WO2022145003A1 - 除湿装置 - Google Patents

除湿装置 Download PDF

Info

Publication number
WO2022145003A1
WO2022145003A1 PCT/JP2020/049199 JP2020049199W WO2022145003A1 WO 2022145003 A1 WO2022145003 A1 WO 2022145003A1 JP 2020049199 W JP2020049199 W JP 2020049199W WO 2022145003 A1 WO2022145003 A1 WO 2022145003A1
Authority
WO
WIPO (PCT)
Prior art keywords
condenser
evaporator
refrigerant
heat transfer
auxiliary
Prior art date
Application number
PCT/JP2020/049199
Other languages
English (en)
French (fr)
Inventor
亮康 宮地
雄亮 田代
直毅 加藤
Original Assignee
三菱電機株式会社
三菱電機ホーム機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 三菱電機ホーム機器株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/049199 priority Critical patent/WO2022145003A1/ja
Priority to JP2022572846A priority patent/JPWO2022145003A1/ja
Priority to CN202080108072.1A priority patent/CN116802441A/zh
Priority to TW110120859A priority patent/TWI836224B/zh
Publication of WO2022145003A1 publication Critical patent/WO2022145003A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers

Definitions

  • This disclosure relates to a dehumidifying device.
  • Patent Document 1 describes a dehumidifying device using a flat tube for a heat transfer tube of a condenser.
  • dehumidified water condenses on the surface of the evaporator. This dehumidified water is scattered on the condenser located on the leeward side of the evaporator.
  • dehumidified water stays on the surface of the flat tube. The dehumidified water staying on the surface of the flat tube is heated by the refrigerant in the flat tube and evaporated, so that the air is rehumidified. As a result, the amount of dehumidification of the dehumidifying device is reduced.
  • the present disclosure has been made in view of the above problems, and an object thereof is to provide a dehumidifying device capable of improving the performance of the condenser and improving the dehumidifying amount.
  • the dehumidifying device includes a housing, a blower, a refrigerant circuit, and a heat pipe.
  • the blower, refrigerant circuit and heat pipe are arranged in the housing.
  • the blower is configured to blow air.
  • the refrigerant circuit includes a compressor, a condenser, a decompression device and an evaporator, and is configured to circulate the first refrigerant in the order of the compressor, the condenser, the decompression device and the evaporator.
  • the heat pipe has an auxiliary condenser and an auxiliary evaporator, and is configured so that the second refrigerant circulates in the order of the auxiliary condenser and the auxiliary evaporator.
  • the condenser has a first heat transfer tube through which the first refrigerant flows.
  • the auxiliary condenser has a second heat transfer tube through which the second refrigerant flows.
  • the evaporator is located leeward of the auxiliary evaporator.
  • the auxiliary condenser is located leeward of the evaporator.
  • the condenser is located leeward of the auxiliary condenser.
  • the second heat transfer tube of the auxiliary condenser is a circular tube.
  • the first heat transfer tube of the condenser contains a flat tube.
  • the evaporator is located leeward of the auxiliary evaporator.
  • the second heat transfer tube of the auxiliary condenser is a circular tube, and the first heat transfer tube of the condenser includes a flat tube. Therefore, the performance of the condenser can be improved and the amount of dehumidification can be improved.
  • FIG. It is a refrigerant circuit diagram of the dehumidifying apparatus which concerns on Embodiment 1.
  • FIG. It is a schematic diagram which shows the structure of the dehumidifying apparatus which concerns on Embodiment 1.
  • FIG. It is sectional drawing of the auxiliary evaporator, the evaporator, the auxiliary condenser and the condenser of the dehumidifying apparatus which concerns on Embodiment 1.
  • FIG. It is a front view of the condenser of the dehumidifying apparatus which concerns on Embodiment 1.
  • FIG. It is a front view of the modification of the condenser of the dehumidifying apparatus which concerns on Embodiment 1.
  • FIG. 1 It is a side view of the auxiliary condenser and the auxiliary evaporator of the dehumidifier according to the first embodiment. It is sectional drawing of the evaporator and the condenser of the dehumidifying apparatus which concerns on the comparative example of Embodiment 1.
  • FIG. It is a refrigerant circuit diagram of the dehumidifying apparatus which concerns on Embodiment 2.
  • FIG. It is a schematic diagram which shows the structure of the dehumidifying apparatus which concerns on Embodiment 2.
  • FIG. 1 It is sectional drawing of the auxiliary evaporator, the evaporator, the auxiliary condenser, the 1st condensed part, the 2nd condensed part and the 3rd condensed part of the dehumidifying apparatus which concerns on Embodiment 2.
  • FIG. 2 It is sectional drawing of the auxiliary evaporator, the evaporator, the auxiliary condenser, the 1st condensed part, the 2nd condensed part and the 3rd condensed part of the dehumidifying apparatus which concerns on Embodiment 3.
  • FIG. 1 It is sectional drawing of the auxiliary evaporator, the evaporator, the auxiliary condenser, the 1st condensed part, the 2nd condensed part and the 3rd condensed part of the dehumidifying apparatus which concerns on Embodiment 4.
  • FIG. 2 It is sectional drawing of the auxiliary evaporator, the evaporator, the auxiliary condenser, the 1st condensed part, the 2nd condensed part and the 3rd condensed part of the dehumidifying apparatus which concerns on Embodiment 5.
  • Embodiment 1 The configuration of the dehumidifying device 1 according to the first embodiment will be described with reference to FIGS. 1 and 2.
  • FIG. 1 is a refrigerant circuit diagram of the dehumidifying device 1 according to the first embodiment.
  • FIG. 2 is a schematic view showing the configuration of the dehumidifying device 1 according to the first embodiment.
  • the dehumidifying device 1 has a refrigerant circuit 101 having a compressor 2, a condenser 3, a decompression device 4 and an evaporator 5, and a heat having an auxiliary condenser 9a and an auxiliary evaporator 9b. It includes a pipe 102, a blower 6, a drain pan 7, and a housing 20. The refrigerant circuit 101, the heat pipe 102, the blower 6, and the drain pan 7 are arranged in the housing 20. The housing 20 faces an external space (indoor space) to be dehumidified by the dehumidifying device 1.
  • the refrigerant circuit 101 is configured to circulate the refrigerant (first refrigerant) in the order of the compressor 2, the condenser 3, the decompression device 4, and the evaporator 5. Specifically, the refrigerant circuit 101 is configured by connecting the compressor 2, the condenser 3, the decompression device 4, and the evaporator 5 in this order by piping. Then, the refrigerant circulates in the refrigerant circuit 101 in the order of the compressor 2, the condenser 3, the decompression device 4, and the evaporator 5 through the pipe. In FIG. 2, the solid line arrow attached to the refrigerant circuit 101 indicates the flow of the refrigerant in the refrigerant circuit 101.
  • the refrigerant (first refrigerant) in the refrigerant circuit 101 is different from the refrigerant (second refrigerant) in the heat pipe 102.
  • the refrigerant (first refrigerant) in the refrigerant circuit 101 may be the same as the refrigerant (second refrigerant) in the heat pipe 102.
  • the compressor 2 is configured to compress the refrigerant. Specifically, the compressor 2 is configured to suck in a low-pressure refrigerant from the suction port, compress it, and discharge it as a high-pressure refrigerant from the discharge port.
  • the compressor 2 may have a variable discharge capacity of the refrigerant.
  • the compressor 2 may be an inverter compressor. When the compressor 2 is configured to have a variable discharge capacity of the refrigerant, the amount of refrigerant circulation in the dehumidifying device 1 can be controlled by adjusting the discharge capacity of the compressor 2.
  • the condenser 3 is configured to condense and cool the refrigerant boosted by the compressor 2.
  • the condenser 3 is a heat exchanger that exchanges heat between the refrigerant and air.
  • the condenser 3 has an inlet and an outlet for a refrigerant and an inlet and an outlet for air.
  • the inlet of the refrigerant of the condenser 3 is connected to the discharge port of the compressor 2 by a pipe.
  • the condenser 3 is arranged downstream of the auxiliary condenser 9a in the air flow generated by the blower 6. That is, the condenser 3 is arranged leeward of the auxiliary condenser 9a.
  • the condenser 3 has a heat transfer tube (first heat transfer tube) through which a refrigerant (first refrigerant) flows.
  • the heat transfer tube (first heat transfer tube) of the condenser 3 includes a flat tube.
  • the decompression device 4 is configured to decompress and expand the refrigerant cooled by the condenser 3.
  • the pressure reducing device 4 is, for example, an expansion valve. This expansion valve may be an electronically controlled valve.
  • the pressure reducing device 4 is not limited to the expansion valve, and may be a capillary tube.
  • the decompression device 4 is connected to each of the outlet of the refrigerant of the condenser 3 and the inlet of the refrigerant of the evaporator 5 by piping.
  • the evaporator 5 is configured to absorb heat from the refrigerant that has been decompressed and expanded by the decompression device 4 to evaporate the refrigerant.
  • the evaporator 5 is a heat exchanger that exchanges heat between the refrigerant and air.
  • the evaporator 5 has an inlet and an outlet for a refrigerant, and an inlet and an outlet for air.
  • the outlet of the refrigerant of the evaporator 5 is connected to the suction port of the compressor 2 by a pipe.
  • the evaporator 5 is arranged downstream of the auxiliary evaporator 9b in the air flow generated by the blower 6. That is, the evaporator 5 is arranged leeward of the auxiliary evaporator 9b.
  • the heat transfer tube of the evaporator 5 is a circular tube.
  • the heat pipe 102 is configured so that the refrigerant (second refrigerant) circulates in the order of the auxiliary condenser 9a and the auxiliary evaporator 9b.
  • the heat pipe 102 is configured by connecting the outlet of the auxiliary condenser 9a and the inlet of the auxiliary evaporator 9b, and the inlet of the auxiliary condenser 9a and the outlet of the auxiliary evaporator 9b by piping, respectively. .. Then, the refrigerant circulates in the heat pipe 102 in the order of the auxiliary condenser 9a and the auxiliary evaporator 9b through the pipe.
  • the heat pipe 102 is configured such that the refrigerant (second refrigerant) naturally circulates in the order of the auxiliary condenser 9a and the auxiliary evaporator 9b.
  • the broken line arrow attached to the heat pipe 102 indicates the flow of the refrigerant in the heat pipe 102.
  • the auxiliary condenser 9a is configured to heat the air taken in by the blower 6 from the outside to the inside of the housing 20 before flowing into the condenser 3.
  • the auxiliary condenser 9a is a reheater.
  • the auxiliary condenser 9a is configured to condense and cool the refrigerant.
  • the auxiliary condenser 9a is a heat exchanger that exchanges heat between the refrigerant and air.
  • the auxiliary condenser 9a has an inlet and an outlet for a refrigerant, and an inlet and an outlet for air.
  • the inlet of the refrigerant of the auxiliary condenser 9a is connected to the outlet of the auxiliary evaporator 9b by a pipe.
  • the auxiliary condenser 9a is arranged downstream of the evaporator 5 in the air flow generated by the blower 6. That is, the auxiliary condenser 9a is arranged leeward of the evaporator 5.
  • the auxiliary condenser 9a has a heat transfer tube (second heat transfer tube) through which a refrigerant (second refrigerant) flows.
  • the heat transfer tube (second heat transfer tube) of the auxiliary condenser 9a is a circular tube.
  • the auxiliary evaporator 9b is configured to cool the air taken in by the blower 6 from the outside to the inside of the housing 20 in advance before flowing into the evaporator 5.
  • the auxiliary evaporator 9b is a pre-cooler.
  • the auxiliary evaporator 9b is configured to evaporate and heat the refrigerant.
  • the auxiliary evaporator 9b is a heat exchanger that exchanges heat between the refrigerant and air.
  • the auxiliary evaporator 9b has an inlet and an outlet for a refrigerant, and an inlet and an outlet for air.
  • the inlet of the refrigerant of the auxiliary evaporator 9b is connected to the outlet of the auxiliary condenser 9a by a pipe.
  • the auxiliary evaporator 9b is arranged upstream of the evaporator 5 in the air flow generated by the blower 6. That is, the auxiliary evaporator 9b is arranged on the windward side of the evaporator 5.
  • the heat transfer tube of the auxiliary evaporator 9b is a circular tube.
  • the blower 6 is configured to blow air.
  • the blower 6 is configured to take in air from the outside of the housing 20 to the inside and blow it to the condenser 3, the evaporator 5, the auxiliary condenser 9a, and the auxiliary evaporator 9b.
  • the blower 6 takes in air from the external space (indoor space) into the housing 20 and passes it through the auxiliary evaporator 9b, the evaporator 5, the auxiliary condenser 9a, and the condenser 3, and then the housing 20. It is configured to spit out.
  • the blower 6 has a shaft 6a and a fan 6b that rotates about the shaft 6a.
  • the air taken in from the external space (indoor space) as shown by the arrow A in the figure is taken in by the auxiliary evaporator 9b and the evaporator 5 as shown by the arrow B in the figure.
  • the auxiliary condenser 9a and the condenser 3 After passing through the auxiliary condenser 9a and the condenser 3 in order, they are discharged to the external space (indoor space) again as indicated by the arrow C in the figure. In this way, the air circulates in the external space (indoor space) via the dehumidifying device 1.
  • the housing 20 has a suction port 21 for allowing air to enter the inside of the housing 20 from the external space (indoor space) to be dehumidified, and a suction port 21 for blowing air from the inside of the housing 20 to the external space (indoor space).
  • the outlet 22 is provided.
  • the housing 20 has an air passage (air flow path) 23 connecting the suction port 21 and the air outlet 22.
  • An auxiliary evaporator 9b, an evaporator 5, an auxiliary condenser 9a, a condenser 3, and a blower 6 are arranged in the air passage 23. Therefore, the auxiliary evaporator 9b, the evaporator 5, the auxiliary condenser 9a, and the condenser 3 are arranged in the same air passage 23.
  • the auxiliary evaporator 9b, the evaporator 5, the auxiliary condenser 9a and the condenser 3 have an air passage in the order of the auxiliary evaporator 9b, the evaporator 5, the auxiliary condenser 9a and the condenser 3 from upstream to downstream in the air flow. It is arranged in 23.
  • the air sucked into the housing 20 from the outside of the housing 20 through the suction port 21 passes through the auxiliary evaporator 9b, the evaporator 5, the auxiliary condenser 9a, and the condenser 3 in this order. , Is blown out to the outside of the housing 20 through the air outlet 22.
  • the decompression device 4 may be arranged in the air passage 23.
  • the heat of the condenser 3 may be dissipated to the outside to cool the room.
  • the exhaust duct may be mounted on the device and the device itself may be installed on the window side.
  • the drain pan 7 is configured so that the dehumidified water condensed on the evaporator 5 or the dehumidified water scattered from the evaporator 5 is drained to the drain pan 7.
  • the auxiliary evaporator 9b, the evaporator 5, the auxiliary condenser 9a and the condenser 3 are arranged on the drain pan 7.
  • FIG. 3 is a cross-sectional view of the auxiliary evaporator 9b, the evaporator 5, the auxiliary condenser 9a, and the condenser 3 according to the first embodiment.
  • FIG. 3 for convenience of explanation, a part of the auxiliary evaporator 9b, the evaporator 5, the auxiliary condenser 9a, and the condenser 3 is shown.
  • the condenser 3 has a plurality of fins 11 and a heat transfer tube (first heat transfer tube) 12.
  • Each of the plurality of fins 11 is formed in a thin plate shape.
  • the plurality of fins 11 are arranged so as to be laminated on each other.
  • the heat transfer tube 12 is arranged so as to penetrate a plurality of fins 11 laminated to each other in the stacking direction.
  • the cross-sectional shape of the heat transfer tube 12 is configured to extend in the row direction.
  • the heat transfer tube 12 has a plurality of straight portions extending linearly in the stacking direction of the plurality of fins 11.
  • the condenser 3 has a first header 31 and a second header 32 that connect the ends of the plurality of straight lines, respectively (see FIG. 4).
  • Each of the plurality of straight portions of the heat transfer tube 12 has a plurality of small diameter pipes.
  • the heat transfer tube 12 is configured to allow the refrigerant to flow.
  • the heat transfer tube 12 is a flat tube.
  • the heat transfer tube 12 is a flat tube having a flat shape with respect to the flow direction of air passing through the air passage 23.
  • the cross-sectional shape of the heat transfer tube 12 is configured to have a flat shape extending in the direction in which the condenser 3 and the auxiliary condenser 9a are arranged side by side.
  • the evaporator 5 has a plurality of fins 13 and a heat transfer tube 14.
  • Each of the plurality of fins 13 is formed in a thin plate shape.
  • the plurality of fins 13 are arranged so as to be laminated on each other.
  • the heat transfer tube 14 is arranged so as to penetrate a plurality of fins 13 laminated to each other in the stacking direction.
  • the heat transfer tube 14 has a plurality of straight portions extending linearly in the stacking direction, and a plurality of curved portions connecting the plurality of straight portions.
  • the heat transfer tube 14 is configured to meander by connecting each of the plurality of straight lines and each of the plurality of straight lines in series with each other.
  • the heat transfer tube 14 is configured to allow the refrigerant to flow.
  • the heat transfer tube 14 is a circular tube.
  • the auxiliary condenser 9a has a plurality of fins 15 and a heat transfer tube 16.
  • Each of the plurality of fins 15 is formed in a thin plate shape.
  • the plurality of fins 15 are arranged so as to be laminated on each other.
  • the heat transfer tube 16 is arranged so as to penetrate a plurality of fins 15 laminated to each other in the stacking direction.
  • the heat transfer tube 16 has a plurality of straight portions extending linearly in the stacking direction, and a plurality of curved portions connecting the plurality of straight portions.
  • the heat transfer tube 16 is configured to meander by connecting each of the plurality of straight portions and each of the plurality of curved portions in series with each other.
  • the heat transfer tube 16 is configured to allow the refrigerant to flow.
  • the heat transfer tube 16 is a circular tube.
  • the auxiliary evaporator 9b has a plurality of fins 17 and a heat transfer tube 18.
  • Each of the plurality of fins 17 is formed in a thin plate shape.
  • the plurality of fins 17 are arranged so as to be laminated on each other.
  • the heat transfer tube 18 is arranged so as to penetrate a plurality of fins 17 laminated to each other in the stacking direction.
  • the heat transfer tube 18 has a plurality of straight portions extending linearly in the stacking direction, and a plurality of curved portions connecting the plurality of straight portions.
  • the heat transfer tube 18 is configured to meander by connecting each of the plurality of straight portions and each of the plurality of curved portions in series with each other.
  • the heat transfer tube 18 is configured to allow the refrigerant to flow.
  • the heat transfer tube 18 is a circular tube.
  • FIG. 3 shows a cross section orthogonal to each of the stacking directions of the plurality of fins 11 of the condenser 3, the plurality of fins 13 of the evaporator 5, the plurality of fins 15 of the auxiliary condenser 9a, and the plurality of fins 17 of the auxiliary evaporator 9b. It is a sectional view in.
  • the linear portions in the plurality of heat transfer tubes 12 are arranged.
  • the shapes of the straight portions of the plurality of heat transfer tubes 12 may be the same as each other.
  • the linear portions in these plurality of heat transfer tubes 12 are arranged side by side in three or more stages in the step direction. Further, in the present embodiment, the linear portions of the plurality of heat transfer tubes 12 are arranged in a straight line in the step direction. That is, the centers of the straight lines in the plurality of heat transfer tubes 12 arranged side by side in the step direction are arranged in a straight line. Further, the distance between the straight portions in the heat transfer tube 12 of each stage may be the same as each other.
  • FIG. 4 is a front view of the condenser 3 when the condenser 3 is viewed from the row direction.
  • the flat tube of the condenser 3 may be arranged horizontally or vertically.
  • the shape of the fin 11 of the condenser 3 may be a plate fin, a corrugated fin, or the like.
  • the shape of the fin 11 of the condenser 3 is selected according to the performance of the condenser 3 and the installation posture of the flat tube of the condenser 3.
  • the heat transfer tube 12 of the condenser 3 contains at least one refrigerant path. In this embodiment, the number of refrigerant paths gradually decreases from upstream to downstream of the refrigerant flow.
  • the first header 31 has a refrigerant inlet and a refrigerant outlet.
  • the inlet of the refrigerant of the first header 31 is connected to the discharge port of the compressor 2 by a pipe.
  • the outlet of the refrigerant of the first header 31 is connected to the inlet of the decompression device 4 by a pipe.
  • the number of refrigerant passes in the straight portion reciprocating between the first header 31 and the second header 32 is gradually reduced from the upstream side to the downstream side of the condenser 3. For example, if the number of outbound refrigerant paths from the first header 31 to the second header 32 is 5, the number of return refrigerant paths from the second header 32 to the first header 31 is preferably 4 or less.
  • the first header 31 and the second header 32 may be divided.
  • the refrigerant flowing in from the compressor 2 passes through the plurality of straight lines and is folded back a plurality of times between the first header 31 and the second header 32, and then flows out to the decompression device 4 from the outlet of the refrigerant of the condenser 3.
  • the first header 31 includes a first header upstream portion 311 and a first header downstream portion 312 separated from each other.
  • the second header 32 includes a second header upstream portion 321 and a second header downstream portion 322 that are separated from each other.
  • the outlet of the refrigerant of the condenser 3 may be located at the second header 32 instead of the first header 31. In that case, the pipe connecting the decompression device 4 and the condenser 3 is located on the opposite side of the pipe connecting the compressor 2 and the condenser 3 with the condenser 3 interposed therebetween.
  • the linear portions of the plurality of heat transfer tubes 14 are arranged.
  • the outer diameter and inner diameter of the straight line portion of the plurality of heat transfer tubes 14 may be the same as each other.
  • the straight portions in these plurality of heat transfer tubes 14 are arranged side by side in three rows in the row direction.
  • the distance between the straight portions of the heat transfer tubes 14 arranged in each row in the row direction of these three rows may be the same. It should be noted that this interval is the distance between the centers of the straight line portions of the heat transfer tubes 14 arranged in the adjacent rows in the row direction.
  • the linear portions of the plurality of heat transfer tubes 14 in each row adjacent to each other in the row direction are arranged so as to be displaced from each other in the step direction. That is, the centers of the straight lines in the plurality of heat transfer tubes 14 in each row adjacent to each other in the row direction are not arranged in a straight line in the row direction.
  • the straight lines in the plurality of heat transfer tubes 14 in each row adjacent to each other in the row direction are arranged so as not to overlap each other in the row direction. Further, in the present embodiment, the straight lines in the plurality of heat transfer tubes 14 in each row adjacent to each other in the row direction are arranged so as not to partially overlap each other in the step direction.
  • the straight portions in these plurality of heat transfer tubes 14 are arranged side by side in three or more stages in the stage direction in each row. Further, in the present embodiment, the linear portions of the plurality of heat transfer tubes 14 are arranged in a straight line in the step direction in each row. That is, the centers of the straight lines in the plurality of heat transfer tubes 14 arranged side by side in the step direction in each row are arranged in a straight line. Further, in the present embodiment, the positions of the linear portions in the plurality of heat transfer tubes 14 arranged in each row at both ends in the row direction of these three rows are the same as each other.
  • the position in the step direction of the straight portion in the heat transfer tubes 14 arranged in the central row in the row direction of these three rows is the step direction of the straight portion in the plurality of heat transfer tubes 14 arranged in each row at both ends. It is located in the center between the positions.
  • the straight portions of the plurality of heat transfer tubes 16 are arranged.
  • the outer diameter and inner diameter of the straight line portion of the plurality of heat transfer tubes 16 may be the same as each other.
  • the straight portions in these plurality of heat transfer tubes 16 are arranged side by side in one row in the row direction, but may be a plurality of rows. In that case, the arrangement and distance of the straight portions in the plurality of heat transfer tubes 16 in the row direction are based on the arrangement and distance of the straight portions in the plurality of heat transfer tubes 14 in the row direction.
  • the straight portions in these plurality of heat transfer tubes 16 are arranged side by side in three or more stages in the stage direction in each row. Further, in the present embodiment, the linear portions of the plurality of heat transfer tubes 16 are arranged in a straight line in the step direction in each row. That is, the centers of the straight lines in the plurality of heat transfer tubes 16 arranged side by side in the step direction in each row are arranged in a straight line. Further, the distance between the straight portions in the heat transfer tube 16 of each stage may be the same as each other.
  • the straight portions of the plurality of heat transfer tubes 18 are arranged.
  • the outer diameter and inner diameter of the straight line portion of the plurality of heat transfer tubes 18 may be the same as each other.
  • the straight portions in these plurality of heat transfer tubes 18 are arranged side by side in one row in the row direction, but may be a plurality of rows. In that case, the arrangement and distance of the straight portions in the plurality of heat transfer tubes 18 in the row direction are based on the arrangement and distance of the straight portions in the plurality of heat transfer tubes 18 in the row direction.
  • the straight portions in these plurality of heat transfer tubes 18 are arranged side by side in three or more stages in the stage direction in each row. Further, in the present embodiment, the linear portions of the plurality of heat transfer tubes 18 are arranged in a straight line in the step direction in each row. That is, the centers of the straight lines in the plurality of heat transfer tubes 18 arranged side by side in the step direction in each row are arranged in a straight line. Further, the distance between the straight portions in the heat transfer tube 18 of each stage may be the same as each other.
  • the inlet of the refrigerant of the auxiliary condenser 9a is higher than the outlet of the refrigerant of the auxiliary evaporator 9b, and the outlet of the refrigerant of the auxiliary condenser 9a is the auxiliary evaporator 9b. It is located higher than the inlet of the refrigerant.
  • the solid line arrow in FIG. 6 indicates the flow of the refrigerant circulating in the auxiliary condenser 9a and the auxiliary evaporator 9b.
  • the evaporator, the auxiliary condenser 9a, and the auxiliary evaporator 9b may be a multi-pass type heat exchanger having a plurality of refrigerant paths.
  • the superheated gas state refrigerant discharged from the compressor 2 flows into the condenser 3 arranged in the air passage 23.
  • the refrigerant in the overheated gas state that has flowed into the condenser 3 flows into the air passage 23 from the external space through the suction port 21, and causes the auxiliary evaporator 9b, the evaporator 5, and the auxiliary condenser 9a arranged in the air passage 23.
  • By exchanging heat with the passing air it is cooled and becomes a refrigerant in a supercooled liquid state.
  • the air passing through the condenser 3 arranged in the air passage 23 passes through the auxiliary evaporator 9b, the evaporator 5 and the auxiliary condenser 9a also arranged in the air passage 23, and then in the condenser 3. It is heated by exchanging heat with a superheated gas state refrigerant or a gas-liquid two-phase state refrigerant.
  • the refrigerant in the supercooled liquid state that has flowed out of the condenser 3 is decompressed by passing through the decompression device 4, becomes a refrigerant in the gas-liquid two-phase state, and then flows into the evaporator 5 arranged in the air passage 23. do.
  • the gas-liquid two-phase state refrigerant that has flowed into the evaporator 5 is heated by heat exchange with the air that has passed through the auxiliary evaporator 9b arranged in the air passage 23, and becomes a superheated gas state refrigerant.
  • the refrigerant in the superheated gas state is sucked into the compressor 2, compressed by the compressor 2, and discharged again.
  • the air passing through the evaporator 5 arranged in the air passage 23 passes through the auxiliary evaporator 9b arranged in the air passage 23, and then heat exchanges with the gas-liquid two-phase state refrigerant in the evaporator 5. It is dehumidified by being cooled to a temperature below the dew point of the air.
  • the gas-liquid two-phase state or gas state refrigerant enclosed in the auxiliary condenser 9a is cooled by heat exchange with the air passing through the auxiliary evaporator 9b and the evaporator 5 arranged in the air passage 23. It becomes a refrigerant in the supercooled liquid state. Since the liquid refrigerant has a higher density than the gas refrigerant, the refrigerant in the supercooled liquid state goes down in the auxiliary condenser 9a. Since the outlet pipe of the auxiliary condenser 9a is arranged higher than the inlet pipe of the auxiliary evaporator 9b, the refrigerant in the supercooled liquid state flows into the auxiliary evaporator 9b through the pipe.
  • the air passing through the auxiliary condenser 9a arranged in the air passage 23 passes through the auxiliary evaporator 9b and the evaporator 5 also arranged in the first air passage 23a, and then the air in the auxiliary condenser 9a. It is heated by exchanging heat with a liquid two-phase or gas state refrigerant.
  • the refrigerant in the supercooled liquid state that has flowed into the auxiliary evaporator 9b is heated by heat exchange with the air taken into the air passage 23 from the suction port 21, and becomes a refrigerant in the gas-liquid two-phase state or the superheated gas state.
  • Become Since the gas refrigerant has a lower density than the liquid refrigerant, it goes up in the auxiliary evaporator 9b. Since the inlet pipe of the auxiliary condenser 9a is arranged higher than the outlet pipe of the auxiliary evaporator 9b, the gas refrigerant flows into the auxiliary condenser 9a through the pipe. In this way, the refrigerant naturally circulates in the auxiliary condenser 9a and the auxiliary evaporator 9b.
  • the air passing through the auxiliary evaporator 9b arranged in the air passage 23 is taken into the air passage 23 from the suction port 21 and then becomes a gas-liquid two-phase state or a liquid state refrigerant in the auxiliary evaporator 9b. It is cooled by exchanging heat.
  • FIG. 7 is a cross-sectional view of the evaporator 5 and the condenser 3 of the dehumidifying device 1 according to the comparative example.
  • the heat transfer tube 12 of the condenser 3 is a flat tube having a heat transfer performance superior to that of the circular tube.
  • the dehumidified water is scattered on the condenser 3.
  • dehumidified water stays on the surface of the flat tube and is heated by the refrigerant to evaporate, thereby rehumidifying the air.
  • the amount of dehumidification of the dehumidifying device 1 is reduced. Therefore, in the dehumidifying device 1 according to the comparative example, the dehumidifying amount cannot be increased while improving the performance of the condenser 3.
  • the heat transfer tube 16 of the auxiliary condenser 9a is a circular tube.
  • the auxiliary condenser 9a is arranged between the evaporator 5 and the condenser 3. Therefore, it is possible to prevent the dehumidified water scattered from the evaporator 5 to the auxiliary condenser 9a from staying in the heat transfer tube 16. Thereby, the drainage property of the auxiliary condenser 9a can be improved. Therefore, it is possible to prevent the air from being re-humidified by the dehumidified water staying in the heat transfer tube 16 of the auxiliary condenser 9a being overheated by the refrigerant and evaporating.
  • the dehumidifying amount of the dehumidifying device 1 can be improved.
  • the heat transfer tube 12 of the condenser 3 includes a flat tube. Flat tubes have better heat transfer performance than circular tubes. Therefore, the performance of the condenser 3 can be improved.
  • the evaporator 5 is arranged leeward of the auxiliary evaporator 9b. Therefore, in the heat pipe 102, the auxiliary evaporator 9b cools the air taken in from the suction port 21, so that the relative humidity of the air passing through the evaporator 5 can be increased. By increasing the relative humidity of the air passing through the evaporator 5, the amount of dehumidification in the evaporator 5 can be increased. Therefore, the performance of the condenser 3 can be improved, and the amount of dehumidification can be improved.
  • the auxiliary condenser 9a since the auxiliary condenser 9a has a plate fin and a circular tube heat transfer tube, it is possible to suppress the scattering of dehumidified water to the condenser 3 having the flat tube heat transfer tube. Further, the auxiliary condenser 9a, which is a combination of the plate fin and the circular tube, is superior in drainage property to the flat tube because the dehumidified water is drained to the drain pan 7 along the plate fin from both sides in the radial direction of the circular tube. .. Therefore, it is possible to suppress a decrease in heat exchange performance due to the retention of dehumidified water and a decrease in the amount of dehumidified due to heating of the dehumidified water.
  • the auxiliary condenser 9a raises the condensation temperature of the refrigerant in the condenser 3 in order to raise the temperature of the air passing through the condenser 3 arranged in the air passage 23.
  • the difference between the condensation pressure and the evaporation pressure in the refrigerant circuit increases, so that the input in the compressor 2 increases.
  • the auxiliary condenser 9a with the condenser 3 in which the heat transfer tube 12 is a flat tube having higher heat transfer performance than the circular tube, the increase in the condensation temperature is reduced, so that the condensation pressure and evaporation in the refrigerant circuit are achieved.
  • the pressure difference can be reduced. Therefore, the increase in input in the compressor 2 can be reduced.
  • the number of refrigerant paths gradually decreases from the upstream to the downstream of the refrigerant flow. That is, in the condenser 3, the number of refrigerant paths in the first straight line portion reciprocating between the first header 31 and the second header 32 gradually decreases from the upstream side to the downstream side. Since the refrigerant in the gas state on the upstream side has a larger pressure loss than the refrigerant in the gas-liquid two-phase state, the pressure loss is reduced by reducing the flow velocity by increasing the number of refrigerant passes for the refrigerant in the gas state on the upstream side. Can be reduced.
  • the flow velocity is increased by reducing the number of refrigerant passes for the refrigerant in the gas-liquid two-phase state on the downstream side. By making it possible, the heat transfer rate can be improved.
  • Embodiment 2 The dehumidifying device 1 according to the second embodiment will be described with reference to FIGS. 8 to 10.
  • the dehumidifying device 1 according to the present embodiment has a first condensed portion 3a, a second condensed portion 3b, a third condensed portion 3c, a first suction port 21a, a second suction port 21b, a partition portion 8, and a first air passage 23a. It is different from the dehumidifying device 1 according to the first embodiment in that the second air passage 23b is provided.
  • the housing 20 has a first suction port 21a, a second suction port 21b, a first air passage 23a, and a second wind. It has a road 23b.
  • the first suction port 21a is for taking in air.
  • the first air passage 23a is configured to communicate with the first suction port 21a.
  • the second suction port 21b is for taking in air.
  • the second air passage 23b communicates with the second suction port 21b.
  • the second air passage 23b is separated from the first air passage 23a.
  • the condenser 3 includes a first condensed portion 3a, a second condensed portion 3b, and a third condensed portion 3c.
  • the condenser 3 is configured so that the refrigerant (first refrigerant) flows in the order of the third condensed portion 3c, the second condensed portion 3b, and the first condensed portion 3a.
  • the first condensed portion 3a is connected to the second condensed portion 3b.
  • the second condensed portion 3b is connected to the third condensed portion 3c.
  • the refrigerant circuit 101 is configured to circulate the refrigerant in the order of the compressor 2, the third condensing unit 3c, the second condensing unit 3b, the first condensing unit 3a, the decompression device 4, and the evaporator 5.
  • the heat transfer tube 12 of the condenser 3 includes a heat transfer tube 12a of the first condensing section 3a, a heat transfer tube 12b of the second condensing section 3b, and a heat transfer tube 12c of the third condensing section 3c.
  • the third condensing unit 3c is configured to condense and cool the refrigerant boosted by the compressor 2.
  • the third condensing unit 3c is a heat exchanger that exchanges heat between the refrigerant and air.
  • the third condensed portion 3c has a plurality of fins 11c and a heat transfer tube 12c.
  • the third condensed portion 3c has an inlet and an outlet for the refrigerant, and an inlet and an outlet for the air.
  • the inlet and outlet of the refrigerant of the third condensing portion 3c are connected to each of the discharge port of the compressor 2 and the inlet of the refrigerant of the second condensing portion 3b by piping.
  • the heat transfer tube 12c is a flat tube.
  • the second condensing unit 3b is configured to further condense and cool the refrigerant cooled by the third condensing unit 3c.
  • the second condensing unit 3b is a heat exchanger that exchanges heat between the refrigerant and air.
  • the second condensed portion 3b has a plurality of fins 11b and a heat transfer tube 12b.
  • the second condensed portion 3b has an inlet and an outlet for the refrigerant, and an inlet and an outlet for the air.
  • the inlet and outlet of the refrigerant of the second condensed portion 3b are connected to the outlet of the third condensed portion 3c and the inlet of the first condensed portion 3a by piping, respectively.
  • the second condensed portion 3b is arranged downstream of the first condensed portion 3a in the air flow generated by the blower 6. That is, the second condensed portion 3b is arranged leeward of the first condensed portion 3a.
  • the heat transfer tube 12b of the second condensed portion 3b is a flat tube.
  • the first condensing unit 3a is configured to further condense and cool the refrigerant cooled by the second condensing unit 3b.
  • the first condensing unit 3a is a heat exchanger that exchanges heat between the refrigerant and air.
  • the first condensed portion 3a has a plurality of fins 11a and a heat transfer tube 12a.
  • the first condensed portion 3a has an inlet and an outlet for the refrigerant, and an inlet and an outlet for the air.
  • the inlet and outlet of the refrigerant of the first condensing unit 3a are connected to the outlet of the second condensing unit 3b and the inlet of the decompression device 4, respectively, by piping.
  • the first condensing portion 3a is arranged upstream of the second condensing portion 3b in the air flow generated by the blower 6. That is, the first condensed portion 3a is arranged on the windward side of the second condensed portion 3b. Further, the first condensing unit 3a is arranged downstream of the auxiliary condenser 9a in the air flow generated by the blower 6. That is, the first condensing portion 3a is arranged leeward of the auxiliary condenser 9a.
  • the heat transfer tube 12a of the first condensed portion 3a is a flat tube.
  • the third condensed portion 3c, the second condensed portion 3b, and the first condensed portion 3a are flat tube heat exchangers having fins and heat transfer tubes having the same shape.
  • the third condensed portion 3c is located above the second condensed portion 3b in the step direction. That is, the linear portion of the heat transfer tube 12c of the third condensed portion 3c is arranged linearly in the step direction with the heat transfer tube 12b of the second condensed portion 3b.
  • the heat transfer tube 12a, the heat transfer tube 12b, and the heat transfer tube 12c are not all limited to the flat tube, and at least one of the heat transfer tube 12a and the heat transfer tube 12b may be a flat tube.
  • the first suction port 21a and the second suction port 21b are provided to allow air to enter the inside of the housing 20 from the external space (indoor space).
  • the first air passage 23a is configured to connect the first suction port 21a and the outlet 22.
  • An auxiliary evaporator 9b, an evaporator 5, an auxiliary condenser 9a, a first condensing unit 3a, a second condensing unit 3b, and a blower 6 are arranged in the first air passage 23a.
  • the air taken in from the first suction port 21a is taken into the auxiliary evaporator 9b, the evaporator 5, and the auxiliary condenser.
  • 9a, the first condensed portion 3a, and the second condensed portion 3b are arranged in the first air passage 23a so as to flow in this order.
  • the second air passage 23b is configured to connect the second suction port 21b and the outlet 22.
  • a third condensing portion 3c and a blower 6 are arranged in the second air passage 23b.
  • the third condensed portion 3c is arranged in the second air passage 23b so that the air taken in from the second suction port 21b flows.
  • the air taken in from the external space (indoor space) as shown by the arrow A in the figure is in the first air passage 23a in the figure.
  • the auxiliary evaporator 9b, the evaporator 5, the auxiliary condenser 9a, the first condensing unit 3a, and the second condensing unit 3b passes through the auxiliary evaporator 9b, the evaporator 5, the auxiliary condenser 9a, the first condensing unit 3a, and the second condensing unit 3b.
  • the air taken in from the external space (indoor space) as shown by the arrow A'in the figure is indicated by the arrow B'in the second air passage 23b.
  • the air that has passed through the first air passage 23a and the air that has passed through the second air passage 23b are mixed with each other and discharged to the external space (indoor space) of the housing 20 through the air outlet 22.
  • the first air passage 23a and the second air passage 23b may be separated from each other.
  • the first air passage 23a and the second air passage 23b may be separated from each other by, for example, a partition portion 8.
  • Each of the first air passage 23a and the second air passage 23b is formed by, for example, a housing 20 and a partition portion 8.
  • one end located on the upstream side of the partition portion 8 is formed at least on the upstream side of the air outlet of the auxiliary evaporator 9b.
  • the other end located on the downstream side of the partition portion 8 is formed at least on the downstream side of the air inlet of the first condensing portion 3a.
  • the partition portion 8 is formed in a flat plate shape, for example. The partition portion 8 is fixed to the inside of the housing 20.
  • the auxiliary evaporator 9b, the evaporator 5, the auxiliary condenser 9a, the first condensing unit 3a and the second condensing unit 3b are the air taken in from the first suction port 21a.
  • the third condensed portion 3c is arranged in the second air passage 23b so that the air taken in from the second suction port 21b flows.
  • the air volume of the air flowing through the entire condenser 3 including the first condensing section 3a, the second condensing section 3b, and the third condensing section 3c can be made larger than the air volume of the air flowing through the evaporator 5.
  • the heat transfer performance on the condenser 3 side can be improved, so that the condensation temperature of the refrigerant can be lowered.
  • the difference between the condensation pressure and the evaporation pressure in the refrigerant circuit can be reduced, so that the input in the compressor 2 can be lowered.
  • the EF Expogy Factor
  • the material constituting the partition portion 8 has a lower thermal conductivity than the material constituting the heat transfer tube and fins through which the refrigerant flows in the auxiliary evaporator 9b, the evaporator 5, the auxiliary condenser 9a and the first condensing portion 3a. It may be composed of materials. As a result, it is possible to reduce heat exchange between the air in the first air passage 23a and the air in the second air passage 23b via the partition portion 8.
  • Embodiment 3 The dehumidifying device 1 according to the third embodiment will be described with reference to FIG.
  • the dehumidifying device 1 according to the present embodiment is different from the dehumidifying device 1 according to the second embodiment in that the second condensed portion 3b and the third condensed portion 3c are integrated.
  • the second condensed portion 3b and the third condensed portion 3c are integrally configured. Specifically, each of the plurality of fins 11b and each of the plurality of fins 11c are integrally configured.
  • the heat transfer area of the second condensed portion 3b and the third condensed portion 3c is larger than the heat transfer area of the first condensed portion 3a.
  • the second condensed portion 3b of the integrally configured second condensed portion 3b and the third condensed portion 3c exchanges heat with the air passing through the first air passage 23a.
  • the third condensed portion 3c exchanges heat with the air passing through the second air passage 23b.
  • the second condensed portion 3b and the third condensed portion 3c are integrally configured. Therefore, the cost of the header and the connecting pipe can be suppressed.
  • Embodiment 4 The dehumidifying device 1 according to the fourth embodiment will be described with reference to FIG.
  • the dehumidifying device 1 according to the present embodiment is different from the dehumidifying device 1 according to the second embodiment in that the heat transfer tube 12b of the second condensing section 3b and the heat transfer tube 12c of the third condensing section 3c are circular tubes.
  • the heat transfer tube (first heat transfer tube) 12a of the first condensing portion 3a is a flat tube.
  • the heat transfer tube (first heat transfer tube) of the second condensed portion 3b and the third condensed portion 3c is a circular tube. That is, the heat transfer tube 12b of the second condensed portion 3b and the heat transfer tube 12c of the third condensed portion 3c are circular tubes.
  • the heat transfer tube 12b of the second condensing section 3b and the heat transfer tube 12c of the third condensing section 3c are circular tubes. Since the flat tube has a small diameter, the pressure loss is larger than that of the circular tube. Further, the pressure loss of the refrigerant in the gas state is larger than the pressure loss of the refrigerant in the liquid state. Therefore, by making the heat transfer tube 12b of the second condensing section 3b and the heat transfer tube 12c of the third condensing section 3c into circular tubes having a small pressure loss, the pressure loss due to the superheated gas can be reduced.
  • Embodiment 5 The dehumidifying device 1 according to the fifth embodiment will be described with reference to FIG.
  • the dehumidifying device 1 according to the present embodiment is different from the dehumidifying device 1 according to the second embodiment in that the heat transfer tube 12a of the first condensing portion 3a is a circular tube.
  • the heat transfer tube (first heat transfer tube) 12a of the first condensing portion 3a is a circular tube.
  • the heat transfer tube (first heat transfer tube) of the second condensed portion 3b and the third condensed portion 3c is a flat tube. That is, the heat transfer tube 12b of the second condensed portion 3b and the heat transfer tube 12c of the third condensed portion 3c are flat tubes.
  • the heat transfer tube 12a of the first condensing portion 3a is a circular tube.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Drying Of Gases (AREA)

