WO2022145636A1 - 다병렬 배터리 셀들을 포함하는 배터리 모듈 - Google Patents

다병렬 배터리 셀들을 포함하는 배터리 모듈 Download PDF

Info

Publication number
WO2022145636A1
WO2022145636A1 PCT/KR2021/013402 KR2021013402W WO2022145636A1 WO 2022145636 A1 WO2022145636 A1 WO 2022145636A1 KR 2021013402 W KR2021013402 W KR 2021013402W WO 2022145636 A1 WO2022145636 A1 WO 2022145636A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cells
cylindrical battery
bus bar
cell group
cylindrical
Prior art date
Application number
PCT/KR2021/013402
Other languages
English (en)
French (fr)
Inventor
정한용
손영수
양근주
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202180058104.6A priority Critical patent/CN116057773A/zh
Priority to EP21915434.1A priority patent/EP4191780A4/en
Priority to US18/020,370 priority patent/US20230299426A1/en
Priority to JP2023512209A priority patent/JP7566139B2/ja
Publication of WO2022145636A1 publication Critical patent/WO2022145636A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/505Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/512Connection only in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module, and more particularly, to a battery module in which an electrical connection structure of multi-parallel battery cells is improved.
  • a secondary battery refers to a battery that can be charged and discharged, unlike a primary battery that cannot be charged. It is used as a power source for hybrid vehicles (HEVs).
  • HEVs hybrid vehicles
  • a secondary battery in which a plurality of lithium ion battery cells are connected in series and/or in parallel should be configured, and a BMS (which connects the battery modules in a series form and functionally maintains them) It constitutes a battery pack including a battery management system), a cooling system, a BDU (Battery Disconnection Unit), and an electric wiring cable.
  • the lithium ion battery cell may be classified into a can-type secondary battery in which an electrode assembly is embedded in a metal can and a pouch-type secondary battery in which an electrode assembly is embedded in a pouch of an aluminum laminate sheet.
  • the can-type secondary battery may be classified into a cylindrical battery and a prismatic battery according to the shape of the metal can.
  • the casing of such a prismatic or cylindrical battery includes a case having an open end, that is, a battery can and a top cap sealingly coupled to the open end of the battery can.
  • the cylindrical batteries 1 of one bank are arranged side by side in a row, and there is a line between one bank and the other adjacent bank.
  • a bus bar (2) of the form is disposed.
  • wire (W) bonding the top cap (1a, positive electrode) of each cylindrical battery (1) belonging to one bank to the bus bar (2), and the top of the battery can of each cylindrical battery (1) belonging to another bank ( 1b, negative electrode) is bonded to the bus bar 2 with a wire (W) to connect the two banks in series.
  • the present invention has been devised to solve the above problems, and even if a large number of cylindrical battery cells are included in one bank, the cylindrical battery cells are arranged within a predetermined battery module dimension and the banks are connected in series
  • An object of the present invention is to provide a battery module including multi-parallel battery cells capable of
  • the top cap is erected toward the top cylindrical battery cells; and a bus bar unit connecting the cylindrical battery cells in series and in parallel, wherein the cylindrical battery cells include: a first bank cell group consisting of first cylindrical battery cells arranged in two or more rows; and a second bank cell group including second cylindrical battery cells arranged in two or more rows in a first direction parallel to the first bank cell group, wherein the bus bar unit is disposed above the first bank cell group, , a first terminal bus bar electrically connected to the positive electrode of each of the first cylindrical battery cells; a second terminal bus bar disposed on the second bank cell group and electrically connected to the negative electrode of each of the second cylindrical battery cells; and a fishbone bus bar disposed on the first bank cell group and the second bank cell group and electrically connected to the negative electrode of each of the first cylindrical battery cells and the positive electrode of each of the second cylindrical battery cells
  • a battery module may be provided.
  • the fishbone bus bar may include: a skeleton part extending in a first direction between the first bank cell group and the second bank cell group; a plurality of first branch portions spaced apart from each other by a predetermined distance and extending from the skeleton portion in a direction crossing the first direction; and a plurality of second branch portions spaced apart from each other by a predetermined distance and extending in opposite directions to the plurality of first branch portions from the skeleton portion.
  • the first terminal bus bar includes a plurality of third branch portions extending alternately with the plurality of first branch portions between rows and columns of the first cylindrical battery cells
  • the second terminal bus bar includes: A plurality of fourth branch portions extending alternately with the plurality of second branch portions may be provided between the rows of the second cylindrical battery cells.
  • a top cap of each of the first cylindrical battery cells is wire-bonded to the plurality of third branch portions, and an upper end of a battery can in each of the first cylindrical battery cells is wire-bonded to the plurality of first branch portions, and each A top cap of the second cylindrical battery cells may be wire-bonded to the plurality of second branch portions, and an upper end of a battery can in each of the second cylindrical battery cells may be wire-bonded to the plurality of fourth branch portions.
  • a bottom frame having through-holes formed through the lower ends of the cylindrical battery cells in the vertical direction; and a cell case covering the cylindrical battery cells and having a top frame coupled to an upper portion of the bottom frame.
  • the top frame includes a top plate for covering upper portions of the cylindrical battery cells, and the top plate includes: positive electrode connectors with perforated areas under which the top caps of the cylindrical battery cells are located; and a negative electrode connector in which an area at which an upper edge of a battery can is located in each of the cylindrical battery cells is formed thereunder.
  • the top frame includes a bus bar mounting guide formed to protrude upwardly from a surface of the upper plate, and the bus bar mounting guide is configured to extend from upper portions of the first cylindrical battery cells and the second cylindrical battery cells in the first direction. are arranged in two or more rows, and at least one may be provided in each row, such as the positive electrode connector and the negative electrode connector.
  • the bottom frame and the top frame may include a bushing hole formed vertically through each corner area and a center area, and a bushing interposed in the bushing hole.
  • the present invention includes the two battery modules, and a heat sink having a flow path through which the coolant flows therein, wherein the two battery modules are arranged in layers symmetrically up and down with the heat sink interposed therebetween, ,
  • the heat dissipation unit of the battery module located at the upper portion may be provided in contact with the upper surface of the heat sink, and the heat dissipation unit of the battery module located at the lower portion may be provided in contact with the lower surface of the heat sink.
  • a battery pack including one or more of the above-described battery module to the above-described battery module stack may be provided.
  • the cylindrical battery cells belonging to one bank are efficiently arranged within the allowable dimensional range of the battery module, and the banks are connected in series using a fishbone bus bar.
  • a battery module including connected multi-parallel cylindrical battery cells may be provided.
  • FIG. 1 is a diagram schematically illustrating an electrical connection configuration of cylindrical battery cells of a battery module according to the prior art.
  • FIG. 2 is a schematic perspective view of a battery module according to an embodiment of the present invention.
  • FIG. 3 is a view in which a bus bar unit is separated from the battery module of FIG. 2 .
  • FIG. 4 is an exploded perspective view of the battery module of FIG. 2 .
  • FIG. 5 is a diagram illustrating a wire bonding state of a battery module according to an embodiment of the present invention.
  • FIG. 6 is a partially enlarged view of FIG. 5 .
  • FIG. 7 is a cutaway perspective view of a battery module according to an embodiment of the present invention.
  • FIG. 8 is a partially enlarged view of FIG. 7 .
  • FIG. 9 is an enlarged view of a portion of the heat dissipation unit of FIG. 8 .
  • FIG. 10 is a view showing a battery module stack according to an embodiment of the present invention.
  • FIG. 2 is a schematic perspective view of a battery module according to an embodiment of the present invention
  • FIG. 3 is a view in which a bus bar unit is separated from the battery module of FIG. 2
  • FIG. 4 is an exploded perspective view of the battery module of FIG.
  • the battery module 10 includes can-type battery cells 100A and 100B, a bus bar unit 200 , a cell case 300 and a heat dissipation unit 400 .
  • can-type battery cells 100A and 100B includes can-type battery cells 100A and 100B, a bus bar unit 200 , a cell case 300 and a heat dissipation unit 400 .
  • the can-type battery cells may be cylindrical battery cells 100A and 100B.
  • an electrolyte and an electrode assembly are put in a cylindrical battery can 102
  • a top cap 101 is disposed at an upper open end of the battery can 102
  • the upper part of the battery can 102 It can be manufactured through a process of crimping and sealing the open end.
  • the electrode assembly of the cylindrical battery cells 100A and 100B has a structure wound in a jelly-roll type with a separator interposed between the positive electrode plate and the negative electrode plate, and a positive electrode tab is attached to the positive electrode plate, and the positive electrode tab is a top cap 101 ) is connected to A negative electrode tab is attached to the negative electrode plate, and the negative electrode tab is connected to the lower end of the battery can 102 .
  • the top cap 101 may function as a positive terminal and the battery can 102 may function as a negative terminal.
  • the present embodiment employs the cylindrical battery cells 100A and 100B as the can-type battery cell, it may be replaced with a rectangular battery cell having a rectangular parallelepiped shape.
  • the prismatic battery cell may be configured such that the top cap 101 functions as a negative terminal and the battery can 102 functions as a positive terminal as opposed to the cylindrical battery cells 100A and 100B.
  • the cylindrical battery cells 100A and 100B may be connected in series and/or in parallel according to the output and capacity required for the battery module 10 .
  • the number of serially connected banks and the number of cylindrical battery cells 100A and 100B belonging to each bank are nS/mP (n ⁇ 1 natural number, m ⁇ 2 natural number) ) is expressed as
  • the bank refers to an aggregate of cylindrical battery cells 100A and 100B connected in parallel to each other.
  • the battery module 10 has two banks, and the cylindrical battery cells 100A and 100B included in each bank are about 60 to 70, compared to the number of series connections between the banks, the cylindrical battery cells belonging to one bank. (100A, 100B) are relatively many.
  • the cylindrical battery cells 100A and 100B are divided into a first bank cell group B1 and a second bank cell group B2 as shown in FIG. 4 .
  • the first bank cell group B1 includes first cylindrical battery cells 100A arranged in two or more columns, and the second bank cell group B2 is a first group in parallel with the first bank cell group B1.
  • the second cylindrical battery cells 100B are arranged in two or more rows in one direction (X-axis direction).
  • the first bank cell group B1 includes 16 rows of first cylindrical battery cells 100A, and 3 to 5 first cylindrical battery cells 100A may be included in each row. For example, assuming that all of the first cylindrical battery cells 100A belonging to the first bank cell group B1 are arranged in one row, the dimensions required for the battery module 10 will be exceeded, but in this embodiment If configured as described above, the cylindrical battery cells 100A and 100B belonging to one bank can be arranged within the dimensional range of the battery module 10 .
  • the second bank cell group B2 includes 16 rows of second cylindrical battery cells 100B, and 3 to 5 second cylindrical battery cells 100B may be included in each row.
  • the second cylindrical battery cells 100B may be arranged in a first direction (X-axis direction) side by side with the first cylindrical battery cells 100A, and each row may be arranged adjacent to each other.
