WO2022145449A1 - ライソゾームを標的とした新規ddsの開発 - Google Patents

ライソゾームを標的とした新規ddsの開発 Download PDF

Info

Publication number
WO2022145449A1
WO2022145449A1 PCT/JP2021/048780 JP2021048780W WO2022145449A1 WO 2022145449 A1 WO2022145449 A1 WO 2022145449A1 JP 2021048780 W JP2021048780 W JP 2021048780W WO 2022145449 A1 WO2022145449 A1 WO 2022145449A1
Authority
WO
WIPO (PCT)
Prior art keywords
sugar chain
endo
sialic acid
lysosomal storage
hydrolase
Prior art date
Application number
PCT/JP2021/048780
Other languages
English (en)
French (fr)
Inventor
孝司 伊藤
崇司 木下
藍 三谷
Original Assignee
国立大学法人徳島大学
株式会社伏見製薬所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021178052A external-priority patent/JP2022105471A/ja
Application filed by 国立大学法人徳島大学, 株式会社伏見製薬所 filed Critical 国立大学法人徳島大学
Publication of WO2022145449A1 publication Critical patent/WO2022145449A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/47Hydrolases (3) acting on glycosyl compounds (3.2), e.g. cellulases, lactases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue

Definitions

  • the present invention relates to a DDS (drug delivery system) targeting lysosomes. Specifically, the present invention relates to a technique for causing an enzyme containing a sugar chain having sialic acid at the terminal to reach a lysosome via binding to a sialic acid receptor on the cell surface.
  • DDS drug delivery system
  • the present invention is a hydrolase that causes lysosome disease due to deficiency, and is a hydrolase containing at least one sugar chain having a bifurcated sugar chain having sialic acid at the end, and the hydrolase.
  • Lysosomes are organelles that decompose biopolymers such as proteins, sugars and lipids. In lysosomes, about 60 types of hydrolases are involved and decompose biopolymers incorporated into lysosomes by endocytosis or autophagy. Lysosomal storage disease is a congenital metabolic disorder in which the decomposition function of lysosomes is lost due to deficiency or abnormality of these enzymes, and substances to be decomposed accumulate in the body as waste products. There are about 50 types of diseases depending on the enzyme that is deficient. Most of them are "intractable neurological diseases" with neurological symptoms.
  • Non-Patent Document 1 For lysosomal storage diseases, enzyme replacement therapy is performed to take up enzymes that have lost their functions into cells (see Non-Patent Document 1). Many lysosome hydrolysates undergo post-translational sugar chain modification to add mannose (Man), and a phosphate group is added to mannose to form mannose 6-phosphate (M6P), which is mannose (Man) at the end. Alternatively, it has a sugar chain structure having mannose 6-phosphate (M6P). In enzyme replacement therapy, the enzyme's terminal mannose or mannose 6-phosphate-containing sugar chain is incorporated into cells by using the binding between the cell surface mannose receptor (MR) or mannose 6-phosphate receptor (M6PR). ..
  • MR cell surface mannose receptor
  • M6PR mannose 6-phosphate receptor
  • recombinant enzyme preparations are clinically applied to 10 types of lysosomal storage diseases.
  • the production cost of the enzyme preparation is high, and it is necessary to administer a large amount of the enzyme preparation in order to be taken up into the cells.
  • the recombinant enzyme preparation was administered intravenously at 1 to 20 mg / kg body weight every 1 to 2 weeks.
  • Patent Document 1 It is known to produce glycoproteins having desired properties by replacing sugar chains of proteins, and the replacement of sugar chains capable of producing such glycoproteins (see Patent Document 1) was originally performed. It is necessary to cleave the sugar chains that have it and bind the sugar chains of other proteins, but endoglycosidases that can replace the sugar chains in only one step (in a one-pot reaction) have been developed (Patent Documents). See 2).
  • An object of the present invention is to provide a hydrolase used in enzyme replacement therapy for lysosomal storage diseases.
  • the present inventors have diligently studied a method for producing an enzyme that can be used for enzyme replacement therapy for lysosomal storage diseases and that is more efficiently incorporated into lysosomal storage disease than conventional enzymes at low cost.
  • the present inventors are hydrolyzing enzymes present in lysosomes that cause lysosomal storage diseases due to deficiency, and include at least one sugar chain having a bifurcated sugar chain with sialic acid at the end. , Efficiently incorporated into lysosomes in cells via sialic acid receptors on the cell surface, and hydrolytic enzymes incorporated into lysosomal storage diseases can decompose high molecular compounds in lysosomal storage diseases and accumulate waste products. We have found that it can be prevented and used as a therapeutic agent for lysosomal storage diseases, and have completed the present invention.
  • the present invention is as follows.
  • a hydrolyzing enzyme present in lysosome that causes lysosome disease due to deficiency, and at least one of the originally possessed sugar chains having mannose at the end is inserted into a sugar chain having sialic acid at the end.
  • a hydrolyzed enzyme comprising at least one sugar chain having a bifurcated sugar chain with sialic acid attached to the end of [1], which has been replaced.
  • a therapeutic agent for lysosomal storage disease which comprises the hydrolase of [1] or [2] as an active ingredient.
  • Method for producing a hydrolase containing at least one sugar chain (i) A gene encoding a hydrolase that causes lysosomal storage disease due to deficiency is introduced into mammalian cells and expressed in mammalian cells; (ii) The gene encoding the hydrolase that causes lysosomal storage disease due to deficiency is expressed in insect cells or silkworms themselves into which the sialic acid transferase gene has been introduced; (iii) Expressed in yeast in which the expressed protein is attached with a human-type sugar chain by genetic recombination; (iv) A sugar chain is added to a peptide expressed in a prokaryotic microorganism by a disulfide bond, and then the peptide is linked; (v) For proteins expressed in prokaryotic microorganisms, a glycoxazoline having a bifurcated sugar chain with sialic acid at the end is used as a sugar donor, the protein is used as a sugar acceptor, and sialic acid
  • a sugar having a bi-branched sugar chain is added to the primary amine of the lysine residue of the protein; or (vi) A protein is prepared by peptide synthesis using asparagine having a bifurcated sugar chain with sialic acid at the end as a starting material.
  • a hydrolyzate that causes lysosome disease due to deficiency, a glycoprotein or glycopeptide that is a donor of a sugar chain having terminal sialic acid, and an endoglycosidase are mixed and reacted to cause sialic acid at the terminal.
  • Endo-glycosidases are Endo-M, Endo-M D175Q, Endo-A, Endo-S, Endo-S D233Q, Endo-CC, Endo-SB, Endo-CoM, Endo-CE, Endo-HS, Endo. -Select from the group consisting of Tsp1006, Endo-Tsp1263 and Endo-Tsp1457, and Endo-CC N180H, Endo-CC N180A, Endo-CC N180D and Endo-CC N180Q in which the 180th asparagine of the endoglycosidase is converted to another amino acid.
  • a method for delivering the hydrolase to a lysosome which comprises incorporating the hydrolase into the lysosome through the binding of the sialic acid contained in the terminal of the cell to the sialic acid receptor on the cell surface.
  • An enzyme that hydrolyzes the chitobiose bond and at the same time catalyzes the transfer reaction of the sugar chain, and a glycoprotein or glycopeptide that is a donor of the sugar chain having terminal sialic acid and a hydrolysis enzyme that causes lysosome disease due to deficiency The bifurcated terminal sialic acid-containing hydrolyzate obtained in a one-pot reaction system containing the acceptor glycoprotein is sialic acid residue-dependently incorporated into cells of patients with lysosome disease, transported to lysosome, and deleted. Lysozome disease can be treated by restoring hydrolytic enzyme activity.
  • the hydrolase is incorporated into the lysosome more efficiently than conventional enzymes.
  • FIG. 5 shows a decrease in accumulated sialyl substrate in the liver (FIG. 10A), spleen (FIG. 10B), and heart (FIG. 10C) of mice treated with the cocoon-derived CTSA precursor (proCTSA). It is a figure which shows the decrease of the accumulated sialyl substrate in the kidney (FIG. 11A) and the lung (FIG. 11B) of the mouse which administered the cocoon-derived CTSA precursor (proCTSA). It is a figure which shows the inhibitory effect on the urinary excretion of a sialyl substrate in a mouse to which a cocoon-derived CTSA precursor (proCTSA) was administered.
  • the present invention relates to a DDS (drug delivery system) targeting lysosomes.
  • DDS drug delivery system
  • enzyme replacement therapy can be performed by incorporating an enzyme that causes lysosomal storage disease due to deficiency into lysosomal storage disease cells.
  • the enzyme that causes lysosome disease due to deficiency is a hydrolyzing enzyme (lysosomal enzyme) present in lysosomes, and biopolymers such as proteins, sugars, and lipids incorporated into lysosomes by endocytosis or autophagy. It is an enzyme that hydrolyzes. Due to the deficiency or abnormality of these enzymes, biopolymers in lysosomes are not decomposed and accumulate as waste products, causing lysosomal storage diseases.
  • lysosomal enzyme hydrolyzing enzyme
  • the following enzymes are listed as enzymes that cause lysosomal storage diseases due to deficiency.
  • the numbers in parentheses indicate lysosomal storage diseases caused by the deficiency of the enzyme.
  • These enzymes are examples, and the enzymes that cause lysosomal storage diseases in the present invention are not limited to these enzymes.
  • ⁇ -L-Izlonidase (mucopolysaccharidosis type I), isulonic acid-2-sulfadase (mucopolysaccharidosis type II, Hunter syndrome), heparan-N-sulfatase (mucopolysaccharidosis type III (A)), ⁇ -N- Acetylglucosaminidase (mucopolysaccharidosis III (B) type), acetylCoA ⁇ -glucosaminide-N-acetyltransferase (mucopolysaccharidosis III (C) type), N-acetylglucosamine-6-sulfatase (mucopolysaccharidosis III (D) type) ), N-Acetylgalactosamine-6-sulfatesulfatase (mucopolysaccharidosis IV (A) type), ⁇ galactosidase (mucopolys
  • the substance that accumulates in lysosomes in each lysosomal storage disease is mucopolysaccharide in mucopolysaccharidosis, for example, dermatane sulfate and heparan sulfate accumulate in mucopolysaccharidosis type I and type II, and heparan in mucopolysaccharidosis type III.
  • Sulfate accumulates, keratane sulfate accumulates in mucopolysaccharidosis type IV, and dermatane sulfate accumulates in mucopolysaccharidosis type VI.
  • a hydrolase that causes lysosomal storage disease due to deficiency and contains at least one sugar chain having a bifurcated sugar chain with sialic acid at the end is used.
  • a hydrolase that causes lysosomal storage disease due to deficiency and contains at least one sugar chain having a bifurcated sugar chain with sialic acid at the end can be produced, for example, by the following method. can.
  • the expression vector may be introduced into a host cell by a known method to transform the host cell.
  • a known method to transform the host cell For example, an electroporation method, a calcium phosphate precipitation method, a DEAE-dextran transfection method and the like can be mentioned.
  • mammalian cells include HEK293 cells or HEK293T cells, which are human fetal kidney cell lines, Chinese hamster ovary (CHO) cells, monkey COS cells, and the like.
  • the sialic acid transferase gene is introduced into an insect cell such as a silkworm cell or the silkworm itself by gene recombination, and expressed in an expression system using an insect cell or a silkworm into which the sialic acid transferase has been introduced.
  • insect cells Sf21 cells, Sf9 cells, TN5 cells and the like, which are lepidopteran insect cells such as silk moth, can be used.
  • a gene encoding a hydrolase that causes lysosomal storage disease due to deficiency may be integrated into a baculovirus vector, and the vector may be introduced into insect cells.
  • sialic acid transferase gene into cells and silk moth worms can be carried out by a known method.
  • Production using silk moth worms can be carried out by a known method. These methods can be carried out in accordance with the description of Japanese Patent No. 3598374.
  • Microorganisms belonging to fungi that express sugar chains such as yeast are expressed in an expression system in which a human-type sugar chain is attached to an expressed protein by genetic recombination. That is, a CMP-Sia synthetic pathway is formed in a fungus such as yeast lacking cytidine monophosphate-sialic acid (CMP-Sia) by a genetic engineering method, and CMP-Sia is synthesized.
  • CMP-Sia cytidine monophosphate-sialic acid
  • the CMP-Sia synthetic pathway is, for example, UDP-GlcNAc epimerase, sialic acid synthase, CMP-sialic acid synthase, UDP-N-acetylglucosamine-2-epimerase, N-acetylmannno derived from mammals in fungi such as yeast.
  • At least one enzyme selected from samine kinase, N-acetylneulaminate-9-phosphate synthase, N-acetylneulaminate-9-phosphatase and CMP-sialic acid synthase may be introduced.
  • yeast examples include Pichia yeast, Candida yeast, Hansenula yeast, Saccharomyces yeast, Kluyveromyces yeast and the like.
  • Other eukaryotes include Aspergillus aspergillus, Trichoderma ascospores, Chrysosporium fungi, Fusarium ascospores, Neurospora ascospores, and the like. Will be.
  • Pichia pastoris Pichia methanolica, Pichia burtonii, etc. as Pichia yeast, Candida ulitis, Candida ulitis, Candida ulitis, etc. (Candid boidinii), Candida mycoderma, etc. Hansenula polymorpha, Hansenula anomala, Hansenula capsulata, Hansenula capsulata, etc.
  • Examples of the genus yeast include Saccharomyces cerevisiae, and examples of the Kluyveromyces genus yeast include Kluyveromyces lactis.
  • Aspergillus niger Aspergillus oryzae, etc.
  • a sugar chain is added to a peptide expressed by a prokaryotic microorganism such as Escherichia coli in which the expressed protein is not modified by a sugar chain using a disulfide bond, and then the peptide is linked to prepare a protein.
  • prokaryotic microorganisms include Escherichia coli, Bacillus subtilis, filamentous fungi, aspergillus, and actinomycetes. These methods can be carried out according to the description of N. Yamamoto et al., Tetrahedron Lett, (2004), 45 (16), 3287-3290.
  • a glycoxazoline having a bifurcated sugar chain with sialic acid at the end is used as a sugar donor, the protein is used as a sugar acceptor, and sialic acid is attached to the end.
  • a sugar having a bifurcated sugar chain is added to the primary amine of the lysine residue of the protein.
  • prokaryotic microorganisms include Escherichia coli, Bacillus subtilis, filamentous fungi, aspergillus, and actinomycetes. These methods can be carried out in accordance with the description of Japanese Patent No. 634968.
  • a protein is prepared by peptide synthesis using asparagine having a bifurcated sugar chain with sialic acid at the end as a starting material. These methods can be performed according to the description of N. Yamamoto et al., J. Am. Chem. Soc, (2008), 130 (2), 501-510.
  • Glycan replacement first cleaves an N-linked glycosylation chain with mannose or mannose 6-phosphate at the end originally bound to the hydrolyzate, followed by sialic acid at the end.
  • a sugar chain having a bifurcated sugar chain with a mark is transferred from the donor. That is, the N, N'-diacetylchitobiose present on the reducing terminal side of the N-linked sugar chain of the hydrolyzing enzyme is hydrolyzed to release the sugar chain to the end type, and the hydrolyzing enzyme Asparagine (Asn) is released.
  • the sugar chain is cleaved, leaving one residue of N-acetylglucosamine (GlcNAc) at the reducing end of the N-type complex sugar chain.
  • GlcNAc N-acetylglucosamine
  • As N-linked sugar chains having mannose or mannose 6-phosphate at the end there are high mannose type sugar chains represented by Man3 type, Man5 type, Man6 type, Man8 type and Man9 type depending on the number of mannose. .. Cleaves high mannose-type sugar chains with 5 or less mannose. Then, the sugar chain having sialic acid at the end is transferred from the donor.
  • a glycoprotein or glycopeptide having a sugar chain having a bifurcated sugar chain with sialic acid at the end
  • a sialyl glycopeptide having a bifurcated terminal sialic acid ⁇ 2,6-SGP
  • the sialyl glycopeptide can be prepared from egg yolk. CAS No. 189035-43-6 (C 112 H 189 N 15 O 70 , molecular weight 2865.781) can be used as the sialyl glycopeptide derived from egg yolk, and the product manufactured by Fushimi Pharmaceutical Co., Ltd. (Product No .: 171801) should be used. Can be done.
  • an enzyme prepared by expressing it using a prokaryotic microorganism, a fungus, an insect cell or a silk moth, or a mammalian cell may be used.
  • the above-mentioned replacement of sugar chains can be performed using an enzyme having a function of hydrolyzing the chitobiose bond and at the same time catalyzing the rearrangement reaction of the sugar chains.
  • an enzyme having a function of hydrolyzing the chitobiose bond and at the same time catalyzing the rearrangement reaction of the sugar chains.
  • examples of such an enzyme include the GH85 family (Glycoside Hydrolase family) and the Endo- ⁇ -N-acetylglucosaminidase (ENGase) (endoglycosidase) belonging to the GH18 family.
  • End- ⁇ -N-acetylglucosaminidases include Endo-M (derived from Mucor hiemalis: M.
  • Endo-CC which is an end- ⁇ -N-acetylglucosaminidase derived from Coprinopsis cinerea (Coprinus cinereus) belonging to the family Agaricaceae, Coprinaceae, may be used.
  • Endo-CC is described in JP-A-2015-080453.
  • the nucleotide sequence of the Endo-CC enzyme is shown in SEQ ID NO: 1, and the amino acid sequence is shown in SEQ ID NO: 2.
  • Endo-CC N180H which is a variant of the enzyme that converted the 180th asparagine to histidine, the original mannose-containing sugar chain was cleaved and sialic acid from the donor was removed in only one step (in a one-pot reaction).
  • Endo-CC N180A which is a mutant of 180th aspartin converted to alanine
  • N180Q which is a mutant of 180th aspartin converted to glutamine
  • N180D which is a mutant of 180th aspartic acid converted to aspartic acid. Since these enzymes are also mutants having hydrolytic activity and glycosyl transfer activity, they can be used in the same manner as Endo-CC N180H, and are considered to have the same effects as those of the present invention.
  • an enzyme that causes lysosomal storage disease due to deficiency a glycoprotein or glycopeptide that is a donor of a sugar chain having a bifurcated sugar chain with sialic acid at the end, and Endo-CC N180H or equivalent activity are used. It can be carried out by mixing and reacting the endo- ⁇ -N-acetylglucosaminidase having.
  • the endo- ⁇ -N-acetylglucosaminidase is immobilized on a magnetic resin bead and has an enzyme that causes lysosomal storage disease due to a defect, and a bifurcated sugar chain having sialic acid at the end. It is preferable to mix with a glycoprotein or a glycopeptide which becomes a donor sugar chain having. Enzymes that cause lysosomal storage diseases due to deficiency are called acceptor proteins because they can replace sugar chains.
  • the enzyme By immobilizing the endo- ⁇ -N-acetylglucosaminidase on the magnetic resin beads, the enzyme is uniformly dispersed in the reaction system, so that the reaction can be carried out efficiently, and after the reaction, the action of the magnet causes the reaction. Since the magnetic resin beads can be collected in a part of the reaction system and easily separated from other reaction systems, the reaction system can be easily separated and taken out, which is preferable.
  • the endo- ⁇ -N-acetylglucosaminidase immobilized on the magnetic resin beads can be produced by adding the magnetic resin beads and the endo- ⁇ -N-acetylglucosaminidase to the buffer solution and bringing them into contact with each other. can.
  • the magnetic resin beads commercially available products commercially available from Cytiva (Global Life Technologies Japan Co., Ltd.), Tamagawa Seiki Co., Ltd., etc. can be used.
  • a glycoprotein or glycopeptide that is a donor of a sugar chain having terminal sialic acid, for example, these Can be done by putting the container in a container and shaking the container.
  • the reaction molar ratio with the enzyme that causes lysosomal storage disease due to deficiency, the glycoprotein that becomes the donor sugar chain having terminal sialic acid, or the glycopeptide may be selected from the range of about 1: 1 to 10000: 1.
  • the amount of endo- ⁇ -N-acetylglucosaminidase used may be selected from the range of 1 to 300 munits with respect to 1 nanomol of glycoprotein or glycopeptide which is a donor sugar chain having terminal sialic acid.
  • the reaction temperature may be selected from the range of about 10 to 60 ° C.
  • the reaction time may be selected from the range of several minutes to several tens of hours, specifically, the range of about 5 minutes to 30 hours.
  • the pH at the time of reaction is preferably pH 5.0 to 8.0.
  • the preferable range of the reaction conditions varies depending on the type and molar ratio of the compound, the glycoprotein or the glycopeptide, the blending amount of endo- ⁇ -N-acetylglucosaminidase, etc. It is preferable to select the conditions.
  • the magnetic resin beads When endo- ⁇ -N-acetylglucosaminidase is immobilized on magnetic resin beads, the magnetic resin beads can be separated from other reaction systems by collecting them in one part of the reaction vessel with a magnet. Then, by purifying the other separated reaction system by chromatography or the like, a hydrolase having a sugar chain containing terminal sialic acid, which is a reaction product, can be obtained.
  • the enzyme that causes lysosomal storage disease due to the defect produced by any of the above methods (i) to (vi) includes a sugar chain having a bifurcated sugar chain having at least one terminal sialic acid.
  • the enzyme that causes lysosomal storage disease due to deficiency in which the sugar chain is replaced by the above method using endo- ⁇ -N-acetylglucosaminidase is a sugar having a bifurcated sugar chain with sialic acid at at least one end. Includes sugar chains with mannose or mannose 6-phosphate at the chains and ends.
  • a sugar chain containing a sugar chain having a bifurcated sugar chain having sialic acid at at least one end is taken up into the lysosome in the cell via binding to the ⁇ 2,6 sialic acid receptor on the cell surface.
  • the enzyme in which the sugar chain is replaced is a bond between the mannose receptor or mannose 6-phosphate receptor on the cell surface and the sugar chain having mannose or mannose 6-phosphate at the original terminal, or ⁇ 2 on the cell surface. , 6 It is taken up into intracellular lysosomes via binding to sialic acid receptors.
  • a sugar chain that is an enzyme that causes lysosome disease due to a defect produced by any of the above methods (i) to (vi) and has a bifurcated sugar chain having sialic acid at at least one end.
