WO2022145128A1 - 高周波回路および通信装置 - Google Patents

高周波回路および通信装置 Download PDF

Info

Publication number
WO2022145128A1
WO2022145128A1 PCT/JP2021/040105 JP2021040105W WO2022145128A1 WO 2022145128 A1 WO2022145128 A1 WO 2022145128A1 JP 2021040105 W JP2021040105 W JP 2021040105W WO 2022145128 A1 WO2022145128 A1 WO 2022145128A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
band
switch
circuit
transmission
Prior art date
Application number
PCT/JP2021/040105
Other languages
English (en)
French (fr)
Inventor
孝紀 上嶋
清志 相川
正也 三浦
啓之 永森
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202180087746.9A priority Critical patent/CN116746061A/zh
Publication of WO2022145128A1 publication Critical patent/WO2022145128A1/ja
Priority to US18/331,954 priority patent/US20230318642A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0483Transmitters with multiple parallel paths
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/171A filter circuit coupled to the output of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/429Two or more amplifiers or one amplifier with filters for different frequency bands are coupled in parallel at the input or output
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the present invention relates to a high frequency circuit and a communication device for processing a high frequency signal.
  • Patent Document 1 discloses a high-frequency module having a configuration in which a plurality of duplexers (transmission filter and reception filter) are connected to one switch circuit and capable of simultaneously transmitting a plurality of signals.
  • a phase circuit is arranged between the duplexer and the selection terminal of the switch. According to this, it is possible to suppress the leakage of the harmonics of the transmitted signal from one duplexer to another duplexer, that is, from one signal path to another signal path via the switch.
  • an object of the present invention is to provide a small high-frequency circuit and a communication device in which deterioration of transmission performance at the time of simultaneous transmission of a plurality of signals is suppressed. do.
  • the high frequency circuit is connected to a first power amplifier, a second power amplifier, and a first power amplifier, and includes a first transmission band included in the first frequency band as a pass band.
  • a second transmission filter connected to the second power amplifier and including the second transmission band included in the second frequency band different from the first frequency band in the pass band, the first antenna connection terminal, and the second antenna connection terminal.
  • a first switch circuit having a first terminal and a second terminal, a second switch circuit having a first common terminal, a third terminal, and a fourth terminal, and a second common terminal, a fifth terminal, and a sixth terminal.
  • the first terminal is connected to the first common terminal
  • the second terminal is connected to the second common terminal
  • the third terminal is connected to the first transmission filter
  • the fifth terminal is provided.
  • the first switch circuit is between the first antenna connection terminal and the first terminal, between the first antenna connection terminal and the second terminal, and the second antenna connection terminal and the first terminal.
  • the second switch circuit has a first switch arranged in series between the second antenna connection terminal and the second terminal, respectively, and the second switch circuit is between the first common terminal and the third terminal. And, it has a second switch arranged in series between the first common terminal and the fourth terminal, respectively, and the third switch circuit is between the second common terminal and the fifth terminal, and the second.
  • It has a third switch arranged in series between the common terminal and the sixth terminal, and the number of stacks of the second switch is smaller than the number of stacks of the first switch, and the number of stacks of the third switch. Is smaller than the number of stacks of the first switch.
  • the present invention it is possible to provide a small high frequency circuit and a communication device in which deterioration of transmission performance at the time of simultaneous transmission of a plurality of signals is suppressed.
  • FIG. 1 is a circuit configuration diagram of a high frequency circuit and a communication device according to an embodiment.
  • FIG. 2A is a circuit configuration diagram of the first switch circuit according to the embodiment.
  • FIG. 2B is a circuit configuration diagram of the second switch circuit according to the embodiment.
  • FIG. 2C is a circuit configuration diagram of the third switch circuit according to the embodiment.
  • FIG. 3 is a diagram showing a circuit state of the switch circuit at the time of two uplinks in the high frequency circuit according to the embodiment.
  • FIG. 4 is a circuit configuration diagram of a high frequency circuit according to a comparative example.
  • FIG. 5 is a diagram showing a circuit state of the switch circuit at the time of two uplinks in the high frequency circuit according to the comparative example.
  • FIG. 6 is a circuit configuration diagram of a high frequency circuit according to a modified example of the embodiment.
  • a and B are connected not only means that A and B are in contact with each other, but also A and B are conductor electrodes, conductor terminals, and the like. It is defined to include being electrically connected via wiring or other circuit components. Also, “connected between A and B” means connected to both A and B between A and B.
  • the "transmission path” is a transmission line composed of a wiring through which a high-frequency transmission signal propagates, an electrode directly connected to the wiring, and a wiring or a terminal directly connected to the electrode.
  • the "reception path” means a transmission line composed of a wiring through which a high-frequency reception signal propagates, an electrode directly connected to the wiring, and a wiring or a terminal directly connected to the electrode. do.
  • FIG. 1 is a circuit configuration diagram of a high frequency circuit 1 and a communication device 5 according to an embodiment.
  • the communication device 5 includes a high frequency circuit 1, antennas 2A and 2B, an RF signal processing circuit (RFIC) 3, and a baseband signal processing circuit (BBIC) 4.
  • RFIC RF signal processing circuit
  • BBIC baseband signal processing circuit
  • the antenna 2A is, for example, a primary antenna, which is an antenna preferentially used over the antenna 2B in terms of antenna performance and the like, and signals in the first frequency band, the second frequency band, the third frequency band, and the fourth frequency band. It is an antenna element that can transmit and receive. Further, the antenna 2B is, for example, a secondary antenna, and is an antenna element capable of transmitting and receiving signals in the first frequency band, the second frequency band, the third frequency band, and the fourth frequency band.
  • RFIC3 is an RF signal processing circuit that processes high frequency signals transmitted and received by antennas 2A and 2B. Specifically, the RFIC 3 processes the received signal input via the high frequency circuit 1 by down-conversion or the like, and outputs the received signal generated by the signal processing to the BBIC 4. Further, the RFIC 3 processes the transmission signal input from the BBIC 4 by up-conversion or the like, and outputs the transmission signal generated by the signal processing to the transmission path of the high frequency circuit 1.
  • the BBIC 4 is a circuit that processes a signal using an intermediate frequency band having a lower frequency than a high frequency signal propagating in the high frequency circuit 1.
  • the signal processed by the BBIC 4 is used, for example, as an image signal for displaying an image, or as an audio signal for a call via a speaker.
  • the RFIC 3 also has a function as a control unit that controls the connection of the switch circuit (described later) of the high frequency circuit 1 based on the band (frequency band) used. Specifically, the RFIC 3 switches the connection of the switch circuit included in the high frequency circuit 1 by a control signal (not shown).
  • the control unit may be provided outside the RFIC 3, and may be provided, for example, in the high frequency circuit 1 or the BBIC 4.
  • the high frequency circuit 1 includes switch circuits 20, 50, 51, 52, 53 and 54, transmission filters 31T, 34T, 42T and 43T, and reception filters 31R, 32R, 33R, 34R, 41R. It includes 42R, 43R and 44R, and power amplifiers 61 and 62.
  • each of the four frequency bands is assigned to a specific band for, for example, LTE (Long Term Evolution) or 5G NR (5th Generation New Radio).
  • the first frequency band is, for example, band 66 (transmission band: 1710-1780 MHz, reception band: 2110-2200 MHz).
  • the second frequency band is, for example, band 25 (transmission band: 1850-1915 MHz, reception band: 1930-1995 MHz).
  • the third frequency band is, for example, band 1 (transmission band: 1920-1980 MHz, reception band: 2110-2170 MHz).
  • the fourth frequency band is, for example, band 3 (transmission band: 1710-1785 MHz, reception band: 1805-1880 MHz).
  • the transmission band of band 3 includes the transmission band of band 66
  • the reception band of band 66 includes the reception band of band 1.
  • the two uplinks of the band 66 and the band 3 are not executed, and the two downlinks of the band 66 and the band 1 are not executed. It has become.
  • the high frequency circuit 1 has (1) a transmission signal in the first transmission band (B66-Tx) included in the first frequency band (band 66) and a second transmission signal included in the second frequency band (band 25).
  • Two uplinks that simultaneously transmit the transmission signal of the transmission band (B25-Tx), (2) the reception signal of the first reception band (B66-Rx) included in the first frequency band (band 66), and the second frequency.
  • 2 downlinks that simultaneously receive the received signal of the 2nd reception band (B25-Rx) included in the band (band 25), (3) the 3rd transmission band (B1-) included in the 3rd frequency band (band 1).
  • 2 downlink which simultaneously receives the reception signal of the third reception band (B1-Rx) included in) and the reception signal of the fourth reception band (B3-Rx) included in the fourth frequency band (band 3). It is possible to execute.
  • the transmission filter 31T is an example of a first transmission filter having a pass band of B66-Tx, and the input terminal is connected to the power amplifier 61 via the switch circuit 53, and the output terminal is connected to the terminal 51b.
  • the transmission filter 34T is an example of a fourth transmission filter having a pass band of B3-Tx.
  • the input terminal is connected to the power amplifier 61 via the switch circuit 53, and the output terminal is connected to the terminal 51c.
  • the reception filter 31R is an example of a first reception filter having B66-Rx as a pass band, and the input terminal is connected to the terminal 51b.
  • the reception filter 32R is an example of a fifth reception filter having B25-Rx as a pass band, and the input terminal is connected to the terminal 51b.
  • the reception filter 33R is an example of a seventh reception filter having B1-Rx as a pass band, and the input terminal is connected to the terminal 51c.
  • the reception filter 34R is an example of a fourth reception filter having B3-Rx as a pass band, and the input terminal is connected to the terminal 51c.
  • the transmission filter 42T is an example of a second transmission filter having a pass band of B25-Tx, and the input terminal is connected to the power amplifier 62 via the switch circuit 54, and the output terminal is connected to the terminal 52b.
  • the transmission filter 43T is an example of a third transmission filter having B1-Tx as a pass band, and the input terminal is connected to the power amplifier 62 via the switch circuit 54, and the output terminal is connected to the terminal 52c.
  • the reception filter 41R is an example of a sixth reception filter having B66-Rx as a pass band, and the input terminal is connected to the terminal 52b.
  • the reception filter 42R is an example of a second reception filter having B25-Rx as a pass band, and the input terminal is connected to the terminal 52b.
  • the reception filter 43R is an example of a third reception filter having B1-Rx as a pass band, and the input terminal is connected to the terminal 52c.
  • the reception filter 44R is an example of an eighth reception filter having B3-Rx as a pass band, and the input terminal is connected to the terminal 52c.
  • the transmit filters 31T, 34T, receive filters 31R, 32R, 33R and 34R selectively transmit high frequency signals of band 66 and band 3 and receive high frequency signals of band 66, band 25, band 1 and band 3.
  • the first multiplexer is configured.
  • the first multiplexer is a set of filters connected between the switch circuit 51 and the power amplifier 61.
  • the first multiplexer does not have a transmission filter having B25-Tx as a pass band and a transmission filter having B1-Tx as a pass band.
  • the transmit filters 42T, 43T, receive filters 41R, 42R, 43R and 44R selectively transmit high frequency signals of band 25 and band 1 and receive high frequency signals of band 66, band 25, band 1 and band 3.
  • a second multiplexer that can be used is configured.
  • the second multiplexer is a collection of filters connected between the switch circuit 52 and the power amplifier 62.
  • the second multiplexer does not have a transmission filter having B66-Tx as a pass band and a transmission filter having B3-Tx as a pass band.
  • the power amplifier 61 is an example of the first power amplifier, and the input terminal is connected to the switch circuit 50 and the output terminal is connected to the switch circuit 53.
  • the power amplifier 62 is an example of a second power amplifier, and the input terminal is connected to the switch circuit 50 and the output terminal is connected to the switch circuit 54.
  • the power amplifiers 61 and 62 are power amplifiers composed of, for example, transistors and the like.
  • the switch circuit 20 is an example of a first switch circuit, and is a terminal 20a (first terminal), a terminal 20b (second terminal), a terminal 20c (first antenna connection terminal), and a terminal 20d (second antenna connection terminal). Has.
  • the terminal 20c is connected to the antenna 2A, and the terminal 20d is connected to the antenna 2B. Further, the terminal 20a is connected to the common terminal 51a, and the terminal 20b is connected to the common terminal 52a.
  • the continuity between the terminal 20a and the terminal 20c and the continuity between the terminal 20a and the terminal 20d are exclusively selected, and the continuity between the terminal 20b and the terminal 20c and the continuity between the terminal 20b and the terminal 20d are selected. Is selected exclusively.
  • the switch circuit 20 is, for example, a DPDT (Double Pole Double Throw) type switch circuit having terminals 20a, 20b, 20c and 20d.
  • the switch circuit 20 may be a switch circuit such as a DP3T (Double Pole 3 Throw) type or a DP4T (Double Pole 4 Throw) type, and in this case, a necessary terminal is used according to the number of bands used. Should be used.
  • the switch circuit 51 is an example of a second switch circuit, and has a common terminal 51a (first common terminal), terminals 51b (third terminal) and 51c (fourth terminal), and has a common terminal 51a and a terminal 51b.
  • the continuity and the continuity between the common terminal 51a and the terminal 51c are exclusively switched.
  • the common terminal 51a is connected to the terminal 20a
  • the terminal 51b is connected to the transmission filter 31T
  • the terminal 51c is connected to the transmission filter 34T, the reception filters 33R and 34R.
  • the switch circuit 51 switches the connection between the transmission filter 31T, the reception filters 31R and 32R and the switch circuit 20, and the connection between the transmission filter 34T, the reception filters 33R and 34R and the switch circuit 20.
  • the switch circuit 52 is an example of a third switch circuit, and has a common terminal 52a (second common terminal), terminals 52b (fifth terminal) and 52c (sixth terminal), and has a common terminal 52a and a terminal 52b.
  • the continuity and the continuity between the common terminal 52a and the terminal 52c are exclusively switched.
  • the common terminal 52a is connected to the terminal 20b
  • the terminal 52b is connected to the transmission filter 42T
  • the terminal 52c is connected to the transmission filter 43T, the reception filters 43R and 44R.
  • the switch circuit 52 switches the connection between the transmission filter 42T, the reception filters 41R and 42R and the switch circuit 20, and the connection between the transmission filter 43T, the reception filters 43R and 44R and the switch circuit 20.
  • the switch circuits 51 and 52 are, for example, SPDT (Single Pole Double Throw) type switch circuits, respectively.
  • the switch circuit 53 has a common terminal 53a, terminals 53c and 53d, and the continuity between the common terminal 53a and the terminal 53c and the continuity between the common terminal 53a and the terminal 53d are exclusively switched.
  • the common terminal 53a is connected to the power amplifier 61
  • the terminal 53c is connected to the transmission filter 31T
  • the terminal 53d is connected to the transmission filter 34T.
