WO2022145492A1 - 聴診音の解析システム - Google Patents

聴診音の解析システム Download PDF

Info

Publication number
WO2022145492A1
WO2022145492A1 PCT/JP2021/049035 JP2021049035W WO2022145492A1 WO 2022145492 A1 WO2022145492 A1 WO 2022145492A1 JP 2021049035 W JP2021049035 W JP 2021049035W WO 2022145492 A1 WO2022145492 A1 WO 2022145492A1
Authority
WO
WIPO (PCT)
Prior art keywords
analysis system
sound
auscultatory
sound analysis
auscultation
Prior art date
Application number
PCT/JP2021/049035
Other languages
English (en)
French (fr)
Inventor
順一 島田
Original Assignee
Yanchers株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanchers株式会社 filed Critical Yanchers株式会社
Priority to CN202180088369.0A priority Critical patent/CN116709993A/zh
Priority to US18/270,105 priority patent/US20240065665A1/en
Publication of WO2022145492A1 publication Critical patent/WO2022145492A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • A61B7/04Electric stethoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]

Definitions

  • the present invention applies to the output method and the program thereof for the purpose of grasping the change over time of the "intensity of the signal component" of the sound in the hearing sound analysis system, and performs spectrogram conversion of the hearing sound.
  • the present invention relates to an audiogram analysis system, an output method, a display method, and a program, which are characterized by outputting the strength of a signal component in a specific frequency or frequency range along a time axis.
  • the act of grasping the condition of a living body by using the sound emitted by the living body is generally performed as a medical practice. For example, in medical examinations, respiratory sounds, heart sounds, and various other organ sounds are listened to using a hearing device and used for diagnosis of respiratory diseases, heart diseases, digestive diseases, and the like.
  • the spectrogram refers to the result of calculating the frequency spectrum by passing a composite signal through a window function. It is represented by a three-dimensional graph (time, frequency, strength of signal components). Spectrograms are used for voiceprint identification, animal bark analysis, music, sonar / radar, speech processing, and more. The spectrogram is sometimes called a voiceprint. A device that generates a spectrogram is called a sonograph.
  • Patent Document 1 Patent No. 3625294.
  • the stethoscope sound can be displayed as three-dimensional information having frequency, time, and amplitude information, and the information that the sound tends to rely on subjective judgment is objectively displayed. It can be output as information.
  • an inspector who uses a stethoscope for diagnosis judges a suspicion of illness based on the sound information obtained from his / her ear and in light of past experience.
  • Auscultation sounds for various diseases have frequency characteristics, and the strength of the signal component at each frequency differs between the normal auscultation sound and the auscultation sound during illness.
  • the inspector makes a judgment by applying the frequency characteristics of the hearing sound information obtained from the ear to his own experience, but specifically when the hearing sound caused by various diseases has a frequency of what Hz. If the disease A is another disease B when the hearing sound has a different frequency (Hz), the disease is not diagnosed in association with the specific frequency of the hearing sound.
  • Patent Document 1 a spectrogram of auscultatory sound obtained in a short time range obtained in "real time” assuming a conventional medical examination is obtained, and the inventor of the patent is an anesthesiology doctor. It was a technical idea to contribute to the three-dimensional visual objective diagnosis of "real-time breath sounds and heart sounds on the spot".
  • the conventional devices have provided a means for remotely transmitting the auscultation sound as sound data and a means for visually and objectively grasping the auscultation sound in real time.
  • the problem is that the condition of viral interstitial pneumonia suddenly changes and the patient who is a PCR-positive patient who is forced to follow up outside the medical institution such as asymptomatic or mildly ill patients dies. There is.
  • an object of the present invention is characterized in that auscultatory sound is converted into digital data, further spectrogram-converted, and the strength of a signal component in a specific frequency or frequency range is output along a time axis.
  • the purpose is to provide an analysis system for auscultatory sounds.
  • the auscultation sound analysis system of the present invention in the auscultation sound analysis system, a) Auscultation sound signal acquisition means for acquiring an auscultation sound signal in the body from the patient, b) Auscultation sound signal sampling means that digitally samples the auscultation sound signal in the body and converts it into discrete auscultation sound data. c) A spectrogram conversion means for converting the auscultation sound discrete data into an auscultation sound spectrogram, and d) From the data obtained by the spectrogram conversion means, the strength of the signal component at at least one predetermined frequency can be determined. It is characterized by being equipped with an auscultatory sound analysis system characterized by outputting along the time axis.
  • the auscultatory sound analysis system of the present invention is used over time, the clinical course of the patient can be analyzed along the time axis with the strength of the signal component of the target frequency.
  • the auscultatory sound analysis system In the auscultatory sound analysis system according to claim 1, d) From the data obtained by the spectrogram conversion means, the strength of the signal component in at least one predetermined frequency range can be determined. It is characterized by being equipped with an auscultatory sound analysis system characterized by outputting along the time axis.
  • the auscultatory sound analysis system of the present invention can be used over time, the clinical course of the patient can be analyzed along the time axis with the strength of the signal component in the target frequency range.
  • the auscultation sound analysis system according to claim 1 is used.
  • Auscultatory sound characterized by outputting the strength of a signal component exceeding a certain threshold value in at least one predetermined frequency range from the data obtained by the spectrogram conversion means along the time axis. It is characterized by having an analysis system of.
  • the auscultatory sound analysis system of the present invention can be used over time, the clinical course of the patient can be analyzed along the time axis with the strength of the signal component exceeding a certain threshold value in the target frequency range.
  • the output data can be visually recognized by the display means.
  • the auscultatory sound analysis system of the present invention In order to solve the above problems, in the auscultatory sound analysis system of the present invention, in the auscultatory sound analysis system according to claim 1, claim 2, claim 3, and claim 4. It is characterized by being equipped with an auscultation sound analysis system, which is characterized by incorporating a communication arithmetic unit having a display function such as a smartphone.
  • analysis information such as the strength of signal components can be displayed using the display screen of a smartphone.
  • the auscultatory sound analysis system according to claim 1, claim 2, claim 3, claim 4, claim 5, and claim 6 is characterized in that the data generated by the system is uploaded to a cloud server on the Internet. It is characterized by being equipped with an analysis system for auscultatory sounds.
  • the biological information acquired from the patient can be aggregated in the cloud server together with the strength of the signal component after the spectrogram analysis of the auscultation sound.
  • the auscultatory sound analysis system of the present invention In the auscultatory sound analysis system according to claim 7, It is characterized by being equipped with an auscultatory sound analysis system, which is characterized by downloading analysis-related data from a cloud server on the Internet.
  • the biological information acquired from the patient can be acquired together with the strength of the signal component after the spectrogram analysis of the auscultation sound, as well as the judgment information after being aggregated in the cloud server. Can be output or displayed. (Fig. 1B)
  • auscultatory sound analysis system of this embodiment is used over time, medical personnel such as doctors and nurses can change the patient's pathological condition over a period of several hours or days by changing the auscultatory sound data, body temperature, and electrocardiogram. You can know from.
  • FIG. 5 As shown in the example of a three-dimensional image display of a spectrogram of auscultatory sound, if energy is similarly present at 300 Hz or less, the energy of the frequency band below 300 Hz is the breathing sound of the user. Considering that it is meaningless as information for diagnosing, by making a correction to weaken the low frequency component, the correction is made so that the user can diagnose various breathing sounds from the energy of the frequency band of 300 Hz or higher. You may go. It can also be seen that there is a large amount of energy in the low frequency region of 300 Hz or less for all of the normal breath sounds, the pneumonia breath sounds, and the asthma breath sounds.
  • the auscultation sound analysis system of this embodiment is used over time, as another medical application, medical treatment is performed from the terminal when the waveform of the shunt sound of dialysis is different from the normal one or when the upper limit of the frequency is exceeded. Notification to workers is also possible. Furthermore, a system that can analyze the shunt auscultatory sound during dialysis over time is also possible. Of course, it can also be applied to grasp the pathological condition of "drug-induced interstitial pneumonia", which is a serious side effect associated with administration of anticancer drugs. It is possible to grasp and grasp the changes over time in the respiratory, digestive, circulatory, and all other diseases that are the subject of auscultation in clinical medicine.
  • the situation of the spectrogram that quantitatively analyzes the situation of the appearance of "intensity of signal component” is schematically illustrated. It is a bird view photograph of a three-dimensional three-dimensional model of a spectrogram of crepitus of interstitial pneumonia composed of green, yellow, red, and black lego blocks. The frequency range is set to 4 zones of 0-500, 501-1000, 1001-1500, 1500-2000Hz. For each region, the situation of the spectrogram that quantitatively analyzes the situation of the appearance of "intensity of signal component” is schematically illustrated.
  • FIG. 1 is a configuration diagram of an embodiment of the device of the auscultatory sound analysis system of the present invention.
  • a thermometer capable of grasping the onset of onset and a sensor having a device and a function capable of grasping an electrocardiogram change suggesting a serious oxygen disorder to the myocardium are provided.
  • It is equipped with an internal power supply to enable independent electrical operation as a terminal.
  • It also has a wireless communication unit for sending and receiving data to and from external devices.
  • Microphones include MEMS microphones and organic / inorganic piezo microphones. It also has a display unit that displays data related to the patient's situation.
  • FIG. 1B is a system configuration diagram of the auscultation sound analysis system of the present invention in the case where a smartphone is included in the configuration. In this case, the input, output, communication, calculation, display, and billing functions of the smartphone can be used.
  • FIG. 1 It is a scheme diagram of AuroraScopeTM which bears a system in an Example. It is used by attaching it to the patient's chest body surface.
  • FIG. 2 is a GUI of a smartphone screen output by Wireless. Temperature (body temperature), heart rate, respiratory rate, spectrogram of auscultatory sound, and electrocardiogram are displayed compactly. Respiratory rate can be easily grasped by the frequency of appearance of the spectrum on the spectrogram. In this example, in the frequency range of 0-500 Hz below the spectrogram, the "intensity of the signal component" is constantly observed, and in addition, at around 1000 Hz, the "signal component” is adjusted to breathing. “Strength” has been detected. This example is a spectrogram of data of a case of drug-induced interstitial pneumonia, but by amplifying the amplitude of auscultatory sound, the "frequency range” corresponding to this disease can be treated “quantitatively”. ..
  • FIG. 3 is a GUI of a smartphone screen output by Willless.
  • the temporal change of the "signal component strength" of a plurality of frequency ranges for the purpose of the temperature (body temperature), heart rate, respiratory rate, and auscultatory sound spectrogram described in [0042] is the change of the target part of the electrocardiogram. The amount is displayed.
  • the onset of respiratory failure due to the new coronavirus infection which is the focus of attention in this case, requires several-day management, and during this process, it is not possible to judge by looking at the spectrogram images of all patients.
  • FIG. 4 is a GUI of a smartphone screen output by Wireless.
  • the temporal change of the "signal component strength" of the target frequency range of the temperature (body temperature), heart rate, respiratory rate, and spectrogram of auscultatory sound is displayed.
  • the auscultatory sound of breathing is the breathing sound of childhood asthma, the noise of valvular heart disease in the chest, and the heart valve membrane.
  • Auscultatory sound of artificial valve opening and closing failure in the early postoperative period due to changes in the opening and closing sound of the artificial heart valve after surgery, detection of poor shunt sound of dialysis shunt, and abdominal intestinal peristaltic movement before diarrhea of irritable colitis If it becomes possible to follow up the auscultatory sound over time, such as detecting the auscultatory sound, it will be useful for managing various pathological conditions. In such a case, narrow down to a frequency or frequency range suitable for a specific purpose in advance, and grasp the change over time in the "strength of signal components". It is desirable to grasp.
  • FIG. 5 shows an example of displaying a three-dimensional image of a spectrogram of auscultatory sound. If energy exists in the same way at 300 Hz or less, the energy of the frequency band below 300 Hz is considered to be meaningless as information for the user to diagnose breath sounds, and the low frequency component is dared to be used. By making a correction of weakening, a correction may be made so that the user can diagnose various breath sounds from the energy of the frequency band of 300 Hz or higher. It can also be seen that there is a large amount of energy in the low frequency region of 300 Hz or less for all of the normal breath sounds, the pneumonia breath sounds, and the asthma breath sounds.
  • the "strength of the signal component" exceeding a certain threshold value is extracted and converted into data, and data with less noise can be acquired. Furthermore, by setting the frequency range to a range other than the normal alveolar sound range, it becomes easier to grasp the abnormality of the lung.
  • FIG. 6 A three-dimensional three-dimensional model photograph of a normal alveolar sound (left) and a crepitus sound of interstitial pneumonia (right) composed of green, yellow, red, and black lego blocks is shown.
  • the frequency range is set to 4 zones of 0-500, 501-1000, 1001-1500, 1501-2000Hz.
  • the situation of the spectrogram that quantitatively analyzes the situation of the appearance of "intensity of signal component” is schematically illustrated. In this display.
  • FIG. 7 is a three-dimensional three-dimensional model photograph of a normal alveolar sound spectrogram composed of green, yellow, and lego blocks.
  • the frequency range is set to 4 zones of 0-500, 501-1000, 1001-1500, 1501-2000Hz.
  • This photographic diagram shows the height of the "strength of the signal component" in the frequency range by making a bird's-eye view.
  • FIG. 8 is a bird's-eye view photograph of a three-dimensional three-dimensional model of a spectrogram of crepitus of interstitial pneumonia composed of green, yellow, red, and black lego blocks.
  • the frequency range is set to 4 zones of 0-500, 501-1000, 1001-1500, 1501-2000Hz. For each region, the situation of the spectrogram that quantitatively analyzes the situation of the appearance of "intensity of signal component" is schematically illustrated.
  • the frequency and strength of the appearance frequency and strength of the "signal component strength" of the "pa" sound of the crepitus sound in the high temperature region is the progression of the pathological condition. It is a "sign" of deterioration.
  • the terminal module attached to the body surface to the smartphone can be sent and received by Bluetooth communication, and the smartphone to the cloud.
  • the smartphone By aggregating information on the server, it will lead to the Population Health Management, which will contribute to the control of pathological conditions such as large-scale infectious diseases and medical welfare.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Pulmonology (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

