WO2022145236A1 - 情報処理装置及びプログラム - Google Patents

情報処理装置及びプログラム Download PDF

Info

Publication number
WO2022145236A1
WO2022145236A1 PCT/JP2021/046301 JP2021046301W WO2022145236A1 WO 2022145236 A1 WO2022145236 A1 WO 2022145236A1 JP 2021046301 W JP2021046301 W JP 2021046301W WO 2022145236 A1 WO2022145236 A1 WO 2022145236A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
processor
transport
article
transport mechanism
Prior art date
Application number
PCT/JP2021/046301
Other languages
English (en)
French (fr)
Inventor
杜朗 鳥居
泰弘 大川
琢磨 赤木
孝 平山
雄飛 南埜
伶弥 浅沼
弘章 藤原
Original Assignee
株式会社 東芝
東芝インフラシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝インフラシステムズ株式会社 filed Critical 株式会社 東芝
Priority to EP21915097.6A priority Critical patent/EP4273074A1/en
Priority to CA3203679A priority patent/CA3203679A1/en
Publication of WO2022145236A1 publication Critical patent/WO2022145236A1/ja
Priority to US18/345,271 priority patent/US20230348199A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/22Devices influencing the relative position or the attitude of articles during transit by conveyors
    • B65G47/26Devices influencing the relative position or the attitude of articles during transit by conveyors arranging the articles, e.g. varying spacing between individual articles
    • B65G47/30Devices influencing the relative position or the attitude of articles during transit by conveyors arranging the articles, e.g. varying spacing between individual articles during transit by a series of conveyors
    • B65G47/31Devices influencing the relative position or the attitude of articles during transit by conveyors arranging the articles, e.g. varying spacing between individual articles during transit by a series of conveyors by varying the relative speeds of the conveyors forming the series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/08Control devices operated by article or material being fed, conveyed or discharged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/10Sequence control of conveyors operating in combination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/22Devices influencing the relative position or the attitude of articles during transit by conveyors
    • B65G47/26Devices influencing the relative position or the attitude of articles during transit by conveyors arranging the articles, e.g. varying spacing between individual articles
    • B65G47/30Devices influencing the relative position or the attitude of articles during transit by conveyors arranging the articles, e.g. varying spacing between individual articles during transit by a series of conveyors

Definitions

  • An embodiment of the present invention relates to an information processing device and a program.
  • a system that separates and aligns items such as luggage supplied from the outside.
  • the system consists of a singulator that unifies and aligns articles.
  • the system sequentially supplies articles to the singer using a belt conveyor or the like.
  • the system supplies an article that exceeds the processing capacity of the singer to the singer, it will fail to be integrated and will supply the luggage to the singer again. As a result, the system throughput is reduced.
  • the information processing apparatus includes a first communication unit, a second communication unit, and a processor.
  • the first communication unit is a measuring device and data for measuring the distance to each part in a predetermined area including the article transported to the first transport mechanism in the first transport mechanism for transporting the article to the external device.
  • the second communication unit transmits / receives data to / from the speed control mechanism that controls the transport speed of the second transport mechanism that transports the article to the first transport mechanism.
  • the processor acquires distance information indicating the distance to each unit in the predetermined area from the measuring device through the first communication unit, and the transfer speed of the second transfer mechanism is based on the acquired distance information. Is set, and speed information indicating the set transport speed of the second transport mechanism is transmitted to the speed control mechanism through the second communication unit.
  • FIG. 1 is a diagram showing a configuration example of a distribution system according to an embodiment.
  • FIG. 2 is a block diagram showing a configuration example of the control device according to the embodiment.
  • FIG. 3 is a diagram showing an operation example of the distribution system according to the embodiment.
  • FIG. 4 is a diagram showing an example of a two-dimensional image according to an embodiment.
  • FIG. 5 is a diagram showing an example of a distance image according to an embodiment.
  • FIG. 6 is a diagram showing an example of a two-dimensional image according to an embodiment.
  • FIG. 7 is a diagram showing an example of a distance image according to an embodiment.
  • FIG. 8 is a diagram showing an example of a two-dimensional image according to an embodiment.
  • FIG. 9 is a diagram showing an example of a two-dimensional image according to an embodiment.
  • FIG. 10 is a diagram showing an example of a two-dimensional image according to an embodiment.
  • FIG. 11 is a diagram showing an operation example of the distribution system according to the embodiment.
  • FIG. 12 is a flowchart showing an operation example of the distribution system according to the embodiment.
  • the logistics system supplies goods to the singer.
  • the distribution system transports the goods loaded by the robot or the operator on a conveyor belt for loading.
  • the distribution system transfers the goods from the loading belt conveyor to the transport belt conveyor connected to the singer.
  • the distribution system supplies the goods to the singer using a conveyor belt for transportation.
  • the distribution system supplies articles that are unitized and aligned by a singulator to other devices and the like.
  • distribution systems are used in warehouses, factories, distribution centers, and the like.
  • FIG. 1 shows a configuration example of the distribution system 1.
  • the distribution system 1 includes a loading belt conveyor 2, a conveyor belt conveyor 3, a singer 4, a three-dimensional camera 5, a speed control mechanism 6, an angle control mechanism 7, a control device 10, a network 20, and the like. ..
  • the three-dimensional camera 5, the speed control mechanism 6, the angle control mechanism 7, and the control device 10 are communicably connected to the network 20.
  • the speed control mechanism 6 is physically connected to the loading belt conveyor 2 and the like.
  • the angle control mechanism 7 is physically connected to a conveyor belt conveyor 3 or the like.
  • the conveyor belt conveyor 3 is physically connected to the singer 4.
  • the distribution system 1 unifies and aligns the articles 100.
  • the distribution system 1 may have a configuration as required in addition to the configuration shown in FIG. 1, or a specific configuration may be excluded from the distribution system 1.
  • the singer 4 unifies the articles 100 supplied to the input section of the singer 4 (divided into one) and aligns them in a predetermined direction.
  • the singer 4 supplies the unitized and aligned articles 100 to other devices.
  • the singer 4 can process the article 100 at a predetermined flow rate (value based on the number or the like) per unit time.
  • a predetermined flow rate value based on the number or the like
  • the singer 4 throws the unprocessable article 100 into a reject box or the like. Further, even when the articles 100 overlap, the singer 4 throws the overlapping articles 100 and the like into the reject box and the like.
  • the singer 4 is composed of a transport roller, a guide wall, and the like.
  • the singer 4 transports the article 100 by a transport roller and presses it against the guide wall.
  • the articles 100 pressed against the guide wall are aligned in a predetermined direction.
  • the singer 4 conveys the article 100 along the guide wall and supplies it to another device.
  • the configuration of the singer 4 is not limited to a specific configuration.
  • the transport belt conveyor 3 (first transport mechanism) is a conveyor belt conveyor for transporting the article 100 to the singer 4. That is, the conveyor belt conveyor 3 conveys the article 100 toward the singer 4 (from left to right in FIG. 1). One end of the conveyor belt conveyor 3 (the right end in FIG. 1) is connected to the loading portion of the singer. The conveyor belt conveyor 3 supplies the article 100 from one end to the charging section of the singer 4.
  • the conveyor belt conveyor 3 is composed of a belt formed in an annular shape.
  • the conveyor belt conveyor 3 is supported from the inside by a roller or the like formed inside.
  • the conveyor belt conveyor 3 is rotated by the rotation of a roller connected to a motor or the like.
  • the conveyor belt conveyor 3 rotates at a predetermined constant speed. That is, the conveyor belt conveyor 3 conveys the article 100 at a constant speed.
  • the loading belt conveyor 2 (second transport mechanism) is a loading belt conveyor for loading articles 100 into the transport belt conveyor 3. That is, the loading belt conveyor 2 conveys the article 100 toward the conveyor belt conveyor 3 (from left to right in FIG. 1). One end of the loading belt conveyor 2 (right end in FIG. 1) is connected to the other end (left end) of the conveyor belt conveyor 3. The loading belt conveyor 2 supplies the article 100 from one end of itself to the other end of the transport belt conveyor 3.
  • the loading belt conveyor 2 accepts loading of the article 100 at the other end.
  • the other end of the loading belt conveyor 2 is connected to a container into which the article 100 is loaded.
  • the article 100 is loaded into the container by a robot or an operator.
  • the loading belt conveyor 2 picks up the article 100 loaded in the container and transports it to the transport belt conveyor 3.
  • the loading belt conveyor 2 is composed of a belt formed in an annular shape.
  • the loading belt conveyor 2 is supported from the inside by a roller or the like formed inside.
  • the loading belt conveyor 2 is rotated by the rotation of a roller connected to a motor or the like.
  • the input belt conveyor 2 is horizontally formed on an extension line of the transfer belt conveyor 3.
  • the three-dimensional camera 5 (measuring device) is composed of a two-dimensional camera that photographs a photographing area including an article 100 on a conveyor belt conveyor 3 and a distance sensor that measures a distance between each part of the photographing area.
  • the three-dimensional camera 5 is installed downward on the upper part of the conveyor belt conveyor 3.
  • the two-dimensional camera photographs the article 100 being conveyed by the conveyor belt conveyor 3.
  • the two-dimensional camera captures the article 100 and acquires an image (two-dimensional image).
  • the two-dimensional camera captures the article 100 in color.
  • a two-dimensional camera is composed of a CCD (Charge Coupled Device) or the like.
  • the distance sensor measures the distance between each part of the shooting area and the distance sensor (or the distance to the plane horizontal to the distance sensor).
  • the distance sensor generates distance information indicating the distance to each part.
  • the distance information indicates the coordinates of each point in a predetermined three-dimensional coordinate system.
  • the distance sensor includes a light source and a sensor that detects the reflected light of the light emitted from the light source.
  • the distance sensor measures the distance based on the reflected light of the light (visible or invisible) emitted from the light source.
  • the distance sensor may perform a ToF (Time-of-Flit) method in which the distance to the measurement target is measured based on the time until the irradiated light is reflected by the measurement target and reaches the distance sensor.
  • ToF Time-of-Flit
  • the distance sensor may calculate the distance based on the parallax of each image taken by the two cameras (stereo camera).
  • the configuration of the distance sensor is not limited to a specific configuration.
  • the distance sensor When the distance sensor is composed of a stereo camera, the distance sensor may include a function as a two-dimensional camera.
  • the three-dimensional camera 5 transmits a two-dimensional image and distance information to the control device 10.
  • the speed control mechanism 6 controls the speed at which the loading belt conveyor 2 conveys the article 100 according to the signal from the control device 10. That is, the speed control mechanism 6 controls the rotation speed (conveyance speed) of the loading belt conveyor 2.
  • the speed control mechanism 6 receives speed information indicating the rotation speed of the loading belt conveyor 2 from the control device 10.
  • the speed control mechanism 6 controls the rotation speed of the loading belt conveyor 2 to the rotation speed indicated by the speed information.
  • the speed control mechanism 6 is composed of a motor connected to a roller that rotates the input belt conveyor 2, a drive circuit that drives the motor, and the like.
  • the drive circuit of the speed control mechanism 6 generates a pulse or the like to be supplied to the motor according to the signal from the control device 10.
  • the motor of the speed control mechanism 6 is driven based on a pulse or the like from the drive circuit.
  • the angle control mechanism 7 controls the angle between the input belt conveyor 2 and the conveyor belt conveyor 3 according to the signal from the control device 10. That is, the angle control mechanism 7 controls the angle between the loading belt conveyor 2 and the transport belt conveyor 3 with the axis orthogonal to the traveling direction of the article 100 as the central axis in the horizontal plane.
  • the angle control mechanism 7 changes the angle between the input belt conveyor 2 and the transfer belt conveyor 3 while maintaining the connection between one end (right end) of the input belt conveyor 2 and the other end (left end) of the transfer belt conveyor 3.
  • the angle control mechanism 7 controls the elevation angle as the angle of the conveyor belt conveyor 3. That is, the angle control mechanism 7 controls the conveyor belt conveyor 3 from a horizontal state to a predetermined angle.
  • the angle control mechanism 7 receives angle information indicating the angle of the conveyor belt conveyor 3 from the control device 10.
  • the angle control mechanism 7 controls the angle of the conveyor belt conveyor 3 to the angle indicated by the angle information.
  • the angle control mechanism 7 includes an actuator that changes the angle of the conveyor belt conveyor 3, a drive circuit that controls the actuator, and the like.
  • the drive circuit of the angle control mechanism 7 generates electric power or the like to be supplied to the actuator according to a signal from the control device 10.
  • the motor of the angle control mechanism 7 is driven based on the electric power from the drive circuit or the like.
  • the control device 10 (information processing device) controls the rotation speed of the input belt conveyor 2 and the angle of the conveyor belt conveyor 3 based on the two-dimensional image from the three-dimensional camera 5 and the distance information.
  • the control device 10 will be described in detail later.
  • the network 20 relays communication between the three-dimensional camera 5, the speed control mechanism 6, the angle control mechanism 7, and the control device 10.
  • the network 20 is a LAN (Local Area Network) or the like.
  • FIG. 2 shows a configuration example of the control device 10.
  • the control device 10 includes a processor 11, a memory 12, an operation unit 13, a display unit 14, a camera interface 15, a speed control interface 16, an angle control interface 17, and the like.
  • the processor 11 is connected to the memory 12, the operation unit 13, the display unit 14, the camera interface 15, the speed control interface 16, and the angle control interface 17 through a data bus or a predetermined interface.
  • control device 10 may have a configuration as required in addition to the configuration as shown in FIG. 2, or a specific configuration may be excluded from the control device 10.
  • the processor 11 controls the operation of the entire control device 10.
  • the processor 11 controls the speed control mechanism 6, the angle control mechanism 7, and the like.
  • the processor 11 is composed of a CPU (Central Processing Unit) and the like. Further, the processor 11 may be configured by an ASIC (Application Specific Integrated Circuit) or the like. Further, the processor 11 may be configured by an FPGA (Field Programmable Gate Array) or the like.
  • the memory 12 stores various data.
  • the memory 12 functions as a ROM, RAM and NVM.
  • the memory 12 stores a control program, control data, and the like.
  • the control program and control data are preliminarily incorporated according to the specifications of the control device 10.
  • the control program is a program that supports the functions realized by the control device 10.
  • the memory 12 temporarily stores data and the like being processed by the processor 11. Further, the memory 12 may store data necessary for executing the application program, an execution result of the application program, and the like.
  • the operation unit 13 receives inputs of various operations from the operator.
  • the operation unit 13 transmits a signal indicating the input operation to the processor 11.
  • the operation unit 13 may be composed of a touch panel.
  • the display unit 14 displays the image data from the processor 11.
  • the display unit 14 is composed of a liquid crystal monitor.
  • the operation unit 13 is composed of a touch panel, the display unit 14 may be integrally formed with the operation unit 13.
  • the camera interface 15 (first communication unit) is an interface for transmitting and receiving data to and from the three-dimensional camera 5. For example, the camera interface 15 transmits a signal instructing the three-dimensional camera 5 to take a picture and measure a distance under the control of the processor 11. Further, the camera interface 15 acquires a two-dimensional image and distance information from the three-dimensional camera 5. For example, the camera interface 15 supports a LAN connection.
  • the speed control interface 16 (second communication unit) is an interface for transmitting and receiving data to and from the speed control mechanism 6.
  • the speed control interface 16 supplies speed information indicating the rotation speed of the input belt conveyor 2 to the speed control mechanism 6 according to the control from the processor 11.
  • the speed control interface 16 supports a LAN connection.
  • the angle control interface 17 (third communication unit) is an interface for transmitting and receiving data to and from the angle control mechanism 7.
  • the angle control interface 17 supplies angle information indicating the angle of the conveyor belt conveyor 3 to the angle control mechanism 7 according to the control from the processor 11.
  • the angle control interface 17 supports a LAN connection.
  • the speed control interface 16 and the angle control interface 17 may be integrally formed.
  • the control device 10 is a desktop PC, a notebook PC, a tablet PC, or the like.
  • the function realized by the processor 11 is realized by the processor 11 executing a program stored in the internal memory, the memory 12, or the like.
  • the processor 11 has a function of acquiring a two-dimensional image obtained by photographing the article 100 and a distance information corresponding to the two-dimensional image.
  • FIG. 3 shows an operation example in which the processor 11 acquires a two-dimensional image and distance information.
  • the article 100 is loaded on the conveyor belt conveyor 3. Further, it is assumed that the conveyor belt conveyor 3 rotates at a predetermined speed to convey the article 100. It is assumed that the loading belt conveyor 2 also rotates in the same manner to convey the article 100.
  • the processor 11 transmits a signal instructing shooting and distance measurement to the three-dimensional camera 5 through the camera interface 15 at a predetermined timing (for example, a predetermined interval).
  • the three-dimensional camera 5 receives the signal. Upon receiving the signal, the three-dimensional camera 5 acquires the two-dimensional image and the distance information corresponding to the two-dimensional image by using the two-dimensional camera and the distance sensor. When the two-dimensional image and the distance information are acquired, the three-dimensional camera 5 transmits the acquired two-dimensional image and the distance information to the control device 10.
  • the processor 11 acquires a two-dimensional image and distance information from the three-dimensional camera 5 through the camera interface 15.
  • the processor 11 has a function of extracting an article region in which the article 100 is captured from the two-dimensional image based on the two-dimensional image and the distance information. For example, the processor 11 extracts a region (candidate region) that is a candidate for the article region based on the two-dimensional image. The processor 11 extracts a candidate region according to a predetermined algorithm such as edge detection or image processing using a neural network.
  • FIG. 4 shows an example of a two-dimensional image acquired by the processor 11. As shown in FIG. 4, the two-dimensional image includes three articles 100 loaded on the conveyor belt conveyor 3.
  • the processor 11 extracts a candidate area of the article area in which the article 100 is captured according to a predetermined algorithm.
  • the processor 11 extracts a candidate area based on the distance information.
  • the processor 11 generates a distance image showing a distance at each dot based on the distance information.
  • the distance image has a luminance value corresponding to the distance at each dot.
  • FIG. 5 shows an example of a distance image generated by the processor 11.
  • each dot of the distance image has a lower luminance value as it approaches the three-dimensional camera 5.
  • each dot in the distance image has a predetermined luminance value (eg, 255) that serves as a reference for the distance from the conveyor belt conveyor 3. That is, each dot of the distance image has a luminance value according to the height from the conveyor belt conveyor 3.
  • the processor 11 extracts a candidate area based on the distance image. For example, the processor 11 extracts a region having a luminance value higher than a predetermined threshold value as a candidate region.
  • the processor 11 extracts an article area based on a candidate area for a two-dimensional image and a candidate area for a distance image. For example, when a plurality of distance image candidate regions exist in the two-dimensional image candidate region, the processor 11 extracts the distance image candidate region as an article region. Further, when a plurality of candidate regions for a two-dimensional image exist in the candidate region for a distance image, the processor 11 extracts the candidate region for the two-dimensional image as an article region.
  • the processor 11 may delete the shadow portion based on the distance image to extract the article region.
  • the processor 11 may extract the article region based on the two-dimensional image without using the distance information.
  • the processor 11 may extract the article region based on the distance information without using the two-dimensional image.
  • the method by which the processor 11 extracts the article region is not limited to a specific method.
  • the processor 11 has a function of calculating the flow rate of the article 100 reflected in the two-dimensional image.
  • the flow rate is an index related to the amount of articles 100 that the conveyor belt conveyor 3 conveys to the singer 4.
  • the flow rate is an index based on the number of articles 100 reflected in the two-dimensional image, the volume of the articles 100, and the ratio (density) occupied by the article region in the two-dimensional image.
  • the flow rate is a value obtained by substituting the number of articles 100, the volume of articles 100, and the density into a predetermined evaluation function.
  • the processor 11 specifies the number of articles 100 based on the extracted article area. That is, the processor 11 specifies the number of article regions as the number of articles 100.
  • the processor 11 calculates the volume of the article 100 based on the article area and the distance information. Here, the processor 11 calculates the total volume of the articles 100 reflected in the two-dimensional image.
  • the processor 11 calculates the area of the article area.
  • the processor 11 calculates the height of the article region (height from the conveyor belt conveyor 3) based on the distance information.
  • the processor 11 integrates the height into the area and calculates the volume of the article 100.
  • the processor 11 performs the same operation on each article 100 to calculate the volume of each article 100.
  • the processor 11 adds up the volumes.
  • the processor 11 calculates the density from the two-dimensional image and the article area. For example, the processor 11 adds up the areas of each article area. When the areas of each article area are added up, the processor 11 calculates the density by subtracting the totaled area by the area of the two-dimensional image.
  • the processor 11 calculates the flow rate based on the number, volume and density.
  • the method by which the processor 11 calculates the flow rate is not limited to a specific method.
  • the processor 11 has a function of detecting the overlap of the articles 100 based on the two-dimensional image and the distance information.
  • FIG. 6 shows an example of a two-dimensional image showing the overlapping articles 100. In the example shown in FIG. 6, one article 100 is superposed on the other article 100 on the conveyor belt conveyor 3.
  • FIG. 7 shows an example of a distance image corresponding to the two-dimensional image of FIG. As shown in FIG. 7, the article area of the article 100 overlapping the other article 100 is higher than the other article area.
  • the processor 11 extracts the article area based on the two-dimensional image, the distance information, and the like. When the article regions are extracted, the processor 11 determines whether the extracted article regions overlap each other. When it is determined that the article regions are overlapped with each other, the processor 11 determines that the articles 100 are overlapped with each other.
  • the processor 11 may detect the overlap of the articles 100 based on the height of each dot in the article area. For example, the processor 11 may determine that the articles 100 overlap each other when the height difference (for example, the difference between the highest point and the lowest point) exceeds a predetermined threshold value in the article region.
  • the height difference for example, the difference between the highest point and the lowest point
  • the method by which the processor 11 detects the overlap of the articles 100 is not limited to a specific method.
  • the processor 11 has a function of controlling the rotation speed of the input belt conveyor 2 based on the calculated flow rate.
  • the loading belt conveyor 2 is rotated at a predetermined speed by the speed control mechanism 6.
  • the processor 11 compares the flow rate with a predetermined reference amount.
  • the reference amount is the flow rate that can be processed by the singer 4 (or the upper limit of the flow rate that can be processed).
  • the processor 11 changes the speed of the loading belt conveyor 2 when the difference between the flow rate and the reference amount exceeds a predetermined threshold value.
  • FIG. 8 shows an example of a two-dimensional image showing an article 100 having a flow rate smaller than a reference amount. As shown in FIG. 8, the two-dimensional image captures a relatively sparse article 100.
  • the processor 11 sets a rotation speed faster than the current rotation speed of the input belt conveyor 2.
  • the processor 11 may set a rotation speed by adding a predetermined value from the current rotation speed. Further, the processor 11 may set the rotation speed based on the difference between the flow rate and the reference amount. For example, the processor 11 may set a faster rotation speed as the difference between the flow rate and the reference amount is larger.
  • the processor 11 When a rotation speed higher than the current rotation speed is set, the processor 11 generates speed information indicating the set rotation speed. When the speed information is generated, the processor 11 transmits the generated speed information to the speed control mechanism 6 through the speed control interface 16.
  • the speed control mechanism 6 receives the speed information from the control device 10. Upon receiving the speed information, the speed control mechanism 6 controls the rotation speed of the input belt conveyor 2 to the rotation speed indicated by the received speed information.
  • FIG. 9 shows an example of a two-dimensional image showing an article 100 having a flow rate whose difference from a reference amount is smaller than a predetermined threshold value. As shown in FIG. 9, the two-dimensional image captures more articles 100 as compared to the two-dimensional image of FIG.
  • the processor 11 When the difference between the flow rate and the reference amount is also small by a predetermined threshold value, the processor 11 generates speed information indicating the current rotation speed of the input belt conveyor 2. When the speed information is generated, the processor 11 transmits the generated speed information to the speed control mechanism 6 through the speed control interface 16.
  • the speed control mechanism 6 receives the speed information from the control device 10. Upon receiving the speed information, the speed control mechanism 6 controls the rotation speed of the input belt conveyor 2 to the rotation speed indicated by the received speed information. That is, the speed control mechanism 6 maintains the current rotation speed.
  • the processor 11 does not have to transmit the speed information to the speed control mechanism 6.
  • FIG. 10 shows an example of a two-dimensional image showing an article 100 having a flow rate larger than a reference amount. As shown in FIG. 10, the two-dimensional image captures more articles 100 than the two-dimensional image of FIG.
  • the processor 11 sets a rotation speed slower than the current rotation speed of the input belt conveyor 2.
  • the processor 11 may set a rotation speed obtained by subtracting a predetermined value from the current rotation speed. Further, the processor 11 may set the rotation speed based on the difference between the flow rate and the reference amount. For example, the processor 11 may set a slower rotation speed as the difference between the flow rate and the reference amount is larger.
  • the processor 11 When a rotation speed slower than the current rotation speed is set, the processor 11 generates speed information indicating the set rotation speed. When the speed information is generated, the processor 11 transmits the generated speed information to the speed control mechanism 6 through the speed control interface 16.
  • the speed control mechanism 6 receives the speed information from the control device 10. Upon receiving the speed information, the speed control mechanism 6 controls the rotation speed of the input belt conveyor 2 to the rotation speed indicated by the received speed information.
  • the processor 11 has a function of controlling the angle of the conveyor belt conveyor 3 when the overlap of the articles 100 is detected.
  • the conveyor belt conveyor 3 is horizontal.
  • the processor 11 detects the overlap of the articles 100 (for example, in the state of FIG. 10)
  • the processor 11 changes the angle between the loading belt conveyor 2 and the transport belt conveyor 3. That is, the processor 11 makes an angle between the input belt conveyor 2 and the transport belt conveyor 3 from the state where they are on a straight line.
  • the processor 11 uses the angle control mechanism 7 to change the angle of the conveyor belt conveyor 3 from the horizontal state (here, 0 degrees) to a predetermined value.
  • the processor 11 sets the angle of the conveyor belt conveyor 3. For example, the processor 11 sets a predetermined angle. Further, the processor 11 may set an angle obtained by adding or subtracting a predetermined value to the current angle of the conveyor belt conveyor 3.
  • the processor 11 When the angle of the conveyor belt conveyor 3 is set, the processor 11 generates angle information indicating the set angle. When the angle information is generated, the processor 11 transmits the generated angle information to the angle control mechanism 7 through the angle control interface 17.
  • the angle control mechanism 7 receives the angle information from the control device 10. Upon receiving the angle information, the angle control mechanism 7 controls the angle of the conveyor belt conveyor 3 to the angle indicated by the received angle information.
  • FIG. 11 shows an example in which the processor 11 changes the angle of the conveyor belt conveyor 3.
  • the processor 11 changes the angle of the conveyor belt conveyor 3 so that the conveyor belt conveyor 3 faces upward.
  • the processor 11 may change the angle of the conveyor belt conveyor 3 so that the conveyor belt conveyor 3 faces downward. Further, the processor 11 may further change the angle of the conveyor belt conveyor 3 when the angle of the conveyor belt conveyor 3 is changed but the overlap of the articles 100 is not eliminated. Further, the processor 11 may return the angle of the conveyor belt conveyor 3 to the horizontal when the overlap of the articles 100 is eliminated.
  • FIG. 12 is a flowchart for explaining an operation example of the control device 10.
  • the loading belt conveyor 2 rotates at a predetermined speed to convey the article 100.
  • the conveyor belt conveyor 3 rotates at a predetermined speed and conveys the article 100 from the input belt conveyor 2 to the singer 4.
  • the processor 11 of the control device 10 acquires a two-dimensional image and distance information from the three-dimensional camera 5 through the camera interface 15 (S11). Upon acquiring the two-dimensional image and the distance information, the processor 11 extracts the article region based on the two-dimensional image and the distance information (S12).
  • the processor 11 calculates the flow rate based on the article area and the like (S13). When the flow rate is calculated, the processor 11 determines whether the flow rate is smaller than the reference amount (S14).
  • the processor 11 sets a rotation speed higher than the current rotation speed of the input belt conveyor 2 (S15).
  • the processor 11 determines whether the flow rate is larger than the reference amount (S16).
  • the processor 11 sets a rotation speed slower than the current rotation speed of the input belt conveyor 2 (S17).
  • the processor 11 sets the current rotation speed of the input belt conveyor 2 (S18).
  • the processor 11 determines whether the articles 100 overlap (S20).
  • the processor 11 transmits angle information indicating a predetermined angle to the angle control mechanism 7 through the angle control interface 17 (S21).
  • the processor 11 When it is determined that the articles 100 do not overlap (S20, NO), or when the angle information is transmitted to the angle control mechanism 7 (S21), the processor 11 returns to S11. The processor 11 may return to S11 after waiting for a predetermined time.
  • the three-dimensional camera 5 may capture the article 100 on the input belt conveyor 2. In this case, the three-dimensional camera 5 may measure the distance to each part on the input belt conveyor 2.
  • the processor 11 may display the rotation speed of the input belt conveyor 2 on the display unit 14 or the like. Further, the processor 11 may display an alert or the like on the display unit 14 or the like when the overlap of the articles 100 is detected.
  • the physical distribution system 1 may be individually provided with a two-dimensional camera that captures an image and a distance sensor that measures the distance.
  • the distribution system configured as described above calculates the flow rate of the goods supplied to the singer.
  • the distribution system controls the rotation speed of the loading belt conveyor for loading the goods so that the flow rate becomes the reference amount.
  • the logistics system can supply the singer with an appropriate amount of goods. Therefore, the physical distribution system can improve the throughput.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Conveyors (AREA)

Abstract

供給する物品の量を効果的に制御することができる情報処理装置及びプログラムを提供する。実施形態によれば、情報処理装置は、第1の通信部と、第2の通信部と、プロセッサと、を備える。第1の通信部は、外部装置に物品を搬送する第1の搬送機構において前記第1の搬送機構に搬送される前記物品を含む所定の領域内の各部との距離を測定する測定装置とデータを送受信する。第2の通信部は、前記第1の搬送機構に前記物品を搬送する第2の搬送機構の搬送速度を制御する速度制御機構とデータを送受信する。プロセッサは、前記第1の通信部を通じて、前記所定の領域内の各部との距離を示す距離情報を前記測定装置から取得し、取得した前記距離情報に基づいて前記第2の搬送機構の搬送速度を設定し、前記第2の通信部を通じて、設定された前記第2の搬送機構の搬送速度を示す速度情報を前記速度制御機構に送信する。

Description

情報処理装置及びプログラム
 本発明の実施形態は、情報処理装置及びプログラムに関する。
 外部から供給される荷物などの物品を単体化し整列させるシステムが提供されている。システムは、物品を単体化し整列させるシンギュレータなどから構成される。システムは、ベルトコンベアなどを用いてシンギュレータに物品を逐次供給する。
 システムは、シンギュレータの処理能力以上の物品をシンギュレータに供給すると、単体化などに失敗して再度荷物をシンギュレータに供給することとなる。その結果、システムのスループットは、低下する。
 また、システムは、シンギュレータに搬送する物品が少ないと、処理個数が低下する。その結果、システムのスループットは、同様に低下する。
日本国特表2018-507149号公報
 上記の課題を解決するため、供給する物品の量を効果的に制御することができる情報処理装置及びプログラムを提供する。
 実施形態によれば、情報処理装置は、第1の通信部と、第2の通信部と、プロセッサと、を備える。第1の通信部は、外部装置に物品を搬送する第1の搬送機構において前記第1の搬送機構に搬送される前記物品を含む所定の領域内の各部との距離を測定する測定装置とデータを送受信する。第2の通信部は、前記第1の搬送機構に前記物品を搬送する第2の搬送機構の搬送速度を制御する速度制御機構とデータを送受信する。プロセッサは、前記第1の通信部を通じて、前記所定の領域内の各部との距離を示す距離情報を前記測定装置から取得し、取得した前記距離情報に基づいて前記第2の搬送機構の搬送速度を設定し、前記第2の通信部を通じて、設定された前記第2の搬送機構の搬送速度を示す速度情報を前記速度制御機構に送信する。
図1は、実施形態に係る物流システムの構成例を示す図である。 図2は、実施形態に係る制御装置の構成例を示すブロック図である。 図3は、実施形態に係る物流システムの動作例を示す図である。 図4は、実施形態に係る二次元画像の例を示す図である。 図5は、実施形態に係る距離画像の例を示す図である。 図6は、実施形態に係る二次元画像の例を示す図である。 図7は、実施形態に係る距離画像の例を示す図である。 図8は、実施形態に係る二次元画像の例を示す図である。 図9は、実施形態に係る二次元画像の例を示す図である。 図10は、実施形態に係る二次元画像の例を示す図である。 図11は、実施形態に係る物流システムの動作例を示す図である。 図12は、実施形態に係る物流システムの動作例を示すフローチャートである。
実施形態
 以下、実施形態について、図面を参照して説明する。 
 実施形態に係る物流システムは、シンギュレータに物品を供給する。物流システムは、ロボット又はオペレータが投入した物品を投入用のベルトコンベアに乗せて搬送する。物流システムは、投入用のベルトコンベアからシンギュレータに接続する搬送用のベルトコンベアに物品を載せ替える。物流システムは、搬送用のベルトコンベアを用いて物品をシンギュレータに供給する。物流システムは、シンギュレータによって単体化され整列された物品を他の装置などへ供給する。 
 たとえば、物流システムは、倉庫、工場又は配送センタなどで用いられる。
 図1は、物流システム1の構成例を示す。図1が示すように、物流システム1は、投入ベルトコンベア2、搬送ベルトコンベア3、シンギュレータ4、三次元カメラ5、速度制御機構6、角度制御機構7、制御装置10及びネットワーク20などを備える。三次元カメラ5、速度制御機構6、角度制御機構7及び制御装置10は、ネットワーク20に通信可能に接続する。速度制御機構6は、投入ベルトコンベア2などに物理的に接続する。角度制御機構7は、搬送ベルトコンベア3などに物理的に接続する。搬送ベルトコンベア3は、シンギュレータ4に物理的に接続する。 
 ここでは、物流システム1は、物品100を単体化し整列させる。
 なお、物流システム1は、図1が示すような構成の他に必要に応じた構成を具備したり、物流システム1から特定の構成が除外されたりしてもよい。
 シンギュレータ4は、シンギュレータ4の投入部に供給された物品100を単体化して(1つずつに分けて)、所定の方向に整列させる。シンギュレータ4は、単体化され整列された物品100を他の装置へ供給する。
 シンギュレータ4(外部装置)は、単位時間あたり所定の流量(個数などに基づく値)の物品100を処理することができる。シンギュレータ4は、単位時間において所定の流量以上の物品100が供給されると、処理不可能な物品100をリジェクトボックスなどに投入する。また、物品100が重なっている場合にも、シンギュレータ4は、重なっている物品100などをリジェクトボックスなどに投入する。
 シンギュレータ4は、搬送ローラ及びガイド壁などから構成される。シンギュレータ4は、物品100を搬送ローラで搬送してガイド壁に押しつける。ガイド壁に押しつけられた物品100は、所定の方向に整列する。シンギュレータ4は、ガイド壁に沿って物品100を搬送して他の装置へ供給する。なお、シンギュレータ4の構成は、特定の構成に限定されるものではない。
 搬送ベルトコンベア3(第1の搬送機構)は、シンギュレータ4に物品100を搬送する搬送用のベルトコンベアである。即ち、搬送ベルトコンベア3は、シンギュレータ4に向かって(図1では、左から右に向かって)、物品100を搬送する。搬送ベルトコンベア3の一端(図1では、右端)は、シンギュレータ4の投入部に接続する。搬送ベルトコンベア3は、一端からシンギュレータ4の投入部に物品100を供給する。
 搬送ベルトコンベア3は、環状に形成されるベルトから構成される。搬送ベルトコンベア3は、内部に形成されているローラなどによって内側から支持されている。搬送ベルトコンベア3は、モータなどに接続するローラの回転によって回転する。搬送ベルトコンベア3は、所定の一定の速度で回転する。即ち、搬送ベルトコンベア3は、一定の速度で物品100を搬送する。
 投入ベルトコンベア2(第2の搬送機構)は、搬送ベルトコンベア3に物品100を投入する投入用のベルトコンベアである。即ち、投入ベルトコンベア2は、搬送ベルトコンベア3に向かって(図1では、左から右に向かって)、物品100を搬送する。投入ベルトコンベア2の一端(図1では、右端)は、搬送ベルトコンベア3の他端(左端)に接続する。投入ベルトコンベア2は、自身の一端から搬送ベルトコンベア3の他端に物品100を供給する。
 投入ベルトコンベア2は、他端において物品100の投入を受け付ける。たとえば、投入ベルトコンベア2の他端は、物品100が投入される容器に接続する。容器には、ロボット又はオペレータによって物品100が投入される。投入ベルトコンベア2は、容器に投入された物品100をピックアップして搬送ベルトコンベア3に搬送する。
 投入ベルトコンベア2は、環状に形成されるベルトから構成される。投入ベルトコンベア2は、内部に形成されているローラなどによって内側から支持されている。投入ベルトコンベア2は、モータなどに接続するローラの回転によって回転する。
 ここでは、投入ベルトコンベア2は、搬送ベルトコンベア3の延長線上に水平に形成されている。
 三次元カメラ5(測定装置)は、搬送ベルトコンベア3上の物品100を含む撮影領域を撮影する二次元カメラと、撮影領域の各部との距離を測定する距離センサとから構成される。 
 三次元カメラ5は、搬送ベルトコンベア3の上部に下向きに設置される。
 二次元カメラは、搬送ベルトコンベア3で搬送されている物品100を撮影する。二次元カメラは、物品100を撮影して、画像(二次元画像)を取得する。ここでは、二次元カメラは、カラーで物品100を撮影する。たとえば、二次元カメラは、CCD(Charge Coupled Device)などから構成される。
 距離センサは、撮影領域の各部と距離センサまでの距離(又は距離センサに水平な面まで距離)を測定する。距離センサは、各部との距離を示す距離情報を生成する。たとえば、距離情報は、所定の三次元座標系における各点の座標を示す。
 たとえば、距離センサは、光源と光源から照射される光の反射光を検出するセンサとを備える。距離センサは、光源から照射される光(可視光又は不可視光)の反射光に基づいて距離を測定する。たとえば、距離センサは、照射された光が測定対象で反射し距離センサに届くまでの時間に基づいて当該測定対象との距離を測定するToF(Time-of-Flight)方式を行ってもよい。
 距離センサは、2つのカメラ(ステレオカメラ)が撮影した各画像の視差に基づいて距離を算出するものであってもよい。 
 距離センサの構成は、特定の構成に限定されるものではない。
 なお、距離センサがステレオカメラから構成される場合、距離センサは、二次元カメラとしての機能を含むものであってもよい。
 三次元カメラ5は、二次元画像及び距離情報を制御装置10に送信する。
 速度制御機構6は、制御装置10からの信号に従って、投入ベルトコンベア2が物品100を搬送する速度を制御する。即ち、速度制御機構6は、投入ベルトコンベア2の回転速度(搬送速度)を制御する。
 速度制御機構6は、投入ベルトコンベア2の回転速度を示す速度情報を制御装置10から受信する。速度制御機構6は、投入ベルトコンベア2の回転速度を、速度情報が示す回転速度に制御する。
 たとえば、速度制御機構6は、投入ベルトコンベア2を回転させるローラに接続するモータ及びモータを駆動させる駆動回路などから構成される。速度制御機構6の駆動回路は、制御装置10からの信号に従って、モータに供給するパルスなどを生成する。速度制御機構6のモータは、駆動回路からのパルスなどに基づいて駆動する。
 角度制御機構7は、制御装置10からの信号に従って、投入ベルトコンベア2と搬送ベルトコンベア3との間の角度を制御する。即ち、角度制御機構7は、水平面において物品100の進行方向と直交する軸を中心軸として投入ベルトコンベア2と搬送ベルトコンベア3との間の角度を制御する。
 角度制御機構7は、投入ベルトコンベア2の一端(右端)と搬送ベルトコンベア3の他端(左端)との接続を維持しながら、投入ベルトコンベア2と搬送ベルトコンベア3との角度を変更する。ここでは、角度制御機構7は、搬送ベルトコンベア3の角度として仰角を制御する。即ち、角度制御機構7は、搬送ベルトコンベア3を水平な状態から所定の角度に制御する。
 角度制御機構7は、搬送ベルトコンベア3の角度を示す角度情報を制御装置10から受信する。角度制御機構7は、搬送ベルトコンベア3の角度を、角度情報が示す角度に制御する。
 角度制御機構7は、搬送ベルトコンベア3の角度を変化させるアクチュエータ及びアクチュエータを制御する駆動回路などから構成される。角度制御機構7の駆動回路は、制御装置10からの信号に従って、アクチュエータに供給する電力などを生成する。角度制御機構7のモータは、駆動回路からの電力などに基づいて駆動する。
 制御装置10(情報処理装置)は、三次元カメラ5からの二次元画像及び距離情報などに基づいて投入ベルトコンベア2の回転速度及び搬送ベルトコンベア3の角度を制御する。制御装置10については、後に詳述する。
 ネットワーク20は、三次元カメラ5、速度制御機構6、角度制御機構7及び制御装置10の間の通信を中継する。たとえば、ネットワーク20は、LAN(Local Area Network)などである。
 次に、制御装置10について説明する。 
 図2は、制御装置10の構成例を示す。図2が示すように、制御装置10は、プロセッサ11、メモリ12、操作部13、表示部14、カメラインターフェース15、速度制御インターフェース16及び角度制御インターフェース17などを備える。プロセッサ11は、データバス又は所定のインターフェースなどを通じてメモリ12、操作部13、表示部14、カメラインターフェース15、速度制御インターフェース16及び角度制御インターフェース17に接続する。
 なお、制御装置10は、図2が示すような構成の他に必要に応じた構成を具備したり、制御装置10から特定の構成が除外されたりしてもよい。
 プロセッサ11は、制御装置10全体の動作を制御する。たとえば、プロセッサ11は、速度制御機構6及び角度制御機構7などを制御する。
 たとえば、プロセッサ11は、CPU(Central Processing Unit)などから構成される。また、プロセッサ11は、ASIC(Application Specific Integrated Circuit)などから構成されるものであってもよい。また、プロセッサ11は、FPGA(Field Programmable Gate Array)などから構成されるものであってもよい。
 メモリ12は、種々のデータを格納する。たとえば、メモリ12は、ROM、RAM及びNVMとして機能する。 
 たとえば、メモリ12は、制御プログラム及び制御データなどを記憶する。制御プログラム及び制御データは、制御装置10の仕様に応じて予め組み込まれる。たとえば、制御プログラムは、制御装置10で実現する機能をサポートするプログラムなどである。
 また、メモリ12は、プロセッサ11の処理中のデータなどを一時的に格納する。また、メモリ12は、アプリケーションプログラムの実行に必要なデータ及びアプリケーションプログラムの実行結果などを格納してもよい。
 操作部13は、オペレータから種々の操作の入力を受け付ける。操作部13は、入力された操作を示す信号をプロセッサ11へ送信する。操作部13は、タッチパネルから構成されてもよい。
 表示部14は、プロセッサ11からの画像データを表示する。たとえば、表示部14は、液晶モニタから構成される。操作部13がタッチパネルから構成される場合、表示部14は、操作部13と一体的に形成されてもよい。
 カメラインターフェース15(第1の通信部)は、三次元カメラ5とデータを送受信するためのインターフェースである。たとえば、カメラインターフェース15は、プロセッサ11の制御に基づいて、三次元カメラ5に撮影及び距離の測定を指示する信号を送信する。また、カメラインターフェース15は、三次元カメラ5から二次元画像及び距離情報を取得する。たとえば、カメラインターフェース15は、LAN接続をサポートする。
 速度制御インターフェース16(第2の通信部)は、速度制御機構6とデータを送受信するためのインターフェースである。たとえば、速度制御インターフェース16は、プロセッサ11からの制御に従って、投入ベルトコンベア2の回転速度を示す速度情報を速度制御機構6に供給する。たとえば、速度制御インターフェース16は、LAN接続をサポートする。
 角度制御インターフェース17(第3の通信部)は、角度制御機構7とデータを送受信するためのインターフェースである。たとえば、角度制御インターフェース17は、プロセッサ11からの制御に従って、搬送ベルトコンベア3の角度を示す角度情報を角度制御機構7に供給する。たとえば、角度制御インターフェース17は、LAN接続をサポートする。
 なお、速度制御インターフェース16及び角度制御インターフェース17は、一体的に形成されるものであってもよい。 
 たとえば、制御装置10は、デスクトップPC、ノートPC又はタブレットPCなどである。
 次に、制御装置10が実現する機能について説明する。プロセッサ11が実現する機能は、プロセッサ11が内部メモリ又はメモリ12などに格納されるプログラムを実行することで実現される。
 まず、プロセッサ11は、物品100を撮影した二次元画像及び二次元画像に対応する距離情報を取得する機能を有する。
 図3は、プロセッサ11が二次元画像及び距離情報を取得する動作例を示す。図3が示すように、ここでは、搬送ベルトコンベア3上に物品100が積載されているものとする。また、搬送ベルトコンベア3は、所定の速度で回転して物品100を搬送しているものとする。なお、投入ベルトコンベア2も同様に回転して物品100を搬送しているものとする。
 プロセッサ11は、所定のタイミング(たとえば、所定の間隔)で、カメラインターフェース15を通じて、撮影及び距離の測定を指示する信号を三次元カメラ5に送信する。
 ここで、三次元カメラ5は、当該信号を受信する。当該信号を受信すると、三次元カメラ5は、二次元カメラ及び距離センサを用いて二次元画像及び二次元画像に対応する距離情報を取得する。二次元画像及び距離情報を取得すると、三次元カメラ5は、取得された二次元画像及び距離情報を制御装置10に送信する。
 プロセッサ11は、カメラインターフェース15を通じて、二次元画像及び距離情報を三次元カメラ5から取得する。
 また、プロセッサ11は、二次元画像及び距離情報に基づいて、二次元画像から物品100が写る物品領域を抽出する機能を有する。 
 たとえば、プロセッサ11は、二次元画像に基づいて物品領域の候補となる領域(候補領域)を抽出する。プロセッサ11は、エッジ検出、又は、ニューラルネットワークを用いた画像処理など、所定のアルゴリズムに従って候補領域を抽出する。
 図4は、プロセッサ11が取得した二次元画像の例を示す。図4が示すように、二次元画像は、搬送ベルトコンベア3上に積載されている3つの物品100を含む。
 プロセッサ11は、所定のアルゴリズムに従って、物品100が写る物品領域の候補領域を抽出する。
 また、プロセッサ11は、距離情報に基づいて、候補領域を抽出する。 
 プロセッサ11は、距離情報に基づいて、各ドットにおいて距離を示す距離画像を生成する。距離画像は、各ドットにおいて距離に対応する輝度値を有する。
 図5は、プロセッサ11が生成した距離画像の例を示す。図5が示す例では、距離画像の各ドットは、三次元カメラ5に近づくほど低い輝度値を有する。たとえば、距離画像の各ドットは、搬送ベルトコンベア3との距離において基準となる所定の輝度値(たとえば、255)を有する。即ち、距離画像の各ドットは、搬送ベルトコンベア3からの高さに応じた輝度値を有する。
 プロセッサ11は、距離画像に基づいて候補領域を抽出する。たとえば、プロセッサ11は、所定の閾値よりも高い輝度値を有する領域を候補領域として抽出する。
 プロセッサ11は、二次元画像の候補領域と距離画像の候補領域とに基づいて物品領域を抽出する。たとえば、プロセッサ11は、二次元画像の候補領域内に、距離画像の候補領域が複数存在する場合、距離画像の候補領域を物品領域として抽出する。また、プロセッサ11は、距離画像の候補領域内に、二次元画像の候補領域が複数存在する場合、二次元画像の候補領域を物品領域として抽出する。
 また、プロセッサ11は、二次元画像において候補領域に陰が含まれる場合、距離画像に基づいて陰の部分を削除して物品領域を抽出してもよい。
 なお、プロセッサ11は、距離情報を用いずに二次元画像に基づいて物品領域を抽出してもよい。プロセッサ11は、二次元画像を用いずに距離情報に基づいて物品領域を抽出してもよい。 
 プロセッサ11が物品領域を抽出する方法は、特定の方法に限定されるものではない。
 また、プロセッサ11は、二次元画像に写る物品100の流量を算出する機能を有する。 
 流量は、搬送ベルトコンベア3がシンギュレータ4に搬送する物品100の量に関連する指標である。ここでは、流量は、二次元画像に写る物品100の個数、物品100の体積、及び、二次元画像において物品領域が占める割合(密度)に基づく指標である。たとえば、流量は、所定の評価関数に物品100の個数、物品100の体積、及び、密度を代入して得られる値である。
 プロセッサ11は、抽出された物品領域に基づいて物品100の個数を特定する。即ち、プロセッサ11は、物品領域の個数を物品100の個数として特定する。
 また、プロセッサ11は、物品領域及び距離情報に基づいて物品100の体積を算出する。ここでは、プロセッサ11は、二次元画像に写る物品100の体積の合計を算出する。
 たとえば、プロセッサ11は、物品領域の面積を算出する。面積を算出すると、プロセッサ11は、距離情報に基づいて物品領域の高さ(搬送ベルトコンベア3からの高さ)を算出する。高さを算出すると、プロセッサ11は、面積に高さを積算して、物品100の体積を算出する。プロセッサ11は、各物品100において同様の動作を行って各物品100の体積を算出する。各物品100の体積を算出すると、プロセッサ11は、各体積を合算する。
 また、プロセッサ11は、二次元画像及び物品領域から密度を算出する。たとえば、プロセッサ11は、各物品領域の面積を合算する。各物品領域の面積を合算すると、プロセッサ11は、合算された面積を二次元画像の面積で減算して密度を算出する。
 物品100の個数、物品100の体積及び密度を算出すると、プロセッサ11は、個数、体積及び密度に基づいて、流量を算出する。 
 なお、プロセッサ11が流量を算出する方法は、特定の方法に限定されるものではない。
 また、プロセッサ11は、二次元画像及び距離情報に基づいて物品100の重なりを検知する機能を有する。 
 図6は、重なり合った物品100を写した二次元画像の例を示す。図6が示す例では、搬送ベルトコンベア3上において、1つの物品100が他の物品100の上に重なっている。
 図7は、図6の二次元画像に対応する距離画像の例を示す。図7が示すように、他の物品100に重なっている物品100の物品領域は、当該他の物品領域よりも高くなっている。
 前述の通り、プロセッサ11は、二次元画像及び距離情報などに基づいて物品領域を抽出する。物品領域を抽出すると、プロセッサ11は、抽出された物品領域同士が重なり合っているかを判定する。物品領域同士が重なり合っていると判定すると、プロセッサ11は、物品100同士が重なり合っていると判定する。
 また、プロセッサ11は、物品領域における各ドットの高さに基づいて物品100の重なりを検知してもよい。たとえば、プロセッサ11は、物品領域において、高低差(たとえば、最も高い点と最も低い点との差)が所定の閾値を超える場合、物品100同士が重なり合っていると判定してもよい。
 プロセッサ11が物品100の重なりを検知する方法は、特定の方法に限定されるものではない。
 また、プロセッサ11は、算出された流量に基づいて、投入ベルトコンベア2の回転速度を制御する機能を有する。 
 ここでは、投入ベルトコンベア2は、速度制御機構6によって所定の速度で回転しているものとする。
 プロセッサ11は、流量と所定の基準量とを比較する。基準量は、シンギュレータ4が処理可能な流量(又は、処理可能な流量の上限)である。
 プロセッサ11は、流量と基準量との差が所定の閾値を超えている場合、投入ベルトコンベア2の速度を変更する。
 まず、流量が基準量よりも小さい場合について説明する。 
 図8は、基準量よりも少ない流量の物品100を写す二次元画像の例を示す。図8が示すように、二次元画像は、比較的まばらな物品100を写す。
 流量と基準量との差が所定の閾値以上であって流量が基準量よりも小さい場合、プロセッサ11は、投入ベルトコンベア2の現在の回転速度よりも速い回転速度を設定する。
 たとえば、プロセッサ11は、現在の回転速度から所定の値を加算した回転速度を設定してもよい。また、プロセッサ11は、流量と基準量との差に基づいて、回転速度を設定してもよい。たとえば、プロセッサ11は、流量と基準量との差が大きいほど速い回転速度を設定してもよい。
 現在の回転速度よりも速い回転速度を設定すると、プロセッサ11は、設定された回転速度を示す速度情報を生成する。速度情報を生成すると、プロセッサ11は、速度制御インターフェース16を通じて、生成された速度情報を速度制御機構6に送信する。
 ここで、速度制御機構6は、速度情報を制御装置10から受信する。速度情報を受信すると、速度制御機構6は、投入ベルトコンベア2の回転速度を、受信された速度情報が示す回転速度に制御する。
 次に、流量と基準量との差が所定の閾値よりも小さい場合について説明する。 
 図9は、基準量との差が所定の閾値よりも少ない流量の物品100を写す二次元画像の例を示す。図9が示すように、二次元画像は、図8の二次元画像と比較して、より多くの物品100を写す。
 流量と基準量との差が所定の閾値も小さい場合、プロセッサ11は、投入ベルトコンベア2の現在の回転速度を示す速度情報を生成する。速度情報を生成すると、プロセッサ11は、速度制御インターフェース16を通じて、生成された速度情報を速度制御機構6に送信する。
 ここで、速度制御機構6は、速度情報を制御装置10から受信する。速度情報を受信すると、速度制御機構6は、投入ベルトコンベア2の回転速度を、受信された速度情報が示す回転速度に制御する。即ち、速度制御機構6は、現在の回転速度を維持する。
 なお、流量と基準量との差が所定の閾値も小さい場合、プロセッサ11は、速度情報を速度制御機構6に送信しなくともよい。
 次に、流量が基準量よりも大きい場合について説明する。 
 図10は、基準量よりも大きい流量の物品100を写す二次元画像の例を示す。図10が示すように、二次元画像は、図9の二次元画像よりも多くの物品100を写す。
 流量と基準量との差が所定の閾値以上であって流量が基準量よりも大きい場合、プロセッサ11は、投入ベルトコンベア2の現在の回転速度よりも遅い回転速度を設定する。
 たとえば、プロセッサ11は、現在の回転速度から所定の値を減算した回転速度を設定してもよい。また、プロセッサ11は、流量と基準量との差に基づいて、回転速度を設定してもよい。たとえば、プロセッサ11は、流量と基準量との差が大きいほど遅い回転速度を設定してもよい。
 現在の回転速度よりも遅い回転速度を設定すると、プロセッサ11は、設定された回転速度を示す速度情報を生成する。速度情報を生成すると、プロセッサ11は、速度制御インターフェース16を通じて、生成された速度情報を速度制御機構6に送信する。
 ここで、速度制御機構6は、速度情報を制御装置10から受信する。速度情報を受信すると、速度制御機構6は、投入ベルトコンベア2の回転速度を、受信された速度情報が示す回転速度に制御する。
 また、プロセッサ11は、物品100の重なりを検知すると、搬送ベルトコンベア3の角度を制御する機能を有する。
 ここでは、搬送ベルトコンベア3は、水平であるものとする。 
 プロセッサ11は、物品100の重なりを検知すると(たとえば、図10の状態では)、投入ベルトコンベア2と搬送ベルトコンベア3との間の角度を変更する。即ち、プロセッサ11は、投入ベルトコンベア2と搬送ベルトコンベア3とが直線上である状態から、両者の間に角度を付ける。ここでは、プロセッサ11は、角度制御機構7を用いて、搬送ベルトコンベア3の角度を水平な状態(ここでは、0度)から所定の値に変更する。
 物品100の重なりを検知すると、プロセッサ11は、搬送ベルトコンベア3の角度を設定する。たとえば、プロセッサ11は、所定の角度を設定する。また、プロセッサ11は、搬送ベルトコンベア3の現在の角度に所定の値を加算又は減算した角度を設定してもよい。
 搬送ベルトコンベア3の角度を設定すると、プロセッサ11は、設定された角度を示す角度情報を生成する。角度情報を生成すると、プロセッサ11は、角度制御インターフェース17を通じて、生成された角度情報を角度制御機構7に送信する。
 ここで、角度制御機構7は、角度情報を制御装置10から受信する。角度情報を受信すると、角度制御機構7は、搬送ベルトコンベア3の角度を、受信された角度情報が示す角度に制御する。
 図11は、プロセッサ11が搬送ベルトコンベア3の角度を変更した例を示す。図11が示す例では、プロセッサ11は、搬送ベルトコンベア3が上方に向くように、搬送ベルトコンベア3の角度を変更したものである。
 なお、プロセッサ11は、搬送ベルトコンベア3が下方に向くように、搬送ベルトコンベア3の角度を変更してもよい。 
 また、プロセッサ11は、搬送ベルトコンベア3の角度を変更したが物品100の重なりが解消しない場合には、さらに搬送ベルトコンベア3の角度を変更してもよい。 
 また、プロセッサ11は、物品100の重なりが解消した場合には、搬送ベルトコンベア3の角度を水平に戻してもよい。
 次に、制御装置10の動作例について説明する。 
 図12は、制御装置10の動作例について説明するためのフローチャートである。
 ここでは、投入ベルトコンベア2は、所定の速度で回転して物品100を搬送しているものとする。また、搬送ベルトコンベア3は、所定の速度で回転して投入ベルトコンベア2からの物品100をシンギュレータ4に搬送しているものとする。
 制御装置10のプロセッサ11は、カメラインターフェース15を通じて、二次元画像及び距離情報を三次元カメラ5から取得する(S11)。二次元画像及び距離情報を取得すると、プロセッサ11は、二次元画像及び距離情報に基づいて物品領域を抽出する(S12)。
 物品領域を抽出すると、プロセッサ11は、物品領域などに基づいて流量を算出する(S13)。流量を算出すると、プロセッサ11は、流量が基準量より小さいかを判定する(S14)。
 流量が基準量より小さいと判定すると(S14、YES)、プロセッサ11は、投入ベルトコンベア2の現在の回転速度よりも速い回転速度を設定する(S15)。
 流量が基準量より小さくないと判定すると(S14、NO)、プロセッサ11は、流量が基準量より大きいかを判定する(S16)。
 流量が基準量より大きいと判定すると(S16、YES)、プロセッサ11は、投入ベルトコンベア2の現在の回転速度よりも遅い回転速度を設定する(S17)。
 流量が基準量より大きくないと判定すると(S16、NO)、プロセッサ11は、投入ベルトコンベア2の現在の回転速度を設定する(S18)。
 速い回転速度を設定した場合(S15)、遅い回転速度を設定した場合(S17)、又は、現在の回転速度を設定した場合(S18)、プロセッサ11は、速度制御インターフェース16を通じて、S15、S17又はS18で設定された回転速度を示す速度情報を速度制御機構6に送信する(S19)。
 速度情報を速度制御機構6に送信すると、プロセッサ11は、物品100が重なっているかを判定する(S20)。
 物品100が重なっていると判定すると(S20、YES)、プロセッサ11は、角度制御インターフェース17を通じて、所定の角度を示す角度情報を角度制御機構7に送信する(S21)。
 物品100が重なっていないと判定した場合(S20、NO)、又は、角度情報を角度制御機構7に送信した場合(S21)、プロセッサ11は、S11に戻る。なお、プロセッサ11は、所定の時間待機してからS11に戻ってもよい。
 なお、三次元カメラ5は、投入ベルトコンベア2上の物品100を撮影するものであってもよい。この場合、三次元カメラ5は、投入ベルトコンベア2上の各部との距離を測定するものであってもよい。
 また、プロセッサ11は、投入ベルトコンベア2の回転速度を表示部14などに表示するものであってもよい。また、プロセッサ11は、物品100の重なりを検知すると、アラートなどを表示部14などに表示するものであってもよい。
 また、物流システム1は、画像を撮影する二次元カメラと距離を測定する距離センサとを個々に備えるものであってもよい。
 以上のように構成される物流システムは、シンギュレータに供給される物品の流量を算出する。物流システムは、流量が基準量となるように、物品を投入するための投入ベルトコンベアの回転速度を制御する。その結果、物流システムは、シンギュレータに適切な量の物品を供給することができる。よって、物流システムは、スループットを改善することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (12)

  1.  外部装置に物品を搬送する第1の搬送機構において前記第1の搬送機構に搬送される前記物品を含む所定の領域内の各部との距離を測定する測定装置とデータを送受信する第1の通信部と、
     前記第1の搬送機構に前記物品を搬送する第2の搬送機構の搬送速度を制御する速度制御機構とデータを送受信する第2の通信部と、
      前記第1の通信部を通じて、前記所定の領域内の各部との距離を示す距離情報を前記測定装置から取得し、
      取得した前記距離情報に基づいて前記第2の搬送機構の搬送速度を設定し、
      前記第2の通信部を通じて、設定された前記第2の搬送機構の搬送速度を示す速度情報を前記速度制御機構に送信する、
     プロセッサと、
    を備える情報処理装置。
  2.  前記プロセッサは、
      前記距離情報に基づいて前記物品の体積を算出し、
      前記体積に基づいて前記第2の搬送機構の搬送速度を設定する、
    請求項1に記載の情報処理装置。
  3.  前記プロセッサは、
      前記距離情報に基づいて前記物品の個数を特定し、
      前記個数にさらに基づいて前記第2の搬送機構の搬送速度を設定する、
    請求項2に記載の情報処理装置。
  4.  前記プロセッサは、
      前記距離情報に基づいて前記物品の密度を算出し、
      前記密度にさらに基づいて前記第2の搬送機構の搬送速度を設定する、
    請求項3に記載の情報処理装置。
  5.  前記プロセッサは、
      前記体積、前記個数及び前記密度に基づいて、前記物品の流量を算出し、
      前記流量に基づいて前記第2の搬送機構の搬送速度を設定する、
    請求項4に記載の情報処理装置。
  6.  前記プロセッサは、
      前記流量が基準量よりも小さい場合、前記第2の搬送機構の搬送速度として、前記第2の搬送機構の現在の搬送速度よりも速い搬送速度を設定し、
      前記流量が基準量よりも大きい場合、前記第2の搬送機構の搬送速度として、前記第2の搬送機構の現在の搬送速度よりも遅い搬送速度を設定する、
    請求項5に記載の情報処理装置。
  7.  前記第1の搬送機構と前記第2の搬送機構との間の角度を制御する角度制御機構とデータを送受信する第3の通信部を備え、
     前記プロセッサは、前記第2の搬送機構において前記物品が重なり合っている場合、前記第3の通信部を通じて、前記第1の搬送機構と前記第2の搬送機構との間の角度として所定の角度を示す角度情報を前記角度制御機構に送信する、
    請求項1乃至6の何れか1項に記載の情報処理装置。
  8.  前記プロセッサは、前記距離情報に基づいて前記物品の重なりを検知する、
    請求項7に記載の情報処理装置。
  9.  前記プロセッサは、
      前記第1の通信部を通じて、前記領域を撮影した二次元画像を前記測定装置から取得し、
      前記二次元画像にさらに基づいて前記第2の搬送機構の搬送速度を設定する、
    請求項1乃至8の何れか1項に記載の情報処理装置。
  10.  前記外部装置は、シンギュレータである、
    請求項1乃至9の何れか1項に記載の情報処理装置。
  11.  前記第1の搬送機構及び前記第2の搬送機構は、ベルトコンベアである、
    請求項1乃至10の何れか1項に記載の情報処理装置。
  12.  プロセッサによって実行されるプログラムであって、
     前記プロセッサに、
      外部装置に物品を搬送する第1の搬送機構において前記第1の搬送機構に搬送される前記物品を含む所定の領域内の各部との距離を示す距離情報を取得する機能と、
      取得した前記距離情報に基づいて、前記第1の搬送機構に前記物品を搬送する第2の搬送機構の搬送速度を設定する機能と、
      前記第2の搬送機構の搬送速度を制御する速度制御機構に設定された前記第2の搬送機構の搬送速度を示す速度情報を送信する機能と、
    を実現させるプログラム。
     
PCT/JP2021/046301 2021-01-04 2021-12-15 情報処理装置及びプログラム WO2022145236A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21915097.6A EP4273074A1 (en) 2021-01-04 2021-12-15 Information processing device and program
CA3203679A CA3203679A1 (en) 2021-01-04 2021-12-15 Information processing device and program
US18/345,271 US20230348199A1 (en) 2021-01-04 2023-06-30 Information processing device and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-000158 2021-01-04
JP2021000158A JP2022105395A (ja) 2021-01-04 2021-01-04 情報処理装置及びプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/345,271 Continuation US20230348199A1 (en) 2021-01-04 2023-06-30 Information processing device and computer-readable storage medium

Publications (1)

Publication Number Publication Date
WO2022145236A1 true WO2022145236A1 (ja) 2022-07-07

Family

ID=82259280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046301 WO2022145236A1 (ja) 2021-01-04 2021-12-15 情報処理装置及びプログラム

Country Status (5)

Country Link
US (1) US20230348199A1 (ja)
EP (1) EP4273074A1 (ja)
JP (1) JP2022105395A (ja)
CA (1) CA3203679A1 (ja)
WO (1) WO2022145236A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024128257A1 (ja) * 2022-12-15 2024-06-20 株式会社 東芝 入出力方法、入出力プログラム、入出力装置、及びコンピュータ可読記憶媒体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11314737A (ja) * 1998-04-30 1999-11-16 Maki Seisakusho:Kk 農産物の供給装置
US20150329296A1 (en) * 2014-05-13 2015-11-19 Sick, Inc. Conveyor jam detection system and method
JP2016175037A (ja) * 2015-03-20 2016-10-06 日本電気株式会社 物品送り出し装置、及び物品送り出し方法
JP2018507149A (ja) 2014-12-31 2018-03-15 ファイブス・イントラロジスティクス・コーポレイションFives Intralogistics Corp. 視覚ベースのコンベヤパッケージ管理システム
WO2020235189A1 (ja) * 2019-05-17 2020-11-26 株式会社 東芝 搬送装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11314737A (ja) * 1998-04-30 1999-11-16 Maki Seisakusho:Kk 農産物の供給装置
US20150329296A1 (en) * 2014-05-13 2015-11-19 Sick, Inc. Conveyor jam detection system and method
JP2018507149A (ja) 2014-12-31 2018-03-15 ファイブス・イントラロジスティクス・コーポレイションFives Intralogistics Corp. 視覚ベースのコンベヤパッケージ管理システム
JP2016175037A (ja) * 2015-03-20 2016-10-06 日本電気株式会社 物品送り出し装置、及び物品送り出し方法
WO2020235189A1 (ja) * 2019-05-17 2020-11-26 株式会社 東芝 搬送装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024128257A1 (ja) * 2022-12-15 2024-06-20 株式会社 東芝 入出力方法、入出力プログラム、入出力装置、及びコンピュータ可読記憶媒体

Also Published As

Publication number Publication date
JP2022105395A (ja) 2022-07-14
CA3203679A1 (en) 2022-07-07
EP4273074A1 (en) 2023-11-08
US20230348199A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
US8014899B2 (en) Article conveying robot system
WO2022105231A1 (zh) 入库管理方法、装置、仓库管理系统和电子系统
US11568511B2 (en) System and method for sensing and computing of perceptual data in industrial environments
WO2021218792A1 (zh) 包裹处理设备、包裹处理方法、电子设备及存储介质
CN107031938A (zh) 传送系统的致动
CN112639807B (zh) 用于碰撞检测和对象尺寸标注的双模数据捕获系统
KR20140042993A (ko) 우편물 구분 시스템
WO2022145236A1 (ja) 情報処理装置及びプログラム
KR100672044B1 (ko) 자동 박스 치수 측정 장치
CN110888345A (zh) 检测设备、控制设备及自动校验系统和方法
RU2739726C1 (ru) Устройство организации изделий, система организации изделий и компьютерно-читаемый носитель хранения
KR101613120B1 (ko) 바코드 검사 시스템
US20190070728A1 (en) Robotic systems and methods for operating a robot
US20240177260A1 (en) System and method for three-dimensional scan of moving objects longer than the field of view
KR101991464B1 (ko) 인식정보를 인식하는 인식시스템, 인식 장치 및 인식 방법.
JP6546215B2 (ja) 供給制御装置及び供給制御方法
CN210585910U (zh) 包裹粗分设备及自动分拣系统
WO2017180810A1 (en) Conveyors for sorting products
CN113120578A (zh) 传输装置、传输机构控制方法及存储介质
KR100441392B1 (ko) 3차원 영상측정을 통한 중량측정장치
CN114951003A (zh) 基于距离检测的分拣方法及装置
US10346940B2 (en) Robot system and production system
KR20210067522A (ko) 부품 정렬 공급 시스템, 부품 정렬 공급 시스템을 이용한 부품 정렬 정보 입력 방법
US20240150130A1 (en) Conveyor control system using radar
US20240051765A1 (en) Spacing and Classification Conveyors and Related Systems and Methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915097

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3203679

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2021915097

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021915097

Country of ref document: EP

Effective date: 20230804

WWE Wipo information: entry into national phase

Ref document number: 11202305008Y

Country of ref document: SG