  • the enzyme containing the enzyme or the enzyme in which the sugar chain is replaced can be incorporated into the lysosome of the cell by utilizing the transport mechanism of the protein or peptide having the sialic acid-containing sugar chain of the cell. Therefore, it is efficiently incorporated into lysosomes. Since it is taken up efficiently, the dose can be small.
  • the hydrolase incorporated into the lysosome decomposes the waste products in the lysosome by restoring the deficient hydrolase activity. As a result, treatment of lysosomal storage disease or reduction of symptoms can be achieved.
  • IDUA produced a transgenic silk moth (TG silk moth) into which a human ⁇ -iduronidase (IDUA) gene was introduced by the method described in paragraph [0108] of JP-A-2017-184736, and the TG silk moth was used in the same publication. It can be produced by the method described in paragraphs [0112] to [0114] (IDUA derived from TG silk moth).
  • FIG. 1 shows a method of replacing at least one of IDUA's sugar chains with a sugar chain having sialic acid at the end in one pot.
  • IDUA is a high mannose type sugar chain having 6 sugar chains as shown in FIG. 1, of which 1 or 2 have more than 5 mannoses. Since these high mannose type sugar chains are essential for enzyme activity, at least one high mannose type sugar chain is maintained without being replaced with another sugar chain. Therefore, 1 to 5 sugar chains out of 6 sugar chains may be replaced.
  • the sugar chain can be replaced by reacting IDUA with the donor sugar chain sialylglycopeptide and Endo-CC180H.
  • the number of sugar chains to be replaced can be adjusted by adjusting the amount of the enzyme, the amount of the donor sugar chains, and the reaction time.
  • high mannose-type sugar chains having more than 5 mannoses are not cleaved and are not replaced.
  • SG-IDUA which is the product of the enzymatic reaction shown in FIG. 1, one high mannose-type sugar chain is maintained without being replaced, and the other five sugar chains become sugar chains having sialic acid at the end. It has been replaced.
  • SG-IDUA contains at least one sugar chain having sialic acid at the end and a sugar chain having mannose or mannose 6-phosphate at the end.
  • SG-IDUA in which the sugar chain is replaced is a cell surface mannose receptor or mannose 6-phosphate receptor bound to a sugar chain having mannose or mannose 6-phosphate at the original terminal, or cell surface ⁇ 2. , 6 It is taken up into intracellular lysosomes via binding to sialic acid receptors.
  • SG-IDUA incorporated into lysosomal storage disease replaces deficient IDUA and degrades heparan sulfate and dermatan sulfate in lysosomal storage disease that accumulate in cells of patients with mucopolysaccharidosis type I. As a result, treatment or symptom relief of mucopolysaccharidosis type I caused by IUDA deficiency can be achieved.
  • the present invention is an enzyme that causes lysosome disease due to a defect produced by any of the above methods (i) to (vi) and has a bifurcated sugar chain having sialic acid at at least one end.
  • a sugar chain having sialic acid at the end of at least one sugar chain of a hydrolase containing a chain and a hydrolase having a sugar chain having mannose or mannose 6-phosphate at the end by the above method. Includes hydrolases replaced with, and lysosomal disease therapeutic agents containing these enzymes as active ingredients.
  • At least one of the six sugar chains having mannose at the end excluding at least one high mannose type sugar chain necessary for enzyme activity, that is, one or two.
  • examples thereof include IDUA (SG-IDUA) or CTSA (SG-CTSA) in which three, four or five sugar chains are replaced with a sugar chain having a bifurcated terminal sialic acid at the end.
  • the enzyme can be used to treat mucopolysaccharidosis type I or alleviate symptoms.
  • the administration form of the therapeutic agent for lysosomal storage disease of the present invention is not limited, and can be administered orally, parenterally, or the like.
  • Parenteral administration includes intravenous, subcutaneous, intramuscular, intraperitoneal injection and the like.
  • Examples of the dosage form of the preparation include oral liquids, tablets, capsules, pills, powders and the like. Capsules, tablets, powders, granules, etc.
  • excipients such as lactose, glucose, sucrose, mannitol; disintegrants such as starch, sodium alginate; lubricants such as magnesium stearate, talc; polyvinyl alcohol, hydroxy It can be produced by using a binder such as propyl cellulose and gelatin; a surfactant such as a fatty acid ester; and a plastic agent such as glycerin as an additive.
  • Liquid preparations such as emulsions and syrups include sugars such as water, sucrose, sorbitol and fructose; glycols such as polyethylene glycol and propylene glycol; oils such as sesame oil, olive oil and soybean oil; p-hydroxybenzoic acid. Preservatives such as esters; flavors such as strawberry flavor and peppermint can be used as additives.
  • Injectables include sugars such as water, sucrose, sorbitol, xylose, trehalose and fructose; sugar alcohols such as mannitol, xylitol and sorbitol; buffers such as phosphate buffer, citric acid buffer and glutamate buffer; fatty acid esters.
  • sugars such as water, sucrose, sorbitol, xylose, trehalose and fructose
  • sugar alcohols such as mannitol, xylitol and sorbitol
  • buffers such as phosphate buffer, citric acid buffer and glutamate buffer
  • fatty acid esters such as a surfactant can be used as an additive.
  • the dose of the lysosomal storage disease drug required for treatment can be changed depending on the age, gender, severity, etc. of the patient to be administered, but it can be finally decided by the doctor in charge.
  • the therapeutic agent for lysosomal storage disease may be administered at a dose of 0.05 to 10 mg / kg body weight, preferably 0.1 to 2 mg / kg body weight.
  • the prescribed dose may be given in a single dose, or may be administered in divided doses of 2 times, 3 times, 4 times or more per day, and may be administered at appropriate intervals from 1 day to several years. ..
  • the present invention comprises a sugar chain according to any one of (i) to (vi) above, which is an enzyme that causes lysosomal storage disease due to a deficiency and has a bifurcated sugar chain having at least one terminal sialic acid.
  • a sugar chain according to any one of (i) to (vi) above, which is an enzyme that causes lysosomal storage disease due to a deficiency and has a bifurcated sugar chain having at least one terminal sialic acid.
  • At least one sugar chain of a hydrolyzing enzyme having a sugar chain having mannose or mannose 6-phosphate at the end is replaced with a sugar chain having sialic acid at the end.
  • the method is a hydrolase that causes lysosome disease due to deficiency, a glycoprotein or glycopeptide that is a donor of a sugar chain having terminal sialic acid, and Endo-CC in which the 180th asparagine of endoglycosidase is converted to histidine.
  • This is a method for producing a hydrolase containing at least one sugar chain having sialic acid at the terminal by mixing and reacting with N180H.
  • a therapeutic drug for lysosomal storage disease can be produced at low cost, and by making the conditions for producing using Endo-CC N180H obtained by converting the 180th asparagine of endoglycosidase into histidine uniform. , A hydrolase having a uniform sugar chain structure can be produced.
  • Hydrolytic enzymes containing sugar chains with bifurcated sugar chains with sialic acid at the end can be delivered into cells by a new drug delivery system via binding to ⁇ 2,6 sialic acid receptors on the cell surface. can. Further, by replacing at least one sugar chain of the sugar chain of the hydrolyzing enzyme having a sugar chain having mannose or mannose 6-phosphate at the end with a sugar chain having sialic acid at the end, the enzyme is replaced with a cell. It can be delivered into cells by a new drug delivery system mediated by binding to ⁇ 2,6 sialic acid receptors on the cell surface.
  • Example 1 One-pot sugar chain modification with Endo-CC (N180H) Using the methods described in Production Examples 1 to 3 and Examples 1 and 2 of JP-A-2020-10662 for IDUA expressed in silk moth cocoons. SG-IDUA was prepared by replacing the sugar chain structure with SG.
  • Example 2 Effect of enzyme supplementation on MPSI-jp
  • Fibroblast jm1481 was used. After seeding 1.0 ⁇ 10 5 cells for MPSI-jp and 2.0 ⁇ 10 5 cells for jm1481 on a 35 mm dish and confirming that the cells stuck to the dish and increased, MPSI-jp expressed only the buffer in the silk moth cocoon.
  • the reaction was stopped by adding 380 ⁇ L of 0.2 M glycine-NaOH (pH 10.7), 300 ⁇ L each was dispensed into a 96-well plate, and the fluorescence intensity was measured at Ex360 nm and Em448 nm.
  • silkworm-IDUA is expressed in silk moth cocoons, it is known that the sugar chain structure is pouch mannose type or high mannose type. In addition, since it is already known that these sugar chains are not taken up into cells, the enzyme activity is increased to 111%, but the enzyme activity is increased because they are non-specifically adsorbed on the cell membrane. I think it was done. Similarly, SG-IDUA also showed an increase in enzyme activity. In this case as well, it is thought that non-specific adsorption occurs on the cell membrane like silkworm-IDUA, so the difference between SG-IDUA and silkworm-IDUA, 43%, was actually taken up into the cell. It is considered that the enzyme activity is the enzyme activity shown in the cell.
  • Example 3 Intracellular uptake competition inhibitory effect of SG-IDUA into MPSI-jp MPSI-jp 1.0 ⁇ 10 5 cells were seeded on a 35 mm dish, and after confirming that the cells stuck to the dish and increased, MPSI- For jp, (1) buffer only, (2) SG-IDUA 1 ⁇ g, (3) SG-IDUA 1 ⁇ g and 5 mM sialic acid (SA), (4) SG-IDUA 1 ⁇ g and 5 mM SG, (5) 1 ⁇ g of SG-IDUA and 5 mM mannose 6-phosphate (M6P) were added, respectively.
  • SA sialic acid
  • M6P mannose 6-phosphate
  • the supernatant was collected by sonication on ice for 10 minutes and centrifugation at 18,000 xg for 5 minutes.
  • 15 ⁇ L of 0.1 M sodium acetate buffer (pH 4.5) containing 2 mM 4-MU-Idopyranoside, 500 mM NaCl was added, and the cells were incubated at 37 ° C. for 30 minutes.
  • the reaction was stopped by adding 380 ⁇ L of 0.2 M glycine-NaOH (pH 10.7), 300 ⁇ L each was dispensed into a 96-well plate, and the fluorescence intensity was measured at Ex360 nm and Em448 nm (Fig. 3).
  • Example 4 Intracellular uptake of F17 (MPSI patient skin fibroblast)
  • IDUA is preliminarily fluorescent in the acidic region, AcidiFluor (Goryo). Labeling was performed using (manufactured by Kayaku Co., Ltd.).
  • Silkworm-IDUA 10 ⁇ g and SG-IDUA 10 ⁇ g were each made up to 300 ⁇ L with 0.1 M sodium hydrogen carbonate buffer (pH 8.3). AcidiFluor ORANGE 2.1 ⁇ L was added to each, and the mixture was stirred at room temperature for 2 hours in the dark.
  • SG-IDUA-AFO was ultrafiltered at 5,000 xg for 5 minutes using Amicon Ultra-0.5 mL (10KDa; manufactured by Merck Millipore). Further, 300 ⁇ L of 0.1 M sodium hydrogen carbonate buffer (pH 8.3) was applied and ultrafiltration was performed, and ultrafiltration was performed at 5,000 ⁇ g for 5 minutes, and SG-IDUA-APO was obtained by repeating 5 times.
  • An 8-well chamber (manufactured by Thermo Scientific) was coated with collagen and allowed to stand in a clean bench for 1 hour. After removing the collagen on the surface and washing with 1 mL of PBS, cells were seeded in 1 ⁇ 10 4 cells in each well. After confirming that the cells had adhered, the medium was removed and the cells were washed twice with PBS. After diluting 1 ⁇ g of SG-IDUA-APO to 200 ⁇ L in the medium, it was added to the cells. In order to examine the inhibitory effect, a sample in which 5 mM sialic acid was added to SG-IDUA-APO was also prepared and added to the cells. Incubated for 24 hours at 37 ° C. under 5% CO 2 .
  • SG-IDUA-APO is observed to have red fluorescence in an acidic environment.
  • the results are shown in FIG.
  • SG-IDUA-APO was taken up by F17 cells and red fluorescence was observed, but the red fluorescence decreased due to the inhibition of intracellular uptake by 5 mM Sialic Acid. I understood it. From this, it was clarified that SG-IDUA-APO is taken up into cells in an SG-dependent manner and transported into lysosomes under an acidic pH environment.
  • CTSA Cathepsin A
  • Biotin labeled ConA 250-fold diluted was used as the 1st probe , and the reaction was carried out overnight at 4 ° C.
  • FIG. 5 shows the results of CBB staining (FIG. 5A), the results of SSA lectin blotting (FIG. 5B), and the results of Con A lectin blotting (FIG. 5C). From the results of SSA lectin blotting, it can be judged that the samples of 4, 8 and 24 hours can be replaced with SGP. In addition, from the results of CBB staining, the band that was considered to have been replaced with SGP at 24 hours was darker than 4.8 hours. This indicates that the longer the reaction time, the more the sugar chain can be replaced. The replacement efficiency was about 50%.
  • Example 6 SG-CTSA trypsin treatment From Example 5, it was confirmed that the cocoon-derived CTSA precursor (proCTSA) was replaced with an SG-type sugar chain by Endo-CC (N180H). Therefore, it was confirmed which N-type sugar chain in the 32 kDa or 20 kDa domain of SG-CTSA in which the sugar chain prepared in Example 5 was replaced with the SG-type sugar chain was replaced.
  • Method SG-CTSA (1 mg / mL, stored at -30 degrees) was used as a sample.
  • the composition of the reaction solution is shown in Table 2.
  • the replacement of sugar chains was confirmed in the following steps.
  • (4) Blotting was performed at 15V for 1 hour.
  • Blotting was performed on Blocking ONE / TBS for 1 hour.
  • FIGS. 6 and 7 show the results of SSA lectin blotting
  • FIG. 7 shows the results of CBB staining.
  • the lane a in FIG. 7 is the result of staining with CTSA + trypsin
  • the lane b is the result of staining with SG-CTSA + trypsin. From the results of SSA lectin blotting, it is considered that N-type sugar chains in both the 32 kDa and 20 kDa domains of SG-CTSA have been replaced.
  • Example 7 Intracerebroventricular administration of cocoon-derived CTSA precursor (proCTSA) and ⁇ 2,6-SG-CTSA to GS model mice (enzyme replacement therapy to the central nervous system)
  • the cocoon-derived CTSA precursor and SG-CTSA at 3 mg / kg body weight were dissected 24 hours after administration to GS (galactosialidosis) model mice (6 to 7 week old adult mice), and Ctsa activity and Neu activity were increased. It was confirmed using how much it recovered.
  • the GS model mouse was outsourced to Unitech.
  • Neu activity indicates the catalytic activity of the hydrolase neuraminidase (siaridase) that cleaves the sialic acid residue of the sialic acid-containing sugar chain bonded to the terminal ⁇ 2,3, ⁇ 2,6 or ⁇ 2,8.
  • the degrading activity of the artificial fluorescent substrate 4-MU-N-Acetyl-neuraminic acid was measured.
  • ProCTSA or mature cells taken up into cells can be activated in association with endogenous Neu1 to exhibit Neu activity and restore the activity of both Ctsa and Neu1 deficient in GS mice. It is possible to show the therapeutic effect (effectiveness) of being able to do it.
  • the experiment was carried out in the following steps. 1.
  • Intracerebroventricular administration to mice (1) Pre-anesthesia was performed with isoflurane. (2) 150 ⁇ L of somnopentil was intraperitoneally administered. (3) The scalp was cut open, and each sample was intraventricularly administered to the right brain at a body weight of 3 mg / kg.
  • FIG. 8 shows the administration site. (4) The scalp was replaced and placed in a gauge.
  • NEU1 activity measurement (1) A substrate was prepared with the composition shown in Table 5. At this time, the number of samples ⁇ 2 + 2 was prepared. (2) 20 ⁇ L of the prepared substrate was dispensed into a 1.5 mL tube. At this time, an enzyme (-) was also prepared. (3) 20 ⁇ L of the extract was added to the dispensed substrate, and the mixture was incubated at 37 ° C. for 30 minutes. (4) 370 ⁇ L of 0.2 M Gly-NaOH (pH 10.7) was added, and the reaction was stopped. (5) A calibration curve was created as shown in Table 6. (6) 300 ⁇ L of each sample and calibration curve were applied to a 96-well plate, and fluorescence was measured at 460 nm.
  • FIG. 9 shows the Ctsa specific activity (FIG. 9A) and the Neu specific activity (FIG. 9B).
  • the average Ctsa active WT was 108 nmol / h / mg protein. Upon administration of PBS, it was 2.2 nmol / h / mg protein.
  • the mean of the CTSA-treated group was 32 nmol / h / mg protein.
  • the mean of the SG-CTSA group was 54 nmol / h / mg protein.
  • Example 8 Intravenous administration of cocoon-derived CTSA precursor (proCTSA) and ⁇ 2,6-SG-CTSA to GS model mouse tail vein GS (galactosialidosis) model mouse (6 to 7 week old adult mouse) SG-proCTSA (SGW group in FIG. 10), which is an SG-type sugar chain variant of the CTSA precursor derived from TG mouse cocoon, was administered weekly (4 times in total) at a body weight of 3 mg / kg in the tail vein. The experiment was carried out three times.
  • Non-administered group PBS administration control, CT group in FIG. 10
  • CHO cell-derived CTSA precursor CHO-proCTSA, CHO group in FIG. 10
  • TG silkworm cocoon-derived CTSA precursor Man-type proCTSA, SW in FIG. 10
  • terminal sialic acid-containing sugar chains in urine collected before the first administration (Pre), before the second administration (Day7), and before the fourth administration (Day22) of each CTSA precursor.
  • the amount was quantified by the resorcinol method, and the effectiveness of the administration was evaluated using the decrease in urinary excretion after administration as an index.
  • NEU1 activity measurement (1) A substrate was prepared with the composition shown in Table 11. The number of samples x 2 + 2 was prepared. (2) 20 ⁇ L of the pre-centrifugation sample was dispensed into a 1.5 mL tube. The enzyme (-) was also prepared. (3) 20 ⁇ L of the prepared substrate was added, and the mixture was incubated at 37 ° C. for 30 min. (4) 370 ⁇ L of 0.2 M Gly-NaOH (pH 10.7) was added, and the reaction was stopped. (5) A calibration curve was created as shown in Table 12. (6) 200 ⁇ L of each sample and calibration curve were applied to a 96-well plate, and fluorescence was measured at 460 nm.
  • a reaction solution was prepared with the composition shown in Table 13. The number of samples x 2 + 2 was prepared. (2) After centrifugation, 25 ⁇ L of each sample was dispensed into a 1.5 mL tube, and one substrate (-) was prepared for each sample. A total of 3 / sample number was prepared. (3) The lid of the 1.5 mL tube was completely opened, and 25 ⁇ L of the reaction solution was quickly added. To the substrate (-), 25 ⁇ L of 0.2 M NaOAc buffer (pH 5.6) was added instead of the reaction solution. (4) Incubation was carried out at 30 min and 25 ° C. (5) The reaction was stopped by immersing it in boiling water at 100 ° C for 2 min (primary reaction solution). (6) A calibration curve was prepared as shown in Table 14.
  • the secondary reaction mixture was prepared as shown in Table 15. The calibration curve minutes were also prepared. (2) 500 ⁇ L of the secondary reaction mixture was added to each sample and the calibration curve, and incubated at 37 ° C. for 40 min. (3) 500 ⁇ L of 6N HCl was added, and the reaction was stopped. (4) 300 ⁇ L was applied to each 96-well plate, and the absorbance was measured at OD 540 nm. (5) CathA activity was calculated from the results of (4) and the results of protein quantification.
  • ⁇ -Hex enzyme activity measurement (1) After centrifugation, 15 ⁇ L of the sample was dispensed (duplicate). (2) MQ-H 2 O 15 ⁇ L as the enzyme (-) was dispensed into a 1.5 mL tube. (3) MUG 15 ⁇ L was added and incubated at 37 ° C for 15 min. (4) 380 ⁇ L of 0.2 M Gly-NaOH (pH 10.7) was added, and the reaction was stopped. (5) A calibration curve was created as shown in Table 16. (6) 200 ⁇ L of each sample and calibration curve were applied to a 96-well plate, and fluorescence was measured at 460 nm.
  • Sialic acid quantification (1) Sialic acid was prepared as a calibration curve as shown in Table 18. A 0.2 mL tube was used. (2) Pre-centrifugation samples were dispensed into 50 ⁇ L x 3 0.2 mL tubes. (3) Add 10 ⁇ L of 40 mM NaIO 4 to the sample and mix. (4) Resorcinol (-) solution and resorcinol solution were prepared as follows.
  • Resorcinol solution composition (per 1 mL) 6 (w / v)% resorcinol / 18% HCl solution 100 ⁇ L 6N HCl 300 ⁇ L 0.185 (w / v)% CuSO 4 16 ⁇ L MilliQ 584 ⁇ L ⁇ Resorcinol (-) solution composition (per 1 mL) 6N HCl 334 ⁇ L 0.185 (w / v)% CuSO 4 16 ⁇ L MilliQ 650 ⁇ L (5) 125 ⁇ L of resorcinol (-) solution was added to one bottle and 125 ⁇ L of resorcinol solution was added to two bottles, and the mixture was mixed. (6) The following treatment was performed using a thermal cycler.
  • FIG. 10 shows the Neu substrate in the liver (FIG. 10A), spleen (FIG. 10B) and heart (FIG. 10C) when the PBS-administered (CT) group is 100% in the SG-proCTSA-administered (SGW) group.
  • CT PBS-administered
  • SGW SG-proCTSA-administered
  • FIG. 10 shows the Neu substrate in the liver (FIG. 10A), spleen (FIG. 10B) and heart (FIG. 10C) when the PBS-administered (CT) group is 100% in the SG-proCTSA-administered (SGW) group.
  • CT PBS-administered
  • SGW SG-proCTSA-administered
  • the amount of sialic acid was decreased in the CHO-CTSA-administered group as compared with the control.
  • the amount of sialic acid was significantly decreased in the CHO-CTSA and SG-CTSA-administered groups as compared with the control, and also tended to decrease in the SW-CTSA-administered group.
  • FIG. 12 shows the accumulated amount of the sialyl substrate, which is a Neu substrate, in urinary excretion.
  • the amount of urinary sialic acid in Pre (before administration) of each individual is 100, and the amount of urinary sialic acid in D7 (the day after the first administration) and D22 (the day after the third administration) is expressed as CHO-CTSA and SG.
  • the amount of urinary sialic acid in D22 was significantly reduced in D22 as compared with CT. There was no significant difference in the SW-CTSA-administered group, but the amount of sialic acid in urine tended to decrease.
  • CHO-derived M6P-type proCTSA and TG silk moth-cocoon-derived Man-type proCTSA or SG-proCTSA are taken up and accumulated in cells via M6PR, ManR, or SiaR present in macrophages, monocytes, etc. It is considered that the spleen substrate was significantly reduced and the therapeutic effect (effectiveness) was observed.
  • CHO-derived M6P-type proCTSA was taken up into the cells via M6PR of tissue-constituting cells, and it is considered that a significant decrease (effectiveness) of the accumulated sialyl substrate appeared.
  • SG-type-proCTSA is taken up by lung constituent cells and exhibits a significant reducing effect on the substrate.
  • TG silk moth cocoon-derived Man-type proCTSA is not considered to be ineffective because it is not taken up into cells.
  • hydrolase replaced with a sugar chain having sialic acid at the end of the present invention can be used for the treatment of lysosomal storage diseases. All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Public Health (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