新型コロナウイルス感染症のような接触による感染の可能性のある医療において、使用者の密になる医療行為のいらない遠隔医療に資する聴診装置にあって、聴診音の質的変化を経時的に把握できる聴診音の解析システムを提供する。この聴診音の解析システムは、聴診音からデジタルデータに変換し、さらにスペクトログラム変換を行い、特定の周波数もしくは周波数範囲の、信号成分の強さを、経時的に、時間軸に沿って出力することを特徴とする聴診音の解析システムである。これにより、新型コロナウイルス感染症による間質性肺炎の高音域の捻髪音の定量的な時間的変化を出力、データ転送、表示などすることができ、病気の進行の状況を把握できるようになる。

Description

聴診音の解析システム
 本発明は、聴診音の解析システムにおいて、音の「信号成分の強さ」の経時的変化を把握することを目的として、その出力方法、およびそのプログラムにかかり、聴診音のスペクトログラム変換を行い、特定の周波数もしくは周波数範囲の、信号成分の強さを、時間軸に沿って出力することを特徴とする聴診音の解析システム、出力方法、表示方法、プログラムに関する。
 生体が発する音を利用して、生体の状態を把握する行為は診療行為として、一般的に行われている。例えば、内科検診などでは、聴診器を使って、呼吸音,心音,その他の各種臓器音を聴診し、呼吸器疾患,心疾患,消化器疾患などの診断に利用している。
 診察の場面で、聴診器を使用して、生体情報を得るのは、その場、その場で、実時間での情報把握である。
 従来、聴診器はアナログタイプのものが主流であったが、近年、デジタル技術を適用した電子聴診器も各社から開発が行われており、ボリューム調整,周波数特性調整(呼吸器用,心音用など)などの機能が実装され、使い勝手も向上してきた。さらに、遠隔医療を視野に入れた電子聴診器も開発が行われている。(WO2019067880A1 参照)
 近年、コンピュータの中央演算装置の高機能化で、データ変換が簡便に行えるようになってきている。スペクトログラムとは、複合信号を窓関数に通して、周波数スペクトルを計算した結果を指す。3次元のグラフ(時間、周波数、信号成分の強さ)で表される。スペクトログラムは声紋の鑑定、動物の鳴き声の分析、音楽、ソナー/レーダー、音声処理などに使われている。スペクトログラムを声紋と呼ぶこともある。スペクトログラムを生成する機器をソノグラフという。
 また、単に生体(被験者)が発生する音だけを出力するのではなく、生体音をビジュアル化(視覚化)した結果を出力することで、視認性、操作性、監視対象の改善を目的として、視覚で情報把握して診断に役立てようとの試みも行われている(特許文献1(特許第3625294号)参照)。
 上記特許文献1に開示されるビジュアル聴診器によれば、聴診音を周波数,時間,振幅情報を有する3次元情報として表示可能であり、主観的な判断に頼りがちな音という情報を客観的な情報として出力することが可能となる。
 しかしながら、上記特許文献1が開示するビジュアル聴診器には、次のような点で課題がある。
 一般的に、聴診器を診断に利用している検査者は、自らの耳から得られる音情報を元に、過去の経験と照らし合わせて、疾病の疑いを判断している。各種疾病での聴診音には、それぞれ周波数的な特徴があり、正常時の聴診音と疾病時の聴診音では、各周波数における信号成分の強さが異なる。検査者は、耳から取得する聴診音情報の周波数的な特徴を自らの経験に当て嵌めて判断しているが、各種疾患に起因する聴診音が具体的に何Hzの周波数である場合に特定の疾病Aであり、聴診音が別の周波数(Hz)の場合に別の疾病Bであると、疾病と聴診音の具体的な周波数とを関連付けて診断している訳ではない。したがって、いくら聴診音の周波数,時間,振幅情報をビジュアル化したとしても、その聴診音のビジュアル情報を基に検査者が診断するためには、検査者があらためて訓練する必要がある。臨床現場で診断行為を行っている検査者が忙しい時間を割いて、上記のような新たな訓練を行うことは容易ではない。
特許第3625294号
 前述の特許文献1では、たしかに従来の診察を想定した「実時間」で得られた短い時間の範囲での聴診音のスペクトログラムを得て、当該特許の発明者が麻酔科医師であることから、「その場の実時間での呼吸音や心音」の3次元的な視覚的客観的診断に寄与しようとの技術アイデアであった。
 患者から聴診音をえて、その場で「実時間」で聴診音を得て、3次元化して画像化しても、使用者の聴覚特性の個人差を回避するように微妙に調整して、聴診音の「実時間」での取得にこだわっても、聴診音のデータの自体は、その診療の「実時間」のデータである。 参考文献1 P2012−223509A
 これゆえ、いままでの装置では、聴診音を音データとして遠隔に電送する手段や、実時間の聴診音を視覚的に客観的に把握する手段の提供までであった。
 新型コロナウイルス感染症において、PCR陽性患者で無症状者や軽症者などの医療機関以外で経過観察を余儀なくされた患者は、陽性者の80%近くにのぼるとも推定されている。
 しかし、新型コロナウイルス感染症において、PCR陽性患者で無症状者や軽症者などの医療機関以外で経過観察を余儀なくされた患者が、ウイルス性間質性肺炎の状態が急変し、死亡するという課題がある。
 新型コロナウイルス感染症において、PCR陽性患者で無症状者や軽症者などの医療機関以外で経過観察を余儀なくされた患者が、ウイルス性間質性肺炎の状態が急変し死亡した事例でも、血中酸素飽和度が低下してきたときには、もう間に合わなかったという報道もある。
 新型コロナウイルス感染症において、PCR陽性患者で無症状者や軽症者などの医療機関以外で経過観察を余儀なくされた患者のなかで、ウイルス性間質性肺炎の状態が急変し死亡した事例で、血中酸素飽和度が低下してくるまえに発症している「間質性肺炎の捻髪音」、すなわち高い周波数範囲で、−120dBから−80dBの範囲であることの多いハイピッチの「パリパリ」とのいえる聴診音、の経時的変化を把握することが適切な治療方針決定に重要であると着想した。
 そこで、この発明の課題は、聴診音からデジタルデータに変換し、さらにスペクトログラム変換を行い、特定の周波数もしくは周波数範囲の、信号成分の強さを、時間軸に沿って出力することを特徴とする聴診音の解析システムを提供することにある。
 上記課題を解決するため、この発明の聴診音の解析システムでは、聴診音の解析システムにおいて、
a)前記患者から体内聴診音信号を取得する聴診音信号取得手段と、
b)前記体内聴診音信号をデジタルサンプリングして、聴診音離散データに変換する聴診音信号サンプリング手段と、
c)前記聴診音離散データを聴診音スペクトログラムに変換するスペクトログラム変換手段と、
d)前記スペクトログラム変換手段で得られたデータから、予め定められた少なくとも一つの周波数における、信号成分の強さを、
時間軸に沿って出力することを特徴とする聴診音の解析システム
を備えることを特徴としている。
 この発明の聴診音の解析システムを経時的に用いれば、目的の周波数の信号成分の強さを時間軸にそって、患者の臨床経過を解析できることになる。
 上記課題を解決するため、この発明の聴診音の解析システムでは、
請求項1に記載の聴診音の解析システムにおいて、
d)前記スペクトログラム変換手段で得られたデータから、予め定められた少なくとも一つの周波数範囲における、信号成分の強さを、
時間軸に沿って出力することを特徴とする聴診音の解析システムを備えることを特徴としている。
 この発明の聴診音の解析システムを経時的に用いれば、目的の周波数範囲の信号成分の強さを時間軸にそって、患者の臨床経過を解析できることになる。
 上記課題を解決するため、この発明の聴診音の解析システムでは、請求項1に記載の聴診音の解析システムにおいて、
d)前記スペクトログラム変換手段で得られたデータから、予め定められた少なくとも一つの周波数範囲における、一定の閾値を超える信号成分の強さを、時間軸に沿って出力することを特徴とする聴診音の解析システムを備えることを特徴としている。
 この発明の聴診音の解析システムを経時的に用いれば、目的の周波数範囲における、一定の閾値を超える信号成分の強さを時間軸にそって、患者の臨床経過を解析できることになる。
 上記課題を解決するため、この発明の聴診音の解析システムでは、
[請求項4]に記載の聴診音の解析システムでは、出力データを表示手段により、視認することができる。
 上記課題を解決するため、この発明の聴診音の解析システムでは、
請求項1,請求項2,請求項3、請求項4に記載の聴診音の解析システムにおいて、
スマートフォンなどの表示機能を備えた通信演算装置を組み込んだことを特徴とする聴診音の解析システムを備えることを特徴としている。
 この発明の聴診音の解析システムを経時的に用いれば、スマートフォンの表示画面を使用して、信号成分の強さなどの解析情報を表示できる。(図1B)
 上記課題を解決するため、この発明の聴診音の解析システムでは、
請求項1,請求項2,請求項3、請求項4,請求項5に記載の聴診音の解析システムにおいて、
体温計と心電図計が同時に組み込まれたことを特徴とする聴診音の解析システム
を備えることを特徴としている。
 この発明の聴診音の解析システムを経時的に用いれば、体温、心電図に関係した情報も聴診音の解析後の信号成分の強さとともに表示できる。(図2)
 上記課題を解決するため、この発明の聴診音の解析システムでは、
請求項1,請求項2,請求項3、請求項4,請求項5,請求項6に記載の聴診音の解析システムにおいて、システムで生成したデータをインターネット上クラウドサーバーにアップロードすることを特徴とする聴診音の解析システム
を備えることを特徴としている。
 この発明の聴診音の解析システムを経時的に用いれば、患者から取得した生体情報を、聴診音のスペクトログラム解析後の信号成分の強さとともに、クラウドサーバーに集約することができる。(図1B)
 上記課題を解決するため、この発明の聴診音の解析システムでは、
請求項7に記載の聴診音の解析システムにおいて、
解析に関するデータをインターネット上クラウドサーバーからダウンロードすることを特徴とする聴診音の解析システムを備えることを特徴としている。
 この発明の聴診音の解析システムを経時的に用いれば、患者から取得した生体情報を、聴診音のスペクトログラム解析後の信号成分の強さとともに、クラウドサーバーに集約したあとの判断情報を取得し、出力もしくは表示することができる。(図1B)
