WO2022146083A1 - 엑소좀 분리용 조성물 및 이를 이용한 엑소좀 분리 방법 - Google Patents

엑소좀 분리용 조성물 및 이를 이용한 엑소좀 분리 방법 Download PDF

Info

Publication number
WO2022146083A1
WO2022146083A1 PCT/KR2021/020300 KR2021020300W WO2022146083A1 WO 2022146083 A1 WO2022146083 A1 WO 2022146083A1 KR 2021020300 W KR2021020300 W KR 2021020300W WO 2022146083 A1 WO2022146083 A1 WO 2022146083A1
Authority
WO
WIPO (PCT)
Prior art keywords
exosomes
separating
exosome
chromatography column
composition
Prior art date
Application number
PCT/KR2021/020300
Other languages
English (en)
French (fr)
Inventor
박지호
백우진
정직한
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2022146083A1 publication Critical patent/WO2022146083A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/02Separating microorganisms from the culture medium; Concentration of biomass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2509/00Methods for the dissociation of cells, e.g. specific use of enzymes

Definitions

  • composition comprising an ion exchange resin for separating high-purity exosomes, a chromatography column, and a method for separating exosomes using the same.
  • Extracellular vesicle is a concept including exosone, ectosome, microvesicle, and apoptotic body released or secreted from cells.
  • exosomes are 20-150 It has a size of nm and is a bio-nanoparticle generated from multi vesicular bodies (MVB) in cells.
  • MVB multi vesicular bodies
  • extracellular vesicles can be isolated relatively easily from various types of biofluids such as blood, lymph, cerebrospinal fluid, urine, amniotic fluid, breast milk, saliva, and semen.
  • Cellular vesicles contain various nucleotides or labeling proteins depending on the cell or organelle from which they are derived.
  • oncosomes which are extracellular vesicles derived from cancer cells, contain mRNA of genes that induce the growth of cancer cells, and extracellular vesicles derived from antigen-presenting cells contain major histocompatibility complexes.
  • extracellular vesicles contain high concentrations of biomaterials such as cell-specific proteins and nucleotides, so they exist in about 0.01% of the total protein body in general biological fluids. Vesicles have the advantage of being relatively easy to detect.
  • the material of the extracellular vesicle can represent the unique characteristics of the cell from which it is derived. It is useful, and research on it has been actively conducted recently.
  • Examples thereof include ultracentrifuge, density centrifuge, use of a column, PEG precipitation (including use of ExoQuickTM, Total Exosome IsolationTM, etc.), chromatography, immuno-magnetic separation (immuno-magnetic separation, IMS) and acoustic separation, acoustic purification, and the like.
  • PEG precipitation including use of ExoQuickTM, Total Exosome IsolationTM, etc.
  • chromatography immuno-magnetic separation (immuno-magnetic separation, IMS) and acoustic separation, acoustic purification, and the like.
  • IMS immuno-magnetic separation
  • acoustic purification and the like.
  • One object of the present invention is to provide a composition for separating exosomes comprising an anion exchange resin capable of obtaining high-purity exosomes within a short time at low cost.
  • Another object of the present invention is to provide a chromatography column for separating exosomes comprising an anion exchange resin capable of obtaining high-purity exosomes within a short time at low cost.
  • Another object of the present invention is to provide a method for separating exosomes that can obtain high-purity exosomes within a short time at low cost.
  • One aspect of the present invention is
  • composition for separating the exosomes including a buffer solution having a pH of 6.0 to 8.4.
  • Another aspect of the present invention is
  • It includes a column filled with anion-exchange resin, and the column inside is equilibrated with a buffer solution of pH 6.0 to 8.4, providing a chromatography column for separating exosomes.
  • Another aspect of the present invention is
  • It provides a method for separating the exosomes, comprising the step of mixing the biological sample containing the exosomes in the composition to separate the exosomes not bound to the resin.
  • Another aspect of the present invention is
  • It provides a method for separating the exosomes, comprising the step of separating the exosomes by passing a biological sample containing the exosomes through the chromatography column through the ion exchange chromatography.
  • the present invention provides information on the pH, ion concentration conditions and volume ratio of the resin and the sample capable of high-purity separation of exosomes from a biological sample through an ion exchange resin, and, accordingly, when the exosomes are separated
  • impurities such as lipoproteins and water-soluble proteins
  • 1 is a schematic diagram showing a batch method (batch method) for the separation of the exosomes according to the present invention.
  • Example 2 is an analysis of the total amount of protein recovered in the non-binding section at pH 5.4, 6.4, 7.4, 8.4, 9.4 according to Example 1 to confirm the protein recovery trend according to pH conditions in exosome separation using the batch technique. As a drawing showing the results, it can be confirmed that the total protein recovery of exosomes and non-exosomal proteins increases in the non-binding section, which is the section in which exosomes are to be obtained, as the pH is lowered.
  • FIG. 3 shows the total protein contained in the eluate obtained at pH 5.4, 6.4, 7.4, and 8.4 in the same amount to confirm the purity of the exosome according to the pH condition in the exosome separation using the ion exchange batch technique for FIG. 2 .
  • the relative intensity of CD63 changed as the pH increased, and showed a relatively high value at pH 6.4 to 8.4.
  • NTA Nanoparticle Tracking Analysis
  • FIG. 7 is a schematic diagram illustrating the principle of separating the exosomes in the column.
  • FIG. 8 is a view showing the results of measuring the absorbance at 280 nm of the eluate from the solution section No. 1 to No. 30 eluted at pH 7.4 in the exosome separation by column chromatography.
  • Example 10 shows a blood sample (plasma/serum) in the resin under the conditions of ionic strength (NaCl) of 0 mM, 25 mM, 50 mM, and 100 mM, respectively, for optimizing the composition of the column chromatography buffer of the present invention according to Example 3
  • ionic strength NaCl
  • Example 3 A diagram showing the results of Western blot analysis after collecting the supernatant (supernatant, unbound fraction) using a centrifuge (CD63: exosome marker, Albumin: albumin marker, ApoB: low-density lipoprotein) (Low density lipoprotein, LDL) marker, ApoA: High density lipoprotein (HDL) marker).
  • Example 11 shows the purity of the eluate obtained from 10 mL CV, 5 mL CV, and 2 mL CV according to Example 4 to confirm the exosome and protein recovery trend according to the resin volume in exosome separation using column chromatography (protein This is a diagram showing the results of Western blot analysis of equalized loading) and absolute amount (volume equalized loading).
  • the resin volume is 10 mL or less, water-soluble proteins and lipid proteins are detected in the non-binding section, which is the exosome obtaining section. can be known to be
  • the exosome isolation technique according to the present invention is an improved method compared to the conventional method.
  • composition for separating the exosomes including a buffer solution having a pH of 6.0 to 8.4.
  • the anion exchange resin a resin including a conventional anion-exchangeable functional group may be used, and for example, a resin including a quaternary ammonium group may be generally used.