  • the bus bar unit 200 is a component made of, for example, a metal such as copper to conduct electricity through each of the cylindrical battery cells 100A and 100B, and includes a first terminal bus bar 210 and a second terminal bus bar 220 . and a fishbone bus bar 230 .
  • the first terminal bus bar 210 may be disposed on the first bank cell group B1 and may be electrically connected to the positive electrode of each of the first cylindrical battery cells 100A.
  • the second terminal bus bar 220 may be disposed on the second bank cell group B2 and may be electrically connected to the negative electrode of each of the second cylindrical battery cells 100B.
  • the fishbone bus bar 230 is disposed above the first bank cell group B1 and the second bank cell group B2, and includes a negative electrode of each of the first cylindrical battery cells 100A and each of the It may be electrically connected to the positive poles of the second cylindrical battery cells 100B.
  • the positive poles of the first and second cylindrical battery cells 100A and 100B are the top cap 101
  • the negative poles of the first and second cylindrical battery cells 100A and 100B refer to the upper edge of the battery can 102 .
  • a wire (W) may be used as an electrical connection means.
  • the fishbone bus bar 230 includes the first bank cell group B1 and the second bank cell group B2 . ) and the skeleton portion 231 extending in the first direction (X-axis direction), spaced apart from each other by a predetermined distance, and extending in a direction (+Y-axis direction) intersecting the first direction in the skeleton portion 231 a plurality of first branch portions 232 formed from each other and a plurality of second portions spaced apart from each other by a predetermined distance and extending from the skeleton portion 231 in a direction opposite to the plurality of first branch portions 232 (-Y-axis direction) It includes a branch portion 233 .
  • the first terminal bus bar 210 includes a first stem portion 211 extending in a first direction side by side at a position away from the skeleton portion 231 , and the first stem portion 211 and one body. a plurality of third branch portions 212 formed and alternately extending (in the -Y-axis direction) with the plurality of first branch portions 232 between the rows and columns of the first cylindrical battery cells 100A; include
  • the second terminal bus bar 220 includes a second stem portion 221 extending in a first direction side by side at a position away from the skeleton portion 231 , and a body with the second stem portion 221 . and a plurality of fourth branch portions 222 extending alternately (in the +Y-axis direction) with the plurality of second branch portions 233 between the rows and columns of the second cylindrical battery cells 100B.
  • the top cap 101 of each first cylindrical battery cell 100A belonging to the first bank cell group B1 is wire (W) bonded to the third branch portion 212 of the first terminal bus bar 210 ,
  • the upper end of the battery can 102 of each of the first cylindrical battery cells 100A is connected in parallel to the first branch portion 232 of the fishbone bus bar 230 by wire (W) bonding.
  • each of the second cylindrical battery cells 100B belonging to the second bank cell group B2 is connected to the fourth branch 222 of the second terminal bus bar 220 with a wire (W) Bonded
  • the top cap 101 of each of the second cylindrical battery cells 100B is connected in parallel to the second branch portion 233 of the fishbone bus bar 230 by wire (W) bonding.
  • the upper ends of the battery cans 102 of all the first cylindrical battery cells 100A are connected to the plurality of first branch portions 232 of the fishbone busbar 230 , and the fishbone busbar 230 is connected to the fishbone busbar 230 . Since the top caps 101 of all the second cylindrical battery cells 100B are connected to the plurality of second branch portions 233 of ) are connected in series.
  • cylindrical battery cells 100A and 100B are arranged in two or more rows within the dimension range required for the battery module 10 . and parallel connection of cylindrical battery cells 100A and 100B belonging to the same bank and series connection between different banks are possible.
  • the cell case 300 is configured to hold the cylindrical battery cells 100A and 100B and to protect the cylindrical battery cells 100A and 100B from external impact. As such, it includes a bottom frame 310 and a top frame 320 .
  • the bottom frame 310 may be provided in the shape of a block having a substantially rectangular surface having through-holes 311 penetrating in the vertical direction ( ⁇ Z-axis direction). A lower surface of the bottom frame 310 may be covered by a heat dissipation unit 400 to be described later. Cylindrical battery cells 100A and 100B may have their bottom ends in contact with the heat dissipation unit 400 so that their lower ends may be inserted into the through holes 311 one by one. The uppermost layer of the heat dissipation unit 400 in contact with the bottom surfaces of the cylindrical battery cells 100A and 100B is composed of an adhesive sheet 410 or an adhesive.
  • the cylindrical battery cells 100A and 100B inserted into the through hole 311 of the bottom frame 310 have their bottom surfaces adhered to the adhesive sheet 410 , and the lower end thereof is interposed in the through hole 311 and fixed. Therefore, if the bottom frame is used, the reliability of electrical connection can be increased by holding the cylindrical battery cells, and as will be described later in detail, the bottom surface of the cylindrical battery cells can be easily cooled.
  • the top frame 320 may cover the cylindrical battery cells 100A and 100B and may be provided to be coupled to the upper portion of the bottom frame 310 .
  • An insert pin 327 protruding downward is provided on the lower edge of the top frame 320, and an insert hole 317 into which the insert pin 327 can be inserted is provided on the upper edge of the bottom frame 310.
  • the bottom frame 310 and the top frame 320 include a bushing hole 301 penetrating through each corner area and a center area in the vertical direction, and a bushing interposed in the bushing hole 301 .
  • the bottom frame 310 and the top frame 320 may be strongly fixedly coupled by inserting a long bolt (not shown) into the bushing.
  • the top frame 320 includes an upper plate portion 321 covering the upper portions of the cylindrical battery cells 100A and 100B and side plate portions covering the side portions of the cylindrical battery cells 100A and 100B, and a bottom frame 310 on the inside.
  • Cell accommodating spaces in a shape surrounding the upper portions of each of the cylindrical battery cells 100A and 100B are formed.
  • the cell accommodating spaces correspond one-to-one to the through holes 311 of the bottom frame 310 .
  • the bus bar unit 200 may be fixedly mounted on the upper surface of the upper plate part 321 .
  • the first terminal bus bar 210 is fixed by fastening the first stem part 211 to one corner of the upper plate part 321 by fastening the bolts 328
  • the second terminal bus bar 220 is the second row.
  • the base 221 may be fixed by fastening the bolt 328 to the other edge of the upper plate 321 .
  • the upper plate portion 321 may be provided with an insert nut at each fastening location of the bolt 328 to prevent damage.
  • the fishbone bus bar 230 may be fixed to the center of the upper plate 321 using an adhesive.
  • the upper plate portion 321 includes positive electrode connectors 323 in which the top cap 101 of each of the cylindrical battery cells 100A and 100B is located below it, and each of the cylindrical battery cells 100A below it.
  • the region where the upper edge of the battery can 102 is positioned may include the perforated negative electrode connector 324 .
  • the positive electrode connector 323 and the negative electrode connector 324 may communicate with the cell accommodating space.
  • the top cap 101 of each cylindrical battery cell 100A, 100B and the upper end of the battery can 102 are exposed above the top plate 321 through these positive connection ports 323 and negative connection ports 324, and these are exposed as described above.
  • the wire W is bonded to the bus bar unit 200 as shown.
  • Each of the positive electrode connectors 323 is in the form of a square hole having a size smaller than that of the top cap 101 so that only a portion of the top cap 101 can be exposed on the top plate, and each of the negative connectors 324 is formed in the battery can 102 . It may be formed in the form of a hole reflecting the curvature of the top of the battery can 102 so that only a portion of the upper edge line is exposed over the top plate.
  • the positive electrode connection port 323 and the negative electrode connection port 324 are clearly distinguished, and the risk of unexpected short circuit when bonding the wire W can be reduced. .
  • the top frame 320 may further include a bus bar mounting guide 325 formed to protrude upwardly from the surface of the upper plate part 321 .
  • the bus bar mounting guide 325 may be provided in a cube shape or a square cylindrical shape, and is formed from upper portions of the first cylindrical battery cells 100A and the second cylindrical battery cells 100B in the first direction. It is arranged in more than one row, and one or more may be provided in each row, such as the positive electrode connector 323 and the negative electrode connector 324 .
  • the bus bar mounting guide 325 includes the first terminal bus bar 210 , the second terminal bus bar 220 , and the fishbone bus bar 230 when the bus bar unit 200 is mounted on the top plate. It may serve as a reference for guiding the mounting position, and in the event of external shock or vibration, the first terminal bus bar 210/fishbone busbar 230 or the second terminal busbar 220/fishbone busbar 230 It may serve to prevent contact with each other by not narrowing the gap more than a certain interval.
  • the heat dissipation unit 400 may be disposed under the bottom frame 310 as a means for lowering the temperature by drawing heat from the cylindrical battery cells 100A and 100B to the outside.
  • the heat dissipation unit 400 may include an adhesive sheet 410 , an insulating sheet 420 , a cooling plate 430 , and a thermally conductive material 440 .
  • the adhesive sheet 410 preferably has adhesiveness and thermal conductivity. This adhesive sheet 410 is interposed under the above-described bottom frame 310 so as to contact the bottom surface of the battery can 102 of all the cylindrical battery cells 100A and 100B.
  • the adhesive sheet 410 may be replaced with a curable adhesive instead of a sheet.
  • the insulating sheet 420 may be made of a silicon or graphite material having electrical insulation and heat dissipation properties.
  • the insulating sheet 420 is applied to secure insulation and thermal conductivity between the cylindrical battery cells 100A and 100B and the cooling plate 430 .
  • the cooling plate 430 is a plate-shaped body having mechanical rigidity and thermal conductivity, and supports the cylindrical battery cells 100A and 100B under the bottom frame 310, and heat generated from the cylindrical battery cells 100A and 100B. It is responsible for dissipating heat to the outside.
  • the cooling plate 430 may be formed of aluminum or an aluminum alloy.
  • the thermally conductive material 440 is interposed on a lower surface of the cooling plate 430 .
  • the thermally conductive material 440 serves to effectively conduct heat by filling in gaps according to the difference in surface roughness upon contact between the object and the object, which promotes heat exchange between the heat sink 500 and the cooling plate 430, which will be described later. it works
  • thermal grease may be employed as the thermally conductive material 440 .
  • FIG. 10 is a view showing a battery module stack according to an embodiment of the present invention.
  • the battery module stack includes the above-described two battery modules 10A and 10B and one heat sink 500 .
  • the heat sink 500 may be provided in a plate shape having a flow path through which cooling water can flow and a cooling water supply/discharge port 501 connected to the flow path.
  • the two battery modules 10A and 10B are arranged in layers symmetrically up and down with the heat sink 500 interposed therebetween, and the heat dissipation unit 400 of the battery module 10A located on the upper part ) may be configured to contact the upper surface of the heat sink 500 , and the heat dissipation unit 400 of the battery module 10B located at the lower portion may be configured to contact the lower surface of the heat sink 500 .
  • plate-shaped brackets (not shown) are mounted on both side surfaces of the two battery modules 10A and 10B and the heat sink 500, respectively, so that the two battery modules 10A and 10B and the heat sink 500 are mounted. ) can be fixed integrally.
  • the battery module according to the present invention may be applied to a vehicle such as an electric vehicle or a hybrid vehicle or an electric power storage system (ESS).
  • a vehicle such as an electric vehicle or a hybrid vehicle or an electric power storage system (ESS).
  • ESS electric power storage system