 この実施形態の聴診音の解析システムを経時的に用いれば、医師,看護師などの医療者は、数時間、もしくは数日の期間に変化する患者の病態を聴診音データや体温、心電図の変化から知ることができる。
 [図5]聴診音のスペクトログラムの3次元画像表示の例に示すように、300Hz以下は同じようにエネルギーが存在しているならば、300Hz以下の周波数帯がもつエネルギーは、使用者が呼吸音を診断するための情報としては意味が無いと考え、あえて、低周波数成分を弱めるという補正を行うことで、300Hz以上の周波数帯がもつエネルギーから使用者が各種呼吸音を診断できるような補正を行ってもよい。正常な呼吸音,肺炎の呼吸音,喘息の呼吸音のいずれに関しても、300Hz以下の低周波の領域には大きなエネルギーが有ることもわかる。
 この実施形態の聴診音の解析システムを経時的に用いれば、ほかの医療応用として、透析のシャント音の波形が通常と異なる場合や、周波数の上限を超えた場合等の異常時に、端末から医療従事者に対しての通知も可能になる。さらに透析中のシャント聴診音の経時的解析となるシステムも可能である。また、抗がん剤などの投薬に伴う重大な副作用である「薬剤性間質性肺炎」の病態把握にも、もちろん、応用できる。呼吸器、消化器、循環器、ほか、臨床医学上で聴診の対象となる全ての疾患の経時的な変化をとらえて把握できる。
:この発明の聴診音の解析システムの装置の実施形態の構成図である。 :構成にスマートフォンを組み込んだ場合の聴診音の解析システムである。 :患者胸部に貼付する実施例でAuroraScopeTMのスキーム図である。 Wirelessで出力したスマホ画面のGUIである。温度(体温)、心拍数、呼吸数、聴診音のスペクトログラム、心電図が、コンパクトに表示される。 Wirelessで出力したスマホ画面のGUIである。温度(体温)、心拍数、呼吸数、聴診音のスペクトログラムの目的の複数の周波数範囲の「信号成分の強さ」の時間的変化が、心電図の目的部位の変化量が、表示される。 Wirelessで出力したスマホ画面のGUIである。温度(体温)、心拍数、呼吸数、聴診音のスペクトログラムの目的の周波数範囲の「信号成分の強さ」の時間的変化が、表示される。 聴診音のスペクトログラムの3次元画像表示の例300Hz以下は同じようにエネルギーが存在しているならば、300Hz以下の周波数帯がもつエネルギーは、使用者が呼吸音を診断するための情報としては意味が無いと考え、あえて、低周波数成分を弱めるという補正を行うことで、300Hz以上の周波数帯がもつエネルギーから使用者が各種呼吸音を診断できるような補正を行ってもよい。正常な呼吸音,肺炎の呼吸音,喘息の呼吸音のいずれに関しても、300Hz以下の低周波の領域には大きなエネルギーが有ることもわかる。 緑、黄色、赤、黒のレゴブロックで構成した、正常の肺胞音(左)と間質性肺炎の捻髪音(右)のスペクトログラムの3次元立体模型の写真である。周波数範囲を、0−500,501−1000,1001−1500,1500−2000Hzの4ゾーンに設定。領域ごとに、「信号成分の強さ」の出現の状況を定量的に解析したスペクトログラムの状況を模式している。 緑、黄色、のレゴブロックで構成した、正常の肺胞音のスペクトログラムの3次元立体模型の鳥観図写真である。周波数範囲を、0−500,501−1000,1001−1500,1500−2000Hzの4ゾーンに設定。領域ごとに、「信号成分の強さ」の出現の状況を定量的に解析したスペクトログラムの状況を模式している。 緑、黄色、赤、黒のレゴブロックで構成した、間質性肺炎の捻髪音のスペクトログラムの3次元立体模型の鳥観図写真である。周波数範囲を、0−500,501−1000,1001−1500,1500−2000Hzの4ゾーンに設定。領域ごとに、「信号成分の強さ」の出現の状況を定量的に解析したスペクトログラムの状況を模式している。
 以下、この発明の実施の形態について図面を用いてより詳細に説明する。
[図1]A:この発明の聴診音の解析システムの装置の実施形態の構成図である。
新型コロナウイルス感染症では、まず、発熱があり、その後、ウイルス性間質性肺炎が発し、血管7内の血液凝集による臓器血流障害が発生し、とくに、心臓の血液循環が不良になる。このため、発症の始まりを把握できる体温計と重大な心筋への酸素障害を示唆する心電図変化を把握できる装置と機能をもつセンサを備える構成をとる。端末機として独立した電気的動作を可能とするため、内部電源を備える。外部装置へのデータ送受信のためのワイヤレス通信部も備える。マイクは、MEMSマイク、有機・無機のピエゾマイクがある。患者の状況に関するデータを表示する表示部も備える。
[図1]B:この発明の聴診音の解析システムで、構成にスマートフォンを含む場合のシステム構成図である。この場合、スマートフォンの入力、出力、通信、演算、表示、課金機能を利用することができる。
[図1]C:実施例でシステムを担うAuroraScopeTMのスキーム図である。
患者の胸部体表に貼付して使用する。
[図2]Wirelessで出力したスマホ画面のGUIである。温度(体温)、心拍数、呼吸数、聴診音のスペクトログラム、心電図が、コンパクトに表示される。スペクトログラム上のスペクトルの出現頻度で、呼吸数は、容易に把握できる。本例では、スペクトログラムの下側の0−500Hzの周波数範囲では、恒常的に「信号成分の強さ」が観察されているのに、加えて、1000Hz付近に、呼吸に合わせて「信号成分の強さ」が検出されている。本例は、薬剤性の間質性肺炎の症例のデータのスペクトログラムであるが、聴診音の振幅を増幅することで、この疾患に対応する「周波数範囲」を「定量的」に扱うことができる。
[図3]Wirelessで出力したスマホ画面のGUIである。[0042]で説明した病態の温度(体温)、心拍数、呼吸数、聴診音のスペクトログラムの目的の複数の周波数範囲の「信号成分の強さ」の時間的変化が、心電図の目的部位の変化量が、表示される。特に本件で注目している新型コロナウイルス感染症による呼吸不全の発症は、数日単位の管理が必須であり、この経過中に、すべての患者のスペクトログラムの画像をみて判断などできない。これゆえ、スペクトログラムのなかの病態に直結する「周波数範囲」の「信号成分の強さ」の変化が病態の悪化に直結すると考えて、その経時的変化を把握するものである。図にしめすように、経過とともに「呼吸数」増え、(はあはあしてくる)、周波数範囲の変化では、高音域の「パリパリ」という捻髪音領域の「信号成分の強さ」が増加してきていることが、一目でわかる。
[図4]Wirelessで出力したスマホ画面のGUIである。[0043]での説明に加えて、温度(体温)、心拍数、呼吸数、聴診音のスペクトログラムの目的の周波数範囲の「信号成分の強さ」の時間的変化が、表示される。今回の特許出願では、間質性肺炎の高音域の捻髪音に注目しているが、呼吸の聴診音については、小児喘息の呼吸音、胸部では心臓の弁膜症の雑音、さらに、心臓弁膜症の手術後の人工心臓弁の開閉音の変化による術後早期の人工弁開閉不良の聴診音による把握、透析シャントのシャント音の不良検出、過敏性大腸症の下痢前の腹部腸管の蠕動運動の聴診音検出など、聴診音の経時的経過観察が可能になると、様々な病態の管理に有用になる。このような場合は、あらかじめ特定の目的に適した周波数、もしくは周波数範囲に絞りこんで、「信号成分の強さ」の経時的変化を把8
握することが、望ましい。
[図5]聴診音のスペクトログラムの3次元画像表示の例をしめす。300Hz以下は同じようにエネルギーが存在しているならば、300Hz以下の周波数帯がもつエネルギーは、使用者が呼吸音を診断するための情報としては意味が無いと考え、あえて、低周波数成分を弱めるという補正を行うことで、300Hz以上の周波数帯がもつエネルギーから使用者が各種呼吸音を診断できるような補正を行ってもよい。正常な呼吸音,肺炎の呼吸音,喘息の呼吸音のいずれに関しても、300Hz以下の低周波の領域には大きなエネルギーが有ることもわかる。このことから、本システムでは、請求項3に記載したように、一定の閾値を超える「信号成分の強さ」を抽出してデータ化することにあり、よりノイズの少ないデータが取得できる。さらに、周波数範囲も、正常肺胞音の範囲以外に、設定することで、肺の異常を把握しやすくなる。
[図6]緑、黄色、赤、黒のレゴブロックで構成した、正常の肺胞音(左)と間質性肺炎の捻髪音(右)のスペクトログラムの3次元立体模型の写真をしめす。周波数範囲を、0−500,501−1000,1001−1500,1501−2000Hzの4ゾーンに設定。領域ごとに、「信号成分の強さ」の出現の状況を定量的に解析したスペクトログラムの状況を模式している。本表示では。新型コロナウイルス感染症の病気の進行の状況を把握するには、赤、黒の領域の「信号成分の強さ」の出現の頻度に注目すればよい。
[図7]緑、黄色、のレゴブロックで構成した、正常の肺胞音のスペクトログラムの3次元立体模型の鳥観図写真である。周波数範囲を、0−500,501−1000,1001−1500,1501−2000Hzの4ゾーンに設定。領域ごとに、「信号成分の強さ」の出現の状況を定量的に解析したスペクトログラムの状況を模式している。この写真図は、鳥観図にすることで、周波数範囲での「信号成分の強さ」の高さを表したものである。間質性肺炎の悪化のまえの前兆現象として、正常の肺胞音の聴診音の500Hz以下のゾーン以外にも出現した信号には、注目できるように設定しておく。
[図8]緑、黄色、赤、黒のレゴブロックで構成した、間質性肺炎の捻髪音のスペクトログラムの3次元立体模型の鳥観図写真である。周波数範囲を、0−500,501−1000,1001−1500,1501−2000Hzの4ゾーンに設定。領域ごとに、「信号成分の強さ」の出現の状況を定量的に解析したスペクトログラムの状況を模式している。
[0047]での説明に重ねて、高温領域での捻髪音の「パリパリ」の音の「パ」の音の「信号成分の強さ」の出現頻度と強さこそが、病態の進行と悪化の「兆候」となる。医療機関以外での療法中の新型コロナウイルス感染症などの患者を遠隔医療で管理できるようにするために、体表に貼付する端末モジュールからスマートフォンまでは、ブルートゥース通信で送受信、さらに、スマートフォンからクラウドサーバーに情報集約することで、Population Health Managementにつながることで、大規模感染症などの病態コントロールと医療福祉に貢献する。

Claims (10)

  1.  聴診音の解析システムにおいて、
    a)前記患者から体内聴診音信号を取得する聴診音信号取得手段と、
    b)前記体内聴診音信号をデジタルサンプリングして、聴診音離散データに変換する聴診音信号サンプリング手段と、
    c)前記聴診音離散データを聴診音スペクトログラムに変換するスペクトログラム変換手段と、
    d)前記スペクトログラム変換手段で得られたデータから、予め定められた少なくとも一つの周波数における、信号成分の強さを、
    時間軸に沿って出力することを特徴とする聴診音の解析システム。
  2.  請求項1に記載の聴診音の解析システムにおいて、
    d)前記スペクトログラム変換手段で得られたデータから、予め定められた少なくとも一つの周波数範囲における、信号成分の強さを、
    時間軸に沿って出力することを特徴とする聴診音の解析システム。
  3.  請求項1に記載の聴診音の解析システムにおいて、
    d)前記スペクトログラム変換手段で得られたデータから、予め定められた少なくとも一の周波数範囲における、一定の閾値を超える信号成分の強さを、時間軸に沿って出力することを特徴とする聴診音の解析システム。
  4.  前記、請求項1,請求項2,請求項3に記載の聴診音の解析システムにおいて、
    信号成分の強さを、時間軸に沿って出力する際に、表示手段を備えることを特徴とする聴診音の解析システム。
  5.  前記、請求項1,請求項2,請求項3、請求項4に記載の聴診音の解析システムにおいて、スマートフォンなどの表示機能を備えた通信演算装置を組み込んだことを特徴とする聴診音の解析システム。
  6.  前記、請求項1,請求項2,請求項3、請求項4,請求項5に記載の聴診音の解析システムにおいて、体温計と心電図計が同時に組み込まれたことを特徴とする聴診音の解析システム。
  7.  前記、請求項1,請求項2,請求項3、請求項4,請求項5,請求項6に記載の聴診音の解析システムにおいて、システムで生成したデータをインターネット上クラウドサーバーにアップロードすることを特徴とする聴診音の解析システム。
  8.  前記、請求項7に記載の聴診音の解析システムにおいて、
    解析に関するデータをインターネット上クラウドサーバーからダウンロードすることを特徴とする聴診音の解析システム。
  9.  請求項1、請求項2,請求項3、請求項4,請求項5,請求項6,請求項7,請求項8に記載の聴診音の解析システムにおいて、システムを構成することを特徴とする聴診音の解析システムの装置。
  10. 請求項1、請求項2,請求項3、請求項4,請求項5,請求項6,請求項7,請求項8に記載の聴診音の解析システムにおいて、システムを稼働させることを可能にすることを特徴とする聴診音の解析システムのプログラム。
PCT/JP2021/049035 2020-12-31 2021-12-20 聴診音の解析システム WO2022145492A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180088369.0A CN116709993A (zh) 2020-12-31 2021-12-20 听诊声音的解析系统
US18/270,105 US20240065665A1 (en) 2020-12-31 2021-12-20 Auscultatory sound analysis system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020220113A JP7295368B2 (ja) 2020-12-31 2020-12-31 聴診音の解析システム
JP2020-220113 2020-12-31

Publications (1)

Publication Number Publication Date
WO2022145492A1 true WO2022145492A1 (ja) 2022-07-07

Family

ID=82260849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/049035 WO2022145492A1 (ja) 2020-12-31 2021-12-20 聴診音の解析システム

Country Status (4)

Country Link
US (1) US20240065665A1 (ja)
JP (1) JP7295368B2 (ja)
CN (1) CN116709993A (ja)
WO (1) WO2022145492A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690913A (ja) * 1992-09-14 1994-04-05 Kenji Kobayashi 生体診断装置
US5301679A (en) * 1991-05-31 1994-04-12 Taylor Microtechnology, Inc. Method and system for analysis of body sounds
JP2002538921A (ja) * 1999-03-24 2002-11-19 ケイアヤン・ジョルジュ 聴診音、特に呼吸音の分析装置
JP2009535106A (ja) * 2006-04-27 2009-10-01 ティアガラジャン,アービンド 心音の解析および表示のためのシステムおよび方法
JP2015171544A (ja) * 2013-07-26 2015-10-01 パナソニック株式会社 生体音検査装置及び生体音検査方法
US20180228468A1 (en) * 2016-02-17 2018-08-16 Bat Call D. Adler Ltd. Diagnosis of pathologies using infrasonic signatures
JP2019072473A (ja) * 2017-10-12 2019-05-16 日本光電工業株式会社 生体情報処理装置、生体情報処理方法、プログラム及び記憶媒体
US20200315537A1 (en) * 2017-10-31 2020-10-08 Lifesignals, Inc. Customizable patches

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5634312B2 (ja) * 2011-03-25 2014-12-03 パナソニック株式会社 生体音処理装置および生体音処理方法
JPWO2015170772A1 (ja) * 2014-05-08 2017-04-20 株式会社Ainy 循環呼吸機能測定装置
JP6600721B1 (ja) * 2018-08-15 2019-10-30 Ami株式会社 生体音データの送信装置及び伝送システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5301679A (en) * 1991-05-31 1994-04-12 Taylor Microtechnology, Inc. Method and system for analysis of body sounds
JPH0690913A (ja) * 1992-09-14 1994-04-05 Kenji Kobayashi 生体診断装置
JP2002538921A (ja) * 1999-03-24 2002-11-19 ケイアヤン・ジョルジュ 聴診音、特に呼吸音の分析装置
JP2009535106A (ja) * 2006-04-27 2009-10-01 ティアガラジャン,アービンド 心音の解析および表示のためのシステムおよび方法
JP2015171544A (ja) * 2013-07-26 2015-10-01 パナソニック株式会社 生体音検査装置及び生体音検査方法
US20180228468A1 (en) * 2016-02-17 2018-08-16 Bat Call D. Adler Ltd. Diagnosis of pathologies using infrasonic signatures
JP2019072473A (ja) * 2017-10-12 2019-05-16 日本光電工業株式会社 生体情報処理装置、生体情報処理方法、プログラム及び記憶媒体
US20200315537A1 (en) * 2017-10-31 2020-10-08 Lifesignals, Inc. Customizable patches

Also Published As

Publication number Publication date
CN116709993A (zh) 2023-09-05
JP7295368B2 (ja) 2023-06-21
JP2022105244A (ja) 2022-07-13
US20240065665A1 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
JP6272308B2 (ja) 音ベースの肺活量測定のデバイス、システムおよび方法
US6589189B2 (en) Non-invasive method and apparatus for monitoring intracranial pressure
Singh Introduction to biomedical instrumentation
JP2018526180A (ja) 遠隔医療により患者の重要な生理学的データを測定および報告する統合医療機器およびホームベースシステム
US20170188978A1 (en) System and method of measuring hemodynamic parameters from the heart valve signal
CN110115596A (zh) 肺音监测装置及其肺音监测方法
WO2020100322A1 (ja) 医療機器及びプログラム
US11813109B2 (en) Deriving insights into health through analysis of audio data generated by digital stethoscopes
JPH07124126A (ja) 医療用生体情報検出装置、診断装置および治療装置
JP7362138B2 (ja) 神経疾患補助検査方法及びそのシステム
CN110731791A (zh) 一种人工智能听诊器及建立病理性声音库的方法
RU172819U1 (ru) Приборный блок носимого медицинского диагностического комплекса
WO2022145492A1 (ja) 聴診音の解析システム
WO2021220911A1 (ja) 医療システム及び医療情報処理装置
CN211270825U (zh) 一种人工智能听诊器
CN106137245A (zh) 一种参考多种心电测量仪信号分析的听诊方法
Blanco et al. CardioScope: ECG sonification and auditory augmentation of heart sounds to support cardiac diagnostic and monitoring
TWI616184B (zh) 睡眠監測裝置、睡眠監測方法及睡眠監測系統
US20120029319A1 (en) Polysomnography method with remote administration
KR102597981B1 (ko) 사운드 분석 장치
Khalili Moghaddam et al. Ex vivo biosignatures
US20240000320A1 (en) Medical instrument for use in a telemedicine application to sense heart rate, lung, abdominal sounds, blood pressure, pulse, oxygen saturation, and respiratory rate evaluation
Arathy et al. PC based heart sound monitoring system
JP3212017U (ja) 人間用スペクトル画像識別解析システム
JP2022089675A (ja) 生体情報計測装置、生体情報管理システム、生体情報中継装置及び生体情報管理ホスト装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915350

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18270105

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180088369.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21915350

Country of ref document: EP

Kind code of ref document: A1