Abstract

除湿装置(1)は、筐体(20)と、送風機(6)と、冷媒回路(101)と、ヒートパイプ(102)とを備えている。冷媒回路(101)は、圧縮機(2)、凝縮器(3)、減圧装置(4)および蒸発器(5)を有している。ヒートパイプ(102)は、補助凝縮器(9a)および補助蒸発器(9b)を有している。蒸発器(5)は、補助蒸発器(9b)よりも風下に配置されている。補助凝縮器(9a)は、蒸発器(5)よりも風下に配置されている。凝縮器(3)は、補助凝縮器(9a)よりも風下に配置されている。補助凝縮器(9a)の伝熱管は、円管である。凝縮器(3)の伝熱管は、扁平管を含んでいる。

Description

除湿装置
 本開示は、除湿装置に関するものである。
 従来、凝縮器の性能を向上させるために、凝縮器の伝熱管に扁平管を用いた除湿装置が提案されている。例えば国際公開第2019/077744号(特許文献1)には、凝縮器の伝熱管に扁平管を用いた除湿装置が記載されている。
国際公開第2019/077744号
 除湿装置では、蒸発器の表面に除湿水が結露する。この除湿水は、蒸発器よりも風下側に配置された凝縮器に飛散する。上記文献に記載のように、凝縮器の伝熱管に扁平管が用いられると、扁平管の表面に除湿水が滞留する。扁平管の表面に滞留した除湿水が扁平管内の冷媒によって加熱されて蒸発することで空気が再加湿される。これにより、除湿装置の除湿量が低下する。
 本開示は上記課題に鑑みてなされたものであり、その目的は、凝縮器の性能を向上させることができ、かつ除湿量を向上させることができる除湿装置を提供することである。
 本開示に係る除湿装置は、筐体と、送風機と、冷媒回路と、ヒートパイプとを備えている。送風機、冷媒回路およびヒートパイプは筐体内に配置されている。送風機は、空気を送風するように構成されている。冷媒回路は、圧縮機、凝縮器、減圧装置および蒸発器を有し、かつ圧縮機、凝縮器、減圧装置、蒸発器の順に第1冷媒を循環させるように構成されている。ヒートパイプは、補助凝縮器および補助蒸発器を有し、かつ補助凝縮器、補助蒸発器の順に第2冷媒が循環するように構成されている。凝縮器は、第1冷媒が流れる第1伝熱管を有する。補助凝縮器は、第2冷媒が流れる第2伝熱管を有する。蒸発器は、補助蒸発器よりも風下に配置されている。補助凝縮器は、蒸発器よりも風下に配置されている。凝縮器は、補助凝縮器よりも風下に配置されている。補助凝縮器の第2伝熱管は、円管である。凝縮器の第1伝熱管は、扁平管を含んでいる。
 本開示によれば、蒸発器は、補助蒸発器よりも風下に配置されている。補助凝縮器の第2伝熱管は、円管であり、凝縮器の第1伝熱管は、扁平管を含んでいる。このため、凝縮器の性能を向上させることができ、かつ除湿量を向上させることができる。
実施の形態1に係る除湿装置の冷媒回路図である。 実施の形態1に係る除湿装置の構成を示す概略図である。 実施の形態1に係る除湿装置の補助蒸発器、蒸発器、補助凝縮器および凝縮器の断面図である。 実施の形態1に係る除湿装置の凝縮器の正面図である。 実施の形態1に係る除湿装置の凝縮器の変形例の正面図である。 実施の形態1に係る除湿装置の補助凝縮器および補助蒸発器の側面図である。 実施の形態1の比較例に係る除湿装置の蒸発器および凝縮器の断面図である。 実施の形態2に係る除湿装置の冷媒回路図である。 実施の形態2に係る除湿装置の構成を示す概略図である。 実施の形態2に係る除湿装置の補助蒸発器、蒸発器、補助凝縮器、第1凝縮部、第2凝縮部および第3凝縮部の断面図である。 実施の形態3に係る除湿装置の補助蒸発器、蒸発器、補助凝縮器、第1凝縮部、第2凝縮部および第3凝縮部の断面図である。 実施の形態4に係る除湿装置の補助蒸発器、蒸発器、補助凝縮器、第1凝縮部、第2凝縮部および第3凝縮部の断面図である。 実施の形態5に係る除湿装置の補助蒸発器、蒸発器、補助凝縮器、第1凝縮部、第2凝縮部および第3凝縮部の断面図である。
 以下、図面を参照して、実施の形態について説明する。なお、図中において、同一または相当する部分には同一の符号を付してその説明は繰り返さない。
 実施の形態1.
 図1および図2を参照して、実施の形態1に係る除湿装置1の構成について説明する。図1は、実施の形態1に係る除湿装置1の冷媒回路図である。図2は、実施の形態1に係る除湿装置1の構成を示す概略図である。
 図1および図2に示されるように、除湿装置1は、圧縮機2、凝縮器3、減圧装置4および蒸発器5を有する冷媒回路101と、補助凝縮器9aおよび補助蒸発器9bを有するヒートパイプ102と、送風機6と、ドレンパン7と、筐体20とを備えている。冷媒回路101、ヒートパイプ102、送風機6およびドレンパン7は、筐体20内に配置されている。筐体20は、除湿装置1が除湿対象とする外部空間(室内空間)に面している。
 冷媒回路101は、圧縮機2、凝縮器3、減圧装置4、蒸発器5の順に冷媒(第1冷媒)を循環させるように構成されている。具体的には、冷媒回路101は、圧縮機2、凝縮器3、減圧装置4、蒸発器5の順に配管で接続されることにより構成されている。そして、冷媒は、この配管内を通って冷媒回路101を圧縮機2、凝縮器3、減圧装置4、蒸発器5の順に循環する。図2において、冷媒回路101に付された実線矢印は、冷媒回路101における冷媒の流れを示している。本実施の形態では、冷媒回路101における冷媒(第1冷媒)は、ヒートパイプ102における冷媒(第2冷媒)と異なっている。なお、冷媒回路101における冷媒(第1冷媒)は、ヒートパイプ102における冷媒(第2冷媒)と同じであってもよい。
 圧縮機2は冷媒を圧縮するように構成されている。具体的には、圧縮機2は吸入口から低圧冷媒を吸入して圧縮し、高圧冷媒として吐出口から吐出するように構成されている。圧縮機2は、冷媒の吐出容量が可変に構成されていてもよい。具体的には、圧縮機2はインバータ圧縮機であってもよい。圧縮機2が冷媒の吐出容量を可変に構成されている場合には、除湿装置1内の冷媒循環量は、圧縮機2の吐出容量を調整することにより制御することが可能となる。
 凝縮器3は、圧縮機2で昇圧された冷媒を凝縮して冷却するように構成されている。凝縮器3は、冷媒と空気との間で熱交換を行う熱交換器である。凝縮器3は、冷媒の入口と出口、および空気の入口と出口とを有している。凝縮器3の冷媒の入口は圧縮機2の吐出口に配管で接続されている。
 凝縮器3は、送風機6によって発生する空気の流れにおいて補助凝縮器9aよりも下流に配置されている。つまり、凝縮器3は、補助凝縮器9aよりも風下に配置されている。凝縮器3は、冷媒(第1冷媒)が流れる伝熱管(第1伝熱管)を有している。凝縮器3の伝熱管(第1伝熱管)は扁平管を含んでいる。
 減圧装置4は、凝縮器3にて冷却された冷媒を減圧させて膨張させるように構成されている。減圧装置4は、例えば膨張弁である。この膨張弁は電子制御弁であってもよい。なお、減圧装置4は、膨張弁に限られず、キャピラリーチューブであってもよい。減圧装置4は、凝縮器3の冷媒の出口と蒸発器5の冷媒の入口との各々に配管でそれぞれ接続されている。
 蒸発器5は、減圧装置4にて減圧されて膨張された冷媒に吸熱させて冷媒を蒸発させるように構成されている。蒸発器5は、冷媒と空気との間で熱交換を行う熱交換器である。蒸発器5は、冷媒の入口と出口、および空気の入口と出口とを有している。蒸発器5の冷媒の出口は圧縮機2の吸込口に配管で接続されている。蒸発器5は、送風機6によって発生する空気の流れにおいて補助蒸発器9bよりも下流に配置されている。つまり、蒸発器5は、補助蒸発器9bよりも風下に配置されている。蒸発器5の伝熱管は円管である。
 ヒートパイプ102は、補助凝縮器9a、補助蒸発器9bの順に冷媒(第2冷媒)が循環するように構成されている。具体的には、ヒートパイプ102は、補助凝縮器9aの出口と補助蒸発器9bの入口、補助凝縮器9aの入口と補助蒸発器9bの出口がそれぞれ配管で接続されることにより構成されている。そして、冷媒は、この配管内を通ってヒートパイプ102を補助凝縮器9a、補助蒸発器9bの順に循環する。本実施の形態では、ヒートパイプ102は、補助凝縮器9a、補助蒸発器9bの順に冷媒(第2冷媒)が自然循環するように構成されている。図2において、ヒートパイプ102に付された破線矢印は、ヒートパイプ102における冷媒の流れを示している。
 補助凝縮器9aは、筐体20の外部から内部に送風機6によって取り込まれた空気を凝縮器3に流入する前に加熱するように構成されている。補助凝縮器9aは、再熱器である。補助凝縮器9aは、冷媒を凝縮して冷却するように構成されている。補助凝縮器9aは、冷媒と空気との間で熱交換を行う熱交換器である。補助凝縮器9aは、冷媒の入口と出口、および空気の入口と出口とを有している。補助凝縮器9aの冷媒の入口は補助蒸発器9bの出口に配管で接続されている。補助凝縮器9aは、送風機6によって発生する空気の流れにおいて蒸発器5よりも下流に配置されている。つまり、補助凝縮器9aは、蒸発器5よりも風下に配置されている。補助凝縮器9aは、冷媒(第2冷媒)が流れる伝熱管(第2伝熱管)を有している。補助凝縮器9aの伝熱管(第2伝熱管)は円管である。
 補助蒸発器9bは、筐体20の外部から内部に送風機6によって取り込まれた空気を蒸発器5に流入する前にあらかじめ冷却するように構成されている。補助蒸発器9bは、予冷却器である。補助蒸発器9bは、冷媒を蒸発して加熱するように構成されている。補助蒸発器9bは、冷媒と空気との間で熱交換を行う熱交換器である。補助蒸発器9bは、冷媒の入口と出口、および空気の入口と出口とを有している。補助蒸発器9bの冷媒の入口は補助凝縮器9aの出口に配管で接続されている。補助蒸発器9bは、送風機6によって発生する空気の流れにおいて蒸発器5よりも上流に配置されている。つまり、補助蒸発器9bは、蒸発器5よりも風上に配置されている。補助蒸発器9bの伝熱管は円管である。
 送風機6は空気を送風するように構成されている。そして、送風機6は、空気を筐体20の外部から内部に取り込んで凝縮器3、蒸発器5、補助凝縮器9a、補助蒸発器9bに送風可能に構成されている。具体的には、送風機6は、外部空間(室内空間)から空気を筐体20内に取り込んで補助蒸発器9b、蒸発器5、補助凝縮器9a、凝縮器3を通過させた後に筐体20外に吐き出すように構成されている。
 本実施の形態では、送風機6は、軸6aと、軸6aを中心に回転するファン6bとを有している。ファン6bが軸6aを中心に回転することによって、図中矢印Aで示すように外部空間(室内空間)から取り込まれた空気が、図中矢印Bで示すように補助蒸発器9b、蒸発器5、補助凝縮器9aおよび凝縮器3を順に通過した後に、図中矢印Cで示すように再び外部空間(室内空間)へ吐き出される。このようにして、空気は、除湿装置1を経由して外部空間(室内空間)を循環する。
 筐体20には、除湿対象とする外部空間(室内空間)から筐体20の内部に空気を入れるための吸込口21と、筐体20の内部から外部空間(室内空間)に空気を吹き出すための吹出口22とが設けられている。また、筐体20は、吸込口21と吹出口22とをつなぐ風路(空気の流路)23を有している。風路23には補助蒸発器9b、蒸発器5、補助凝縮器9a、凝縮器3、送風機6が配置されている。したがって、補助蒸発器9bと蒸発器5と補助凝縮器9aと凝縮器3とは同一の風路23内に配置されている。補助蒸発器9b、蒸発器5、補助凝縮器9aおよび凝縮器3は、空気の流れにおいて上流から下流に向けて補助蒸発器9b、蒸発器5、補助凝縮器9aおよび凝縮器3の順に風路23内に配置されている。
 風路23内において、筐体20の外部から吸込口21を通って筐体20の内部に吸込まれた空気が補助蒸発器9b、蒸発器5、補助凝縮器9aおよび凝縮器3の順に通過し、吹出口22を通って筐体20の外部に吹出される。
 なお、除湿装置1において、風路23内には、凝縮器3、蒸発器5、送風機6、補助凝縮器9a、補助蒸発器9bの他に冷媒回路を構成する部材が配置されていてもよい。例えば風路23内には、減圧装置4が配置されていてもよい。
 なお、除湿装置1が室内に設置される場合、凝縮器3の熱が室外へ放熱されることにより、室内が冷却されてもよい。この室外への放熱のため、排気ダクトの機器への搭載および機器自体が窓側に設置されてもよい。
 ドレンパン7は、蒸発器5に結露した除湿水または蒸発器5から飛散した除湿水が、ドレンパン7に排水されるように構成されている。本実施の形態では、補助蒸発器9b、蒸発器5、補助凝縮器9aおよび凝縮器3はドレンパン7上に配置されている。
 続いて、図3~図5を参照して、補助蒸発器9b、蒸発器5、補助凝縮器9aおよび凝縮器3の構成を詳しく説明する。図3は、実施の形態1に係る補助蒸発器9b、蒸発器5、補助凝縮器9aおよび凝縮器3の断面図である。なお、図3では、説明の便宜のため、補助蒸発器9b、蒸発器5、補助凝縮器9aおよび凝縮器3の一部が図示されている。
 本実施の形態に係る除湿装置1では凝縮器3は、複数のフィン11および伝熱管(第1伝熱管)12を有している。複数のフィン11の各々は薄板状に構成されている。複数のフィン11は互いに積層するように配置されている。伝熱管12は互いに積層された複数のフィン11を積層方向に貫通するように配置されている。伝熱管12の断面形状は、列方向に伸びるように構成されている。また、伝熱管12は、複数のフィン11の積層方向に直線状に伸びる複数の直線部を有している。また、凝縮器3は、複数の直線部の端部をそれぞれ接続する第1ヘッダ31と第2ヘッダ32とを有している(図4参照)。伝熱管12の複数の直線部の各々は複数の細径の管路を有している。伝熱管12は、冷媒が流れるように構成されている。伝熱管12は、扁平管である。伝熱管12は、風路23を通る空気の流通方向に対して扁平形状である扁平管である。伝熱管12の断面形状は、凝縮器3および補助凝縮器9aが並ぶ方向に延びる扁平形状を有するように構成されている。
 蒸発器5は、複数のフィン13および伝熱管14を有している。複数のフィン13の各々は薄板状に構成されている。複数のフィン13は互いに積層するように配置されている。伝熱管14は互いに積層された複数のフィン13を積層方向に貫通するように配置されている。伝熱管14は、この積層方向に直線状に延びる複数の直線部と、複数の直線部をつなぐ複数の湾曲部とを有している。複数の直線部の各々と複数の直線部の各々とが互いに直列に接続されることにより、伝熱管14は蛇行するように構成されている。伝熱管14は、冷媒が流れるように構成されている。伝熱管14は円管である。
 補助凝縮器9aは、複数のフィン15および伝熱管16を有している。複数のフィン15の各々は薄板状に構成されている。複数のフィン15は互いに積層するように配置されている。伝熱管16は互いに積層された複数のフィン15を積層方向に貫通するように配置されている。伝熱管16は、この積層方向に直線状に延びる複数の直線部と、複数の直線部をつなぐ複数の湾曲部とを有している。複数の直線部の各々と複数の湾曲部の各々とが互いに直列に接続されることにより、伝熱管16は蛇行するように構成されている。伝熱管16は、冷媒が流れるように構成されている。伝熱管16は、円管である。
 補助蒸発器9bは、複数のフィン17および伝熱管18を有している。複数のフィン17の各々は薄板状に構成されている。複数のフィン17は互いに積層するように配置されている。伝熱管18は互いに積層された複数のフィン17を積層方向に貫通するように配置されている。伝熱管18は、この積層方向に直線状に延びる複数の直線部と、複数の直線部をつなぐ複数の湾曲部とを有している。複数の直線部の各々と複数の湾曲部の各々とが互いに直列に接続されることにより、伝熱管18は蛇行するように構成されている。伝熱管18は、冷媒が流れるように構成されている。伝熱管18は、円管である。
 図3は、凝縮器3の複数のフィン11、蒸発器5の複数のフィン13、補助凝縮器9aの複数のフィン15および補助蒸発器9bの複数のフィン17の積層方向のそれぞれに直交する断面における断面図である。凝縮器3では、図3に示される断面において、複数の伝熱管12における直線部が配置されている。これら複数の伝熱管12の直線部の形状は互いに同一であってもよい。
 本実施の形態では、これらの複数の伝熱管12における直線部は、段方向に3段以上に並んで配置されている。また、本実施の形態では、これらの複数の伝熱管12における直線部は段方向に直線状に並んで配置されている。つまり、段方向に並んで配置された複数の伝熱管12における直線部の中心は一直線に配置されている。また、各段の伝熱管12における直線部間の間隔は互いに同一であってもよい。
 図4は、凝縮器3を列方向から見たときの凝縮器3の正面図である。凝縮器3の扁平管は水平方向に配置されてもよいし、鉛直方向に配置されてもよい。凝縮器3のフィン11の形状は、プレートフィン、コルゲートフィン等であってもよい。凝縮器3のフィン11の形状は、凝縮器3の性能および凝縮器3の扁平管の設置姿勢により選択される。凝縮器3の伝熱管12は、少なくとも1つの冷媒パスを含んでいる。本実施の形態では、冷媒パスの数は、冷媒の流れの上流から下流にかけて徐々に減少する。
 図2および図4を参照して、第1ヘッダ31は、冷媒の入口および冷媒の出口を有している。本実施の形態では、第1ヘッダ31の冷媒の入口は、圧縮機2の吐出口に配管で接続されている。また、第1ヘッダ31の冷媒の出口は、減圧装置4の入口に配管で接続されている。第1ヘッダ31および第2ヘッダ32内に仕切り33を設けることによって、圧縮機2から流入した冷媒は複数の直線部を通って第1ヘッダ31および第2ヘッダ32間を複数回折り返した後、第1ヘッダ31の冷媒の出口から減圧装置4に流出する。その際、第1ヘッダ31および第2ヘッダ32間を往復する直線部の冷媒パス数は、凝縮器3の上流側から下流側にかけて徐々に減少させることが好ましい。例えば、第1ヘッダ31から第2ヘッダ32への往路の冷媒パス数が5本であれば、第2ヘッダ32から第1ヘッダ31への復路の冷媒パス数は4本以下が好ましい。
 また、図5に示すように、第1ヘッダ31および第2ヘッダ32は分割されていてもよい。これにより、圧縮機2から流入した冷媒は複数の直線部を通って第1ヘッダ31および第2ヘッダ32間を複数回折り返した後、凝縮器3の冷媒の出口から減圧装置4に流出してもよい。第1ヘッダ31は、互いに分割された第1ヘッダ上流部311および第1ヘッダ下流部312を含んでいる。第2ヘッダ32は、互いに分割された第2ヘッダ上流部321および第2ヘッダ下流部322を含んでいる。また、凝縮器3の冷媒の出口は、第1ヘッダ31ではなく第2ヘッダ32に位置していてもよい。その場合、減圧装置4および凝縮器3を接続する配管は、圧縮機2および凝縮器3を接続する配管と、凝縮器3を挟んで反対側に位置することになる。
 蒸発器5では、図3に示される断面において、複数の伝熱管14における直線部が配置されている。これら複数の伝熱管14における直線部の外径および内径は互いに同一であってもよい。
 本実施の形態では、これらの複数の伝熱管14における直線部は、列方向に3列に並んで配置されている。これら3列の列方向における各列に配置された伝熱管14における直線部間の間隔は互いに同一であってもよい。なお、この間隔は、列方向における隣り合う各列に配置された伝熱管14における直線部の中心間の距離である。本実施の形態では、列方向において互いに隣り合う各列の複数の伝熱管14における直線部は、段方向に互いにずれるように配置されている。つまり、列方向において互いに隣り合う各列の複数の伝熱管14における直線部の中心は、列方向に一直線に配置されていない。
 また、本実施の形態では、列方向において互いに隣り合う各列の複数の伝熱管14における直線部は、列方向に互いに重ならないように配置されている。さらに、本実施の形態では、列方向において互いに隣り合う各列の複数の伝熱管14における直線部は、段方向に互いに部分的に重ならないように配置されている。
 本実施の形態では、これらの複数の伝熱管14における直線部は各列において段方向に3段以上に並んで配置されている。また、本実施の形態では、これらの複数の伝熱管14における直線部は各列において段方向に直線状に並んで配置されている。つまり、各列において段方向に並んで配置された複数の伝熱管14における直線部の中心は一直線に配置されている。さらに、本実施の形態では、これら3列の列方向における両端の各列に配置された複数の伝熱管14における直線部の段方向の位置は互いに同一である。また、これらの3列の列方向における中央の列に配置された伝熱管14における直線部の段方向の位置は、両端の各列に配置された複数の伝熱管14における直線部の段方向の位置間の中央に配置されている。
 補助凝縮器9aでは、図3に示される断面において、複数の伝熱管16における直線部が配置されている。これら複数の伝熱管16における直線部の外径および内径は互いに同一であってもよい。
 本実施の形態では、これらの複数の伝熱管16における直線部は、列方向に1列に並んで配置されているが、複数列であってもよい。その場合、複数の伝熱管16における直線部の列方向における配置および距離は、複数の伝熱管14における直線部の列方向における配置および距離に準じる。
 本実施の形態では、これらの複数の伝熱管16における直線部は、各列において段方向に3段以上に並んで配置されている。また、本実施の形態では、これらの複数の伝熱管16における直線部は各列において段方向に直線状に並んで配置されている。つまり、各列において段方向に並んで配置された複数の伝熱管16における直線部の中心は一直線に配置されている。また、各段の伝熱管16における直線部間の間隔は互いに同一であってもよい。
 補助蒸発器9bでは、図3に示される断面において、複数の伝熱管18における直線部が配置されている。これら複数の伝熱管18における直線部の外径および内径は互いに同一であってもよい。
 本実施の形態では、これらの複数の伝熱管18における直線部は、列方向に1列に並んで配置されているが、複数列であってもよい。その場合、複数の伝熱管18における直線部の列方向における配置および距離は、複数の伝熱管18における直線部の列方向における配置および距離に準じる。
 本実施の形態では、これらの複数の伝熱管18における直線部は、各列において段方向に3段以上に並んで配置されている。また、本実施の形態では、これらの複数の伝熱管18における直線部は各列において段方向に直線状に並んで配置されている。つまり、各列において段方向に並んで配置された複数の伝熱管18における直線部の中心は一直線に配置されている。また、各段の伝熱管18における直線部間の間隔は互いに同一であってもよい。
 図6を参照して、本実施の形態では、列方向において、補助凝縮器9aの冷媒の入口は補助蒸発器9bの冷媒の出口より高く、補助凝縮器9aの冷媒の出口は補助蒸発器9bの冷媒の入口より高く配置されている。図6中実線矢印は、補助凝縮器9aおよび補助蒸発器9bを循環する冷媒の流れを示している。
 なお、蒸発器、補助凝縮器9aおよび補助蒸発器9bは、複数の冷媒経路を持つ多パス型の熱交換器でもよい。
 次に、図1および図2を参照して、実施の形態1に係る除湿装置1の除湿運転時の動作について説明する。
 圧縮機2から吐出された過熱ガス状態の冷媒は、風路23内に配置された凝縮器3に流入する。凝縮器3に流入した過熱ガス状態の冷媒は、吸込口21を通じて外部空間から風路23内に流入し、風路23内に配置された補助蒸発器9b、蒸発器5および補助凝縮器9aを通過した空気と熱交換されることにより冷却されて過冷却液状態の冷媒となる。
 一方、風路23内に配置された凝縮器3を通過する空気は、同じく風路23内に配置された補助蒸発器9b、蒸発器5および補助凝縮器9aを通過した後、凝縮器3において過熱ガス状態の冷媒または気液二相状態の冷媒と熱交換されることにより加熱される。
 凝縮器3から流出した過冷却液状態の冷媒は、減圧装置4を通過することにより減圧され、気液二相状態の冷媒になった後、風路23内に配置された蒸発器5に流入する。蒸発器5に流入した気液二相状態の冷媒は、風路23内に配置された補助蒸発器9bを通過した空気と熱交換されることにより加熱されて過熱ガス状態の冷媒となる。この過熱ガス状態の冷媒が圧縮機2に吸入され、圧縮機2で圧縮されて再び吐出される。
 一方、風路23内に配置された蒸発器5を通過する空気は、風路23内に配置された補助蒸発器9bを通過した後、蒸発器5において気液二相状態の冷媒と熱交換され、空気の露点以下の温度に冷却されることにより除湿される。
 補助凝縮器9aに封入された気液二相状態またはガス状態の冷媒は、風路23内に配置された補助蒸発器9bおよび蒸発器5を通過した空気と熱交換されることにより冷却されて過冷却液状態の冷媒となる。液冷媒は、ガス冷媒よりも密度が大きいため、過冷却液状態の冷媒は補助凝縮器9a内を下っていく。補助凝縮器9aの出口配管は補助蒸発器9bの入口配管より高く配置されているため、過冷却液状態の冷媒は配管を通って補助蒸発器9bへと流入する。
 一方、風路23内に配置された補助凝縮器9aを通過する空気は、同じく第1風路23a内に配置された補助蒸発器9bおよび蒸発器5を通過した後、補助凝縮器9aにおいて気液二相状態またはガス状態の冷媒と熱交換されることにより加熱される。
 補助蒸発器9bに流入した過冷却液状態の冷媒は、吸込口21から風路23内に取り込まれた空気と熱交換されることにより加熱されて気液二相状態または過熱ガス状態の冷媒となる。ガス冷媒は、液冷媒より密度が小さいため補助蒸発器9b内を上っていく。補助凝縮器9aの入口配管は補助蒸発器9bの出口配管より高く配置されているため、ガス冷媒は配管を通って補助凝縮器9aへと流入する。このようにして冷媒は補助凝縮器9aと補助蒸発器9bを自然循環する。
 一方、風路23内に配置された補助蒸発器9bを通過する空気は、吸込口21から風路23内に取り込まれた後、補助蒸発器9bにおいて気液二相状態または液状態の冷媒と熱交換されることにより冷却される。
 次に、実施の形態1に係る除湿装置1の作用効果について比較例と対比して説明する。
 図7は、比較例に係る除湿装置1の蒸発器5および凝縮器3の断面図である。凝縮器3の性能を上げるために、凝縮器3の伝熱管12を、円管よりも伝熱性能の優れた扁平管としている。しかし、一般に、蒸発器5の風下側に凝縮器3が配置される除湿機では、凝縮器3に除湿水が飛散する。凝縮器3の伝熱管12が扁平形状である扁平管では、除湿水が扁平管の表面に滞留し冷媒によって加熱されて蒸発することで空気を再加湿する。これにより、除湿装置1の除湿量が低下する。したがって、比較例に係る除湿装置1では、凝縮器3の性能を向上させつつ除湿量を増加させることはできない。
 本実施の形態に係る除湿装置1によれば、補助凝縮器9aの伝熱管16は、円管である。補助凝縮器9aは、蒸発器5と凝縮器3の間に配置されている。したがって、蒸発器5から補助凝縮器9aに飛散した除湿水が伝熱管16に滞留することを抑制することができる。これにより、補助凝縮器9aの排水性を向上させることができる。このため、補助凝縮器9aの伝熱管16に滞留した除湿水が冷媒によって過熱されて蒸発することで空気が再加湿されることを抑制することができる。よって、除湿装置1の除湿量を向上させることができる。また、凝縮器3の伝熱管12は、扁平管を含んでいる。扁平管は、円管よりも伝熱性能が優れている。よって、凝縮器3の性能を向上させることができる。また、蒸発器5は、補助蒸発器9bよりも風下に配置されている。このため、ヒートパイプ102において、補助蒸発器9bが吸込口21から取り込まれた空気を冷却することで、蒸発器5を通過する空気の相対湿度を上昇させることができる。蒸発器5を通過する空気の相対湿度を上昇させることで、蒸発器5における除湿量を増加させることができる。したがって、凝縮器3の性能を向上させることができ、かつ除湿量を向上させることができる。
 また、補助凝縮器9aはプレートフィンと円管の伝熱管とを有しているため、扁平管の伝熱管を有する凝縮器3に除湿水が飛散することを抑制することができる。また、プレートフィンと円管を組み合わせた補助凝縮器9aは、円管の径方向における両側からプレートフィンに沿ってドレンパン7に除湿水が排水されるため、扁平管に比べ排水性が優れている。このため、除湿水の滞留による熱交換性能の低下および除湿水の加熱による除湿量の低下を抑制することができる。
 また、ヒートパイプ102において、補助凝縮器9aは風路23内に配置された凝縮器3を通過する空気の温度を上昇させるため、凝縮器3内の冷媒の凝縮温度を上昇させる。これにより、冷媒回路内の凝縮圧力と蒸発圧力の差が増加するため、圧縮機2における入力が増加する。しかしながら、補助凝縮器9aを伝熱管12が円管よりも伝熱性能の高い扁平管である凝縮器3と組み合わせることで、凝縮温度の上昇を低減させることにより、冷媒回路内の凝縮圧力と蒸発圧力の差を低減することができる。このため、圧縮機2における入力増加を低減することができる。
 また、本実施の形態に係る除湿装置1によれば、凝縮器3において、冷媒パスの数は、冷媒の流れの上流から下流にかけて徐々に減少する。つまり、凝縮器3において、第1ヘッダ31および第2ヘッダ32間を往復する第1直線部の冷媒パス数は、上流側から下流側にかけて徐々に減少する。上流側のガス状態の冷媒は気液二相状態の冷媒よりも圧力損失が大きいため、上流側のガス状態の冷媒に対しては冷媒パス数を多くすることで流速を減少させることにより圧力損失を低減させることができる。また、下流側の気液二相状態の冷媒はガス状態の冷媒よりも圧力損失が小さいため、下流側の気液二相状態の冷媒に対しては冷媒パス数を少なくすることで流速を上昇させることにより熱伝達率を向上させることができる。
 実施の形態2.
 図8~図10を参照して、実施の形態2に係る除湿装置1について説明する。本実施の形態に係る除湿装置1は、第1凝縮部3a、第2凝縮部3b、第3凝縮部3c、第1吸込口21a、第2吸込口21b、仕切部8、第1風路23aおよび第2風路23bを備えている点が、実施の形態1に係る除湿装置1と異なる。
 図8および図9を参照して、本実施の形態に係る除湿装置1では、筐体20は、第1吸込口21aと、第2吸込口21bと、第1風路23aと、第2風路23bとを有している。第1吸込口21aは、空気を取り込むためのものである。第1風路23aは、第1吸込口21aに連通するように構成されている。第2吸込口21bは、空気を取り込むためのものである。第2風路23bは、第2吸込口21bに連通している。第2風路23bは、第1風路23aから仕切られている。
 凝縮器3は、第1凝縮部3aと、第2凝縮部3bと、第3凝縮部3cとを含んでいる。凝縮器3は、第3凝縮部3c、第2凝縮部3b、第1凝縮部3aの順に冷媒(第1冷媒)が流れるように構成されている。第1凝縮部3aは、第2凝縮部3bに接続されている。第2凝縮部3bは、第3凝縮部3cに接続されている。冷媒回路101は、圧縮機2、第3凝縮部3c、第2凝縮部3b、第1凝縮部3a、減圧装置4、蒸発器5の順に冷媒を循環させるように構成されている。凝縮器3の伝熱管12は、第1凝縮部3aの伝熱管12a、第2凝縮部3bの伝熱管12bおよび第3凝縮部3cの伝熱管12cを含んでいる。
 図9および図10を参照して、第3凝縮部3cは、圧縮機2で昇圧された冷媒を凝縮して冷却するように構成されている。第3凝縮部3cは、冷媒と空気との間で熱交換を行う熱交換器である。第3凝縮部3cは、複数のフィン11cおよび伝熱管12cを有している。第3凝縮部3cは、冷媒の入口と出口、および空気の入口と出口とを有している。本実施の形態では、第3凝縮部3cの冷媒の入口と出口は、圧縮機2の吐出口と第2凝縮部3bの冷媒の入口との各々に配管でそれぞれ接続されている。伝熱管12cは、扁平管である。
 第2凝縮部3bは、第3凝縮部3cで冷却された冷媒をさらに凝縮して冷却するように構成されている。第2凝縮部3bは、冷媒と空気との間で熱交換を行う熱交換器である。第2凝縮部3bは、複数のフィン11bおよび伝熱管12bを有している。第2凝縮部3bは、冷媒の入口と出口、および空気の入口と出口とを有している。本実施の形態では、第2凝縮部3bの冷媒の入口と出口は、第3凝縮部3cの出口と第1凝縮部3aの入口にそれぞれ配管で接続されている。第2凝縮部3bは、送風機6によって発生する空気の流れにおいて第1凝縮部3aよりも下流に配置されている。つまり、第2凝縮部3bは、第1凝縮部3aよりも風下に配置されている。第2凝縮部3bの伝熱管12bは、扁平管である。
 第1凝縮部3aは、第2凝縮部3bで冷却された冷媒をさらに凝縮して冷却するように構成されている。第1凝縮部3aは、冷媒と空気との間で熱交換を行う熱交換器である。第1凝縮部3aは、複数のフィン11aおよび伝熱管12aを有している。第1凝縮部3aは、冷媒の入口と出口、および空気の入口と出口とを有している。本実施の形態では、第1凝縮部3aの冷媒の入口と出口は、第2凝縮部3bの出口と減圧装置4の入口にそれぞれ配管で接続されている。第1凝縮部3aは、送風機6によって発生する空気の流れにおいて第2凝縮部3bよりも上流に配置されている。つまり、第1凝縮部3aは、第2凝縮部3bよりも風上に配置されている。また、第1凝縮部3aは、送風機6によって発生する空気の流れにおいて補助凝縮器9aよりも下流に配置されている。つまり、第1凝縮部3aは、補助凝縮器9aよりも風下に配置されている。第1凝縮部3aの伝熱管12aは、扁平管である。
 本実施の形態では、第3凝縮部3c、第2凝縮部3bおよび第1凝縮部3aは、同形状のフィンおよび伝熱管を持つ扁平管熱交換器である。第3凝縮部3cは、段方向において第2凝縮部3bの上に位置する。つまり、第3凝縮部3cの伝熱管12cにおける直線部は、第2凝縮部3bにおける伝熱管12bと段方向に直線状に並んで配置されている。なお、伝熱管12a、伝熱管12bおよび伝熱管12cは、全てが扁平管に限定されず、伝熱管12aおよび伝熱管12bの少なくとも一つが扁平管であればよい。
 第1吸込口21aおよび第2吸込口21bは、外部空間(室内空間)から筐体20の内部に空気を入れるために設けられている。第1風路23aは、第1吸込口21aと吹出口22とをつなぐように構成されている。第1風路23aには、補助蒸発器9b、蒸発器5、補助凝縮器9a、第1凝縮部3a、第2凝縮部3b、送風機6が配置されている。補助蒸発器9b、蒸発器5、補助凝縮器9a、第1凝縮部3aおよび第2凝縮部3bは、第1吸込口21aから取り込まれた空気が補助蒸発器9b、蒸発器5、補助凝縮器9a、第1凝縮部3a、第2凝縮部3bの順に流れるように第1風路23a内に配置されている。第2風路23bは、第2吸込口21bと吹出口22とをつなぐように構成されている。第2風路23bには、第3凝縮部3c、送風機6が配置されている。第3凝縮部3cは、第2吸込口21bから取り込まれた空気が流れるように第2風路23b内に配置されている。
 本実施の形態では、ファン6bが軸6aを中心に回転することによって、図中矢印Aで示されるように外部空間(室内空間)から取り込まれた空気は、第1風路23a内において図中矢印Bで示されるように補助蒸発器9b、蒸発器5、補助凝縮器9a、第1凝縮部3a、第2凝縮部3bを通過する。また、ファン6bが軸6aを中心に回転することによって、図中矢印A’で示すように外部空間(室内空間)から取り込まれた空気は、第2風路23b内において図中矢印B’で示されるように第3凝縮部3cを通過する。第1風路23aを通過した空気と第2風路23bを通過した空気とは互いに混ざり、吹出口22を通って筐体20の外部空間(室内空間)へ吐き出される。
 第1風路23aと第2風路23bとは分離されていればよい。第1風路23aと第2風路23bとは、例えば仕切部8によって分離されていてもよい。第1風路23aおよび第2風路23bの各々は、例えば筐体20および仕切部8によって形成されている。第2風路23b内の空気の流通方向において、仕切部8の上流側に位置する一端は、少なくとも補助蒸発器9bの空気出口よりも上流側に形成されている。上記流通方向において、仕切部8の下流側に位置する他端は、少なくとも第1凝縮部3aの空気入口よりも下流側に形成されている。仕切部8は、例えば平板状に形成されている。仕切部8は、筐体20の内部に固定されている。
 本実施の形態に係る除湿装置1によれば、補助蒸発器9b、蒸発器5、補助凝縮器9a、第1凝縮部3aおよび第2凝縮部3bは、第1吸込口21aから取り込まれた空気が補助蒸発器9b、蒸発器5、補助凝縮器9a、第1凝縮部3a、第2凝縮部3bの順に流れるように第1風路23a内に配置されている。第3凝縮部3cは、第2吸込口21bから取り込まれた空気が流れるように第2風路23b内に配置されている。したがって、第1凝縮部3a、第2凝縮部3bおよび第3凝縮部3cを含めた凝縮器3全体を流れる空気の風量を、蒸発器5を流れる空気の風量より多くすることができる。凝縮器3全体の風量を多くすることで、凝縮器3側の伝熱性能を向上させることができるため、冷媒の凝縮温度を低下させることができる。また、凝縮温度を低下させることで冷媒回路内の凝縮圧力と蒸発圧力の差を低減することができるため、圧縮機2における入力を低下させることができる。これにより、除湿装置1の除湿性能を示す指標である、1kWh当たりの除湿量Lを示すEF(Energy Factor)値(L/kWh)を向上させることができる。
 また、仕切部8を構成する材料は、補助蒸発器9b、蒸発器5、補助凝縮器9aおよび第1凝縮部3aにおいて冷媒の流通する伝熱管およびフィンを構成する材料よりも熱伝導率の低い材料で構成されていればよい。これにより、仕切部8を介して第1風路23a内の空気および第2風路23b内の空気間で熱交換が行われることを低減させることができる。
 実施の形態3.
 図11を参照して、実施の形態3に係る除湿装置1について説明する。本実施の形態に係る除湿装置1は、第2凝縮部3bと第3凝縮部3cとを一体化させている点が、実施の形態2に係る除湿装置1と異なる。
 本実施の形態に係る除湿装置1では、第2凝縮部3bおよび第3凝縮部3cは一体的に構成されている。具体的には、複数の第フィン11bの各々と複数のフィン11cの各々とはそれぞれ一体的に構成されている。
 本実施の形態に係る除湿装置1によれば、第2凝縮部3bおよび第3凝縮部3cの伝熱面積は、第1凝縮部3aの伝熱面積よりも大きい。また、一体的に構成された第2凝縮部3bおよび第3凝縮部3cのうち第2凝縮部3bは、第1風路23aを通る空気と熱交換する。一体的に構成された第2凝縮部3bおよび第3凝縮部3cのうち第3凝縮部3cは、第2風路23bを通る空気と熱交換する。これにより、実施の形態2と同様の効果が得られる。
 また、本実施の形態に係る除湿装置1によれば、第2凝縮部3bおよび第3凝縮部3cは一体的に構成されている。このため、ヘッダおよび接続配管のコストを抑えることができる。
 実施の形態4.
 図12を参照して、実施の形態4に係る除湿装置1について説明する。本実施の形態に係る除湿装置1は、第2凝縮部3bの伝熱管12bおよび第3凝縮部3cの伝熱管12cが円管である点が、実施の形態2に係る除湿装置1と異なる。
 本実施の形態に係る除湿装置1では、第1凝縮部3aの伝熱管(第1伝熱管)12aは、扁平管である。第2凝縮部3bおよび第3凝縮部3cの伝熱管(第1伝熱管)は円管である。つまり、第2凝縮部3bの伝熱管12bおよび第3凝縮部3cの伝熱管12cは、円管である。
 本実施の形態に係る除湿装置1によれば、第2凝縮部3bの伝熱管12bおよび第3凝縮部3cの伝熱管12cは、円管である。扁平管は、細径のため、圧力損失が円管よりも大きい。また、ガス状態の冷媒の圧力損失は、液状態の冷媒の圧力損失よりも大きい。そのため、第2凝縮部3bの伝熱管12bおよび第3凝縮部3cの伝熱管12cを圧力損失の小さい円管にすることで、過熱ガスによる圧力損失を低減することができる。
 実施の形態5.
 図13を参照して、実施の形態5に係る除湿装置1について説明する。本実施の形態に係る除湿装置1は、第1凝縮部3aの伝熱管12aが円管である点が、実施の形態2に係る除湿装置1と異なる。
 本実施の形態に係る除湿装置1では、第1凝縮部3aの伝熱管(第1伝熱管)12aは、円管である。第2凝縮部3bおよび第3凝縮部3cの伝熱管(第1伝熱管)は、扁平管である。つまり、第2凝縮部3bの伝熱管12bおよび第3凝縮部3cの伝熱管12cは、扁平管である。
 本実施の形態に係る除湿装置1によれば、第1凝縮部3aの伝熱管12aは円管である。これにより、補助凝縮器9aで飛散を抑制しきれなかった除湿水が第1凝縮部3aに付着した際、除湿水の滞留による熱交換性能の低下および除湿水の加熱による除湿量の低下を抑制することができる。また、扁平管の伝熱管12bを有する第2凝縮部3bに除湿水が飛散するのをさらに抑制することができる。
 上記の各実施の形態は適宜組み合わせることができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 除湿装置、2 圧縮機、3 凝縮器、3a 第1凝縮部、3b 第2凝縮部、3c 第3凝縮部、4 減圧装置、5 蒸発器、6 送風機、7 ドレンパン、8 仕切部、9a 補助凝縮器、9b 補助蒸発器、11,11a,11b,11c,13,15,17 フィン、12,12a,12b,12c,14,16,18 伝熱管、20 筐体、21 吸込口、21a 第1吸込口、21b 第2吸込口、22 吹出口、23 風路、23a 第1風路、23b 第2風路、31 第1ヘッダ、32 第2ヘッダ、33 仕切り、101 冷媒回路、102 ヒートパイプ。