ライソゾーム病の酵素補充療法において用いる加水分解酵素の提供。 欠損によりライソゾーム病の原因となるライソゾーム中に存在する加水分解酵素であって、末端にシアル酸が付いた2分岐糖鎖を有する糖鎖を少なくとも1つ含む加水分解酵素。

Description

ライソゾームを標的とした新規DDSの開発
 本発明はライソゾームを標的としたDDS(ドラッグデリバリーシステム)に関する。具体的には、末端にシアル酸を有する糖鎖を含む酵素を細胞表面のシアル酸レセプターとの結合を介してライソゾームに到達させる技術に関する。
 また、本発明は、欠損によりライソゾーム病の原因となる加水分解酵素であって、末端にシアル酸が付いた2分岐糖鎖を有する糖鎖を少なくとも1つ含む加水分解酵素、及び該加水分解酵素を含むライソゾーム病の治療薬に関する。
 ライソゾームは、タンパク質、糖や脂質等の生体高分子の分解を行う細胞内小器官である。ライソゾームにおいては、約60種類の加水分解酵素が関与し、エンドサイトーシスやオートファジーによってライソゾーム内に取り込まれた生体高分子を分解する。これらの酵素の欠損や異常によりライソゾームの分解機能が失われ、分解されるべき物質が老廃物として体内に蓄積してしまう先天代謝異常疾患をライソゾーム病という。欠損している酵素の違いにより、約50種類の疾患がある。その多くは神経症状を有する「神経難病」である。
 ライソゾーム病に対しては、機能が失われている酵素を細胞内に取り込ませる酵素補充療法が行なわれている(非特許文献1を参照)。多くのライソゾーム加水分解酵素は、翻訳後糖鎖修飾を受け、マンノース(Man)が付加され、また、マンノースにリン酸基が付加されマンノース6-リン酸(M6P)となり、末端にマンノース(Man)又はマンノース6-リン酸(M6P)を有する糖鎖構造を有する。酵素補充療法においては酵素が有する末端マンノース又はマンノース6-リン酸含有糖鎖と細胞表面のマンノースレセプター(MR)又はマンノース6-リン酸レセプター(M6PR)との結合を利用して細胞内に取り込ませる。
 現在、10種類のライソゾーム病に対して組換え酵素製剤が臨床応用されている。酵素製剤は製造コストが高く、また細胞内に取り込ませるためには大量の酵素製剤を投与する必要があった。例えば、組換え酵素製剤を静脈投与により、1~2週間ごとに1~20mg/kg体重投与していた。
 タンパク質の糖鎖を挿げ替えることにより所望の特性を有する糖タンパク質を製造することが知られ、そのような糖タンパク質を製造し得る糖鎖(特許文献1を参照)の挿げ替えには元々有する糖鎖を切断し、他のタンパク質の糖鎖を結合させる必要があるが、1工程のみで(ワンポット反応で)、糖鎖の挿げ替えが可能なエンドグリコシダーゼが開発されている(特許文献2を参照)。
特開2015-80453号公報 特開2020-10662号公報
Wraith JM et al., PEDIATRICS, Volume 120, Number 1, July 2007, e37-e46
 本発明は、ライソゾーム病の酵素補充療法において用いる加水分解酵素の提供を目的とする。
 本発明者らは、ライソゾーム病の酵素補充療法に用い得る酵素であって、従来の酵素よりも効率的にライソゾームに取り込まれる酵素を低コストで製造する方法について鋭意検討を行った。
 本発明者らは、欠損によりライソゾーム病の原因となるライソゾーム中に存在する加水分解酵素であって、末端にシアル酸が付いた2分岐糖鎖を有する糖鎖を少なくとも1つ含む加水分解酵素が、細胞表面のシアル酸レセプターを介して効率的に細胞中のライソゾームに取り込まれること、及びライソゾーム中に取り込まれた加水分解酵素はライソゾーム中の高分子化合物を分解することができ老廃物の蓄積を防止し、ライソゾーム病の治療薬として用いることができることを見出し、本発明を完成させるに至った。
 すなわち、本発明は以下のとおりである。
[1] 欠損によりライソゾーム病の原因となるライソゾーム中に存在する加水分解酵素であって、末端にシアル酸が付いた2分岐糖鎖を有する糖鎖を少なくとも1つ含む加水分解酵素。
[2] 欠損によりライソゾーム病の原因となるライソゾーム中に存在する加水分解酵素であって、末端にマンノースを有する元々有している糖鎖の少なくとも1つが末端にシアル酸を有する糖鎖に挿げ替えられている、[1]の末端にシアル酸が付いた2分岐糖鎖を有する糖鎖を少なくとも1つ含む加水分解酵素。
[3] α-L-イズロニダーゼ(IDUA)又はカテプシンA(CTSA)である、[1]又は[2]の加水分解酵素。
[4] [1]又は[2]の加水分解酵素を有効成分として含む、ライソゾーム病治療薬。
[5] [3]の加水分解酵素を有効成分として含み、ライソゾーム病がムコ多糖症I型である、[4]のライソゾーム病治療薬。
[6] 糖鎖の末端に含まれるシアル酸と細胞表面のシアル酸レセプターとの結合を介してライソゾーム中に取り込まれる、[4]又は[5]のライソゾーム病治療薬。
[7] 以下の(i)~(vi)のいずれかの、欠損によりライソゾーム病の原因となるライソゾーム中に存在する加水分解酵素であって、末端にシアル酸が付いた2分岐糖鎖を有する糖鎖を少なくとも1つ含む加水分解酵素の製造方法:
(i)欠損によりライソゾーム病の原因となる加水分解酵素をコードする遺伝子を哺乳動物細胞に導入し、哺乳動物細胞で発現させる;
(ii)欠損によりライソゾーム病の原因となる加水分解酵素をコードする遺伝子を、シアル酸転移酵素遺伝子を導入した昆虫細胞又はカイコ自体で発現させる;
(iii)遺伝子組み換えにより、発現タンパク質にヒト型糖鎖が付くようにした酵母で発現させる;
(iv)原核微生物で発現させたペプチドにジスルフィド結合により糖鎖を付加し、その後ペプチドを繋げる;
(v)原核微生物で発現させたタンパク質に対して、末端にシアル酸が付いた2分岐糖鎖を有する糖オキサゾリン体を糖供与体とし、前記タンパク質を糖受容体とし、末端にシアル酸が付いた2分岐糖鎖を有する糖を前記タンパク質のリジン残基の1級アミンへ、付加させる;又は
(vi)末端にシアル酸が付いた2分岐糖鎖を有するアスパラギンを出発原料に、ペプチド合成によってタンパク質を調製する。
[8] 欠損によりライソゾーム病の原因となる加水分解酵素と、末端シアル酸を有する糖鎖のドナーとなる糖タンパク質若しくは糖ペプチドと、エンドグリコシダーゼとを混合して反応させることにより、末端にシアル酸が付いた2分岐糖鎖を有する糖鎖を少なくとも1つ含む加水分解酵素を製造する方法。
[9] エンドグリコシダーゼが、Endo-M、Endo-M D175Q、Endo-A、Endo-S、Endo-S D233Q、Endo-CC、Endo-SB、Endo-CoM、Endo-CE、Endo-HS、Endo-Tsp1006、Endo-Tsp1263及びEndo-Tsp1457、並びにエンドグリコシダーゼの180番目のアスパラギンを他のアミノ酸に変換したEndo-CC N180H、Endo-CC N180A、Endo-CC N180D及びEndo-CC N180Qからなる群から選択される、[8]の方法。
[10] 加水分解酵素がα-L-イズロニダーゼ(IDUA)又はカテプシンA(CTSA)である、[8]又は[9]の方法。
[11] 欠損によりライソゾーム病の原因となるライソゾーム中に存在する加水分解酵素であって、末端にシアル酸が付いた2分岐糖鎖を有する糖鎖を少なくとも1つ含む加水分解酵素を、糖鎖の末端に含まれるシアル酸と細胞表面のシアル酸レセプターとの結合を介してライソゾーム中に取り込ませることを含む、前記加水分解酵素をライソゾームにデリバリーする方法。
[12] 加水分解酵素がα-L-イズロニダーゼ(IDUA)又はカテプシンA(CTSA)である、[11]の方法。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2021-000120号、2021-178052号の開示内容を包含する。
 キトビオース結合を加水分解し、また同時に糖鎖の転移反応を触媒する機能を有する酵素と末端シアル酸を有する糖鎖のドナーとなる糖タンパク質若しくは糖ペプチドと欠損によりライソゾーム病の原因となる加水分解酵素であるアクセプター糖タンパク質を含むワンポット反応系で得られる、2分岐型末端シアル酸含有加水分解酵素は、ライソゾーム病患者の細胞に、シアル酸残基依存的に取り込まれ、ライソゾームまで輸送され、欠損した加水分解酵素活性を回復させることによりライソゾーム病を治療することができる。該加水分解酵素は、従来の酵素よりも効率的にライソゾームに取り込まれる。
ワンポットでIDUAの糖鎖の少なくとも1つを末端にシアル酸を有する糖鎖に挿げ替える方法の概要を示す図である。 MSPSI-jpにおける酵素補充の効果を示す図である。 SG-IDUAのMPSI-jpへの細胞内取り込み競合阻害効果を示す図である。 SG-IDUAのF17への細胞内取り込み効果を示す図である。 Endo-CC (N180H)によるカテプシンA(CTSA)糖鎖挿げ替えにおけるCBB染色の結果(図5A)、SSAレクチンブロッティングの結果(図5B)及びCon Aレクチンブロッティングの結果(図5C)を示す図である。 SG-CTSAの32kDa又は20kDaドメインいずれかのN型糖鎖の挿げ替えにおけるSSAレクチンブロッティングの結果を示す図である。 SG-CTSAの32kDa又は20kDaドメインいずれかのN型糖鎖の挿げ替えにおけるCBB染色の結果を示す図である。 繭由来CTSA前駆体(proCTSA)及びα2,6-SG-CTSAのGSモデルマウス脳室内投与における投与部位を示す図である。 繭由来CTSA前駆体(proCTSA)及びα2,6-SG-CTSAのGSモデルマウス脳室内投与におけるCtsa比活性(図9A)及びNeu比活性(図9B)を示す図である。 繭由来CTSA前駆体(proCTSA)を投与したマウスの肝臓(図10A)、脾臓(図10B)、心臓(図10C)における蓄積シアリル基質の減少を示す図である。 繭由来CTSA前駆体(proCTSA)を投与したマウスの腎臓(図11A)、肺(図11B)における蓄積シアリル基質の減少を示す図である。 繭由来CTSA前駆体(proCTSA)を投与したマウスにおける、シアリル基質の尿中排泄に対する抑制効果を示す図である。
 以下、本発明を詳細に説明する。
 本発明はライソゾームを標的としたDDS(ドラッグデリバリーシステム)に関する発明である。本発明のDDSにより、欠損によりライソゾーム病の原因となる酵素をライソゾーム病患者の細胞中のライソゾームに取り込ませることにより酵素補充療法を行うことができる。
 欠損によりライソゾーム病の原因となる酵素は、ライソゾーム中に存在する加水分解酵素(ライソゾーム酵素)であり、エンドサイトーシスやオートファジーによってライソゾーム内に取り込まれたタンパク質、糖、脂質等の生体高分子を加水分解する酵素である。これらの酵素の欠損や異常によりライソゾーム中の生体高分子が分解されずに老廃物として蓄積しライソゾーム病を発症する。
 欠損によりライソゾーム病の原因となる酵素として以下の酵素が挙げられる。括弧内はその酵素の欠損が原因となるライソゾーム病を示す。これらの酵素は一例であり、本発明においてライソゾーム病の原因となる酵素はこれらの酵素に限定されない。
 α-L-イズロニダーゼ(ムコ多糖症I型)、イズロン酸-2-スルファダーゼ(ムコ多糖症II型、ハンター症候群)、ヘパラン-N-スルファターゼ(ムコ多糖症III(A)型)、α-N-アセチルグルコサミニダーゼ(ムコ多糖症III(B)型)、アセチルCoAα-グルコサミニド-N-アセチルトランスフェラーゼ(ムコ多糖症III(C)型)、N-アセチルグルコサミン-6-スルファターゼ(ムコ多糖症III(D)型)、N-アセチルガラクトサミン-6-スルフェイトスルファターゼ(ムコ多糖症IV(A)型)、βガラクトシダーゼ(ムコ多糖症IV(B)型、GM1-ガングリオシドーシス)、N-アセチルガラクトサミン-4-スルファターゼ(ムコ多糖症VI型)、β-グルクロニダーゼ(ムコ多糖症VII型)、ヒアルロニダーゼ(ムコ多糖症IX型)、β-グルコセレブロシダーゼ(ゴーシェ病)、α-ガラクトシダーゼ(ファブリー病)、酸性スフィンゴミエリナーゼ(ニーマンピック病A型、B型)、酸性セラミダーゼ(ファーバー病)、β-ヘキソサミニダーゼA, B(GM2-ガングリオシドーシス)、アリルスルファターゼA, B, C(異染性白質ロイコジストロフィー、マルチプルスルファターゼ欠損症)、β-ガラクトセレブロシダーゼ(クラッベ病)、酸性α-グルコシダーゼ(ポンペ病)、カテプシンA(CTSA)(ガラクトシアリドーシス)、ノイラミニダーゼ1(シアリドーシス)、α-マンノシダーゼ(α-マンノシドーシス)、β-マンノシダーゼ(β-マンノシドーシス)、フコシダーゼ(フコシドーシス)、アスパチルグルコサミニダーゼ(アスパスチルグルコサミン尿症)、プロサポシン(プロサポシン欠損症)、サポシンA(サポシンA欠損症)、サポシンB(サポシンB欠損症)、サポシンC(サポシンC欠損症)、α-N-アセチルグルコサミニダーゼ(シンドラー-神崎病)、酸性リパーゼ(ウォルマン病)、カテプシンK(カテプシンK欠損症)、パルミトイルプロテインチオエステラーゼ(神経セロイドリポフスチノーシス1型)、トリペプチジルペプチダーゼ1(神経セロイドリポフスチノーシス2型)、CLN5タンパク質(神経セロイドリポフスチノーシス5型)、カテプシンD(神経セロイドリポフスチノーシス10型)、酸性フォスファターゼ(酸性フォスファターゼ欠損症)。それぞれのライソゾーム病においてライソゾーム中に蓄積する物質は、ムコ多糖症では、ムコ多糖であり、例えば、ムコ多糖症I型及びII型ではデルマタン硫酸及びヘパラン硫酸が蓄積し、ムコ多糖症III型ではヘパラン硫酸が蓄積し、ムコ多糖症IV型ではケラタン硫酸が蓄積し、ムコ多糖症VI型ではデルマタン硫酸が蓄積する。
 本発明においては、欠損によりライソゾーム病の原因となる加水分解酵素であって、末端にシアル酸が付いた2分岐糖鎖を有する糖鎖を少なくとも1つ含む加水分解酵素を用いる。
 これらの酵素は、本来、翻訳後糖鎖修飾を受け、マンノース(Man)が付加され、また、マンノースにリン酸基が付加されマンノース6-リン酸(M6P)となり、末端にマンノース(Man)又はマンノース6-リン酸(M6P)を有する糖鎖構造を有する。これらの酵素は細胞のマンノースレセプター(MR)又はマンノース6-リン酸レセプター(M6PR)を介して細胞内のエンドソームに取り込まれエンドソームがライソゾームと融合することにより細胞中のライソゾーム中に取り込まれ、加水分解活性を発揮する。
 欠損によりライソゾーム病の原因となる加水分解酵素であって、末端にシアル酸が付いた2分岐糖鎖を有する糖鎖を少なくとも1つ含む加水分解酵素は、例えば、以下の方法で製造することができる。
(i) 末端にシアル酸が付いた2分岐糖鎖が付いたリコンビナントタンパク質を産生し得る哺乳動物細胞を用いて発現させる。欠損によりライソゾーム病の原因となる加水分解酵素をコードする遺伝子をクローニングし、発現ベクターに組込んで、これを宿主である哺乳動物細胞に導入し、該細胞を培養することにより、末端にシアル酸が付いた2分岐糖鎖が付いた加水分解酵素を得ることができる。発現ベクターの構築に用いられるベクターとしては、公知のものを用いることができる。例えば、Flexi(登録商標)ベクター(プロメガ社)、pUC19、pTV118 N(宝酒造社製)、pUEX2(アマシャム社製)、pGEX-4T、pKK233-2(ファルマシア社製)、pMAM-neo(クロンテック社製)等が挙げられる。発現ベクターは公知の方法で宿主細胞に導入し、宿主細胞を形質転換すればよい。例えば、エレクトロポレーション法、リン酸カルシウム沈殿法、DEAE-デキストラントランスフェクション法等が挙げられる。このような哺乳動物細胞として、ヒト胎児腎細胞株であるHEK293細胞若しくはHEK293T細胞、チャイニーズハムスター卵巣(CHO)細胞、サルCOS細胞等が挙げられる。
(ii) カイコ細胞等の昆虫の細胞又はカイコ自体にシアル酸転移酵素遺伝子を遺伝子組換えにより導入し、シアル酸転移酵素を導入した昆虫細胞又はカイコを用いた発現系で発現させる。昆虫細胞としては、カイコ等の鱗翅目昆虫細胞であるSf21細胞、Sf9細胞、TN5細胞等を用いることができる。例えば、欠損によりライソゾーム病の原因となる加水分解酵素をコードする遺伝子をバキュロウイルスベクターに組込み、該ベクターを昆虫細胞に導入すればよい。細胞及びカイコ虫体へのシアル酸転移酵素遺伝子の導入は公知の方法で行うことができる。カイコ虫体を用いての産生は公知の方法により行うことができる。これらの方法は、特許第3598374号公報の記載に従って行うことができる。
(iii) 酵母等の糖鎖が発現する真菌に属する微生物を、遺伝子組み換えにより、発現タンパク質にヒト型糖鎖が付くようにした発現系で発現させる。すなわち、シチジンモノフォスフェート-シアル酸(CMP-Sia)を欠く酵母等の真菌中にCMP-Sia合成経路を遺伝子工学的手法で形成させ、CMP-Siaを合成させる。CMP-Sia合成経路は、例えば、酵母等の真菌中に哺乳動物由来のUDP-GlcNAcエピメラーゼ、シアル酸シンターゼ、CMP-シアル酸シンターゼ、UDP-N-アセチルグルコサミン-2-エピメラーゼ、N-アセチルマンノサミンキナーゼ、N-アセチルノイラミネート-9-ホスフェートシンターゼ、N-アセチルノイラミネート-9-フォスファターゼ及びCMP-シアル酸シンターゼから選択される少なくとも1つの酵素を導入すればよい。