  • the type of the backbone to which the ammonium group is bonded is not particularly limited.
  • the anion exchange resin is used to remove a material containing an anion such as a protein, and since the exosome has a relatively small anion size compared to a non-exosomal protein such as albumin, there is a difference in binding force to the anion exchange resin. .
  • the anion exchange resin according to the present invention has a difference in relative binding force to exosomes and non-exosomal proteins depending on the pH conditions of the buffer solution containing the resin, and preferably the pH should be 6.0 to 8.4, and more Preferably, when the pH is 6.4 to 8.0, it is possible to separate exosomes of high purity.
  • albumin and lipoproteins LDL, HDL
  • LDL, HDL lipoproteins
  • the buffer solution may have a concentration of 10 mM to 20 mM.
  • the exosome separated using the anion exchange resin may be an exosome having a size of 50 nm to 300 nm. Preferably, it may have a size of 50 nm to 200 nm.
  • composition for separating the exosomes may be to isolate one or more selected from the group consisting of blood, lymph, cerebrospinal fluid, urine, amniotic fluid, breast milk, saliva, semen and cell culture fluid.
  • the mass of the protein recovered using the composition for separating the exosomes may be 5% to 40%.
  • It refers to a cell-derived vesicle with a diameter of 20 nm to 300 nm secreted from many types of cells, including cell cultures, and is known to play various roles, such as delivering membrane components, proteins, and RNA.
  • Another aspect of the present invention is
  • the chromatography column may be equilibrated with a buffer having a pH of 6.0 to 8.4.
  • the pH condition may be, for example, 6.0 to 8.4, 6.2 to 8.2, 6.4 to 8.0 or 7.4, but is not necessarily limited thereto.
  • the buffer solution may be a buffer having a concentration of 10 mM to 20 mM.
  • the exosome separated using the anion exchange resin may be an exosome having a size of 50 nm to 300 nm. Preferably, it may be 50 nm to 200 nm.
  • the chromatography column for separating the exosomes may be to separate one or more selected from the group consisting of blood, lymph, cerebrospinal fluid, urine, amniotic fluid, breast milk, saliva, semen and cell culture fluid.
  • the mass of the protein recovered using the chromatography column for separating the exosomes may be 5% to 40%.
  • the chromatography column for separating the exosomes may have a volume ratio of a biological sample to a resin of 1:1 to 1:80.
  • the volume ratio of the biological sample to the resin is, for example, 1:5 to 1:70, 1:5 to 1:60, 1:5 to 1:50, 1:8 to 1:50, 1:10 to 1: 50, 1:8 to 1:30, 1:8 to 1:20, or 1:10 to 1:30.
  • the volume of the resin is preferably at least about 10 times the volume of the biological sample.
  • composition for separating exosomes of the present invention and the chromatography column for separating exosomes are the same as long as they do not contradict each other.
  • Another aspect of the present invention is
  • It provides a method for separating the exosomes, comprising the step of separating the exosomes not bound to the resin by mixing the biological sample containing the exosomes with the composition for separating the exosomes.
  • Another aspect of the present invention is
  • It provides a method for separating the exosomes, comprising the step of separating the exosomes by passing a biological sample containing the exosomes through the ion exchange chromatography to the chromatography column for separating the exosomes.
  • exosomes were isolated from the blood sample as follows. First, 500 ⁇ L of anion-exchange resin was put in a test tube and equilibrated with buffers (5 types of pH 5.4, 6.4, 7.4, 8.4, 9.4, each buffer having an ion concentration of 10 mM) for at least 12 hours. Then, 500 ⁇ L of buffer-exchanged blood sample (plasma/serum) was loaded into the test tube, and after 1 hour, the supernatant (unbound fraction) was collected using a centrifuge. The collected supernatant was adjusted to an osmolarity corresponding to 1x PBS using 10x phosphate buffered saline (PBS). Thereafter, Western blot analysis was performed.
  • buffers 5 types of pH 5.4, 6.4, 7.4, 8.4, 9.4, each buffer having an ion concentration of 10 mM
  • FIG. 2 The analysis of FIG. 2 was performed as follows.
  • the purity of the obtained exosomes was confirmed by western blot analysis by matching the amount of protein of each sample recovered for each pH (protein equalized loading).
  • the absolute amount comparison of the isolated exosomes was performed by adjusting the supernatant containing the isolated exosomes under each condition to the same volume and then directly performing western blot analysis without correcting the amount of protein (volume equalized loading).
  • the pH should be 6.0 to 8.4, and preferably, it was confirmed that high-purity exosomes could be separated when the pH was 6.4 to 8.0.
  • Exosomes with a size of about 50 nm to 200 nm were isolated.
  • the amount of protein contained in the eluate can be checked in proportion to the absorbance trend, it can be confirmed that most of the protein is eluted before the 30th solution section.
  • the pH of the buffer/column should be at least 6.0 or higher, and preferably, when the pH is 6.4 or higher, high-purity exosomes can be separated with low protein recovery. was able to confirm This indicates that the purity trend of the isolated exosomes according to the pH confirmed in the batch technique is directly applied to column chromatography.
  • the ion concentration of the buffer solution is an important parameter to consider when using ion exchange chromatography. Therefore, in order to confirm the exosome separation efficiency according to the change in ion concentration, the ion concentration was adjusted through the addition of NaCl in addition to the initial ion concentration of 10 mM in the buffer under the pH 7.4 condition where the highest purity exosome separation was possible.
  • the ion concentrations of NaCl to be added were 0 mM, 25 mM, 50 mM and 100 mM, respectively, and the exosomes were separated by the method for separating the exosomes according to Example 1, and then confirmed by Western blot. The results are shown in FIG. 10 (CD63: exosome marker, ApoB: low density lipoprotein (LDL) marker, ApoA: high density lipoprotein (HDL) marker).
  • Lipoproteins were well bound to the resin at all ionic strengths and were not detected in the non-binding section, while exosomes were hardly detected in the binding section, whereas they were clearly observed in the non-binding section.
  • the ion concentration of the buffer increased from 0 mM to 100 mM, it was confirmed that the detection of albumin, one of the water-soluble protein types, increased in the non-binding section, which is the section to obtain exosomes. Therefore, it was confirmed that there is no need to add a salt to separately control the ion concentration in the buffer when separating the exosomes based on anion exchange chromatography.
  • the resin volume is 10 mL or less, it can be seen that water-soluble proteins and lipoproteins are detected in the non-binding section, which is the section for obtaining exosomes. Through this, it was confirmed that an anion exchange resin that is at least 10 times the volume of the blood sample is required when separating the blood-derived exosomes.
  • composition and chromatography column for separating exosomes provided in the present invention, and the separation method using the same, enable obtaining high-purity exosomes within a short time at low cost, and effectively remove impurities such as lipid proteins and water-soluble residues It was confirmed that it can be removed.

Abstract

순도 높은 엑소좀을 분리하기 위한 조성물, 크로마토그래피 컬럼 및 이들을 이용한 엑소좀 분리 방법에 관한 것으로, 본 발명은 이온 교환 레진을 통해 생체 시료로부터 엑소좀을 고순도로 분리할 수 있는 pH, 이온 농도 조건 및 레진과 시료의 부피 비(volume ratio)에 대한 정보를 제공하며, 이에 따라 엑소좀을 분리하면 지질 단백질, 수용성 단백질과 같은 불순물을 효과적으로 제거하여 저비용으로 단시간 내에 순도 높은 엑소좀을 수득할 수 있다.

Description

엑소좀 분리용 조성물 및 이를 이용한 엑소좀 분리 방법
순도 높은 엑소좀 분리하기 위한 이온 교환 레진을 포함하는 조성물, 크로마토그래피 컬럼 및 이들을 이용한 엑소좀 분리 방법에 관한 것이다.
세포외 소포(extracellular vesicle)는 세포에서 방출 또는 분비되는 엑소좀(exosone), 엑토좀(ectosome), 미세소포(microvesicle) 및 세포자멸사 소체(apoptotic body)를 포함한 개념으로 그중 엑소좀은 20-150 nm 의 크기를 가지며 세포 내 다소포체(Multi vesicular bodies; MVB)로부터 생성되는 생체 나노 입자이다.
이들 세포외 소포는 혈액, 림프액, 뇌척수액, 소변, 양수, 모유, 침, 정액 같은 여러 종류의 다양한 생체액(biofluid)에서 비교적 쉽게 분리할 수 있으며, 유래된 세포에 따라, 덱소좀(dexosome; 수지상세포에서 유래), 온코좀(oncosome; 암세포에서 유래), 프로타좀(prostasome; 전립선세포에서 유래), 카디오좀(cardiosome; 심근 세포에서 유래) 등으로 불린다. 세포의 소포는 그 유래되는 세포나 세포 내 소기관에 따라 다양한 뉴클레오타이드 또는 표지단백질을 포함하게 된다.
예를 들어, 암세포에서 유래된 세포외 소포인 온코좀은 암세포의 성장을 유도하는 유전자의 mRNA를, 항원제시세포(antigen-presenting cell)에서 유래된 세포외 소포는 주조직적합 복합체를 포함한다. 이처럼 세포외 소포는 세포특이적인 단백질이나 뉴클레오티드 같은 생체물질이 고농도로 농축되어 포함된 상태이므로 일반 생체액에선 전체 단백질체의 0.01% 정도로 존재하여 통상적인 분석방법으로는 검출이 어려운 단백질이나 뉴클레오티드도 세포외 소포에선 비교적 쉽게 검출이 가능한 장점이 있다.
아울러 비록 세포외 소포에 존재하는 단백질이나 뉴클레오티드의 종류가 전체의 극히 일부이긴 하나 세포외 소포의 물질은 자신이 유래한 세포의 고유의 특성을 나타낼 수 있으므로 엑소좀 분석은 특정 질환의 진단 목적으로 매우 유용하며, 이에 대한 연구가 최근 활발히 이루어지고 있다.
엑소좀을 이용한 진단이나 치료방법 연구에서는 순도 높은 엑소좀을 얻는 것이 중요하다. 엑소좀의 분리와 관련하여 대한민국 공개특허 제10-2016-0115988호를 포함하여 다양한 방법이 연구되어 오고 있다.
이의 예로는 초원심분리(ultracentrifuge), 밀도 원심분리(density centrifuge), 컬럼(column)의 이용, PEG 침전(PEG precipitation; ExoQuickTM, Total Exosome IsolationTM등 사용 포함), 크로마토그래피(chromatography), 면역-자기분리(immuno-magnetic separation, IMS) 및 음향정제(acoustic separation, acoustic purification)등이 있다. 컬럼 크로마토그래피의 경우, 단시간에 비교적 높은 순도의 엑소좀을 수득할 수 있다는 점에서 최근에 많이 주목 받고 있다.
그러나, 컬럼 크로마토그래피와 같은 상업화된 종래 엑소좀 분리 기술을 사용하게 되면 장시간의 분리 공정, 고가 장비의 필요성, 혈액 유래 엑소좀의 분리 시 지질 단백질 및 혈액 단백질의 완벽한 제거가 불가능하다는 단점이 있다. 그리고, 세포배양액 또는 혈액 내에는 엑소좀과 비슷한 크기, 밀도를 가진 지질 단백질과 더불어 다량의 수용성 단백질이 항상 함께 존재하고 있기 때문에 엑소좀 연구에 있어서 지질 단백질 및 수용성 단백질의 분리는 필수적이다.
이와 같은 배경하에서 본 발명자들은 생체시료에서 엑소좀과 함께 분리되는 지질 단백질, 수용성 단백질 등의 다양한 불순물의 분리 방법을 개발하고자 하였으며, 연구를 통해 순도 높은 엑소좀을 분리할 수 있는 이온 교환 레진을 이용한 뱃치 기법 또는 컬럼 크로마토그래피 방법을 개발하였다.
본 발명의 일 목적은 저비용으로 단시간 내에 순도 높은 엑소좀을 수득할 수 있는 음이온 교환 레진을 포함하는 엑소좀 분리용 조성물을 제공하는 것이다.
본 발명의 다른 일 목적은 저비용으로 단시간 내에 순도 높은 엑소좀을 수득할 수 있는 음이온 교환 레진을 포함하는 엑소좀 분리용 크로마토그래피 컬럼을 제공하는 것이다.
본 발명의 다른 일 목적은 저비용으로 단시간 내에 순도 높은 엑소좀을 수득할 수 있는 엑소좀 분리 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여,
본 발명의 일 측면은,
음이온 교환 레진(anion-exchange resin)이 분산되어 있으면서,
pH 6.0 내지 8.4인 버퍼 용액을 포함하는, 엑소좀 분리용 조성물을 제공한다.
본 발명의 다른 일 측면은,
음이온 교환 레진(anion-exchange resin)이 충진된 컬럼을 포함하고, 상기 컬럼 내부는 pH 6.0 내지 8.4인 버퍼 용액으로 평형화된, 엑소좀 분리용 크로마토그래피 컬럼을 제공한다.
본 발명의 다른 일 측면은,
상기 조성물에 엑소좀을 포함하는 생체 시료를 혼합하여 상기 레진에 결합되지 않은 엑소좀을 분리하는 단계를 포함하는, 엑소좀 분리 방법을 제공한다.
본 발명의 다른 일 측면은,
상기 크로마토그래피 컬럼에 엑소좀을 포함하는 생체 시료를 상기 이온 교환 크로마토그래피에 통과시켜 엑소좀을 분리하는 단계를 포함하는, 엑소좀 분리 방법을 제공한다.
본 발명은 이온 교환 레진을 통해 생체 시료로부터 엑소좀을 고순도로 분리할 수 있는 pH, 이온 농도 조건 및 레진과 시료의 부피 비(volume ratio)에 대한 정보를 제공하며, 이에 따라 엑소좀을 분리하면 지질 단백질, 수용성 단백질과 같은 불순물을 효과적으로 제거하여 저비용으로 단시간 내에 순도 높은 엑소좀을 수득할 수 있다.
도 1은 본 발명에 따른 엑소좀 분리를 위한 뱃치기법(batch method)을 간단하게 나타낸 도면이다.
도 2는 뱃치기법을 이용한 엑소좀 분리에서 pH 조건에 따른 단백질 회수 경향을 확인하기 위하여 실시예 1에 따라 pH 5.4, 6.4, 7.4, 8.4, 9.4에서 비결합 구간에서 회수된 단백질의 총량을 분석한 결과를 나타내는 도면으로, pH가 낮아짐에 따라 엑소좀을 수득하고자 하는 구간인 비결합 구간에서 엑소좀 및 비엑소좀 단백질의 전체 단백질 회수율이 증가하는 것을 확인할 수 있다.
도 3은 도 2에 대한 이온 교환 뱃치기법을 이용한 엑소좀 분리에서 pH 조건에 따른 엑소좀 순도를 확인하기 위하여, pH 5.4, 6.4, 7.4, 8.4에서 수득한 용출액에 포함된 전체 단백질을 동일한 양으로 취하여 웨스턴 블롯을 수행하였을 때, pH가 증가함에 따라 CD63의 상대적인 인텐시티가 변하며 pH 6.4 ~ 8.4에서 상대적으로 높은 값을 보였다.
도 4는 도 3에서 상대적으로 높은 엑소좀 순도를 보인 pH 구간 6.4 ~ 8.4에서 수득된 엑소좀 및 불순물을 절대량 관점에서 분석한 결과이다. pH 8.4에서 엑소좀의 절대량 자체도 감소했고, 불순물인 수용성 단백질 (albumin), HDL(ApoA-1) 및 LDL(ApoB)가 감소하는 것을 확인하였다..
도 5는 pH 7.4에서 분리된 엑소좀의 크기 분포를 확인하기 위하여, NTA(Nanoparticle Tracking Analysis)를 이용하여 분석한 결과를 나타내는 도면으로, 약 50 nm 내지 200 nm 크기의 엑소좀이 비결합 구간에서 분리된 것을 알 수 있다.
도 6은 본 발명에 따른 뱃치기법과 상용화된 엑소좀 분리 기법의 분리 효율을 비교한 결과이다.
도 7은 컬럼 내에서 엑소좀 분리 원리를 모식도로 나타낸 것이다.
도 8은 컬럼 크로마토그래피에 의한 엑소좀 분리에 있어서, pH 7.4조건에서 용출된 용액 구간 1번부터 30번까지의 용출액을 280 nm에서의 흡광도를 측정한 결과를 나타내는 도면이다.
도 9는 실시예 2에 따른 컬럼 크로마토그래피를 이용한 엑소좀 분리에서 pH 조건에 따른 단백질 불순물 회수 경향을 확인한 결과이다.
도 10은 실시예 3에 따라 본 발명 컬럼 크로마토그래피 버퍼 조성 최적화를 위하여 각각 이온 강도(NaCl) 0 mM, 25 mM, 50 mM, 100 mM 조건에서 혈액 샘플(혈장/혈청)을 레진에 로딩해준 후 원심분리기를 사용하여 상청액(supernatant, 비결합 구간(unbound fraction))을 수거하여 웨스턴 블롯(Western blot) 분석한 결과를 나타내는 도면이다(CD63: 엑소좀 마커, Albumin: 알부민 마커, ApoB: 저밀도 지질단백질(Low density lipoprotein, LDL) 마커, ApoA: 고밀도 지질단백질(High density lipoprotein, HDL) 마커).
도 11은 컬럼 크로마토그래피를 이용한 엑소좀 분리에서 레진 부피에 따른 엑소좀 및 단백질 회수 경향을 확인하기 위하여 실시예 4에 따라 10 mL CV, 5 mL CV, 2 mL CV에서 수득한 용출액의 순도(protein equalized loading)와 절대량(volume equalized loading)을 웨스턴 블롯(Western blot) 분석한 결과를 나타내는 도면으로, 레진 부피가 10 mL 이하가 되면, 엑소좀 수득 구간인 비결합 구간에서 수용성 단백질 및 지질 단백질이 검출되는 되는 것을 알 수 있다.
(CV: 컬럼 부피(Column Volume), CD63, CD9: 엑소좀 마커, Albumin: 알부민 마커, ApoB: 저밀도 지질단백질(Low density lipoprotein, LDL) 마커)
이하, 본 발명을 상세하게 설명한다.
한편, 본 발명의 실시 형태는 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다.
또한 본 발명의 실시 형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 나아가, 명세서 전체에서 어떤 구성요소를 "포함"한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
세포로부터 생성되는 엑소좀(exosome)을 활용한 질병의 진단 및 치료 산업이 부상함에 따라 순도 높은 엑소좀을 분리하는 기술이 절실하다. 기존 상업화된 엑소좀 분리 기법은 1) 장시간의 분리 공정, 2) 고가 장비의 필요성, 3) 혈액 유래 엑소좀의 분리시 지질 단백질 및 혈액 단백질의 완벽한 제거가 불가능하다는 한계를 갖고 있으며,
본 발명에 따른 엑소좀 분리 기법은 종래의 방법에 비하여 개선된 방법이다.
본 발명의 일 측면은,
음이온 교환 레진(anion-exchange resin)이 분산되어 있으면서,
pH 6.0 내지 8.4인 버퍼 용액을 포함하는, 엑소좀 분리용 조성물을 제공한다.
상기 음이온 교환 레진은 통상적인 음이온 교환 가능한 작용기를 포함하는 레진을 사용할 수 있으며, 예로서 4급 암모늄기를 포함하는 레진이 일반적으로 사용될 수 있다. 암모늄기가 결합된 백본의 종류는 특별히 제한되지 않는다. 상기 음이온 교환 레진은 단백질과 같은 음이온을 포함하는 물질을 제거하기 위하여 사용되며, 엑소좀은 알부민과 같은 비엑소좀 단백질에 비하여 상대적으로 음이온 크기가 작기 때문에, 음이온 교환 레진에 대한 결합력에 차이가 나타난다. 다만, 본 발명에 따른 음이온 교환 레진은 레진이 포함된 버퍼 용액의 pH 조건에 따라서 엑소좀과 비엑소좀 단백질에 대한 상대적인 결합력에 차이가 있으며, 바람직하게 pH pH가 6.0 내지 8.4가 되어야 하며, 더 바람직하게는 pH 6.4 내지 8.0일 때 고순도의 엑소좀을 분리할 수 있다. 실시예 1을 통해 확인되듯이 수용성 단백질인 알부민, 지질 단백질(LDL, HDL)은 양전하 레진에 붙어 제거 되었으며, 엑소좀은 상대적으로 레진에 결합되지 않는다는 것을 확인할 수 있었다. pH가 증가함에 따라 엑소좀을 수득하고자 하는 비결합 구간에서 얻은 단백질 양이 감소하였고, 엑소좀 순도가 높아지는 것을 알 수 있었다.
상기 버퍼 용액은 10 mM 내지 20 mM 농도 일 수 있다.
상기 음이온 교환 레진을 이용하여 분리된 엑소좀은 50 nm 내지 300 nm의 크기를 가지는 엑소좀일 수 있다. 바람직하게는 50 nm 내지 200 nm의 크기일 수 있다.
상기 엑소좀 분리용 조성물은 혈액, 림프액, 뇌척수액, 소변, 양수, 모유, 침, 정액 및 세포배양액으로 이루어지는 군으로부터 선택되는 하나 이상을 분리하는 것일 수 있다.
상기 엑소좀 분리용 조성물을 이용하여 회수된 단백질 질량이 5% 내지 40%일 수 있다.
본 명세서에서 사용되는 용어, "엑소좀(exosome)"은,
세포 배양들을 포함하여 많은 종류의 세포로부터 분비되는 20 ㎚ 내지 300 ㎚ 직경의 세포 유래 소포(vesicle)를 의미하며, 막 구성요소, 단백질, RNA를 전달하는 등 다양한 역할을 하는 것으로 알려져 있다.
본 발명의 다른 일 측면은
음이온 교환 레진(anion-exchange resin)이 충진된 컬럼을 포함하고, 상기 컬럼 내부는 pH 6.0 내지 8.4인 버퍼 용액으로 평형화된, 엑소좀 분리용 크로마토그래피 컬럼을 제공한다.
상기 크로마토그래피 컬럼은 pH 6.0 내지 8.4인 버퍼(buffer)로 평형화된 것일 수 있다. 상기 pH 조건은 예를 들면 6.0 내지 8.4, 6.2 내지 8.2, 6.4 내지 8.0 또는 7.4일 수 있으며, 반드시 이 범위에 한정되는 것은 아니다.
상기 버퍼 용액은 농도 10 mM 내지 20 mM인 버퍼(buffer)일 수 있다.
상기 음이온 교환 레진을 이용하여 분리된 엑소좀은 50 nm 내지 300 nm의 크기를 가지는 엑소좀일 수 있다. 바람직하게는 50 nm 내지 200 nm일 수 있다.