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명에 따른 배터리 모듈은, 2열 이상 배치되는 제1 원통형 배터리 셀들로 구성된 제1 뱅크 셀 그룹; 및 상기 제1 뱅크 셀 그룹과 나란한 제1 방향으로 2열 이상 배치되는 제2 원통형 배터리 셀들로 구성된 제2 뱅크 셀 그룹을 포함하고, 버스바 유닛은 상기 제1 뱅크 셀 그룹의 상부에 배치되고, 각 상기 제1 원통형 배터리 셀들의 양극과 전기적으로 연결되는 제1 단자 버스바; 상기 제2 뱅크 셀 그룹의 상부에 배치되고, 각 상기 제2 원통형 배터리 셀들의 음극과 전기적으로 연결되는 제2 단자 버스바; 및 상기 제1 뱅크 셀 그룹과 상기 제2 뱅크 셀 그룹의 상부에 배치되고, 각 상기 제1 원통형 배터리 셀들의 음극 및 각 상기 제2 원통형 배터리 셀들의 양극과 전기적으로 연결되는 피쉬본 버스바를 포함한다.

Description

다병렬 배터리 셀들을 포함하는 배터리 모듈
본 발명은 배터리 모듈에 관한 것으로서, 보다 상세하게는 다병렬 배터리 셀들의 전기적 연결 구조를 효율화시킨 배터리 모듈에 관한 것이다.
본 출원은 2020년 12월 28일자로 출원된 한국 특허출원 번호 제10-2020-0185308호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
이차전지는 충전이 불가능한 일차전지와는 달리, 충·방전이 가능한 전지를 말하는 것으로서, 휴대폰, PDA, 노트북 컴퓨터 등의 소형 첨단 전자기기 분야뿐만 아니라 에너지 저장 시스템(ESS), 전기 자동차(EV) 또는 하이브리드 자동차(HEV)의 동력원으로 사용되고 있다.
현재, 이차전지 1개(셀)로는 전기차를 구동할 수 있을 만큼의 충분한 출력을 얻을 수 없다. 전기차의 에너지원으로 이차전지를 적용하기 위해서는 예컨대 복수 개의 리튬이온 전지 셀들을 직렬 및/또는 병렬 연결한 배터리 모듈을 구성해야 하며, 통상 직렬 형태로 상기 배터리 모듈들을 연결하고 이를 기능적으로 유지해주는 BMS(Battery Management System)와 냉각 시스템, BDU(Battery Disconnection Unit), 전기 배선 케이블 등을 포함한 배터리 팩을 구성한다.
한편, 리튬이온 전지 셀은 전지 케이스의 종류에 따라, 전극 조립체가 금속 캔에 내장되어 있는 캔형 이차 전지와 전극 조립체가 알루미늄 라미네이트 시트의 파우치에 내장되어 있는 파우치형 이차 전지로 분류될 수 있다. 그리고 캔형 이차 전지는 다시 금속 캔의 형태에 따라 원통형 전지와 각형 전지로 분류될 수 있다. 이러한 각형 또는 원통형 전지의 외장재는 개방단이 형성된 케이스, 즉 전지 캔 및 전지 캔의 개방단에 밀봉 결합되는 탑 캡을 구비한다.
상기 원통형 전지를 사용하여 배터리 모듈을 구성할 때, 예컨대 도 1과 같이, 한 뱅크(병렬 묶음)의 원통형 전지(1)들을 일렬씩 나란하게 배열하고, 한 뱅크와 이웃한 다른 한 뱅크 사이에 일자 형태의 버스바(2)를 배치한다. 그리고 한 뱅크에 속하는 각 원통형 전지(1)들의 탑 캡(1a,양극)을 상기 버스바(2)에 와이어(W) 본딩하고 다른 한 뱅크에 속하는 각 원통형 전지(1)들의 전지 캔의 상단(1b,음극)을 상기 버스바(2)에 와이어(W) 본딩하여 2개의 뱅크를 직렬 연결한다.
그런데 한 뱅크에 속하는 원통형 전지(1)의 개수가 적은 경우는 위와 같은 연결 방식이 가능하지만, 한 뱅크에 속하는 원통형 전지(1)의 개수가 매우 많을 경우 한 뱅크의 길이가 너무 길어져 미리 정한 배터리 모듈의 치수를 초과하게 되어 원통형 전지 셀들의 배치 및 전기적 연결 구성에 어려움이 있다.
본 발명은, 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 한 뱅크에 많은 수의 원통형 배터리 셀들이 포함되어 있어도, 미리 정한 배터리 모듈의 치수 내에서 원통형 배터리 셀들을 배치하고 뱅크들 간을 직렬연결을 할 수 있는 다병렬 배터리 셀들을 포함한 배터리 모듈을 제공하는데 일 목적이 있다.
본 발명이 해결하고자 하는 기술적 과제는 상술한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래에 기
상기 기술적 과제를 달성하기 위해 본 발명의 일 실시예에 따르면, 탑 캡이 상부를 향하도록 세워진 원통형 배터리 셀들; 및 상기 원통형 배터리 셀들을 직렬 및 병렬 연결하는 버스바 유닛을 포함하고, 상기 원통형 배터리 셀들은 2열 이상 배치되는 제1 원통형 배터리 셀들로 구성된 제1 뱅크 셀 그룹; 및 상기 제1 뱅크 셀 그룹과 나란한 제1 방향으로 2열 이상 배치되는 제2 원통형 배터리 셀들로 구성된 제2 뱅크 셀 그룹을 포함하고, 상기 버스바 유닛은 상기 제1 뱅크 셀 그룹의 상부에 배치되고, 각 상기 제1 원통형 배터리 셀들의 양극과 전기적으로 연결되는 제1 단자 버스바; 상기 제2 뱅크 셀 그룹의 상부에 배치되고, 각 상기 제2 원통형 배터리 셀들의 음극과 전기적으로 연결되는 제2 단자 버스바; 및 상기 제1 뱅크 셀 그룹과 상기 제2 뱅크 셀 그룹의 상부에 배치되고, 각 상기 제1 원통형 배터리 셀들의 음극 및 각 상기 제2 원통형 배터리 셀들의 양극과 전기적으로 연결되는 피쉬본 버스바를 포함하는 배터리 모듈이 제공될 수 있다.
상기 피쉬본 버스바는, 상기 제1 뱅크 셀 그룹과 상기 제2 뱅크 셀 그룹 사이에서 제1 방향으로 연장되는 뼈대부; 상호 간 소정 간격 이격되고 상기 뼈대부에서 상기 제1 방향에 교차하는 방향으로 연장되는 복수 개의 제1 가지부; 및 상호 간 소정 간격 이격되고 상기 뼈대부에서 상기 복수 개의 제1 가지부와 반대 방향으로 연장되는 복수 개의 제2 가지부;를 포함할 수 있다.
상기 제1 단자 버스바는, 상기 제1 원통형 배터리 셀들의 열과 열 사이에 상기 복수 개의 제1 가지부와 교번적으로 연장되는 복수 개의 제3 가지부를 구비하고, 상기 제2 단자 버스바는, 상기 제2 원통형 배터리 셀들의 열과 열 사이에 상기 복수 개의 제2 가지부와 교번적으로 연장되는 복수 개의 제4 가지부를 구비할 수 있다.
각 상기 제1 원통형 배터리 셀들의 탑 캡은 상기 복수 개의 제3 가지부에 와이어 본딩되고, 각 상기 제1 원통형 배터리 셀에서 전지 캔의 상단은 상기 복수 개의 제1 가지부에 와이어 본딩되고, 각 상기 제2 원통형 배터리 셀들의 탑 캡은 상기 복수 개의 제2 가지부에 와이어 본딩되고, 각 상기 제2 원통형 배터리 셀들에서 전지 캔의 상단은 상기 복수 개의 제4 가지부에 와이어 본딩될 수 있다.
상기 원통형 배터리 셀들의 하단부를 끼워 넣을 수 있게 상하 방향으로 관통 형성된 통공들을 구비하는 바틈 프레임; 및 상기 원통형 배터리 셀들을 커버하며 상기 바틈 프레임의 상부에 결합되는 탑 프레임을 구비하는 셀 케이스를 더 포함할 수 있다.
상기 탑 프레임은, 상기 원통형 배터리 셀들의 상부를 커버하는 상판부를 포함하고, 상기 상판부는 그 아래에 각 상기 원통형 배터리 셀들의 탑 캡이 위치하는 영역이 천공 형성된 양극 접속구들; 및 그 아래에 각 상기 원통형 배터리 셀들에서 전지 캔의 상단 가장자리가 위치하는 영역이 천공 형성된 음극 접속구들을 포함할 수 있다.