 酵母として、ピキア(Pichia)属酵母、カンジダ(Candida)属酵母、ハンゼヌラ(Hansenula)属酵母、サッカロマイセス(Saccharomyces)属酵母、クルイウェロマイセス(Kluyveromyces)属酵母等が挙げられる。また、その他の真核生物として、アスペルギルス(Aspergillus)属麹菌、トリコデルマ(Trichoderma)属子嚢菌、クリソスポリウム(Chrysosporium)属真菌、フザリウム(Fusarium)属菌類、アカパンカビ(Neurospora)属子嚢菌等が挙げられる。
 ピキア(Pichia)属酵母としてピキア・パストリス(Pichia pastoris)、ピキア・メタノリカ(Pichia methanolica)、ピキア・ブルトニー(Pichia burtonii)等、カンジダ(Candida)属酵母としてカンジダ・アルティス(Candida ulitis)、カンジダ・ボイジニ(Candid boidinii)、カンジダ・マイコデルマ(Candida mycoderma)等、ハンゼヌラ(Hansenula)属酵母としてハンゼヌラ・ポリモルファ(Hansenula polymorpha)、ハンゼヌラ・アノマラ(Hansenula anomala)、ハンゼヌラ・カプスラータ(Hansenula capsulata)等、サッカロマイセス(Saccharomyces)属酵母として、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)等、クルイウェロマイセス(Kluyveromyces)属酵母として、クルイウェロマイセス・ラクティス(Kluyveromyces lactis)等が挙げられる。また、アスペルギルス(Aspergillus)属麹菌としてアスペルギルス・ニガー(Aspergillus niger)、アスペルギルス・オリゼー(Aspergillus oryzae)等が、トリコデルマ(Trichoderma)属子嚢菌としてトリコデルマ・リーゼイ(Trichoderma reesei)等が、クリソスポリウム(Chrysosporium)属真菌としてクリソスポリウム・ロックンオウンズ(Chrysosporium lucknowense)等が、フザリウム(Fusarium)属菌類としてフザリウム・エスピー(Fusarium sp.)等が、アカパンカビ(Neurospora)属子嚢菌として、ネウロスポラ・クラッサ(Neurospora crassa)等が挙げられる。
 これらの方法は、特許第4932699号公報の記載に従って行うことができる。
(iv) 発現タンパク質が糖鎖修飾されない大腸菌等の原核微生物で発現させたペプチドにジスルフィド結合を用いて糖鎖を付加し、その後ペプチドを繋げて、タンパク質を作製する。原核微生物として、大腸菌、枯草菌、糸状菌、麹菌、放線菌等が挙げられる。
 これらの方法は、N.Yamamoto et al., Tetrahedron Lett, (2004), 45(16), 3287-3290の記載に従って行うことができる。
(v)原核微生物で発現させたタンパク質に対して、末端にシアル酸が付いた2分岐糖鎖を有する糖オキサゾリン体を糖供与体とし、前記タンパク質を糖受容体とし、末端にシアル酸が付いた2分岐糖鎖を有する糖を前記タンパク質のリジン残基の1級アミンへ、付加させる。原核微生物として、大腸菌、枯草菌、糸状菌、麹菌、放線菌等が挙げられる。これらの方法は、特許第6342968号公報の記載に従って行うことができる。
(vi) 末端にシアル酸が付いた2分岐糖鎖を有するアスパラギンを出発原料に、ペプチド合成によってタンパク質を調製する。これらの方法は、N.Yamamoto et al., J. Am. Chem. Soc, (2008), 130(2), 501-510の記載に従って行うことができる。
 さらに、加水分解酵素のアスパラギンに結合している末端にマンノース又はマンノース6-リン酸を有するN-結合型糖鎖の少なくとも1つを末端にシアル酸(Neu5Ac)を有する糖鎖に挿げ替えることにより、末端にシアル酸が付いた2分岐糖鎖を有する糖鎖を少なくとも1つ含む加水分解酵素を作製することができる。
 糖鎖の挿げ替え(リモデリング)は、最初に、加水分解酵素に元々結合している末端にマンノース又はマンノース6-リン酸を有するN-結合型糖鎖を切断し、その後末端にシアル酸が付いた2分岐糖鎖を有する糖鎖をドナーから転移する。すなわち、加水分解酵素のN-結合型糖鎖の還元末端側に存在するN,N’-ジアセチルキトビオース間を加水分解し、糖鎖をエンド型に遊離し、加水分解酵素のアスパラギン(Asn)に結合しているN型複合型糖鎖の還元末端のN-アセチルグルコサミン(GlcNAc)1残基を残して、糖鎖を切断する。末端にマンノース又はマンノース6-リン酸を有するN-結合型糖鎖としては、マンノースの数によりMan3型、Man5型、Man6型、Man8型、Man9型で表される高マンノース型糖鎖が存在する。マンノースが5個以下の高マンノース型糖鎖を切断する。次いで、ドナーから末端にシアル酸を有する糖鎖を転移する。ドナーとしては、末端にシアル酸が付いた2分岐糖鎖を有する糖鎖(シアリル糖鎖)を有する糖タンパク質又は糖ペプチドを用いることができ、例えば、2分岐型末端シアル酸を有するシアリルグリコペプチド(α2,6-SGP)を用いればよい。シアリルグリコペプチドは、卵黄から調製することができる。卵黄由来のシアリルグリコペプチドとして、CAS No.189035-43-6(C112H189N15O70、分子量2865.781)を用いることができ、伏見製薬所製のもの(商品番号:171801)を用いることができる。糖鎖の挿げ替えを行う酵素は、原核微生物、真菌、昆虫の細胞若しくはカイコ、又は哺乳動物細胞を用いて発現させて作製したものを用いればよい。
 上記の糖鎖の挿げ替えは、キトビオース結合を加水分解し、また同時に糖鎖の転移反応を触媒する機能を有する酵素を用いて行うことができる。このような酵素として、GH85ファミリー(Glycoside Hydrolase family)やGH18ファミリーに属するエンド-β-N-アセチルグルコサミニダーゼ(Endo-β-N-acetylglucosaminidase:ENGase)(エンドグリコシダーゼ)が挙げられる。これらのエンド-β-N-アセチルグルコサミニダーゼとして、Endo-M(Mucor hiemalis由来: M. Umekawa et al., J Biol Chem, 2008, Feb 22; 283(8):4469-79)、Endo-A(Arthrobacter protophormiae由来)、Endo-S(Streptococcus pyogenes由来; Collin, M. et al., (2001) The EMBO Journal, 20, 3046-3055)、Endo-CC(Coprinus cinreus由来)、Endo-SB(特開2019-17259号公報)、Endo-CoM(特開2019-17259号公報)、Endo-CE(T Kato, Glycobiology, Volume12, Issue 10, 1 October 2002, pp.581-587)、Endo-HS(特許第6341571号公報)、Endo-Tsp1006とEndo-Tsp1263とEndo-Tsp1457(S.Takashima et al., Glycobiology, Volume 30, Issue 11, November 2020, pp.923-934)等を用いることができる。これらの酵素を用いることにより1工程のみで(ワンポット反応で)、元々のマンノースを含む糖鎖の切断とドナーからのシアル酸を含む糖鎖の転移による糖鎖の挿げ替えを行うことができる。特に、真正担子菌綱ハラタケ目ヒトヨタケ科に属するCoprinopsis cinerea(Coprinus cinereus)由来のエンド-β-N-アセチルグルコサミニダーゼであるEndo-CCを用いればよい。Endo-CCは、特開2015-080453号公報に記載されている。Endo-CCの酵素の塩基配列を配列番号1に、アミノ酸配列を配列番号2に示す。該酵素の180番目のアスパラギンをヒスチジンに変換した変異体であるEndo-CC N180Hを用いることにより1工程のみで(ワンポット反応で)、元々のマンノースを含む糖鎖の切断とドナーからのシアル酸を含む糖鎖の転移による糖鎖の挿げ替えを行うことができる。Endo-CC N180H及びそれを用いた糖鎖の挿げ替え法については、特開2020-10662号公報及びManabe S.et al., R Soc Open Sci, 5(5), 171521 2018 16 eCollection May (2018)に記載されている。また、Endo-CC N180Hとして市販の酵素(伏見製薬所製、商品番号:171832)を用いることができる。なお、180番目のアスパラギンをアラニンに変換した変異体であるEndo-CC N180A、180番目のアスパラギンをグルタミンに変換した変異体であるN180Q、180番目のアスパラギンをアスパラギン酸に変換した変異体であるN180D等の酵素も、同様に加水分解活性、糖転移活性も有する変異体であるので、Endo-CC N180Hと同様に使用することができ、前記本発明の効果と同様な効果を奏すると考えられる。Endo-CC N180A、N180Q、N180Dの製造方法は、https://www.ncbi.nlm.nih.gov/pubmed/27714557に「Highly efficient transglycosylation of sialo-complex-type oligosaccharide using Coprinopsis cinerea endoglycosidase and sugar oxazoline.」として記載されている。また、ワンポット反応ではなく、複数の酵素を用いて分解と転移反応を行わせてもよい。
 該方法においては、欠損によりライソゾーム病の原因となる酵素、末端にシアル酸が付いた2分岐糖鎖を有する糖鎖のドナーとなる糖タンパク質若しくは糖ペプチド、並びにEndo-CC N180H若しくは同等の活性を有するエンド-β-N-アセチルグルコサミニダーゼを混合して反応させることにより行うことができる。
 本発明の製造方法においては、エンド-β-N-アセチルグルコサミニダーゼは、磁性体樹脂ビーズに固定化されて、欠損によりライソゾーム病の原因となる酵素、並びに末端にシアル酸が付いた2分岐糖鎖を有するドナー糖鎖となる糖タンパク質若しくは糖ペプチドと混合することが好ましい。欠損によりライソゾーム病の原因となる酵素は糖鎖を挿げ替えられるのでアクセプタータンパク質と呼ぶ。
 エンド-β-N-アセチルグルコサミニダーゼを、磁性体樹脂ビーズに固定化することにより、酵素が反応系に均一に分散されるので、反応を効率よく行うことができるとともに、反応後、磁石の作用により磁性体樹脂ビーズを反応系内の一部に集めて他の反応系との分離を容易に行うことができるので、反応系の分離、取り出しが容易になり好ましい。
 磁性体樹脂ビーズに固定化されたエンド-β-N-アセチルグルコサミニダーゼは、緩衝液中に、磁性体樹脂ビーズとエンド-β-N-アセチルグルコサミニダーゼを加え、両者を接触させることにより製造することができる。磁性体樹脂ビーズとしては、Cytiva(グローバルライフテクノロジーズジャパン株式会社)や多摩川精機社等から市販されている市販品を用いることができる。
 欠損によりライソゾーム病の原因となる酵素、末端シアル酸を有する糖鎖のドナーとなる糖タンパク質若しくは糖ペプチド(SGPドナー)と、エンド-β-N-アセチルグルコサミニダーゼとの混合及び反応は、例えば、これらを容器内に入れて、当該容器を振盪することにより行うことができる。
 欠損によりライソゾーム病の原因となる酵素、末端シアル酸を有するドナー糖鎖となる糖タンパク質若しくは糖ペプチドとの反応モル比は、1:1~10000:1程度の範囲から選択すればよい。エンド-β-N-アセチルグルコサミニダーゼの使用量は、末端シアル酸を有するドナー糖鎖となる糖タンパク質若しくは糖ペプチドの1ナノモルに対して、1~300munitsの範囲から選択すればよい。反応温度は10~60℃程度の範囲から、反応時間は数分から数十時間の範囲、具体的には5分から30時間程度の範囲から選択すればよい。また、反応時のpHは好ましくはpH5.0~8.0である。前記の反応条件の好ましい範囲は、前記化合物や前記糖タンパク又は糖ペプチドの種類やモル比、エンド-β-N-アセチルグルコサミニダーゼの配合量等により変動するので、予め簡易な予備実験等により最適な条件を選択することが好ましい。
 エンド-β-N-アセチルグルコサミニダーゼを磁性体樹脂ビーズに固定化して用いる場合は、当該磁性体樹脂ビーズを磁石により反応容器の1部分に集めることにより、他の反応系と分離することができる。そして、分離された他の反応系をクロマトグラフィー等により精製することにより、反応生成物である、末端シアル酸を含む糖鎖を有する加水分解酵素を得ることができる。
 上記の(i)~(vi)のいずれかの方法で製造した欠損によりライソゾーム病の原因となる酵素は少なくとも1つの末端にシアル酸が付いた2分岐糖鎖を有する糖鎖を含む。また、エンド-β-N-アセチルグルコサミニダーゼを用いる上記方法で糖鎖を挿げ替えた、欠損によりライソゾーム病の原因となる酵素は少なくとも1つの末端にシアル酸が付いた2分岐糖鎖を有する糖鎖及び末端にマンノース又はマンノース6-リン酸を有する糖鎖を含む。少なくとも1つの末端にシアル酸が付いた2分岐糖鎖を有する糖鎖を含む糖鎖は、細胞表面のα2,6シアル酸レセプターとの結合を介して細胞中のライソゾーム中に取り込まれる。また、糖鎖が挿げ替えられた酵素は、細胞表面のマンノースレセプター又はマンノース6-リン酸レセプターと元々有する末端にマンノース又はマンノース6-リン酸を有する糖鎖との結合、あるいは細胞表面のα2,6シアル酸レセプターとの結合を介して細胞中のライソゾーム中に取り込まれる。すなわち、上記の(i)~(vi)のいずれかの方法で製造した欠損によりライソゾーム病の原因となる酵素であって少なくとも1つの末端にシアル酸が付いた2分岐糖鎖を有する糖鎖を含む酵素や糖鎖が挿げ替えられた酵素は、細胞のシアル酸含有糖鎖を有するタンパク質又はペプチドの輸送機構を利用して細胞のライソゾームに取り込ませることができる。このため、効率的にライソゾーム中に取り込まれる。効率的に取り込まれるため、投与量も少なくて済む。ライソゾーム中に取り込まれた加水分解酵素は欠損した加水分解酵素活性を回復させることによりライソゾーム中の老廃物を分解する。この結果、ライソゾーム病の治療又は症状の軽減を達成することができる。
 以下、加水分解酵素として、α-L-イズロニダーゼ(IDUA)を用い、エンド-β-N-アセチルグルコサミニダーゼとしてEndo-CC N180Hを用いる場合について詳述する。
 IDUAは、例えば、特開2017-184736号公報の段落[0108]に記載の方法によりヒトαイズロニダーゼ(IDUA)遺伝子を導入したトランスジェニックカイコ(TGカイコ)を作製し、このTGカイコより同公報の段落[0112]~[0114]に記載の方法により製造することができる(TGカイコ由来のIDUA)。
 図1にワンポットでIDUAの糖鎖の少なくとも1つを末端にシアル酸を有する糖鎖に挿げ替える方法を示す。IDUAは、図1に示すように6個の糖鎖を有し、そのうち1個又は2個は5つより多いマンノースを有する高マンノース型糖鎖である。これらの高マンノース型糖鎖は酵素活性に必須であるので、少なくとも1つの高マンノース型糖鎖を他の糖鎖と挿げ替えることなく維持する。従って、6個の糖鎖のうち1~5個の糖鎖を挿げ替えればよい。上記のように、IDUAとドナー糖鎖であるシアリルグリコペプチドとEndo-CC 180Hを反応させることにより、糖鎖を挿げ替えることができる。この際、酵素の量やドナー糖鎖の量や反応時間を調整することにより、挿げ替えられる糖鎖の数を調節することができる。ただし、5つより多いマンノースを有する高マンノース型糖鎖は切断されないので、挿げ替えられることはない。図1の酵素反応の産物であるSG-IDUAにおいては、1つの高マンノース型糖鎖は挿げ替えられることなく維持され、それ以外の5個の糖鎖が末端にシアル酸を有する糖鎖に挿げ替えられている。
 SG-IDUAは、少なくとも1つの末端にシアル酸を有する糖鎖及び末端にマンノース又はマンノース6-リン酸を有する糖鎖を含む。糖鎖が挿げ替えられたSG-IDUAは、細胞表面のマンノースレセプター又はマンノース6-リン酸レセプターと元々有する末端にマンノース又はマンノース6-リン酸を有する糖鎖との結合、あるいは細胞表面のα2,6シアル酸レセプターとの結合を介して細胞中のライソゾーム中に取り込まれる。ライソゾーム中に取り込まれたSG-IDUAは欠損したIDUAに代わって、ムコ多糖症I型患者の細胞中に蓄積するライソゾーム中のヘパラン硫酸及びデルマタン硫酸を分解する。この結果、IUDAの欠損が原因となるムコ多糖症I型の治療又は症状の軽減を達成することができる。
 本発明は、上記の(i)~(vi)のいずれかの方法で製造した欠損によりライソゾーム病の原因となる酵素であって少なくとも1つの末端にシアル酸が付いた2分岐糖鎖を有する糖鎖を含む加水分解酵素、及び上記の方法で末端にマンノース又はマンノース6-リン酸を有する糖鎖を有する加水分解酵素の糖鎖のうちの少なくとも1つの糖鎖を末端にシアル酸を有する糖鎖に挿げ替えた加水分解酵素、並びにこれらの酵素を有効成分として含むライソゾーム病治療薬を包含する。
 そのような酵素の一例として、6個ある末端にマンノースを有する糖鎖のうちの、酵素活性に必要な少なくとも1個の高マンノース型糖鎖を除いた少なくとも1つ、すなわち、1つ、2つ、3つ、4つ又は5つの糖鎖を末端に2分岐型末端シアル酸を有する糖鎖に挿げ替えたIDUA(SG-IDUA)又はCTSA(SG-CTSA)が挙げられる。該酵素は、ムコ多糖症I型の治療又は症状の軽減に用いることができる。
 本発明のライソゾーム病治療薬の投与形態は限定されず、経口、非経口等により投与することができる。非経口投与として、静脈内、皮下、筋肉内、腹腔内注射等が挙げられる。製剤の投与形態としては、経口液剤、錠剤、カプセル剤、丸剤、散剤等が挙げられる。カプセル剤、錠剤、散剤、顆粒剤などは、乳糖、ブドウ糖、ショ糖、マンニトールなどの賦形剤;デンプン、アルギン酸ナトリウムなどの崩壊剤;ステアリン酸マグネシウム、タルクなどの滑沢剤;ポリビニルアルコール、ヒドロキシプロピルセルロース、ゼラチンなどの結合剤;脂肪酸エステルなどの界面活性剤;グリセリンなどの可塑剤などを添加剤として用いて製造できる。
 乳剤及びシロップ剤のような液体調製物は、水、ショ糖、ソルビトール、果糖などの糖類;ポリエチレングリコール、プロピレングリコールなどのグリコール類;ごま油、オリーブ油、大豆油などの油類;p-ヒドロキシ安息香酸エステル類などの防腐剤;ストロベリーフレーバー、ペパーミントなどのフレーバー類などを添加剤として用いて製造できる。
 注射剤は、水、ショ糖、ソルビトール、キシロース、トレハロース、果糖などの糖類;マンニトール、キシリトール、ソルビトールなどの糖アルコール;リン酸緩衝液、クエン酸緩衝液、グルタミン酸緩衝液などの緩衝液;脂肪酸エステルなどの界面活性剤などを添加剤として用いることができる。
 治療に用いるのに必要なライソゾーム病治療薬の投与量は、投与する患者の年齢、性別、重篤度等により変えることができるが、最終的には担当医師が決めることができる。例えば、ライソゾーム病治療薬を1回あたり0.05~10mg/kg体重、好ましくは0.1~2mg/kg体重で投与すればよい。所定の投与量は1回の投与で与えてもよいし、1日当たり2回、3回、4回またはそれ以上の分割投与とし、1日から数年にわたって、適当な間隔で投与してもよい。
 本発明は、上記の(i)~(vi)のいずれかの、欠損によりライソゾーム病の原因となる酵素であって少なくとも1つの末端にシアル酸が付いた2分岐糖鎖を有する糖鎖を含む加水分解酵素の製造方法を包含する。
 また、本発明は、末端にマンノース又はマンノース6-リン酸を有する糖鎖を有する加水分解酵素の糖鎖のうちの少なくとも1つの糖鎖を末端にシアル酸を有する糖鎖に挿げ替えた加水分解酵素の製造法を包含する。該方法は、欠損によりライソゾーム病の原因となる加水分解酵素と、末端シアル酸を有する糖鎖のドナーとなる糖タンパク質若しくは糖ペプチドと、エンドグリコシダーゼの180番目のアスパラギンをヒスチジンに変換したEndo-CC N180Hとを混合して反応させることにより、末端にシアル酸を有する糖鎖を少なくとも1つ含む加水分解酵素を製造する方法である。該方法により、低コストでライソゾーム病治療薬を製造することができる、また、エンドグリコシダーゼの180番目のアスパラギンをヒスチジンに変換したEndo-CC N180Hを用いて製造する際の条件を均一にすることにより、糖鎖構造が均一な加水分解酵素を製造することができる。
 末端にシアル酸が付いた2分岐糖鎖を有する糖鎖を含む加水分解酵素を細胞の細胞表面のα2,6シアル酸レセプターとの結合を介した新しいドラッグデリバリーシステムで細胞中にデリバリーすることができる。さらに、末端にマンノース又はマンノース6-リン酸を有する糖鎖を有する加水分解酵素の糖鎖のうちの少なくとも1つの糖鎖を末端にシアル酸を有する糖鎖に挿げ替えることにより該酵素を細胞の細胞表面のα2,6シアル酸レセプターとの結合を介した新しいドラッグデリバリーシステムで細胞中にデリバリーすることができる。
 本発明を以下の実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
[実施例1] Endo-CC(N180H)によるワンポット糖鎖修飾
 カイコ繭で発現させたIDUAに特開2020-10662号公報の製造例1~3及び実施例1及び2に記載の方法を用いて糖鎖構造をSGに挿げ替えたSG-IDUAの調製を行った。
[実施例2] MPSI-jpにおける酵素補充の効果
 自然発症ムコ多糖症I型の疾患モデル細胞としてニホンザルから単離、株化された耳繊維芽細胞(MPSI-jp)を、コントロールとしてニホンザルの皮膚繊維芽細胞のjm1481を用いた。MPSI-jpは1.0×105cell、jm1481は2.0×105cellを35mm dishに播種し、細胞がdishに張り付き増えたのを確認した後、MPSI-jpには、バッファーのみ、カイコ繭で発現させたIDUA(silkworm-IDUA)、カイコ繭で発現させ、実施例1で糖鎖の挿げ替えを行ったSG-IDUAを各1μgずつ添加した。コントロールとして用いたニホンザルの皮膚繊維芽細胞のjm1481には、バッファーのみを添加し、それぞれ一晩インキュベートした。培地を捨て、PBS 1mLを用いて洗浄した後、PBS 1mLを加えスクレーバーで細胞をはがした。1.5mLチューブに回収した後dishにPBS 500μLを加え、残りの細胞も回収した。500×gで5分間遠心し上清を取り除いた。プロテアーゼインヒビター(EDTA、ぺプスタチンA、ロイペプチン)入り細胞抽出バッファー(50mM NaOAc(pH4.5)/150mM NaCl/1(w/v)% TritonX-100)100μLを加えよくピペッティングした。10分間、氷上でソニケーションし18,000×gで5分間遠心し、上清を回収した。この細胞抽出上清15μLに2mM 4-MU-Idopyranoside,500mM NaClを含む0.1M酢酸ナトリウムバッファー(pH 4.5)を15μL加え、37℃で30分間インキュベートした。0.2M glycine-NaOH(pH10.7)を380μL加えて反応を停止し、96wellプレートに300μLずつ分注してEx360nm、Em448nmで蛍光強度を測定した。
 細胞抽出上清タンパク質1mgが1時間に4-MU-Idopyranosideを4-MUに酵素消化し、蛍光発光する量を評価した(図2)。
 コントロールであるjm1481において4-MU-Idopyransideが4-MUに分解される量を100%とした際に、MPSI-jpは10%まで酵素活性は低下するが、Silkworm-IDUAは100.7%まで上昇し、SG-IDUAについては153.5%まで上昇することがわかった。
 なお、silkworm-IDUAは、カイコ繭で発現させているため、糖鎖構造がパウチマンノース型、もしくはハイマンノース型であることがわかっている。また、これらの糖鎖においては、細胞内に取り込まれないことがすでにわかっているため、111%まで酵素活性が上昇しているが、それらは細胞膜に非特異的吸着したため酵素活性の上昇が見られたと考えている。SG-IDUAでも同様に酵素活性の上昇がみられた。この場合もsilkworm-IDUAと同様に細胞膜に非特異的吸着を起こしていると考えているため、実際に細胞内に取り込まれたのは、SG-IDUAとsilkworm-IDUAの差分、43%分の酵素活性が細胞内で示す酵素活性と考えている。
[実施例3] SG-IDUAのMPSI-jpへの細胞内取り込み競合阻害効果
 MPSI-jp 1.0×105cellを35mm dishに播種し、細胞がdishに張り付き増えたのを確認した後、MPSI-jpには、(1)バッファーのみ、(2)SG-IDUAを1μg、(3)SG-IDUAを1μgと5mM シアル酸(SA)、(4)SG-IDUAを1μgと5mM SG、(5)SG-IDUAを1μgと5mMマンノース6-リン酸(M6P)をそれぞれ添加した。一晩インキュベートし、培地を捨て、PBS1mLを用いて洗浄した後、PBS 1mLを加え、スクレーバーで細胞をはがした。1.5mLチューブに回収した後、dishにPBS 500μLを加え、残りの細胞も回収した。500×gで5分間遠心し上清を取り除いた。プロテアーゼインヒビター(EDTA、ぺプスタチンA、ロイペプチン)入り細胞抽出バッファー(50mM NaOAc(pH4.5)/150mM NaCl/1(w/v)% TritonX-100)100μLを加え、よくピペッティングした。10分間、氷上でソニケーションし18,000×gで5分間遠心し、上清を回収した。この細胞抽出上清15μLに2mM 4-MU-Idopyranoside,500mM NaClを含む0.1M酢酸ナトリウムバッファー(pH 4.5)を15μL加え、37℃で30分間インキュベートした。0.2M glycine-NaOH(pH10.7)を380μL加えて反応を停止し、96wellプレートに300μLずつ分注してEx360nm、Em448nmで蛍光強度を測定した(図3)。
 SG-IDUAのみを添加したときの酵素活性を100%としたときに、5mM SA、5mM SG、5mM M6Pを添加したとき、酵素活性の低下が見られたことから、SG-IDUAは、SA、SG、M6Pと競合すると考えられる。
[実施例4] F17(MPSI患者皮膚繊維芽細胞)細胞内取り込み
 ヒトMPSI患者皮膚繊維芽細胞(F17)への取り込みを評価するために、予めIDUAを酸性領域で蛍光を発光する試薬AcidiFluor(五稜化薬株式会社製)を用いて標識を行った。Silkworm-IDUA 10μg、SG-IDUA 10μgをそれぞれ0.1M炭酸水素ナトリウムバッファー(pH8.3)で300μLまでメスアップした。AcidiFluor ORANGE 2.1μLをそれぞれに加え、遮光して常温で2時間撹拌した。Amicon Ultra-0.5mL(10KDa;メルクミリポア社製)を用いてSG-IDUA-AFOを5,000×gで5分間限外ろ過を行った。さらに0.1M炭酸水素ナトリウムバッファー(pH8.3)を300μLアプライし限外ろ過、5,000×gで5分間限外ろ過を行い5回繰り返しSG-IDUA-APOを得た。
 8well chamber(Thermo Scientific製)をcollagenでコートし、クリーンベンチ内で1時間静置した。表面のコラーゲンを除きPBS 1mLで洗浄後、細胞を1×104cellずつ各wellに播いた。細胞が張り付いたのを確認した後、培地を除き、PBSで2回洗浄した。SG-IDUA-APO 1μgを培地で200μLに希釈した後、細胞に添加した。阻害効果の検討を行うためSG-IDUA-APOに5mM シアル酸を加えたサンプルも用意し細胞に添加を行った。37℃、5%CO2下で24時間インキュベートした。蛍光顕微鏡(BZ9000,BIO-REVO)を用いて、励起波長532nm、蛍光波長568nmで観察を行った。SG-IDUA-APOは、酸性環境下において、赤色の蛍光が観察される。結果を図4に示す。図4に示すように、SG-IDUA-APOは、F17細胞に取り込まれ、赤色の蛍光が観察されたが、5mM Sialic Acidによって、細胞内取り込みが阻害されることより、赤色の蛍光が減少することがわかった。このことよりSG-IDUA-APOは、SG依存的に細胞内に取り込まれ、酸性pH環境下のリソソーム内へと輸送されることが明らかになった。
[実施例5] Endo-CC (N180H)によるカテプシンA(CTSA)糖鎖挿げ替え
 カイコ繭で発現させたCTSAにEndo-CC(N180H)を用いて糖鎖構造をSGに挿げ替えたSG-CTSAの調製を行った。
方法
 サンプルとして、U-32-2a×mari1-2繭由来CTSA(butyl 0M, 8.3mg/mL, 2019/10/08精製, -30℃保存)を用いた。Endo-CC (N180H) 1mU/μL, 352μg/mL(伏見製薬, J2717A)及びSGP 250nmol/μL(伏見製薬, Product code : 171801, #N1617vB)を用いて以下の方法で糖鎖の挿げ替えを行った。
1.糖鎖挿げ替え反応
 表1に示すように反応液を調製した。ドナー:アクセプター=1000:1(モル比)
Figure JPOXMLDOC01-appb-T000001
 30℃、エアインキュベーターで反応し、0, 4, 8, 24時間で1μLずつ回収し、6×dye(+)を加えて3分間煮沸した。さらに、SDS-PAGEを行い、CBB染色、SSAレクチブロッティング、及びConA レクチンブロッティングを行った。
2.CBB染色
 染色液でovernight染色し、10%酢酸で脱色した。
3.レクチンブロッティング
(1) PVDF膜をMeOHで親水化した。
(2) 泳動後のゲル、ろ紙、PVDF膜をブロッティングバッファーで振盪した。
(3) 15V、1時間、ブロッティングした。
(4) 50(w/v)% Blocking One/TBSでR.T. 1時間、ブロッティングした。
(5) 1stプローブとして、biotin labeled SSA(500倍希釈)を用い、4℃、overnightで反応させ、PBS-0.1(w/v)%Tween20で5分間、3回洗浄した。
(6) 2ndプローブとしてanti-biotin HRP linked Ab #32 (CST)(1000倍希釈)を用い、R.T.で1時間反応させ、PBS-0.1(w/v)%Tween20で5分間、3回洗浄した。
(7) PBSで5分間洗浄した。
(8) Western lightning ultra-ECLで検出した。
(9) Stripping buffer(10% SDS 5mL, 4×Upper buffer 3.125mL, 2-メルカプトエタノール 176μL, MQ up to 25mL)で50℃、1時間、reprobeした。
(10) 50(w/v)% Blocking One/TBSでR.T. 1時間、ブロッキングした。
(11) 1stプローブとして、biotin labeled ConA(250倍希釈)を用い、4℃、overnight反応させた。
(12) PBS-0.1(w/v)%Tween20で5分間、3回洗浄した。
(13) 2ndプローブとして、anti-biotin HRP linked Ab #32 (CST)(1000倍希釈)を用い、R.T.で1時間反応させた。
(14) PBS-0.1(w/v)%Tween20で5分間、3回洗浄した。
(15) PBSで5分間洗浄した。
(16) Western lightning plus-ECLで検出した。
結果
 図5に、CBB染色の結果(図5A)、SSAレクチンブロッティングの結果(図5B)及びCon Aレクチンブロッティングの結果(図5C)を示す。
 SSAレクチンブロッティングの結果より、4, 8, 24hrのサンプルではSGPへの挿げ替えが行えていると判断できる。また、CBB染色の結果より、24hrでSGPに挿げ替わったものと考えられるバンドが4, 8hrより濃くなっている。これは、反応時間が長い方が糖鎖を挿げ替えることができることを示している。挿げ替え効率は、約50%であった。
[実施例6] SG-CTSAトリプシン処理
 実施例5より、繭由来CTSA前駆体(proCTSA)はEndo-CC(N180H)によりSG型糖鎖へ挿げ替えられることが確認された。そこで、実施例5で作製した糖鎖をSG型糖鎖へ挿げ替えたSG-CTSAの32kDa, 20kDaドメインのいずれのN型糖鎖が挿げ替えられているかを確認した。
方法
 サンプルとして、SG-CTSA(1mg/mL, -30度保存)を用いた。
 反応条件は、SG-CTSA : トリプシン=1 : 3(モル比)とし、pH6.0で37℃、2時間反応させた。反応液の組成を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 以下の工程で糖鎖の挿げ替えを確認した。
(1) 上記の条件で反応を開始し、2時間後に3μg分取し6×dyeを加えて煮沸した。
(2) SDS-PAGEを行った(12.5(w/v)% SDS-PAGE gel, stacking : 15mA, running : 20mA)。
(3) 泳動が終了したゲルをブロッティングバッファーで30分間振盪した。
(4) 15Vで1時間、ブロッティングした。
(5) Blocking ONE/TBSで1時間、ブロッティングした。
(6) 1stプローブとして、SSA-biotin (500倍希釈、Blocking ONE 500μL:lectin 1μL)を用い、4℃でovernight反応させた。
(7) PBS-0.1(w/v)%Tween20を用い、5分間、3回洗浄した。
(8) 2ndプローブとして、anti-biotin HRP-linked Ab (CST) #33 (1000倍希釈、Blocking ONE 500μL:Ab 0.5μL)を用い、1時間、r.t.で反応させた。
(9) PBS-0.1(w/v)%Tween20を用い、5分間、3回洗浄した。
(10) PBSを用い、5分間洗浄した。
(11) Western lightning ultra-ECL(Chemi Hi Resolution、23.588sec)で検出した。
(12) 20kDaのドメインはPVDF膜に転写されにくいので、再度SDS-PAGEを行い(1μg分)、CBB染色を行った。
結果
 結果を図6及び図7に示す。図6は、SSAレクチンブロッティングの結果を示し、図7はCBB染色の結果を示す。図7中のaのレーンは、CTSA+トリプシンの染色結果であり、bのレーンはSG-CTSA+トリプシンの染色結果である。
 SSAレクチンブロッティングの結果より、SG-CTSAの32kDa, 20kDaドメインいずれのN型糖鎖も挿げ替えられていると考えられる。また、CBB染色の結果より、20kDaドメインに比べて32kDaドメインで高分子量側のシフトが確認されており、この結果は、32kDa側のハイマンノース型糖鎖がシアリル糖鎖に挿げ替わったことを示す。したがって、32kDaドメインのN型糖鎖の方が挿げ替わりやすいと考えられる。
[実施例7] 繭由来CTSA前駆体(proCTSA)及びα2,6-SG-CTSAのGSモデルマウス脳室内投与(中枢神経系への酵素補充療法)
 3mg/kg・体重で繭由来CTSA前駆体及びSG-CTSAをGS(ガラクトシアリドーシス)モデルマウス(6週~7週齢成体マウス)に投与した後24時間で解剖し、Ctsa活性、Neu活性がどの程度回復するかを用いて確認した。GSモデルマウスは、ユニーテック社に作製を委託した。
 Neu活性とは、末端α2,3、α2,6またはα2,8結合したシアル酸含有糖鎖のシアル酸残基を切断する加水分解酵素ノイラミニダーゼ(シアリダーゼ)の触媒活性を示す。本実施例では、人工蛍光基質4-MU-N-Acetyl-neuraminic acidの分解活性を測定した。細胞内に取り込まれたproCTSAまたは成熟体が内在性のNeu1と会合して活性化され、Neu活性を示すようになり、GSマウスで欠損しているCtsaとNeu1の両方の活性を回復させることができるという治療効果(有効性)を示すことができる。
方法
 マウスに投与するサンプルとして、繭由来CTSA前駆体、実施例5で作製したα2,6-SG-CTSA及びPBSを用いた。
 表3に、用いたマウス番号、遺伝子型、性別、週齢及び投与サンプルを示す。
Figure JPOXMLDOC01-appb-T000003
 以下の工程で実験を行った。
1.マウスへの脳室内投与
(1) イソフルランで予備麻酔をした。
(2) ソムノペンチル150μLを腹腔内投与した。
(3) 頭皮を切り開き、各サンプルを3mg/kg・体重となるように右脳に脳室内投与した。図8に投与部位を示す。
(4) 頭皮を元に戻し、ゲージに入れた。
2.解剖
(1) イソフルランで麻酔をかけた。
(2) 心臓からPBS約20mLで還流した。
(3) 脳、肝臓を取り出し、1.5mLチューブに入れ、氷上で冷やした。
(4) 各臓器は-80℃で保存した。
3.抽出液の作製
(1) 表4に示す組成で抽出バッファーを調製した。この際、サンプル数+1本分を調製した。
Figure JPOXMLDOC01-appb-T000004
(2) サンプルに抽出バッファーを5倍量加え、ペッスルでホモジナイズした。
(3) タンパク定量・NEU1活性測定用に、抽出液を半量1.5mLチューブに分注した(遠心前sample)。
(4) 残りの抽出液を12000rpm, 4℃, 15分間遠心した。
(5) 上清を回収し、遠心後サンプルとした。
4.NEU1活性測定
(1) 表5に示す組成で基質を調製した。この際、サンプル数×2+2本分を調製した。
Figure JPOXMLDOC01-appb-T000005
(2) 調製した基質を20μLずつ1.5mLチューブに分注した。この際、酵素(-)も調製した。
(3) 分注した基質に抽出液を20μLずつ加え、37℃, 30分間インキュベーションを行った。
(4) 0.2M Gly-NaOH (pH10.7)を370μL加え、反応を停止した。
(5) 表6に示すように検量線を作成した。
Figure JPOXMLDOC01-appb-T000006
(6) 各サンプル、検量線を300μLずつ96wellプレートにアプライし、460nmで蛍光測定した。
5.カテプシンAの酵素活性測定
5-1.一次反応:Leuを遊離させる反応
(1) 表7に示す組成で反応液を調製した。この際、サンプル数×2+2本分を調製した。
Figure JPOXMLDOC01-appb-T000007
(2) サンプル25μLずつ1.5mLチューブに分注(duplicate)で行った。基質(-)は各サンプル1つずつ調製(計3本/サンプル数用意)した。
(3) 1.5mLチューブのふたを全部開けておき、すばやく反応液25μLを入れた。ただし、基質(-)には反応液ではなく、0.2M NaOAcバッファー(pH5.6)を25μL加えた。
(4) 30分間, 25℃反応させた。
(5) 100℃, 2分間沸騰水につけて、反応停止した。得られた反応液を1次反応液とした。
(6) 表8に示すように検量線を作成した。
Figure JPOXMLDOC01-appb-T000008
5-2.二次反応:発色反応
(1) 二次反応混液を表9に示すように調製した。この際、検量線の分も作製した。
Figure JPOXMLDOC01-appb-T000009
(2) 二次反応混液500μLを各サンプルと検量線に加え、37℃, 40分間インキュベーションした。
(3) 6N HClを500μLずつ加え、反応停止した。
(4) 96wellプレートに300μLずつアプライし、OD540nmで吸光度を測定した。
(5) (4)の結果とタンパク定量の結果からCathA活性(Ctsa活性)を算出した。
結果
 図9にCtsa比活性(図9A)及びNeu比活性(図9B)を示す。
1.Ctsa活性
 WTの平均は、108 nmol/h/mg proteinであった。
 PBS投与では、2.2 nmol/h/mg proteinであった。
 CTSA投与群の平均は、32 nmol/h/mg proteinであった。
 SG-CTSA投与群の平均は、54 nmol/h/mg proteinであった。
2.Neu活性
 PBS投与では、5.56 nmol/h/mg proteinであった。
 CTSA投与群の平均は、0.34 nmol/h/mg proteinであった。
 SG-CTSA投与群の平均は、1.35 nmol/h/mg proteinであった。
 WTの平均は、0.84 nmol/h/mg proteinであった。
 GSマウス脳室内へのMan-proCTSA(繭由来CTSA前駆体)及びSG-proCTSA投与24時間後の大脳において、Ctsa及びNeu1活性が回復しており、その回復程度はSG-CTSAの方が高かった。繭由来Man-proCTSAはManレセプターを発現するミクログリアにのみ取り込まれたと考えられる。一方、SG-proCTSAは末端マンノース型とシアル酸含有糖鎖の両方を有するため、ミクログリア以外の細胞にも取り込まれたため、Man-proCTSAよりも高い活性の回復を示したことが示唆された。活性の回復は、ライソゾーム中に取り込まれたことを示唆している。
[実施例8] 繭由来CTSA前駆体(proCTSA)及びα2,6-SG-CTSAのGSモデルマウス尾静脈内投与
 GS(ガラクトシアリドーシス)モデルマウス(6週~7週齢成体マウス)に対し、TGカイコ繭由来CTSA前駆体のSG型糖鎖改変体であるSG-proCTSA(図10では、SGW群)を、尾静脈内に3 mg/kg体重で、毎週投与(計4回)した。実験は3回実施した。
 最終投与7日後に、各マウスを解剖し、肝臓、脾臓、心臓、腎臓、肺を摘出して、各臓器抽出液中のNeu活性、またその蓄積シアリル基質(シアル酸量)の減少を指標に、非投与群(PBS投与コントロール、図10ではCT群)、CHO細胞由来CTSA前駆体(CHO-proCTSA、図10ではCHO群)及びTGカイコ繭由来CTSA前駆体(Man型proCTSA、図10ではSW群)の投与群間の比較を行った。図10のWT群は野生型マウスである。
 また各CTSA前駆体の、第1回投与前(Pre)、第2回投与前(Day7)、第4回投与前(Day22)で採取した尿中の末端シアル酸含有糖鎖(シアリル糖鎖)量を、レゾルシノール法により定量し、投与後の尿中排泄量の減少を指標に、投与による有効性を評価した。
方法
  抽出液の作製
(1) 表10に示す組成で抽出バッファーを調製した。サンプル数+1本分を調製した。
Figure JPOXMLDOC01-appb-T000010
(2) サンプルに抽出バッファーを5倍量加え、ペッスルでホモジナイズした。
(3) タンパク定量・NEU1活性測定用に、抽出液を半量1.5mLチューブに分注した(遠心前サンプル)。
(4) 残りの抽出液を12000rpm, 4℃, 15min遠心した。
(5) 上清を回収した(遠心後サンプル)。 
NEU1活性測定
(1) 表11に示す組成で基質を調製した。サンプル数×2+2本分を調製した。
Figure JPOXMLDOC01-appb-T000011
(2) 遠心前サンプルを20μLずつ1.5mLチューブに分注した。酵素(-)も調製した。
(3) 調製した基質を20μLずつ加え、37℃, 30min, インキュベーションした。
(4) 0.2M Gly-NaOH (pH10.7)を370μL加え、反応を停止した。
(5) 表12のように検量線を作成した。
Figure JPOXMLDOC01-appb-T000012
(6) 各サンプル、検量線を200μLずつ96wellプレートにアプライし、460nmで蛍光測定した。
カテプシンA(Cathepsin A)の酵素活性測定
一次反応:Leuを遊離させる反応
(1) 表13に示す組成で反応液を調製した。サンプル数×2+2本分を調製した。
Figure JPOXMLDOC01-appb-T000013
(2) 遠心後、サンプル25μLずつ1.5mLチューブに分注(duplicate)で行い、基質(-)は各Sample 1つずつ調製した。計3本/サンプル数用意した。
(3) 1.5mLチューブのふたを全部開けておき、すばやく反応液25μLを入れた。基質(-)には反応液ではなく、0.2M NaOAc バッファー(pH5.6)を25μL加えた。
(4) 30min, 25℃でインキュベーションした。
(5) 100℃, 2min沸騰水につけて、反応停止した(1次反応液)。
(6) 表14に示すように検量線を作成した。
Figure JPOXMLDOC01-appb-T000014
二次反応:発色反応
(1) 二次反応混液を表15に示すように調製した。検量線の分も調製した。
Figure JPOXMLDOC01-appb-T000015
(2) 二次反応混液500μLを各サンプルと検量線に加え、37℃, 40min, インキュベーションした。
(3) 6N HCl 500μLずつ加え、反応停止した。
(4) 96wellプレートに300μLずつアプライし、OD540nmで吸光度を測定した。
(5) (4)の結果とタンパク定量の結果からCathA活性を算出した。
β-Hexの酵素活性測定
(1) 遠心後サンプルを15μLずつ分注した(duplicate)。
(2) 酵素(-)としてMQ-H2O 15μLを1.5mLチューブに分注した。
(3) MUG 15μLずつ加え、37℃, 15min, インキュベーションした。
(4) 0.2M Gly-NaOH (pH10.7)を380μL加え、反応停止した。
(5) 表16に示すように検量線を作成した。
Figure JPOXMLDOC01-appb-T000016
(6) 各サンプル、検量線を200μLずつ96wellプレートにアプライし、460nmで蛍光測定した。
β-Galの酵素活性測定
(1) 遠心後サンプルを15μLずつ分注した(duplicate)。
(2) 酵素(-)としてMQ-H2O 15μLを1.5mLチューブに分注した。
(3) 4MU-Gal 15μLずつ加え、37℃, 30min, インキュベーションした。
(4) 0.2M Gly-NaOH (pH10.7)を380μL加え、反応停止した。
(5) 表17に示すように検量線を作成した。
Figure JPOXMLDOC01-appb-T000017
(6) 各サンプル、検量線を200μLずつ96wellプレートにアプライし、460nmで蛍光測定した。
シアル酸定量
(1) 検量線としてシアル酸を表18に示すように調製した。0.2mLチューブを用いた。
Figure JPOXMLDOC01-appb-T000018
(2) 遠心前サンプルを50μL×3本、0.2mLチューブに分注した。
(3) 40mM NaIO4を10μLずつサンプルに加え、混和
(4) 以下のようにレゾルシノール(-)溶液、レゾルシノール溶液を作製した。
・レゾルシノール溶液 組成(1mL当たり)
  6(w/v)%レゾルシノール/18%HCl溶液      100μL
  6N HCl                      300μL
  0.185(w/v)% CuSO4               16μL
  MilliQ                      584μL
・レゾルシノール(-)溶液 組成(1mL当たり)
  6N HCl                    334μL
  0.185(w/v)% CuSO4                16μL
  MilliQ                      650μL
(5) 1本にはレゾルシノール(-)溶液、2本にレゾルシノール溶液を125μLずつサンプルに加え、混和した。
(6) サーマルサイクラーを用い、以下の処理を行った。
   4.0℃   5min
   99.9℃ 15min
   37.0℃
(7) Tert-ブチル-アルコールを125μLずつ96well プレートに分注した。
(8) 反応液とTert-ブチル-アルコール125μLとをwell内で混和した。
(9) OD630nmの吸光度を測定した(中央機器室プレートリーダー)。
 図10に、SG-proCTSA投与(SGW)群において、PBS投与(CT)群を100%としたときの、肝臓(図10A)、脾臓(図10B)及び心臓(図10C)における、Neu基質であるシアリル基質の蓄積量を示す。図10に示すように、肝臓、脾臓及び心臓で、シアル酸含量はWTと同程度まで減少していた。図11に、同様に腎臓(図11A)、肺(図11B)における、Neu基質であるシアリル基質の蓄積量を示す。図11に示すように、腎臓ではCHO-CTSA投与群でcontrolと比較してシアル酸量は減少していた。肺ではCHO-CTSA、SG-CTSA投与群でcontrolと比較して有意にシアル酸量が減少しており、SW-CTSA投与群でも減少傾向にあった。
  また、図12に、尿中排泄におけるNeu基質であるシアリル基質の蓄積量を示す。各個体のPre(投与前)の尿中シアル酸量を100として、D7(投与1回目の翌日)、D22(投与3回目の翌日)の尿中シアル酸量を表すと、CHO-CTSAおよびSG-CTSA投与群ではD22において、CTと比較して有意に尿中シアル酸量が減少した。SW-CTSA投与群でも有意差はつかなかったが尿中シアル酸量は減少傾向にあった。
 肝臓・脾臓・心臓においては、マクロファージ・単球等に存在するM6PR、ManRまたはSiaRを介してCHO由来M6P型proCTSA、TGカイコ繭由来Man型proCTSAまたはSG-proCTSAは、細胞内に取り込まれ、蓄積シアリル基質が有意に減少し、治療効果(有効性)が認められたと考えられる。
 腎臓・肺においては、組織構成細胞のM6PRを介して、CHO由来M6P型proCTSAが細胞内に取り込まれ、蓄積シアリル基質の有意な減少(有効性)が現れたと考えられる。SG型-proCTSAは、肺構成細胞に取り込まれ、基質の有意な減少作用を示す。しかしTGカイコ繭由来Man型proCTSAは、細胞内に取り込まれないため、有効性が現れないと考えられる。
 本GSモデルマウスにおける蓄積シアリル基質の尿中排泄に対し、CHO由来M6P型正常proCTSAまたはSG型-proCTSAの静脈内複数回投与の抑制作用を示した。
 肝臓、脾臓、心臓(以上、スライド8に記載)及び肺(TGカイコ繭由来のMan型proCTSAでは有意差なし)の結果及びシアリル基質(糖鎖)の尿中排泄の有意な減少は、SG-proCTSAの特異的な機能及び有効性を示している。
 本発明の末端にシアル酸を有する糖鎖に挿げ替えた加水分解酵素はライソゾーム病の治療に利用することができる。
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (12)

  1.  欠損によりライソゾーム病の原因となるライソゾーム中に存在する加水分解酵素であって、末端にシアル酸が付いた2分岐糖鎖を有する糖鎖を少なくとも1つ含む加水分解酵素。
  2.  欠損によりライソゾーム病の原因となるライソゾーム中に存在する加水分解酵素であって、末端にマンノースを有する元々有している糖鎖の少なくとも1つが末端にシアル酸を有する糖鎖に挿げ替えられている、請求項1記載の末端にシアル酸が付いた2分岐糖鎖を有する糖鎖を少なくとも1つ含む加水分解酵素。
  3.  α-L-イズロニダーゼ(IDUA)又はカテプシンA(CTSA)である、請求項1又は2に記載の加水分解酵素。
  4.  請求項1又は2に記載の加水分解酵素を有効成分として含む、ライソゾーム病治療薬。
  5.  請求項3記載の加水分解酵素を有効成分として含み、ライソゾーム病がムコ多糖症I型である、請求項4記載のライソゾーム病治療薬。
  6.  糖鎖の末端に含まれるシアル酸と細胞表面のシアル酸レセプターとの結合を介してライソゾーム中に取り込まれる、請求項4又は5に記載のライソゾーム病治療薬。
  7.  以下の(i)~(vi)のいずれかの、欠損によりライソゾーム病の原因となるライソゾーム中に存在する加水分解酵素であって、末端にシアル酸が付いた2分岐糖鎖を有する糖鎖を少なくとも1つ含む加水分解酵素の製造方法:
    (i)欠損によりライソゾーム病の原因となる加水分解酵素をコードする遺伝子を哺乳動物細胞に導入し、哺乳動物細胞で発現させる;
    (ii)欠損によりライソゾーム病の原因となる加水分解酵素をコードする遺伝子を、シアル酸転移酵素遺伝子を導入した昆虫細胞又はカイコ自体で発現させる;
    (iii)遺伝子組み換えにより、発現タンパク質にヒト型糖鎖が付くようにした酵母で発現させる;
    (iv)原核微生物で発現させたペプチドにジスルフィド結合により糖鎖を付加し、その後ペプチドを繋げる;
    (v)原核微生物で発現させたタンパク質に対して、末端にシアル酸が付いた2分岐糖鎖を有する糖オキサゾリン体を糖供与体とし、前記タンパク質を糖受容体とし、末端にシアル酸が付いた2分岐糖鎖を有する糖を前記タンパク質のリジン残基の1級アミンへ、付加させる;又は
    (vi)末端にシアル酸が付いた2分岐糖鎖を有するアスパラギンを出発原料に、ペプチド合成によってタンパク質を調製する。
  8.  欠損によりライソゾーム病の原因となる加水分解酵素と、末端シアル酸を有する糖鎖のドナーとなる糖タンパク質若しくは糖ペプチドと、エンドグリコシダーゼとを混合して反応させることにより、末端にシアル酸が付いた2分岐糖鎖を有する糖鎖を少なくとも1つ含む加水分解酵素を製造する方法。
  9.  エンドグリコシダーゼが、Endo-M、Endo-M D175Q、Endo-A、Endo-S、Endo-S D233Q、Endo-CC、Endo-SB、Endo-CoM、Endo-CE、Endo-HS、Endo-Tsp1006、Endo-Tsp1263及びEndo-Tsp1457、並びにエンドグリコシダーゼの180番目のアスパラギンを他のアミノ酸に変換したEndo-CC N180H、Endo-CC N180A、Endo-CC N180D及びEndo-CC N180Qからなる群から選択される、請求項8記載の方法。
  10.  加水分解酵素がα-L-イズロニダーゼ(IDUA)又はカテプシンA(CTSA)である、請求項8又は9に記載の方法。
  11.  欠損によりライソゾーム病の原因となるライソゾーム中に存在する加水分解酵素であって、末端にシアル酸が付いた2分岐糖鎖を有する糖鎖を少なくとも1つ含む加水分解酵素を、糖鎖の末端に含まれるシアル酸と細胞表面のシアル酸レセプターとの結合を介してライソゾーム中に取り込ませることを含む、前記加水分解酵素をライソゾームにデリバリーする方法。
  12.  加水分解酵素がα-L-イズロニダーゼ(IDUA)又はカテプシンA(CTSA)である、請求項11記載の方法。
PCT/JP2021/048780 2021-01-04 2021-12-28 ライソゾームを標的とした新規ddsの開発 WO2022145449A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-000120 2021-01-04
JP2021000120 2021-01-04
JP2021-178052 2021-10-29
JP2021178052A JP2022105471A (ja) 2021-01-04 2021-10-29 ライソゾームを標的とした新規ddsの開発

Publications (1)

Publication Number Publication Date
WO2022145449A1 true WO2022145449A1 (ja) 2022-07-07

Family

ID=82260775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048780 WO2022145449A1 (ja) 2021-01-04 2021-12-28 ライソゾームを標的とした新規ddsの開発

Country Status (1)

Country Link
WO (1) WO2022145449A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004502456A (ja) * 1999-11-12 2004-01-29 バイオマリン ファーマシューティカル インコーポレイテッド 組換えα−L−イズロニダーゼ、その生成及び精製方法及びその欠失により引き起こされる疾病の処理方法
JP2020010662A (ja) * 2018-07-20 2020-01-23 国立大学法人徳島大学 糖転移による糖タンパク質、糖ペプチドの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004502456A (ja) * 1999-11-12 2004-01-29 バイオマリン ファーマシューティカル インコーポレイテッド 組換えα−L−イズロニダーゼ、その生成及び精製方法及びその欠失により引き起こされる疾病の処理方法
JP2020010662A (ja) * 2018-07-20 2020-01-23 国立大学法人徳島大学 糖転移による糖タンパク質、糖ペプチドの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOJI ITO, ET AL.: "Development of pharmaceuticals for humans and animals using silkworms.", RESEARCH FOR AGRI-HEALTH TRANSLATIONAL RESEARCH PROJECT, AGRIKNOWLEDGE, JAPAN, 1 March 2016 (2016-03-01), Japan, pages 1 - 386, XP055948103, Retrieved from the Internet <URL:https://agriknowledge.affrc.go.jp/RN/2039017856.pdf> [retrieved on 20220802] *

Similar Documents

Publication Publication Date Title
US9932568B2 (en) Peptide linkers for polypeptide compositions and methods for using same
Goto Protein O-glycosylation in fungi: diverse structures and multiple functions
CN103328646B (zh) 能够使甘露糖-1-磷酸-6-甘露糖连接脱帽并使磷酸化的n-聚糖脱甘露糖基化的甘露糖苷酶及促进糖蛋白的哺乳动物细胞摄取的方法
Renkema et al. Synthesis, sorting, and processing into distinct isoforms of human macrophage chitotriosidase
JP2007523648A5 (ja)
Katayama et al. Novel bifidobacterial glycosidases acting on sugar chains of mucin glycoproteins
KR101824743B1 (ko) 만노스-1-포스포-6-만노스 결합의 포스포-6-만노스로의 가수분해
JP2007523648A (ja) 高リン酸化リソソーム酵素製剤及びそれらの使用
Novozhilova et al. Structure, functions, and biosynthesis of glycoconjugates of Leishmania spp. cell surface
JP2013539974A5 (ja)
JPH11508129A (ja) ヒト由来キチナーゼ及び組換え技術によるその産生、並びにそれを用いたキチン分解、並びに感染症に対する治療及び予防におけるその用途
AU2019202865B2 (en) Peptide linkers for polypeptide compositions and methods for using same
Konishi et al. Properties of family 79 β-glucuronidases that hydrolyze β-glucuronosyl and 4-O-methyl-β-glucuronosyl residues of arabinogalactan-protein
US20080220473A1 (en) Endo-N-Acetyl-Beta-D-Glucosaminidase Enzymes of Filamentous Fungi
Espejo-Mojica et al. Human recombinant lysosomal enzymes produced in microorganisms
JP2022105471A (ja) ライソゾームを標的とした新規ddsの開発
WO2003057138A2 (en) Expression of lysosomal hydrolase in cells expressing pro-n-acetylglucosamine-1-phosphodiester alpha-n-acetyl glucosimanidase
WO2022145449A1 (ja) ライソゾームを標的とした新規ddsの開発
JPWO2002018614A1 (ja) α−ガラクトシル基を含むオリゴ糖の増収方法及び抗カンジダ組成物
Winchester Lysosomal metabolism of glycoconjugates
Anisha α-Galactosidases
KR101638930B1 (ko) YlMpo1 단백질을 이용한 만노스인산화 반응
JP2023539234A (ja) フルクタナーゼを含む口腔ケア組成物
Kermode et al. Plant recombinant lysosomal enzymes as replacement therapeutics for lysosomal storage diseases: unique processing for lysosomal delivery and efficacy
JP6996676B2 (ja) マンノース-6-リン酸基含有糖蛋白質の製造方法、及び蛍光基結合型マンノース-6-リン酸基含有糖蛋白質の細胞内分布を検出する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915307

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21915307

Country of ref document: EP

Kind code of ref document: A1