상기 엑소좀 분리용 크로마토그래피 컬럼은 혈액, 림프액, 뇌척수액, 소변, 양수, 모유, 침, 정액 및 세포배양액으로 이루어지는 군으로부터 선택되는 하나 이상을 분리하는 것일 수 있다.
상기 엑소좀 분리용 크로마토그래피 컬럼을 이용하여 회수된 단백질 질량이 5% 내지 40%일 수 있다.
상기 엑소좀 분리용 크로마토그래피 컬럼은 생체 시료와 레진의 부피비가 1:1 내지 1:80인 것일 수 있다. 상기 생체 시료와 레진의 부피비는 예를 들면, 1:5 내지 1:70, 1:5 내지 1:60, 1:5 내지 1:50, 1:8 내지 1:50, 1:10 내지 1:50, 1:8 내지 1:30, 1:8 내지 1:20, 또는 1:10 내지 1:30일 수 있다. 바람직하게는 레진 부피가 생체 시료 부피의 약 10배 이상인 것이 바람직하다.
본 발명의 엑소좀 분리용 조성물 및 엑소좀 분리용 크로마토그래피 컬럼에서 언급된 사항은 서로 모순되지 않는 한 동일하게 적용된다.
본 발명의 다른 일 측면은,
상기 엑소좀 분리용 조성물에 엑소좀을 포함하는 생체 시료를 혼합하여 상기 레진에 결합되지 않은 엑소좀을 분리하는 단계를 포함하는, 엑소좀 분리 방법을 제공한다.
상기 엑소좀 분리 방법에 있어서, 엑소좀 분리용 조성물에 대한 상세한 설명이 적용될 수 있다.
본 발명의 다른 일 측면은,
상기 엑소좀 분리용 크로마토그래피 컬럼에 엑소좀을 포함하는 생체 시료를 상기 이온 교환 크로마토그래피에 통과시켜 엑소좀을 분리하는 단계를 포함하는, 엑소좀 분리 방법을 제공한다.
상기 엑소좀 분리 방법에 있어서, 엑소좀 분리용 크로마토그래피 컬럼에 대한 상세한 설명이 적용될 수 있다.
이하, 본 발명의 실시예 및 실험예를 하기에 구체적으로 예시하여 설명한다. 다만, 후술하는 실시예 및 실험예는 본 발명의 일부를 예시하는 것일 뿐, 본 발명에 이에 한정되는 것은 아니다.
<실시예 1> 뱃치기법(batch method)을 이용한 pH 조건에 따른 엑소좀 분리
도 1과 같은 방법으로 하기와 같이 혈액 샘플으로부터 엑소좀을 분리하였다. 먼저, 500 μL 음이온 교환 레진(anion-exchange resin)을 시험관에 넣고 버퍼(각각 pH 5.4, 6.4, 7.4, 8.4, 9.4 의 5종, 각 버퍼의 이온 농도 10 mM)로 최소 12시간 이상 평형화시켰다. 그 다음 버퍼 교환된 500 μL의 혈액 샘플(혈장/혈청)을 시험관 내에 로딩하였고, 1시간 뒤 원심분리기를 사용하여 상청액(supernatant, 비결합 구간(unbound fraction))을 수거하였다. 수거한 상청액을 10x 인산완충생리식염수 (phosphate buffered saline, PBS)를 이용하여 1x PBS에 해당하는 삼투압농도(osmolarity)로 조절해주었다. 이후 웨스턴 블롯(Western blot) 분석을 수행하였다.
도 2를 보면, pH 5.4, 6.4, 7.4, 8.4, 9.4에서 분석전 단백질 전체에 대한 비결합되어 회수된 단백질의 상대적인 비율을 분석한 결과, pH가 낮아짐에 따라 엑소좀을 수득하고자 하는 비결합된 상청액에서 단백질 회수율이 증가하는 것을 확인할 수 있었다. pH 별로 회수된 상청액의 부피는 거의 동일하였다.
도 2의 분석을 위하여 다음과 같이 수행하였다.
뱃치 기법으로 혈액 내 엑소좀 분리 전, BCA Assay (Bicinchoninic acid assay) (제품: Pierce™ BCA Protein Assay Kit - Thermo Fisher Scientific)을 이용하여 혈액(plasma)내 단백질의 총 량을 정량하였다.
후에 상청액(비결합)을 수득하였고, 수득된 상청액에 대한 BCA를 한번 더 실시하여 비결합된 단백질의 양을 정량하였다. 이렇게 정량된 두 단백질의 양에대한 비율을 도 2와 같이 나타내었다.
다음으로 수득된 엑소좀 순도와 엑소좀 및 비 엑소좀 단백질의 절대량을 평가하여 그 결과를 도 3 및 도 4에 나타내었다(Alix, CD63, CD9: 엑소좀 마커, 수용성 단백질(알부민, albumin), ApoB: 저밀도 지질 단백질(Low density lipoprotein, LDL) 마커, ApoA-1: 고밀도 지질 단백질(High density lipoprotein, HDL) 마커).
수득된 엑소좀의 순도는 pH 별로 회수된 각 샘플의 단백질량을 동일하게 맞추어 웨스턴 블롯 분석을 진행함으로 확인하였다(protein equalized loading). 이와 더불어 분리된 엑소좀의 절대량 비교는 각 조건에서 분리된 엑소좀이 포함된 상청액을 동일한 부피로 맞춘 후 단백질량의 보정 없이 바로 웨스턴 블롯 분석을 진행함으로 실시하였다(volume equalized loading).
수득된 엑소좀의 순도 결과는 도 3을 통해 확인할 수 있는 바와 같이,
pH가 5.4에서 7.4로 증가함에 따라 엑소좀의 순도가 높아졌다. 특히 pH 7.4에서 엑소좀의 순도가 가장 높은 것을 알 수 있었다. 다만, pH가 7.4부터는 pH가 증가함에 따라 엑소좀의 순도가 낮아지는 것을 알 수 있었다. 따라서, 순도가 높은 엑소좀 분리를 위해서는 pH가 6.0 내지 8.4가 되어야 하며, 바람직하게는 pH 6.4 내지 8.0일 때 고순도의 엑소좀을 분리할 수 있음을 확인할 수 있었다.
도 4를 통해 확인할 수 있는 바와 같이, pH 별로 얻어진 샘플 내에 엑소좀을 포함한 단백질들의 양을 상대적으로 비교할 수 있었다.
pH가 6.4 및 7.4에서는 비슷한 양의 엑소좀이 분리된 것을 확인하였고, pH가 8.4에서는 분리된 엑소좀의 양이 줄어든 것을 확인하였다.
이에, 상기 도 2에서 pH 6.4가 pH 7.4보다 단백질 회수율이 높은 것을 확인하였고, 도 4에서 pH 6.4 및 pH 7.4에서 분리된 엑소좀의 양이 비슷한 것을 확인하였다.
이어서, 분리된 엑소좀의 크기 분포를 분석하였다.
pH 7.4에서 분리된 엑소좀의 크기 분포를 확인하기 위하여, NTA(Nanoparticle Tracking Analysis)를 이용하여 분석하였다. 그 결과를 도 5에 나타내었다.
그 결과, 도 5를 통해 확인할 수 있는 바와 같이,
약 50 nm 내지 200 nm 크기의 엑소좀이 분리되었다.
<실험예 1> 상용화된 엑소좀 분리 기법들과의 비교 분석
본 발명에 따른 뱃치기법 이용한 엑소좀 분리 기법과 상용화된 다른 엑소좀 분리 기법을 비교하기 위하여, 기존 기법으로서 크기배제 크로마토그래피 기반 다중 컬럼 및 고분자 침전법과 pH 7.4 조건의 이온 교환 크로마토그래피를 이용하여 혈액 샘플을 로딩한 후, 웨스턴 블롯을 통해 분석하여 도 6에 나타내었다 (CD63, CD9: 엑소좀 마커, ApoB: 저밀도 지질단백질(Low density lipoprotein, LDL) 마커, ApoA: 고밀도 지질단백질(High density lipoprotein, HDL) 마커).
그 결과, 도 6을 통해 확인할 수 있는 바와 같이,
크기배제 크로마토그래피 기반 다중 컬럼는 순도(protein equalized loading) 및 절대량 분석(volume equalized loading)에서 모두 지질 단백질, 알부민이 검출되었고, 고분자 침전법은 낮은 엑소좀 수득율을 보였다. 이를 통해, 본 발명에 따른 이온 교환 크로마토그래피를 이용한 엑소좀 분리 기법이 기존 상용화된 크기배제 크로마토그래피 기반 다중 컬럼 및 고분자 침전법 대비 지질 단백질 및 수용성 단백질의 불순물 제거에 우수한 효과를 나타내는 것을 확인하였다.
<실시예 2> 컬럼 크로마토그래피를 이용한 pH에 따른 엑소좀 분리
컬럼을 이용한 이온 교환 크로마토그래피를 이용한 엑소좀 분리 방법의 원리는 도 7에 제시하였다.
뱃치기법에서 확인된 pH에 따른 엑소좀의 분리 효율이 컬럼 크로마토그래피에서 그대로 적용되는지를 확인하기 위하여 각각 pH 5.4, 6.4, 7.4 및 이온 농도 10 mM의 버퍼 조건에서의 엑소좀 및 단백질 회수율을 평가하였다.
먼저, 단백질 용출 경향을 확인하기 위하여, pH 7.4 조건에서 이온 교환 크로마토그래피 컬럼에 혈액 샘플을 로딩시킨 후, 샘플이 로딩된 시점부터 흘러나오는 용출액을 수득하였고 각 용액 구간당 0.5 mL의 용출액을 수득하였다. 이렇게 용액 구간 1번부터 30번까지의 용출액을 이용하여 단백질 용출 경향을 확인하기 위하여 280 nm에서 흡광도를 측정하여 도 8에 나타내었다.
그 결과, 도 8를 통해 확인할 수 있는 바와 같이,
용출액에 단백질이 얼마만큼 포함되어 있는지는 흡광도 경향에 비례하여 확인할 수 있으므로, 대부분이 단백질이 30번째 용액구간 전에 용출되는 것을 확인할 수 있었다.
다음으로 용액 구간 1번부터 30번까지에 해당하는 용출액 15 mL를 모은 후 10x 인산완충생리식염수 (phosphate buffered saline, PBS)를 이용하여 1x PBS에 해당하는 삼투압농도(osmolarity)로 조절해주었다. 더불어 단백질 분석을 위하여 Amicon Ultra 3k Filter ®로 15 mL의 용출액을 0.5 mL까지 농축하여 용출액에 포함된 단백질 즉 비결합 구간에서 회수된 단백질의 총량을 원(original)혈장/혈청과 대비하여 BCA Assay (Pierce™ BCA Protein Assay Kit)를 이용하여 정량 하였고, 배치기법의 결과와 같이, pH가 낮아짐에 따라 엑소좀을 수득하고자 하는 구간인 비결합 구간에서 단백질 회수율이 증가하는 것을 확인할 수 있었다.
다음으로 웨스턴 블롯을 통해 수득된 용출액의 엑소좀 순도와 절대량을 평가하여 그 결과를 도 9에 나타내었다(CD63, CD9: 엑소좀 마커, ApoB: 저밀도 지질 단백질(Low density lipoprotein, LDL) 마커, ApoA: 고밀도 지질 단백질(High density lipoprotein, HDL) 마커). 수득된 엑소좀의 순도는 각 샘플의 단백질량을 동일하게 맞추어 웨스턴 블롯 분석을 진행함으로 확인하였다 (protein equalized loading). 이와 더불어 분리된 엑소좀의 절대량 비교는 각 조건에서 분리된 엑소좀이 포함된 용출액을 동일한 부피로 맞춘 후 단백질량의 보정 없이 바로 웨스턴 블롯 분석을 진행함으로 실시하였다 (volume equalized loading).
그 결과, 도 9를 통해 확인할 수 있는 바와 같이,
pH가 증가함에 따라 수용성 단백질 및 지질 단백질 등의 불순물이 감소한 반면, 엑소좀 분리 수율 측면에서는 큰 차이가 없었다. 특히, pH 5.4 조건에서는 지질 단백질 및 알부민이 다소 검출되었으나, pH 6.4 이상부터는 지질 단백질 및 알부민 모두 거의 검출되지 않았다. 이를 통해, 이온 교환 크로마토그래피를 통해 순도 높은 엑소좀을 분리하기 위해서는 버퍼/컬럼의 pH가 최소 6.0 이상이 되어야 하며, 바람직하게는 pH 6.4 이상일 때 낮은 단백질 회수율로 고순도의 엑소좀을 분리할 수 있음을 확인할 수 있었다. 이는 뱃치기법에서 확인된 pH에 따른 분리된 엑소좀 순도 경향이 컬럼 크로마토그래피에 그대로 적용된다는 점을 나타낸다.
<실시예 3> 컬럼 크로마토그래피를 이용한 이온 농도에 따른 엑소좀 분리
버퍼의 pH와 더불어 버퍼 용액의 이온 농도는 이온 교환 크로마토그래피 이용시 고려해야 하는 중요한 변수이다. 따라서, 이온 농도 변화에 따른 엑소좀 분리 효능을 확인하기 위하여, 가장 순도 높은 엑소좀 분리가 가능했던 pH 7.4 조건에서 버퍼의 초기 이온 농도 10mM에 더해서 추가적으로 NaCl 첨가를 통해서 이온 농도를 조절하였다. 첨가되는 NaCl의 이온농도를 각각 0 mM, 25 mM, 50 mM 및 100 mM로 하여 상기 실시예 1에 따른 엑소좀 분리 방법으로 분리한 후 웨스턴 블롯으로 확인하였다. 그 결과를 도 10에 나타내었다(CD63: 엑소좀 마커, ApoB: 저밀도 지질단백질(Low density lipoprotein, LDL) 마커, ApoA: 고밀도 지질단백질(High density lipoprotein, HDL) 마커).
그 결과, 도 10을 통해 확인할 수 있는 바와 같이,
지질 단백질은 모든 이온 강도에서 레진에 잘 결합되어 비결합 구간에서 검출되지 않았으며, 엑소좀은 결합 구간에서는 거의 검출되지 않은 반면 비결합 구간에서 뚜렷하게 관찰되었다. 한편, 버퍼의 이온 농도가 0 mM에서 100 mM으로 증가함에 따라, 엑소좀을 수득하고자 하는 구간인 비결합 구간에서 수용성 단백질 종류의 하나인 알부민의 검출이 늘어나는 것을 확인할 수 있었다. 따라서 음이온 교환 크로마토그래피를 기반하여 엑소좀을 분리할 경우 버퍼에 별도로 이온 농도를 조절하기 위하여 염을 추가할 필요성이 없음을 확인하였다.
<실시예 4> 컬럼의 이온 교환 레진 부피에 따른 엑소좀 분리
엑소좀 분리를 위한 이온 교환 레진의 부피를 최적화하기 위하여, pH 7.4 조건에서 약 500 μL의 혈액 샘플(혈장/혈청)을 각각 2 mL, 5 mL 및 10 mL의 레진을 충전한 컬럼에 로딩하고 웨스턴 블롯을 이용하여 분석하였다. 그 결과를 도 11에 나타내었다 (CV: 컬럼 부피(Column Volume), CD63, CD9: 엑소좀 마커, ApoB: 저밀도 지질단백질(Low density lipoprotein, LDL) 마커).
그 결과 도 11을 통해 확인할 수 있는 바와 같이,
레진 부피가 10 mL 이하가 되면, 엑소좀 수득 구간인 비결합 구간에서 수용성 단백질 및 지질 단백질이 검출되는 되는 것을 알 수 있다. 이를 통해, 혈액 유래 엑소좀 분리시에는 혈액 샘플 부피의 최소 10배 이상이 되는 음이온 교환 레진이 필요한 것을 확인하였다.
이를 통해, 본 발명에서 제공하는 엑소좀 분리용 조성물 및 크로마토그래피 컬럼, 그리고, 이를 이용한 분리방법은 저비용으로 단시간 내에 순도 높은 엑소좀 수득을 가능하게 하며, 지질 단백질, 수용성 잔백질과 같은 불순물을 효과적으로 제거할 수 있음을 확인하였다.
이상, 본 발명을 바람직한 실시예 및 실험예를 통해 상세히 설명하였으나, 본 발명의 범위는 특성 실시예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.

Claims (15)

  1. 음이온 교환 레진(anion-exchange resin)이 분산되어 있으면서,
    pH 6.0 내지 8.4인 버퍼 용액을 포함하는, 엑소좀 분리용 조성물.
  2. 제1항에 있어서,
    pH 6.4 내지 8.0인, 엑소좀 분리용 조성물.
  3. 제1항에 있어서,
    상기 버퍼 용액은 10 mM 내지 20 mM 농도인, 엑소좀 분리용 조성물.
  4. 제1항에 있어서,
    상기 음이온 교환 레진을 이용하여 분리된 엑소좀은 50 nm 내지 300 nm의 크기를 가지는 엑소좀인, 엑소좀 분리용 조성물.
  5. 제1항에 있어서,
    상기 엑소좀 분리용 조성물은 혈액, 림프액, 뇌척수액, 소변, 양수, 모유, 침, 정액 및 세포배양액으로 이루어지는 군으로부터 선택되는 하나 이상을 분리하는 것인, 엑소좀 분리용 조성물.
  6. 제1항에 있어서,
    상기 엑소좀 분리용 조성물을 이용하여 회수된 단백질 질량이 5% 내지 40%인, 엑소좀 분리용 조성물.
  7. 음이온 교환 레진(anion-exchange resin)이 충진된 컬럼을 포함하고, 상기 컬럼 내부는 pH 6.0 내지 8.4인 버퍼 용액으로 평형화된, 엑소좀 분리용 크로마토그래피 컬럼.
  8. 제7항에 있어서,
    pH 6.4 내지 8.0인, 엑소좀 분리용 크로마토그래피 컬럼.
  9. 제7항에 있어서,
    상기 버퍼 용액은 10 mM 내지 20 mM 농도인, 엑소좀 분리용 크로마토그래피 컬럼.
  10. 제7항에 있어서,
    상기 음이온 교환 레진을 이용하여 분리된 엑소좀은 50 nm 내지 300 nm의 크기를 가지는 엑소좀인, 엑소좀 분리용 크로마토그래피 컬럼.
  11. 제7항에 있어서,
    상기 엑소좀 분리용 크로마토그래피 컬럼은 혈액, 림프액, 뇌척수액, 소변, 양수, 모유, 침, 정액 및 세포배양액으로 이루어지는 군으로부터 선택되는 하나 이상을 분리하는 것인, 엑소좀 분리용 크로마토그래피 컬럼.
  12. 제7항에 있어서,
    상기 엑소좀 분리용 크로마토그래피 컬럼을 이용하여 회수된 단백질 질량이 5% 내지 40%인, 엑소좀 분리용 크로마토그래피 컬럼.
  13. 제7항에 있어서,
    상기 엑소좀 분리용 크로마토그래피 컬럼은 생체 시료와 레진의 부피비가 1:1 내지 1:80인 것인, 엑소좀 분리용 크로마토그래피 컬럼.
  14. 제1항에 따른 조성물에 엑소좀을 포함하는 생체 시료를 혼합하여 상기 레진에 결합되지 않은 엑소좀을 분리하는 단계를 포함하는, 엑소좀 분리 방법.
  15. 제7항에 따른 크로마토그래피 컬럼에 엑소좀을 포함하는 생체 시료를 상기 이온 교환 크로마토그래피에 통과시켜 엑소좀을 분리하는 단계를 포함하는, 엑소좀 분리 방법.
PCT/KR2021/020300 2020-12-30 2021-12-30 엑소좀 분리용 조성물 및 이를 이용한 엑소좀 분리 방법 WO2022146083A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200187550 2020-12-30
KR10-2020-0187550 2020-12-30

Publications (1)

Publication Number Publication Date
WO2022146083A1 true WO2022146083A1 (ko) 2022-07-07

Family

ID=82259963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/020300 WO2022146083A1 (ko) 2020-12-30 2021-12-30 엑소좀 분리용 조성물 및 이를 이용한 엑소좀 분리 방법

Country Status (2)

Country Link
KR (1) KR20220097337A (ko)
WO (1) WO2022146083A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6899863B1 (en) * 1999-01-27 2005-05-31 Anosys, Inc., Institute Curie Method for preparing membrane vesicles
US20090232883A1 (en) * 2006-07-03 2009-09-17 Terumo Kabushiki Kaisha Method of separating vesicle, process for producing medicinal preparation, and method of evaluation
WO2012087241A1 (en) * 2010-12-20 2012-06-28 Agency For Science, Technology And Research Method of purifying exosomes
KR20160115988A (ko) * 2014-02-27 2016-10-06 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 엑소좀을 단리시키기 위한 방법 및 조성물

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6899863B1 (en) * 1999-01-27 2005-05-31 Anosys, Inc., Institute Curie Method for preparing membrane vesicles
US20090232883A1 (en) * 2006-07-03 2009-09-17 Terumo Kabushiki Kaisha Method of separating vesicle, process for producing medicinal preparation, and method of evaluation
WO2012087241A1 (en) * 2010-12-20 2012-06-28 Agency For Science, Technology And Research Method of purifying exosomes
KR20160115988A (ko) * 2014-02-27 2016-10-06 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 엑소좀을 단리시키기 위한 방법 및 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HEATH NIKKI, GRANT LOIS, DE OLIVEIRA TAIANA MAIA, ROWLINSON RACHEL, OSTEIKOETXEA XABIER, DEKKER NIEK, OVERMAN ROSS: "Rapid isolation and enrichment of extracellular vesicle preparations using anion exchange chromatography", SCIENTIFIC REPORTS, vol. 8, no. 1, 1 December 2018 (2018-12-01), pages 1 - 12, XP055829537, DOI: 10.1038/s41598-018-24163-y *

Also Published As

Publication number Publication date
KR20220097337A (ko) 2022-07-07

Similar Documents

Publication Publication Date Title
Mircheff et al. Analytical isolation of plasma membranes of intestinal epithelial cells: identification of Na, K-ATPase rich membranes and the distribution of enzyme activities
CN107446879B (zh) 一种分离和纯化不同外泌体亚群的方法
WO2019022538A2 (ko) 소수성 상호작용을 이용한 세포밖 소포체의 분리방법
Adeli et al. Rapid purification of human DNA from whole blood for potential application in clinical chemistry laboratories
US9829483B2 (en) Methods of isolating extracellular vesicles
EP2713163B1 (en) Methods for isolating vesicles
CN110231207B (zh) 一种分离外泌体的方法
WO2020166978A9 (ko) 생물학적 샘플로부터 미소 소포체를 추출하는 방법
EP3727630B1 (en) Method and stationary phase for isolating extracellular vesicles from biological material
CN112831457A (zh) 一种分离和浓缩外泌体的方法
WO2022146083A1 (ko) 엑소좀 분리용 조성물 및 이를 이용한 엑소좀 분리 방법
Zhang et al. Application of nanomaterials in proteomics-driven precision medicine
WO2019103548A2 (ko) 반건식 크기 배제 크로마토그래피를 이용한 세포밖 소포체의 분리 방법
WO2019066485A1 (ko) 크기 배제 크로마토그래피를 이용한 세포밖 소포체의 순도 분석 방법
WO2023146117A1 (ko) 상호작용체 분석용 키트 및 이를 이용한 상호작용체 분석법
WO2022102885A1 (ko) 엑소좀 유래 miRNA를 이용한 아토피성 피부염 상관 스트레스 진단기술
WO2021221368A1 (ko) 세포 유래 베시클의 정제 방법
WO2022025625A1 (ko) 암 줄기세포 검출용 바이오 마커 조성물
AU2019401729B2 (en) Purification method for vaccine virus using affinity chromatography
CN115124612A (zh) 一种从天然样本中分离纯化IFN-γ的方法
WO2022145980A1 (ko) 고효율 및 고순도의 엑소좀 분리방법
WO2020004436A1 (ja) 試料中のエクソソームの破壊方法及び破壊用試薬
Lee et al. Plasma membrane isolation using immobilized concanavalin A magnetic beads
WO2022114917A1 (ko) 중저 비유전율을 가진 화합물을 포함한 핵산 결합 완충액을 이용한 핵산 분리방법
WO2019112178A1 (ko) 오담에 특이적으로 결합하는 dna 앱타머 및 그의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21915880

Country of ref document: EP

Kind code of ref document: A1