상기 탑 프레임은 상기 상판부의 표면에서 상부 방향으로 돌출되게 형성된 버스바 장착가이드를 포함하고, 상기 버스바 장착가이드는, 상기 제1 원통형 배터리 셀들 및 상기 제2 원통형 배터리 셀들의 상부에서 상기 제1 방향으로 2열 이상 배치되고, 상기 양극 접속구들 및 상기 음극 접속구들과 같은 열마다 하나 이상이 구비될 수 있다.
상기 바틈 프레임과 상기 탑 프레임은, 각 코너 영역과 센터 영역에 상하 방향으로 관통 형성된 부싱홀과, 상기 부싱홀에 개재되는 부싱을 포함할 수 있다.
상기 바틈 프레임의 하부에 배치되는 방열 유닛을 더 포함하고, 상기 방열 유닛은, 상기 바틈 프레임의 하부에 배치되는 금속 소재의 쿨링 플레이트; 상기 쿨링 플레이트의 상면에 배치되는 절연 시트; 상기 절연 시트와 각 원통형 배터리 셀들의 하면 사이에 개재되는 접착 시트; 및 상기 쿨링 플레이트의 하면에 배치되는 열전도성 물질을 포함할 수 있다.
본 발명의 다른 양태에 의하면, 상기 배터리 모듈 2개와, 내부에 냉각수가 유동하는 유로를 구비한 히트싱크를 포함하고, 상기 2개의 배터리 모듈은 상기 히트싱크를 사이에 두고 상하로 대칭되게 층상 배치되고, 상부에 위치한 상기 배터리 모듈의 방열 유닛은 상기 히트싱크의 상면에 접촉하고 하부에 위치한 상기 배터리 모듈의 방열 유닛은 상기 히트싱크의 하면에 접촉하게 마련된 배터리 모듈 적층체가 제공될 수 있다.
본 발명의 또 다른 양태에 의하면, 상술한 배터리 모듈 내지 상술한 배터리 모듈 적층체를 하나 이상 포함하는 배터리 팩이 제공될 수 있다.
본 발명의 일 측면에 따르면, 많은 수의 원통형 배터리 셀들을 2열 이상 배열하여 한 뱅크에 속하는 원통형 배터리 셀들을 배터리 모듈의 치수 허용 범위에서 효율적으로 배치하고, 피쉬본 버스바를 이용하여 뱅크 간을 직렬 연결한 다병렬 원통형 배터리 셀들을 포함한 배터리 모듈이 제공될 수 있다.
본 발명의 효과가 상술한 효과들로 한정되는 것은 아니며, 언급되지 아니한 효과들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.
도 1은 종래 기술에 따른 배터리 모듈의 원통형 배터리 셀들의 전기적 연결 구성을 개략적으로 나타낸 도면이다.
도 2는 본 발명의 일 실시예에 따른 배터리 모듈의 개략적인 사시도이다.
도 3은 도 2의 배터리 모듈에서 버스바 유닛을 분리한 도면이다.
도 4는 도 2의 배터리 모듈의 분해 사시도이다.
도 5는 본 발명의 일 실시예에 따른 배터리 모듈의 와이어 본딩 상태를 도시한 도면이다.
도 6은 도 5의 부분 확대도이다.
도 7은 본 발명의 일 실시예에 따른 배터리 모듈의 절개 사시도이다.
도 8은 도 7의 부분 확대도이다.
도 9는 도 8의 방열 유닛 부분의 확대도이다.
도 10은 본 발명의 일 실시예에 따른 배터리 모듈 적층체를 나타낸 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 출원을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 발명의 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다. 또한, 본 발명의 실시형태는 통상의 기술자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이므로 도면에서의 구성요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장되거나 생략되거나 또는 개략적으로 도시될 수 있다. 따라서, 각 구성요소의 크기나 비율은 실제적인 크기나 비율을 전적으로 반영하는 것은 아니다.
도 2는 본 발명의 일 실시예에 따른 배터리 모듈의 개략적인 사시도이고, 도 3은 도 2의 배터리 모듈에서 버스바 유닛을 분리한 도면이며, 도 4는 도 2의 배터리 모듈의 분해 사시도이다.
이들 도면들을 참조하면, 본 발명의 일 실시예에 따른 배터리 모듈(10)은 캔형의 배터리 셀(100A,100B)들, 버스바 유닛(200), 셀 케이스(300) 및 방열 유닛(400)을 포함한다.
상기 캔형의 배터리 셀은 원통형 배터리 셀(100A,100B)일 수 있다. 상기 원통형 배터리 셀(100A,100B)은 원통 형상의 전지 캔(102) 속에 전해액과 전극 조립체를 넣고 전지 캔(102)의 상부 개방단에 탑 캡(101)을 배치하고 전지 캔(102)의 상부 개방단을 크림핑(crimping)하여 밀봉하는 과정을 거쳐 제작될 수 있다.
원통형 배터리 셀(100A,100B)의 전극 조립체는 양극판과 음극판 사이에 분리막을 개재한 상태로 젤리-롤 형으로 권취한 구조로 되어 있으며, 양극판에는 양극 탭이 부착되고 상기 양극 탭은 탑 캡(101)에 연결된다. 음극판에는 음극 탭이 부착되고 상기 음극 탭은 전지 캔(102)의 하단에 연결된다. 따라서 통상의 원통형 배터리 셀(100A,100B)은 탑 캡(101)이 양극 단자로 기능하고 전지 캔(102)이 음극 단자로 기능할 수 있다.
본 실시예는 캔형 배터리 셀로서 원통형 배터리 셀(100A,100B)을 채용하였으나, 직육면체 형상의 각형 배터리 셀로 대체될 수도 있다. 참고로, 각형 배터리 셀은 원통형 배터리 셀(100A,100B)과 반대로 탑 캡(101)이 음극 단자로 기능하고 전지 캔(102)이 양극 단자로 기능하도록 구성될 수 있다.
상기 원통형 배터리 셀(100A,100B)들은 배터리 모듈(10)에 요구되는 출력 및 용량에 따라 직렬 및/또는 병렬 연결될 수 있다. 배터리 모듈(10)의 전기적 연결 구성을 표현할 때, 직렬 연결된 뱅크의 수와, 각 뱅크에 속하는 원통형 배터리 셀(100A,100B)들의 개수를 nS/mP (n ≥ 1인 자연수, m ≥ 2인 자연수)로 표현한다. 여기서 뱅크(bank)란 서로 병렬 연결된 원통형 배터리 셀(100A,100B)들의 집합체를 의미한다.
본 실시예에 따른 배터리 모듈(10)은 뱅크가 2개이고, 각 뱅크에 포함된 원통형 배터리 셀(100A,100B)이 60~70개 정도로, 뱅크 간의 직렬연결 수에 비해 한 뱅크에 속하는 원통형 배터리 셀(100A,100B)들이 상대적으로 많다.
상기 원통형 배터리 셀(100A,100B)들은, 도 4와 같이, 제1 뱅크 셀 그룹(B1)과 제2 뱅크 셀 그룹(B2)으로 구분된다. 상기 제1 뱅크 셀 그룹(B1)은 2열 이상으로 배치되는 제1 원통형 배터리 셀(100A)들을 포함하고, 상기 제2 뱅크 셀 그룹(B2)은 상기 제1 뱅크 셀 그룹(B1)과 나란한 제1 방향(X축 방향)으로 2열 이상으로 배치되는 제2 원통형 배터리 셀(100B)들을 포함한다.
제1 뱅크 셀 그룹(B1)은 제1 원통형 배터리 셀(100A)들이 16열로 구성되고, 각 열 당 3~5개의 제1 원통형 배터리 셀(100A)들이 포함될 수 있다. 예컨대, 상기 제1 뱅크 셀 그룹(B1)에 속하는 제1 원통형 배터리 셀(100A)들을 모두 1열로 줄지어 놓는다고 가정하면, 배터리 모듈(10)에 요구되는 치수를 초과하게 될 것이지만, 본 실시예와 같이 구성하면, 한 뱅크에 속하는 원통형 배터리 셀(100A,100B)들을 배터리 모듈(10)의 치수 범위 내에서 배치할 수 있다.
제2 뱅크 셀 그룹(B2)은 제2 원통형 배터리 셀(100B)들이 16열로 구성되고, 각 열 당 3~5개의 제2 원통형 배터리 셀(100B)들이 포함될 수 있다. 상기 제2 원통형 배터리 셀(100B)들은 상기 제1 원통형 배터리 셀(100A)들과 나란히 제1 방향(X축 방향)을 따라 배열되고, 각 열은 서로 이웃하게 배치될 수 있다.
상기 버스바 유닛(200)은 각 원통형 배터리 셀(100A,100B)들을 통전시키기 위해 예컨대, 구리 등과 같은 금속으로 이루어진 구성요소로서, 제1 단자 버스바(210), 제2 단자 버스바(220) 및 피쉬본 버스바(230)를 포함한다.
상기 제1 단자 버스바(210)는 상기 제1 뱅크 셀 그룹(B1)의 상부에 배치되고, 각 상기 제1 원통형 배터리 셀(100A)들의 양극과 전기적으로 연결될 수 있다. 상기 제2 단자 버스바(220)는 상기 제2 뱅크 셀 그룹(B2)의 상부에 배치되고, 각 상기 제2 원통형 배터리 셀(100B)들의 음극과 전기적으로 연결될 수 있다. 그리고 상기 피쉬본 버스바(230)는 상기 제1 뱅크 셀 그룹(B1)과 상기 제2 뱅크 셀 그룹(B2)의 상부에 배치되고, 각 상기 제1 원통형 배터리 셀(100A)들의 음극 및 각 상기 제2 원통형 배터리 셀(100B)들의 양극과 전기적으로 연결될 수 있다. 여기서 제1 및 제2 원통형 배터리 셀(100A, 100B)들의 양극은 탑 캡(101)이고, 제1 및 제2 원통형 배터리 셀(100A, 100B)들의 음극은 전지 캔(102)의 상단 테두리를 의미하며, 전기적 연결 수단으로 와이어(W)가 사용될 수 있다.
구체적으로, 도 4 내지 도 5를 참조하여, 피쉬본 버스바(230)에 대해 살펴보면, 상기 피쉬본 버스바(230)는 상기 제1 뱅크 셀 그룹(B1)과 상기 제2 뱅크 셀 그룹(B2) 사이에서 제1 방향(X축 방향)으로 연장되는 뼈대부(231)와, 상호 간 소정 간격 이격되고 상기 뼈대부(231)에서 상기 제1 방향에 교차하는 방향(+Y축 방향)으로 연장되는 복수 개의 제1 가지부(232) 및 상호 간 소정 간격 이격되고 상기 뼈대부(231)에서 상기 복수 개의 제1 가지부(232)와 반대 방향(-Y축 방향)으로 연장되는 복수 개의 제2 가지부(233)를 포함한다.
상기 제1 단자 버스바(210)는, 상기 뼈대부(231)에서 떨어진 위치에서 나란히 제1 방향으로 연장 배치되는 제1 줄기부(211)와, 상기 제1 줄기부(211)와 한 몸체로 형성되고 상기 제1 원통형 배터리 셀(100A)들의 열과 열 사이에 상기 복수 개의 제1 가지부(232)와 교번적으로 (-Y축 방향으로) 연장 배치되는 복수 개의 제3 가지부(212)를 포함한다.
그리고 상기 제2 단자 버스바(220)는, 상기 뼈대부(231)에서 떨어진 위치에서 나란히 제1 방향으로 연장 배치되는 제2 줄기부(221)와, 상기 제2 줄기부(221)와 한 몸체로 형성되고 상기 제2 원통형 배터리 셀(100B)들의 열과 열 사이에 상기 복수 개의 제2 가지부(233)와 교번적으로 (+Y축 방향으로) 연장되는 복수 개의 제4 가지부(222)를 포함한다.
제1 뱅크 셀 그룹(B1)에 속하는 각 제1 원통형 배터리 셀(100A)의 탑 캡(101)은 제1 단자 버스바(210)의 제3 가지부(212)에 와이어(W) 본딩되고, 각 상기 제1 원통형 배터리 셀(100A)의 전지 캔(102)의 상단은 상기 피쉬본 버스바(230)의 제1 가지부(232)에 와이어(W) 본딩됨으로써 모두 병렬 연결된다.
그리고 제2 뱅크 셀 그룹(B2)에 속하는 각 제2 원통형 배터리 셀(100B)들의 전지 캔(102)의 상단은 제2 단자 버스바(220)의 제4 가지부(222)에 와이어(W) 본딩되고, 각 상기 제2 원통형 배터리 셀(100B)의 탑 캡(101)은 상기 피쉬본 버스바(230)의 제2 가지부(233)에 와이어(W) 본딩됨으로써 모두 병렬 연결된다.
이때, 상기 피쉬본 버스바(230)의 복수의 제1 가지부(232)에 모든 제1 원통형 배터리 셀(100A)들의 전지 캔(102)의 상단이 연결되고, 상기 피쉬본 버스바(230)의 복수의 제2 가지부(233)에 모든 제2 원통형 배터리 셀(100B)들의 탑 캡(101)이 연결되어 있음으로 당연히 상기 제1 뱅크 셀 그룹(B1)과 상기 제2 뱅크 셀 그룹(B2)은 직렬 연결된다.
상기 구성에 의하면, 한 뱅크에 많은 수의 원통형 배터리 셀(100A,100B)들이 포함되어 있어도 상기 원통형 배터리 셀(100A,100B)들을 배터리 모듈(10)에 요구되는 치수 범위 내에서 2열 이상으로 배열하고 동일 뱅크에 속하는 원통형 배터리 셀(100A,100B)들의 병렬 연결 및 서로 다른 뱅크들 간의 직렬연결이 가능하다.
다시 도 3 내지 도 4 및 도 7 내지 도 8을 참조하면, 셀 케이스(300)는 원통형 배터리 셀(100A,100B)들의 홀딩하고 외부 충격 등으로부터 원통형 배터리 셀(100A,100B)들을 보호하기 위한 구성으로서, 바틈 프레임(310)과 탑 프레임(320)을 포함한다.
바틈 프레임(310)은 상하 방향(±Z축 방향)으로 관통 형성된 통공(311)들을 구비한 대략 직육면의 블럭 형상으로 마련될 수 있다. 상기 바틈 프레임(310)의 하면은 후술할 방열 유닛(400)에 의해 커버될 수 있다. 원통형 배터리 셀(100A,100B)들은 바닥면이 상기 방열 유닛(400)에 접촉하게 하단부가 상기 통공(311)들에 하나씩 끼워 넣어질 수 있다. 상기 원통형 배터리 셀(100A,100B)들의 바닥면과 접촉하는 상기 방열 유닛(400)의 최상층은 접착 시트(410) 내지 접착제로 구성된다.
바틈 프레임(310)의 통공(311)에 삽입된 원통형 배터리 셀(100A,100B)은 그 바닥면이 접착 시트(410)에 접착되고, 그 하단부는 통공(311)에 개재되어 고정된다. 따라서 상기 바틈 프레임을 사용하면 원통형 배터리 셀들을 홀딩시켜 전기적 연결 신뢰성을 높일 수 있고, 자세히 후술하겠으나 원통형 배터리 셀들의 바닥면 냉각이 용이해질 수 있다.
탑 프레임(320)은 상기 원통형 배터리 셀(100A,100B)들을 커버하며 상기 바틈 프레임(310)의 상부에 결합되게 마련될 수 있다.
탑 프레임(320)의 하단 테두리에는 하방향으로 돌출된 인서트 핀(327)이 구비되고, 바틈 프레임(310)의 상단 테두리에는 상기 인서트 핀(327)이 삽입 개재될 수 있는 인서트 홀(317)이 구비될 수 있다. 또한, 상기 바틈 프레임(310)과 상기 탑 프레임(320)은, 각 코너 영역과 센터 영역에 상하 방향으로 관통 형성된 부싱홀(301)과, 상기 부싱홀(301)에 개재되는 부싱을 포함한다. 도면에 나타내지 않았으나, 상기 부싱에 롱 볼트(미도시)를 삽입하여 바틈 프레임(310)과 탑 프레임(320)을 강하게 고정 결합시킬 수 있다.
탑 프레임(320)은 원통형 배터리 셀(100A,100B)들의 상부를 커버하는 상판부(321)와 원통형 배터리 셀(100A,100B)들의 측면부를 커버하는 측판부들을 포함하며, 내측에는 바틈 프레임(310)의 각 원통형 배터리 셀(100A,100B)들의 상부를 감싸는 형태의 셀 수용 공간들이 형성된다. 상기 셀 수용 공간들은 바틈 프레임(310)의 통공(311)들에 일대일 대응한다.
버스바 유닛(200)은 상기 상판부(321)의 상면에 고정되게 장착될 수 있다. 예를 들면, 제1 단자 버스바(210)는 제1 줄기부(211)를 상판부(321)의 일측 모서리에 볼트(328) 체결하여 고정하고, 제2 단자 버스바(220)는 제2 줄기부(221)를 상판부(321)의 타측 모서리에 볼트(328) 체결하여 고정시킬 수 있다. 상기 상판부(321)는 제1 단자 버스바(210)와 제2 단자 버스바(220)를 볼트(328)체결 할 때, 손상 방지를 위해 볼트(328) 체결 개소마다 인서트 너트가 구비될 수 있다. 상기 피쉬본 버스바(230)는 접착제를 사용하여 상판부(321)의 중심부로 고정시킬 수 있다.
상기 상판부(321)는 그 아래에 각 상기 원통형 배터리 셀(100A,100B)들의 탑 캡(101)이 위치하는 영역이 천공 형성된 양극 접속구(323)들 및 그 아래에 각 상기 원통형 배터리 셀(100A,100B)들에서 전지 캔(102)의 상단 가장자리가 위치하는 영역이 천공 형성된 음극 접속구(324)들을 포함할 수 있다. 상기 양극 접속구(323)들과 상기 음극 접속구(324)들은 상기 셀 수용 공간과 연통할 수 있다. 이러한 양극 접속구(323)들과 음극 접속구(324)들을 통해 각 원통형 배터리 셀(100A,100B)의 탑 캡(101)과 전지 캔(102)의 상단을 상판부(321) 위로 노출시켜고 이들을 상술한 바와 같이 버스바 유닛(200)에 와이어(W) 본딩시킨다.
각 상기 양극 접속구(323)는 탑 캡(101) 부분만 상면판 위로 노출될 수 있게 탑 캡(101)보다 작은 사이즈의 사각 구멍 형태이고, 각 상기 음극 접속구(324)들은 전지 캔(102)의 상단 테두리 일부 라인만 상면판 위로 노출될 수 있게 전지 캔(102) 상단의 곡률을 반영한 구멍 형태로 형성될 수 있다.
이 같이 양극 접속구(323)와 음극 접속구(324)를 형성함으로써, 각 원통형 배터리 셀(100A,100B)의 양극 부분과 음극 부분을 명확히 구분하고 와이어(W) 본딩시 예기치 않은 단락 위험률을 줄일 수 있다.
상기 탑 프레임(320)은 상기 상판부(321)의 표면에서 상부 방향으로 돌출되게 형성된 버스바 장착가이드(325)를 더 포함할 수 있다.
상기 버스바 장착가이드(325)는 큐브 형상 내지 사각 통 형상으로 마련될 수 있으며, 상기 제1 원통형 배터리 셀(100A)들 및 상기 제2 원통형 배터리 셀(100B)들의 상부에서 상기 제1 방향으로 2열 이상 배치되고, 상기 양극 접속구(323)들 및 상기 음극 접속구(324)들과 같은 열마다 하나 이상이 구비될 수 있다.
이러한 상기 버스바 장착가이드(325)는 버스바 유닛(200)을 상면판 위에 장착할 때, 제1 단자 버스바(210), 제2 단자 버스바(220), 피쉬본 버스바(230)의 장착 위치를 가이드하는 기준이 될 수 있으며, 외부 충격이나 진동시 제1 단자 버스바(210)/피쉬본 버스바(230) 또는 제2 단자 버스바(220)/피쉬본 버스바(230)의 일정 간격보다 좁혀지지 않게 하여 서로 간의 접촉을 방지하는 역할을 할 수 있다.
방열 유닛(400)은 원통형 배터리 셀(100A,100B)들의 열을 외부로 빼내어 온도를 낮추기 위한 수단으로서 바틈 프레임(310)의 하부에 배치될 수 있다.
상기 방열 유닛(400)은, 도 9에 도시된 바와 같이, 접착 시트(410), 절연 시트(420), 쿨링 플레이트(430), 열전도성 물질(440)을 포함하여 구성될 수 있다.
상기 접착 시트(410)는 접착성과 열전도성 갖는 것이 바람직하다. 이러한 접착 시트(410)는 모든 원통형 배터리 셀(100A,100B)의 전지 캔(102) 바닥면과 접촉하도록 상술한 바틈 프레임(310)의 하부에 개재된다. 상기 접착 시트(410)는 시트 형태가 아닌 경화성 접착제로 대체될 수도 있다.
상기 절연 시트(420)는 전기 절연성과 방열성을 갖는 실리콘(silicon) 또는 그라파이트(graphite) 소재 등으로 마련될 수 있다. 상기 절연 시트(420)는 원통형 배터리 셀(100A,100B)들과 쿨링 플레이트(430) 사이의 절연성과 열전도성 확보를 위해 적용된다.
상기 쿨링 플레이트(430)는 기계적 강성과 열전도성이 판상체로서, 바틈 프레임(310)의 하부에서 원통형 배터리 셀(100A,100B)들을 지지하며, 상기 원통형 배터리 셀(100A,100B)들에서 발생한 열을 외부로 방열시키는 역할을 담당한다. 예컨대, 상기 쿨링 플레이트(430)는 알루미늄 또는 알루미늄 합금으로 형성될 수 있다.
상기 열전도성 물질(440)은 상기 쿨링 플레이트(430)의 하면에 개재된다. 상기 열전도성 물질(440)은 물체와 물체간의 접촉시 표면 조도차에 따른 빈틈을 채워줘 효과적으로 열을 전도하는 역할을 하는 것으로 후술할 히트싱크(500)와 상기 쿨링 플레이트(430) 간의 열교환을 촉진하는 작용을 한다. 예컨대, 열전도성 물질(440)로는 써멀 그리스(thermal grease)가 채용될 수 있다.
도 10은 본 발명의 일 실시예에 따른 배터리 모듈 적층체를 나타낸 도면이다.
이어서 도 10을 참조하여, 본 발명의 일 실시예에 따른 배터리 모듈 적층체에 대해 간략히 설명한다.
상기 배터리 모듈 적층체는 상술한 2개의 배터리 모듈(10A,10B)과 하나의 히트싱크(500)를 포함한다. 상기 히트싱크(500)는 내부에 냉각수가 흐를 수 있는 유로와, 상기 유로 연결된 냉각수 공급/배출 포트(501)를 구비한 판형으로 마련될 수 있다.
도면에 도시한 바와 같이, 상기 2개의 배터리 모듈(10A,10B)은 상기 히트싱크(500)를 사이에 두고 상하로 대칭되게 층상 배치되고, 상부에 위치한 상기 배터리 모듈(10A)의 방열 유닛(400)은 상기 히트싱크(500)의 상면에 접촉하고 하부에 위치한 상기 배터리 모듈(10B)의 방열 유닛(400)은 상기 히트싱크(500)의 하면에 접촉하게 구성될 수 있다. 도시하지 않았으나, 상기 2개의 배터리 모듈(10A,10B)과 히트싱크(500)의 양쪽 측면부에 각각 판상의 브라켓(미도시)을 장착하여 상기 2개의 배터리 모듈(10A,10B)과 히트싱크(500)를 일체로 고정시킬 수 있다.
한편, 본 발명에 따른 배터리 팩은, 본 발명에 따른 상술한 배터리 모듈(10)을 하나 이상 포함할 수 있다. 또한, 본 발명에 따른 배터리 팩은, 이러한 배터리 모듈(10) 이외에, 이러한 배터리 모듈(10)을 수납하기 위한 팩 케이스, 배터리 모듈(10)의 충방전을 제어하기 위한 각종 장치, 이를테면 BMS, 전류 센서, 퓨즈 등이 더 포함될 수 있다.
본 발명에 따른 배터리 모듈은, 전기 자동차나 하이브리드 자동차와 같은 자동차 또는 전력 저장장치(ESS)에 적용될 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
한편, 본 명세서에서 상, 하, 좌, 우, 전, 후와 같은 방향을 나타내는 용어가 사용된 경우, 이러한 용어들은 설명의 편의를 위한 것일 뿐, 대상이 되는 사물의 위치나 관측자의 위치 등에 따라 달라질 수 있음은 본 발명의 당업자에게 자명하다.

Claims (11)

  1. 탑 캡이 상부를 향하도록 세워진 원통형 배터리 셀들; 및 상기 원통형 배터리 셀들을 직렬 및 병렬 연결하는 버스바 유닛을 포함하는 배터리 모듈로서,
    상기 원통형 배터리 셀들은,
    2열 이상 배치되는 제1 원통형 배터리 셀들로 구성된 제1 뱅크 셀 그룹; 및
    상기 제1 뱅크 셀 그룹과 나란한 제1 방향으로 2열 이상 배치되는 제2 원통형 배터리 셀들로 구성된 제2 뱅크 셀 그룹을 포함하고,
    상기 버스바 유닛은,
    상기 제1 뱅크 셀 그룹의 상부에 배치되고, 각 상기 제1 원통형 배터리 셀들의 양극과 전기적으로 연결되는 제1 단자 버스바;
    상기 제2 뱅크 셀 그룹의 상부에 배치되고, 각 상기 제2 원통형 배터리 셀들의 음극과 전기적으로 연결되는 제2 단자 버스바; 및
    상기 제1 뱅크 셀 그룹과 상기 제2 뱅크 셀 그룹의 상부에 배치되고, 각 상기 제1 원통형 배터리 셀들의 음극 및 각 상기 제2 원통형 배터리 셀들의 양극과 전기적으로 연결되는 피쉬본 버스바를 포함하는 배터리 모듈.
  2. 제1항에 있어서,
    상기 피쉬본 버스바는,
    상기 제1 뱅크 셀 그룹과 상기 제2 뱅크 셀 그룹 사이에서 제1 방향으로 연장되는 뼈대부;
    상호 간 소정 간격 이격되고 상기 뼈대부에서 상기 제1 방향에 교차하는 방향으로 연장되는 복수 개의 제1 가지부; 및
    상호 간 소정 간격 이격되고 상기 뼈대부에서 상기 복수 개의 제1 가지부와 반대 방향으로 연장되는 복수 개의 제2 가지부;를 포함하는 것을 특징으로 하는 배터리 모듈.
  3. 제2항에 있어서,
    상기 제1 단자 버스바는,
    상기 제1 원통형 배터리 셀들의 열과 열 사이에 상기 복수 개의 제1 가지부와 교번적으로 연장되는 복수 개의 제3 가지부를 구비하고,
    상기 제2 단자 버스바는,
    상기 제2 원통형 배터리 셀들의 열과 열 사이에 상기 복수 개의 제2 가지부와 교번적으로 연장되는 복수 개의 제4 가지부를 구비하는 것을 특징으로 하는 배터리 모듈.
  4. 제3항에 있어서,
    각 상기 제1 원통형 배터리 셀들의 탑 캡은 상기 복수 개의 제3 가지부에 와이어 본딩되고, 각 상기 제1 원통형 배터리 셀에서 전지 캔의 상단은 상기 복수 개의 제1 가지부에 와이어 본딩되고,
    각 상기 제2 원통형 배터리 셀들의 탑 캡은 상기 복수 개의 제2 가지부에 와이어 본딩되고, 각 상기 제2 원통형 배터리 셀들에서 전지 캔의 상단은 상기 복수 개의 제4 가지부에 와이어 본딩된 것을 특징으로 하는 배터리 모듈.
  5. 제1항에 있어서,
    상기 원통형 배터리 셀들의 하단부를 끼워 넣을 수 있게 상하 방향으로 관통 형성된 통공들을 구비하는 바틈 프레임; 및 상기 원통형 배터리 셀들을 커버하며 상기 바틈 프레임의 상부에 결합되는 탑 프레임을 구비하는 셀 케이스를 더 포함하는 것을 특징으로 하는 배터리 모듈.
  6. 제5항에 있어서,
    상기 탑 프레임은, 상기 원통형 배터리 셀들의 상부를 커버하는 상판부를 포함하고,
    상기 상판부는,
    그 아래에 각 상기 원통형 배터리 셀들의 탑 캡이 위치하는 영역이 천공 형성된 양극 접속구들; 및
    그 아래에 각 상기 원통형 배터리 셀들에서 전지 캔의 상단 가장자리가 위치하는 영역이 천공 형성된 음극 접속구들을 포함하는 것을 특징으로 하는 배터리 모듈.
  7. 제6항에 있어서,
    상기 탑 프레임은 상기 상판부의 표면에서 상부 방향으로 돌출되게 형성된 버스바 장착가이드를 포함하고,
    상기 버스바 장착가이드는,
    상기 제1 원통형 배터리 셀들 및 상기 제2 원통형 배터리 셀들의 상부에서 상기 제1 방향으로 2열 이상 배치되고,
    상기 양극 접속구들 및 상기 음극 접속구들과 같은 열마다 하나 이상이 구비되는 것을 특징으로 하는 배터리 모듈.
  8. 제6항에 있어서,
    상기 바틈 프레임과 상기 탑 프레임은, 각 코너 영역과 센터 영역에 상하 방향으로 관통 형성된 부싱홀과, 상기 부싱홀에 개재되는 부싱을 포함하는 것을 특징으로 하는 배터리 모듈.
  9. 제5항에 있어서,
    상기 바틈 프레임의 하부에 배치되는 방열 유닛을 더 포함하고,
    상기 방열 유닛은,
    상기 바틈 프레임의 하부에 배치되는 금속 소재의 쿨링 플레이트;
    상기 쿨링 플레이트의 상면에 배치되는 절연 시트;
    상기 절연 시트와 각 원통형 배터리 셀들의 하면 사이에 개재되는 접착 시트; 및
    상기 쿨링 플레이트의 하면에 배치되는 열전도성 물질을 포함하는 것을 특징으로 하는 배터리 모듈.
  10. 제9항에 따른 배터리 모듈 2개와, 내부에 냉각수가 유동하는 유로를 구비한 히트싱크를 포함하고,
    상기 2개의 배터리 모듈은 상기 히트싱크를 사이에 두고 상하로 대칭되게 층상 배치되고, 상부에 위치한 상기 배터리 모듈의 방열 유닛은 상기 히트싱크의 상면에 접촉하고 하부에 위치한 상기 배터리 모듈의 방열 유닛은 상기 히트싱크의 하면에 접촉하게 마련된 것을 특징으로 하는 배터리 모듈 적층체.
  11. 제1항 내지 제9항 중 어느 한 항에 따른 배터리 모듈을 하나 이상 포함하는 배터리 팩.
PCT/KR2021/013402 2020-12-28 2021-09-29 다병렬 배터리 셀들을 포함하는 배터리 모듈 WO2022145636A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180058104.6A CN116057773A (zh) 2020-12-28 2021-09-29 包括多个并联电池单元的电池模块
EP21915434.1A EP4191780A4 (en) 2020-12-28 2021-09-29 BATTERY MODULE COMPRISING MULTIPLE PARALLEL BATTERY CELLS
US18/020,370 US20230299426A1 (en) 2020-12-28 2021-09-29 Battery module including multiple parallel battery cells
JP2023512209A JP7566139B2 (ja) 2020-12-28 2021-09-29 多並列バッテリーセルを含むバッテリーモジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200185308A KR20220094040A (ko) 2020-12-28 2020-12-28 다병렬 배터리 셀들을 포함하는 배터리 모듈
KR10-2020-0185308 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022145636A1 true WO2022145636A1 (ko) 2022-07-07

Family

ID=82259304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013402 WO2022145636A1 (ko) 2020-12-28 2021-09-29 다병렬 배터리 셀들을 포함하는 배터리 모듈

Country Status (6)

Country Link
US (1) US20230299426A1 (ko)
EP (1) EP4191780A4 (ko)
KR (1) KR20220094040A (ko)
CN (1) CN116057773A (ko)
TW (1) TW202230871A (ko)
WO (1) WO2022145636A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240100050A (ko) * 2022-12-22 2024-07-01 주식회사 엘지에너지솔루션 모듈형 전지팩
KR20240100809A (ko) * 2022-12-23 2024-07-02 주식회사 엘지에너지솔루션 분해가 용이한 전지팩
WO2024144159A1 (ko) * 2022-12-26 2024-07-04 주식회사 엘지에너지솔루션 배터리 모듈 및 이를 포함하는 배터리 팩

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016516273A (ja) * 2013-03-11 2016-06-02 アティエヴァ、インコーポレイテッド バッテリーパック用バスバー
CN206742309U (zh) * 2017-04-21 2017-12-12 安徽欧鹏巴赫新能源科技有限公司 锂离子电池模组单元
JP2018060595A (ja) * 2015-02-27 2018-04-12 三洋電機株式会社 電源装置及びこれを備える車両
KR20180080541A (ko) * 2017-01-04 2018-07-12 삼성에스디아이 주식회사 배터리 팩
US20200067060A1 (en) * 2018-08-23 2020-02-27 Rivian Ip Holdings, Llc Layered busbars having integrated fusible links

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9793530B2 (en) * 2015-07-17 2017-10-17 Atieva, Inc. Battery assembly with linear bus bar configuration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016516273A (ja) * 2013-03-11 2016-06-02 アティエヴァ、インコーポレイテッド バッテリーパック用バスバー
JP2018060595A (ja) * 2015-02-27 2018-04-12 三洋電機株式会社 電源装置及びこれを備える車両
KR20180080541A (ko) * 2017-01-04 2018-07-12 삼성에스디아이 주식회사 배터리 팩
CN206742309U (zh) * 2017-04-21 2017-12-12 安徽欧鹏巴赫新能源科技有限公司 锂离子电池模组单元
US20200067060A1 (en) * 2018-08-23 2020-02-27 Rivian Ip Holdings, Llc Layered busbars having integrated fusible links

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4191780A4

Also Published As

Publication number Publication date
EP4191780A1 (en) 2023-06-07
JP2023538386A (ja) 2023-09-07
EP4191780A4 (en) 2024-09-11
US20230299426A1 (en) 2023-09-21
KR20220094040A (ko) 2022-07-05
TW202230871A (zh) 2022-08-01
CN116057773A (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
WO2018186566A1 (ko) 루버 핀 형상의 열전도 매개체를 구비한 배터리 팩
WO2022145636A1 (ko) 다병렬 배터리 셀들을 포함하는 배터리 모듈
WO2017039180A1 (ko) 개선된 체결구조를 갖는 배터리 모듈
WO2019107795A1 (ko) 배터리 팩
WO2019107734A1 (ko) 셀 조립체에 대한 초기 가압력 강화 구조를 갖는 배터리 모듈 및 그 제조방법
WO2017217641A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2018080022A1 (ko) 차량용 배터리 팩 및 이를 포함하는 자동차
WO2017146379A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2021080115A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2013002507A2 (ko) 전지모듈 및 이를 포함하는 전지 어셈블리
WO2017043889A1 (ko) 냉각 성능이 개선된 배터리 모듈
WO2018199521A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2021125469A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2013187685A1 (ko) 냉각 효율성이 향상된 전지셀
WO2021107305A1 (ko) 배터리 모듈
WO2018080181A1 (ko) 인쇄 회로 기판용 커넥터 및 인쇄 회로 기판과 커넥터를 포함한 전지 시스템
WO2020256264A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021025473A1 (ko) 상부 냉각 방식 배터리 팩
WO2023027511A1 (ko) 버스바 플레이트와 icb 조립체 간의 와이어 본딩 연결 구조를 개선한 배터리 모듈 및 이를 포함하는 배터리 팩
WO2021071120A1 (ko) 쇼트 방지 및 충격 보호 구조가 강화된 배터리 팩
WO2021071052A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022019550A1 (ko) 전극 리드와 전압 센싱부재 간의 연결을 단순화한 배터리 모듈 및 이를 포함하는 배터리 팩
WO2021071053A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2014003443A1 (ko) 배터리 모듈
WO2022005032A1 (ko) 배터리 모듈, 그것을 포함하는 배터리 팩, 및 자동차

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915434

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023512209

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021915434

Country of ref document: EP

Effective date: 20230227

WWE Wipo information: entry into national phase

Ref document number: 202317028688

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE