WO2022224416A1 - 除湿装置 - Google Patents
除湿装置 Download PDFInfo
- Publication number
- WO2022224416A1 WO2022224416A1 PCT/JP2021/016360 JP2021016360W WO2022224416A1 WO 2022224416 A1 WO2022224416 A1 WO 2022224416A1 JP 2021016360 W JP2021016360 W JP 2021016360W WO 2022224416 A1 WO2022224416 A1 WO 2022224416A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- condenser
- evaporator
- refrigerant
- heat transfer
- air
- Prior art date
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 162
- 230000006837 decompression Effects 0.000 claims abstract description 30
- 230000005494 condensation Effects 0.000 claims description 46
- 238000009833 condensation Methods 0.000 claims description 46
- 238000011144 upstream manufacturing Methods 0.000 claims description 27
- 230000007423 decrease Effects 0.000 claims description 4
- 238000005192 partition Methods 0.000 description 18
- 238000007791 dehumidification Methods 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 239000007788 liquid Substances 0.000 description 12
- 238000012986 modification Methods 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 239000002826 coolant Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 2
- 239000013526 supercooled liquid Substances 0.000 description 2
- 238000007664 blowing Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/26—Drying gases or vapours
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/02—Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
- F24F1/0358—Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing with dehumidification means
Definitions
- the present disclosure relates to a dehumidifier.
- Patent Literature 1 International Publication No. 2019/077744 (Patent Literature 1) describes a dehumidifier using flat tubes as heat transfer tubes of a condenser.
- a circular tube is used as the heat transfer tube of the evaporator.
- dehumidified water condenses on the surface of the evaporator.
- the flat tube described in the above document is used as a heat transfer tube of an evaporator
- dehumidified water stays on the surface of the flat tube of the evaporator because the flat tube has poor drainage.
- the dehumidified water remaining on the surfaces of the flat tubes of the evaporator inhibits heat exchange between the refrigerant in the flat tubes and the air, so that the heat transfer performance of the evaporator is lowered. As a result, the dehumidification amount of the dehumidifier is reduced.
- the present disclosure has been made in view of the above problems, and its purpose is to provide a dehumidifier capable of improving the performance of the evaporator and increasing the amount of dehumidification.
- a dehumidifier includes a housing, a blower, and a refrigerant circuit.
- a blower and a refrigerant circuit are arranged in the housing.
- the blower is configured to blow air.
- the refrigerant circuit has a compressor, a condenser, a decompression device, and an evaporator, and is configured to circulate the refrigerant in the order of the compressor, the condenser, the decompression device, and the evaporator.
- the condenser has a first heat transfer tube through which a refrigerant flows.
- the evaporator has a second heat transfer tube through which refrigerant flows.
- the condenser is positioned downwind from the evaporator.
- the first heat transfer tube of the condenser is a flat tube and extends horizontally.
- the second heat transfer tube of the evaporator is a flat tube and extends vertically.
- the second heat transfer tube of the evaporator is a flat tube and extends in the vertical direction. Therefore, the performance of the evaporator can be improved, and the amount of dehumidification can be improved.
- FIG. 1 is a schematic diagram showing the configuration of a dehumidifier according to Embodiment 1;
- FIG. 4 is a cross-sectional view of the evaporator and the condenser of the dehumidifier according to Embodiment 1, taken along a cross section perpendicular to the stacking direction of the plurality of fins of the condenser;
- FIG. 2 is a front view of a condenser of the dehumidifier according to Embodiment 1;
- FIG. 4 is a front view of Modification 1 of the condenser of the dehumidifier according to Embodiment 1.
- FIG. 10 is a front view of Modification 2 of the condenser of the dehumidifier according to Embodiment 1;
- FIG. 8 is a front view of Modification 3 of the evaporator of the dehumidifier according to Embodiment 1;
- FIG. 11 is a front view of Modification 4 of the evaporator of the dehumidifier according to Embodiment 1;
- 3 is a cross-sectional view of the evaporator and condenser of the dehumidifier according to Embodiment 1, taken along a cross section perpendicular to the stacking direction of the fins of the evaporator;
- FIG. 2 is a front view of the evaporator of the dehumidifier according to Embodiment 1;
- FIG. 4 is a front view of Modification 1 of the evaporator of the dehumidifier according to Embodiment 1.
- FIG. FIG. 8 is a front view of Modification 2 of the evaporator of the dehumidifier according to Embodiment 1;
- FIG. 8 is a front view of Modification 3 of the evaporator of the dehumidifier according to Embodiment 1;
- FIG. 11 is a front view of Modification 4 of the evaporator of the dehumidifier according to Embodiment 1;
- FIG. 11 is a front view of Modification 5 of the evaporator of the dehumidifier according to Embodiment 1;
- FIG. 10 is a cross-sectional view of the fifth modification of the evaporator and the condenser of the dehumidifier according to Embodiment 1, taken in the stage direction of the cross section perpendicular to the stacking direction of the plurality of fins of the evaporator;
- 4 is a cross-sectional view of an evaporator and a condenser of a dehumidifier according to a comparative example of Embodiment 1;
- FIG. 6 is a refrigerant circuit diagram of a dehumidifier according to Embodiment 2.
- FIG. FIG. 4 is a schematic diagram showing the configuration of a dehumidifier according to Embodiment 2;
- FIG. 7 is a cross-sectional view of the evaporator and condenser of the dehumidifier according to Embodiment 2, taken along a cross section perpendicular to the stacking direction of a plurality of fins of the condenser; 8 is a refrigerant circuit diagram of a dehumidifier according to Embodiment 3.
- FIG. FIG. 10 is a schematic diagram showing the configuration of a dehumidifier according to Embodiment 3;
- FIG. 11 is a cross-sectional view of an evaporator and a condenser of a dehumidifying device according to Embodiment 3, taken along a cross section perpendicular to the stacking direction of a plurality of fins of the condenser;
- FIG. 1 is a refrigerant circuit diagram of a dehumidifier 1 according to Embodiment 1.
- FIG. FIG. 2 is a schematic diagram showing the configuration of the dehumidifier 1 according to Embodiment 1. As shown in FIG.
- the dehumidifier 1 includes a refrigerant circuit 101 having a compressor 2, a condenser 3, a pressure reducing device 4, and an evaporator 5, a blower 6, a drain pan 7, and a housing 20. It has The refrigerant circuit 101 , the blower 6 and the drain pan 7 are arranged inside the housing 20 .
- the housing 20 faces an external space (indoor space) to be dehumidified by the dehumidifier 1 .
- the refrigerant circuit 101 is configured to circulate the refrigerant through the compressor 2, the condenser 3, the decompression device 4, and the evaporator 5 in this order.
- the refrigerant circuit 101 is configured by connecting a compressor 2, a condenser 3, a decompression device 4, and an evaporator 5 in this order with pipes. Refrigerant then circulates in the refrigerant circuit 101 through the piping through the compressor 2 , the condenser 3 , the decompression device 4 , and the evaporator 5 in this order.
- solid-line arrows attached to the refrigerant circuit 101 indicate the flow of refrigerant in the refrigerant circuit 101 .
- the compressor 2 is configured to compress the refrigerant. Specifically, the compressor 2 is configured to suck low-pressure refrigerant through a suction port, compress it, and discharge it as a high-pressure refrigerant through a discharge port.
- the compressor 2 may be configured such that the discharge capacity of the refrigerant is variable.
- the compressor 2 may be an inverter compressor. When the compressor 2 has a variable refrigerant discharge capacity, the amount of refrigerant circulating in the dehumidifier 1 can be controlled by adjusting the discharge capacity of the compressor 2 .
- the condenser 3 is configured to condense and cool the refrigerant pressurized by the compressor 2 .
- the condenser 3 is a heat exchanger that exchanges heat between refrigerant and air.
- the condenser 3 has a refrigerant inlet and outlet and an air inlet and outlet.
- a refrigerant inlet of the condenser 3 is connected to a discharge port of the compressor 2 by a pipe.
- the condenser 3 is arranged downstream of the evaporator 5 in the air flow generated by the blower 6 . That is, the condenser 3 is arranged further downwind than the evaporator 5 .
- the heat transfer tubes of the condenser 3 are flat tubes.
- the decompression device 4 is configured to decompress and expand the refrigerant cooled by the condenser 3 .
- the decompression device 4 is, for example, an expansion valve. This expansion valve may be an electronically controlled valve.
- the decompression device 4 is not limited to an expansion valve, and may be a capillary tube.
- the decompression device 4 is connected to each of the refrigerant outlet of the condenser 3 and the refrigerant inlet of the evaporator 5 by piping.
- the evaporator 5 is configured to cause the refrigerant decompressed and expanded by the decompression device 4 to absorb heat and evaporate the refrigerant.
- the evaporator 5 is a heat exchanger that exchanges heat between refrigerant and air.
- the evaporator 5 has a refrigerant inlet and outlet and an air inlet and outlet.
- a refrigerant outlet of the evaporator 5 is connected to a suction port of the compressor 2 by a pipe.
- the evaporator 5 is arranged upstream of the condenser 3 in the air flow generated by the blower 6 . That is, the evaporator 5 is arranged on the windward side of the condenser 3 .
- the heat transfer tubes of the evaporator 5 are flat tubes.
- the blower 6 is configured to blow air.
- the blower 6 is configured to take in air from the outside of the housing 20 into the inside and blow the air to the condenser 3 and the evaporator 5 .
- the blower 6 is configured to take air from an external space (indoor space) into the housing 20, pass the air through the evaporator 5 and the condenser 3, and then discharge the air outside the housing 20. .
- the blower 6 has a shaft 6a and a fan 6b rotating around the shaft 6a.
- the air taken in from the outside space (indoor space) as indicated by the arrow A in the figure flows through the evaporator 5 and the condenser 3 as indicated by the arrow B in the figure. After passing in order, it is discharged again into the external space (indoor space) as indicated by the arrow C in the figure. In this way, the air circulates in the external space (indoor space) via the dehumidifier 1 .
- the housing 20 has a suction port 21 for drawing air into the housing 20 from an external space (indoor space) to be dehumidified, and a suction port 21 for blowing air from the inside of the housing 20 to the external space (indoor space).
- a blowout port 22 is provided.
- the housing 20 has an air passage (air passage) 23 that connects the suction port 21 and the blowout port 22 .
- An evaporator 5 , a condenser 3 , and a blower 6 are arranged in the air passage 23 . Therefore, the evaporator 5 and the condenser 3 are arranged in the same air passage 23 .
- the evaporator 5 and the condenser 3 are arranged in the air passage 23 in the order of the evaporator 5 and the condenser 3 from upstream to downstream in the air flow.
- the air sucked into the interior of the housing 20 from the outside of the housing 20 through the suction port 21 passes through the evaporator 5 and the condenser 3 in this order, and passes through the air outlet 22 to the housing 20. is blown out of the
- the decompression device 4 may be arranged in the air passage 23 .
- the heat of the condenser 3 may be radiated to the outside to cool the room.
- an exhaust duct may be mounted on the equipment and the equipment itself may be installed on the window side.
- the drain pan 7 is configured so that dehumidified water condensed on the evaporator 5 is drained to the drain pan 7 .
- evaporator 5 and condenser 3 are arranged on drain pan 7 .
- FIG. 3 is a cross-sectional view of the evaporator 5 and the condenser 3 according to Embodiment 1, taken along a cross section perpendicular to the stacking direction of the plurality of fins 11 of the condenser 3 . Note that FIG. 3 shows part of the evaporator 5 and the condenser 3 for convenience of explanation.
- the condenser 3 has a plurality of fins (first fins) 11 and heat transfer tubes (first heat transfer tubes) 12 .
- Each of the plurality of fins 11 is configured in a thin plate shape.
- a plurality of fins 11 are arranged so as to be stacked on each other.
- the heat transfer tubes 12 are arranged so as to pass through the plurality of fins 11 stacked on each other in the stacking direction.
- the cross-sectional shape of the heat transfer tubes 12 is configured to extend in the row direction.
- the heat transfer tube 12 has a plurality of linear portions extending linearly in the stacking direction of the plurality of fins 11 .
- the condenser 3 also has a first header 31 and a second header 32 that connect the ends of the plurality of straight portions (see FIG. 4).
- Each of the plurality of straight portions of the heat transfer tube 12 has a plurality of small-diameter conduits.
- the heat transfer tubes 12 are configured to allow the refrigerant to flow.
- the heat transfer tubes 12 of the condenser 3 are flat tubes.
- the heat transfer tubes 12 are flat tubes that are flat with respect to the direction of air flow through the air passages 23 .
- the cross-sectional shape of the heat transfer tube 12 is configured to have a flat shape extending in the direction in which the condenser 3 and the evaporator 5 are arranged.
- FIG. 3 shows a cross section of the plurality of fins 11 of the condenser 3 perpendicular to the stacking direction.
- straight portions of the plurality of heat transfer tubes 12 are arranged in the cross section shown in FIG.
- the shapes of the straight portions of the plurality of heat transfer tubes 12 may be the same.
- the straight portions of the plurality of heat transfer tubes 12 are arranged side by side in three or more stages in the stage direction. Further, in the present embodiment, the straight portions of the plurality of heat transfer tubes 12 are arranged in a straight line in the direction of the stage. That is, the centers of the straight portions of the plurality of heat transfer tubes 12 arranged side by side in the row direction are arranged in a straight line. Also, the intervals between the straight portions of the heat transfer tubes 12 in each stage may be the same.
- FIG. 4 is a front view of the condenser 3 when viewed from the row direction.
- the flat tubes of the condenser 3 extend horizontally.
- the shape of the fins 11 of the condenser 3 is plate fins.
- the shape of the fins 11 of the condenser 3 is selected according to the performance of the condenser 3 .
- the heat transfer tube 12 of the condenser 3 includes at least one refrigerant path (first refrigerant path). In the present embodiment, the number of refrigerant paths (first refrigerant paths) gradually decreases from upstream to downstream of the refrigerant flow.
- the first header 31 has a coolant inlet and a coolant outlet.
- the refrigerant inlet of the first header 31 is connected to the discharge port of the compressor 2 by piping.
- the refrigerant outlet of the first header 31 is connected to the inlet of the decompression device 4 by a pipe.
- the number of straight refrigerant paths that reciprocate between the first header 31 and the second header 32 is gradually decreased from the upstream side to the downstream side of the condenser 3 .
- the number of refrigerant paths on the outward path from the first header 31 to the second header 32 is five, the number of refrigerant paths on the return path from the second header 32 to the first header 31 is preferably four or less.
- the shape of fins 11 of condenser 3 may be corrugated fins.
- the first header 31 and the second header 32 may be divided.
- the first header 31 includes a first header upstream portion 311 and a first header downstream portion 312 that are divided from each other.
- the second header 32 includes a second header upstream portion 321 and a second header downstream portion 322 that are separated from each other.
- the refrigerant outlet of the condenser 3 may be located in the second header 32 instead of the first header 31 .
- the piping connecting the decompression device 4 and the condenser 3 is located on the opposite side of the piping connecting the compressor 2 and the condenser 3 with the condenser 3 interposed therebetween. Further, even if the partition 33 is not provided and the refrigerant that has flowed into the first header from the compressor 2 does not reciprocate between the first header 31 and the second header 32, it flows out from the outlet of the second header 32 to the decompression device 4. good.
- the heat transfer tubes 12 connected to the first header 31 have a plurality of curved portions in addition to a plurality of straight portions, and the heat transfer tube 12 between the first header 31 and the second header 32 has a plurality of curved portions. may be connected to the second header 32 after being folded a plurality of times at a plurality of straight portions and a plurality of curved portions.
- the condenser 3 may have only the first header 31 without the second header 32 .
- the heat transfer tube 12 has a plurality of straight portions and a plurality of curved portions, and is horizontally folded multiple times from the upstream side of the first header 31 to connect to the downstream side of the first header 31 .
- FIG. 9 is a cross-sectional view of the evaporator 5 and the condenser 3 according to Embodiment 1, taken perpendicular to the stacking direction of the plurality of fins 13 of the evaporator 5 . Note that FIG. 9 shows part of the evaporator 5 and the condenser 3 for convenience of explanation.
- the evaporator 5 has a plurality of fins (second fins) 13 and heat transfer tubes (second heat transfer tubes) 14 .
- Each of the plurality of fins 13 is configured in a thin plate shape.
- a plurality of fins 13 are arranged so as to be stacked on each other.
- the heat transfer tubes 14 are arranged so as to pass through the plurality of fins 13 stacked on each other in the stacking direction.
- the cross-sectional shape of the heat transfer tubes 14 is configured to extend in the row direction.
- the heat transfer tube 14 has a plurality of linear portions extending linearly in the stacking direction of the plurality of fins 13 .
- the evaporator 5 also has a first header 34 and a second header 35 that connect the ends of the plurality of straight portions (see FIG.
- Each of the plurality of straight portions of the heat transfer tube 14 has a plurality of small-diameter conduits.
- the heat transfer tubes 14 are configured to allow the refrigerant to flow.
- the heat transfer tubes 14 of the evaporator 5 are flat tubes.
- the heat transfer tubes 14 are flat tubes that are flat with respect to the direction of air flow through the air passages 23 .
- the cross-sectional shape of the heat transfer tube 14 is configured to have a flat shape extending in the direction in which the condenser 3 and the evaporator 5 are arranged.
- FIG. 9 shows a cross section of the plurality of fins 13 of the evaporator 5 perpendicular to the stacking direction.
- straight portions of the heat transfer tubes 14 are arranged in the cross section shown in FIG.
- the straight portions of these heat transfer tubes 14 may have the same shape.
- the straight portions of the plurality of heat transfer tubes 14 are arranged side by side in three or more stages in the stage direction. Further, in the present embodiment, the straight portions of the plurality of heat transfer tubes 14 are arranged in a straight line in the direction of the stage. That is, the centers of the straight portions of the plurality of heat transfer tubes 14 arranged side by side in the row direction are arranged in a straight line. Also, the intervals between the straight portions of the heat transfer tubes 14 in each stage may be the same.
- FIG. 10 is a front view of the evaporator 5 when viewed from the column direction.
- the flat tube of the evaporator 5 extends vertically.
- the shape of the fins 13 of the evaporator 5 is plate fins.
- the shape of the fins 13 of the evaporator 5 is selected according to the performance of the evaporator 5 .
- the heat transfer tube 14 of the evaporator 5 includes at least one refrigerant path (second refrigerant path). In the present embodiment, the number of refrigerant paths (second refrigerant paths) gradually increases from upstream to downstream of the refrigerant flow.
- the first header 34 has a coolant inlet and a coolant outlet.
- the refrigerant inlet of the first header 34 is connected to the outlet of the decompression device 4 by piping.
- the refrigerant outlet of the first header 34 is connected to the suction port of the compressor 2 by a pipe.
- the number of straight refrigerant paths that reciprocate between the first header 34 and the second header 35 is preferable to gradually increase the number of straight refrigerant paths that reciprocate between the first header 34 and the second header 35 from the upstream side to the downstream side of the evaporator 5 .
- the number of outward refrigerant paths from the first header 34 to the second header 35 is five, the number of outward refrigerant paths from the second header 35 to the first header 34 is preferably six or more.
- first header 34 and the second header 35 may be upside down with the heat transfer tube 14 interposed therebetween.
- first header 34 may be vertically above the second header 35 with the heat transfer tube 14 interposed therebetween.
- the fins 13 of the evaporator 5 may be corrugated fins. Also, the evaporator 5 may be a finless heat exchanger without the fins 13 .
- the first header 34 and the second header 35 may be divided.
- the refrigerant that has flowed in from the decompression device 4 passes through a plurality of straight portions, turns back a plurality of times between the first header 34 and the second header 35, and then flows out from the refrigerant outlet of the evaporator 5 to the compressor 2.
- the first header 34 includes a first header upstream portion 341 and a first header downstream portion 342 that are separated from each other.
- the second header 35 includes a second header upstream portion 351 and a second header downstream portion 352 that are separated from each other.
- the refrigerant outlet of the evaporator 5 may be located in the second header 35 instead of the first header 34 .
- the piping connecting the compressor 2 and the evaporator 5 is located on the opposite side of the piping connecting the compressor 2 and the condenser 3 with the condenser 3 interposed therebetween. Further, even if the partition 36 is not provided and the refrigerant that has flowed into the first header from the decompression device 4 does not reciprocate between the first header 34 and the second header 35, it flows out from the outlet of the second header 35 to the compressor 2. good.
- the heat transfer tubes 14 connected to the first header 34 have a plurality of curved portions in addition to a plurality of straight portions, and the heat transfer tubes 14 are arranged between the first header 34 and the second header 35 . may be connected to the second header 35 after being folded a plurality of times at a plurality of straight portions and a plurality of curved portions.
- the evaporator 5 may have only the first header 34 without the second header 35 .
- the heat transfer tube 14 has a plurality of straight portions and a plurality of curved portions, and is vertically folded multiple times from the upstream side of the first header 34 to connect to the downstream side of the first header 34 .
- the fins 13 of the evaporator 5 may be configured to extend parallel and integrally with the straight portions of the heat transfer tubes 14 and extend in the column direction.
- FIG. 15 is a cross-sectional view of the plurality of fins 11 of the condenser 3 in a cross section perpendicular to the stacking direction.
- the fins 13 extend in the same direction as the heat transfer tubes 14 extending in the step direction, and are integrated with each other.
- the fins 13 also extend in the row direction.
- the fins 13 may be such integrated fins.
- the shape of the fins 13 of the evaporator 5 is selected according to the performance of the evaporator 5 .
- FIG. 1 the operation of the dehumidifier 1 according to Embodiment 1 during the dehumidification operation will be described with reference to FIGS. 1 and 2.
- FIG. 1 the operation of the dehumidifier 1 according to Embodiment 1 during the dehumidification operation will be described with reference to FIGS. 1 and 2.
- the superheated gas refrigerant discharged from the compressor 2 flows into the condenser 3 arranged in the air passage 23 .
- the superheated gas refrigerant that has flowed into the condenser 3 flows into the air passage 23 from the external space through the suction port 21, and is heat-exchanged with the air that has passed through the evaporator 5 arranged in the air passage 23. It is cooled to become a gas-liquid two-phase refrigerant, and further cooled to become a supercooled liquid refrigerant.
- the air passing through the condenser 3 arranged in the air passage 23 passes through the evaporator 5 also arranged in the air passage 23, and then, in the condenser 3, the refrigerant in the superheated gas state or the gas-liquid two-phase It is heated by exchanging heat with the refrigerant in the state.
- the supercooled liquid refrigerant that has flowed out of the condenser 3 is decompressed by passing through the decompression device 4, becomes a gas-liquid two-phase refrigerant, and then flows into the evaporator 5 arranged in the air passage 23. do.
- the gas-liquid two-phase refrigerant that has flowed into the evaporator 5 exchanges heat with the air taken into the air passage 23 from the suction port 21 and is heated to become a superheated gas refrigerant.
- This refrigerant in a superheated gas state is sucked into the compressor 2, compressed by the compressor 2, and discharged again.
- the air passing through the evaporator 5 arranged in the air passage 23 is taken into the air passage 23 from the suction port 21 and then heat-exchanged with the gas-liquid two-phase refrigerant in the evaporator 5 to dehumidification by cooling to a temperature below the dew point of
- FIG. 17 is a cross-sectional view of the evaporator 5 and the condenser 3 of the dehumidifier 1 according to the comparative example in the stage direction.
- the heat transfer tubes 14 of the evaporator 5 are flat tubes having better heat transfer performance than circular tubes.
- the heat transfer tube 14 of the evaporator 5 is a flat tube, the dehumidified water tends to stay on the surface of the flat tube, and the accumulated dehumidified water hinders heat exchange between the refrigerant in the flat tube and the air.
- the dehumidification amount of the dehumidifier 1 is reduced. Therefore, in the dehumidifier 1 according to the comparative example, it is not possible to improve the dehumidification amount while improving the performance of the evaporator 5 .
- the heat transfer tubes 14 of the evaporator 5 are flat tubes. Therefore, the performance of the evaporator can be improved.
- the heat transfer tubes 14 of the evaporator 5 extend vertically. Therefore, it is possible to prevent the dehumidified water from staying on the surface of the heat transfer tube 14 . Thereby, the drainage performance of the evaporator 5 can be improved. Therefore, it is possible to prevent the dehumidified water remaining in the heat transfer tubes 14 of the evaporator 5 from interfering with the heat exchange between the refrigerant flowing through the heat transfer tubes 14 and the air. Therefore, the heat transfer performance of the evaporator 5 can be improved. Therefore, the dehumidification amount of the dehumidifier 1 can be improved.
- the accumulated dehumidified water narrows the gap between the heat transfer tubes 14 or between the fins 13, thereby increasing the ventilation resistance. can be suppressed. Therefore, since the input of the blower 6 can be reduced, the input of the dehumidifier 1 can be reduced.
- the heat transfer tubes 12 of the condenser 3 extend horizontally.
- the heat transfer tubes 14 of the evaporator 5 extend vertically. Therefore, the heat transfer tubes 12 of the condenser 3 intersect with the heat transfer tubes 14 of the evaporator 5 . Therefore, the air that has passed through the heat transfer tubes 14 of the evaporator 5 can reliably flow to the heat transfer tubes 12 of the condenser 3 . Therefore, the heat exchange efficiency between the air and the refrigerant in the condenser 3 can be improved.
- the dehumidified water condensed on the evaporator 5 by quickly draining the dehumidified water condensed on the evaporator 5 to the drain pan 7 due to the improved drainage performance, the amount of dehumidified water that scatters and stays in the condenser 3 from the evaporator 5 can be reduced. Therefore, the dehumidified water remaining in the condenser 3 is heated by the refrigerant flowing through the condenser 3 to evaporate, thereby suppressing re-humidification of the air. Therefore, the dehumidification amount of the dehumidifier 1 can be further improved.
- the number of refrigerant paths gradually decreases from upstream to downstream of the refrigerant flow. That is, in the condenser 3, the number of refrigerant paths in the linear portion that reciprocates between the first header 31 and the second header 32 gradually decreases from the upstream side to the downstream side. Since the gas state refrigerant on the upstream side has a larger pressure loss than the gas-liquid two-phase state refrigerant, increasing the number of refrigerant paths for the gas state refrigerant on the upstream side reduces the flow velocity, thereby reducing the pressure loss. can be reduced.
- the flow velocity is increased by reducing the number of refrigerant paths for the gas-liquid two-phase refrigerant on the downstream side.
- the heat transfer coefficient can be improved by increasing the
- the number of refrigerant paths gradually increases from upstream to downstream of the refrigerant flow.
- the number of straight refrigerant paths that reciprocate between the first header 33 and the second header 34 gradually increases from the upstream side to the downstream side. Since the pressure loss of the gas-liquid two-phase refrigerant on the upstream side is smaller than that of the gas-phase refrigerant, the flow velocity of the gas-liquid two-phase refrigerant on the upstream side can be increased by reducing the number of refrigerant paths. can improve the heat transfer coefficient.
- the downstream gas refrigerant has a larger pressure loss than the gas-liquid two-phase refrigerant, increasing the number of refrigerant paths for the downstream gas refrigerant reduces the flow velocity. Pressure loss can be reduced.
- Embodiment 2 A dehumidifier 1 according to Embodiment 2 will be described with reference to FIGS. 18 to 20.
- FIG. The dehumidifier 1 according to the present embodiment includes a first condensation section 3a, a second condensation section 3b, a first suction port 21a, a second suction port 21b, a partition section 8, a first air passage 23a and a second air passage 23b. is different from the dehumidifier 1 according to the first embodiment.
- the housing 20 includes a first suction port 21a, a second suction port 21b, a first air passage 23a, a second air 23b.
- the first suction port 21a is for taking in air.
- the first air passage 23a is configured to communicate with the first suction port 21a.
- the second suction port 21b is for taking in air.
- the second air passage 23b communicates with the second suction port 21b.
- the second air passage 23b is separated from the first air passage 23a.
- the condenser 3 includes a first condensation section 3a and a second condensation section 3b.
- the condenser 3 is configured such that the refrigerant flows in the order of the second condensation portion 3b and the first condensation portion 3a.
- the first condenser section 3a is connected to the second condenser section 3b.
- the refrigerant circuit 101 is configured to circulate the refrigerant through the compressor 2, the second condensation section 3b, the first condensation section 3a, the decompression device 4, and the evaporator 5 in this order.
- the heat transfer tubes 12 of the condenser 3 include the heat transfer tubes 12a of the first condensation section 3a and the heat transfer tubes 12b of the second condensation section 3b.
- the second condenser 3b is configured to condense and cool the refrigerant pressurized by the compressor 2.
- the 2nd condensation part 3b is a heat exchanger which heat-exchanges between a refrigerant
- the second condenser section 3b has a plurality of fins 11b and heat transfer tubes 12b.
- the second condensation section 3b has an inlet and an outlet for refrigerant and an inlet and an outlet for air.
- the refrigerant inlet and outlet of the second condensing section 3b are connected to the discharge port of the compressor 2 and the refrigerant inlet of the first condensing section 3a by pipes, respectively.
- the heat transfer tube 12b of the second condenser section 3b is a flat tube.
- the first condensing section 3a is configured to further condense and cool the refrigerant cooled by the second condensing section 3b.
- the 1st condensation part 3a is a heat exchanger which heat-exchanges between a refrigerant
- the first condenser section 3a has a plurality of fins 11a and heat transfer tubes 12a.
- the first condensation section 3a has an inlet and an outlet for refrigerant and an inlet and an outlet for air.
- the refrigerant inlet and outlet of the first condenser 3a are connected to the outlet of the second condenser 3b and the inlet of the decompression device 4 by pipes, respectively.
- the heat transfer tube 12a of the first condenser section 3a is a flat tube.
- the first condenser section 3a and the second condenser section 3b are flat tube heat exchangers having fins and heat transfer tubes of the same shape.
- the second condenser section 3b is located above the first condenser section 3a in the stage direction.
- the evaporator 5, the first condensation section 3a, and the blower 6 are arranged in the first air passage 23a.
- the evaporator 5 and the first condensation section 3a are arranged in the first air passage 23a so that the air taken in from the first suction port 21a flows through the evaporator 5 and the first condensation section 3a in that order.
- the second condensation section 3b and the blower 6 are arranged in the second air passage 23b.
- the second condensing portion 3b is arranged in the second air passage 23b so that the air taken in from the second suction port 21b flows.
- the front surface area of the condenser 3 is larger than the front surface area of the evaporator 5. Specifically, the front surface area of the condenser 3 is larger than the front surface area of the evaporator 5 in the stage direction.
- the front surface area of the condenser 3 may be larger than the front surface area of the evaporator 5 in the product width direction of the fins 11 of the condenser 3 .
- the first suction port 21a and the second suction port 21b are provided to let air into the housing 20 from the external space (indoor space).
- the first air passage 23 a is configured to connect the first suction port 21 a and the blow-out port 22 .
- the second air passage 23b is configured to connect the second inlet 21b and the outlet 22 .
- the fan 6b rotates around the shaft 6a, so that the air taken in from the outside space (indoor space) as indicated by the arrow A in the figure flows through the first air passage 23a in the figure. As indicated by arrow B, it passes through evaporator 5 and first condenser 3a. Further, as the fan 6b rotates about the shaft 6a, the air taken in from the outside space (indoor space) as indicated by the arrow A' in the figure flows in the second air passage 23b as indicated by the arrow B' in the figure. It passes through the second condensing section 3b as shown. The air that has passed through the first air passage 23 a and the air that has passed through the second air passage 23 b are mixed with each other, and are discharged through the air outlet 22 to the external space (indoor space) of the housing 20 .
- the first air passage 23a and the second air passage 23b need only be separated.
- the first air passage 23a and the second air passage 23b may be separated by a partition 8, for example.
- Each of the first air passage 23a and the second air passage 23b is formed by the housing 20 and the partition portion 8, for example.
- One end located on the upstream side of the partition portion 8 is formed upstream of at least the air outlet of the evaporator 5 in the air circulation direction in the second air passage 23b.
- the other downstream end of the partition 8 is formed downstream of at least the air inlet of the evaporator 5 in the flow direction.
- the partition part 8 is formed in a flat plate shape, for example.
- the partition 8 is fixed inside the housing 20 .
- the evaporator 5 and the first condensation section 3a are configured so that the air taken in from the first suction port 21a flows through the evaporator 5 and the first condensation section 3a in that order. It is arranged in one air passage 23a.
- the second condensing portion 3b is arranged in the second air passage 23b so that the air taken in from the second suction port 21b flows. Therefore, the volume of air flowing through the entire condenser 3 can be made larger than the volume of air flowing through the evaporator 5 .
- the heat transfer performance on the condenser 3 side can be improved, so that the condensation temperature of the refrigerant can be lowered.
- an EF (Energy Factor) value (L/kWh), which indicates the dehumidification amount L per kWh, which is an index indicating the dehumidification performance of the dehumidifier 1, can be improved.
- the material forming the partition 8 may be made of a material having a lower thermal conductivity than the material forming the heat transfer tubes, fins, and headers through which the refrigerant flows in the evaporator 5 . Accordingly, it is possible to reduce heat exchange between the air in the first air passage 23a and the air in the second air passage 23b via the partition portion 8.
- Embodiment 3 A dehumidifier 1 according to Embodiment 3 will be described with reference to FIGS. 21 to 23.
- FIG. The dehumidifier 1 according to the present embodiment differs from the dehumidifier 1 according to the second embodiment in that it includes a third condenser 3c.
- the condenser 3 includes a first condensation section 3a, a second condensation section 3b, and a third condensation section 3c. .
- the condenser 3 is configured such that the refrigerant flows in order of the second condenser 3b, the first condenser 3a, and the third condenser 3c.
- the third condenser section 3c is connected to the second condenser section 3b.
- the refrigerant circuit 101 is configured to circulate the refrigerant through the compressor 2, the first condenser 3a, the second condenser 3b, the third condenser 3c, the decompression device 4, and the evaporator 5 in this order.
- the heat transfer tubes 12 of the condenser 3 include the heat transfer tubes 12c of the third condenser section 3c.
- the first condensation section 3a is arranged downstream of the third condensation section 3c in the flow of air generated by the blower 6. That is, the first condenser section 3a is arranged further downwind than the third condenser section 3c.
- the third condenser 3c is configured to further condense and cool the refrigerant cooled by the second condenser 3b.
- the 3rd condensation part 3c is a heat exchanger which heat-exchanges between a refrigerant
- the third condensation section 3c has a plurality of fins 11c and heat transfer tubes 12c.
- the third condensation section 3c has an inlet and an outlet for refrigerant and an inlet and an outlet for air.
- the refrigerant inlet and outlet of the third condenser 3c are connected to the outlet of the second condenser 3b and the inlet of the decompression device 4 by pipes, respectively.
- the third condensing section 3c is arranged upstream of the first condensing section 3a in the flow of air generated by the blower 6 . That is, the third condenser section 3c is arranged on the windward side of the first condenser section 3a. Further, the third condensation section 3 c is arranged downstream of the evaporator 5 in the flow of air generated by the blower 6 . In other words, the third condensation section 3 c is arranged further downwind than the evaporator 5 .
- the heat transfer tube 12c of the third condensation section 3c is a flat tube.
- the first condenser section 3a, the second condenser section 3b and the third condenser section 3c are flat tube heat exchangers having fins and heat transfer tubes of the same shape.
- the front surface areas of the first condensation section 3a and the second condensation section 3b are larger in the stage direction upward than the front surface area of the third condensation section 3c.
- the front surface area of the third condenser 3c may be the same as that of the evaporator 5.
- the evaporator 5, the first condensation section 3a, the third condensation section 3c, and the blower 6 are arranged in the first air passage 23a.
- the evaporator 5, the first condenser 3a and the third condenser 3c are arranged in a first order so that the air taken in from the first suction port 21a flows through the evaporator 5, the third condenser 3c and the first condenser 3a in that order. It is arranged in the air passage 23a.
- the second condensation section 3b and the blower 6 are arranged in the second air passage 23b.
- the second condensing portion 3b is arranged in the second air passage 23b so that the air taken in from the second suction port 21b flows.
- the fan 6b rotates around the shaft 6a, so that the air taken in from the outside space (indoor space) as indicated by the arrow A in the figure flows through the first air passage 23a in the figure. As indicated by arrow B, it passes through evaporator 5, third condenser 3c and first condenser 3a. Further, as the fan 6b rotates about the shaft 6a, the air taken in from the outside space (indoor space) as indicated by the arrow A' in the figure flows in the second air passage 23b as indicated by the arrow B' in the figure. It passes through the second condensing section 3b as shown. The air that has passed through the first air passage 23 a and the air that has passed through the second air passage 23 b are mixed with each other, and are discharged through the air outlet 22 to the external space (indoor space) of the housing 20 .
- One end located on the upstream side of the partition part 8 is formed upstream of at least the air outlet of the evaporator 5 in the air circulation direction in the second air passage 23b.
- the other end located downstream of the partition 8 is formed downstream of at least the air inlet of the third condenser 3c.
- the evaporator 5, the first condenser 3a and the third condenser 3c are configured such that the air taken in from the first suction port 21a , to the first condensing section 3a.
- the second condensing portion 3b is arranged in the second air passage 23b so that the air taken in from the second suction port 21b flows. Therefore, by combining the first condenser 3a, the second condenser 3b, and the third condenser 3c, the heat transfer area of the entire condenser 3 can be increased.
- the heat transfer performance of the condenser 3 can be further improved, so that the condensation temperature of the refrigerant can be lowered. Also, by lowering the condensing temperature, the difference between the condensing pressure and the evaporating pressure in the refrigerant circuit can be reduced, so the input to the compressor 2 can be reduced. As a result, an EF (Energy Factor) value (L/kWh), which indicates the dehumidification amount L per kWh, which is an index indicating the dehumidification performance of the dehumidifier 1, can be improved.
- EF Expogy Factor
- the material constituting the partitioning portion 8 may be made of a material having a lower thermal conductivity than the material constituting the heat transfer tubes, fins, and headers through which the refrigerant flows in the evaporator 5 and the third condenser portion 3c. . Accordingly, it is possible to reduce heat exchange between the air in the first air passage 23a and the air in the second air passage 23b via the partition portion 8.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Drying Of Gases (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
除湿装置は、筐体と、送風機と、冷媒回路とを備えている。送風機および冷媒回路は筐体内に配置されている。送風機は、空気を送風するように構成されている。冷媒回路は、圧縮機、凝縮器(3)、減圧装置および蒸発器(5)を有し、かつ圧縮機、凝縮器(3)、減圧装置、蒸発器(5)の順に冷媒を循環させるように構成されている。凝縮器(3)は、冷媒が流れる第1伝熱管(12)を有する。蒸発器(5)は、冷媒が流れる第2伝熱管(14)を有する。凝縮器(3)は、蒸発器(5)よりも風下に配置されている。凝縮器(3)の第1伝熱管(12)は、扁平管であり、かつ水平方向に延在している。蒸発器(5)の第2伝熱管(14)は、扁平管であり、かつ鉛直方向に延在している。
Description
本開示は、除湿装置に関するものである。
従来、熱交換器の性能を向上させるために、伝熱管に扁平管を用いた除湿装置が提案されている。例えば国際公開第2019/077744号(特許文献1)には、凝縮器の伝熱管に扁平管を用いた除湿装置が記載されている。この文献に記載された除湿装置では、蒸発器の伝熱管に円管が用いられている。
上記文献では、蒸発器の伝熱管に円管が用いられているため、蒸発器の性能を向上させることが困難である。
除湿装置では、蒸発器の表面に除湿水が結露する。上記文献に記載された扁平管が蒸発器の伝熱管に用いられると、扁平管の排水性が悪いため、蒸発器の扁平管の表面に除湿水が滞留する。蒸発器の扁平管の表面に滞留した除湿水が扁平管内の冷媒と空気との熱交換を阻害するため、蒸発器の伝熱性能が低下する。これにより、除湿装置の除湿量が低下する。
本開示は上記課題に鑑みてなされたものであり、その目的は、蒸発器の性能を向上させることができ、かつ除湿量を向上させることができる除湿装置を提供することである。
本開示に係る除湿装置は、筐体と、送風機と、冷媒回路とを備えている。送風機および冷媒回路は筐体内に配置されている。送風機は、空気を送風するように構成されている。冷媒回路は、圧縮機、凝縮器、減圧装置および蒸発器を有し、かつ圧縮機、凝縮器、減圧装置、蒸発器の順に冷媒を循環させるように構成されている。凝縮器は、冷媒が流れる第1伝熱管を有する。蒸発器は、冷媒が流れる第2伝熱管を有する。凝縮器は、蒸発器よりも風下に配置されている。凝縮器の第1伝熱管は、扁平管であり、かつ水平方向に延在している。蒸発器の第2伝熱管は、扁平管であり、かつ鉛直方向に延在している。
本開示に係る除湿装置によれば、蒸発器の第2伝熱管は、扁平管であり、かつ鉛直方向に延在している。このため、蒸発器の性能を向上させることができ、かつ除湿量を向上させることができる。
以下、図面を参照して、実施の形態について説明する。なお、図中において、同一または相当する部分には同一の符号を付してその説明は繰り返さない。
実施の形態1.
図1および図2を参照して、実施の形態1に係る除湿装置1の構成について説明する。図1は、実施の形態1に係る除湿装置1の冷媒回路図である。図2は、実施の形態1に係る除湿装置1の構成を示す概略図である。
図1および図2を参照して、実施の形態1に係る除湿装置1の構成について説明する。図1は、実施の形態1に係る除湿装置1の冷媒回路図である。図2は、実施の形態1に係る除湿装置1の構成を示す概略図である。
図1および図2に示されるように、除湿装置1は、圧縮機2、凝縮器3、減圧装置4および蒸発器5を有する冷媒回路101と、送風機6と、ドレンパン7と、筐体20とを備えている。冷媒回路101、送風機6およびドレンパン7は、筐体20内に配置されている。筐体20は、除湿装置1が除湿対象とする外部空間(室内空間)に面している。
冷媒回路101は、圧縮機2、凝縮器3、減圧装置4、蒸発器5の順に冷媒を循環させるように構成されている。具体的には、冷媒回路101は、圧縮機2、凝縮器3、減圧装置4、蒸発器5の順に配管で接続されることにより構成されている。そして、冷媒は、この配管内を通って冷媒回路101を圧縮機2、凝縮器3、減圧装置4、蒸発器5の順に循環する。図2において、冷媒回路101に付された実線矢印は、冷媒回路101における冷媒の流れを示している。
圧縮機2は冷媒を圧縮するように構成されている。具体的には、圧縮機2は吸入口から低圧冷媒を吸入して圧縮し、高圧冷媒として吐出口から吐出するように構成されている。圧縮機2は、冷媒の吐出容量が可変に構成されていてもよい。具体的には、圧縮機2はインバータ圧縮機であってもよい。圧縮機2が冷媒の吐出容量を可変に構成されている場合には、除湿装置1内の冷媒循環量は、圧縮機2の吐出容量を調整することにより制御することが可能となる。
凝縮器3は、圧縮機2で昇圧された冷媒を凝縮して冷却するように構成されている。凝縮器3は、冷媒と空気との間で熱交換を行う熱交換器である。凝縮器3は、冷媒の入口と出口、および空気の入口と出口とを有している。凝縮器3の冷媒の入口は圧縮機2の吐出口に配管で接続されている。凝縮器3は、送風機6によって発生する空気の流れにおいて蒸発器5よりも下流に配置されている。つまり、凝縮器3は、蒸発器5よりも風下に配置されている。凝縮器3の伝熱管は扁平管である。
減圧装置4は、凝縮器3にて冷却された冷媒を減圧させて膨張させるように構成されている。減圧装置4は、例えば膨張弁である。この膨張弁は電子制御弁であってもよい。なお、減圧装置4は、膨張弁に限られず、キャピラリーチューブであってもよい。減圧装置4は、凝縮器3の冷媒の出口と蒸発器5の冷媒の入口との各々に配管でそれぞれ接続されている。
蒸発器5は、減圧装置4にて減圧されて膨張された冷媒に吸熱させて冷媒を蒸発させるように構成されている。蒸発器5は、冷媒と空気との間で熱交換を行う熱交換器である。蒸発器5は、冷媒の入口と出口、および空気の入口と出口とを有している。蒸発器5の冷媒の出口は圧縮機2の吸込口に配管で接続されている。蒸発器5は、送風機6によって発生する空気の流れにおいて凝縮器3よりも上流に配置されている。つまり、蒸発器5は、凝縮器3よりも風上に配置されている。蒸発器5の伝熱管は扁平管である。
送風機6は空気を送風するように構成されている。そして、送風機6は、空気を筐体20の外部から内部に取り込んで凝縮器3、蒸発器5に送風可能に構成されている。具体的には、送風機6は、外部空間(室内空間)から空気を筐体20内に取り込んで、蒸発器5、凝縮器3を通過させた後に筐体20外に吐き出すように構成されている。
本実施の形態では、送風機6は、軸6aと、軸6aを中心に回転するファン6bとを有している。ファン6bが軸6aを中心に回転することによって、図中矢印Aで示すように外部空間(室内空間)から取り込まれた空気が、図中矢印Bで示すように蒸発器5および凝縮器3を順に通過した後に、図中矢印Cで示すように再び外部空間(室内空間)へ吐き出される。このようにして、空気は、除湿装置1を経由して外部空間(室内空間)を循環する。
筐体20には、除湿対象とする外部空間(室内空間)から筐体20の内部に空気を入れるための吸込口21と、筐体20の内部から外部空間(室内空間)に空気を吹き出すための吹出口22とが設けられている。また、筐体20は、吸込口21と吹出口22とをつなぐ風路(空気の流路)23を有している。風路23には蒸発器5、凝縮器3、送風機6が配置されている。したがって、蒸発器5と凝縮器3とは同一の風路23内に配置されている。蒸発器5および凝縮器3は、空気の流れにおいて上流から下流に向けて蒸発器5および凝縮器3の順に風路23内に配置されている。
風路23内において、筐体20の外部から吸込口21を通って筐体20の内部に吸込まれた空気が蒸発器5および凝縮器3の順に通過し、吹出口22を通って筐体20の外部に吹出される。
なお、除湿装置1において、風路23内には、凝縮器3、蒸発器5、送風機6の他に冷媒回路を構成する部材が配置されていてもよい。例えば風路23内には、減圧装置4が配置されていてもよい。
なお、除湿装置1が室内に設置される場合、凝縮器3の熱が室外へ放熱されることにより、室内が冷却されてもよい。この室外への放熱のため、排気ダクトの機器への搭載および機器自体が窓側に設置されてもよい。
ドレンパン7は、蒸発器5に結露した除湿水が、ドレンパン7に排水されるように構成されている。本実施の形態では、蒸発器5および凝縮器3はドレンパン7上に配置されている。
続いて、図3~図16を参照して、蒸発器5および凝縮器3の構成を詳しく説明する。図3は、実施の形態1に係る蒸発器5および凝縮器3の、凝縮器3の複数のフィン11の積層方向に直交する断面における断面図である。なお、図3では、説明の便宜のため、蒸発器5および凝縮器3の一部が図示されている。
本実施の形態に係る除湿装置1では凝縮器3は、複数のフィン(第1フィン)11および伝熱管(第1伝熱管)12を有している。複数のフィン11の各々は薄板状に構成されている。複数のフィン11は互いに積層するように配置されている。伝熱管12は互いに積層された複数のフィン11を積層方向に貫通するように配置されている。伝熱管12の断面形状は、列方向に伸びるように構成されている。また、伝熱管12は、複数のフィン11の積層方向に直線状に伸びる複数の直線部を有している。また、凝縮器3は、複数の直線部の端部をそれぞれ接続する第1ヘッダ31と第2ヘッダ32とを有している(図4参照)。伝熱管12の複数の直線部の各々は複数の細径の管路を有している。伝熱管12は、冷媒が流れるように構成されている。凝縮器3の伝熱管12は、扁平管である。伝熱管12は、風路23を通る空気の流通方向に対して扁平形状である扁平管である。伝熱管12の断面形状は、凝縮器3および蒸発器5が並ぶ方向に延びる扁平形状を有するように構成されている。
図3は、凝縮器3の複数のフィン11の積層方向に直交する断面における断面を示している。凝縮器3では、図3に示される断面において、複数の伝熱管12における直線部が配置されている。これら複数の伝熱管12の直線部の形状は互いに同一であってもよい。
本実施の形態では、これらの複数の伝熱管12における直線部は、段方向に3段以上に並んで配置されている。また、本実施の形態では、これらの複数の伝熱管12における直線部は段方向に直線状に並んで配置されている。つまり、段方向に並んで配置された複数の伝熱管12における直線部の中心は一直線に配置されている。また、各段の伝熱管12における直線部間の間隔は互いに同一であってもよい。
図4は、凝縮器3を列方向から見たときの凝縮器3の正面図である。凝縮器3の扁平管は、水平方向に延在している。凝縮器3のフィン11の形状は、プレートフィンである。凝縮器3のフィン11の形状は、凝縮器3の性能により選択される。凝縮器3の伝熱管12は、少なくとも1つの冷媒パス(第1冷媒パス)を含んでいる。本実施の形態では、冷媒パス(第1冷媒パス)の数は、冷媒の流れの上流から下流にかけて徐々に減少する。
図2および図4を参照して、第1ヘッダ31は、冷媒の入口および冷媒の出口を有している。本実施の形態では、第1ヘッダ31の冷媒の入口は、圧縮機2の吐出口に配管で接続されている。また、第1ヘッダ31の冷媒の出口は、減圧装置4の入口に配管で接続されている。第1ヘッダ31および第2ヘッダ32内に仕切り33を設けることによって、圧縮機2から流入した冷媒は複数の直線部を通って第1ヘッダ31および第2ヘッダ32間を複数回折り返した後、第1ヘッダ31の冷媒の出口から減圧装置4に流出する。その際、第1ヘッダ31および第2ヘッダ32間を往復する直線部の冷媒パス数は、凝縮器3の上流側から下流側にかけて徐々に減少させることが好ましい。例えば、第1ヘッダ31から第2ヘッダ32への往路の冷媒パス数が5本であれば、第2ヘッダ32から第1ヘッダ31への復路の冷媒パス数は4本以下が好ましい。
図5を参照して、凝縮器3のフィン11の形状は、コルゲートフィンであってもよい。
また、図6に示すように、第1ヘッダ31および第2ヘッダ32は分割されていてもよい。これにより、圧縮機2から流入した冷媒は複数の直線部を通って第1ヘッダ31および第2ヘッダ32間を複数回折り返した後、凝縮器3の冷媒の出口から減圧装置4に流出してもよい。第1ヘッダ31は、互いに分割された第1ヘッダ上流部311および第1ヘッダ下流部312を含んでいる。第2ヘッダ32は、互いに分割された第2ヘッダ上流部321および第2ヘッダ下流部322を含んでいる。
また、図6に示すように、第1ヘッダ31および第2ヘッダ32は分割されていてもよい。これにより、圧縮機2から流入した冷媒は複数の直線部を通って第1ヘッダ31および第2ヘッダ32間を複数回折り返した後、凝縮器3の冷媒の出口から減圧装置4に流出してもよい。第1ヘッダ31は、互いに分割された第1ヘッダ上流部311および第1ヘッダ下流部312を含んでいる。第2ヘッダ32は、互いに分割された第2ヘッダ上流部321および第2ヘッダ下流部322を含んでいる。
また、凝縮器3の冷媒の出口は、第1ヘッダ31ではなく第2ヘッダ32に位置していてもよい。その場合、減圧装置4および凝縮器3を接続する配管は、圧縮機2および凝縮器3を接続する配管と、凝縮器3を挟んで反対側に位置することになる。また、仕切り33を設けず、圧縮機2から第1ヘッダに流入した冷媒を第1ヘッダ31および第2ヘッダ32間を往復させずに第2ヘッダ32の出口から減圧装置4に流出させてもよい。
また、図7に示すように、第1ヘッダ31に接続された伝熱管12は、複数の直線部に加え、複数の湾曲部を有しており、第1ヘッダ31と第2ヘッダ32の間を複数の直線部と複数の湾曲部で複数回折り返してから第2ヘッダ32に接続されてもよい。
また、図8に示すように、凝縮器3は、第2ヘッダ32を有しておらず、第1ヘッダ31のみを有していてもよい。その場合、伝熱管12は、複数の直線部と複数の湾曲部を有しており、第1ヘッダ31の上流側から水平方向に複数回折り返し、第1ヘッダ31の下流側に繋がる。
図9は、実施の形態1に係る蒸発器5および凝縮器3の、蒸発器5の複数のフィン13の積層方向に直交する断面における断面図である。なお、図9では、説明の便宜のため、蒸発器5および凝縮器3の一部が図示されている。
蒸発器5は、複数のフィン(第2フィン)13および伝熱管(第2伝熱管)14を有している。複数のフィン13の各々は薄板状に構成されている。複数のフィン13は互いに積層するように配置されている。伝熱管14は互いに積層された複数のフィン13を積層方向に貫通するように配置されている。伝熱管14の断面形状は、列方向に伸びるように構成されている。また、伝熱管14は、複数のフィン13の積層方向に直線状に伸びる複数の直線部を有している。また、蒸発器5は、複数の直線部の端部をそれぞれ接続する第1ヘッダ34と第2ヘッダ35とを有している(図10参照)。伝熱管14の複数の直線部の各々は複数の細径の管路を有している。伝熱管14は、冷媒が流れるように構成されている。蒸発器5の伝熱管14は、扁平管である。伝熱管14は、風路23を通る空気の流通方向に対して扁平形状である扁平管である。伝熱管14の断面形状は、凝縮器3および蒸発器5が並ぶ方向に延びる扁平形状を有するように構成されている。
図9は、蒸発器5の複数のフィン13の積層方向に直交する断面における断面を示している。蒸発器5では、図9に示される断面において、複数の伝熱管14における直線部が配置されている。これら伝熱管14の直線部の形状は互いに同一であってもよい。
本実施の形態では、これらの複数の伝熱管14における直線部は、段方向に3段以上に並んで配置されている。また、本実施の形態では、これらの複数の伝熱管14における直線部は段方向に直線状に並んで配置されている。つまり、段方向に並んで配置された複数の伝熱管14における直線部の中心は一直線に配置されている。また、各段の伝熱管14における直線部間の間隔は互いに同一であってもよい。
図10は、蒸発器5を列方向から見たときの蒸発器5の正面図である。蒸発器5の扁平管は、鉛直方向に延在している。蒸発器5のフィン13の形状は、プレートフィンである。蒸発器5のフィン13の形状は、蒸発器5の性能により選択される。蒸発器5の伝熱管14は、少なくとも1つの冷媒パス(第2冷媒パス)を含んでいる。本実施の形態では、冷媒パス(第2冷媒パス)の数は、冷媒の流れの上流から下流にかけて徐々に増加する。
図2および図10を参照して、第1ヘッダ34は、冷媒の入口および冷媒の出口を有している。本実施の形態では、第1ヘッダ34の冷媒の入口は、減圧装置4の出口に配管で接続されている。また、第1ヘッダ34の冷媒の出口は、圧縮機2の吸入口に配管で接続されている。第1ヘッダ34および第2ヘッダ35内に仕切り36を設けることによって、減圧装置4から流入した冷媒は複数の直線部を通って第1ヘッダ34および第2ヘッダ35間を複数回折り返した後、第1ヘッダ34の冷媒の出口から圧縮機2に流出する。その際、第1ヘッダ34および第2ヘッダ35間を往復する直線部の冷媒パス数は、蒸発器5の上流側から下流側にかけて徐々に増加させることが好ましい。例えば、第1ヘッダ34から第2ヘッダ35への往路の冷媒パス数が5本であれば、第2ヘッダ35から第1ヘッダ34への復路の冷媒パス数は6本以上が好ましい。
また、第1ヘッダ34と第2ヘッダ35の位置関係は伝熱管14を挟んで上下逆でもよい。つまり、第1ヘッダ34は、第2ヘッダ35と、伝熱管14を挟んで鉛直方向上側にあってもよい。
図11を参照して、蒸発器5のフィン13は、コルゲートフィンであってもよい。また、蒸発器5は、フィン13がないフィンレス熱交換器でもよい。
また、図12に示すように、第1ヘッダ34および第2ヘッダ35は分割されていてもよい。これにより、減圧装置4から流入した冷媒は複数の直線部を通って第1ヘッダ34および第2ヘッダ35間を複数回折り返した後、蒸発器5の冷媒の出口から圧縮機2に流出してもよい。第1ヘッダ34は、互いに分割された第1ヘッダ上流部341および第1ヘッダ下流部342を含んでいる。第2ヘッダ35は、互いに分割された第2ヘッダ上流部351および第2ヘッダ下流部352を含んでいる。
また、蒸発器5の冷媒の出口は、第1ヘッダ34ではなく第2ヘッダ35に位置していてもよい。その場合、圧縮機2および蒸発器5を接続する配管は、圧縮機2および凝縮器3を接続する配管と、凝縮器3を挟んで反対側に位置することになる。また、仕切り36を設けず、減圧装置4から第1ヘッダに流入した冷媒を第1ヘッダ34および第2ヘッダ35間を往復させずに第2ヘッダ35の出口から圧縮機2に流出させてもよい。
また、図13に示すように、第1ヘッダ34に接続された伝熱管14は、複数の直線部に加え、複数の湾曲部を有しており、第1ヘッダ34と第2ヘッダ35の間を複数の直線部と複数の湾曲部で複数回折り返してから第2ヘッダ35に接続してもよい。
また、図14に示すように、蒸発器5は、第2ヘッダ35を有しておらず、第1ヘッダ34のみを有していてもよい。その場合、伝熱管14は、複数の直線部と複数の湾曲部を有しており、第1ヘッダ34の上流側から鉛直方向を複数回折り返し、第1ヘッダ34の下流側に繋がる。
また、図15および図16に示すように、蒸発器5のフィン13は、伝熱管14の直線部に平行かつ一体に伸びるとともに列方向に伸びるように構成されていてもよい。図15は、凝縮器3の複数のフィン11の積層方向に直交する断面における断面図である。段方向に伸びる伝熱管14に対してフィン13は同方向に伸び、かつ一体となっている。また、フィン13は列方向にも伸びている。フィン13はこのような一体型のフィンでもよい。蒸発器5のフィン13の形状は、蒸発器5の性能により選択される。
次に、図1および図2を参照して、実施の形態1に係る除湿装置1の除湿運転時の動作について説明する。
圧縮機2から吐出された過熱ガス状態の冷媒は、風路23内に配置された凝縮器3に流入する。凝縮器3に流入した過熱ガス状態の冷媒は、吸込口21を通じて外部空間から風路23内に流入し、風路23内に配置された蒸発器5を通過した空気と熱交換されることにより冷却されて気液二相状態の冷媒となり、さらに冷却されて過冷却液状態の冷媒となる。
一方、風路23内に配置された凝縮器3を通過する空気は、同じく風路23内に配置された蒸発器5を通過した後、凝縮器3において過熱ガス状態の冷媒または気液二相状態の冷媒と熱交換されることにより加熱される。
凝縮器3から流出した過冷却液状態の冷媒は、減圧装置4を通過することにより減圧され、気液二相状態の冷媒になった後、風路23内に配置された蒸発器5に流入する。蒸発器5に流入した気液二相状態の冷媒は、吸込口21から風路23内に取り込まれた空気と熱交換されることにより加熱されて過熱ガス状態の冷媒となる。この過熱ガス状態の冷媒が圧縮機2に吸入され、圧縮機2で圧縮されて再び吐出される。
一方、風路23内に配置された蒸発器5を通過する空気は、吸込口21から風路23内に取り込まれた後、蒸発器5において気液二相状態の冷媒と熱交換され、空気の露点以下の温度に冷却されることにより除湿される。
次に、実施の形態1に係る除湿装置1の作用効果について比較例と対比して説明する。
図17は、比較例に係る除湿装置1の蒸発器5および凝縮器3の段方向における断面図である。蒸発器5の性能を上げるために、蒸発器5の伝熱管14を、円管よりも伝熱性能の優れた扁平管としている。しかし、一般に、蒸発器5の伝熱管14が扁平形状である扁平管では、除湿水が扁平管の表面に滞留しやすく、滞留した除湿水が扁平管内の冷媒と空気との熱交換を妨げる。これにより、除湿装置1の除湿量が低下する。したがって、比較例に係る除湿装置1では、蒸発器5の性能を向上させつつ除湿量を向上させることはできない。
図17は、比較例に係る除湿装置1の蒸発器5および凝縮器3の段方向における断面図である。蒸発器5の性能を上げるために、蒸発器5の伝熱管14を、円管よりも伝熱性能の優れた扁平管としている。しかし、一般に、蒸発器5の伝熱管14が扁平形状である扁平管では、除湿水が扁平管の表面に滞留しやすく、滞留した除湿水が扁平管内の冷媒と空気との熱交換を妨げる。これにより、除湿装置1の除湿量が低下する。したがって、比較例に係る除湿装置1では、蒸発器5の性能を向上させつつ除湿量を向上させることはできない。
本実施の形態に係る除湿装置1によれば、蒸発器5の伝熱管14は、扁平管である。このため、蒸発器の性能を向上させることができる。蒸発器5の伝熱管14は、鉛直方向に延在している。したがって、除湿水が伝熱管14の表面に滞留することを抑制することができる。これにより、蒸発器5の排水性を向上させることができる。このため、蒸発器5の伝熱管14に滞留した除湿水が伝熱管14内を流れる冷媒と空気の熱交換を妨げるのを抑制することができる。そのため,蒸発器5の伝熱性能を向上させることができる。よって、除湿装置1の除湿量を向上させることができる。
また、除湿水が蒸発器5の伝熱管14の表面に滞留することを抑制することで、滞留した除湿水が伝熱管14同士間またはフィン13同士間の隙間を狭めることで通風抵抗を増加させることを抑制することができる。よって、送風機6の入力を減らすことができるため、除湿装置1の入力を減らすことができる。
また、凝縮器3の伝熱管12は、水平方向に延在している。蒸発器5の伝熱管14は、鉛直方向に延在している。このため、凝縮器3の伝熱管12は、蒸発器5の伝熱管14と交差している。したがって、蒸発器5の伝熱管14を通過した空気を凝縮器3の伝熱管12に確実に流すことができる。よって、凝縮器3における空気と冷媒との熱交換効率を向上させることができる。
また、排水性が向上したことで蒸発器5に結露した除湿水を素早くドレンパン7に排水することで、蒸発器5から凝縮器3に飛散し滞留する除湿水の量を減らすことができる。このため、凝縮器3に滞留した除湿水が、凝縮器3を流れる冷媒によって加熱され蒸発することで、空気を再加湿することを抑制することができる。よって、除湿装置1の除湿量をさらに向上させることができる。
また、本実施の形態に係る除湿装置1によれば、凝縮器3において、冷媒パス(第1冷媒パス)の数は、冷媒の流れの上流から下流にかけて徐々に減少する。つまり、凝縮器3において、第1ヘッダ31および第2ヘッダ32間を往復する直線部の冷媒パス数は、上流側から下流側にかけて徐々に減少する。上流側のガス状態の冷媒は気液二相状態の冷媒よりも圧力損失が大きいため、上流側のガス状態の冷媒に対しては冷媒パス数を多くすることで流速を減少させることにより圧力損失を低減させることができる。また、下流側の気液二相状態の冷媒はガス状態の冷媒よりも圧力損失が小さいため、下流側の気液二相状態の冷媒に対しては冷媒パス数を少なくすることで流速を上昇させることにより熱伝達率を向上させることができる。
また、本実施の形態に係る除湿装置1によれば、蒸発器5において、冷媒パス(第2冷媒パス)の数は、冷媒の流れの上流から下流にかけて徐々に増加する。つまり、蒸発器5において、第1ヘッダ33および第2ヘッダ34間を往復する直線部の冷媒パス数は、上流側から下流側にかけて徐々に増加する。上流側の気液二相状態の冷媒はガス状態の冷媒よりも圧力損失が小さいため、上流側の気液二相状態の冷媒に対しては冷媒パス数を少なくすることで流速を上昇させることにより熱伝達率を向上させることができる。また、下流側のガス状態の冷媒は気液二相状態の冷媒よりも圧力損失が大きいため、下流側のガス状態の冷媒に対しては冷媒パス数を多くすることで流速を減少させることにより圧力損失を低減させることができる。
実施の形態2.
図18~図20を参照して、実施の形態2に係る除湿装置1について説明する。本実施の形態に係る除湿装置1は、第1凝縮部3a、第2凝縮部3b、第1吸込口21a、第2吸込口21b、仕切部8、第1風路23aおよび第2風路23bを備えている点が、実施の形態1に係る除湿装置1と異なる。
図18~図20を参照して、実施の形態2に係る除湿装置1について説明する。本実施の形態に係る除湿装置1は、第1凝縮部3a、第2凝縮部3b、第1吸込口21a、第2吸込口21b、仕切部8、第1風路23aおよび第2風路23bを備えている点が、実施の形態1に係る除湿装置1と異なる。
図18および図19に示すように、本実施の形態に係る除湿装置1では、筐体20は、第1吸込口21aと、第2吸込口21bと、第1風路23aと、第2風路23bとを有している。第1吸込口21aは、空気を取り込むためのものである。第1風路23aは、第1吸込口21aに連通するように構成されている。第2吸込口21bは、空気を取り込むためのものである。第2風路23bは、第2吸込口21bに連通している。第2風路23bは、第1風路23aから仕切られている。
図19および図20に示すように、本実施の形態に係る除湿装置1では、凝縮器3は、第1凝縮部3aと、第2凝縮部3bとを含んでいる。凝縮器3は、第2凝縮部3b、第1凝縮部3aの順に冷媒が流れるように構成されている。第1凝縮部3aは、第2凝縮部3bに接続されている。冷媒回路101は、圧縮機2、第2凝縮部3b、第1凝縮部3a、減圧装置4、蒸発器5の順に冷媒を循環させるように構成されている。凝縮器3の伝熱管12は、第1凝縮部3aの伝熱管12aおよび第2凝縮部3bの伝熱管12bを含んでいる。
第2凝縮部3bは、圧縮機2で昇圧された冷媒を凝縮して冷却するように構成されている。第2凝縮部3bは、冷媒と空気との間で熱交換を行う熱交換器である。第2凝縮部3bは、複数のフィン11bおよび伝熱管12bを有している。第2凝縮部3bは、冷媒の入口と出口、および空気の入口と出口とを有している。本実施の形態では、第2凝縮部3bの冷媒の入口と出口は、圧縮機2の吐出口と第1凝縮部3aの冷媒の入口との各々に配管でそれぞれ接続されている。第2凝縮部3bの伝熱管12bは、扁平管である。
第1凝縮部3aは、第2凝縮部3bで冷却された冷媒をさらに凝縮して冷却するように構成されている。第1凝縮部3aは、冷媒と空気との間で熱交換を行う熱交換器である。第1凝縮部3aは、複数のフィン11aおよび伝熱管12aを有している。第1凝縮部3aは、冷媒の入口と出口、および空気の入口と出口とを有している。本実施の形態では、第1凝縮部3aの冷媒の入口と出口は、第2凝縮部3bの出口と減圧装置4の入口にそれぞれ配管で接続されている。第1凝縮部3aの伝熱管12aは、扁平管である。
本実施の形態では、第1凝縮部3aおよび第2凝縮部3bは、同形状のフィンおよび伝熱管を持つ扁平管熱交換器である。第2凝縮部3bは、段方向において第1凝縮部3aの上に位置する。
第1風路23aには、蒸発器5、第1凝縮部3a、送風機6が配置されている。蒸発器5および第1凝縮部3aは、第1吸込口21aから取り込まれた空気が蒸発器5、第1凝縮部3aの順に流れるように第1風路23a内に配置されている。第2風路23bには、第2凝縮部3b、送風機6が配置されている。第2凝縮部3bは、第2吸込口21bから取り込まれた空気が流れるように第2風路23b内に配置されている。
本実施の形態では、凝縮器3の前面面積は、蒸発器5の前面面積よりも大きい。具体的には、凝縮器3の前面面積は、蒸発器5の前面面積よりも段方向上側に大きい。
なお、凝縮器3の前面面積は、蒸発器5の前面面積よりも凝縮器3のフィン11の積幅方向に大きくてもよい。
第1吸込口21aおよび第2吸込口21bは、外部空間(室内空間)から筐体20の内部に空気を入れるために設けられている。第1風路23aは、第1吸込口21aと吹出口22とをつなぐように構成されている。第2風路23bは、第2吸込口21bと吹出口22とをつなぐように構成されている。
本実施の形態では、ファン6bが軸6aを中心に回転することによって、図中矢印Aで示されるように外部空間(室内空間)から取り込まれた空気は、第1風路23a内において図中矢印Bで示されるように蒸発器5、第1凝縮部3aを通過する。また、ファン6bが軸6aを中心に回転することによって、図中矢印A’で示すように外部空間(室内空間)から取り込まれた空気は、第2風路23b内において図中矢印B’で示されるように第2凝縮部3bを通過する。第1風路23aを通過した空気と第2風路23bを通過した空気とは互いに混ざり、吹出口22を通って筐体20の外部空間(室内空間)へ吐き出される。
第1風路23aと第2風路23bとは分離されていればよい。第1風路23aと第2風路23bとは、例えば仕切部8によって分離されていてもよい。第1風路23aおよび第2風路23bの各々は、例えば筐体20および仕切部8によって形成されている。第2風路23b内の空気の流通方向において、仕切部8の上流側に位置する一端は、少なくとも蒸発器5の空気出口よりも上流側に形成されている。上記流通方向において、仕切部8の下流側に位置する他端は、少なくとも蒸発器5の空気入口よりも下流側に形成されている。仕切部8は、例えば平板状に形成されている。仕切部8は、筐体20の内部に固定されている。
本実施の形態に係る除湿装置1によれば、蒸発器5および第1凝縮部3aは、第1吸込口21aから取り込まれた空気が蒸発器5、第1凝縮部3aの順に流れるように第1風路23a内に配置されている。第2凝縮部3bは、第2吸込口21bから取り込まれた空気が流れるように第2風路23b内に配置されている。したがって、凝縮器3全体を流れる空気の風量を、蒸発器5を流れる空気の風量より多くすることができる。凝縮器3全体の風量を多くすることで、凝縮器3側の伝熱性能を向上させることができるため、冷媒の凝縮温度を低下させることができる。また、凝縮温度を低下させることで冷媒回路内の凝縮圧力と蒸発圧力の差を低減することができるため、圧縮機2における入力を低下させることができる。これにより、除湿装置1の除湿性能を示す指標である、1kWh当たりの除湿量Lを示すEF(Energy Factor)値(L/kWh)を向上させることができる。
また、仕切部8を構成する材料は、蒸発器5において冷媒の流通する伝熱管、フィンおよびヘッダを構成する材料よりも熱伝導率の低い材料で構成されていればよい。これにより、仕切部8を介して第1風路23a内の空気および第2風路23b内の空気間で熱交換が行われることを低減させることができる。
実施の形態3.
図21~図23を参照して、実施の形態3に係る除湿装置1について説明する。本実施の形態に係る除湿装置1は、第3凝縮部3cを備えている点が、実施の形態2に係る除湿装置1と異なる。
図21~図23を参照して、実施の形態3に係る除湿装置1について説明する。本実施の形態に係る除湿装置1は、第3凝縮部3cを備えている点が、実施の形態2に係る除湿装置1と異なる。
図21および図22に示すように、本実施の形態に係る除湿装置1では、凝縮器3は、第1凝縮部3aと、第2凝縮部3bと、第3凝縮部3cとを含んでいる。凝縮器3は、第2凝縮部3b、第1凝縮部3a、第3凝縮部3cの順に冷媒が流れるように構成されている。第3凝縮部3cは、第2凝縮部3bに接続されている。冷媒回路101は、圧縮機2、第1凝縮部3a、第2凝縮部3b、第3凝縮部3c、減圧装置4、蒸発器5の順に冷媒を循環させるように構成されている。凝縮器3の伝熱管12は、第3凝縮部3cの伝熱管12cを含んでいる。
第1凝縮部3aは、送風機6によって発生する空気の流れにおいて第3凝縮部3cよりも下流に配置されている。つまり、第1凝縮部3aは、第3凝縮部3cよりも風下に配置されている。
図22および図23に示すように、第3凝縮部3cは、第2凝縮部3bで冷却された冷媒をさらに凝縮して冷却するように構成されている。第3凝縮部3cは、冷媒と空気との間で熱交換を行う熱交換器である。第3凝縮部3cは、複数のフィン11cおよび伝熱管12cを有している。第3凝縮部3cは、冷媒の入口と出口、および空気の入口と出口とを有している。本実施の形態では、第3凝縮部3cの冷媒の入口と出口は、第2凝縮部3bの出口と減圧装置4の入口にそれぞれ配管で接続されている。第3凝縮部3cは、送風機6によって発生する空気の流れにおいて第1凝縮部3aよりも上流に配置されている。つまり、第3凝縮部3cは、第1凝縮部3aよりも風上に配置されている。また、第3凝縮部3cは、送風機6によって発生する空気の流れにおいて蒸発器5よりも下流に配置されている。つまり、第3凝縮部3cは、蒸発器5よりも風下に配置されている。第3凝縮部3cの伝熱管12cは、扁平管である。
本実施の形態では、第1凝縮部3a、第2凝縮部3bおよび第3凝縮部3cは、同形状のフィンおよび伝熱管を持つ扁平管熱交換器である。第1凝縮部3aおよび第2凝縮部3bの前面面積は、第3凝縮部3cの前面面積よりも段方向上側に大きい。第3凝縮部3cの前面面積は、蒸発器5と同等でもよい。
第1風路23aには、蒸発器5、第1凝縮部3a、第3凝縮部3c、送風機6が配置されている。蒸発器5、第1凝縮部3aおよび第3凝縮部3cは、第1吸込口21aから取り込まれた空気が蒸発器5、第3凝縮部3c、第1凝縮部3aの順に流れるように第1風路23a内に配置されている。第2風路23bには、第2凝縮部3b、送風機6が配置されている。第2凝縮部3bは、第2吸込口21bから取り込まれた空気が流れるように第2風路23b内に配置されている。
本実施の形態では、ファン6bが軸6aを中心に回転することによって、図中矢印Aで示されるように外部空間(室内空間)から取り込まれた空気は、第1風路23a内において図中矢印Bで示されるように蒸発器5、第3凝縮部3c、第1凝縮部3aを通過する。また、ファン6bが軸6aを中心に回転することによって、図中矢印A’で示すように外部空間(室内空間)から取り込まれた空気は、第2風路23b内において図中矢印B’で示されるように第2凝縮部3bを通過する。第1風路23aを通過した空気と第2風路23bを通過した空気とは互いに混ざり、吹出口22を通って筐体20の外部空間(室内空間)へ吐き出される。
第2風路23b内の空気の流通方向において、仕切部8の上流側に位置する一端は、少なくとも蒸発器5の空気出口よりも上流側に形成されている。上記流通方向において、仕切部8の下流側に位置する他端は、少なくとも第3凝縮部3cの空気入口よりも下流側に形成されている。
本実施の形態に係る除湿装置1によれば、蒸発器5、第1凝縮部3aおよび第3凝縮部3cは、第1吸込口21aから取り込まれた空気が蒸発器5、第3凝縮部3c、第1凝縮部3aの順に流れるように第1風路23a内に配置されている。第2凝縮部3bは、第2吸込口21bから取り込まれた空気が流れるように第2風路23b内に配置されている。このため、第1凝縮部3a、第2凝縮部3bおよび第3凝縮部3cを組み合わせることで、凝縮器3全体の伝熱面積を大きくすることができる。したがって、凝縮器3全体の伝熱面積を大きくすることで、凝縮器3側の伝熱性能をさらに向上させることができるため、冷媒の凝縮温度を低下させることができる。また、凝縮温度を低下させることで冷媒回路内の凝縮圧力と蒸発圧力の差を低減することができるため、圧縮機2における入力を低下させることができる。これにより、除湿装置1の除湿性能を示す指標である、1kWh当たりの除湿量Lを示すEF(Energy Factor)値(L/kWh)を向上させることができる。
また、仕切部8を構成する材料は、蒸発器5および第3凝縮部3cにおいて冷媒の流通する伝熱管、フィンおよびヘッダを構成する材料よりも熱伝導率の低い材料で構成されていればよい。これにより、仕切部8を介して第1風路23a内の空気および第2風路23b内の空気間で熱交換が行われることを低減させることができる。
上記の各実施の形態は適宜組み合わせることができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 除湿装置、2 圧縮機、3 凝縮器、3a 第1凝縮部、3b 第2凝縮部、3c 第3凝縮部、4 減圧装置、5 蒸発器、6 送風機、7 ドレンパン、8 仕切部、11,11a,11b,13 フィン、12,12a,12b,14 伝熱管、20 筐体、21 吸込口、21a 第1吸込口、21b 第2吸込口、22 吹出口、23 風路、23a 第1風路、23b 第2風路、31,34 第1ヘッダ、32,35 第2ヘッダ、33,36 仕切り、101 冷媒回路。
Claims (4)
- 筐体と、
前記筐体内に配置された送風機および冷媒回路とを備え、
前記送風機は、空気を送風するように構成されており、
前記冷媒回路は、圧縮機、凝縮器、減圧装置および蒸発器を有し、かつ前記圧縮機、前記凝縮器、前記減圧装置、前記蒸発器の順に冷媒を循環させるように構成されており、
前記凝縮器は、前記冷媒が流れる第1伝熱管を有し、
前記蒸発器は、前記冷媒が流れる第2伝熱管を有し、
前記凝縮器は、前記蒸発器よりも風下に配置されており、
前記凝縮器の前記第1伝熱管は、扁平管であり、かつ水平方向に延在しており、
前記蒸発器の前記第2伝熱管は、扁平管であり、かつ鉛直方向に延在している、除湿装置。 - 前記凝縮器の前記第1伝熱管は、少なくとも1つの第1冷媒パスを含み、
前記第1冷媒パスの数は、前記冷媒の流れの上流から下流にかけて徐々に減少し、
前記蒸発器の前記第2伝熱管は、少なくとも1つの第2冷媒パスを含み、
前記第2冷媒パスの数は、前記冷媒の流れの上流から下流にかけて徐々に増加する、請求項1に記載の除湿装置。 - 前記筐体は、前記空気を取り込むための第1吸込口と、前記第1吸込口に連通する第1風路と、前記空気を取り込むための第2吸込口と、前記第2吸込口に連通しかつ前記第1風路から仕切られた第2風路とを有し、
前記凝縮器は、第1凝縮部および第2凝縮部を有し、かつ前記第2凝縮部、前記第1凝縮部の順に前記冷媒回路が流れるように構成されており、
前記蒸発器および前記第1凝縮部は、前記第1吸込口から取り込まれた前記空気が前記蒸発器、前記第1凝縮部の順に流れるように前記第1風路内に配置されており、
前記第2凝縮部は、前記第2吸込口から取り込まれた前記空気が流れるように前記第2風路内に配置されている、請求項1または2に記載の除湿装置。 - 前記凝縮器は、第3凝縮部を有し、かつ前記第2凝縮部、前記第1凝縮部および前記第3凝縮部の順に前記冷媒が流れるように構成されており、
前記蒸発器、前記第1凝縮部および前記第3凝縮部は、前記第1吸込口から取り込まれた前記空気が前記蒸発器、前記第1凝縮部、前記第3凝縮部の順に流れるように前記第1風路内に配置されており、
前記第2凝縮部は、前記第2吸込口から取り込まれた前記空気が流れるように前記第2風路内に配置されている、請求項3に記載の除湿装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180097126.3A CN117157133A (zh) | 2021-04-22 | 2021-04-22 | 除湿装置 |
PCT/JP2021/016360 WO2022224416A1 (ja) | 2021-04-22 | 2021-04-22 | 除湿装置 |
JP2023515981A JPWO2022224416A1 (ja) | 2021-04-22 | 2021-04-22 | |
TW111110058A TWI830175B (zh) | 2021-04-22 | 2022-03-18 | 除濕裝置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/016360 WO2022224416A1 (ja) | 2021-04-22 | 2021-04-22 | 除湿装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022224416A1 true WO2022224416A1 (ja) | 2022-10-27 |
Family
ID=83723444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/016360 WO2022224416A1 (ja) | 2021-04-22 | 2021-04-22 | 除湿装置 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2022224416A1 (ja) |
CN (1) | CN117157133A (ja) |
TW (1) | TWI830175B (ja) |
WO (1) | WO2022224416A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH085198A (ja) * | 1994-06-14 | 1996-01-12 | Yanmar Diesel Engine Co Ltd | 空調用熱交換器 |
JPH102638A (ja) * | 1996-06-17 | 1998-01-06 | Hitachi Ltd | 熱交換器およびスリットフィン |
WO2018131121A1 (ja) * | 2017-01-12 | 2018-07-19 | 三菱電機株式会社 | 除湿装置 |
WO2018235215A1 (ja) * | 2017-06-22 | 2018-12-27 | 三菱電機株式会社 | 熱交換器、冷凍サイクル装置および空気調和機 |
WO2019077744A1 (ja) * | 2017-10-20 | 2019-04-25 | 三菱電機株式会社 | 空気調和機 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109312968B (zh) * | 2016-06-22 | 2020-11-06 | 三菱电机株式会社 | 除湿装置 |
-
2021
- 2021-04-22 WO PCT/JP2021/016360 patent/WO2022224416A1/ja active Application Filing
- 2021-04-22 CN CN202180097126.3A patent/CN117157133A/zh active Pending
- 2021-04-22 JP JP2023515981A patent/JPWO2022224416A1/ja active Pending
-
2022
- 2022-03-18 TW TW111110058A patent/TWI830175B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH085198A (ja) * | 1994-06-14 | 1996-01-12 | Yanmar Diesel Engine Co Ltd | 空調用熱交換器 |
JPH102638A (ja) * | 1996-06-17 | 1998-01-06 | Hitachi Ltd | 熱交換器およびスリットフィン |
WO2018131121A1 (ja) * | 2017-01-12 | 2018-07-19 | 三菱電機株式会社 | 除湿装置 |
WO2018235215A1 (ja) * | 2017-06-22 | 2018-12-27 | 三菱電機株式会社 | 熱交換器、冷凍サイクル装置および空気調和機 |
WO2019077744A1 (ja) * | 2017-10-20 | 2019-04-25 | 三菱電機株式会社 | 空気調和機 |
Also Published As
Publication number | Publication date |
---|---|
CN117157133A (zh) | 2023-12-01 |
JPWO2022224416A1 (ja) | 2022-10-27 |
TWI830175B (zh) | 2024-01-21 |
TW202242319A (zh) | 2022-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8205470B2 (en) | Indoor unit for air conditioner | |
KR101762244B1 (ko) | 축적된 코일 구간들을 갖는 열교환기 | |
US7322401B2 (en) | Ventilator | |
JP6972158B2 (ja) | 除湿装置 | |
TWI671494B (zh) | 除濕裝置 | |
JP6223596B2 (ja) | 空気調和装置の室内機 | |
TWI753323B (zh) | 除濕裝置 | |
JP2019027614A (ja) | 熱交換装置および空気調和機 | |
WO2022224416A1 (ja) | 除湿装置 | |
TWI784343B (zh) | 除濕裝置 | |
JP7561878B2 (ja) | 除湿装置 | |
JP7394722B2 (ja) | 除湿装置 | |
CN111448423B (zh) | 空气调节机 | |
WO2022264375A1 (ja) | 除湿装置 | |
WO2024214189A1 (ja) | 除湿機 | |
JP7050538B2 (ja) | 熱交換器および空気調和機 | |
KR20240107015A (ko) | 증발식 응축기 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21937908 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023515981 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21937908 Country of ref document: EP Kind code of ref document: A1 |