Claims (6)

  1.  筐体と、
     前記筐体内に配置された送風機、冷媒回路およびヒートパイプとを備え、
     前記送風機は、空気を送風するように構成されており、
     前記冷媒回路は、圧縮機、凝縮器、減圧装置および蒸発器を有し、かつ前記圧縮機、前記凝縮器、前記減圧装置、前記蒸発器の順に第1冷媒を循環させるように構成されており、
     前記ヒートパイプは、補助凝縮器および補助蒸発器を有し、かつ前記補助凝縮器、前記補助蒸発器の順に第2冷媒が循環するように構成されており、
     前記凝縮器は、前記第1冷媒が流れる第1伝熱管を有し、
     前記補助凝縮器は、前記第2冷媒が流れる第2伝熱管を有し、
     前記蒸発器は、前記補助蒸発器よりも風下に配置されており、
     前記補助凝縮器は、前記蒸発器よりも風下に配置されており、
     前記凝縮器は、前記補助凝縮器よりも風下に配置されており、
     前記補助凝縮器の前記第2伝熱管は、円管であり、
     前記凝縮器の前記第1伝熱管は、扁平管を含んでいる、除湿装置。
  2.  前記凝縮器の前記第1伝熱管は、少なくとも1つの冷媒パスを含み、
     前記冷媒パスの数は、前記第1冷媒の流れの上流から下流にかけて徐々に減少する、請求項1に記載の除湿装置。
  3.  前記筐体は、前記空気を取り込むための第1吸込口と、前記第1吸込口に連通する第1風路と、前記空気を取り込むための第2吸込口と、前記第2吸込口に連通しかつ前記第1風路から仕切られた第2風路とを有し、
     前記凝縮器は、第1凝縮部、第2凝縮部および第3凝縮部を有し、かつ前記第3凝縮部、前記第2凝縮部、前記第1凝縮部の順に前記第1冷媒が流れるように構成されており、
     前記補助蒸発器、前記蒸発器、前記補助凝縮器、前記第1凝縮部および前記第2凝縮部は、前記第1吸込口から取り込まれた前記空気が前記補助蒸発器、前記蒸発器、前記補助凝縮器、前記第1凝縮部、前記第2凝縮部の順に流れるように前記第1風路内に配置されており、
     前記第3凝縮部は、前記第2吸込口から取り込まれた前記空気が流れるように前記第2風路内に配置されている、請求項1または2のいずれか1項に記載の除湿装置。
  4.  前記第2凝縮部および前記第3凝縮部は一体的に構成されている、請求項3に記載の除湿装置。
  5.  前記第1凝縮部の前記第1伝熱管は、扁平管であり、
     前記第2凝縮部および前記第3凝縮部の前記第1伝熱管は、円管である、請求項3または4のいずれか1項に記載の除湿装置。
  6.  前記第1凝縮部の前記第1伝熱管は、円管であり、
     前記第2凝縮部および前記第3凝縮部の前記第1伝熱管は、扁平管である、請求項3または4のいずれか1項に記載の除湿装置。
PCT/JP2020/049199 2020-12-28 2020-12-28 除湿装置 WO2022145003A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2020/049199 WO2022145003A1 (ja) 2020-12-28 2020-12-28 除湿装置
JP2022572846A JPWO2022145003A1 (ja) 2020-12-28 2020-12-28
CN202080108072.1A CN116802441A (zh) 2020-12-28 2020-12-28 除湿装置
TW110120859A TWI836224B (zh) 2020-12-28 2021-06-09 除濕裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/049199 WO2022145003A1 (ja) 2020-12-28 2020-12-28 除湿装置

Publications (1)

Publication Number Publication Date
WO2022145003A1 true WO2022145003A1 (ja) 2022-07-07

Family

ID=82259152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/049199 WO2022145003A1 (ja) 2020-12-28 2020-12-28 除湿装置

Country Status (4)

Country Link
JP (1) JPWO2022145003A1 (ja)
CN (1) CN116802441A (ja)
TW (1) TWI836224B (ja)
WO (1) WO2022145003A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085198A (ja) * 1994-06-14 1996-01-12 Yanmar Diesel Engine Co Ltd 空調用熱交換器
JPH102638A (ja) * 1996-06-17 1998-01-06 Hitachi Ltd 熱交換器およびスリットフィン
WO2019077744A1 (ja) * 2017-10-20 2019-04-25 三菱電機株式会社 空気調和機
WO2020240661A1 (ja) * 2019-05-27 2020-12-03 三菱電機株式会社 除湿装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0926278A (ja) * 1995-07-07 1997-01-28 Showa Alum Corp 熱交換器用冷媒流通管およびこれを用いたカー・クーラ用コンデンサ
WO2019211893A1 (ja) * 2018-05-01 2019-11-07 三菱電機株式会社 熱交換器及び冷凍サイクル装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085198A (ja) * 1994-06-14 1996-01-12 Yanmar Diesel Engine Co Ltd 空調用熱交換器
JPH102638A (ja) * 1996-06-17 1998-01-06 Hitachi Ltd 熱交換器およびスリットフィン
WO2019077744A1 (ja) * 2017-10-20 2019-04-25 三菱電機株式会社 空気調和機
WO2020240661A1 (ja) * 2019-05-27 2020-12-03 三菱電機株式会社 除湿装置

Also Published As

Publication number Publication date
TWI836224B (zh) 2024-03-21
JPWO2022145003A1 (ja) 2022-07-07
CN116802441A (zh) 2023-09-22
TW202229778A (zh) 2022-08-01

Similar Documents

Publication Publication Date Title
US8205470B2 (en) Indoor unit for air conditioner
JP4628380B2 (ja) 空気調和装置
JP6972158B2 (ja) 除湿装置
JP6223596B2 (ja) 空気調和装置の室内機
TWI671494B (zh) 除濕裝置
TWI753323B (zh) 除濕裝置
WO2018235215A1 (ja) 熱交換器、冷凍サイクル装置および空気調和機
TWI770482B (zh) 除濕機
WO2022145003A1 (ja) 除湿装置
JP7394722B2 (ja) 除湿装置
WO2022224416A1 (ja) 除湿装置
WO2022264375A1 (ja) 除湿装置
TWI784343B (zh) 除濕裝置
JP2017048953A (ja) 空気調和機
JP4496951B2 (ja) 空気調和機
JP7050538B2 (ja) 熱交換器および空気調和機
WO2019180764A1 (ja) 室内機及び空気調和機
JP2015175539A (ja) 熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20968014

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022572846

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202080108072.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20968014

Country of ref document: EP

Kind code of ref document: A1