第二背光驱动方式D2中的所述第一驱动子场中所述亮子场的时间和所述暗子场的时间的方法包括:
S201,根据上一级所述驱动方式驱动所述背光单元的所述发光单元,其中,所述上一级所述驱动方式对应的温度范围内的最高温度小于所述环境温度T;
S202,检测所述背光单元的亮度值是否大于以上一级所述背光驱动方式在对应的所述温度范围内驱动所述背光单元的亮度值;
S203,根据检测结果调整所述第一背光驱动方式D1或所述第二背光驱动方式D2中的所述第一驱动子场中所述亮子场的时间或所述暗子场的时间,使得所述背光单元的所述亮度值与上一级所述背光驱动方式在对应的所述温度范围内驱动所述背光单元的亮度值一致。
其中,若所述背光单元显示2 N-1灰阶时的亮度值大于上一级所述背光驱动方式在对应的所述温度范围内驱动所述背光单元的初始亮度值,则增加第N个所述第一驱动子场中所述暗子场的时间,直至所述背光单元显示2 N-1灰阶时的亮度值等于所述初始亮度值;若所述背光单元显示2 N-1灰阶时的亮度值小于所述初始亮度值,则减少第N个所述第一驱动子场中所述暗子场的时间,直至所述背光单元显示2 N-1灰阶时的亮度值等于所述初始亮度值;其中N为大于或等于1的正整数。
以下结合具体实施例对采用所述第一背光驱动方式D1中,每一个所述第一驱动子场的亮子场时间和暗子场时间的求法进行详述,同理可求得所述第二背光驱动方式D2以及第n背光驱动方式Dn中每一个所述第一驱动子场的亮子场时间和暗子场时间(n为大于2的正整数)。
如图5B所述,为本申请实施例第一背光驱动方式D1中每一个第一驱动子场的亮子场时间和暗子场时间求法流程图,其具体求法步骤如下所述:
S201,首先,根据所述初始背光驱动方式D0驱动所述背光单元的所述发光单元,其中,所述初始背光驱动方式D0对应的温度范围内的最高温度小于所述环境温度T。之后,以所述初始背光驱动方式D0驱动第N个所述初始驱动子场亮,使得所述背光单元对应的背光灯板显示2 N-1灰阶(N为大于或等于1的正整数,且N最大为所述初始背光驱动方式D0对应的所述初始驱动子场的个数)。
S202,检测此时所述背光单元的亮度值L是否大于以所述初始背光驱动方式D0在第N个所述初始驱动子场亮时的亮度值L D0,N
具体地,在240Hz、7bit灰阶的背光单元的实施例中,由于每一帧的时间是4.16ms,将其划分为7份,第一个初始驱动子场SF1的时长是32.5us;第二个初始驱动子场SF2的时长是第一个初始驱动子场SF1的时长的2倍,为65us;第三个初始驱动子场SF3的时长是第二个初始驱动子场SF2的时长的2倍,为130us;第四个初始驱动子场SF4的时长为260us;第五个初始驱动子场SF5的时长为520us;第六个初始驱动子场SF6的时长为1.04ms;第七个初始驱动子场SF7的时长为2.08ms。因此,可以通过第N个初始驱动子场的时长,采用亮度计量出第N个初始驱动子场亮时对应的亮度值L D0,N,第N个初始驱动子场对应的亮度值L D0,N确定为已知数。
S203,根据检测结果调整所述第一背光驱动方式D1中在第N个所述第一驱动子场亮时,所述第N个所述第一驱动子场中所述亮子场的时间T D1,N, 或所述暗子场的时间T D1,N, ,使得此时所述背光单元的所述亮度值L与以所述初始背光驱动方式D0在第N个所述初始驱动子场亮时的亮度值L D0,N一致。
具体地,若L>L D0,N,则增加所述第一背光驱动方式D1中第N个所述第一驱动子场中暗子场的时间T D1,N, ,直至L=L D0,N
具体地,若L<L D0,N,则减少所述第一背光驱动方式D1中第N个所述第一驱动子场中暗子场的时间T D1,N, ,直至L=L D0,N
根据公式T D1,N, =T D0,N-T D1,N, 可求得所述第一背光驱动方式D1中第N个所述第一驱动子场中亮子场的时间T D1,N,
最后,通过以上方法依次求得所述第一背光驱动方式D1中剩余的所述第一驱动子场中亮子场的时间和暗子场的时间。
如图6所示,为本申请实施例提供的第一背光驱动方式D1显示B=(0001101)B灰阶时的栅极电压端和数据电压端的波形示意图。其中,环境温度T满足temp1≤T<temp2,背光单元的控制方法以第一背光方式D1驱动背光单元,所述第一背光方式D1中的每一个第一驱动子场均包括亮子场61以及暗子场62,所述第一背光方式D1通过调整所述背光单元中的每个所述第一驱动子场在不同时间段呈亮态的时间,使显示装置在不同环境温度下表现出来的亮度一致,达到提升背光亮度稳定性的目的。
基于同一申请构思,本申请还提供一种显示面板。如图7所示,其为本申请实施例提供的显示面板的框架示意图。其中,显示面板70包括温度侦测模块71、用于存储指令的存储器72、用于执行所述指令以实现如上任一项的所述方法的控制器73以及背光单元74。
优选地,所述存储器72可以包括:只读存储器(ROM,Read Only Memory)、随机存取记忆体(RAM,Random Access Memory)、磁盘或光盘等。
基于同一申请构思,本申请又提供一种显示装置,所述显示装置包括如上所述的显示面板。
综上所述,本申请实施例所提供的背光单元的控制方法、显示面板及显示装置,基于非等分子场控制背光单元的发光单元发出的光的亮度,并通过调整背光单元的每个子场在不同环境温度时亮子场或暗子场的时间,使显示装置在不同环境温度下表现出来的亮度一致,达到提升显示装置亮度稳定性的目的,使得显示装置的背光亮度不会随着环境温度的升高而偏移,进一步避免了显示装置的功率超标问题。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例所提供的一种背光单元的控制方法、显示面板及显示装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。可以理解的是,对本领域普通技术人员来说,可以根据本申请的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本申请所附的权利要求的保护范围。

Claims (20)

  1. 一种背光单元的控制方法,其中,所述控制方法包括如下步骤:
    S10,通过温度侦测模块获取环境温度;
    S20,比较所述环境温度与第一基准温度参考值;
    S30,根据比较结果确定所述背光单元的发光单元的驱动方式;
    其中,当所述环境温度高于或等于所述第一基准温度参考值时,所述驱动方式为第一背光驱动方式,所述第一背光驱动方式包括第一驱动子场,每一所述第一驱动子场由亮子场和暗子场构成。
  2. 根据权利要求1所述的背光单元的控制方法,其中,当所述环境温度低于所述第一基准温度参考值时,所述驱动方式为恒压驱动的初始背光驱动方式,所述初始背光驱动方式包括与所述第一驱动子场相对应的初始驱动子场,每一所述初始驱动子场由亮子场或暗子场构成,每一所述第一驱动子场内所述亮子场的时间和所述暗子场的时间总和与相对应的所述初始驱动子场的时间相等。
  3. 根据权利要求2所述的背光单元的控制方法,其中,在所述S10与所述S30之间,还包括:
    S21,比较所述环境温度与第二基准温度参考值,所述第二基准温度参考值高于所述第一基准温度参考值;
    其中,当所述环境温度高于或等于所述第一基准温度参考值而小于所述第二基准温度参考值时,所述驱动方式为所述第一背光驱动方式,当所述环境温度高于或等于所述第二基准温度参考值时,所述驱动方式为第二背光驱动方式;
    所述第二背光驱动方式具有与所述第一背光驱动方式的所述第一驱动子场相对应的第一驱动子场,所述第二背光驱动方式的所述亮子场占所述第一驱动子场的时间比值小于所述第一背光驱动方式的所述亮子场占所述第一驱动子场的时间比值。
  4. 根据权利要求2所述的背光单元的控制方法,其中,在所述S10与所述S30之间,还包括:
    S21,比较所述环境温度与第(n+1)基准温度参考值,所述第(n+1)基准温度参考值高于第n基准温度参考值;
    其中,当所述环境温度高于或等于所述第n基准温度参考值而小于所述第(n+1)基准温度参考值时,所述驱动方式为第n背光驱动方式,所述第n背光驱动方式的所述亮子场占所述第一驱动子场的时间比值小于第(n-1)背光驱动方式D(n-1)的所述亮子场占所述第一驱动子场的时间比值,其中,n为大于2的正整数。
  5. 根据权利要求3所述的背光单元的控制方法,其中,获取所述第一背光驱动方式或所述第二背光驱动方式中的所述第一驱动子场中所述亮子场的时间和所述暗子场的时间的方法包括:
    S201,根据上一级所述驱动方式驱动所述背光单元的所述发光单元,其中,所述上一级所述驱动方式对应的温度范围内的最高温度小于所述环境温度;
    S202,检测所述背光单元的亮度值是否大于以上一级所述背光驱动方式在对应的所述温度范围内驱动所述背光单元的亮度值;
    S203,根据检测结果调整所述第一背光驱动方式或所述第二背光驱动方式中的所述第一驱动子场中所述亮子场的时间或所述暗子场的时间,使得所述背光单元的所述亮度值与上一级所述背光驱动方式在对应的所述温度范围内驱动所述背光单元的亮度值一致。
  6. 根据权利要求5所述的背光单元的控制方法,其中,所述S203还包括:
    S2031,若所述背光单元显示2 N-1灰阶时的亮度值大于上一级所述背光驱动方式在对应的所述温度范围内驱动所述背光单元的初始亮度值,则增加第N个所述第一驱动子场中所述暗子场的时间,直至所述背光单元显示2 N-1灰阶时的亮度值等于所述初始亮度值;若所述背光单元显示2 N-1灰阶时的亮度值小于所述初始亮度值,则减少第N个所述第一驱动子场中所述暗子场的时间,直至所述背光单元显示2 N-1灰阶时的亮度值等于所述初始亮度值;其中N为大于或等于1的正整数。
  7. 根据权利要求1所述的背光单元的控制方法,其中,所述第一背光驱动方式经多个具有不同时长的所述第一驱动子场按照预设顺序输出而成,多个所述第一驱动子场经所述背光单元中的每一所述发光单元在一帧的发光过程中采用切分步骤分割而成;所述切分步骤还包括:
    将所述背光单元中的每一所述发光单元在一帧的发光过程切分为M个具有不同时长的所述第一驱动子场,第i个所述第一驱动子场的时长与M个所述第一驱动子场的时长总和的比值为2 i-1 /2 M,第i个所述第一驱动子场对应第i-1比特位的数据,i为大于或等于1且小于或等于M的整数,M为大于或等于2的整数。
  8. 根据权利要求1所述的背光单元的控制方法,其中,所述背光单元的发光单元为次毫米发光二极管。
  9. 一种背光单元的控制方法,其中,所述控制方法包括如下步骤:
    S10,通过温度侦测模块获取环境温度;
    S20,比较所述环境温度与第一基准温度参考值;
    S30,根据比较结果确定所述背光单元的发光单元的驱动方式;
    其中,当所述环境温度高于或等于所述第一基准温度参考值时,所述驱动方式为第一背光驱动方式,所述第一背光驱动方式包括第一驱动子场,每一所述第一驱动子场由亮子场和暗子场构成;
    其中,所述亮子场时间段内的数据电压为高电位,所述暗子场时间段内的所述数据电压为低电位。
  10. 根据权利要求9所述的背光单元的控制方法,其中,当所述环境温度低于所述第一基准温度参考值时,所述驱动方式为恒压驱动的初始背光驱动方式,所述初始背光驱动方式包括与所述第一驱动子场相对应的初始驱动子场,每一所述初始驱动子场由亮子场或暗子场构成,每一所述第一驱动子场内所述亮子场的时间和所述暗子场的时间总和与相对应的所述初始驱动子场的时间相等。
  11. 根据权利要求10所述的背光单元的控制方法,其中,在所述S10与所述S30之间,还包括:
    S21,比较所述环境温度与第二基准温度参考值,所述第二基准温度参考值高于所述第一基准温度参考值;
    其中,当所述环境温度高于或等于所述第一基准温度参考值而小于所述第二基准温度参考值时,所述驱动方式为所述第一背光驱动方式,当所述环境温度高于或等于所述第二基准温度参考值时,所述驱动方式为第二背光驱动方式;
    所述第二背光驱动方式具有与所述第一背光驱动方式的所述第一驱动子场相对应的第一驱动子场,所述第二背光驱动方式的所述亮子场占所述第一驱动子场的时间比值小于所述第一背光驱动方式的所述亮子场占所述第一驱动子场的时间比值。
  12. 根据权利要求10所述的背光单元的控制方法,其中,在所述S10与所述S30之间,还包括:
    S21,比较所述环境温度与第(n+1)基准温度参考值,所述第(n+1)基准温度参考值高于第n基准温度参考值;
    其中,当所述环境温度高于或等于所述第n基准温度参考值而小于所述第(n+1)基准温度参考值时,所述驱动方式为第n背光驱动方式,所述第n背光驱动方式的所述亮子场占所述第一驱动子场的时间比值小于第(n-1)背光驱动方式D(n-1)的所述亮子场占所述第一驱动子场的时间比值,其中,n为大于2的正整数。
  13. 根据权利要求11所述的背光单元的控制方法,其中,获取所述第一背光驱动方式或所述第二背光驱动方式中的所述第一驱动子场中所述亮子场的时间和所述暗子场的时间的方法包括:
    S201,根据上一级所述驱动方式驱动所述背光单元的所述发光单元,其中,所述上一级所述驱动方式对应的温度范围内的最高温度小于所述环境温度;
    S202,检测所述背光单元的亮度值是否大于以上一级所述背光驱动方式在对应的所述温度范围内驱动所述背光单元的亮度值;
    S203,根据检测结果调整所述第一背光驱动方式或所述第二背光驱动方式中的所述第一驱动子场中所述亮子场的时间或所述暗子场的时间,使得所述背光单元的所述亮度值与上一级所述背光驱动方式在对应的所述温度范围内驱动所述背光单元的亮度值一致。
  14. 根据权利要求13所述的背光单元的控制方法,其中,所述S203还包括:
    S2031,若所述背光单元显示2 N-1灰阶时的亮度值大于上一级所述背光驱动方式在对应的所述温度范围内驱动所述背光单元的初始亮度值,则增加第N个所述第一驱动子场中所述暗子场的时间,直至所述背光单元显示2 N-1灰阶时的亮度值等于所述初始亮度值;若所述背光单元显示2 N-1灰阶时的亮度值小于所述初始亮度值,则减少第N个所述第一驱动子场中所述暗子场的时间,直至所述背光单元显示2 N-1灰阶时的亮度值等于所述初始亮度值;其中N为大于或等于1的正整数。
  15. 根据权利要求9所述的背光单元的控制方法,其中,所述第一背光驱动方式经多个具有不同时长的所述第一驱动子场按照预设顺序输出而成,多个所述第一驱动子场经所述背光单元中的每一所述发光单元在一帧的发光过程中采用切分步骤分割而成;所述切分步骤还包括:
    将所述背光单元中的每一所述发光单元在一帧的发光过程切分为M个具有不同时长的所述第一驱动子场,第i个所述第一驱动子场的时长与M个所述第一驱动子场的时长总和的比值为2 i-1 /2 M,第i个所述第一驱动子场对应第i-1比特位的数据,i为大于或等于1且小于或等于M的整数,M为大于或等于2的整数。
  16. 根据权利要求9所述的背光单元的控制方法,其中,所述背光单元的发光单元为次毫米发光二极管。
  17. 一种显示面板,其中,所述显示面板包括:
    温度侦测模块;
    存储器,用于存储指令;
    控制器,用于执行所述指令以实现如权利要求1所述的背光单元的控制方法;
    以及背光单元。
  18. 根据权利要求17所述的显示面板,其中,所述存储器包括只读存储器、随机存取记忆体、磁盘或者光盘中的任意一种。
  19. 根据权利要求17所述的显示面板,其中,所述背光单元具有多个分区,每个所述分区设置有发光单元,所述发光单元为次毫米发光二极管。
  20. 一种显示装置,其中,包括如权利要求19所述的显示面板。
PCT/CN2021/097123 2021-01-08 2021-05-31 背光单元的控制方法、显示面板及显示装置 WO2022147951A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/429,728 US20230178037A1 (en) 2021-01-08 2021-05-31 Control method for backlight unit, display panel, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110023236.7A CN112735345B (zh) 2021-01-08 2021-01-08 背光单元的控制方法、显示面板及显示装置
CN202110023236.7 2021-01-08

Publications (1)

Publication Number Publication Date
WO2022147951A1 true WO2022147951A1 (zh) 2022-07-14

Family

ID=75590176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097123 WO2022147951A1 (zh) 2021-01-08 2021-05-31 背光单元的控制方法、显示面板及显示装置

Country Status (3)

Country Link
US (1) US20230178037A1 (zh)
CN (1) CN112735345B (zh)
WO (1) WO2022147951A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112735345B (zh) * 2021-01-08 2022-03-08 Tcl华星光电技术有限公司 背光单元的控制方法、显示面板及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1732499A (zh) * 2002-12-30 2006-02-08 皇家飞利浦电子股份有限公司 对于动态箔片显示器的环境光适应
CN102426823A (zh) * 2011-09-21 2012-04-25 友达光电股份有限公司 一种用于控制led背光驱动器温度的主动保护电路
KR101935865B1 (ko) * 2018-06-04 2019-01-07 주식회사 현대아이티 밝기 제어를 통해 소비 전력을 줄일 수 있는 전자 칠판
CN111445868A (zh) * 2020-04-26 2020-07-24 Tcl华星光电技术有限公司 背光单元及其控制方法、液晶显示装置
CN112017602A (zh) * 2020-09-02 2020-12-01 Tcl华星光电技术有限公司 mini LED背光模组的驱动方法
CN112735345A (zh) * 2021-01-08 2021-04-30 Tcl华星光电技术有限公司 背光单元的控制方法、显示面板及显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009282187A (ja) * 2008-05-21 2009-12-03 Renesas Technology Corp 液晶駆動装置
JP4918931B2 (ja) * 2009-05-12 2012-04-18 セイコーエプソン株式会社 液晶装置及びその駆動方法並びに電子機器
JP2013068793A (ja) * 2011-09-22 2013-04-18 Sony Corp 表示装置、駆動回路、駆動方法、および電子機器
KR102464453B1 (ko) * 2015-10-01 2022-11-08 삼성디스플레이 주식회사 타이밍 컨트롤러, 타이밍 컨트롤러를 포함하는 표시 장치 및 표시 장치의 구동 방법
CN106205507B (zh) * 2016-08-30 2018-11-20 京东方科技集团股份有限公司 背光驱动电路
JP6383391B2 (ja) * 2016-09-12 2018-08-29 シャープ株式会社 制御装置及び当該制御装置を備えた液晶表示装置
CN110568653B (zh) * 2019-09-12 2021-01-01 武汉华星光电技术有限公司 显示面板及显示装置
CN110931534B (zh) * 2019-12-11 2022-04-12 京东方科技集团股份有限公司 显示基板及其控制方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1732499A (zh) * 2002-12-30 2006-02-08 皇家飞利浦电子股份有限公司 对于动态箔片显示器的环境光适应
CN102426823A (zh) * 2011-09-21 2012-04-25 友达光电股份有限公司 一种用于控制led背光驱动器温度的主动保护电路
KR101935865B1 (ko) * 2018-06-04 2019-01-07 주식회사 현대아이티 밝기 제어를 통해 소비 전력을 줄일 수 있는 전자 칠판
CN111445868A (zh) * 2020-04-26 2020-07-24 Tcl华星光电技术有限公司 背光单元及其控制方法、液晶显示装置
CN112017602A (zh) * 2020-09-02 2020-12-01 Tcl华星光电技术有限公司 mini LED背光模组的驱动方法
CN112735345A (zh) * 2021-01-08 2021-04-30 Tcl华星光电技术有限公司 背光单元的控制方法、显示面板及显示装置

Also Published As

Publication number Publication date
US20230178037A1 (en) 2023-06-08
CN112735345B (zh) 2022-03-08
CN112735345A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
KR101954934B1 (ko) 표시 장치 및 그 구동 방법
KR101289639B1 (ko) 백라이트 유닛의 광원 구동장치 및 방법
CN111445868B (zh) 背光单元及其控制方法、液晶显示装置
US7952543B2 (en) Drive circuit, display apparatus, and method for adjusting screen refresh rate
CN102054434B (zh) 一种具有脉冲打散方式的led显示系统和方法
KR101308207B1 (ko) 액정표시장치 및 그의 구동방법
US20090243986A1 (en) Driving method, compensation processor and driver device for liquid crystal display
EP2557560A2 (en) Display device and driving method thereof
CN111798801B (zh) 显示面板及其驱动方法和驱动电路
KR101677182B1 (ko) 백라이트 장치의 디밍 방법
CN102890913B (zh) Amoled显示器及其精确补偿老化的方法
TWI483616B (zh) 顯示裝置、顯示控制模組及顯示控制方法
WO2022047901A1 (zh) 背光模组和背光模组的驱动方法
WO2021217787A1 (zh) 背光单元及其控制方法、液晶显示装置
CN113192455B (zh) 显示面板的驱动方法、驱动装置和显示面板
US11259384B2 (en) Backlight unit and control method thereof, and liquid crystal display device
KR102119091B1 (ko) 표시장치 및 그의 구동방법
WO2022147951A1 (zh) 背光单元的控制方法、显示面板及显示装置
WO2020220447A1 (zh) 显示面板驱动系统及显示面板驱动方法
US8305336B2 (en) Method of driving a light source, light source apparatus for performing the method and display apparatus having the light source apparatus
CN112767887A (zh) 背光控制方法、背光控制系统及存储介质
KR20110078709A (ko) 액정 표시장치 및 그의 구동방법
KR20100006319A (ko) 백라이트 유닛의 광원 구동장치 및 방법
KR101441381B1 (ko) 액정 표시장치의 구동장치와 그 구동방법
KR20150025405A (ko) 백라이트 유닛과 이를 이용한 표시장치 및 그의 구동 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917000

Country of ref document: EP

Kind code of ref document: A1