WO2022144485A9 - Biomarcadores y método para predecir o pronosticar la respuesta al tratamiento con inhibidores de braf y de mek (brafi + meki) - Google Patents

Biomarcadores y método para predecir o pronosticar la respuesta al tratamiento con inhibidores de braf y de mek (brafi + meki) Download PDF

Info

Publication number
WO2022144485A9
WO2022144485A9 PCT/ES2021/070951 ES2021070951W WO2022144485A9 WO 2022144485 A9 WO2022144485 A9 WO 2022144485A9 ES 2021070951 W ES2021070951 W ES 2021070951W WO 2022144485 A9 WO2022144485 A9 WO 2022144485A9
Authority
WO
WIPO (PCT)
Prior art keywords
braf
microarrays
genes
treatment
response
Prior art date
Application number
PCT/ES2021/070951
Other languages
English (en)
French (fr)
Other versions
WO2022144485A1 (es
Inventor
Miguel Ángel BERCIANO GUERRERO
María del Rocío LAVADO VALENZUELA
Aurelio Ángel MOYA GARCÍA
Emilio ALBA CONEJO
Antonio RUEDA DOMÍNGUEZ
Luis DE LA CRUZ MERINO
Victoria Eugenia CASTELLÓN RUBIO
Fernando HENAO CARRASCO
Álvaro MONTESA PINO
Ismael NAVAS DELGADO
María Pilar SANCHO MÁRQUEZ
Fátima TOSCANO MURILLO
Javier VALDIVIA BAUTISTA
Juan Luis ONIEVA ZAFRA
Original Assignee
Servicio Andaluz De Salud
Universidad De Málaga
Consorcio Centro de Investigación Biomédica en Red, M.P.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Servicio Andaluz De Salud, Universidad De Málaga, Consorcio Centro de Investigación Biomédica en Red, M.P. filed Critical Servicio Andaluz De Salud
Publication of WO2022144485A1 publication Critical patent/WO2022144485A1/es
Publication of WO2022144485A9 publication Critical patent/WO2022144485A9/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • Biomarkers and method to predict or predict the response to treatment with BRAF and MEK inhibitors (BRAFi + MEKi)
  • the present invention is within the field of medicine and oncology, and relates to biomarkers and a method for predicting or prognosticating the response to treatment of melanoma patients with BRAF and MEK inhibitors (BRAFi + MEKi).
  • BRAF-directed therapy is the standard treatment for metastatic melanoma with this mutation. It is known that the blockade of this gene alters the immunology of cancer, but there is no detailed study of the expression of related genes, and there are currently no biomarkers for predicting response to it.
  • the authors of the present invention have analyzed 19 patients with metastatic melanoma before, during and after treatment with BRAFi + MEKi, collecting information on clinical-pathological data. They performed a differential gene expression analysis using NANOSTRING (nCounter PanCancer Immune Profiling PanelTM) technology, determining which genes were most involved in treatment, both in the first evaluation of response and progression. Finally, the 19 patients analyzed showed worse results than the pivotal studies (younger, M1c-d> M1a-b, who presented 47% high LDH, PFS 9.3m -CI95% 4.9-13.9-, OS 10, 7m -CI95 % 8.8-12.6-) despite a good initial radiological response (ORR 73.7%).
  • a first aspect of the invention refers to the use of CXCL-10, SERPING1, PDL1, PDL2, ARG1, IL18R1, IL18RAP, IL1R1, ILR2, FLT3, SLC11A1, CD 163 and/or S100A12, or any of their combinations. , to predict or predict the response to treatment with BRAF and MEK inhibitors in an individual with metastatic melanoma harboring a BRAF mutation.
  • the genes are used simultaneously.
  • Another aspect of the invention relates to an in vitro method of obtaining useful data to predict or predict the response to treatment with BRAF and MEK inhibitors in an individual suffering from metastatic BRAF mutated melanoma, hereinafter the first method of the invention, which comprises: a) obtaining a biological sample isolated from the individual, b) quantifying the amount of expression product of the genes CXCL-10, SERPING1, PDL1, PDL2, ARG1, IL18R1, IL18RAP, IL1R1, ILR2, FLT3, SLC11A1, CD163 and/or S100A12, or any combination thereof.
  • the first method of the invention further comprises: c) comparing the quantities obtained in step (b) with a reference quantity.
  • the amount of expression product of all genes will be quantified simultaneously.
  • steps (b) and/or (c) can be fully or partially automated.
  • Another aspect of the invention relates to an in vitro method for predicting or predicting the response to treatment with BRAF and MEK inhibitors, hereinafter the second method of the invention, comprising steps (a) - (c) according to the first method of the invention, and further comprises: d) assign to the individual who presents in an analysis, before administering the treatment, the expression product of the SERPING1, PDCD1LG2, CXCL10 and CD274 genes overexpressed, and the expression product of the FLT3, SLC11A1, IL1R1, IL18RAP, CD163 genes , IL8R1, S100A12, IL1R2 and ARG1, decreased with respect to the mean values of a normal individual, to the group of patients that will have a positive response to treatment.
  • the BRAF inhibitor is selected from the list consisting of: Dabrafenib, Vemurafenib, Encorafenib, or any of their combinations.
  • the MEK inhibitor is selected from the list consisting of: trametinib, cobimetinib, binimetinib, or any combination thereof.
  • a “biological sample” as defined herein, is a small part of a subject, representative of the whole, and may consist of a biopsy or a sample of body fluid.
  • the biological sample is blood.
  • the detection of the amount of expression product of SERPING1, PDCD1LG2, CXCL10, CD274, FLT3, SLC11A1, IL1R1, IL18RAP, CD163, IL8R1, S100A12, IL1R2 and ARG1 can be carried out by any means known in the state of the art.
  • the expression levels of the genes will give a specific gene expression profile.
  • the term "expression level”, also called “amount of gene product” or “amount of expression product” refers to the biochemical material, whether RNA or protein, resulting from the expression of a gene. Sometimes a measure of the amount of gene product is used to infer how active a gene is.
  • Gene expression profile is understood as the gene profile obtained after quantifying the mRNA and/or protein produced by the genes of interest or biomarkers, that is, by the genes SERPING1, PDCD1LG2, CXCL10, CD274, FLT3, SLC11A1, IL1R1, IL18RAP, CD163, IL8R1, S100A12, IL1R2 and ARG1.
  • the measurement of the quantity or the concentration of the expression product of these genes can be carried out directly or indirectly.
  • the direct measurement refers to the measurement of the quantity or concentration of the gene expression product, based on a signal that is obtained directly from the transcripts of said genes, or from the proteins, and that is directly correlated with the number of RNA or protein molecules produced by genes. Said signal (which we can also refer to as an intensity signal) can be obtained, for example, by measuring an intensity value of a chemical property or physics of these products.
  • Indirect measurement includes measurement obtained from a secondary component or biological measurement system (eg measurement of cellular responses, ligands, "label” or enzymatic reaction products).
  • Quantity refers to, but is not limited to, the absolute or relative quantity of the expression products of the genes or the quantity of the proteins, as well as any other value or parameter related to them or that can be derived from them.
  • Said values or parameters comprise signal intensity values obtained from any of the physical or chemical properties of said expression products obtained by direct measurement. Additionally, said values or parameters include all those obtained by indirect measurement, for example, any of the measurement systems described elsewhere in this document.
  • comparison refers to, but is not limited to, the comparison of the amount of gene expression products or the amount of antibodies against SERPING 1, PDCD1LG2, CXCL10 , CD274, FLT3, SLC11A1, IL1R1, IL18RAP, CD163, IL8R1, S100A12, IL1R2 and ARG1 of the biological sample to be analyzed, also called the problem biological sample, with a quantity of gene expression products or with a quantity of antibodies against SERPING1, PDCD1LG2, CXCL10, CD274, FLT3, SLC11A1, IL1R1, IL18RAP, CD163, IL8R1, S100A12, IL1R2 and ARG1 from one or more desirable reference samples.
  • the reference sample can be analyzed, for example, simultaneously or consecutively, together with the test biological sample.
  • the calculation described in section (iii) of the method of the present invention can be carried out manually or assisted by a computer.
  • the following table describes the genes used in the invention according to the PubMed database of the NCBI (National Center of Biotechnolgy Information).
  • the detection of the amount of expression of any of the SERPING1, PDCD1LG2, CXCL10, CD274, FLT3, SLC11A1, IL1R1, IL18RAP, CD163, IL8R1, S100A12, IL1R2 and ARG1 genes is performed. by: i. a gene expression analysis procedure, such as, but not limited to, qRT-PCR, DNA microarrays, nCounter, RNA-Seq, FISH, and tissue microarrays; and/or ii. Northern blot.
  • a gene expression analysis procedure such as, but not limited to, qRT-PCR, DNA microarrays, nCounter, RNA-Seq, FISH, and tissue microarrays.
  • an immunoassay or immunohistochemistry such as ELISA and/or Western blot.
  • the detection of the amount of expression is done by nCounter.
  • the nCounter assay is based on direct digital detection of mRNA molecules of interest using pairs of target-specific color-coded probes. It does not require conversion of mRNA to cDNA by reverse transcription or amplification of the resulting cDNA by PCR.
  • Each target gene of interest is detected using a pair of capture and reporter probes carrying target-specific sequences of 35 to 50 bases.
  • each reporter probe carries a unique color code at the 5' end that allows for molecular barcoding of genes of interest, while the capture probes carry a biotin label at the 3' end that provides a molecular handle. for target gene binding to facilitate downstream digital detection.
  • nCounter cartridge After solution phase hybridization between target mRNA and reporter capture probe pairs, excess probes are removed and probe/target complexes are aligned and immobilized on the nCounter cartridge, which is then placed in an analyzer. digital for image acquisition and data processing. Hundreds of thousands of color codes designating mRNA targets of interest are etched directly onto the surface of the cartridge. The expression level of a gene is measured by counting the number of times the color-coded barcode for that gene is detected.
  • the detection of gene expression levels is performed by Q-RT-PCR.
  • the detection of the amount of expression of any of the genes is carried out by means of an immunoassay.
  • immunoassay refers to any analytical technique that is based on the conjugation reaction of an antibody with an antigen.
  • immunoassays known in the state of the art are, for example, but not limited to: immunoblot, enzyme-linked immunosorbent assay (ELISA), linear immunoassay (LIA), radioimmunoassay (RIA), immunofluorescence, x-map or protein chips .
  • the immunoassay is an enzyme-linked immunosorbent assay or ELISA (Enzyme-Linked ImmunoSorbent Assay).
  • ELISA is based on the premise that an immunoreagent (antigen or antibody) can be immobilized on a solid support, then contacting that system with a fluid phase containing the complementary reagent that can bind a marker compound.
  • an immunoreagent antigen or antibody
  • ELISA Enzyme-Linked ImmunoSorbent Assay
  • ELISA Enzyme-Linked ImmunoSorbent Assay.
  • marker compound refers to a compound capable of giving rise to a chromogenic, fluorogenic, radioactive and/or chemiluminescent signal that allows the detection and quantification of the amount of antibodies against a SERPING1, PDCD1LG2, CXCL10, CD274, FLT3, SLC11A1, IL1R1, IL18RAP, CD163, IL8R1, S100A12, IL1R2 and ARG1
  • the marker compound is selected from the list that includes radioisotopes, enzymes, fluorophores or any molecule capable of being conjugated with another molecule or detected and/or quantified directly. This marker compound can be attached to the antibody directly, or through another compound.
  • marker compounds that bind directly are, but are not limited to, enzymes such as alkaline phosphatase or peroxidase, radioactive isotopes such as 32P or 35S, fluorochromes such as fluorescein, or metallic particles, for direct detection by colorimetry, autoradiography, fluorimetry , or metallography respectively.
  • enzymes such as alkaline phosphatase or peroxidase
  • radioactive isotopes such as 32P or 35S
  • fluorochromes such as fluorescein
  • metallic particles for direct detection by colorimetry, autoradiography, fluorimetry , or metallography respectively.
  • the detection of the expression product of the genes need not be particularly limited, and can be selected by a gene profiling method, such as microarray, and/or a method comprising PCR, such as quantitative real-time PCR; and/or Northern Blot.
  • a gene profiling method such as microarray, and/or a method comprising PCR, such as quantitative real-time PCR; and/or Northern Blot.
  • Real-time quantitative PCR (usually abbreviated as RQ-PCR, RT-qPCR, rt-PCR, or qPCR) is a sensitive and reproducible gene expression quantification technique that can be used particularly for profiling gene expression in cells. and fabrics. Any method can be used to evaluate the results of RT-PCR, and the AACt method may be preferred.
  • the AACt-method will include a 'control sample' and a 'subject sample'.
  • the 'subject sample' is a sample of the subject to be analyze.
  • a target gene here: mRNA of interest
  • an endogenous control gene as described below
  • the efficiency of PCR amplification can be defined as percentage of amplification (from 0 to 1).
  • software typically measures for each sample the cycle number at which the fluorescence (indicator of PCR amplification) crosses an arbitrary line, the threshold. This crossover point is the Ct value.
  • a microarray is an array on a solid substrate (usually a glass slide or a silicon thin-film cell) that screens large amounts of biological material, in the present case the expression product of genes, that are detectable by specific probes. immobilized on the solid substrate.
  • a Northern blot involves the use of electrophoresis to separate RNA samples by size and subsequent detection with a hybridization probe complementary to (part of) the RNA target sequence of interest.
  • the method of the present invention can be applied with samples from individuals of any sex, that is, men or women, and at any age.
  • the expression product of the genes may be normalized, preferably relative to the expression of another gene.
  • normalization methods There are well-known normalization methods in the state of the art.
  • the expression product can also be a protein. Therefore, other methods of quantifying the expression product HPLC (high performance liquid chromatography), LC/MS (liquid chromatography coupled to mass spectrometry, ELISA, DAS ELISA, protein immunoprecipitation, immunoelectrophoresis, Western Blot, protein immunostaining, Northern Blot, reverse transcription PCR (RT-PCR), quantitative PCR (q-PCR), RIA (radioimmunoassay), in situ hybridization, nuclease protection assay, massive sequencing, immunocytochemical or immunohistochemical techniques, genomic DNA microarrays, microarrays microarrays, messenger RNA microarrays, cDNA microarrays, peptide microarrays, tissue microarrays, cell or transfection microarrays, antibody microarrays, lysate or serum microarrays, reversed phase protein microarrays, peptide microarrays or genotyping microarrays , among others.
  • HPLC high performance liquid chromatography
  • the expression product is mRNA
  • detection is preferably performed by reverse transcription PCR (RT-PCR) or quantitative PCR (q-PCR).
  • RT-PCR reverse transcription PCR
  • q-PCR quantitative PCR
  • prognosis is understood as the expected evolution of a disease and refers to the assessment of the probability according to which a subject suffers from a disease as well as the assessment of its onset, state of development, evolution, or its regression, and/or the prognosis of the course of the disease in the future.
  • RT-PCR reverse transcription PCR
  • q-PCR quantitative PCR
  • Whether a part is statistically significant can be determined without further ado by those skilled in the art using various well-known statistical evaluation tools, e.g., determination of confidence intervals, determination of p-values, Student's t-test, Mann's test. -Whitney, etc.
  • Preferred confidence intervals are at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%.
  • the p values are preferably 0.2, 0.1, 0.05.
  • other subclassifications could be established within this main one, thus facilitating the choice and establishment of appropriate therapeutic regimens or treatment. This discrimination, as understood by an expert in the field, is not intended to be correct in 100% of the analyzed samples.
  • the amount that is statistically significant can be established by a person skilled in the art through the use of different statistical tools, for example, but not limited to, by determining confidence intervals, determining the significance value P, Student's test or discriminant functions. Fisher's, Mann-Whitney nonparametric measures, Spearman's correlation, logistic regression, linear regression, area under the ROC curve (AUC).
  • the confidence intervals are at least 90%, at least 95%, at least 97%, at least 98%, or at least 99%.
  • the p value is less than 0.1, 0.05, 0.01, 0.005 or 0.0001.
  • the present invention allows to correctly detect the disease differentially in at least 60%, more preferably in at least 70%, much more preferably in at least 80%, or even more preferably in at least 90%. of the subjects of a certain group or population analyzed.
  • a “reference sample”, as used herein, means a sample obtained from a group of healthy subjects who do not have a particular disease state or phenotype.
  • Reference levels can be determined by measuring the expression levels of those genes in various suitable subjects, and those reference levels are can be adjusted for specific populations (for example, a reference level may be age-related, so that comparisons can be made between expression levels in samples from subjects of a certain age and reference levels for a certain age). particular disease, phenotype, or lack thereof in a given age group).
  • the reference sample is obtained from several subjects in general, or from non-responders to treatment with BRAF and MEK inhibitors.
  • the type of reference sample may vary depending on the specific method to be performed.
  • the expression profile of the genes in the reference sample can preferably be generated from a population of two or more people.
  • the population for example, can contain 3, 4, 5, 10, 15, 20, 30, 40, 50 or more people.
  • the expression profile of the genes in the reference sample and in the sample of the person to be diagnosed according to the methods of the present invention can be generated from the same person, provided that the profiles are analyzed and the reference profile are generated from the biological samples taken at different times and compared with each other. For example, a sample from an individual may be obtained at the start of a study period. A baseline biomarker profile from this sample can be compared to biomarker profiles generated from subsequent samples from the same person.
  • the reference sample is a set of samples from various individuals.
  • the expression of a gene is considered increased in a sample of the subject matter of study when the levels of increase with respect to the reference sample are at least 5%, therefore least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, for at least 50%, at least 55%, at least 60%, at least at least 65%, at least 70%, at least 75%, at least 80%, for at least 85%, at least 90%, at least 95%, at least 100%, at least 1 10%, at least 120%, at least 130%, at least 140% , at least 150%, or more.
  • the expression of a gene is considered decreased when its levels decrease with respect to the reference sample by at least 5%, at least 10%, at least 15%, at least 20%, for at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%), at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 100% (ie absent).
  • composition or kit of parts comprising at least one BRAF inhibitor and one MEK inhibitor for treating an individual suffering from BRAF mutated metastatic melanoma, identifiable by any of the methods of the invention.
  • the BRAF inhibitor is selected from the list consisting of: dabrafenib, vemurafenib, cobimetinib, or any combination thereof.
  • the MEK inhibitor is selected from the list consisting of: trametinib, cobimetinib, binimetinib, or any combination thereof.
  • Kit or composition of the invention uses
  • kit or device of the invention comprising the necessary elements to quantify the expression product of the genes CXCL-10, SERPING1, PDL1, PDL2, ARG1, IL18R1, IL18RAP, IL1R1, ILR2, FLT3, SLC11A1, CD163 and/or S100A12, or any combination thereof.
  • It preferably comprises the necessary elements to simultaneously quantify the expression product of the CXCL-10, SERPING1, PDL1, PDL2, ARG1, IL18R1, IL18RAP, IL1R1, ILR2, FLT3, SLC11A1, CD163 and S100A12 genes.
  • kits or device of the invention to predict or predict the response to treatment with BRAF and MEK inhibitors in an individual, preferably where the individual suffers from BRAF mutated metastatic melanoma.
  • the kit or device of the invention comprises:
  • the kit of this aspect of the invention comprises specific antibodies or fragments thereof against any of the protein sequences encoded by the genes CXCL-10, SERPING 1, PDL1, PDL2, ARG1, IL18R1, IL18RAP, IL1R1, ILR2, FLT3, SLC11A1, CD163 and/or S100A12 against amino acid sequences that have a degree of identity with said amino acid sequences of at least 85%, typically at least 90%, preferably at least 95%. %, more preferably at least 98%, even more preferably at least 99%.
  • the kit of this aspect of the invention comprises secondary antibodies or positive and/or negative controls.
  • the kit may also include, without limitation, buffers, protein extraction solutions, contamination prevention agents, protein degradation inhibitors, etc.
  • the kit of this aspect of the invention is suitable for amplifying nucleotide sequences, comprising probes and/or primers designed from the sequences of the CXCL-10, SERPING1, PDL1, PDL2, ARG1, IL18R1, IL18RAP, IL1R1, ILR2, FLT3, SLC11A1, CD163 and/or S100A12 as well as optionally all those elements necessary to carry out a PCR procedure.
  • kits or devices of the present invention in obtaining useful data to predict or forecast the response to treatment with BRAF and MEK inhibitors (BRAFi + MEKi) in an individual. , preferably where the individual has been diagnosed with cancer, and even more preferably where the individual has been diagnosed with a BRAF mutated metastatic melanoma.
  • Another aspect of the invention relates to a computer program comprising instructions to carry out the procedure according to any of the methods of the invention.
  • the invention encompasses computer programs disposed on or within a carrier.
  • the carrier can be any entity or device capable of supporting the program.
  • the carrier could be an integrated circuit in which the program is included and which has been adapted to execute, or to be used in the execution of, the corresponding processes.
  • the programs could be embedded in a storage medium, such as ROM memory, CD ROM or semiconductor ROM memory, USB memory, or a magnetic recording medium, for example, a floppy disk or diskette. Lasted.
  • the programs could be carried on a transmittable carrier signal; for example, it could be an electrical or optical signal that could be transported through electrical or optical cable, by radio, or by any other means.
  • the invention also extends to computer programs adapted so that any processing means can carry out the methods of the invention.
  • Computer programs also encompass cloud applications based on said procedure.
  • Fig. 1 Patient selection flowchart.
  • Fig. 3 Kaplan Meier survival curves.
  • PFS Progression Free Survival
  • OS Survival function “Overall Survival”
  • Figure 1 shows the patient selection scheme. gene analysis
  • buffer, probes, and sample are added to PCR tubes and incubated at 65°C overnight for hybridization to complete.
  • the processing of the samples was carried out carried out in one of the two modules that make up the nCounter team, in the Prep Station. In this step, the reagents and consumables that Nanostring provides in the Master Mix of the PanCancer Immune Profiling Panel were added to the PCR tubes.
  • the Digital Analyzer module a digital analysis station, the direct counting of the bar codes associated with the mRNAs that we want to study was carried out. A quotient was created between the initial expression (T0) and the final expression (T1), which was converted into a categorical variable after creating ranges by quartiles.
  • this coefficient was also calculated to determine if the value obtained shows that the variables are actually related or only present said relationship as a result of chance.
  • changes in gene expression they were calculated on a logarithmic scale (based on 2) and we considered significant changes if ⁇ -1 or >1.
  • p ⁇ 0.05 we consider p ⁇ 0.05 to be statistically significant.
  • the nCounter system has free software for handling the data resulting from the analysis, the nSolver Analysis Software. We will use this software to normalize the data as well as to carry out the necessary quality controls to ensure that there has been no problem during the analysis and that the results obtained adjust to the reality of these tumors. Once the data is normalized, we will proceed to its analysis.
  • VIGLA-M a useful tool in the form of a web service for use in medical studies, to allow clinicians to explore gene expression (reference) data.
  • Big Data Analysis techniques were used with the computational resources available in the Ada Byron Research Building of the University of Malaga.
  • the co-expression of two genes is the correlation of their expression profiles in the set of samples studied.
  • the expression profile of a set of genes can also be correlated with a clinical variable that describes a phenotypic characteristic of the samples. In this case, the genes are said to be involved in the production of that particular trait.
  • a co-expression analysis with WGNA was performed before and after treatment (T0 and T1, respectively), for samples that were annotated with the clinical variables XXX, YYY and ZZZ. This procedure made it possible to identify the genes responsible for co-expression, before and after treatment.
  • Table 7 Co-expression analysis; Module-feature relationships (T0). In each row, color module with different genetic co-expression. In each column, clinical variables. It shows the relationship between the two and the statistical significance (p) in parentheses.
  • Table 8 Co-expression analysis module-trait relationships (T1). In each row, color module with different genetic co-expression. In each column, clinical variables. The relationship between the two and statistical significance (p) are shown in parentheses. Table 9. Turquoise module: information on genes associated with the responder at T0.
  • Green module information on genes associated with the T1 responder.
  • Brown module information on genes associated with LDH stratification at T1.
  • the IL-1 pathway appears to play a crucial role in the response to BRAF-targeted therapy, for which the establishment of a gene signature is considered justified (Figure 5), and given that surface integrin interactions cells were also significantly involved, they should also be present in said gene signature (Figure 6).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Biomarcadores y método para predecir o pronosticar la respuesta al tratamiento con inhibidores de BRAF y de MEK (BRAFi + MEKi) de los pacientes que padecen melanoma metastásico BRAF mutado, kit o dispositivo y usos.

Description

Biomarcadores y método para predecir o pronosticar la respuesta al tratamiento con inhibidores de BRAF v de MEK (BRAFi + MEKi)
CAMPO DE LA INVENCIÓN
La presente invención se encuentra dentro del campo de la medicina y la oncología, y se refiere a biomarcadores y a un método para predecir o pronosticar la respuesta al tratamiento de pacientes con melanoma con inhibidores de BRAF y de MEK (BRAFi + MEKi).
ESTADO DEL ARTE
El tratamiento del melanoma en la actualidad ha permitido el desarrollo de la inmunología del cáncer. Este hecho ha instado a explorar y mejorar el conocimiento de la inmunología que rodea al melanoma, a fin de optimizar su enfoque. Actualmente, la inmunoterapia para el melanoma metastásico se basa en inhibidores de los puntos de control inmunitario (ICI). La inmunoterapia ha significado la supervivencia más larga de los pacientes con melanoma. Al mismo tiempo, se ha desarrollado una terapia dirigida a mutaciones específicas, específicamente BRAF (inhibidores de BRAF y MEK, BRAFi + MEKi), que producen grandes respuestas de regresión tumoral, así como un porcentaje de largos supervivientes. Estas grandes respuestas provocan la liberación masiva de antígenos que podrían reinducir un estado de inmunocompetencia en el paciente, así como la activación de biomarcadores que pueden guiar la predicción de la respuesta. Sin embargo, el mecanismo sigue siendo completamente desconocido.
La terapia dirigida frente a BRAF supone el tratamiento estándar frente a melanoma metastásico con esa mutación. Se sabe que el bloqueo de dicho gen altera la inmunología del cáncer, pero no existe un estudio pormenorizado de expresión de genes relacionados, y actualmente no existen biomarcadores de la predicción de respuesta al mismo.
Algunos estudios han demostrado que la determinación en serie de la mutación BRAF en el ADN tumoral circulante (ADNc) puede ayudar a predecir la respuesta a los tratamientos para los pacientes con melanoma, pero esta técnica tiene una implementación muy limitada. Además, se han realizado estudios para realizar análisis genómicos para predecir la supervivencia o la respuesta al tratamiento en el melanoma BRAF mutado, pero todos estos estudios utilizaron tejido tumoral y, en la mayoría de los casos, se tomaron pocas muestras, debido a los riesgos que implica la rebiopsia, entre otras consideraciones. Varios estudios recientes han mejorado nuestra comprensión de la relación entre la inhibición de BRAF y MEK y la respuesta del sistema inmunológico, tanto adquirido como innato. Estos estudios han demostrado que la combinación de inhibidores de BRAF y MEK tiene efectos inmunológicos, reduciendo las poblaciones de células y citoquinas inmunosupresoras y mejorando la expresión y expansión de moléculas y citoquinas estimulantes del sistema inmunológico. La mayoría de estos estudios se han realizado in vitro o in vivo. Sin embargo, también se han realizado varios ensayos clínicos para evaluar la combinación de inhibidores de BRAF-MEK con inmunoterapia basada en puntos de control inmunológico.
Hasta la fecha no se ha demostrado que el estudio de la reinducción inmunitaria evidenciado en sangre periférica pudiera ayudar a predecir la respuesta a los tratamientos de terapia dirigida. Asimismo, no se han propuesto biomarcadores para determinar la respuesta temprana en pacientes con melanoma metastásico tratados con inhibidores de BRAF-MEK.
DESCRIPCIÓN DE LA INVENCIÓN
Los autores de la presente invención han analizado 19 pacientes con melanoma metastásico antes, durante y después del tratamiento con BRAFi + MEKi, recabando información sobre datos clínico-patológicos. Realizaron un análisis de expresión génica diferencial utilizando la tecnología NANOSTRING (nCounter PanCancer Immune Profiling PanelTM), determinando qué genes estaban más involucrados en el tratamiento, tanto en la primera evaluación de la respuesta como a la progresión. Finalmente, los 19 pacientes analizados mostraron peores resultados que los estudios pivotales (más jóvenes, M1c-d> M1a-b, que presentaron 47% de LDH alta, SLP 9.3m - IC95% 4.9-13.9-, OS 10, 7m -CI95% 8.8-12.6-) a pesar de una buena respuesta radiológica inicial (ORR 73.7%). Sin embargo, la expresión en sangre de algunos genes estaba sobreexpresada ( CXCL-10 , SERPING1, PDL1 o PDL2) o subexpresada (ARG 1, IL18R1, IL18RAP, IL1R1, ILR2, FLT3, SLC11A1, CD163 o S100A12 ) en el momento de la evaluación de respuesta. Los genes relacionados con el reclutamiento celular (como NK o Th) parecen estar involucrados en esta respuesta. Además, se realizó un análisis de coexpresión diferencial de genes en el que se evidencia que las vías de IL-1 y de integrinas de superficie celular están relacionadas con la respuesta y con factores biológicos que predicen la misma, pudiendo ser biomarcadores a la terapia dirigida. El análisis de expresión diferencial y la coexpresión de genes diferencial en sangre muestran diferentes genes que son activados o inhibidos por la terapia dirigida y que pueden constituir biomarcadores de respuesta que produzcan una reinducción inmune.
Por tanto, un primer aspecto de la invención se refiere al uso de CXCL-10 , SERPING1, PDL1, PDL2, ARG1, IL18R1, IL18RAP, IL1R1, ILR2, FLT3, SLC11A1, CD 163 y/o S100A12, o cualquiera de sus combinaciones, para predecir o pronosticar la respuesta al tratamiento con inhibidores de BRAF y de MEK en un individuo con melanoma metastásico que porten mutación de BRAF.
En una realización preferida de este aspecto de la invención, los genes se usan simultáneamente.
Métodos de la invención
Otro aspecto de la invención se refiere a un método in vitro de de obtención de datos útiles para predecir o pronosticar la respuesta al tratamiento con inhibidores de BRAF y de MEK en un individuo que padece melanoma metastásico BRAF mutado, de ahora en adelante primer método de la invención, que comprende: a) obtener una muestra biológica aislada del individuo, b) cuantificar la cantidad de producto de expresión de los genes CXCL-10, SERPING1, PDL1, PDL2, ARG1, IL18R1, IL18RAP, IL1R1, ILR2, FLT3, SLC11A1, CD163 y/o S100A12, o cualquiera de sus combinaciones.
Más preferiblemente el primer método de la invención además comprende: c) comparar las cantidades obtenidas en el paso (b) con una cantidad de referencia.
Aún más preferiblemente se cuantificará la cantidad de producto de expresión de todos los genes simultáneamente.
En otra realización preferida, los pasos (b) y/o (c) pueden ser total o parcialmente automatizados.
Otro aspecto de la invención se refiere a un método in vitro para predecir o pronosticar la respuesta al tratamiento con inhibidores de BRAF y de MEK, de ahora en adelante segundo método de la invención, que comprende los pasos (a) - (c) según el primer método de la invención, y además comprende: d) asignar al individuo que presenta en un análisis, antes de administrarle el tratamiento, el producto de expresión de los genes SERPING1, PDCD1LG2, CXCL10 y CD274 sobreexpresado, y el producto de expresión de los genes FLT3, SLC11A1, IL1R1, IL18RAP, CD163, IL8R1, S100A12, IL1R2 yARG1 , disminuido con respecto a los valores medios de un individuo normal, al grupo de pacientes que va a tener una respuesta positiva al tratamiento.
En una realización preferida de este aspecto de la invención, el inhibidor de BRAF se selecciona de la lista que consiste en: Dabrafenib, Vemurafenib, Encorafenib o cualquiera de sus combinaciones.
En otra realización preferida de este aspecto de la invención, el inhibidor de MEK se selecciona de la lista que consiste en: trametinib, cobimetinib, binimetinib o cualquiera de sus combinaciones.
Una "muestra biológica" tal como se define aquí, es una pequeña parte de un sujeto, representativa del conjunto y puede estar constituida por una biopsia o una muestra de fluido corporal. Preferiblemente, la muestra biológica es sangre.
La detección la cantidad de producto de expresión de SERPING1, PDCD1LG2, CXCL10, CD274, FLT3, SLC11A1, IL1R1, IL18RAP, CD163, IL8R1, S100A12, IL1R2 y ARG1 puede realizarse por cualquier medio conocido en el estado de la técnica. Los niveles de expresión de los genes van a dar un determinado perfil de expresión génica. El término "nivel de expresión", también denominado "cantidad producto génico" o "cantidad de producto de expresión" se refiere al material bioquímico, ya sea ARN o proteína, resultado de la expresión de un gen. Algunas veces se usa una medida de la cantidad de producto génico para inferir qué tan activo es un gen. Se entiende por "perfil de expresión génica" el perfil génico obtenido tras la cuantificación del ARNm y/o de proteína producida por los genes de interés o biomarcadores, es decir, por los genes SERPING1, PDCD1LG2, CXCL10, CD274, FLT3, SLC11A1, IL1R1, IL18RAP, CD163, IL8R1, S100A12, IL1R2 y ARG1.
La medida de la cantidad o la concentración de producto de expresión de estos genes, preferiblemente de manera semi-cuantitativa o cuantitativa, puede ser llevada a cabo de manera directa o indirecta. La medida directa se refiere a la medida de la cantidad o la concentración del producto de expresión de los genes, basada en una señal que se obtiene directamente de los transcritos de dichos genes, o de las proteínas, y que está correlacionada directamente con el número de moléculas de ARN o de proteínas producidas por los genes. Dicha señal (a la que también podemos referirnos como señal de intensidad) puede obtenerse, por ejemplo, midiendo un valor de intensidad de una propiedad química o física de dichos productos. La medida indirecta incluye la medida obtenida de un componente secundario o un sistema de medida biológica (por ejemplo la medida de respuestas celulares, ligandos, "etiqueta" o productos de reacción enzimática).
El término "cantidad", tal y como se utiliza en la descripción, se refiere pero no se limita, a la cantidad absoluta o relativa de los productos de expresión de los genes o a la cantidad de las proteínas, así como a cualquier otro valor o parámetro relacionado con los mismos o que pueda derivarse de éstos. Dichos valores o parámetros comprenden valores de intensidad de la señal obtenidos a partir de cualquiera de las propiedades físicas o químicas de dichos productos de expresión obtenidos mediante medida directa. Adicionalmente, dichos valores o parámetros incluyen todos aquellos obtenidos mediante medida indirecta, por ejemplo, cualquiera de los sistemas de medida descritos en otra parte del presente documento.
El término "comparación", tal y como se utiliza en la descripción, se refiere pero no se limita, a la comparación de la cantidad de los productos de expresión de los genes o de la cantidad de anticuerpos frente a SERPING 1, PDCD1LG2, CXCL10, CD274, FLT3, SLC11A1, IL1R1, IL18RAP, CD163, IL8R1, S100A12, IL1R2 y ARG1 de la muestra biológica a analizar, también llamada muestra biológica problema, con una cantidad de los productos de expresión de los genes o con una cantidad de anticuerpos frente a SERPING1, PDCD1LG2, CXCL10, CD274, FLT3, SLC11A1, IL1R1, IL18RAP, CD163, IL8R1, S100A12, IL1R2 y ARG1 de una o varias muestras de referencia deseable. La muestra de referencia puede ser analizada, por ejemplo, simultánea o consecutivamente, junto con la muestra biológica problema. El cálculo descrito en el apartado (iii) del método de la presente invención puede ser realizado manualmente o asistido por ordenador. En la siguiente tabla se describen los genes usados en la invención según la base de datos PubMed del NCBI (National Center of Biotechnolgy Information).
Tabla 1. Genes empleados como biomarcadores
Figure imgf000007_0001
Figure imgf000008_0001
En otra realización preferida de este aspecto de la invención, la detección de la cantidad de expresión de cualquiera de los genes SERPING1, PDCD1LG2, CXCL10, CD274, FLT3, SLC11A1, IL1R1, IL18RAP, CD163, IL8R1, S100A12, IL1R2 y ARG1 se realiza mediante: i. un procedimiento de análisis de la expresión génica, como por ejemplo, pero sin limitarnos, qRT-PCR, microarrays de ADN, nCounter, RNA-Seq, FISH y microarrays de tejidos; y/o ii. transferencia Northern.
Ni. un inmunoensayo o inmunohistoquímica, como ELISA y/o transferencia Western.
Preferiblemente la detección de la cantidad de expresión se realiza mediante nCounter. El ensayo nCounter se basa en la detección digital directa de las moléculas de ARNm de interés utilizando pares de sondas codificadas por colores específicos del objetivo. No requiere la conversión de ARNm a ADNc por transcripción inversa o la amplificación del ADNc resultante por PCR. Cada gen objetivo de interés se detecta usando un par de sondas de captura y un reportero que llevan secuencias específicas de la diana de 35 a 50 bases. Adicionalmente, cada sonda indicadora lleva un código de color único en el extremo 5 'que permite el código de barras molecular de los genes de interés, mientras que las sondas de captura llevan una etiqueta de biotina en el extremo 3' que proporciona un asa molecular para la unión de genes diana para facilitar detección digital aguas abajo. Después de la hibridación en fase de solución entre el ARNm objetivo y los pares de sondas de captura de reportero, se eliminan las sondas en exceso y los complejos sonda / objetivo se alinean e inmovilizan en el cartucho nCounter, que luego se coloca en un analizador digital para la adquisición de imágenes y el procesamiento de datos. Cientos de miles de códigos de color que designan objetivos de ARNm de interés se graban directamente en la superficie del cartucho. El nivel de expresión de un gen se mide contando el número de veces que se detecta el código de barras con código de color para ese gen.
En otra realización preferida, la detección de los niveles de expresión de los genes se realiza mediante Q-RT-PCR.
En otra realización preferida de este aspecto de la invención, la detección de la cantidad de expresión de cualquiera de los genes se realiza mediante un inmunoensayo. El término "inmunoensayo", tal y como se utiliza en la presente descripción se refiere a cualquier técnica analítica que se basa en la reacción de la conjugación de un anticuerpo con un antígeno. Ejemplos de inmunoensayos conocidos en el estado de la técnica son, por ejemplo, pero sin limitarse: inmunoblot, ensayo inmunoabsorbente ligado a enzimas (ELISA), inmunoensayo lineal (LIA), radioinmunoensayo (RIA), inmunofluoresecencia, x-map o chips de proteína.
En otra realización preferida, el inmunoensayo es un ensayo inmunoabsorbente ligado a enzimas o ELISA (Enzyme-Linked ImmunoSorbent Assay). El ELISA se basa en la premisa de que un inmunorreactivo (antígeno o anticuerpo) puede ser inmovilizado en un soporte sólido, poniendo luego ese sistema en contacto con una fase fluida que contiene el reactivo complementario que puede unirse a un compuesto marcador. Existen diferentes tipos de ELISA: ELISA directo, ELISA indirecto o ELISA sándwich. El término "compuesto marcador", tal y como se utiliza en la presente descripción, se refiere a un compuesto capaz de dar lugar a una señal cromogénica, fluorogénica, radiactiva y/o quimioluminiscente que permita la detección y cuantificación de la cantidad de anticuerpos frente a SERPING1, PDCD1LG2, CXCL10, CD274, FLT3, SLC11A1, IL1R1, IL18RAP, CD163, IL8R1, S100A12, IL1R2 y ARG1 El compuesto marcador se selecciona de la lista que comprende radioisótopos, enzimas, fluoroforos o cualquier molécula susceptible de ser conjugada con otra molécula o detectada y/o cuantificada de forma directa. Este compuesto marcador puede unirse al anticuerpo directamente, o a través de otro compuesto. Algunos ejemplos de compuestos marcadores que se unen directamente son, pero sin limitarse, enzimas como la fosfatasa alcalina o la peroxidasa, isótopos radiactivos como 32P o 35S, fluorocromos como fluoresceína o partículas metálicas, para su detección directa mediante colorimetría, auto- radiografía, fluorimetría, o metalografía respectivamente.
Por tanto, la detección del producto de expresión de los genes no necesita estar particularmente limitado, y puede seleccionarse mediante un método de perfilado de genes, como una micromatriz, y/o un método que comprende PCR, tal como PCR cuantitativa en tiempo real; y/o Northern Blot. La PCR cuantitativa en tiempo real (generalmente abreviada como RQ-PCR, RT-qPCR, rt-PCR o qPCR) es una técnica de cuantificación de la expresión génica sensible y reproducible que se puede usar particularmente para perfilar la expresión de los genes en células y tejidos. Se puede utilizar cualquier método para evaluar los resultados de la RT-PCR, y se puede preferir el método AACt. El método AACt se describe en detalle por Livak et al. (Methods 2001, 25: 402-408). (Ct = Valores umbral de ciclo). Al poner en práctica la presente invención, el método AACt descrito por Livak et al. (Métodos 2001, 25: 402-408) se utilizarán preferentemente. El AACt-method incluirá una 'muestra de control' y una 'muestra de sujeto'. La 'muestra de sujeto' es una muestra del sujeto a analizar. Para cada muestra, se incluyen un gen diana (aquí: mRNA de interés) y un gen de control endógeno (como se describe a continuación) para la amplificación por PCR a partir de alícuotas (típicamente en serie). Típicamente, se utilizan varias réplicas para cada concentración diluida para derivar la eficiencia de amplificación. La eficiencia de la amplificación por PCR se puede definir como porcentaje de amplificación (de 0 a 1). Durante la reacción de qPCR, un software mide típicamente para cada muestra el número de ciclo en el que la fluorescencia (indicador de amplificación por PCR) cruza una línea arbitraria, el umbral. Este punto de cruce es el valor Ct.
Una micromatriz es una matriz sobre un sustrato sólido (generalmente una lámina de vidrio o una célula de película delgada de silicio) que analiza grandes cantidades de material biológico, en el presente caso el producto de expresión de los genes, que son detectables mediante sondas específicas inmovilizadas sobre el sustrato sólido.
Una transferencia Northern implica el uso de electroforesis para separar muestras de ARN por tamaño y detección posterior con una sonda de hibridación complementaria a (parte de) la secuencia diana del ARN de interés.
El método de la presente invención se puede aplicar con muestras de individuos de cualquier sexo, es decir, hombres o mujeres, y a cualquier edad.
En el método de la presente invención, el producto de expresión de los genes puede normalizarse, preferiblemente en relación con la expresión de otro gen. Existen métodos de normalización bien conocidos en el estado de la técnica.
El producto de expresión puede ser también una proteína. Por tanto, otros métodos de cuantificación del producto de expresión HPLC (cromatografía líquida de alta resolución), LC/MS (cromatografía líquida acoplada a espectrometría de masas, ELISA, DAS ELISA, inmunoprecipitación de proteínas, inmunoelectroforesis, Western Blot, inmunotinción de proteínas, Northern Blot, PCR con transcripción reversa (RT-PCR), PCR cuantitativa (q- PCR), RIA (radioinmunoensayo), hibridación in situ, ensayo de protección frente a nucleasas, secuenciación masiva, técnicas inmunocitoquímicas o inmunohistoquímicas microarrays de ADN genómico, microarrays de proteínas, microarrays de ARN mensajero, microarrays de ADNc, microarrays de péptidos, microarrays de tejido, microarrays celulares o de transfección, microarrays de anticuerpos, microarrays de lisados o suero, microarrays de proteínas de fase reversa, microarrays de péptidos o microarrays de genotipado, entre otros.
Más preferiblemente el producto de expresión es mRNA, y preferiblemente la detección se realiza por PCR con transcripción reversa (RT-PCR) o PCR cuantitativa (q-PCR). En la presente invención se entiende por "pronóstico" la evolución esperada de una enfermedad y se refiere a la valoración de la probabilidad según la cual un sujeto padece una enfermedad así como a la valoración de su inicio, estado de desarrollo, evolución, o de su regresión, y/o el pronóstico del curso de la enfermedad en el futuro. Como entenderán los expertos en la materia, tal valoración, aunque se prefiere que sea, normalmente puede no ser correcta para el 100% de los sujetos que se van a diagnosticar. El término, sin embargo, requiere que una parte estadísticamente significativa de los sujetos se pueda identificar como que padecen la enfermedad o que tienen predisposición a la misma. Si una parte es estadísticamente significativa se puede determinar sin más por el experto en la materia usando varias herramientas de evaluación estadística bien conocidas, por ejemplo, determinación de intervalos de confianza, determinación de valores p, prueba de la t de Student, prueba de Mann-Whitney, etc. Los intervalos de confianza preferidos son al menos el 50%, al menos el 60%, al menos el 70%, al menos el 80%, al menos el 90%, al menos el 95%. Los valores de p son, preferiblemente, 0,2, 0,1, 0,05. A su vez, atendiendo al método de la presente invención, se podrían establecer otras subclasificaciones dentro de esta principal, facilitando, por tanto, la elección y el establecimiento de regímenes terapéuticos o tratamiento adecuados. Esta discriminación tal y como es entendida por un experto en la materia no pretende ser correcta en un 100% de las muestras analizadas. Sin embargo, requiere que una cantidad estadísticamente significativa de las muestras analizadas sean clasificadas correctamente. La cantidad que es estadísticamente significativa puede ser establecida por un experto en la materia mediante el uso de diferentes herramientas estadísticas, por ejemplo, pero sin limitarse, mediante la determinación de intervalos de confianza, determinación del valor significación P, test de Student o funciones discriminantes de Fisher, medidas no paramétricas de Mann Whitney, correlación de Spearman, regresión logística, regresión lineal, área bajo la curva de ROC (AUC). Preferiblemente, los intervalos de confianza son al menos del 90%, al menos del 95%, al menos del 97%, al menos del 98% o al menos del 99%. Preferiblemente, el valor de p es menor de 0,1, de 0,05, de 0,01, de 0,005 o de 0,0001. Preferiblemente, la presente invención permite detectar correctamente la enfermedad de forma diferencial en al menos el 60%, más preferiblemente en al menos el 70%, mucho más preferiblemente en al menos el 80%, o aún mucho más preferiblemente en al menos el 90% de los sujetos de un determinado grupo o población analizada.
Una "muestra de referencia", como se usa aquí, significa una muestra obtenida de un grupo de sujetos sanos que no tiene un estado de enfermedad o fenotipo particular.
Los niveles de referencia pueden ser determinada mediante la medición de los niveles de expresión de dichos genes en varios temas adecuados, y esos niveles de referencia se puede ajustar a las poblaciones específicas (por ejemplo, un nivel de referencia puede estar relacionada con la edad, por lo que las comparaciones se puede hacer entre los niveles de expresión en las muestras de los sujetos de una cierta edad y niveles de referencia para una enfermedad particular, el fenotipo, o falta de ella en un determinado grupo de edad). En una realización preferida, la muestra de referencia se obtiene de varios sujetos en general, o de sujetos no respondedores a al tratamiento con inhibidores de BRAF y de MEK. El experto en la técnica apreciará que el tipo de muestra de referencia puede variar dependiendo del método específico a realizar.
El perfil de expresión de los genes en la muestra de referencia de preferencia puede ser generado a partir de una población de dos o más personas. La población, por ejemplo, pueden contener 3, 4, 5, 10, 15, 20, 30, 40, 50 o más personas. Además, el perfil de expresión de los genes en la muestra de referencia y en la muestra de la persona que va a ser diagnosticada de acuerdo con los métodos de la presente invención pueden ser generados a partir de la misma persona, siempre que los perfiles sean analizados y el perfil de referencia son generados a partir de las muestras biológicas tomadas en diferentes momentos y se comparan entre sí. Por ejemplo, una muestra de un individuo puede obtener en el inicio de un período de estudio. Un perfil de marcador biológico de referencia de esta muestra se puede comparar con los perfiles de biomarcadores generados a partir de las muestras posteriores de la misma persona. En una realización preferida, la muestra de referencia es un conjunto de muestras de varios individuos.
Una vez que los niveles de expresión de los genes marcadores en relación con los valores de referencia para dichos genes se han determinado, es necesario identificar si existen alteraciones en la expresión de dichos genes (aumento o disminución de la expresión). La expresión de un gen (y los niveles del producto de expresión del gen) se considera aumentada en una muestra de la materia objeto de estudio cuando los niveles de incremento con respecto a la muestra de referencia son al menos de un 5%, por lo menos 10%, por lo menos 15%, por lo menos el 20%, al menos un 25%, por lo menos 30%, por lo menos el 35%, por lo menos el 40%, por lo menos 45%, por lo menos el 50%, por lo menos el 55%, por lo menos el 60%, por menos por lo menos 65%, por lo menos el 70%, por lo menos el 75%, por lo menos el 80%, por lo menos el 85%, por lo menos el 90%, por lo menos el 95%, por lo menos 100%, por lo menos 1 10 %, por lo menos 120%, por lo menos 130%, por lo menos 140%, por lo menos 150%, o más. Del mismo modo, la expresión de un gen se considerada disminuida cuando sus niveles disminuyen con respecto a la muestra de referencia en al menos un 5%, por lo menos 10%, por lo menos 15%, por lo menos el 20%, por lo menos el 25%, al menos un 30%, por lo menos el 35%, por lo menos el 40%, por lo menos 45%, por lo menos el 50%, por lo menos el 55%, por lo menos el 60%), por lo menos el 65%, por lo menos 70%, por lo menos el 75%, por lo menos el 80%, por lo menos el 85%, por lo menos el 90%, por lo menos el 95%, por lo menos 100% (es decir, ausente).
Usos médicos de la invención
Otro aspecto de la invención se refiere a una composición o un kit de partes que comprende al menos un inhibidor de BRAF y un inhibidor de MEK para tratar a un individuo que padece melanoma metastásico BRAF mutado, identificable por cualquiera de los métodos de la invención.
En una realización preferida de este aspecto de la invención, el inhibidor de BRAF se selecciona de la lista que consiste en: dabrafenib, vemurafenib, cobimetinib, o cualquiera de sus combinaciones.
En otra realización preferida de este aspecto de la invención, el inhibidor de MEK se selecciona de la lista que consiste en: trametinib, cobimetinib, binimetinib, o cualquiera de sus combinaciones.
Kit o composición de la invención y usos
Otro aspecto de la invención se refiere a un kit o dispositivo, de ahora en adelante kit o dispositivo de la invención, que comprende los elementos necesarios para cuantificar el producto de expresión de los genes CXCL-10, SERPING1, PDL1, PDL2, ARG1, IL18R1, IL18RAP, IL1R1, ILR2, FLT3, SLC11A1, CD163 y/o S100A12, o cualquiera de sus combinaciones.
Preferiblemente comprende los elementos necesarios para cuantificar simultáneamente el producto de expresión de los genes CXCL-10, SERPING1, PDL1, PDL2, ARG1, IL18R1, IL18RAP, IL1R1, ILR2, FLT3, SLC11A1, CD163 y S100A12.
Otro aspecto de la invención se refiere al uso del kit o dispositivo de la invención, para predecir o pronosticar la respuesta al tratamiento con inhibidores de BRAF y de MEK en un individuo, preferiblemente donde el individuo padece melanoma metastásico BRAF mutado.
En una realización preferida el kit o dispositivo de la invención comprende:
(a) medios para detectar en una muestra biológica obtenida del sujeto los niveles de expresión de los biomarcadores de la invención, (b) medios para comparar el nivel de expresión de los biomarcadores determinados en (a) con una muestra de referencia,
(c) instrucciones para que un profesional médico administre el tratamiento con al menos un inhibidor de BRAF y un inhibidor de MEK únicamente a aquellos sujetos que se puedan clasificar en el grupo de respondedores.
Aún más preferiblemente, el kit de este aspecto de la invención comprende anticuerpos o fragmentos de los mismos específicos frente a cualquiera de las secuencias de las proteínas codificadas por los genes CXCL-10, SERPING 1, PDL1, PDL2, ARG1, IL18R1, IL18RAP, IL1R1, ILR2, FLT3, SLC11A1, CD163 y/o S100A12 frente a secuencias aminoacídicas que presenten un grado de identidad con dichas secuencias aminoacídicas de al menos del 85%, típicamente de, al menos del 90%, preferiblemente de, al menos del 95%, más preferiblemente de, al menos del 98%, aún más preferiblemente de, al menos del 99%. En otra realización preferida, el kit de este aspecto de la invención comprende anticuerpos secundarios o controles positivos y/o negativos. El kit además puede incluir, sin ningún tipo de limitación, tampones, soluciones de extracción de proteínas, agentes para prevenir la contaminación, inhibidores de la degradación de las proteínas, etc.
En otra realización preferida, el kit de este aspecto de la invención es adecuado para amplificar secuencias nucleotídicas, que comprende sondas y/o cebadores diseñados a partir de las secuencias de los genes CXCL-10, SERPING1, PDL1, PDL2, ARG1, IL18R1, IL18RAP, IL1R1, ILR2, FLT3, SLC11A1, CD163 y/o S100A12 así como opcionalmente todos aquellos elementos necesarios para llevar a cabo un procedimiento PCR.
Otro aspecto de la invención se refiere al uso de cualquiera de los kits o dispositivos de la presente invención, en la obtención de datos útiles para predecir o pronosticar la respuesta al tratamiento con inhibidores de BRAF y de MEK (BRAFi + MEKi) en un individuo, preferiblemente donde el individuo ha sido diagnosticado de cáncer, y aún más preferiblemente donde el individuo ha sido diagnosticado de un melanoma metastásico BRAF mutado.
Automatización del método de la invención implementándolo en un programa de ordenador
Otro aspecto de la invención se refiere a un programa de ordenador que comprende instrucciones para realizar el procedimiento de acuerdo con cualquiera de los métodos de la invención. En particular, la invención abarca programas de ordenador dispuestos sobre o dentro de una portadora. La portadora puede ser cualquier entidad o dispositivo capaz de soportar el programa. Como variante, la portadora podría ser un circuito integrado en el que va incluido el programa y que se haya adaptado para ejecutar, o para ser utilizado en la ejecución de los procesos correspondientes.
Por ejemplo, los programas podrían estar incorporados en un medio de almacenamiento, como una memoria ROM, una memoria CD ROM o una memoria ROM de semiconductor, una memoria USB, o un soporte de grabación magnética, por ejemplo, un disco flexible o un disco duro. Alternativamente, los programas podrían estar soportados en una señal portadora transmisible; por ejemplo, podría tratarse de una señal eléctrica u óptica que podría transportarse a través de cable eléctrico u óptico, por radio o por cualesquiera otros medios.
La invención se extiende también a programas de ordenador adaptados para que cualquier medio de procesamiento pueda llevar a la práctica los métodos de la invención. Los programas de ordenador también abarcan aplicaciones en la nube basadas en dicho procedimiento.
Otros aspectos de la invención se refieren al medio de almacenamiento legible y a la señal transmisible que comprende instrucciones de programa necesarias para la ejecución del método de invención por un ordenador.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención.
DESCRIPCIÓN DE LAS FIGURAS
Fig. 1. Diagrama de flujo de selección de pacientes.
*Pacientes excluidos: 2 pacientes con problemas técnicos en sus muestras, no-melanoma; 2 pacientes a los que nos se les extrajeron muestras de sangre, 1 paciente erróneamente diagnosticado con melanoma metastásico (reacción sarcoidea). **Pacientes excluidos debido a un deterioro clínico extremo que condicionó su no consentimiento.
Fig. 2. Evolución de los genes identificados. Cambio de expresión T0 - T1 y T1 - T2.
Fig. 3. Curvas de supervivencia Kaplan Meier. (A) Función de supervivencia Progression Free Survival (PFS). (B) Función de supervivencia “Overalll Survival” (OS).
Fig. 4 Análisis de supervivencia; Kaplan-Meier Overall Survival Analysis; Fig. 4a. por ECOG (p<0,01); Fig. 4b por perfil de respuesta (p<0,001); Fig. 4c por metastasectomía (p=0,061), Fig. 4d por tratamiento adyuvante (p=0,024), Fig. 4e por LDH (p=0,008), Fig. 4f por leucocitosis (p=0,037).
Fig. 5. Interacciones en la vía de IL-1.
Fig. 6. Firma génica incluyendo las interacciones de las integrinas de la superficie celular. Ampliación de las secciones a) - p).
EJEMPLOS DE LA INVENCIÓN
Material y métodos
Características de los pacientes
Este trabajo está financiado por la Fundación Progreso y Salud de la Junta de Andalucía, en 2014 (PI-0161-2014). Este estudio estuvo conducido acorde con la Declaración de la Asociación Médica Mundial de Helsinki. El Comité Ético local aprobó este estudio en julio de 2015. Desde octubre de 2015 hasta septiembre de 2019, se han reclutado finalmente 19 pacientes con melanoma metastásico tratado con inhibidores de BRAF e inhibidores de MEK. Algunas de las características de los pacientes, tumorales, análisis sanguíneos o los diferentes tratamientos recibidos se muestran en las tablas siguientes.
Tabla 2. Características de los pacientes.
45,7 (20,1-61 ,9) 49,9 (23,9-85,4)
36,8%
63,2%
Figure imgf000016_0001
HOJA DE REEMPLAZO (REGLA 26) C
S
Figure imgf000017_0004
Tratamientos previos Resección tumor primario 77,8% Metastasectomía 33,3% Adyuvancia 27,8%
Analítica
Figure imgf000017_0005
Localización tumor primario Miembros 27,8% Tronco 33,3%
Cabeza y cuello 22,2% Localizaciones especiales 16,7%
Meses Dx primario-M1 (media, rango) 26,2 (0-106)
Figure imgf000017_0001
Figure imgf000017_0002
Mutación BRAF V600E 94,4% V600K 5,6% Sin mutación 0
Tabla 3. Tratamiento y respuesta.
Figure imgf000017_0003
Muestras sanguíneas
De forma prospectiva, se han ido recogiendo muestras sanguíneas antes de comenzar tratamiento (T0), en la primera evaluación radiológica (12 semanas aproximadamente) (T1) y a la progresión de cada paciente (T2). En los pacientes a los que a los 18 meses de inicio de terapia dirigida no habían tenido progresión, se les extrajo la tercera muestra. Se excluyeron otros pacientes que por circunstancias médicas no tenían las 3 muestras o tenían otras circunstancias que pudieran alterar los resultados.
En la figura 1 se muestra el esquema de selección de pacientes. Análisis génico
Inicialmente se recopilaron las muestras de sangre periférica y se procedió con la extracción, purificación y cuantificación de RNA total de las muestras. La extracción se realizó con el kit RNA Amp Minikit (Qiagen). El RNA se cuantificó y se almacenó a -80°C en alícuotas de un solo uso. Posteriormente se procedió al análisis de expresión génica de estas muestras mediante el panel nCounter PanCancer Immune Profiling Panel Panel (Nanostring). Este panel incluye 770 genes que incluyen marcadores para 24 tipos de células inmunológicas y poblaciones, 30 antígenos comunes contra el cáncer y genes que representan todas las categorías de la respuesta inmune, incluyendo genes clave de bloqueo de puntos de control del ciclo celular. La cuantificación digital de ácidos nucleicos mediante el sistema nCounter consta de tres pasos principales: hibridación, procesamiento de la muestra y obtención de datos. De forma breve, durante la hibridación se añade el tampón, las sondas y la muestra en tubos de PCR y se dejan incubando a 65°C toda la noche para que se complete la hibridación. El procesamiento de las muestras se llevó a cabo en uno de los dos módulos que forman el equipo nCounter, en la Prep Station. En este paso se añadieron a los tubos de PCR los reactivos y fungibles que Nanostring provee en la Master Mix del PanCancer Immune Profiling Panel. Finalmente, en el módulo Digital Analyzero estación de análisis digital, se realizó el contaje directo de los códigos de barras asociados a los mRNAs que queremos estudiar. Se creó un cociente entre expresión inicial (T0) y expresión final (T1) que se reconvirtió en variable categórica tras la creación de rangos por cuartiles.
Análisis estadístico y bioinformático
Inicialmente se realizó un análisis descriptivo de las variables del estudio, determinándose sus valores medios, desviación estándar o medianas según la distribución de la variable sea o no simétrica, rango de valores: máximo y mínimo. Las variables categóricas se presentaron en frecuencias absolutas y frecuencias relativas. Para la comparación de variables cuantitativas continuas como puede ser el número de copias de mRNA (en la medición de la expresión génica) en cada una de las muestras, se empleó el coeficiente de correlación lineal de Pearson en caso de que se cumplan las condiciones de normalidad de las variables, en caso contrario se calculará el coeficiente de Spearman. Valores por encima de 0,6 se consideraron como una buena correlación positiva. También de forma arbitraria, acorde con la literatura, los valores por debajo de -0,6 se consideró una correlación negativa. También se calculó la correspondiente significación de este coeficiente para determinar si tal valor obtenido muestra que las variables están relacionadas en realidad o tan solo presentan dicha relación como consecuencia del azar. Con respecto a los cambios de expresión génica, se calcularon en escala logarítmica (en base 2) y consideramos cambios significativos si <-1 o >1. Además, consideramos estadísticamente significativo una p<0,05. El sistema nCounter dispone de un software libre para el manejo de los datos resultantes del análisis, el nSolver Analysis Software. Utilizaremos este software para la normalización de los datos así como para realizar los controles de calidad necesarios para asegurar que no ha habido ningún problema durante el análisis y que los resultados obtenidos se ajustan a la realidad de estos tumores. Una vez normalizados los datos, procederemos a su análisis. Para la comparación de variables independientes categóricas dicotómicas (como son determinadas variables clínicas) con variables dependientes categóricas policotómicas (como son determinadas variables clínicas o medición de expresión proteica por inmunohistoquímica en tejido tumoral parafinado), se empleó la prueba Chi-cuadrado o a través de la prueba exacta de Fisher en el caso de que el porcentaje de valores esperados menores de 5 superaran el 20%. Para el análisis de supervivencia se empleó el método de Kaplan-Meier, calculándose en Log-Rank con los factores que se consideren que hubo diferencias en los análisis estadísticos univariantes y que desde el punto de vista clínico tuvieron plausibilidad y relevancia suficiente. El análisis informático de los datos de expresión génica se realizó usando técnicas de reconstrucción (semi)automática de modelos basados en el uso de técnicas heurísticas de optimización multi-objetivo. Además, para facilitar la interpretación de los datos, diseñamos VIGLA-M, una herramienta útil en forma de servicio web para su uso en estudios médicos, para permitir a los médicos la exploración de datos de expresión génica (referencia). Para realizar los experimentos a la escala necesaria se hicieron uso de técnicas de Análisis del Big Data con los recursos computacionales disponibles en el Edificio de investigación Ada Byron de la Universidad de Málaga.
La coexpresión de dos genes es la correlación de sus perfiles de expresión en el conjunto de muestras estudiadas. El perfil de expresión de un conjunto de genes también puede correlacionarse con una variable clínica que describe una característica fenotípica de las muestras. En este caso, se dice que los genes están involucrados en la producción de esa característica en particular. En el presente estudio, se realizó un análisis de coexpresión con WGNA antes y después del tratamiento (T0 y T1, respectivamente), para muestras que fueron anotadas con las variables clínicas XXX, YYY y ZZZ. Este procedimiento permitió identificar los genes responsables de la coexpresión, antes y después del tratamiento.
Resultados
Pacientes y tratamientos
Las características clínicas y demográficas están recogidas en las tablas. 19 pacientes fueron completamente estudiados. La edad media al diagnóstico de enfermedad metastásica fue de 49,9 años (rango 23,9 a 85,4). El tiempo desde el diagnóstico de melanoma hasta el diagnóstico de enfermedad metastásica fue de 26,2 meses (rango 0- 102), aunque el 38,9% debutó como estadio IV. El 63,2% fueron mujeres. En su mayoría presentaban un adecuado performance status (ECOG 0-1 en un 78,39%).
Al inicio de la terapia dirigida el 73,7% presentaba M1c-d según 8th edition TNM (26,3% metástasis en SNC), presentando LDH elevada en el 47,1%. Casi todos los pacientes (94,4%) comenzaron con terapia combinada entre inhibidores de BRAF e inhibidores de MEK, salvo un paciente que tenía una contraindicación y comenzó con monoterapia con inhibidores de BRAF. La tolerancia a la medicación fue aceptable, con una toxicidad grado 3-4 del 36,8%, que precisó un 52,6% de ajuste de dosis. Estos datos son similares a los encontrados en estudios pivotales, si bien no supuso ningún problema para el tratamiento de los mismos.
Respuesta y supervivencias
En cuanto a la respuesta a los tratamientos, nos encontramos una tasa de respuesta objetiva (ORR) similar a estudios pivotales (73,7%). Dado los malos resultados en cuanto a supervivencia (fig. 2), exploramos la posibilidad de un desbalance en la proporción de pacientes. Utilizamos la siguiente distribución para re-catalogar a los pacientes: - Muy Mal respondedor: PFS<4 meses y OS<9 meses - Mal respondedor: PFS 4-6 meses u OS 9-12 meses - Buen respondedor: PFS 6-10 meses u OS 12-24 meses - Muy buen respondedor: PFS >10 meses u OS>24 meses En nuestro estudio un 21% fueron muy malos respondedores, un 16% mal respondedor, mientras que un 26% y 37% fueron buenos y muy buenos respondedores, respectivamente. Sin embargo, pese a esa distribución equilibrada, las medianas de supervivencia fueron bajas, con una mediana de supervivencia global (OS) desde el inicio de terapia dirigida de 10,7 meses (IC95% 8,7-12,6) y una supervivencia libre de progresión (PFS) de 9,3 meses (IC95% 4,8-13,9).
El análisis por subgrupo de la supervivencia global se muestra en la siguiente tabla.
Tabla 4. Análisis por subgrupo de la supervivencia global.
Figure imgf000021_0001
Tipo de tratamiento (¡BRAF/iMEK) 0,282
Figure imgf000022_0001
El estado general de los pacientes mostró diferencias estadísticamente significativas, así como las metastasectomías. En cuanto a la adyuvancia, también se encontraron diferencias estadísticamente significativas, aunque de forma contraria a la esperada. Posiblemente debido a sesgo de selección, dado el escaso número de pacientes estudiados, los sujetos que habían recibido adyuvancia tuvieron peor pronóstico que aquellos que no la habían recibido.
En el análisis de las características analíticas básales de los pacientes nos encontramos con que aquellos pacientes con LDH elevado o leucocitosis tenían peor pronóstico, pudiendo constituir un subgrupo sobre el que implementar una estrategia diferente a la estándar (Figuras 4a - 4f).
El análisis multivariante de las tasas de supervivencia, utilizando la regresión de Cox, no reveló una asociación significativa entre la respuesta al tratamiento y otras variantes clínicas analizadas. Tabla 5. Análisis multivariable
Variables clínicas Regresión Cox (p)
ECOG 0,695
TNM 0,433
Figure imgf000022_0002
Ulceración 0,695
Metastasectomía 0,182
Número de metástasis 0,918
Recuento de linfocitos 0,182
LDH 0,695 dNLR 0,433
Toxicidad 0,182
Figure imgf000023_0002
Expresión génica
Inicialmente seleccionamos, de los 770 genes del panel, los genes que habían tenido una expresión diferencial estadísticamente significativa entre T0 y T1, como indica la siguiente tabla.
Tabla 6. Valores de expresión de los genes.
Figure imgf000023_0001
Figure imgf000024_0001
Este análisis mostró que la expresión de algunos genes aumentó (CXCL10, SERPING1, PD- L1 o PD-L2) y otros disminuyó (ARG1, IL18R1, IL18RAP, IL1R1, ILR2, FLT3, SLC11A1, CD163 o S100A12). Confirmamos que estos genes participaban en la mayoría de funciones inmunológicas estudiadas, tanto de forma directa como indirecta. Posteriormente determinamos cómo evolucionaban esos genes a la progresión, es decir, entre T1 y T2 (Fig. 2).
Todos los genes estudiados, tienen un comportamiento contrario en la progresión, es decir, que los genes que se sobreexpresaban tienen una regulación a la baja y los que se infraexpresaban tienen una regulación al alza (Fig. 3).
En el análisis de coexpresión diferencial de genes buscamos qué genes comparten un patrón de expresión y relación similar con diferentes variables clínicas (ECOG, metastasectomía, tratamiento adyuvante o estratificación LDH) o con la respuesta al tratamiento en los diferentes puntos de recogida de las muestras T0 and T1. Las siguientes tablas muestran los diferentes genes encontrados en cada tiempo.
Tabla 7. Análisis de coexpresión; Relaciones módulo-rasgo (T0). En cada fila, módulo de colores con diferente coexpresión genética. En cada columna, variables clínicas. Se muestra la relación entre los dos y la significación estadística (p) entre paréntesis.
Figure imgf000025_0001
Genes involucrados en los módulos T0-T1.
Tabla 8. Relaciones módulo-rasgo de análisis de coexpresión (T1). En cada fila, módulo de colores con diferente coexpresión genética. En cada columna, variables clínicas. Se muestra la relación entre los dos y la significación estadística (p) entre paréntesis.
Figure imgf000025_0002
Tabla 9. Módulo turquesa: información sobre genes asociados con el respondedor en T0.
Figure imgf000026_0003
Figure imgf000026_0001
Tabla 10. Módulo verde: información sobre genes asociados con el respondedor en T1.
Figure imgf000026_0004
PLAU -0 5400 0 0308 i 0 8079 j 0 0002
Figure imgf000026_0002
Figure imgf000027_0001
Tabla 11, Módulo marrón: información sobre genes asociados con la estratificación de LDH en T1.
Figure imgf000027_0003
Figure imgf000027_0002
Figure imgf000028_0001
La vía de IL-1 parece tener un papel crucial en la respuesta a la terapia dirigida frente a BRAF, por lo que se considera justificado el establecimiento de una firma génica (Figura 5), y dado que las interacciones de las integrinas de la superficie celular también se vieron involucradas de manera significativa, estas deberían estar igualmente presentes en dicha firma génica (Figura 6).

Claims

REIVINDICACIONES
1.- CXCL-10, SERPING 1, PDL1, PDL2, ARG1, IL18R1, IL18RAP, IL1R1, ILR2, FLT3, SLC11A1, CD163 y/o S100A12 para predecir o pronosticar la respuesta al tratamiento con inhibidores de BRAF y de MEK en un individuo, preferiblemente donde el individuo padece melanoma metastásico BRAF mutado.
2 - Un método in vitro de obtención de datos útiles para predecir o pronosticar la respuesta al tratamiento con inhibidores de BRAF y de MEK en un individuo que comprende: a) obtener una muestra biológica aislada del individuo, b) cuantificar la cantidad de producto de expresión de los genes CXCL-10 , SERPING 1, PDL1, PDL2, ARG1, IL18R1, IL18RAP, IL1R1, ILR2, FLT3, SLC11A1, CD163 y/o S100A12
3.- El método según la reivindicación anterior, que además comprende: c) comparar las cantidades obtenidas en el paso (b) con una cantidad de referencia.
4 - El método según cualquiera de las reivindicaciones 2-3, donde los pasos (b) y/o (c) pueden ser total o parcialmente automatizados.
5.- Un método in vitro para predecir o pronosticar la respuesta al tratamiento con inhibidores de BRAF y de MEK que comprende los pasos (a) - (c) según cualquiera de las reivindicaciones 2-4, y además comprende: d) asignar al individuo que presenta en un análisis, antes de administrarle el tratamiento, el producto de expresión de los genes SERPING1, PDCD1LG2, CXCL10 y CD274 sobreexpresado, y el producto de expresión de los genes FLT3, SLC11A1, IL1R1, IL18RAP, CD163, IL8R1, S100A12, ¡L1R2 y ARG1, disminuido con respecto a los valores medios de un individuo normal, al grupo de pacientes que va a tener una respuesta positiva al tratamiento.
6.- El método según cualquiera de las reivindicaciones 2-5, donde el individuo padece melanoma metastásico BRAF mutado.
7.- El método según cualquiera de las reivindicaciones 2-6, donde el inhibidor de BRAF se selecciona de la lista que consiste en: dabrafenib, vemurafenib, encorafenib o cualquiera de sus combinaciones.
8.- En El método según cualquiera de las reivindicaciones 2-7, donde el inhibidor de MEK se selecciona de la lista que consiste en: trametinib, cobimetinib, binimetinib o cualquiera de sus combinaciones.
9.- El método según cualquiera de las reivindicaciones 2-8, donde la muestra biológica es sangre.
10.- El método según cualquiera de las reivindicaciones 2-9, donde el producto de expresión es ARNm.
11.- El método según cualquiera de las reivindicaciones 2-10, donde el producto de expresión se cuantifica por:
• un método de perfilado genético, como una micromatriz; y/o
• un método que comprende PCR, tal como PCR en tiempo real; y/o
• Northern Blot; y/o
• un procedimiento inmunológico y/o inmunoensayo, como ELISA y/o transferencia Western.
12.- El método según cualquiera de las reivindicaciones 2-10, donde el producto de expresión se cuantifica por una técnica que se selecciona de la lista que consiste en: HPLC (cromatografía líquida de alta resolución), LC/MS (cromatografía líquida acoplada a espectrometría de masas, ELISA, DAS ELISA, inmunoprecipitación de proteínas, inmunoelectroforesis, Western Blot, inmunotinción de proteínas, Northern Blot, PCR con transcripción reversa (RT-PCR), PCR cuantitativa (q-PCR), RIA (radioinmunoensayo), hibridación in situ, ensayo de protección frente a nucleasas, secuenciación masiva, técnicas inmunocitoquímicas o inmunohistoquímicas microarrays de ADN genómico, microarrays de proteínas, microarrays de ARN mensajero, microarrays de ADNc, microarrays de péptidos, microarrays de tejido, microarrays celulares o de transfección, microarrays de anticuerpos, microarrays de lisados o suero, microarrays de proteínas de fase reversa, microarrays de péptidos o microarrays de genotipado.
13.- Una composición o un kit de partes que comprende al menos un inhibidor de BRAF y un inhibidor de MEK para tratar a un individuo que padece melanoma metastásico BRAF mutado, identificable por el método según cualquiera de las reivindicaciones 2-12.
14.- La composición o el kit de partes según la reivindicación anterior, donde el inhibidor de BRAF se selecciona de la lista que consiste en: dabrafenib, vemurafenib, encorafenib o cualquiera de sus combinaciones.
15.- La composición o el kit de partes según cualquiera de las reivindicaciones 13-14, donde el inhibidor de MEK se selecciona de la lista que consiste en: trametinib, cobimetinib, binimetinib o cualquiera de sus combinaciones.
16.- Un kit o dispositivo, que comprende los elementos necesarios para cuantificar el producto de expresión de los genes CXCL-10, SERPING1, PDL1, PDL2, ARG1, IL18R1, IL18RAP, IL1R1, ILR2, FLT3, SLC11A1, CD 163 y/o S100A12.
17.- El uso del kit o dispositivo según la reivindicación 16, para predecir o pronosticar la respuesta al tratamiento con inhibidores de BRAF y de MEK en un individuo, según cualquiera de los métodos de acuerdo con las reivindicaciones 2-12.
18.- Un programa de ordenador adaptado para que cualquier medio de procesamiento pueda llevar a la práctica el método según cualquiera las reivindicaciones 2-12.
19.- Un medio de almacenamiento legible por un ordenador que comprende instrucciones de programa capaces de hacer que un ordenador lleve a cabo los pasos del método según cualquiera las reivindicaciones 2-12.
20.- Una señal transmisible que comprende instrucciones de programa capaces de hacer que un ordenador lleve a cabo los pasos del método según cualquiera las reivindicaciones 2 12
PCT/ES2021/070951 2020-12-29 2021-12-29 Biomarcadores y método para predecir o pronosticar la respuesta al tratamiento con inhibidores de braf y de mek (brafi + meki) WO2022144485A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES202031311A ES2916259A1 (es) 2020-12-29 2020-12-29 Biomarcadores y método para predecir o pronosticar la respuesta al tratamiento con inhibidores de BRAF y de MEK (BRAFi + MEKi) y para el seguimiento de los pacientes
ESP202031311 2020-12-29

Publications (2)

Publication Number Publication Date
WO2022144485A1 WO2022144485A1 (es) 2022-07-07
WO2022144485A9 true WO2022144485A9 (es) 2022-08-25

Family

ID=82155923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2021/070951 WO2022144485A1 (es) 2020-12-29 2021-12-29 Biomarcadores y método para predecir o pronosticar la respuesta al tratamiento con inhibidores de braf y de mek (brafi + meki)

Country Status (2)

Country Link
ES (1) ES2916259A1 (es)
WO (1) WO2022144485A1 (es)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019213509A1 (en) * 2018-05-03 2019-11-07 Rutgers, The State University Of New Jersey Compositions and methods for treating cancer
WO2020079581A1 (en) * 2018-10-16 2020-04-23 Novartis Ag Tumor mutation burden alone or in combination with immune markers as biomarkers for predicting response to targeted therapy

Also Published As

Publication number Publication date
ES2916259A8 (es) 2022-07-07
ES2916259A1 (es) 2022-06-29
WO2022144485A1 (es) 2022-07-07

Similar Documents

Publication Publication Date Title
ES2491222T3 (es) Marcadores de expresión génica para el pronóstico de cáncer colorrectal
ES2700877T3 (es) Fosfodiesterasa 4D7 como marcador de cáncer de próstata
US20140206545A1 (en) Gene expression markers for prediction of patient response to chemotherapy
JP2016531579A (ja) 食道がんのための分子診断試験
US20180119227A1 (en) Novel risk biomarkers for lung cancer
CN113444798A (zh) 肾癌生存风险生物标志物群及诊断产品和应用
CN113234830A (zh) 用于肺癌诊断的产品及用途
JP2019507594A (ja) 大腸がん診断用組成物と診断マーカー検出方法
CN113774140A (zh) 一种预测结直肠癌对奥沙利铂治疗敏感性的产品
ES2528672B1 (es) Neurofilina-1 (NRP-1) urinaria como marcador pronóstico de nefritis y nefritis lúpica
BR112019011031A2 (pt) Método para estratificação de risco, produto de programa de computador, kit de diagnóstico e uso de um perfil de expressão gênica para estratificação de risco
WO2013190081A1 (en) Methods and reagents for the prognosis of cancer
WO2022144485A9 (es) Biomarcadores y método para predecir o pronosticar la respuesta al tratamiento con inhibidores de braf y de mek (brafi + meki)
CN113430270A (zh) 免疫相关基因在肾癌预后预测中的应用
CN113444799A (zh) 用于鉴定肾癌不良预后的免疫相关基因
CN113444801A (zh) 肾癌预后检测标志物及其相关诊断产品
KR20220129816A (ko) 미만형 위암의 예후 진단 마커
CN113388684A (zh) 生物标志物用于预测肾癌预后的用途
CN113817829A (zh) 生物标志物在制备预测结直肠癌对奥沙利铂治疗敏感性的产品中的用途
KR20220039065A (ko) 대장암에 대한 항암제 감수성 예측을 위한 신규 바이오마커
TW201730345A (zh) 用以評估乳癌罹患風險之方法及基因標記
KR102259708B1 (ko) 대장암에 대한 항암제 감수성 예측을 위한 신규 바이오마커
TWI507412B (zh) Gastric cancer biological markers and their use, as well as gastric cancer-related detection methods
KR102259695B1 (ko) 대장암에 대한 항암제 감수성 예측을 위한 신규 바이오마커
KR102136747B1 (ko) 장형 위암의 예후 진단 마커

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21914755

Country of ref document: EP

Kind code of ref document: A1