  • the switch circuit 53 switches the connection between the transmission filter 31T and the power amplifier 61 and the connection between the transmission filter 34T and the power amplifier 61.
  • the switch circuit 54 has a common terminal 54a, terminals 54c and 54d, and the continuity between the common terminal 54a and the terminal 54c and the continuity between the common terminal 54a and the terminal 54d are exclusively switched.
  • the common terminal 54a is connected to the power amplifier 62
  • the terminal 54c is connected to the transmission filter 42T
  • the terminal 54d is connected to the transmission filter 43T.
  • the switch circuit 54 switches the connection between the transmission filter 42T and the power amplifier 62 and the connection between the transmission filter 43T and the power amplifier 62.
  • the switch circuit 50 has a terminal 50a, a terminal 50b, a terminal 50c, and a terminal 50d.
  • the terminal 50c is connected to the power amplifier 61, and the terminal 50d is connected to the power amplifier 62. Further, the terminals 50a and 50b are connected to different terminals of RFIC3, respectively.
  • the continuity between the terminal 50a and the terminal 50c and the continuity between the terminal 50a and the terminal 50d are exclusively selected, and the continuity between the terminal 50b and the terminal 50c and the continuity between the terminal 50b and the terminal 50d are selected. Is selected exclusively.
  • the switch circuit 50 is, for example, a DPDT type switch circuit.
  • the switch circuit 50 may be a switch circuit of DP3T type or DP4T type, and in this case, necessary terminals may be used according to the number of bands used.
  • An impedance matching circuit may be inserted between the above circuit components constituting the high frequency circuit 1.
  • the high frequency circuit 1 arbitrarily distributes the high frequency signals of the band 66, the band 25, the band 1 and the band 3 to the antennas 2A and 2B by switching the connection state of the switch circuits 20, 50 to 54, and described above. Simultaneous transmission of 2 uplinks and 2 downlinks listed in (1) to (4) can be executed.
  • the first multiplexer does not have a band 25 transmit filter and a band 1 transmit filter
  • the second multiplexer does not have a band 66 transmit filter and a band 3 transmit filter, but has two uplinks. It is possible to provide a small high frequency circuit 1 capable of simultaneous transmission of two downlinks.
  • the high-frequency circuit according to the present invention may have at least power amplifiers 61 and 62, transmission filters 31T and 43T, and switch circuits 20, 51 and 52 among the circuit components shown in FIG. ..
  • FIG. 2A is a circuit configuration diagram of the switch circuit 20 according to the embodiment. As shown in the figure, the switch circuit 20 has switches 210, 220, 230, 240, 215 and 235 in addition to the terminals 20a, 20b, 20c and 20d.
  • the switch 210 is an example of the first switch, and is a so-called series switch arranged in series between the terminal 20c and the terminal 20a.
  • the switch 220 is an example of the first switch, and is a so-called series switch arranged in series between the terminal 20d and the terminal 20a.
  • the switch 230 is an example of the first switch, and is a so-called series switch arranged in series between the terminals 20c and the terminals 20b.
  • the switch 240 is an example of the first switch, and is a so-called series switch arranged in series between the terminals 20d and the terminals 20b.
  • the fact that the switch is arranged in series between the terminal a and the terminal b means that one of the two terminals is connected to the terminal a in the switch for switching between conduction and non-conduction between the two terminals. It means that the other end of the terminal is connected to the terminal b.
  • the switch 215 is an example of the fourth switch, and is a so-called shunt switch connected between the terminal 20a and the ground.
  • the switch 235 is an example of a fourth switch, and is a so-called shunt switch connected between the terminal 20b and the ground.
  • Each of the first switch and the fourth switch constituting the switch circuit 20 is composed of one or more semiconductor elements connected in series.
  • Each of the one or more semiconductor elements is, for example, a FET (Field Effect Transistor) composed of a source electrode, a drain electrode, and a gate electrode.
  • FET Field Effect Transistor
  • the number of semiconductor elements connected in series in each of the first switch and the fourth switch is defined as the number of stacks.
  • the switches 215 and 235 do not have to be provided.
  • FIG. 2B is a circuit configuration diagram of the switch circuit 51 according to the embodiment. As shown in the figure, the switch circuit 51 has switches 511, 515, 512 and 516 in addition to the common terminals 51a, 51b and 51c.
  • the switch 511 is an example of the second switch, and is a so-called series switch arranged in series between the common terminal 51a and the terminal 51b.
  • the switch 515 is an example of the second switch, and is a so-called series switch arranged in series between the common terminal 51a and the terminal 51c.
  • the switch 512 is an example of the fifth switch, and is a so-called shunt switch connected between the terminal 51b and the ground.
  • the switch 516 is an example of the fifth switch, and is a so-called shunt switch connected between the terminal 51c and the ground.
  • Each of the second switch and the fifth switch constituting the switch circuit 51 is composed of one or more semiconductor elements connected in series.
  • Each of the one or more semiconductor elements is, for example, an FET composed of a source electrode, a drain electrode, and a gate electrode.
  • the number of semiconductor elements connected in series is defined as the number of stacks.
  • the switches 512 and 516 may not be provided.
  • FIG. 2C is a circuit configuration diagram of the switch circuit 52 according to the embodiment. As shown in the figure, the switch circuit 52 has switches 521, 525, 522 and 526 in addition to the common terminals 52a, 52b and 52c.
  • the switch 521 is an example of a third switch, and is a so-called series switch arranged in series between the common terminal 52a and the terminal 52b.
  • the switch 525 is an example of a third switch, and is a so-called series switch arranged in series between the common terminal 52a and the terminal 52c.
  • the switch 522 is an example of the sixth switch, and is a so-called shunt switch connected between the terminal 52b and the ground.
  • the switch 526 is an example of the sixth switch, and is a so-called shunt switch connected between the terminal 52c and the ground.
  • Each of the third switch and the sixth switch constituting the switch circuit 52 is composed of one or more semiconductor elements connected in series.
  • Each of the one or more semiconductor elements is, for example, an FET composed of a source electrode, a drain electrode, and a gate electrode.
  • the number of serially connected semiconductor elements is defined as the number of stacks.
  • the switches 522 and 526 may not be provided.
  • FIG. 3 is a diagram showing the circuit states of the switch circuits 20, 51 and 52 at the time of two uplinks in the high frequency circuit 1 according to the embodiment.
  • the circuit state at the time of two uplinks which simultaneously transmit the transmission signal of is shown.
  • the transmission signal of B66-Tx is output to the antenna 2A via the terminal 51b, the switch 511, the common terminal 51a, the terminal 20a, the switch 210, and the terminal 20c.
  • the transmission signal of B25-Tx is output to the antenna 2B via the terminal 52b, the switch 521, the common terminal 52a, the terminal 20b, the switch 240, and the terminal 20d.
  • the switch 515 which is in a non-conducting state in the switch circuit 51, is required to have withstand voltage performance according to the transmission power of the transmission signal of B66-Tx.
  • the switch 525 which is in a non-conducting state in the switch circuit 52, is required to have a withstand voltage performance according to the transmission power of the transmission signal of B25-Tx.
  • the switch 220 in the non-conducting state in the switch circuit 20 has a withstand voltage corresponding to the transmission signal of B66-Tx applied from the terminal 20a and transmission of B25-Tx applied from the terminal 20d.
  • the withstand voltage according to the signal must be satisfied.
  • the switch 230 in the non-conducting state in the switch circuit 20 has a withstand voltage corresponding to the transmission signal of B66-Tx applied from the terminal 20c and a transmission signal of B25-Tx applied from the terminal 20b.
  • the withstand voltage must be met.
  • the withstand voltage of the second switch which is a series switch constituting the switch circuit 51
  • the third switch which is a series switch constituting the switch circuit 52
  • the withstand voltage of the first switch which is a series switch constituting the switch circuit 20. It may be lower than the withstand voltage performance.
  • the withstand voltage of a switch increases as the number of stacks of semiconductor elements constituting the switch increases.
  • the number of stacks of the second switch constituting the switch circuit 51 (for example, N) is smaller than the number of stacks of the first switch constituting the switch circuit 20 (for example, M), and constitutes the switch circuit 52.
  • the number of stacks of the third switch (for example, N) is smaller than the number of stacks of the first switch (for example, M) constituting the switch circuit 20.
  • FIG. 4 is a circuit configuration diagram of the high frequency circuit 900 according to the comparative example.
  • the high frequency circuit 900 includes switch circuits 90, 50, 53 and 54, transmission filters 31T, 34T, 42T and 43T, and reception filters 31R, 32R, 33R, 34R, 41R, 42R, 43R and It includes a 44R and power amplifiers 61 and 62.
  • the high frequency circuit 900 according to the comparative example is different from the high frequency circuit 1 according to the embodiment only in that the switch circuit 90 is arranged in place of the switch circuits 20, 51 and 52.
  • the same configuration as the high frequency circuit 1 according to the embodiment will be omitted, and different configurations will be mainly described.
  • the switch circuit 90 has terminals 90a, 90b, 90c, 90d, 90e and 90f.
  • the terminal 90e is connected to the antenna 2A, and the terminal 90f is connected to the antenna 2B. Further, the terminal 90a is connected to the transmission filter 31T, the reception filters 31R and 32R, the terminal 90b is connected to the transmission filter 34T, the reception filters 33R and 34R, and the terminal 90c is connected to the transmission filter 42T and the reception filter. It is connected to 41R and 42R, and the terminal 90d is connected to the transmission filter 43T and the reception filters 43R and 44R.
  • one of the continuity between the terminal 90e and the terminal 90a, the continuity between the terminal 90e and the terminal 90b, the continuity between the terminal 90e and the terminal 90c, and the continuity between the terminal 90e and the terminal 90d is exclusively selected. Then, one of the continuity between the terminal 90f and the terminal 90a, the continuity between the terminal 90f and the terminal 90b, the continuity between the terminal 90f and the terminal 90c, and the continuity between the terminal 90f and the terminal 90d is exclusively selected.
  • the high frequency circuit 900 arbitrarily distributes the high frequency signals of the bands 66, 25, band 1 and band 3 to the antennas 2A and 2B by switching the connection state of the switch circuits 90, 50, 53 and 54. , Simultaneous transmission of 2 uplinks and 2 downlinks listed in (1) to (4) above can be executed.
  • FIG. 5 is a diagram showing the circuit state of the switch circuit 90 at the time of 2 uplinks in the high frequency circuit 900 according to the comparative example.
  • the switch circuit 90 has switches 910, 920, 930, 940, 950, 960, 970, 980, 915, 935, 955 in addition to the terminals 90a, 90b, 90c, 90d, 90e and 90f. And 975.
  • the switch 910 is a so-called series switch arranged in series between the terminal 90e and the terminal 90a.
  • the switch 920 is a so-called series switch arranged in series between the terminal 90f and the terminal 90a.
  • the switch 930 is a so-called series switch arranged in series between the terminal 90e and the terminal 90b.
  • the switch 940 is a so-called series switch arranged in series between the terminal 90f and the terminal 90b.
  • the switch 950 is a so-called series switch arranged in series between the terminal 90e and the terminal 90c.
  • the switch 960 is a so-called series switch arranged in series between the terminal 90f and the terminal 90c.
  • the switch 970 is a so-called series switch arranged in series between the terminal 90e and the terminal 90d.
  • the switch 980 is a so-called series switch arranged in series between the terminal 90f and the terminal 90d.
  • the switch 915 is a so-called shunt switch connected between the terminal 90a and the ground.
  • the switch 935 is a so-called shunt switch connected between the terminal 90b and the ground.
  • the switch 955 is a so-called shunt switch connected between the terminal 90c and the ground.
  • the switch 975 is a so-called shunt switch connected between the terminal 90d and the ground.
  • Each switch constituting the switch circuit 90 is composed of one or more semiconductor elements connected in series.
  • Each of the one or more semiconductor elements is, for example, an FET composed of a source electrode, a drain electrode, and a gate electrode.
  • the transmission signal of the first transmission band (B66-Tx) included in the first frequency band (band 66) and the second transmission band (B25-) included in the second frequency band (band 25) are shown.
  • the circuit state at the time of 2 uplinks which simultaneously transmit the transmission signal of Tx) is shown.
  • the transmission signal of B66-Tx is output to the antenna 2A via the terminal 90a, the switch 910, and the terminal 90e.
  • the transmission signal of B25-Tx is output to the antenna 2B via the terminal 90c, the switch 960, and the terminal 90f.
  • the switch 920 which is in a non-conducting state in the switch circuit 90, has a withstand voltage corresponding to the transmission signal of B66-Tx applied from the terminal 90a and a withstand voltage according to the transmission signal of B25-Tx applied from the terminal 90f. And must be satisfied.
  • the switch 950 which is in a non-conducting state in the switch circuit 90, has a withstand voltage corresponding to the transmission signal of B66-Tx applied from the terminal 90e and a transmission signal of B25-Tx applied from the terminal 90c.
  • the withstand voltage must be met.
  • each of the switches 910 and 960 in the non-conducting state has a withstand voltage corresponding to the transmission signal of B66-Tx. And the withstand voltage corresponding to the transmission signal of B25-Tx, must be satisfied.
  • each of the switches 940 and 970 which are in a non-conducting state, satisfies the withstand voltage according to the transmission signal of B1-Tx and the withstand voltage according to the transmission signal of B3-Tx. There must be. Further, each of the switches 930 and 980 in the non-conducting state must satisfy the withstand voltage corresponding to the transmission signal of B1-Tx and the withstand voltage according to the transmission signal of B3-Tx.
  • the number of stacks of switches constituting the switch circuit 90 (for example, M) is at the same level as the number of stacks of the first switch constituting the switch circuit 20 (for example, M), and constitutes the switch circuit 51. It is larger than the number of stacks of the second switch (for example, N) and larger than the number of stacks of the third switch (for example, N) constituting the switch circuit 52.
  • the number of transmission paths connected to the switch circuit 90 increases, and the terminals of the switch circuit 90 The number increases.
  • the off capacitance of the switch circuit 90 increases, and the transmission loss of the switch circuit 90 increases due to the off capacitance.
  • the voltage applied to each switch constituting the switch circuit 90 increases, signal distortion increases, and signal quality deteriorates.
  • the signal distortion increases as the number of terminals of the switch circuit 90 increases.
  • the number of stacks is increased in order to increase the withstand voltage performance of each switch constituting the switch circuit 90, the switch circuit 90 becomes larger and the high frequency circuit 900 becomes larger.
  • the two transmission filters to be two uplinks are separately connected to the switch circuits 51 and 52, respectively, they are connected to the switch circuits 51 and 52. There is one transmission path for each. Therefore, the number of terminals of the switch circuits 51 and 52 is reduced as compared with the switch circuit 90. Further, in the switch circuit 20, two transmission paths are connected, but the number of terminals is reduced as compared with the switch circuit 90 due to the arrangement of the switch circuits 51 and 52. Therefore, since the number of terminals of the switch circuits 51, 52 and 20 is smaller than that of the switch circuit 90, the off capacitance of the switch circuits 51, 52 and 20 is reduced.
  • the signal transmission loss due to the off capacitance is reduced.
  • the voltage applied to each switch constituting the switch circuit 20 rises and signal distortion occurs, but the number of terminals of the switch circuit 20 is small.
  • Signal distortion can be reduced as compared with the switch circuit 90.
  • the number of stacks of each switch constituting the switch circuit 20 is at the same level as that of the switch circuit 90, but the number of stacks of each switch constituting the switch circuits 51 and 52 is the number of stacks of each switch constituting the switch circuit 90. Less than the number of stacks in.
  • the switch circuit of the high frequency circuit 1 according to the embodiment can be made smaller than the switch circuit of the high frequency circuit 900 according to the comparative example. Therefore, it is possible to provide a small high-frequency circuit 1 in which deterioration of transmission performance at the time of 2 uplinks is suppressed.
  • FIG. 6 is a circuit configuration diagram of the high frequency circuit 1A according to the modified example of the embodiment.
  • the high frequency circuit 1A includes switch circuits 20, 50, 51, 52, 53 and 54, transmission filters 31T, 34T, 42T and 43T, and reception filters 31R, 32R, 33R, 34R, 41R. It includes 42R, 43R and 44R, power amplifiers 61 and 62, and low-pass filters 81 and 82.
  • the high-frequency circuit 1A according to this modification is different from the high-frequency circuit 1 according to the embodiment only in that the low-pass filters 81 and 82 are arranged.
  • the low-pass filter 81 is an example of the first filter circuit, and is connected between the switch circuit 20 and the switch circuit 51.
  • the low pass filter 81 includes, for example, a first frequency band (band 66), a second frequency band (band 25), a third frequency band (band 1), and a fourth frequency band (band 3) in the pass band, and the pass band is the third.
  • the attenuation band includes twice the frequency of one frequency band (band 66) and twice the frequency of the fourth frequency band (band 3). As a result, it is possible to suppress the generation of harmonics generated by the power amplifier 61, the transmission filters 31T and 34T.
  • the low-pass filter 82 is an example of the second filter circuit, and is connected between the switch circuit 20 and the switch circuit 52.
  • the low pass filter 82 includes, for example, a third frequency band (band 66), a second frequency band (band 25), a third frequency band (band 1), and a fourth frequency band (band 3) in the pass band, and the pass band includes the third frequency band (band 66), the second frequency band (band 25), and the fourth frequency band (band 3).
  • the attenuation band includes twice the frequency of the two frequency band (band 25) and twice the frequency of the third frequency band (band 1). As a result, it is possible to suppress the generation of harmonics generated by the power amplifier 62, the transmission filters 42T and 43T.
  • the mutual generated between the second harmonic of the transmission signal of the first transmission band included in the first frequency band and the fundamental wave of the transmission signal of the second transmission band included in the second frequency band may overlap with at least a part of the first frequency band.
  • intermodulation distortion (second) that occurs between the fundamental wave of the transmission signal in the first transmission band included in the first frequency band and the second harmonic of the transmission signal in the second transmission band included in the second frequency band.
  • At least a portion of the frequency range (intermodulation distortion) may overlap with at least a portion of the second frequency band.
  • the low-pass filter 81 is arranged between the switch circuit 20 and the switch circuit 51, it is possible to prevent the first intermodulation distortion from entering the switch circuit 51 from the switch circuit 20. Further, since the low-pass filter 82 is arranged between the switch circuit 20 and the switch circuit 52, it is possible to suppress the invasion of the second intermodulation distortion from the switch circuit 20 into the switch circuit 52. Therefore, deterioration of the quality of the transmission signal can be suppressed.
  • the first intermodulation distortion overlaps with at least a part of band 1.
  • the second intermodulation distortion overlaps with at least a part of band 3.
  • the first frequency band is band 40 (band: 2300-2400 MHz) and the second frequency band is band 1, the first intermodulation distortion overlaps with at least a part of band 40.
  • the low-pass filter 81 can prevent the first intermodulation distortion from entering the switch circuit 51 from the switch circuit 20. Further, the low-pass filter 82 can prevent the second intermodulation distortion from entering the switch circuit 52 from the switch circuit 20. Therefore, deterioration of the quality of the transmission signal can be suppressed.
  • a high-pass filter or a notch filter may be arranged instead of the low-pass filters 81 and 82.
  • a first matching circuit for impedance matching may be arranged.
  • a second matching circuit for impedance matching may be arranged. It is desirable that each of the first matching circuit and the second matching circuit includes an inductor.
  • the switch circuits 20, 51 and 52 often have capacitive impedance due to the non-conducting terminals.
  • the first matching circuit arranged between the switch circuit 20 and the switch circuit 51 and the second matching circuit arranged between the switch circuit 20 and the switch circuit 52 provide inductive impedance. By having it, impedance matching between the switch circuits can be effectively obtained, and the transmission loss of the high frequency circuit 1A can be reduced.
  • the high frequency circuit 1 is connected to the power amplifiers 61 and 62 and the power amplifier 61, and passes through the first transmission band (B66-Tx) included in the first frequency band (band 66).
  • 20b the continuity between the terminal 20a and the terminal 20c, the continuity between the terminal 20a and the terminal 20d is switched, the continuity between the terminal 20b and the terminal 20c, and the continuity between the terminal 20b and the terminal 20d are switched.
  • a switch circuit 51 having a circuit 20 and a common terminal 51a, terminals 51b and 51c, and switching between the common terminal 51a and the terminal 51b and the continuity between the common terminal 51a and the terminal 51c, and the common terminal 52a and the terminal 52b.
  • And 52c and includes a switch circuit 52 that switches the continuity between the common terminal 52a and the terminal 52b and the continuity between the common terminal 52a and the terminal 52c.
  • the terminal 20a is connected to the common terminal 51a
  • the terminal 20b is connected to the common terminal 52a
  • the terminal 51b is connected to the transmission filter 31T
  • the terminal 52b is connected to the transmission filter 42T.
  • the switch circuit 20 is arranged in series between the terminal 20c and the terminal 20a, between the terminal 20c and the terminal 20b, between the terminal 20d and the terminal 20a, and between the terminal 20d and the terminal 20b. It has one switch.
  • the switch circuit 51 has a second switch arranged in series between the common terminal 51a and the terminal 51b and between the common terminal 51a and the terminal 51c.
  • the switch circuit 52 has a third switch arranged in series between the common terminal 52a and the terminal 52b and between the common terminal 52a and the terminal 52c.
  • the number of stacks of the second switch is smaller than the number of stacks of the first switch
  • the number of stacks of the third switch is smaller than the number of stacks of the first switch.
  • the two transmission filters 31T and 42T are separately connected to the switch circuits 51 and 52, respectively, there is only one transmission path connected to the switch circuits 51 and 52, respectively. Therefore, the number of terminals of the switch circuits 51 and 52 is reduced. Further, in the switch circuit 20, two transmission paths are connected, but the number of terminals is reduced due to the arrangement of the switch 51 circuit and 52. Therefore, the number of terminals of the switch circuits 51, 52, and 20 is reduced, respectively, and the off capacitance of the switch circuits 51, 52, and 20 is reduced. As a result, the signal transmission loss due to the off capacitance is reduced.
  • the switch circuit 20 when a plurality of transmission signals are simultaneously input to the switch circuit 20, the voltage applied to each switch constituting the switch circuit 20 rises and signal distortion occurs, but the number of terminals of the switch circuit 20 is small. Signal distortion can be reduced. Further, the number of stacks of the first switch constituting the switch circuit 20 is at the same level as that of the conventional switch circuit, but the number of stacks of each switch constituting the switch circuits 51 and 52 constitutes the conventional switch circuit. Less than the number of stacks on each switch. As a result, the switch circuit of the high frequency circuit 1 can be miniaturized. Therefore, it is possible to provide a small high-frequency circuit 1 in which deterioration of transmission performance at the time of simultaneous transmission of a plurality of signals is suppressed.
  • the switch circuit 20 has a fourth switch connected between the terminals 20c, 20d, 20a and 20b and the ground, and the switch circuit 51 has common terminals 51a, terminals 51b and The switch circuit 52 has a fifth switch connected between each of the 51c and the ground, and the switch circuit 52 has a sixth switch connected between each of the common terminals 52a, terminals 52b and 52c and the ground. May be good.
  • the switch circuit 20 in the high frequency circuit 1, in the switch circuit 20, the continuity between the terminal 20a and the terminal 20c and the continuity between the terminal 20a and the terminal 20d are switched, the continuity between the terminal 20b and the terminal 20c, and the continuity between the terminal 20b and the terminal 20d.
  • the switch circuit 51 the continuity between the common terminal 51a and the terminal 51b and the continuity between the common terminal 51a and the terminal 51c are switched, and in the switch circuit 52, the continuity between the common terminal 52a and the terminal 52b. Further, the continuity between the common terminal 52a and the terminal 52c may be switched.
  • the high frequency circuit 1A further includes a first matching circuit connected between the switch circuit 20 and the switch circuit 51, and a second matching circuit connected between the switch circuit 20 and the switch circuit 52.
  • Each of the first matching circuit and the second matching circuit may include an inductor.
  • Switch circuits 20, 51 and 52 often have capacitive impedance due to non-conducting terminals.
  • the first matching circuit and the second matching circuit have inductive impedance, impedance matching between the switch circuits can be effectively achieved, and the transmission loss of the high frequency circuit 1A can be reduced.
  • the high frequency circuit 1A further includes a low-pass filter 81 connected between the switch circuit 20 and the switch circuit 51, and a low-pass filter 82 connected between the switch circuit 20 and the switch circuit 52. May be good.
  • the low-pass filter 81 can suppress the generation of harmonics generated by the power amplifier 61, the transmission filters 31T and 34T, and the low-pass filter 82 can suppress the generation of harmonics generated by the power amplifier 62, the transmission filters 42T and 43T. Occurrence can be suppressed.
  • the mutual generated between the second harmonic of the transmission signal of the first transmission band included in the first frequency band and the fundamental wave of the transmission signal of the second transmission band included in the second frequency band may overlap with at least a part of the first frequency band.
  • intermodulation distortion (second) that occurs between the fundamental wave of the transmission signal in the first transmission band included in the first frequency band and the second harmonic of the transmission signal in the second transmission band included in the second frequency band.
  • At least a portion of the frequency range (intermodulation distortion) may overlap with at least a portion of the second frequency band.
  • the low-pass filter 81 is arranged between the switch circuit 20 and the switch circuit 51, it is possible to suppress the invasion of the first intermodulation distortion from the switch circuit 20 into the switch circuit 51. Further, since the low-pass filter 82 is arranged between the switch circuit 20 and the switch circuit 52, it is possible to suppress the invasion of the second intermodulation distortion from the switch circuit 20 into the switch circuit 52. Therefore, deterioration of the quality of the transmission signal can be suppressed.
  • the first intermodulation distortion may overlap with at least a part of band 1.
  • the second intermodulation distortion may overlap with at least a part of band 3.
  • the first intermodulation distortion may overlap with at least a part of the band 40.
  • the low-pass filter 81 can prevent the first intermodulation distortion from entering the switch circuit 51 from the switch circuit 20. Further, the low-pass filter 82 can prevent the second intermodulation distortion from entering the switch circuit 52 from the switch circuit 20. Therefore, deterioration of the quality of the transmission signal can be suppressed.
  • the high frequency circuit 1 is further connected to the power amplifier 61, and is connected to the transmission filter 34T and the power amplifier 62, which include the fourth transmission band (B3-Tx) included in the fourth frequency band (band 3) in the pass band.
  • a transmission filter 43T which is connected and includes a third transmission band (B1-Tx) included in the third frequency band (band 1) in the pass band, is provided, the terminal 51c is connected to the transmission filter 34T, and the terminal 52c transmits.
  • a transmission filter connected to the filter 43T and including the second transmission band in the pass band and a transmission filter including the third transmission band in the pass band are not arranged between the power amplifier 61 and the switch circuit 51, and the power is increased.
  • a transmission filter including the first transmission band in the pass band and a transmission filter including the fourth transmission band in the pass band are not arranged between the amplifier 62 and the switch circuit 52, and the common terminal 51a and the terminal 51b are provided with each other.
  • Conduction and continuity between the common terminal 52a and the terminal 52b execute two uplinks between the transmission signal in the first transmission band and the transmission signal in the second transmission band, and the continuity between the common terminal 51a and the terminal 51c and the common terminal 52a. 2 uplinks of the transmission signal in the third transmission band and the transmission signal in the fourth transmission band may be executed by the continuity between the terminal 52c and the terminal 52c.
  • the high frequency signal of the band (band 3) can be arbitrarily distributed to the antennas 2A and 2B, and simultaneous transmission of two uplinks can be executed.
  • a transmission filter including the second transmission band in the pass band and a transmission filter including the third transmission band in the pass band are not arranged between the power amplifier 61 and the switch circuit 51, and the power amplifier 62 and the switch circuit are not arranged. Since the transmission filter including the first transmission band in the pass band and the transmission filter including the fourth transmission band in the pass band are not arranged between the 52 and the 52, a small high frequency circuit capable of simultaneous transmission of a plurality of signals. 1 can be provided.
  • the communication device 5 includes a high frequency circuit 1 and an RFIC 3 for processing high frequency signals transmitted and received by the high frequency circuit 1.
  • the 2 uplinks and the high frequency signals in the 3rd frequency band and the high frequency in the 4th frequency band that simultaneously transmit the high frequency signal in the 1st frequency band and the high frequency signal in the 2nd frequency band are transmitted simultaneously.
  • the configuration of the high frequency circuit and the communication device according to the present invention is a configuration of an uplink (for example, three uplinks) that simultaneously uses three or more different frequency bands.
  • the two uplinks in the above-described embodiment and its modification include a multi-uplink that simultaneously uses three or more different frequency bands, and an uplink that simultaneously uses three or more different frequency bands is executed.
  • the present invention also includes a high-frequency circuit or a communication device including the configuration of the high-frequency circuit or the communication device according to the above-described embodiment and its modification.
  • the present invention can be widely used in communication devices such as mobile phones as a multi-band / multi-mode compatible front-end circuit capable of executing two uplinks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transceivers (AREA)

Abstract

高周波回路(1)は、電力増幅器(61)に接続されたB66-Tx用の送信フィルタ(31T)と、電力増幅器(62)に接続されたB25-Tx用の送信フィルタ(42T)と、端子(20a、20b、20cおよび20d)を有するスイッチ回路(20)と、共通端子(51a)、端子(51bおよび51c)を有するスイッチ回路(51)と、共通端子(52a)、端子(52bおよび52c)を有するスイッチ回路(52)と、を備え、端子(20a)は共通端子(51a)に接続され、端子(20b)は共通端子(52a)に接続され、端子(51b)は送信フィルタ(31T)に接続され、端子(52b)は送信フィルタ(42T)に接続され、スイッチ回路(51)のスタック数はスイッチ回路(20)のスタック数よりも小さく、かつ、スイッチ回路(52)のスタック数はスイッチ回路(20)のスタック数よりも小さい。

Description

高周波回路および通信装置
 本発明は、高周波信号を処理する高周波回路および通信装置に関する。
 特許文献1には、複数のデュプレクサ(送信フィルタおよび受信フィルタ)が1つのスイッチ回路に接続された構成を有し、複数の信号の同時送信が可能な高周波モジュールが開示されている。デュプレクサとスイッチの選択端子との間には位相回路が配置されている。これによれば、一のデュプレクサから他のデュプレクサへ、つまり、一の信号経路から他の信号経路へ、送信信号の高調波がスイッチを経由して漏洩することを抑制することが可能となる。
国際公開第2015/041125号
 しかしながら、特許文献1に開示された高周波モジュールでは、複数の信号を同時伝送する全てのデュプレクサが1つのスイッチ回路に接続されているため、当該スイッチ回路に接続される送信経路が多くなり、スイッチ回路の端子数が増加する。スイッチ回路の端子数が多くなると、複数の送信信号が同時に上記スイッチ回路に入力された場合、端子にかかる電圧上昇に起因して発生する信号歪が増大し、信号品質が低下する。また、スイッチ回路の耐圧性能を高めると、スイッチ回路が大型化してしまう。
 そこで、本発明は、上記課題を解決するためになされたものであって、複数の信号の同時送信時の伝送性能の劣化が抑制された小型の高周波回路および通信装置を提供することを目的とする。
 本発明の一態様に係る高周波回路は、第1電力増幅器および第2電力増幅器と、第1電力増幅器に接続され、第1周波数帯域に含まれる第1送信帯域を通過帯域に含む第1送信フィルタと、第2電力増幅器に接続され、第1周波数帯域と異なる第2周波数帯域に含まれる第2送信帯域を通過帯域に含む第2送信フィルタと、第1アンテナ接続端子、第2アンテナ接続端子、第1端子、および第2端子を有する第1スイッチ回路と、第1共通端子、第3端子、および第4端子を有する第2スイッチ回路と、第2共通端子、第5端子、および第6端子を有する第3スイッチ回路と、を備え、第1端子は第1共通端子に接続され、第2端子は第2共通端子に接続され、第3端子は第1送信フィルタに接続され、第5端子は第2送信フィルタに接続され、第1スイッチ回路は、第1アンテナ接続端子と第1端子との間、第1アンテナ接続端子と第2端子との間、第2アンテナ接続端子と第1端子との間、および第2アンテナ接続端子と第2端子との間、のそれぞれに直列配置された第1スイッチを有し、第2スイッチ回路は、第1共通端子と第3端子との間、および、第1共通端子と第4端子との間、のそれぞれに直列配置された第2スイッチを有し、第3スイッチ回路は、第2共通端子と第5端子との間、および、第2共通端子と第6端子との間、のそれぞれに直列配置された第3スイッチを有し、第2スイッチのスタック数は、第1スイッチのスタック数よりも小さく、かつ、第3スイッチのスタック数は、第1スイッチのスタック数よりも小さい。
 本発明によれば、複数の信号の同時送信時の伝送性能の劣化が抑制された小型の高周波回路および通信装置を提供することが可能となる。
図1は、実施の形態に係る高周波回路および通信装置の回路構成図である。 図2Aは、実施の形態に係る第1スイッチ回路の回路構成図である。 図2Bは、実施の形態に係る第2スイッチ回路の回路構成図である。 図2Cは、実施の形態に係る第3スイッチ回路の回路構成図である。 図3は、実施の形態に係る高周波回路における2アップリンク時のスイッチ回路の回路状態を表す図である。 図4は、比較例に係る高周波回路の回路構成図である。 図5は、比較例に係る高周波回路における2アップリンク時のスイッチ回路の回路状態を表す図である。 図6は、実施の形態の変形例に係る高周波回路の回路構成図である。
 以下、本発明の実施の形態について詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態等は、一例であり、本発明を限定する主旨ではない。以下の実施例および変形例における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさまたは大きさの比は、必ずしも厳密ではない。各図において、実質的に同一の構成については同一の符号を付し、重複する説明は省略または簡略化する場合がある。
 また、以下において、平行および垂直等の要素間の関係性を示す用語、矩形状等の要素の形状を示す用語、ならびに、数値範囲は、厳格な意味のみを表すのではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する。
 また、以下の実施の形態において、「AとBとが接続されている」とは、AとBとが接触していることを指すだけでなく、AとBとが導体電極、導体端子、配線、または他の回路部品などを介して電気的に接続されていることを含むものと定義される。また、「AおよびBの間に接続される」とは、AおよびBの間でAおよびBの両方に接続されることを意味する。
 また、以下において、「送信経路」とは、高周波送信信号が伝搬する配線、当該配線に直接接続された電極、および当該配線または当該電極に直接接続された端子等で構成された伝送線路であることを意味する。また、「受信経路」とは、高周波受信信号が伝搬する配線、当該配線に直接接続された電極、および当該配線または当該電極に直接接続された端子等で構成された伝送線路であることを意味する。
 (実施の形態)
 [1.高周波回路1および通信装置5の構成]
 図1は、実施の形態に係る高周波回路1および通信装置5の回路構成図である。同図に示すように、通信装置5は、高周波回路1と、アンテナ2Aおよび2Bと、RF信号処理回路(RFIC)3と、ベースバンド信号処理回路(BBIC)4と、を備える。
 アンテナ2Aは、例えばプライマリアンテナであり、アンテナ性能などの点でアンテナ2Bよりも優先使用されるアンテナであり、第1周波数帯域、第2周波数帯域、第3周波数帯域および第4周波数帯域の信号を送信および受信できるアンテナ素子である。また、アンテナ2Bは、例えばセカンダリアンテナであり、第1周波数帯域、第2周波数帯域、第3周波数帯域および第4周波数帯域の信号を送信および受信できるアンテナ素子である。
 RFIC3は、アンテナ2Aおよび2Bで送受信される高周波信号を処理するRF信号処理回路である。具体的には、RFIC3は、高周波回路1を介して入力された受信信号を、ダウンコンバートなどにより信号処理し、当該信号処理して生成された受信信号をBBIC4へ出力する。また、RFIC3は、BBIC4から入力された送信信号をアップコンバートなどにより信号処理し、当該信号処理して生成された送信信号を、高周波回路1の送信経路に出力する。
 BBIC4は、高周波回路1を伝搬する高周波信号よりも低周波の中間周波数帯域を用いて信号処理する回路である。BBIC4で処理された信号は、例えば、画像表示のための画像信号として使用され、または、スピーカを介した通話のために音声信号として使用される。
 また、RFIC3は、使用されるバンド(周波数帯域)に基づいて、高周波回路1が有するスイッチ回路(後述する)の接続を制御する制御部としての機能も有する。具体的には、RFIC3は、制御信号(図示せず)によって、高周波回路1が有するスイッチ回路の接続を切り替える。なお、制御部は、RFIC3の外部に設けられていてもよく、例えば、高周波回路1またはBBIC4に設けられていてもよい。
 次に、高周波回路1の詳細な回路構成について説明する。
 図1に示すように、高周波回路1は、スイッチ回路20、50、51、52、53および54と、送信フィルタ31T、34T、42Tおよび43Tと、受信フィルタ31R、32R、33R、34R、41R、42R、43Rおよび44Rと、電力増幅器61および62と、を備える。
 本実施の形態では、4つの周波数帯域のそれぞれを、例えばLTE(Long Term Evolution)または5GNR(5th Generation New Radio)のための具体的バンドに割り当てている。第1周波数帯域は、例えば、バンド66(送信帯域:1710-1780MHz、受信帯域:2110-2200MHz)である。第2周波数帯域は、例えば、バンド25(送信帯域:1850-1915MHz、受信帯域:1930-1995MHz)である。第3周波数帯域は、例えば、バンド1(送信帯域:1920-1980MHz、受信帯域:2110-2170MHz)である。第4周波数帯域は、例えば、バンド3(送信帯域:1710-1785MHz、受信帯域:1805-1880MHz)である。
 なお、上記の周波数割り当てにおいて、バンド3の送信帯域はバンド66の送信帯域を包含する関係となっており、バンド66の受信帯域はバンド1の受信帯域を包含する関係となっている。その他、4つの周波数帯域において、重複および包含の関係はない。
 上記周波数帯域の関係より、本実施の形態に係る高周波回路1では、バンド66とバンド3との2アップリンクは実行せず、また、バンド66とバンド1との2ダウンリンクは実行しない構成となっている。
 上記構成により、高周波回路1は、(1)第1周波数帯域(バンド66)に含まれる第1送信帯域(B66-Tx)の送信信号と、第2周波数帯域(バンド25)に含まれる第2送信帯域(B25-Tx)の送信信号とを同時送信する2アップリンク、(2)第1周波数帯域(バンド66)に含まれる第1受信帯域(B66-Rx)の受信信号と、第2周波数帯域(バンド25)に含まれる第2受信帯域(B25-Rx)の受信信号とを同時受信する2ダウンリンク、(3)第3周波数帯域(バンド1)に含まれる第3送信帯域(B1-Tx)の送信信号と、第4周波数帯域(バンド3)に含まれる第4送信帯域(B3-Tx)の送信信号とを同時送信する2アップリンク、および(4)第3周波数帯域(バンド1)に含まれる第3受信帯域(B1-Rx)の受信信号と、第4周波数帯域(バンド3)に含まれる第4受信帯域(B3-Rx)の受信信号とを同時受信する2ダウンリンク、を実行することが可能である。
 送信フィルタ31Tは、B66-Txを通過帯域とする第1送信フィルタの一例であり、入力端子がスイッチ回路53を介して電力増幅器61に接続され、出力端子が端子51bに接続されている。
 送信フィルタ34Tは、B3-Txを通過帯域とする第4送信フィルタの一例であり、入力端子がスイッチ回路53を介して電力増幅器61に接続され、出力端子が端子51cに接続されている。
 受信フィルタ31Rは、B66-Rxを通過帯域とする第1受信フィルタの一例であり、入力端子が端子51bに接続されている。
 受信フィルタ32Rは、B25-Rxを通過帯域とする第5受信フィルタの一例であり、入力端子が端子51bに接続されている。
 受信フィルタ33Rは、B1-Rxを通過帯域とする第7受信フィルタの一例であり、入力端子が端子51cに接続されている。
 受信フィルタ34Rは、B3-Rxを通過帯域とする第4受信フィルタの一例であり、入力端子が端子51cに接続されている。
 送信フィルタ42Tは、B25-Txを通過帯域とする第2送信フィルタの一例であり、入力端子がスイッチ回路54を介して電力増幅器62に接続され、出力端子が端子52bに接続されている。
 送信フィルタ43Tは、B1-Txを通過帯域とする第3送信フィルタの一例であり、入力端子がスイッチ回路54を介して電力増幅器62に接続され、出力端子が端子52cに接続されている。
 受信フィルタ41Rは、B66-Rxを通過帯域とする第6受信フィルタの一例であり、入力端子が端子52bに接続されている。
 受信フィルタ42Rは、B25-Rxを通過帯域とする第2受信フィルタの一例であり、入力端子が端子52bに接続されている。
 受信フィルタ43Rは、B1-Rxを通過帯域とする第3受信フィルタの一例であり、入力端子が端子52cに接続されている。
 受信フィルタ44Rは、B3-Rxを通過帯域とする第8受信フィルタの一例であり、入力端子が端子52cに接続されている。
 送信フィルタ31T、34T、受信フィルタ31R、32R、33Rおよび34Rは、バンド66およびバンド3の高周波信号を選択的に送信し、バンド66、バンド25、バンド1およびバンド3の高周波信号を受信することが可能な第1マルチプレクサを構成する。第1マルチプレクサは、スイッチ回路51と電力増幅器61との間に接続されたフィルタの集合体である。なお、第1マルチプレクサは、B25-Txを通過帯域とする送信フィルタ、および、B1-Txを通過帯域とする送信フィルタを有していない。
 送信フィルタ42T、43T、受信フィルタ41R、42R、43Rおよび44Rは、バンド25およびバンド1の高周波信号を選択的に送信し、バンド66、バンド25、バンド1およびバンド3の高周波信号を受信することが可能な第2マルチプレクサを構成する。第2マルチプレクサは、スイッチ回路52と電力増幅器62との間に接続されたフィルタの集合体である。なお、第2マルチプレクサは、B66-Txを通過帯域とする送信フィルタ、および、B3-Txを通過帯域とする送信フィルタを有していない。
 電力増幅器61は、第1電力増幅器の一例であり、入力端子がスイッチ回路50に接続され、出力端子がスイッチ回路53に接続されている。電力増幅器62は、第2電力増幅器の一例であり、入力端子がスイッチ回路50に接続され、出力端子がスイッチ回路54に接続されている。電力増幅器61および62は、例えば、トランジスタ等によって構成されたパワーアンプである。
 スイッチ回路20は、第1スイッチ回路の一例であり、端子20a(第1端子)、端子20b(第2端子)、端子20c(第1アンテナ接続端子)、および端子20d(第2アンテナ接続端子)を有する。
 端子20cはアンテナ2Aと接続されており、端子20dはアンテナ2Bと接続されている。また、端子20aは、共通端子51aに接続されており、端子20bは、共通端子52aに接続されている。
 スイッチ回路20において、端子20aと端子20cとの導通、および、端子20aと端子20dとの導通が排他的に選択され、端子20bと端子20cとの導通、および、端子20bと端子20dとの導通が排他的に選択される。
 スイッチ回路20は、例えば、端子20a、20b、20cおよび20dを有するDPDT(Double Pole Double Throw)型のスイッチ回路である。なお、スイッチ回路20は、DP3T(Double Pole 3 Throw)型およびDP4T(Double Pole 4 Throw)型などのスイッチ回路であってもよく、この場合には、使用されるバンド数に応じて必要な端子を使用すればよい。
 スイッチ回路51は、第2スイッチ回路の一例であり、共通端子51a(第1共通端子)、端子51b(第3端子)および51c(第4端子)を有し、共通端子51aと端子51bとの導通、および、共通端子51aと端子51cとの導通が排他的に切り替わる。共通端子51aは端子20aに接続され、端子51bは、送信フィルタ31T、受信フィルタ31Rおよび32Rに接続され、端子51cは、送信フィルタ34T、受信フィルタ33Rおよび34Rに接続されている。これにより、スイッチ回路51は、送信フィルタ31T、受信フィルタ31Rおよび32Rとスイッチ回路20との接続、および、送信フィルタ34T、受信フィルタ33Rおよび34Rとスイッチ回路20との接続を切り替える。
 スイッチ回路52は、第3スイッチ回路の一例であり、共通端子52a(第2共通端子)、端子52b(第5端子)および52c(第6端子)を有し、共通端子52aと端子52bとの導通、および、共通端子52aと端子52cとの導通が排他的に切り替わる。共通端子52aは端子20bに接続され、端子52bは、送信フィルタ42T、受信フィルタ41Rおよび42Rに接続され、端子52cは、送信フィルタ43T、受信フィルタ43Rおよび44Rに接続されている。これにより、スイッチ回路52は、送信フィルタ42T、受信フィルタ41Rおよび42Rとスイッチ回路20との接続、および、送信フィルタ43T、受信フィルタ43Rおよび44Rとスイッチ回路20との接続を切り替える。
 スイッチ回路51および52は、それぞれ、例えばSPDT(Single Pole Double Throw)型のスイッチ回路である。
 スイッチ回路53は、共通端子53a、端子53cおよび53dを有し、共通端子53aと端子53cとの導通、および、共通端子53aと端子53dとの導通が排他的に切り替わる。共通端子53aは電力増幅器61に接続され、端子53cは、送信フィルタ31Tに接続され、端子53dは、送信フィルタ34Tに接続されている。これにより、スイッチ回路53は、送信フィルタ31Tと電力増幅器61との接続、および、送信フィルタ34Tと電力増幅器61との接続を切り替える。
 スイッチ回路54は、共通端子54a、端子54cおよび54dを有し、共通端子54aと端子54cとの導通、および、共通端子54aと端子54dとの導通が排他的に切り替わる。共通端子54aは電力増幅器62に接続され、端子54cは、送信フィルタ42Tに接続され、端子54dは、送信フィルタ43Tに接続されている。これにより、スイッチ回路54は、送信フィルタ42Tと電力増幅器62との接続、および、送信フィルタ43Tと電力増幅器62との接続を切り替える。
 スイッチ回路50は、端子50a、端子50b、端子50c、および端子50dを有する。
 端子50cは電力増幅器61と接続されており、端子50dは電力増幅器62と接続されている。また、端子50aおよび50bは、それぞれRFIC3の異なる端子に接続されている。
 スイッチ回路50において、端子50aと端子50cとの導通、および、端子50aと端子50dとの導通が排他的に選択され、端子50bと端子50cとの導通、および、端子50bと端子50dとの導通が排他的に選択される。
 スイッチ回路50は、例えば、DPDT型のスイッチ回路である。なお、スイッチ回路50は、DP3T型およびDP4T型などのスイッチ回路であってもよく、この場合には、使用されるバンド数に応じて必要な端子を使用すればよい。
 なお、高周波回路1を構成する上記の各回路部品の間に、インピーダンス整合回路が挿入されてもよい。
 上記構成により、高周波回路1は、スイッチ回路20、50~54の接続状態を切り替えることで、バンド66、バンド25、バンド1およびバンド3の高周波信号を、アンテナ2Aおよび2Bに任意に振り分け、上記(1)~(4)に挙げられた2アップリンク2ダウンリンクの同時伝送を実行できる。ここで、第1マルチプレクサはバンド25の送信フィルタおよびバンド1の送信フィルタを有しておらず、第2マルチプレクサはバンド66の送信フィルタおよびバンド3の送信フィルタを有していないが、2アップリンク2ダウンリンクの同時伝送が可能な小型の高周波回路1を提供できる。
 なお、本発明に係る高周波回路は、図1に示された回路部品のうち、電力増幅器61および62、送信フィルタ31Tおよび43T、ならびにスイッチ回路20、51および52を、少なくとも有していればよい。
 [2.実施の形態に係るスイッチ回路の構成]
 次に、高周波回路1を構成するスイッチ回路20、51および52の回路構成について説明する。
 図2Aは、実施の形態に係るスイッチ回路20の回路構成図である。同図に示すように、スイッチ回路20は、端子20a、20b、20cおよび20dに加えて、スイッチ210、220、230、240、215および235を有している。
 スイッチ210は、第1スイッチの一例であり、端子20cと端子20aとの間に直列配置された、いわゆるシリーズスイッチである。スイッチ220は、第1スイッチの一例であり、端子20dと端子20aとの間に直列配置された、いわゆるシリーズスイッチである。スイッチ230は、第1スイッチの一例であり、端子20cと端子20bとの間に直列配置された、いわゆるシリーズスイッチである。スイッチ240は、第1スイッチの一例であり、端子20dと端子20bとの間に直列配置された、いわゆるシリーズスイッチである。
 ここで、スイッチが端子aと端子bとの間に直列配置されるとは、2端子の間での導通および非導通を切り替えるスイッチにおいて、当該2端子の一方が端子aに接続され、当該2端子の他方が端子bに接続された状態を意味する。
 スイッチ215は、第4スイッチの一例であり、端子20aとグランドとの間に接続された、いわゆるシャントスイッチである。スイッチ235は、第4スイッチの一例であり、端子20bとグランドとの間に接続された、いわゆるシャントスイッチである。
 スイッチ回路20を構成する第1スイッチおよび第4スイッチのそれぞれは、直列接続された1以上の半導体素子で構成されている。1以上の半導体素子のそれぞれは、例えば、ソース電極、ドレイン電極、およびゲート電極で構成されるFET(Field Effect Transistor)である。ここで、第1スイッチおよび第4スイッチのそれぞれにおいて、半導体素子の直列接続数をスタック数と定義する。
 なお、スイッチ215および235は、なくてもよい。
 図2Bは、実施の形態に係るスイッチ回路51の回路構成図である。同図に示すように、スイッチ回路51は、共通端子51a、端子51bおよび51cに加えて、スイッチ511、515、512および516を有している。
 スイッチ511は、第2スイッチの一例であり、共通端子51aと端子51bとの間に直列配置された、いわゆるシリーズスイッチである。スイッチ515は、第2スイッチの一例であり、共通端子51aと端子51cとの間に直列配置された、いわゆるシリーズスイッチである。
 スイッチ512は、第5スイッチの一例であり、端子51bとグランドとの間に接続された、いわゆるシャントスイッチである。スイッチ516は、第5スイッチの一例であり、端子51cとグランドとの間に接続された、いわゆるシャントスイッチである。
 スイッチ回路51を構成する第2スイッチおよび第5スイッチのそれぞれは、直列接続された1以上の半導体素子で構成されている。1以上の半導体素子のそれぞれは、例えば、ソース電極、ドレイン電極、およびゲート電極で構成されるFETである。ここで、第2スイッチおよび第5スイッチのそれぞれにおいて、半導体素子の直列接続数をスタック数と定義する。
 なお、スイッチ512および516は、なくてもよい。
 図2Cは、実施の形態に係るスイッチ回路52の回路構成図である。同図に示すように、スイッチ回路52は、共通端子52a、端子52bおよび52cに加えて、スイッチ521、525、522および526を有している。
 スイッチ521は、第3スイッチの一例であり、共通端子52aと端子52bとの間に直列配置された、いわゆるシリーズスイッチである。スイッチ525は、第3スイッチの一例であり、共通端子52aと端子52cとの間に直列配置された、いわゆるシリーズスイッチである。
 スイッチ522は、第6スイッチの一例であり、端子52bとグランドとの間に接続された、いわゆるシャントスイッチである。スイッチ526は、第6スイッチの一例であり、端子52cとグランドとの間に接続された、いわゆるシャントスイッチである。
 スイッチ回路52を構成する第3スイッチおよび第6スイッチのそれぞれは、直列接続された1以上の半導体素子で構成されている。1以上の半導体素子のそれぞれは、例えば、ソース電極、ドレイン電極、およびゲート電極で構成されるFETである。ここで、第3スイッチおよび第6スイッチのそれぞれにおいて、半導体素子の直列接続数をスタック数と定義する。
 なお、スイッチ522および526は、なくてもよい。
 図3は、実施の形態に係る高周波回路1における2アップリンク時のスイッチ回路20、51および52の回路状態を表す図である。同図には、第1周波数帯域(バンド66)に含まれる第1送信帯域(B66-Tx)の送信信号と、第2周波数帯域(バンド25)に含まれる第2送信帯域(B25-Tx)の送信信号とを同時送信する2アップリンク時の回路状態が示されている。
 図3に示すように、B66-Txの送信信号が、端子51b、スイッチ511、共通端子51a、端子20a、スイッチ210、および端子20cを経由してアンテナ2Aに出力される。これと同時に、B25-Txの送信信号が、端子52b、スイッチ521、共通端子52a、端子20b、スイッチ240、および端子20dを経由してアンテナ2Bに出力される。
 このとき、スイッチ回路51および52のそれぞれには、単一の送信信号のみが流れる。これに対して、スイッチ回路20には、2つの送信信号が同時に流れる。送信信号がスイッチ回路を流れる場合、送信信号を遮断するために非導通状態となっているスイッチには、当該送信信号の送信電力に応じた耐圧性能が必要となる。
 例えば、スイッチ回路51において非導通状態であるスイッチ515には、B66-Txの送信信号の送信電力に応じた耐圧性能が必要となる。また、例えば、スイッチ回路52において非導通状態であるスイッチ525には、B25-Txの送信信号の送信電力に応じた耐圧性能が必要となる。
 これに対して、例えば、スイッチ回路20において非導通状態であるスイッチ220には、端子20aから印加されるB66-Txの送信信号に応じた耐圧と、端子20dから印加されるB25-Txの送信信号に応じた耐圧と、を満たさなければならない。
 また、例えば、スイッチ回路20において非導通状態であるスイッチ230には、端子20cから印加されるB66-Txの送信信号に応じた耐圧と、端子20bから印加されるB25-Txの送信信号に応じた耐圧と、を満たさなければならない。
 つまり、スイッチ回路51を構成するシリーズスイッチである第2スイッチ、および、スイッチ回路52を構成するシリーズスイッチである第3スイッチの耐圧性は、スイッチ回路20を構成するシリーズスイッチである第1スイッチの耐圧性能よりも低くてよい。
 スイッチの耐圧は、当該スイッチを構成する半導体素子のスタック数が大きいほど高くなる。
 この観点から、スイッチ回路51を構成する第2スイッチのスタック数(例えばN)は、スイッチ回路20を構成する第1スイッチのスタック数(例えばM)よりも小さく、かつ、スイッチ回路52を構成する第3スイッチのスタック数(例えばN)は、スイッチ回路20を構成する第1スイッチのスタック数(例えばM)よりも小さい。
 [3.比較例に係る高周波回路およびスイッチ回路の構成]
 次に、比較例に係る高周波回路900の回路構成およびスイッチ回路90について説明する。
 図4は、比較例に係る高周波回路900の回路構成図である。同図に示すように、高周波回路900は、スイッチ回路90、50、53および54と、送信フィルタ31T、34T、42Tおよび43Tと、受信フィルタ31R、32R、33R、34R、41R、42R、43Rおよび44Rと、電力増幅器61および62と、を備える。比較例に係る高周波回路900は、実施の形態に係る高周波回路1と比較して、スイッチ回路20、51および52に代えてスイッチ回路90が配置されている点のみが異なる。
 以下、比較例に係る高周波回路900について、実施の形態に係る高周波回路1と同じ構成については説明を省略し、異なる構成を中心に説明する。
 スイッチ回路90は、端子90a、90b、90c、90d、90eおよび90fを有する。
 端子90eはアンテナ2Aと接続されており、端子90fはアンテナ2Bと接続されている。また、端子90aは、送信フィルタ31T、受信フィルタ31Rおよび32Rに接続されており、端子90bは、送信フィルタ34T、受信フィルタ33Rおよび34Rに接続されており、端子90cは、送信フィルタ42T、受信フィルタ41Rおよび42Rに接続されており、端子90dは、送信フィルタ43T、受信フィルタ43Rおよび44Rに接続されている。
 スイッチ回路90において、端子90eと端子90aとの導通、端子90eと端子90bとの導通、端子90eと端子90cとの導通、および端子90eと端子90dとの導通のいずれか1つが排他的に選択され、端子90fと端子90aとの導通、端子90fと端子90bとの導通、端子90fと端子90cとの導通、および端子90fと端子90dとの導通のいずれか1つが排他的に選択される。
 上記構成により、高周波回路900は、スイッチ回路90、50、53および54の接続状態を切り替えることで、バンド66、バンド25、バンド1およびバンド3の高周波信号を、アンテナ2Aおよび2Bに任意に振り分け、上記(1)~(4)に挙げられた2アップリンク2ダウンリンクの同時伝送を実行できる。
 図5は、比較例に係る高周波回路900における2アップリンク時のスイッチ回路90の回路状態を表す図である。同図に示すように、スイッチ回路90は、端子90a、90b、90c、90d、90eおよび90fに加えて、スイッチ910、920、930、940、950、960、970、980、915、935、955および975を有している。
 スイッチ910は、端子90eと端子90aとの間に直列配置された、いわゆるシリーズスイッチである。スイッチ920は、端子90fと端子90aとの間に直列配置された、いわゆるシリーズスイッチである。スイッチ930は、端子90eと端子90bとの間に直列配置された、いわゆるシリーズスイッチである。スイッチ940は、端子90fと端子90bとの間に直列配置された、いわゆるシリーズスイッチである。スイッチ950は、端子90eと端子90cとの間に直列配置された、いわゆるシリーズスイッチである。スイッチ960は、端子90fと端子90cとの間に直列配置された、いわゆるシリーズスイッチである。スイッチ970は、端子90eと端子90dとの間に直列配置された、いわゆるシリーズスイッチである。スイッチ980は、端子90fと端子90dとの間に直列配置された、いわゆるシリーズスイッチである。
 スイッチ915は、端子90aとグランドとの間に接続された、いわゆるシャントスイッチである。スイッチ935は、端子90bとグランドとの間に接続された、いわゆるシャントスイッチである。スイッチ955は、端子90cとグランドとの間に接続された、いわゆるシャントスイッチである。スイッチ975は、端子90dとグランドとの間に接続された、いわゆるシャントスイッチである。
 スイッチ回路90を構成する各スイッチは、直列接続された1以上の半導体素子で構成されている。1以上の半導体素子のそれぞれは、例えば、ソース電極、ドレイン電極、およびゲート電極で構成されるFETである。
 また、図5には、第1周波数帯域(バンド66)に含まれる第1送信帯域(B66-Tx)の送信信号と、第2周波数帯域(バンド25)に含まれる第2送信帯域(B25-Tx)の送信信号とを同時送信する2アップリンク時の回路状態が示されている。
 図5に示すように、B66-Txの送信信号が、端子90a、スイッチ910、および端子90eを経由してアンテナ2Aに出力される。これと同時に、B25-Txの送信信号が、端子90c、スイッチ960、および端子90fを経由してアンテナ2Bに出力される。
 このとき、スイッチ回路90には、2つの送信信号が同時に流れる。送信信号がスイッチ回路を流れる場合、送信信号を遮断するために非導通状態となっているスイッチには、当該送信信号の送信電力に応じた耐圧性能が必要となる。
 例えば、スイッチ回路90において非導通状態であるスイッチ920には、端子90aから印加されるB66-Txの送信信号に応じた耐圧と、端子90fから印加されるB25-Txの送信信号に応じた耐圧と、を満たさなければならない。
 また、例えば、スイッチ回路90において非導通状態であるスイッチ950には、端子90eから印加されるB66-Txの送信信号に応じた耐圧と、端子90cから印加されるB25-Txの送信信号に応じた耐圧と、を満たさなければならない。
 また、B66Txの送信信号をアンテナ2Bから出力し、B25Txの送信信号をアンテナ2Aから出力する場合には、非導通状態であるスイッチ910および960のそれぞれは、B66-Txの送信信号に応じた耐圧とB25-Txの送信信号に応じた耐圧と、を満たさなければならない。
 同様にして、第3周波数帯域(バンド1)に含まれる第3送信帯域(B1-Tx)の送信信号と、第4周波数帯域(バンド3)に含まれる第4送信帯域(B3-Tx)の送信信号とを同時送信する2アップリンク時には、非導通状態であるスイッチ940および970のそれぞれは、B1-Txの送信信号に応じた耐圧とB3-Txの送信信号に応じた耐圧と、を満たさなければならない。また、非導通状態であるスイッチ930および980のそれぞれは、B1-Txの送信信号に応じた耐圧とB3-Txの送信信号に応じた耐圧と、を満たさなければならない。
 [4.実施の形態および比較例に係るスイッチ回路の構成比較]
 つまり、スイッチ回路90を構成するシリーズスイッチの耐圧性は、スイッチ回路20を構成する第1スイッチと同等の耐圧性能を有さなければならない。
 この観点から、スイッチ回路90を構成するスイッチのスタック数(例えばM)は、スイッチ回路20を構成する第1スイッチのスタック数(例えばM)と同等レベルであり、かつ、スイッチ回路51を構成する第2スイッチのスタック数(例えばN)よりも大きく、かつ、スイッチ回路52を構成する第3スイッチのスタック数(例えばN)よりも大きい。
 比較例に係る高周波回路900では、2アップリンク対象の2つの送信フィルタが1つのスイッチ回路90に直接接続されているため、スイッチ回路90に接続される送信経路が多くなり、スイッチ回路90の端子数が増加する。スイッチ回路90の端子数が多くなると、スイッチ回路90のオフ容量が増加し、当該オフ容量に起因してスイッチ回路90の伝送損失が増加する。また、複数の送信信号が同時にスイッチ回路90に入力されると、スイッチ回路90を構成する各スイッチに印加される電圧が上昇して信号歪が増大し、信号品質が低下する。信号歪は、スイッチ回路90の端子数が多いほど大きくなる。これに対して、スイッチ回路90を構成する各スイッチの耐圧性能を高めるべくスタック数を大きくすると、スイッチ回路90が大型化し、高周波回路900が大型化する。
 これに対して、実施の形態に係る高周波回路1では、2アップリンク対象の2つの送信フィルタが、それぞれスイッチ回路51および52に分かれて接続されているため、スイッチ回路51および52に接続される送信経路は、それぞれ1つである。このため、スイッチ回路51および52の端子数は、スイッチ回路90と比較して減少する。また、スイッチ回路20は、2つの送信経路が接続されるが、スイッチ回路51および52が配置されたことにより、端子数はスイッチ回路90と比較して減少している。よって、スイッチ回路51、52および20の端子数は、スイッチ回路90と比較してそれぞれ少なくなるので、スイッチ回路51、52および20のオフ容量は減少する。これにより、当該オフ容量に起因した信号伝送損失は低減される。また、複数の送信信号が同時にスイッチ回路20に入力されると、スイッチ回路20を構成する各スイッチに印加される電圧が上昇して信号歪が発生するが、スイッチ回路20の端子数は少ないため、スイッチ回路90に比べて信号歪を低減できる。また、スイッチ回路20を構成する各スイッチのスタック数は、スイッチ回路90と同等レベルとなっているが、スイッチ回路51および52を構成する各スイッチのスタック数は、スイッチ回路90を構成する各スイッチのスタック数よりも小さい。これにより、実施の形態に係る高周波回路1のスイッチ回路を、比較例に係る高周波回路900のスイッチ回路よりも小型化できる。よって、2アップリンク時の伝送性能の劣化が抑制された小型の高周波回路1を提供することが可能となる。
 [5.変形例に係る高周波回路1Aの構成]
 図6は、実施の形態の変形例に係る高周波回路1Aの回路構成図である。同図に示すように、高周波回路1Aは、スイッチ回路20、50、51、52、53および54と、送信フィルタ31T、34T、42Tおよび43Tと、受信フィルタ31R、32R、33R、34R、41R、42R、43Rおよび44Rと、電力増幅器61および62と、ローパスフィルタ81および82と、を備える。本変形例に係る高周波回路1Aは、実施の形態に係る高周波回路1と比較して、ローパスフィルタ81および82が配置されている点のみが異なる。
 以下、本変形例に係る高周波回路1Aについて、実施の形態に係る高周波回路1と同じ構成については説明を省略し、異なる構成を中心に説明する。
 ローパスフィルタ81は、第1フィルタ回路の一例であり、スイッチ回路20とスイッチ回路51との間に接続されている。ローパスフィルタ81は、例えば、第1周波数帯域(バンド66)、第2周波数帯域(バンド25)、第3周波数帯域(バンド1)、および第4周波数帯域(バンド3)を通過帯域に含み、第1周波数帯域(バンド66)の2倍周波数、および、第4周波数帯域(バンド3)の2倍周波数を減衰帯域に含む。これにより、電力増幅器61、送信フィルタ31Tおよび34Tで発生する高調波の発生を抑制できる。
 ローパスフィルタ82は、第2フィルタ回路の一例であり、スイッチ回路20とスイッチ回路52との間に接続されている。ローパスフィルタ82は、例えば、第3周波数帯域(バンド66)、第2周波数帯域(バンド25)、第3周波数帯域(バンド1)、および第4周波数帯域(バンド3)を通過帯域に含み、第2周波数帯域(バンド25)の2倍周波数、および、第3周波数帯域(バンド1)の2倍周波数を減衰帯域に含む。これにより、電力増幅器62、送信フィルタ42Tおよび43Tで発生する高調波の発生を抑制できる。
 また、高周波回路1Aにおいて、第1周波数帯域に含まれる第1送信帯域の送信信号の2次高調波と第2周波数帯域に含まれる第2送信帯域の送信信号の基本波との間で生じる相互変調歪(第1相互変調歪)の周波数範囲の少なくとも一部は、第1周波数帯域の少なくとも一部と重なってもよい。または、第1周波数帯域に含まれる第1送信帯域の送信信号の基本波と第2周波数帯域に含まれる第2送信帯域の送信信号の2次高調波との間で生じる相互変調歪(第2相互変調歪)の周波数範囲の少なくとも一部は、第2周波数帯域の少なくとも一部と重なってもよい。
 この場合であっても、ローパスフィルタ81がスイッチ回路20とスイッチ回路51との間に配置されていることにより、第1相互変調歪がスイッチ回路20からスイッチ回路51へ侵入することを抑制できる。また、ローパスフィルタ82がスイッチ回路20とスイッチ回路52との間に配置されていることにより、第2相互変調歪がスイッチ回路20からスイッチ回路52へ侵入することを抑制できる。よって、送信信号の品質劣化を抑制できる。
 例えば、第1周波数帯域がバンド3であり、第2周波数帯域がバンド1である場合に、第1相互変調歪がバンド1の少なくとも一部と重なる。
 また、例えば、第1周波数帯域がバンド1であり、第2周波数帯域がバンド3である場合に、第2相互変調歪がバンド3の少なくとも一部と重なる。
 また、例えば、第1周波数帯域がバンド40(帯域:2300-2400MHz)であり、第2周波数帯域がバンド1である場合に、第1相互変調歪がバンド40の少なくとも一部と重なる。
 これらの場合であっても、ローパスフィルタ81により、第1相互変調歪がスイッチ回路20からスイッチ回路51へ侵入することを抑制できる。また、ローパスフィルタ82により、第2相互変調歪がスイッチ回路20からスイッチ回路52へ侵入することを抑制できる。よって、送信信号の品質劣化を抑制できる。
 なお、ローパスフィルタ81および82に代えて、ハイパスフィルタ、または、ノッチフィルタが配置されてもよい。
 また、ローパスフィルタ81に代えて、インピーダンス整合をとる第1整合回路が配置されてもよい。また、ローパスフィルタ82に代えて、インピーダンス整合をとる第2整合回路が配置されてもよい。なお、第1整合回路および第2整合回路のそれぞれは、インダクタを含むことが望ましい。スイッチ回路20、51および52は、非導通の端子により容量性のインピーダンスを有する場合が多い。これに対して、スイッチ回路20とスイッチ回路51との間に配置された第1整合回路、および、スイッチ回路20とスイッチ回路52との間に配置された第2整合回路が誘導性のインピーダンスを有することで、スイッチ回路間のインピーダンス整合を効果的にとることができ、高周波回路1Aの伝送損失を低減できる。
 なお、各スイッチを構成する半導体素子(FET)のゲート幅が大きいほど、耐圧性能を変えない状態で導通時のオン抵抗を小さくできる。よって、スイッチ回路20の第1スイッチを構成する半導体素子の(FET)のゲート幅を大きくしてもよい。これにより、スイッチ回路20の耐圧性能を確保しつつオン抵抗を低減できる。
 [6.効果など]
 以上、本実施の形態に係る高周波回路1は、電力増幅器61および62と、電力増幅器61に接続され、第1周波数帯域(バンド66)に含まれる第1送信帯域(B66-Tx)を通過帯域に含む送信フィルタ31Tと、電力増幅器62に接続され、第2周波数帯域(バンド25)に含まれる第2送信帯域(B25-Tx)を通過帯域に含む送信フィルタ42Tと、端子20c、20d、20aおよび20bを有し、端子20aと端子20cとの導通、および、端子20aと端子20dとの導通が切り替わり、端子20bと端子20cとの導通、および、端子20bと端子20dとの導通が切り替わるスイッチ回路20と、共通端子51a、端子51bおよび51cを有し、共通端子51aと端子51bとの導通、および、共通端子51aと端子51cとの導通が切り替わるスイッチ回路51と、共通端子52a、端子52bおよび52cを有し、共通端子52aと端子52bとの導通、および、共通端子52aと端子52cとの導通が切り替わるスイッチ回路52と、を備える。端子20aは共通端子51aに接続され、端子20bは共通端子52aに接続され、端子51bは送信フィルタ31Tに接続され、端子52bは送信フィルタ42Tに接続されている。スイッチ回路20は、端子20cと端子20aとの間、端子20cと端子20bとの間、端子20dと端子20aとの間、および端子20dと端子20bとの間、のそれぞれに直列配置された第1スイッチを有する。スイッチ回路51は、共通端子51aと端子51bとの間、および、共通端子51aと端子51cとの間、のそれぞれに直列配置された第2スイッチを有する。スイッチ回路52は、共通端子52aと端子52bとの間、および、共通端子52aと端子52cとの間、のそれぞれに直列配置された第3スイッチを有する。ここで、第2スイッチのスタック数は第1スイッチのスタック数よりも小さく、かつ、第3スイッチのスタック数は第1スイッチのスタック数よりも小さい。
 これによれば、2つの送信フィルタ31Tおよび42Tが、それぞれスイッチ回路51および52に分かれて接続されているため、スイッチ回路51および52に接続される送信経路は、それぞれ1つである。このため、スイッチ回路51および52の端子数は減少する。また、スイッチ回路20は、2つの送信経路が接続されるが、スイッチ51回路および52が配置されたことにより、端子数は減少する。よって、スイッチ回路51、52および20の端子数は、それぞれ少なくなるので、スイッチ回路51、52および20のオフ容量は減少する。これにより、当該オフ容量に起因した信号伝送損失は低減される。また、複数の送信信号が同時にスイッチ回路20に入力されると、スイッチ回路20を構成する各スイッチに印加される電圧が上昇して信号歪が発生するが、スイッチ回路20の端子数は少ないため信号歪を低減できる。また、スイッチ回路20を構成する第1スイッチのスタック数は、従来のスイッチ回路と同等レベルとなっているが、スイッチ回路51および52を構成する各スイッチのスタック数は、従来のスイッチ回路を構成する各スイッチのスタック数よりも小さい。これにより、高周波回路1のスイッチ回路を小型化できる。よって、複数の信号の同時送信時の伝送性能の劣化が抑制された小型の高周波回路1を提供することが可能となる。
 また、高周波回路1において、スイッチ回路20は、端子20c、20d、20aおよび20bのそれぞれとグランドとの間に接続された第4スイッチを有し、スイッチ回路51は、共通端子51a、端子51bおよび51cのそれぞれとグランドとの間に接続された第5スイッチを有し、スイッチ回路52は、共通端子52a、端子52bおよび52cのそれぞれとグランドとの間に接続された第6スイッチを有してもよい。
 これによれば、スイッチ回路20、51および52のそれぞれを構成する各端子間のアイソレーションを向上させることが可能となる。
 また、高周波回路1において、スイッチ回路20では、端子20aと端子20cとの導通、および、端子20aと端子20dとの導通が切り替わり、端子20bと端子20cとの導通、および、端子20bと端子20dとの導通が切り替わり、スイッチ回路51では、共通端子51aと端子51bとの導通、および、共通端子51aと端子51cとの導通が切り替わり、スイッチ回路52では、共通端子52aと端子52bとの導通、および、共通端子52aと端子52cとの導通が切り替わってもよい。
 また、高周波回路1Aは、さらに、スイッチ回路20とスイッチ回路51との間に接続された第1整合回路と、スイッチ回路20とスイッチ回路52との間に接続された第2整合回路と、を備え、第1整合回路および第2整合回路のそれぞれは、インダクタを含んでもよい。
 スイッチ回路20、51および52は、非導通の端子により容量性のインピーダンスを有する場合が多い。これに対して、第1整合回路および第2整合回路が誘導性のインピーダンスを有することで、スイッチ回路間のインピーダンス整合を効果的にとることができ、高周波回路1Aの伝送損失を低減できる。
 また、高周波回路1Aは、さらに、スイッチ回路20とスイッチ回路51との間に接続されたローパスフィルタ81と、スイッチ回路20とスイッチ回路52との間に接続されたローパスフィルタ82と、を備えてもよい。
 これによれば、ローパスフィルタ81により、電力増幅器61、送信フィルタ31Tおよび34Tで発生する高調波の発生を抑制でき、ローパスフィルタ82により、電力増幅器62、送信フィルタ42Tおよび43Tで発生する高調波の発生を抑制できる。
 また、高周波回路1Aにおいて、第1周波数帯域に含まれる第1送信帯域の送信信号の2次高調波と第2周波数帯域に含まれる第2送信帯域の送信信号の基本波との間で生じる相互変調歪(第1相互変調歪)の周波数範囲の少なくとも一部は、第1周波数帯域の少なくとも一部と重なってもよい。または、第1周波数帯域に含まれる第1送信帯域の送信信号の基本波と第2周波数帯域に含まれる第2送信帯域の送信信号の2次高調波との間で生じる相互変調歪(第2相互変調歪)の周波数範囲の少なくとも一部は、第2周波数帯域の少なくとも一部と重なってもよい。
 これによれば、ローパスフィルタ81がスイッチ回路20とスイッチ回路51との間に配置されていることにより、第1相互変調歪がスイッチ回路20からスイッチ回路51へ侵入することを抑制できる。また、ローパスフィルタ82がスイッチ回路20とスイッチ回路52との間に配置されていることにより、第2相互変調歪がスイッチ回路20からスイッチ回路52へ侵入することを抑制できる。よって、送信信号の品質劣化を抑制できる。
 また、高周波回路1Aにおいて、第1周波数帯域がバンド3であり、第2周波数帯域がバンド1である場合に、第1相互変調歪がバンド1の少なくとも一部と重なってもよい。
 また、高周波回路1Aにおいて、第1周波数帯域がバンド1であり、第2周波数帯域がバンド3である場合に、第2相互変調歪がバンド3の少なくとも一部と重なってもよい。
 また、高周波回路1Aにおいて、第1周波数帯域がバンド40であり、第2周波数帯域がバンド1である場合に、第1相互変調歪がバンド40の少なくとも一部と重なってもよい。
 これらの場合であっても、ローパスフィルタ81により、第1相互変調歪がスイッチ回路20からスイッチ回路51へ侵入することを抑制できる。また、ローパスフィルタ82により、第2相互変調歪がスイッチ回路20からスイッチ回路52へ侵入することを抑制できる。よって、送信信号の品質劣化を抑制できる。
 また、高周波回路1は、さらに、電力増幅器61に接続され、第4周波数帯域(バンド3)に含まれる第4送信帯域(B3-Tx)を通過帯域に含む送信フィルタ34Tと、電力増幅器62に接続され、第3周波数帯域(バンド1)に含まれる第3送信帯域(B1-Tx)を通過帯域に含む送信フィルタ43Tと、を備え、端子51cは送信フィルタ34Tに接続され、端子52cは送信フィルタ43Tに接続され、電力増幅器61とスイッチ回路51との間には、第2送信帯域を通過帯域に含む送信フィルタ、および、第3送信帯域を通過帯域に含む送信フィルタは配置されず、電力増幅器62とスイッチ回路52との間には、第1送信帯域を通過帯域に含む送信フィルタ、および、第4送信帯域を通過帯域に含む送信フィルタは配置されず、共通端子51aと端子51bとの導通および共通端子52aと端子52bとの導通により、第1送信帯域の送信信号と第2送信帯域の送信信号との2アップリンクが実行され、共通端子51aと端子51cとの導通および共通端子52aと端子52cとの導通により、第3送信帯域の送信信号と第4送信帯域の送信信号との2アップリンクが実行されてもよい。
 これによれば、スイッチ回路20、51および52の接続状態を切り替えることで、第1周波数帯域(バンド66)、第2周波数帯域(バンド25)、第3周波数帯域(バンド1)および第4周波数帯域(バンド3)の高周波信号を、アンテナ2Aおよび2Bに任意に振り分け、2アップリンクの同時伝送を実行できる。ここで、電力増幅器61とスイッチ回路51との間には、第2送信帯域を通過帯域に含む送信フィルタおよび第3送信帯域を通過帯域に含む送信フィルタは配置されず、電力増幅器62とスイッチ回路52との間には、第1送信帯域を通過帯域に含む送信フィルタおよび第4送信帯域を通過帯域に含む送信フィルタは配置されていないので、複数の信号の同時伝送が可能な小型の高周波回路1を提供できる。
 また、通信装置5は、高周波回路1と、高周波回路1で送受信される高周波信号を処理するRFIC3と、を備える。
 これによれば、複数の信号の同時送信時の伝送性能の劣化が抑制された小型の通信装置5を提供できる。
 (その他の実施の形態)
 以上、実施の形態に係る高周波回路および通信装置について、実施の形態およびその変形例を挙げて説明したが、本発明の高周波回路および通信装置は、上記実施の形態およびその変形例に限定されるものではない。上記実施の形態およびその変形例における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態およびその変形例に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本開示の高周波回路および通信装置を内蔵した各種機器も本発明に含まれる。
 なお、上記実施の形態およびその変形例では、第1周波数帯域の高周波信号と第2周波数帯域の高周波信号とを同時伝送する2アップリンクおよび第3周波数帯域の高周波信号と第4周波数帯域の高周波信号とを同時伝送する2アップリンクの構成を例示したが、本発明に係る高周波回路および通信装置の構成は、3つ以上の異なる周波数帯域を同時使用するアップリンク(例えば3アップリンク)の構成にも適用できる。つまり、上記実施の形態およびその変形例における2アップリンクとは、3つ以上の異なる周波数帯域を同時使用するマルチアップリンクも含まれ、3つ以上の異なる周波数帯域を同時使用するアップリンクを実行する構成であって、上記実施の形態およびその変形例に係る高周波回路または通信装置の構成を含む高周波回路または通信装置も、本発明に含まれる。
 例えば、上記実施の形態およびその変形例に係る高周波回路および通信装置において、図面に開示された各回路素子および信号経路を接続する経路の間に別の高周波回路素子および配線などが挿入されていてもよい。
 本発明は、2アップリンクを実行可能なマルチバンド/マルチモード対応のフロントエンド回路として、携帯電話などの通信機器に広く利用できる。
 1、1A、900  高周波回路
 2A、2B  アンテナ
 3  RF信号処理回路(RFIC)
 4  ベースバンド信号処理回路(BBIC)
 5  通信装置
 20、50、51、52、53、54、90  スイッチ回路
 20a、20b、20c、20d、50a、50b、50c、50d、51b、51c、52b、52c、53c、53d、54c、54d、90a、90b、90c、90d、90e、90f  端子
 51a、52a、53a、54a  共通端子
 31R、32R、33R、34R、41R、42R、43R、44R  受信フィルタ
 31T、34T、42T、43T  送信フィルタ
 61、62  電力増幅器
 81、82  ローパスフィルタ
 210、215、220、230、235、240、511、512、515、516、521、522、525、526、910、915、920、930、935、940、950、955、960、970、975、980  スイッチ

Claims (10)

  1.  第1電力増幅器および第2電力増幅器と、
     前記第1電力増幅器に接続され、第1周波数帯域に含まれる第1送信帯域を通過帯域に含む第1送信フィルタと、
     前記第2電力増幅器に接続され、前記第1周波数帯域と異なる第2周波数帯域に含まれる第2送信帯域を通過帯域に含む第2送信フィルタと、
     第1アンテナ接続端子、第2アンテナ接続端子、第1端子、および第2端子を有する第1スイッチ回路と、
     第1共通端子、第3端子、および第4端子を有する第2スイッチ回路と、
     第2共通端子、第5端子、および第6端子を有する第3スイッチ回路と、を備え、
     前記第1端子は前記第1共通端子に接続され、前記第2端子は前記第2共通端子に接続され、前記第3端子は前記第1送信フィルタに接続され、前記第5端子は前記第2送信フィルタに接続され、
     前記第1スイッチ回路は、前記第1アンテナ接続端子と前記第1端子との間、前記第1アンテナ接続端子と前記第2端子との間、前記第2アンテナ接続端子と前記第1端子との間、および前記第2アンテナ接続端子と前記第2端子との間、のそれぞれに直列配置された第1スイッチを有し、
     前記第2スイッチ回路は、前記第1共通端子と前記第3端子との間、および、前記第1共通端子と前記第4端子との間、のそれぞれに直列配置された第2スイッチを有し、
     前記第3スイッチ回路は、前記第2共通端子と前記第5端子との間、および、前記第2共通端子と前記第6端子との間、のそれぞれに直列配置された第3スイッチを有し、
     前記第2スイッチのスタック数は、前記第1スイッチのスタック数よりも小さく、かつ、前記第3スイッチのスタック数は、前記第1スイッチのスタック数よりも小さい、
     高周波回路。
  2.  前記第1スイッチ回路は、前記第1アンテナ接続端子、前記第2アンテナ接続端子、前記第1端子、および前記第2端子のそれぞれとグランドとの間に接続された第4スイッチを有し、
     前記第2スイッチ回路は、前記第1共通端子、前記第3端子、および前記第4端子のそれぞれとグランドとの間に接続された第5スイッチを有し、
     前記第3スイッチ回路は、前記第2共通端子、前記第5端子、および前記第6端子のそれぞれとグランドとの間に接続された第6スイッチを有する、
     請求項1に記載の高周波回路。
  3.  前記第1スイッチ回路において、前記第1端子と前記第1アンテナ接続端子との導通、および、前記第1端子と前記第2アンテナ接続端子との導通が切り替わり、前記第2端子と前記第1アンテナ接続端子との導通、および、前記第2端子と前記第2アンテナ接続端子との導通が切り替わり、
     前記第2スイッチ回路において、前記第1共通端子と前記第3端子との導通、および、前記第1共通端子と前記第4端子との導通が切り替わり、
     前記第3スイッチ回路において、前記第2共通端子と前記第5端子との導通、および、前記第2共通端子と前記第6端子との導通が切り替わる、
     請求項1または2に記載の高周波回路。
  4.  さらに、
     前記第1スイッチ回路と前記第2スイッチ回路との間に接続された第1整合回路と、
     前記第1スイッチ回路と前記第3スイッチ回路との間に接続された第2整合回路と、を備え、
     前記第1整合回路および前記第2整合回路のそれぞれは、インダクタを含む、
     請求項1~3のいずれか1項に記載の高周波回路。
  5.  さらに、
     前記第1スイッチ回路と前記第2スイッチ回路との間に接続された第1フィルタ回路と、
     前記第1スイッチ回路と前記第3スイッチ回路との間に接続された第2フィルタ回路と、を備え、
     前記第1フィルタ回路は、低域通過型フィルタまたは帯域通過型フィルタであり、
     前記第2フィルタ回路は、低域通過型フィルタまたは帯域通過型フィルタである、
     請求項1~3のいずれか1項に記載の高周波回路。
  6.  前記第1送信帯域の送信信号の2次高調波と前記第2送信帯域の送信信号の基本波との間で生じる相互変調歪の周波数範囲の少なくとも一部は、前記第1周波数帯域の少なくとも一部と重なる、または、
     前記第1送信帯域の送信信号の基本波と前記第2送信帯域の送信信号の2次高調波との間で生じる相互変調歪の周波数範囲の少なくとも一部は、前記第2周波数帯域の少なくとも一部と重なる、
     請求項5に記載の高周波回路。
  7.  前記第1周波数帯域は、LTEまたは5GNRのためのバンド3であり、
     前記第2周波数帯域は、LTEまたは5GNRのためのバンド1である、
     請求項6に記載の高周波回路。
  8.  前記第1周波数帯域は、LTEまたは5GNRのためのバンド40であり、
     前記第2周波数帯域は、LTEまたは5GNRのためのバンド1である、
     請求項6に記載の高周波回路。
  9.  さらに、
     前記第1電力増幅器に接続され、前記第1周波数帯域および前記第2周波数帯域と異なる第4周波数帯域に含まれる第4送信帯域を通過帯域に含む第4送信フィルタと、
     前記第2電力増幅器に接続され、前記第1周波数帯域、前記第2周波数帯域および前記第4周波数帯域と異なる第3周波数帯域に含まれる第3送信帯域を通過帯域に含む第3送信フィルタと、を備え、
     前記第4端子は前記第4送信フィルタに接続され、前記第6端子は前記第3送信フィルタに接続され、
     前記第1電力増幅器と前記第2スイッチ回路との間には、前記第2送信帯域を通過帯域に含む送信フィルタ、および、前記第3送信帯域を通過帯域に含む送信フィルタは配置されず、
     前記第2電力増幅器と前記第3スイッチ回路との間には、前記第1送信帯域を通過帯域に含む送信フィルタ、および、前記第4送信帯域を通過帯域に含む送信フィルタは配置されず、
     前記第1共通端子と前記第3端子との導通および前記第2共通端子と前記第5端子との導通により、前記第1送信帯域の送信信号と前記第2送信帯域の送信信号との2アップリンクが実行され、
     前記第1共通端子と前記第4端子との導通および前記第2共通端子と前記第6端子との導通により、前記第3送信帯域の送信信号と前記第4送信帯域の送信信号との2アップリンクが実行される、
     請求項1~8のいずれか1項に記載の高周波回路。
  10.  請求項1~9のいずれか1項に記載の高周波回路と、
     前記高周波回路で送受信される高周波信号を処理するRF信号処理回路と、を備える、
     通信装置。
PCT/JP2021/040105 2020-12-28 2021-10-29 高周波回路および通信装置 WO2022145128A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180087746.9A CN116746061A (zh) 2020-12-28 2021-10-29 高频电路和通信装置
US18/331,954 US20230318642A1 (en) 2020-12-28 2023-06-09 Radio frequency circuit and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-218121 2020-12-28
JP2020218121 2020-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/331,954 Continuation US20230318642A1 (en) 2020-12-28 2023-06-09 Radio frequency circuit and communication device

Publications (1)

Publication Number Publication Date
WO2022145128A1 true WO2022145128A1 (ja) 2022-07-07

Family

ID=82260401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040105 WO2022145128A1 (ja) 2020-12-28 2021-10-29 高周波回路および通信装置

Country Status (3)

Country Link
US (1) US20230318642A1 (ja)
CN (1) CN116746061A (ja)
WO (1) WO2022145128A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042910A1 (ja) * 2022-08-25 2024-02-29 株式会社村田製作所 高周波モジュールおよび通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077736A (ja) * 1999-09-02 2001-03-23 Matsushita Electric Ind Co Ltd 通信装置
JP2012124911A (ja) * 2005-12-19 2012-06-28 Sony Mobile Communications Ab アンテナダイバシティを実装するためのシステムおよび方法
US20130122824A1 (en) * 2011-11-11 2013-05-16 Stephan V. Schell Systems and methods for protecting microelectromechanical systems switches from radio-frequency signals using switching circuitry
WO2017145576A1 (ja) * 2016-02-24 2017-08-31 ソニー株式会社 半導体装置、アンテナスイッチ回路、モジュール装置、及び無線通信装置
WO2020162072A1 (ja) * 2019-02-07 2020-08-13 株式会社村田製作所 高周波モジュールおよび通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077736A (ja) * 1999-09-02 2001-03-23 Matsushita Electric Ind Co Ltd 通信装置
JP2012124911A (ja) * 2005-12-19 2012-06-28 Sony Mobile Communications Ab アンテナダイバシティを実装するためのシステムおよび方法
US20130122824A1 (en) * 2011-11-11 2013-05-16 Stephan V. Schell Systems and methods for protecting microelectromechanical systems switches from radio-frequency signals using switching circuitry
WO2017145576A1 (ja) * 2016-02-24 2017-08-31 ソニー株式会社 半導体装置、アンテナスイッチ回路、モジュール装置、及び無線通信装置
WO2020162072A1 (ja) * 2019-02-07 2020-08-13 株式会社村田製作所 高周波モジュールおよび通信装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042910A1 (ja) * 2022-08-25 2024-02-29 株式会社村田製作所 高周波モジュールおよび通信装置

Also Published As

Publication number Publication date
CN116746061A (zh) 2023-09-12
US20230318642A1 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
US11290135B2 (en) High-frequency front end module and communication device
US20160028156A1 (en) High-frequency filter including matching circuit
US10608677B2 (en) High-frequency front end circuit and communication device including the same
US20210006274A1 (en) Radio frequency front end circuit and communication device
US11539381B2 (en) Radio frequency circuit, antenna module, and communication device
US11201632B2 (en) High-frequency front-end module and communication device
US20230254104A1 (en) Radio frequency module and communication device
JP2020167445A (ja) フロントエンド回路および通信装置
WO2020129882A1 (ja) フロントエンドモジュールおよび通信装置
WO2020162072A1 (ja) 高周波モジュールおよび通信装置
WO2022145128A1 (ja) 高周波回路および通信装置
JP2021064874A (ja) 高周波モジュールおよび通信装置
US20220311455A1 (en) Radio-frequency circuit and communication device
WO2020017108A1 (ja) 高周波モジュールおよび通信装置
CN112088494A (zh) 高频模块以及通信装置
WO2022044580A1 (ja) 高周波回路および通信装置
US20210314010A1 (en) Radio-frequency module and communication device
US11881844B2 (en) Multiplexer
JP2019153959A (ja) フィルタ装置、高周波フロントエンド回路および通信装置
WO2023238482A1 (ja) 高周波回路及び通信装置
US20240106465A1 (en) Radio frequency module and communication device
WO2022244543A1 (ja) 高周波回路および通信装置
WO2022264862A1 (ja) 高周波回路および通信装置
US20240097719A1 (en) Radio-frequency circuit and communication device
CN114258636B (zh) 高频电路和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914989

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180087746.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21914989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP