WO2022143618A1 - 多接入会话管理方法、装置和系统 - Google Patents

多接入会话管理方法、装置和系统 Download PDF

Info

Publication number
WO2022143618A1
WO2022143618A1 PCT/CN2021/141947 CN2021141947W WO2022143618A1 WO 2022143618 A1 WO2022143618 A1 WO 2022143618A1 CN 2021141947 W CN2021141947 W CN 2021141947W WO 2022143618 A1 WO2022143618 A1 WO 2022143618A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
access network
links
network device
selection
Prior art date
Application number
PCT/CN2021/141947
Other languages
English (en)
French (fr)
Inventor
邢玮俊
吴问付
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022143618A1 publication Critical patent/WO2022143618A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/23Manipulation of direct-mode connections

Definitions

  • the present application relates to the field of communications, and, more particularly, to multiple access session methods, apparatuses and systems.
  • ProSe communication In order to improve wireless spectrum utilization and provide cellular network services for terminals outside the coverage of cellular networks, proximity-based services (ProSe) communication is introduced into cellular communication networks. Specifically, in ProSe communication, a communication link can be directly established by a terminal in the vicinity, instead of forwarding communication through a base station. In 4G ProSe communication, the relay terminal that establishes a Uu connection with the cellular network can provide a larger network coverage for the cellular network by directly connecting with the user equipment (UE) using the PC5 interface. Similarly, in 5G ProSe communication, the remote UE is further evolved by relaying the communication method of UE connection to the cellular network. Currently, when a remote UE is connected to the network, it can be connected to the base station through a relay UE, or directly connected to the base station, and the wireless bandwidth that each UE can use on the base station side is limited.
  • the offloading, selection and handover of data transmission between the network side and the UE is mainly used in the scenario where the UE accesses the cellular network through the 3rd generation partnership project (3GPP) and non-3GPP access networks. , by establishing two end-to-end independent links between the UE and the user plane function (UPF).
  • 3GPP 3rd generation partnership project
  • UPF user plane function
  • the present application provides a multi-access session management method, device and system, so that a terminal device can access a network through a direct link and a non-direct link or through multiple indirect links, and can control the network according to the link
  • the rules divide, select and switch data on different transmission links to improve the wireless application experience of the remote terminal device.
  • a first aspect provides a multi-access session management method, the method includes: a radio access network device obtains a link control rule 01; A target link is determined from the multiple links between the device and the remote terminal device; the wireless access network device transmits data with the remote terminal device through the target link.
  • a method is provided in which the offload point is at the base station and the base station executes link control rules.
  • the base station can select an appropriate link for the remote terminal device according to the link control rule to send downlink data packets to the remote terminal device.
  • the base station can provide a more flexible data transmission service for the remote terminal equipment.
  • the multiple links include direct-connected links and indirect-connected links, or the multiple links include multiple indirect-connected links.
  • the radio access network device determines a target link among multiple links between the radio access network device and the remote terminal device according to the link control rule 01 , including: the wireless access network device determines the identity of the quality of service flow that transmits the data; the wireless access network device determines the link corresponding to the identity of the quality of service flow among the multiple links according to the link control rule 01 The link corresponding to the identifier of the quality of service flow is the target link.
  • the link control rule includes an identifier of the quality of service flow, and a corresponding relationship of a link corresponding to the identifier of the quality of service flow.
  • the radio access network device determines a target link among multiple links between the radio access network device and the remote terminal device according to the link control rule 01 , including: the wireless access network device determines the service flow corresponding to the data; the wireless access network device determines the link corresponding to the service flow among the multiple links according to the link control rule 01, and the service flow corresponds to The link is the target link.
  • the link control rule includes a correspondence between the service flow and a link corresponding to the service flow.
  • the radio access network device determines a service flow corresponding to the data packet according to a service flow identifier in the data packet header, and the service flow identifier is set in the data packet header by the user plane function.
  • service flow identifier may be triple or quintuple information, or an application identifier (application ID, APP ID), or a media access control (Media Access Control, MAC) address.
  • application ID application ID
  • APP ID application ID
  • media access control Media Access Control
  • the radio access network device determines a target link among multiple links between the radio access network device and the remote terminal device according to the link control rule 01 , including: the wireless access network device determines the identity of the quality of service flow that transmits the data; the wireless access network device determines the link selection rule corresponding to the identity of the quality of service flow according to the link control rule 01; The network access device determines the target link among the multiple links according to the link selection rule.
  • the link control rule 01 includes a corresponding relationship between the identifier of the quality of service flow and the link selection rule.
  • the method further includes: determining, by the radio access network device, a link control rule 01 corresponding to the identifier of the quality of service flow.
  • the radio access network device determines a target link among multiple links between the radio access network device and the remote terminal device according to the link control rule 01 It includes: the wireless access network device determines the service flow corresponding to the data transmission; the wireless access network device determines the link selection rule corresponding to the service flow according to the link control rule 01; the wireless access network device determines the link selection rule according to the link control rule 01; The path selection rule determines the target link among the plurality of links.
  • the radio access network device determines a service flow corresponding to the data packet according to a service flow identifier in the data packet header, and the service flow identifier is set in the data packet header by the user plane function.
  • service flow identifier may be triple or quintuple information, or APP ID, or MAC address.
  • the link control rule 01 includes a correspondence between the service flow and the link selection rule.
  • the method further includes: the radio access network device determines to use the link control rule 01 corresponding to the service flow.
  • the link selection rule includes one or more of the following: priority-based selection, load-based selection, data-based transmission ratio selection, round-trip delay-based selection, Selection based on channel quality.
  • the method further includes: the radio access network device sending, to the access and mobility management function network element, the link selection capability information of the radio access network device and At least one of the link information; wherein, the link selection capability information is used to indicate that the radio access network device can support the link control rule 01 corresponding to the identifier of the quality of service flow and/or the link control rule corresponding to the service flow 01; the link information is used to indicate the link type of the multiple links, and the link type is a direct link or a non-direct link; or, the link information is used to indicate the number of multiple links or, the link information is used to indicate multiple link identifiers of the multiple links, and the multiple link identifiers are used to respectively indicate the link type of each link in the multiple links.
  • the link information when the multiple links include direct links and indirect links, the link information may further indicate the number of direct links and the number of indirect links; or the When the multiple links include multiple indirect links, the link information may further indicate the number of the multiple indirect links.
  • the radio access network device acquiring the link control rule 01 includes: the radio access network device receiving the link control rule 01 from the session management function network element.
  • a method for managing multiple access sessions comprising:
  • the session management function network element receives the policy from the policy and control function
  • the session management function network element formulates a link control rule 01 according to the policy
  • the session management function network element sends the link control rule 01 to the wireless access network device, and the link control rule 01 includes one of multiple links between the QoS flow and the wireless access network device and the remote terminal device or multiple correspondences, and/or the link control rule 01 includes the correspondence between the service flow and one or more of the multiple links between the wireless access network device and the remote terminal device.
  • a method is provided in which the offload point is at the base station and the base station executes link control rules.
  • the session management function network element formulates link control rules for the base station according to the received policy, so that the base station can select an appropriate link for the remote terminal device to send downlink data packets to the remote terminal device.
  • the multiple links include direct-connected links and indirect-connected links, or the multiple links include multiple indirect-connected links.
  • the link control rule 01 includes a corresponding relationship between the identifier of the quality of service flow and the link selection rule.
  • the link control rule 01 further includes a correspondence between the service flow and the link selection rule.
  • the link selection rule includes one or more of the following: priority-based selection, load-based selection, data-based transmission ratio selection, round-trip delay-based selection, Selection based on channel quality.
  • the session management function network element formulates the link control rule 01 according to the policy, including: receiving link information from the wireless access network device; wherein the The link information is used to indicate the link type of the multiple links, and the link type is a direct link or a non-direct link; or, the link information is used to indicate the number of multiple links; or, The link information is used to indicate multiple link identifiers of the multiple links, and the multiple link identifiers are used to respectively indicate the link type of each link in the multiple links; the session management function network The element formulates the link control rule 01 according to the link information and the policy.
  • the link information when the multiple links include direct links and indirect links, the link information may further indicate the number of direct links and the number of indirect links; or the When the multiple links include multiple indirect links, the link information may further indicate the number of the multiple indirect links.
  • the session management function network element formulates the link control rule 01 according to the link selection capability information and the policy, and further includes: the session management function network element receives Link selection capability information from the radio access network device, the link selection capability information is used to indicate that the radio access network device can support the quality of service flow identifier corresponding to the link control rule 01 and/or service flow corresponding the link control rule 01; the session management function network element formulates the link control rule 01 according to the link selection capability information and the policy.
  • a multi-access session management method includes: a user plane function receives a link control rule 02 from a network element of a session management function; the user plane function converts a service according to the link control rule 02 The flow is divided into multiple QoS QoS flows; the user plane function sends the identifiers of the multiple QoS flows to the radio access network device.
  • a terminal device is connected to a wireless access network device through a direct link and an indirect link, or through multiple indirect links
  • the offload point is at the base station
  • a user plane function executes the data link control rules.
  • a user plane function is used to map a service flow to multiple QoS flows according to the link control rules, that is, a service flow corresponds to the identifiers of different QoS flows. Control, switch and offload are performed to make the data transmission between the base station and the terminal equipment more flexible, and the access network equipment does not need to make additional changes.
  • the link control rule 02 includes a corresponding relationship between the identifiers of the multiple QoS flows and a link selection rule, and the link selection rule includes one or more of the following: A: selection based on priority, selection based on load, selection based on data transmission ratio, selection based on round trip delay, selection based on channel quality.
  • the radio access network device maps the identifier of the QoS flow to the wireless access network A target link of multiple links between a device and a remote end device.
  • the wireless access network device transmits the data of the quality of service flow with the remote terminal device through the target link.
  • the multiple links include direct-connected links and indirect-connected links, or the multiple links include multiple indirect-connected links.
  • a fourth aspect provides a multi-access session management method, characterized in that the method includes:
  • the user plane function receives the link control rule 03 from the session management function network element;
  • the user plane function determines the link identification information corresponding to the service flow according to the link control rule 03, where the link identification information is used to identify the link between the wireless access network device and the remote terminal device;
  • the user plane function sends the link identification information to the radio access network device.
  • the offload point is at the base station
  • the user plane function executes the data link control rules.
  • the user plane function is used to bind the radio side link information and the service flow according to the link control rule, and the data transmission between the base station and the terminal equipment is controlled, switched and distributed, so that the data transmission between the base station and the terminal equipment is The transmission is more flexible and the changes on the core network side are reduced.
  • the user plane function sending the link identification information to the wireless access network device includes: the user plane function sending the service flow to the wireless access network device Corresponding data, the data carries the link identification information.
  • multiple links are included between the radio access network device and the remote terminal device, and the multiple links include direct links and indirect links or the multiple links include multiple indirect links.
  • the link control rule 03 includes a correspondence between the service flow and the link identification information.
  • the link control rule 03 includes a correspondence between the service flow and a link selection rule, and the link selection rule includes one or more of the following: priority-based Selection, load-based selection, data-based transmission ratio selection, round-trip delay-based selection, and channel quality-based selection.
  • the method further includes: the user plane function determines, according to the link control rule 03, to select the radio access network device from multiple radio access network devices for transmission the business flow.
  • the terminal device is connected to the core network through a plurality of radio access network devices, and is connected to the multiple In the scenario of wireless access network equipment connection, the method that the offload point is in the user plane, and the user plane function executes the link control rules, realizes the data offload when multiple base stations are accessed, and combines the terminal equipment to access through the same base station.
  • the core network solution makes the application scenarios of the present application more complete.
  • the link control rule includes a selection rule for radio access network devices
  • the radio access network device selection rule includes one or more of the following: priority-based selection, load-based selection, data-based selection Transmission ratio selection, selection based on round-trip delay, selection based on channel quality.
  • a multi-access session management method including: a session management function network element receives a policy from a policy and a control function; the session management function network element formulates a link control rule 04 according to the policy; the session management function The network element sends the link control rule 04 to the user plane function, where the link control rule 04 includes a correspondence between a service flow and multiple QoS flows, or includes a correspondence between service flows and link identification information, and the link The identification information is used to identify multiple links between the wireless access network device and the remote terminal device, and the wireless access network device is connected to the user plane function.
  • the offload point is at the base station
  • the session management function network element formulates link control rules for the user plane function according to the received policy, so that the user plane function can control, switch and offload the data transmission between the base station and the terminal device according to the link control rules, so that the The data transmission between the base station and the terminal equipment is more flexible and the changes on the core network side are reduced.
  • the multiple links include direct-connected links and indirect-connected links, or the multiple links include multiple indirect-connected links.
  • the link control rule 04 includes a correspondence between the service flow and the link identification information.
  • the link control rule 04 includes the corresponding relationship between the identifiers of the multiple quality of service flows and the link selection rule, or the link control rule 04 includes the Correspondence between service flows and link selection rules, where the link selection rules include one or more of the following: priority-based selection, load-based selection, data-based transmission ratio selection, round-trip delay-based selection, and channel quality-based selection choose.
  • the link control rule 04 includes a radio access network device selection rule
  • the radio access network device selection rule includes one or more of the following: priority-based selection, Load-based selection, data-based transmission ratio selection, round-trip delay-based selection, and channel quality-based selection.
  • the link control rule further includes identification information of multiple radio access network devices.
  • a sixth aspect provides a multi-access session management method, comprising: a terminal device receiving a link control rule 05 from a session management network element session management function network element; the terminal device according to the link control rule 05 , determining a target link among multiple links between the wireless access network device and the terminal device; the terminal device transmits data with the wireless access network device through the target link.
  • the multiple links include direct-connected links and indirect-connected links, or the multiple links include multiple indirect-connected links.
  • the execution link of the terminal device is given.
  • an apparatus for multi-access session management comprising: a transceiver module for acquiring a link control rule 01; a processing module for communicating between the wireless access network device and a remote controller according to the link control rule 01 A target link is determined among multiple links of the terminal device; the transceiver module transmits data with the remote terminal device through the target link.
  • the multiple links include direct-connected links and indirect-connected links, or the multiple links include multiple indirect-connected links.
  • the processing module is configured to: determine an identifier of a quality of service flow that transmits the data; determine the service in the multiple links according to the link control rule 01 The link corresponding to the identifier of the quality flow, and the link corresponding to the identifier of the quality of service flow is the target link.
  • the processing module is further configured to: determine the service flow corresponding to the data; determine the corresponding service flow in the multiple links according to the link control rule 01 The link corresponding to the service flow is the target link.
  • the processing module is further configured to: determine the identifier of the quality of service flow that transmits the data; determine the corresponding identifier of the quality of service flow according to the link control rule 01 A link selection rule; the target link is determined among the multiple links according to the link selection rule.
  • the link control rule 01 includes a corresponding relationship between the identifier of the quality of service flow and the link selection rule.
  • the apparatus further includes: the radio access network device determines to use a link control rule 01 corresponding to the identifier of the quality of service flow.
  • the radio access network device determines a target link among multiple links between the radio access network device and the remote terminal device according to the link control rule 01 It includes: the wireless access network device determines the service flow corresponding to the data transmission; the wireless access network device determines the link selection rule corresponding to the service flow according to the link control rule 01; the wireless access network device determines the link selection rule according to the link control rule 01; The path selection rule determines the target link among the plurality of links.
  • the link control rule 01 includes a correspondence between the service flow and the link selection rule.
  • the apparatus further includes: the radio access network device determines to use the link control rule 01 corresponding to the service flow.
  • the link selection rule includes one or more of the following: priority-based selection, load-based selection, data-based transmission ratio selection, round-trip delay-based selection, Selection based on channel quality.
  • the transceiver module is further configured to: send the link selection capability information and link information of the radio access network device to the access and mobility management function network element At least one of ; wherein, the link selection capability information is used to indicate that the radio access network device can support the link control rule 01 corresponding to the identifier of the quality of service flow and/or the link control rule 01 corresponding to the service flow; the link The link information is used to indicate the link type of the multiple links, and the link type is a direct link or a non-direct link; or, the link information is used to indicate the number of multiple links; or, the The link information is used to indicate multiple link identifiers of the multiple links, and the multiple link identifiers are used to respectively indicate the link type of each link in the multiple links.
  • the radio access network device acquiring the link control rule 01 includes: the radio access network device receiving the link control rule 01 from the session management function network element.
  • a multi-access session management device which is characterized by comprising: a transceiver module for receiving a policy from a policy and control function PCF; a processing module for formulating a link control rule 01 according to the policy; The transceiver module is further configured to send the link control rule 01 to the wireless access network device, where the link control rule 01 includes the quality of service flow and the number of links between the wireless access network device and the remote terminal device.
  • One or more correspondences, and/or the link control rule 01 includes the correspondence between the service flow and one or more of the multiple links between the wireless access network device and the remote terminal device.
  • the multiple links include direct-connected links and indirect-connected links, or the multiple links include multiple indirect-connected links.
  • the link control rule 01 further includes a correspondence between the identifier of the quality of service flow and the link selection rule.
  • the link control rule 01 further includes a correspondence between the service flow and the link selection rule.
  • the link selection rule includes one or more of the following: priority-based selection, load-based selection, data-based transmission ratio selection, round-trip delay-based selection, Selection based on channel quality.
  • the transceiver module is further configured to: receive link information from the wireless access network device; wherein the link information is used to indicate the multiple links link type, the link type is a direct link or a non-direct link; or, the link information is used to indicate the number of multiple links; or, the link information is used to indicate the multiple links
  • Multiple link identifiers of the road the multiple link identifiers are used to respectively indicate the link type of each link in the multiple links; the session management function network element formulates the link information according to the link information and the policy.
  • the transceiver module is further configured to receive link selection capability information from the wireless access network device, where the link selection capability information is used to indicate the wireless access
  • the network device can support the link control rule 01 corresponding to the identifier of the quality of service flow and/or the link control rule 01 corresponding to the service flow; the processing module is also used to formulate the link according to the link selection capability information and the policy.
  • a multi-access session management device which is characterized by comprising: a transceiver module for receiving a link control rule 02 from a network element with a session management function; a processing module for receiving a link control rule 02 according to the link control rule 02 Distribute one service flow to multiple QoS QoS flows; the transceiver module is further configured to send the identifiers of the multiple QoS flows to the wireless access network device.
  • the link control rule 02 includes a corresponding relationship between the identifiers of the multiple quality of service flows and a link selection rule, and the link selection rule includes one or more of the following: A: selection based on priority, selection based on load, selection based on data transmission ratio, selection based on round trip delay, selection based on channel quality.
  • the wireless access network device for one QoS flow in the plurality of QoS flows, it is convenient for the wireless access network device to map the identifier of the QoS flow to the wireless access network.
  • the wireless access network device to transmit the data of the quality of service flow with the remote terminal device through the target link.
  • the multiple links include direct-connected links and indirect-connected links, or the multiple links include multiple indirect-connected links.
  • a tenth aspect provides a multi-access session management device, characterized by comprising: a transceiver module for receiving a link control rule 03 from a network element with a session management function; a processing module for receiving a link control rule 03 according to the link control rule 03. Determine the link identification information corresponding to the service flow, where the link identification information is used to identify the link between the wireless access network device and the remote terminal device; the transceiver module is further configured to send to the wireless access network device The link identification information.
  • the transceiver module is further configured to: send data corresponding to the service flow to the wireless access network device, where the data carries the link identification information.
  • multiple links are included between the radio access network device and the remote terminal device, and the multiple links include direct links and indirect links or the multiple links include multiple indirect links.
  • the link control rule 03 includes a correspondence between the service flow and the link identification information.
  • the link control rule 03 includes a correspondence between the service flow and a link selection rule, and the link selection rule includes one or more of the following: priority-based Selection, load-based selection, data-based transmission ratio selection, round-trip delay-based selection, and channel quality-based selection.
  • the apparatus further includes: the user plane function determines, according to the link control rule 03, to select the radio access network device from multiple radio access network devices for transmission the business flow.
  • a multi-access session management apparatus which is characterized by comprising: a transceiver module for receiving a policy from a policy and a control function; a processing module for formulating a link control rule 04 according to the policy;
  • the transceiver module is configured to send the link control rule 04 to the user plane function, where the link control rule 04 includes a correspondence between a service flow and multiple QoS flows, or includes a correspondence between service flows and link identification information , the link identification information is used to identify multiple links between the wireless access network device and the remote terminal device, and the wireless access network device is connected to the UPF.
  • the multiple links include a direct link and a non-direct link, or the multiple links include the multiple links include multiple Indirect link.
  • the link control rule 04 includes a correspondence between the service flow and the link identification information.
  • the link control rule 04 includes a correspondence between the identifiers of the multiple QoS flows and the link selection rule, or, the link control rule 04 Including the correspondence between the service flow and the link selection rule, wherein the link selection rule includes one or more of the following: selection based on priority, selection based on load, selection based on data transmission ratio, selection based on round-trip delay, selection based on Channel quality selection.
  • the link control rule 04 includes a radio access network device selection rule
  • the radio access network device selection rule includes one or more of the following: priority-based Selection, load-based selection, data-based transmission ratio selection, round-trip delay-based selection, and channel quality-based selection.
  • a twelfth aspect provides a multi-access session management apparatus, which is characterized by comprising: a transceiver module for receiving a link control rule 05 from a session management network element; a processing module for receiving a link control rule 05 according to the link control rule 05. Determine a target link among multiple links between the radio access network device and the terminal device; the transceiver module is configured to transmit data with the RAN through the target link.
  • the multiple links include direct-connected links and indirect-connected links, or the multiple links include multiple indirect-connected links.
  • a thirteenth aspect provides a communication device, the device comprising: a processor and a memory; the memory for storing a computer program; the processor for executing the computer program stored in the memory, so that the communication device executes The method of any one of the first to sixth aspects and embodiments thereof.
  • a fourteenth aspect provides a computer-readable storage medium on which a computer program is stored, and when the computer program runs on a computer, causes the computer to execute any one of the first to sixth aspects Methods of aspects and embodiments thereof.
  • a fifteenth aspect provides a chip system, comprising: a processor for calling and running a computer program from a memory, so that a communication device installed with the chip system executes the method of any one of the first to sixth aspects and its examples.
  • a sixteenth aspect provides a communication system, the communication system includes a radio access network device and a session management function network element, wherein the radio access network device is configured to execute the method of the first aspect, and the session management function network element uses A method for performing the second aspect and embodiments thereof.
  • a seventeenth aspect provides a communication system, the communication system comprising a user plane function and a session management function network element, wherein the user plane function is used to execute the method of the third aspect or the fourth aspect and an embodiment thereof, the session management The functional network element is used to execute the method of the fifth aspect and the embodiments thereof.
  • a terminal device accesses a network through a direct link or a non-direct link
  • data can be distributed, selected, and switched on different transmission links according to link control rules, so as to improve remote The wireless application experience of the terminal device.
  • Figure 1 shows a schematic diagram of the ProSe communication architecture in 4G and 5G systems.
  • FIG. 2 shows a schematic diagram of a ProSe communication architecture in which a UE is connected to a network through a relay in a 5G system.
  • FIG. 3 shows a schematic block diagram of an example of a scenario to which the embodiments of the present application are applied.
  • FIG. 4 shows an example of a schematic interaction diagram of the multi-access session management method of the present application.
  • FIG. 5 shows another example of a schematic interaction diagram of the multi-access session management method of the present application.
  • FIG. 6 shows another example of a schematic interaction diagram of the multi-access session management method of the present application.
  • FIG. 7 shows another example of a schematic interaction diagram of the multi-access session management method of the present application.
  • FIG. 8 shows a schematic block diagram of still another example of a scenario to which the embodiments of the present application are applicable.
  • FIG. 9 shows another example of a schematic interaction diagram of the multi-access session management method of the present application.
  • FIG. 10 shows a schematic block diagram of still another example of a scenario to which the embodiments of the present application are applicable.
  • FIG. 11 shows another example of a schematic interaction diagram of the multi-access session management method of the present application.
  • FIG. 12 shows a schematic block diagram of still another example of a scenario to which the embodiments of the present application are applicable.
  • FIG. 13 shows another example of a schematic interaction diagram of the multi-access session management method of the present application.
  • FIG. 14 is a schematic block diagram of an example of a radio access network device provided by an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of an example of a user plane function provided by an embodiment of the present application.
  • FIG. 16 is a schematic block diagram of an example of a network element with a session management function provided by an embodiment of the present application.
  • FIG. 17 is a schematic block diagram of an example of a terminal device provided by an embodiment of the present application.
  • FIG. 18 is a schematic block diagram of an example of a communication device for multi-access session management of the present application.
  • FIG. 19 is a schematic block diagram of still another example of the communication apparatus for multi-access session management of the present application.
  • FIG. 20 is a schematic block diagram of still another example of the communication apparatus for multi-access session management of the present application.
  • FIG. 21 is a schematic block diagram of still another example of the communication device for multi-access session management of the present application.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • the terminal device in this embodiment of the present application may refer to a user equipment (user equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless Communication equipment, user agent or user equipment.
  • UE user equipment
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks or terminals in the future evolution of the public land mobile network (PLMN) equipment, etc., which are not limited in this embodiment of the present application.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • PLMN public land mobile network
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the terminal device may also be a terminal device in an Internet of Things (IoT) system.
  • IoT Internet of Things
  • IoT is an important part of the future development of information technology, and its main technical feature is that items pass through communication technology Connect with the network, so as to realize the intelligent network of human-machine interconnection and interconnection of things.
  • the network device in this embodiment of the present application may be a device for communicating with terminal devices, and the network device may be a base station (base transceiver station, BTS) in the GSM system or code division multiple access (CDMA), or a broadband code division multiple access (CDMA) base station.
  • BTS base transceiver station
  • CDMA code division multiple access
  • CDMA broadband code division multiple access
  • a base station in a wideband code division multiple access (WCDMA) system, an evolved base station (evolutional nodeB, eNB or eNodeB) in an LTE system, or a cloud radio access network (cloud radio access network (CRAN) scenario, or the network device may be a relay station, an access point, a vehicle-mounted device, a network device in a future 5G network or a network device in a future evolved PLMN network, etc.
  • WCDMA wideband code division multiple access
  • evolutional nodeB, eNB or eNodeB evolved base station
  • cloud radio access network cloud radio access network (CRAN) scenario
  • the network device may be a relay station, an access point, a vehicle-mounted device, a network device in a future 5G network or a network device in a future evolved PLMN network, etc.
  • This application implements Examples are not limited.
  • ProSe communication is introduced into cellular communication networks. Specifically, in ProSe communication, a communication link can be directly established by a terminal in the vicinity, instead of forwarding communication through a base station.
  • the 3GPP organization has carried out relevant standard formulation work for ProSe communication in the standard formulation of the fourth generation mobile network (the 4th generation, 4G) and 5G.
  • the specific ProSe communication architecture is shown in Figure 1. As shown in (a) of Figure 1, in 4G ProSe communication, the relay terminal that establishes a Uu connection with the cellular network can provide a larger network coverage for the cellular network by directly connecting with the UE using the PC5 interface.
  • FIG. 1 shows a schematic diagram of a ProSe (ProSe UE-to-Network Relay) communication architecture in which a UE is connected to a network through a relay in a 5G system.
  • the Remote UE is a terminal that needs to be connected to the next generation-radio access network (NG-RAN) through a relay.
  • NG-RAN next generation-radio access network
  • FIG. 1 is a schematic diagram of a 4G system architecture of ProSe communication.
  • the system framework may include the following network elements:
  • UE User equipment
  • terminal equipment also known as terminal equipment.
  • Evolved universal mobile telecommunications system terrestrial radio access network that is, a mobile communication wireless network in long term evolution (LTE).
  • SGW Serving gateway It is a gateway that terminates at the E-UTRAN interface.
  • the main functions of this device include: when handover between evolved base stations (evolved node B, eNodeB) is performed, it can be used as a local anchor point and assist. Complete the reordering function of the eNodeB; have the reordering function; perform the legal interception function; carry out the routing and forwarding of the data packets; carry out packet marking in the uplink and downlink transport layers; in the idle state, downlink packet buffering and initiating network-triggered services Request function; used for inter-operator billing, etc.
  • Packet data network gateway It is mainly used to provide user session management and bearer control, data forwarding, internet protocol (IP) address allocation for interconnection between networks, and non-3GPP user access and other functions.
  • Mobility Management Entity It is mainly used for functions such as mobility management, bearer management, user authentication and authentication, MME selection during cross-MME handover, and SGW and PGW selection.
  • HSS Home subscriber server
  • IP multimedia subsystem IP multimedia subsystem
  • IMS IP multimedia subsystem
  • Secure user plane location platform It is mainly used to provide UE positioning information for network elements on the network side.
  • the ProSe function of the user plane logic network element manages and controls the ProSe communication of the UE. Its functions mainly include:
  • ProSe communication parameter allocation including the range in which the UE can use ProSe communication, that is, in which public land mobile networks (PLMN) the UE can use ProSe communication, and the ProSe communication frequency band that the UE can use when the UE is out of network coverage Wait.
  • PLMN public land mobile networks
  • the ProSe communication discovery management function includes allocating parameters for the UE to discover ProSe communication nodes.
  • the function of interacting with the 4G core network that is, the evolved packet core (EPC) network element, including interacting with the HSS for UE's ProSe communication authorization and authentication, etc.
  • EPC evolved packet core
  • ProSeFunction there is only one user plane network element in which ProSeFunction is deployed in each PLMN.
  • the UE needs to use ProSe for communication, it needs to apply for ProSe service related parameters such as ProSe discovery parameters from the UE's home PLMN (home PLMN, HPLMN).
  • the UE is in other PLMN (that is, visiting PLMN, visiting PLMN, VPLMN) service, the UE needs to apply for ProSe service-related parameters such as ProSe discovery parameters from the ProSe function in the HPLMN through the ProSe function in the VPLMN.
  • the communication interface switching method of the present application may be based on the 5th generation (5G) mobile communication technology and other future mobile communication technologies, the following will introduce another method of the embodiment of the present application in conjunction with (b) in FIG. 1 .
  • a system architecture 5G mobile communication technology
  • FIG. 1 is a schematic diagram of a 5G system architecture according to an embodiment of the present application.
  • the system framework may include the following network elements:
  • Radio access network An access network that implements access network functions based on wireless communication technology can be called RAN.
  • RAN is mainly used to provide an interface for UE to wirelessly access the mobile network and to manage radio resources. , provides access services for the UE, and then completes the forwarding of control signals and user data between the UE and the core network, for example, a RAN device may be a base station or the like.
  • the radio access network used in the 5G system is the next generation radio access network (NG-RAN).
  • NG-RAN next generation radio access network
  • the access network equipment in the 5G system is called the next generation base station node (next generation Node).
  • Basestation, gNB next generation Node
  • Access and mobility management function mainly used for mobility management and access management.
  • the AMF can be used to implement other functions other than session management among the functions of a mobility management entity (MME), for example, functions such as lawful interception, or access authorization (or authentication).
  • MME mobility management entity
  • functions such as lawful interception, or access authorization (or authentication).
  • Session management function mainly used for session management, UE's internet protocol (IP) address allocation and management, selection of manageable user plane functions, policy control, or charging function interfaces and downlink data notification, configure routing information for user plane functions, etc.
  • IP internet protocol
  • PCF Policy control function
  • Unified data management used to handle user identification, access authentication, registration, or mobility management.
  • UPF User plane function
  • QoS quality of service
  • I-UPF intermediate-UPF
  • anchor UPF anchor-UPF
  • PSA PDU session anchor
  • Application function mainly supports interaction with the 3rd generation partnership project (3GPP) core network to provide services, such as influencing data routing decisions, policy control functions, or providing services to the network side Provide some services of third parties.
  • 3GPP 3rd generation partnership project
  • It can be understood as a third-party server, such as an application server in the Internet, that provides relevant service information, including providing service quality requirement information corresponding to the service to the PCF, and sending user plane data information of the service to the PSA-UPF.
  • AF can also be a service provider (content provider, CP).
  • the ProSe application server is a kind of AF.
  • Network exposure function which connects core network elements and external application servers, and provides services such as authentication and data forwarding when external application servers initiate service requests to the core network.
  • Data network A network used to provide data transmission, such as the Internet network.
  • Unified data repository It is used to provide storage and retrieval for PCF policies, storage and retrieval of open structured data, and user information storage for application function requests.
  • the core network elements include:
  • Radio access network which mainly corresponds to access network equipment in this application, is responsible for radio resource management, uplink and downlink data classification and quality of service (QoS) applications, as well as with the control plane.
  • the network element completes signaling processing, and performs functions such as data forwarding with the user plane function network element.
  • the access network device may be a base station, a broadband network gateway (BNG), an aggregation switch, a non-3GPP access device, and the like.
  • the base station may include various forms of base stations, such as a macro base station, a micro base station (also referred to as a small cell), an access point, and the like, which are not specifically limited in this embodiment of the present application.
  • the radio access network device may be an evolved universal terrestrial radio access network (evolved universal terrestrial radio access network, E-UTRAN) device in a 4G network, an NG-RAN device in a 5G network, and the like.
  • E-UTRAN evolved universal terrestrial radio access network
  • the access and mobility management function is mainly responsible for the management functions of the terminal accessing the cellular network, such as mobility management.
  • the session management function manages the creation and deletion of user protocol data unit (PDU) sessions, and maintains the PDU session context and user plane forwarding pipeline information.
  • PDU user protocol data unit
  • the user plane function is mainly responsible for packet forwarding, QoS control, and accounting information statistics.
  • Unified data repository which is used to provide storage and retrieval for PCF policies, storage and retrieval of open structured data, and user information storage for application function requests.
  • Unified data management which is used to manage user subscription data and authentication data.
  • User equipment which may be called a terminal device (terminal), and the terminal may support ProSe communication or other services.
  • the user equipment supports receiving or sending messages through the PC5 interface or the Uu interface.
  • a terminal When a terminal is connected to the network through a relay, it can be called a remote UE (Remote UE).
  • a relay which can be a UE (the above-mentioned UE can be called a relay UE at this time), or a wireless access device, such as an access device similar to a router deployed by an operator, Customer terminal equipment (customer-premises equipment, CPE), etc.
  • PCF Policy control function
  • the policy control network element may be the PCF.
  • the policy control network element may still be the PCF network element, or may have other names, which are not limited in this application. .
  • the direct link is for the UE to access the 3GPP network through a wireless transmission path directly connected to the RAN.
  • the indirect link is an indirect wireless transmission path through which the UE accesses the 3GPP network through the relay UE.
  • a PDU session usually represents a service, such as voice service (for example, it can be a phone call), Internet access (for example, it can be accessed to Baidu, watch Youku video, etc.), a short message service, and so on.
  • voice service for example, it can be a phone call
  • Internet access for example, it can be accessed to Baidu, watch Youku video, etc.
  • short message service for example, it can be accessed to Baidu, watch Youku video, etc.
  • PCC rules generally include rule identifiers, service data flow detection (Service data flow detection, which is used to detect which service flow a data packet belongs to, usually based on five-tuple detection, that is, IP address, port number, etc.), QoS parameters (5G QoS identifier, maximum bit rate of uplink and downlink, etc.), as well as rules for multi-access PDU (MA PDU) sessions.
  • service data flow detection which is used to detect which service flow a data packet belongs to, usually based on five-tuple detection, that is, IP address, port number, etc.
  • QoS parameters (5G QoS identifier, maximum bit rate of uplink and downlink, etc.
  • MA PDU multi-access PDU
  • SMF binds different service flows to different QoS flows according to PCC rules, and identifies them with a quality of service identifier (QoS flow ID, QFI).
  • QoS flow ID QoS flow ID
  • the forwarding rules of different QFIs are sent to the UPF
  • QoS configuration information QFI and corresponding QoS parameters
  • the base station can know the specific QoS parameter information corresponding to the received data packet.
  • the base station After receiving the QoS configuration information, the base station sends the QFI mapped data radio bearer (DRB) to the UE.
  • DRB QFI mapped data radio bearer
  • the scenario represented by the MA PDU session is that the UE can access the network through two different transmission paths, namely the indirect connection based on the relay terminal equipment and the direct connection with the base station, and the MA PDU session management technology is used for different transmission paths.
  • the transmission path for data distribution, selection and switching.
  • the PDU session in this application is an MA PDU session, or may be defined as a multi-link PDU (multi-link PDU, ML PDU) session, or may be other names, which are not limited in this application.
  • the multi-access session management technology in this application is also referred to as a link selection rule, and is also referred to as an access traffic steering, switching, splitting, ATSSS rule in the embodiments of this application. It is a multi-link shunting, selection and switching (multi-linksteering, switching and splitting, MLSSS) rule.
  • the link control rules in this application include the above link selection rules, packet detection rules (packet detection rules, PDR) and the like.
  • the PDR includes packet detection information, the ID of the link selection rule, the ID of the rule executed by the QoS flow, and the like.
  • the packet inspection information may be the same as the information representing the traffic flow, such as IP address and the like.
  • the first network element receives data through one path, and then transmits the data through at least two links when transmitting the data to the second network element.
  • the distribution point in this application can be understood as being at the first network element. It should be noted that when data is distributed at the distribution point, only one of the links may be selected for transmission, or some of the links may be selected for transmission, or the data may be distributed to each link for transmission.
  • the first network element may be a RAN
  • the second network element may be a UE
  • data transmission between the RAN and the UE may be performed through at least one direct link and at least one indirect link, or through At least two indirect links for data transmission.
  • RAN can be used as an offload point.
  • a UE can be connected to the network through a relay UE, or directly connected to the network with a base station, and the wireless bandwidth that each UE can use on the base station side is limited.
  • the UE's data offload is mainly applied to the scenario where the UE accesses the cellular network through both 3GPP and non-3GPP access networks, and is performed by establishing two end-to-end independent links between the UE and the UPF.
  • the base station can allocate more wireless bandwidth to the remote UE, or offload the downlink data of the UE according to different services and different link quality conditions, so as to Improve the wireless application experience of the remote UE.
  • the UE When the UE is connected to the base station through the relay, there may be a direct link with the same base station or a direct link with a different base station. At this time, data offloading can be performed at the base station. For the case where the base station handles data offloading, there is currently no relevant solution.
  • the UE can access the network through multiple relays, and different relays may be connected to the same base station or different base stations.
  • the core network needs to perform corresponding configuration for the transmission path of the core network according to the wireless information of the UE accessing the network.
  • the present application provides corresponding solutions for the above-mentioned scene characteristics.
  • the embodiments of the present application will be described in detail below with reference to FIGS. 2 to 13 .
  • the remote UE can access the cellular network through multiple relay UEs at the same time, and the specific scenario is shown in FIG. 3 .
  • the remote UE can establish a radio network side connection with the base station through a direct link and an indirect link.
  • the remote UE can establish connections with multiple base stations simultaneously in the above manner.
  • an access network device may establish a connection with a remote UE through a direct link or an indirect link; or, an access network device only establishes a direct connection with the remote UE; or, an access network The device only establishes at least one indirect connection with the remote UE.
  • the remote UE is connected to RAN_1 through indirect links based on relay_1 and relay_2 respectively, and is also connected to RAN_1 through a direct link.
  • the remote UEs are connected to RAN_2 through indirect links based on relay_3 and relay_4, respectively.
  • the distribution point_1 is located in the RAN_1
  • the distribution point_2 is located in the UPF.
  • the distribution point here may be a path distribution point or a path selection point.
  • the data transmitted between RAN_1 and the UE may be offloaded to three links for transmission, or may be offloaded to two of the links for transmission, or one of the links may be selected for transmission.
  • the data transmitted between the UPF and the two RANs may be offloaded to RAN_1 and RAN_2 for transmission, or one of the RANs may be selected for transmission.
  • the network element executing the link control rule may be RAN_1 and/or RAN_2, or may be UPF.
  • the network element executing the link control rule may be RAN_1 and/or RAN_2, or may be UPF.
  • FIG. 4 shows an example of a schematic interaction diagram of the multi-access session management method of the present application.
  • the SMF receives the policy from the PCF.
  • the SMF formulates the link control rule 01 according to the policy.
  • the SMF receives link information from the RAN; wherein the link information is used to indicate link types of multiple links between the remote UE and the RAN, and the link types are direct links or Indirect link; or, the link information is used to indicate multiple link identifiers of the multiple links, and the multiple link identifiers are used to respectively indicate the chain of each link in the multiple links Road type; the SMF formulates the link control rule 01 according to the link information and the policy.
  • the SMF formulates the link control rule 01 according to the link selection capability information and the policy
  • the SMF receives the link selection capability information from the RAN, and the link selection capability information is used as an example.
  • the SMF selects the capability information according to the link and the The policy formulates the link control rule 01.
  • the SMF sends the link control rule 01 to the RAN.
  • the RAN in addition to receiving the link control rule 01 from the SMF, the RAN can also obtain the link control rule 01 locally, or can also obtain the link control rule 01 in other ways, which are not limited in this application.
  • the link control rule 01 includes the corresponding relationship between the quality of service flow and one or more of the multiple links between the wireless access network device and the remote terminal device, and/or the link control rule 01 includes the correspondence between the service flow and one or more of the multiple links between the wireless access network device and the remote terminal device.
  • the link control rule 01 further includes the corresponding relationship between the QFI and the link selection rule, and/or the corresponding relationship between the service flow and the link selection rule.
  • the link selection rule includes one or more of the following: selection based on priority, selection based on load, selection based on data transmission ratio, selection based on round-trip delay, and selection based on channel quality.
  • the RAN determines a target link among the multiple links between the RAN and the remote terminal equipment UE according to the link control rule 01.
  • the multiple links include direct-connected links and indirect-connected links, or the multiple links include multiple indirect-connected links.
  • the data can be granular in QoS flow, or can be granular in service flow.
  • RAN may only have the capability of QoS flow as granularity or service flow as granularity, or RAN may have both capabilities at the same time.
  • the link control rule 01 received by the RAN is also a rule for this capability.
  • the link control rule 01 received by the RAN may include an indication message. , the RAN can determine which granularity to use the link control rule 01 to transmit data according to the indication information.
  • the RAN determines the identifier QFI of the QoS flow that transmits the data; the RAN determines the link corresponding to the QFI among the multiple links according to the link control rule 01, and the link corresponding to the QFI is the target link.
  • the RAN determines the identifier QFI of the QoS flow that transmits the data; the RAN determines the link selection rule corresponding to the QFI according to the link control rule 01; the RAN selects the link between the multiple links according to the link selection rule to determine the target link.
  • the link control rule 01 includes the corresponding relationship between the QFI and the link selection rule.
  • the RAN determines to use the link control rule 01 corresponding to the QFI.
  • the RAN determines the service flow corresponding to the data; the RAN determines the link corresponding to the service flow among the multiple links according to the link control rule 01, and the link corresponding to the service flow is the target chain road.
  • the RAN determines a service flow corresponding to the data transmission; the RAN determines a link selection rule corresponding to the service flow according to the link control rule 01; the RAN selects a link in the multiple links according to the link selection rule Determine the target link.
  • the link control rule 01 includes the correspondence between the service flow and the link selection rule.
  • the RAN determines to use the link control rule 01 corresponding to the service flow.
  • link selection rule includes one or more of the following: selection based on priority, selection based on load, selection based on data transmission ratio, selection based on round-trip delay, and selection based on channel quality.
  • the RAN transmits data with the remote UE through the target link.
  • the method also includes:
  • the RAN sends at least one of link selection capability information and link information of the RAN to the AMF; wherein the link selection capability information is used to indicate that the RAN can support the link control rule 01 and/or service flow corresponding to the QFI Corresponding link control rule 01; the link information is used to indicate the link type of the multiple links, and the link type is a direct link or a non-direct link; or, the link information is used to indicate The number of multiple links; or, the link information is used to indicate multiple link identifiers of the multiple links, and the multiple link identifiers are used to respectively indicate the link type.
  • the AMF will then forward the above information to the SMF.
  • a method in which the offload point is at the base station, and the base station executes link control rules.
  • the base station can select an appropriate link for the remote terminal equipment according to the link control rule to send downlink data packets to the remote terminal equipment.
  • the base station can provide more flexible data transmission services for the remote terminal equipment.
  • FIG. 5 shows another example of a schematic interaction diagram of the multi-access session management method of the present application.
  • the data packets are distributed with the QoS flow as the granularity.
  • the SMF receives the policy from the PCF.
  • the SMF formulates the link control rule 02 according to the policy.
  • the SMF formulates the link control rule 04 according to the policy.
  • the link control rule 04 may be the link control rule 02 for UPF to perform traffic distribution with QoS as the granularity, and may also include the link control rule 02 and other granularities. Additional link control rules for offloading.
  • the link control rule 02 includes a correspondence between a service flow and multiple QoS flows, or includes a correspondence between service flows and link identification information, where the link identification information is used to identify the radio access network device RAN Multiple links between the RAN and the remote UE, the RAN is connected to the UPF.
  • the multiple links include direct-connected links and indirect-connected links, or the multiple links include that the multiple links include multiple indirect-connected links.
  • the link control rule 04 includes the correspondence between the identification QFI of the multiple QoS flows and the link selection rule, and/or the correspondence between the service flow and the link selection rule,
  • the link selection rule includes one or more of the following: priority-based selection, load-based selection, data-based transmission ratio selection, round-trip delay-based selection, and channel quality-based selection.
  • the SMF sends the link control rule 02 to the UPF.
  • the link control rule 02 includes a correspondence between the identification QFIs of the multiple QoS flows and a link selection rule, where the link selection rule includes one or more of the following: priority-based selection, load-based selection, and Data transmission ratio selection, selection based on round-trip delay, selection based on channel quality.
  • the UPF distributes one service flow to multiple QoS flows according to the link control rule 02.
  • the RAN maps the identifier QFI of the QoS flow to a target link among multiple links between the RAN and the remote UE.
  • the link control rule 02 formulated by the SMF also includes a correspondence between a service flow and multiple QFIs, and a one-to-one correspondence between each QFI and each of the multiple links. According to the above correspondence, UPF configures different QFIs on different data packets corresponding to a service flow.
  • the UPF sends the identifiers QFI of the multiple QoS flows to the RAN.
  • the UPF transmits a data packet belonging to a service flow to the RAN
  • the data packet is configured with multiple QFIs corresponding to the service flow.
  • the QoS configuration information carried in the N2 message sent by the SMF to the RAN includes the correspondence between the QFI and the multiple links.
  • the RAN transmits the data of the QoS flow through the target link and the remote UE. Specifically, the RAN maps the QFI to the DRB corresponding to the target link according to the mapping relationship between the QFI and the radio side link in the QoS configuration information for transmission. .
  • a user plane function enforces data link control rules.
  • a user plane function is used to map a service flow to multiple QoS flows according to the link control rules, that is, a service flow corresponds to the identifiers of different QoS flows. Control, switch and offload are performed to make the data transmission between the base station and the terminal equipment more flexible, and the access network equipment does not need to make additional changes.
  • FIG. 6 shows another example of a schematic interaction diagram of the multi-access session management method of the present application.
  • the UPF when the UPF executes the link control rule, it divides the data packets with the service flow as the granularity.
  • the SMF receives the policy from the PCF.
  • the SMF formulates the link control rule 03 according to the policy.
  • the SMF formulates the link control rule 04 according to the policy, and the link control rule 04 may be the link control rule 03 for UPF to perform traffic distribution with the service flow as the granularity, and may also include the link control rule 03 and other granularities. Other link control rules for offloading.
  • the link control rule 03 includes a correspondence between a service flow and multiple QoS flows, or includes a correspondence between service flows and link identification information, where the link identification information is used to identify the wireless access network device and the link identification information.
  • Multiple links between remote UEs, the RAN is connected to the UPF.
  • the multiple links include direct-connected links and indirect-connected links, or the multiple links include multiple indirect-connected links.
  • the link control rule 04 includes the correspondence between the identification QFI of the multiple QoS flows and the link selection rule, and/or the correspondence between the service flow and the link selection rule,
  • the link selection rule includes one or more of the following: priority-based selection, load-based selection, data-based transmission ratio selection, round-trip delay-based selection, and channel quality-based selection.
  • the SMF sends the link control rule 03 to the UPF.
  • the link control rule 03 includes the correspondence between the service flow and the link identification information.
  • the link control rule 03 includes the correspondence between the service flow and the link selection rule.
  • the link selection rule includes one or more of the following: priority-based selection, load-based selection, data-based transmission ratio selection, and round-trip time-based selection. Delay selection, selection based on channel quality.
  • the UPF determines the link identification information corresponding to the service flow according to the link control rule 03, where the link identification information is used to identify the link between the radio access network device and the remote UE.
  • the UPF sends the link identification information to the RAN.
  • the UPF sends data corresponding to the service flow to the RAN, where the data carries the link identification information.
  • Multiple links are included between the RAN and the remote UE, and the multiple links include direct links and indirect links, or the multiple links include multiple indirect links.
  • a terminal device is connected to the core network through multiple wireless access network devices, and is connected to the multiple wireless networks through direct links and indirect links, or through multiple indirect links.
  • the method that the offload point is in the user plane function and the user plane function executes the link control rules is given.
  • the radio side link information and the service flow are bound according to the link control rules, and the data transmission between the base station and the terminal equipment is controlled, switched and distributed, which makes the data transmission between the base station and the terminal equipment more flexible.
  • the changes on the core network side are reduced.
  • the method also includes:
  • the link control rule 04 includes a radio access network device selection rule, and the radio access network device selection rule includes one or more of the following: priority-based selection, load-based selection, data-based transmission ratio selection, and round-trip delay-based selection , based on channel quality selection.
  • the UPF determines to select the RAN from multiple RANs to transmit the service flow.
  • the link control rule 03 also includes the above radio access network device selection rule, and the UPF determines the target RAN to transmit data among multiple RANs connected to it according to the radio access network device selection rule.
  • the link control rules include selection rules for radio access network devices, and the radio access network device selection rules include one or more of the following: priority-based selection, load-based selection, data-based transmission ratio selection, and round-trip-based selection. Delay selection, selection based on channel quality.
  • the link control rule 03 further includes identification information of multiple RANs.
  • the UE is connected to the core network through multiple radio access network devices, and is connected to the multiple radio access network devices through direct links and indirect links, or through multiple indirect links
  • the offload point is in the UPF, and the UPF executes the link control rules, which realizes the data offload when multiple base stations are accessed.
  • the application scenario of the present application is achieved. more complete.
  • FIG. 7 shows another example of a schematic interaction diagram of the multi-access session management method of the present application.
  • the SMF sends the link control rule 05 to the UE.
  • the UE determines, according to the link control rule 05, to determine the target link among the multiple links between the RAN and the UE.
  • the plurality of links include direct-connected links and indirect-connected links, or the plurality of links include a plurality of indirect-connected links.
  • the UE transmits data with the RAN through the target link.
  • a scenario in which a terminal device is connected to a radio access network device through a direct link and a non-direct link, or through multiple indirect links provides a way for the UE to execute the link control rule. method. This enables the UE to implement data control, switching and offloading when sending data to the access network device, so that data transmission between the UE and the access network device is more flexible.
  • FIG. 8 is a schematic structural diagram of an application scenario of an embodiment of the present application.
  • the remote UE and the base station have a direct path (direct path), and can also have an indirect path (indirect path) with the same base station through a relay.
  • the downlink data is offloaded by the base station, that is, the path selection rule is executed.
  • the "different radio access network devices" mentioned here logically belong to the same RAN, that is, the UE is connected to different RANs through multiple relays, but these RANs are controlled by the same controller. controller to enforce the routing rules.
  • the UE is connected to different distributed units (DUs) through multiple relays, and these different DUs are connected to the same centralized unit (CUs), at this time, the CUs Controlling these DUs is also performed by a CU to perform path selection.
  • DUs distributed units
  • CUs centralized unit
  • FIG. 9 is a schematic interaction diagram of another example of the multi-access session management method of the present application.
  • the remote UE establishes an indirect link connected to the base station through the relay, and at the same time, the remote UE maintains the direct link with the same base station.
  • the link information can be stored in the UE context in the AMF.
  • the link information may include at least one of the following information: radio access network device information to which the UE is connected (eg, base station identifier), relay information to which the UE is connected (eg, relay identifier information, which may be provided by the base station) .
  • the remote UE initiates a PDU session establishment or update request to the AMF, or the base station initiates a PDU session update request to the AMF.
  • the remote UE when a PDU session request is initiated by a remote UE, the remote UE sends a non-access stratum (NAS) message to the AMF, which includes a PDU session establishment or modification request message.
  • the remote UE can send the NAS message to the base station through the indirect link or the direct link, and the base station forwards the NAS message to the AMF.
  • the remote UE may send a radio resource control (RRC) message including the NAS message to the base station through an indirect link or through a direct link, and then the base station forwards the NAS message included in the RRC message to the AMF network element .
  • RRC radio resource control
  • the carrying messages include: the PDU session ID (PDU session ID) generated by the remote UE, the MA PDU session request indication (“MA PDU Request” in FIG. 9 ), the requested PDU session type, and the N1 session management ( session management) SM container (N1SM container).
  • the N1SM container includes a PDU session establishment or change request.
  • the above-mentioned MA PDU Request is a multi-PDU session request indication for non-3GPP multi-access offloading in the existing standard.
  • the multi-access scenario in this application is different from the non-3GPP multi-access scenario, so the existing MA PDU Request indication can be used here, or a newly defined indication is used to identify the request for establishing a multi-access session .
  • the request type can be "initial request” (initial request), used to establish a new PDU session; or can be "existing PDU session” (existing PDU session), used to indicate that a PDU session already exists and the session It is a switch between 3GPP access and non-3GPP access; or when switching from a 4G network to a 5G network, it indicates the public data network (PDN) connection used in the original 4G network.
  • the PDU session establishment or modification request message in the N1SM container may include: PDU session ID (consistent with the PDU session ID in the NAS message), the requested PDU session type (IP type, non-IP type or Ethernet type, etc.), the UE can support ATSSS capability information.
  • the ATSSS capability information may be a multiple transmission control protocol (MultiPath TCP, MPTCP) capability or an ATSSS low-layer (ATSSS low-layer, ATSSS-LL) capability or the like.
  • the UE may carry in the NAS message or the PDU session establishment or change request message: the wireless side access information of the UE, for example, the UE indicates that there is a direct link and an indirect link on the wireless side; the UE is connected to the relay of the base station through a relay identification information, etc.
  • UE indicates that there are direct links and indirect links on the radio side", which can be the number of links on the radio access network side indicated by the UE, such as the number of direct links and the number of indirect links, or The total number of all links. Further, the UE may also identify different links, for example, the direct link is Direct_Path_1, and the non-direct link is Indirect_Path_1. When there are multiple indirect links, you can continue to identify different indirect links, such as Indirect_Path_2, Indirect_Path_3, and so on. The UE may send these link identifiers together to the AMF or SMF in the NAS message or the PDU session establishment or change request message. At the same time, the UE may send the identification information to the radio access network device through an RRC message, for unified identification to indicate different links. Alternatively, these identification information may be recorded in the base station and/or the AMF as the context of the UE.
  • the above link identification information may be allocated by the base station and sent to the UE.
  • the base station when the PDU session update message is initiated by the base station, that is, the base station sends an N2 message to the AMF.
  • the N2 message includes the PDU session ID and N2SM information.
  • the N2SM information may include: wireless side access information of the UE, for example, the UE may indicate the number of multiple links existing on the wireless side, or the UE may further indicate the number of direct links and indirect links.
  • the base station when the remote UE is connected to the original base station through a new relay, the base station will indicate that there is a direct link and an indirect link on the radio side in the UE's radio side access message included in the N2 message sent to the AMF. quantity information.
  • the access network device may also identify different links, for example, a direct link is Direct_Path_1, and an indirect link is Indirect_Path_1. When there are multiple indirect links, you can continue to identify different indirect links, such as Indirect_Path_2, Indirect_Path_3, and so on.
  • the access network device may send these link identifiers together to the AMF or SMF in the N2 message.
  • the N2 message and/or the N2SM information may include the capability information of the base station, or the AMF may obtain the capability information of the base station according to the local configuration and the identification or address information of the base station.
  • the capability information of the base station here, that is, the capability of the base station to perform service offload based on QFI, or the capability to offload based on the granularity of the service flow.
  • the AMF forwards the MA PDU session establishment or modification request message of the UE to the SMF.
  • step S902 the UE requests to establish a PDU session, according to the MA PDU session request indication in the NAS message, if the AMF supports the MA PDU session, it selects an SMF network element that can also support the MA PDU session.
  • step S902 the base station requests to establish a PDU session, and according to the PDU session ID, initiates a request to update the SM context of the UE to the SMF network element that manages the PDU session ID.
  • the request message may use the Nsmf_PDUSession_CreateSMContext or Nsmf_PDUSession_UpdateSMContext service message defined in the 3GPP standard, and the message may carry: UE identification information, MA PDU request indication, etc.
  • the identification information of the UE may be a user permanent identifier (subscription permanent identifier, SUPI) or a general public user identifier (generic public subscription identifier, GPSI).
  • the accompanying request message may also carry link information on the radio access network side and/or capability information of the base station.
  • the link information on the radio access network side may be the number of links on the radio access network side, such as the number of direct links and the number of indirect links, or the total number of all links. Further, if in step 2, the request message of the UE carries a specific link identifier, the link information may also include the identifier of the link on the radio access network side, such as a direct link and/or a non-direct link. identification, etc. In addition, when the SMF creates or updates the SM context of the UE, it can also record the identification information corresponding to these links in the SM context.
  • the capability information of the base station mainly refers to the path offload capability supported by the base station in the embodiments of the present application, that is, whether the base station can perform service offload or link selection based on QFI, or the offload capability based on service granularity.
  • the SMF obtains session subscription data of the UE from the UDM.
  • the SMF obtains the session subscription data of the UE from the UDM or UDR, and creates the UE session context for the UE.
  • the SMF sends the UE session context creation or modification feedback to the AMF.
  • the SMF If the SMF has created a UE session context for the UE, it will feed back a confirmation message and a SM context identifier to the AMF, which can be fed back according to the message in step S902, for example, fed back through the Nsmf_PDUSession_CreateSMContext message or the Nsmf_PDUSession_Update SMContext message.
  • the SMF can send a corresponding refusal message to the AMF and notify the UE through a NAS message, together with the reason for the refusal.
  • the SMF may instruct the AMF to release the radio resources corresponding to the PDU session ID.
  • the SMF may select the PCF network element and request the PCC rule.
  • SMF can apply locally configured default PCC rules, or apply dynamic PCC rules.
  • PCC rule request message When SMF requests PCC rules from PCF, it can carry some necessary information with the PCC rule request message: user identification information (SUPI or GPSI, etc.), PDU session ID, MA PDU request indication (used to indicate to PCF that the session is based on relay multi-access PDU session).
  • user identification information SUPI or GPSI, etc.
  • PDU session ID PDU session ID
  • MA PDU request indication used to indicate to PCF that the session is based on relay multi-access PDU session.
  • the accompanying message may also carry some optional information: link information on the radio access network side and/or capability information of the base station, and the like.
  • the link information on the radio access network side may be the number of links on the radio access network side (the number of direct links and the number of indirect links, or the total number of all links) and/or The identification of the link on the radio access network side (that is, the identification of the direct link and/or the non-direct link), etc.
  • the capability information of the base station may refer to the capability of the base station to support path offload, or further indicate the capability of service offload based on QFI and/or traffic offload based on service granularity.
  • the PCF can judge whether to provide the PCC rule of the MA PDU session for the PDU session according to the necessary information and optional information carried in the PCC rule request message.
  • the PCF judges whether to provide the PCC rule of the MA PDU session for the PDU session according to the necessary information sent by the SMF.
  • the PCF judges whether to provide the PCC rule of the MA PDU session for the PDU session according to the information carried in the MA PDU request indication, the policy of the operator and the subscription data of the user.
  • the PCF can also determine whether to provide the PCC rule of the MA PDU session for the PDU session according to the optional information. For example, it is determined whether the UE exceeds the number of connections specified in the subscription information according to the number of indirect connections of the UE and the upper limit of the number of indirect connections that the UE can connect to indicated in the user subscription data. Specifically, the PCF can carry the user identity sent by the SMF to request the subscription data of the user from the UDM or UDR, and determine whether to provide the UE with the service transmission path selection or offload service of the MA PDU according to the information in the subscription data.
  • the PCF will set the PCC rules according to the link information provided by the SMF, and can set the PCC rules according to the local default configuration.
  • the transmission path selection or the offload granularity of the ATSSS rule is set to the QoS flow granularity or the service flow granularity.
  • the SMF when the SMF requests the PCC for the PCC rule, it carries the number of links on the radio access network side.
  • the connection information of the UE on the radio access network device is one direct link and two non-direct links.
  • ATSSS rules can be included in PCC rules, or can be separate rule information. ATSSS rules may also be referred to as link selection rules in this application.
  • the PCF can instruct the direct link to be set to high priority and the non-direct link to be low priority class.
  • the base station can process the data distribution method according to the locally configured rules, for example, in combination with the load of the relays in the indirect links, or the wireless channel. Quality, etc. implement the data offloading strategy by itself.
  • the PCF may further prioritize multiple indirect links.
  • the link identifier information For example, when SMF requests PCC rules (or ATSSS rules) from PCF, it carries the link identifier on the radio access network side, for example, the link identifier information: direct link is Direct_Path_1, non-direct link is Indirect_Path_2 and Indirect_Path_3 .
  • the PCF can set the sending ratio of the number of packets for different links. For example, Direct_Path_1 is 0.5, Indirect_Path_1 is 0.3, and Indirect_Path_2 is 0.2.
  • the PCF can send the data volume ratio of each link in the load balance to the SMF along with the ATSSS rules. Later, when the base station performs service offloading, it can process downlink data according to this ratio.
  • the UE when it performs uplink data offloading, it can also use the corresponding link for uplink data transmission according to the proportion.
  • the proportion of upstream and downstream service distribution can be different.
  • the PCF will generate the corresponding data offload granularity for the SMF according to the capability information of the base station.
  • the link information on the radio access network side configures the default service distribution rules for the SMF.
  • the PCF can generate the corresponding service offload granularity for the SMF according to the base station capability information, that is, the offload based on the QoS flow granularity or the offload mode based on the service flow granularity.
  • the PCF needs to configure the same traffic offloading mode for the service flows with the same QoS parameters (for example, 5QI). If it is a distribution mode based on the granularity of the service flow, the PCF can allocate distribution rules for different service flows according to different services. As for the link information on the wireless access network side in the local configuration, it can only distinguish between direct links and non-direct links by default. PCF can also configure default data distribution rules for SMF according to the local configuration, such as priority-based In the shunting mode of the highest level, only the priority of the directly connected link and the non-directly connected link is distinguished, or other shunting modes are also possible.
  • QoS parameters for example, 5QI.
  • the PCF sets the corresponding offload granularity and ATSSS rule for the SMF according to the information.
  • the specific content is as described above.
  • the PCF provides ATSSS rule information for the MA PDU session.
  • ATSSS rules may be, but are not limited to, the following rules:
  • Priority-based When the high-priority link is saturated, use another link to transmit subsequent data streams;
  • RTT Local Round-Trip Time
  • Load balance The two links transmit data at the same time in proportion, and the distribution ratio is provided by the network side.
  • the SMF creates or changes a corresponding N4 session for the UPF according to the PCC rule.
  • the SMF generates an ATSSS rule for the UE to transmit uplink data for the UE according to the ATSSS capability information (eg, MPTCP capability or ATSSS-LL capability) that the UE can support and the ATSSS rule information in the PCC rule.
  • ATSSS capability information eg, MPTCP capability or ATSSS-LL capability
  • the SMF network element sends a feedback message to the AMF after completing the establishment or modification of the PDU session.
  • the message carries "MA PDU Session Acceptance Indication", which can be the Namf_Communication_N1N2MessageTransfermessage message defined in the existing standard.
  • the N2 message will carry the QoS configuration information in the PDU session, including QFI and corresponding QoS parameters.
  • the N1 message will carry the QoS rules for the UE to process uplink data packets, and the same rules include QFI and corresponding QoS parameters.
  • the ATSSS rules for the remote UE are carried with the N1 message
  • the ATSSS rules for the base station are carried with the N2 message.
  • the AMF sends the PDU session information to the base station through the N2 message.
  • the information carries the ATSSS rules for the base station.
  • the base station forwards the N1 message of the SMF to the remote UE (which includes the ATSSS rule for the remote UE).
  • the base station judges whether the wireless side can meet the requirements of the QoS parameters according to the QoS information in the N2 message, and sends the result to the AMF through the N2 information along with the N2PDU session feedback message.
  • the AMF forwards the N2 information to the SMF.
  • the SMF sends the radio side information to the UPF along with the N4 session change message.
  • the SMF feeds back the PDU session context update result to the AMF.
  • the RAN executes the ATSSS rule.
  • the base station After receiving the ATSSS rule or the indication that the ATSSS rule can be executed through the N2 message, the base station performs corresponding offload processing on the data sent by the N3 interface.
  • data flow, selection or control can be performed based on two granularities.
  • the offload processing in this embodiment is mainly based on two methods, one is traffic offload based on QoS flow granularity, and the other is traffic offload based on service flow granularity.
  • Mode 1 When using the offload mode based on QoS flow granularity, the base station allocates DRB configurations for the indirect link and the direct link of the remote UE respectively to transmit wireless data between the remote UE and the base station, assuming a direct connection.
  • the link Direct_Path_1 corresponds to DRB 1
  • the indirect link Indirect_Path_1 corresponds to DRB 2
  • the indirect link Indirect_Path_2 corresponds to DRB 3.
  • the embodiments of the present application also support the case where the base station can configure multiple DRBs for each direct link, and map one direct link to multiple DRBs. For example, configure DRB 1 and DRB 4 for the direct link Direct_Path_1.
  • the base station receives the downlink data packets sent from the UPF from the N3 interface, each data packet header will have corresponding QFI information. Based on the QFI information and according to the ATSSS rules, the base station allocates data packets with the same QFI identifier to different DRBs for wireless transmission.
  • the ATSSS rule is Priority-based, that is, the priority is set for different links to send data, and it is indicated that the processing rule for a data packet identified by one or more QFIs is that the direct link is a high priority, The non-direct link is of low priority, and the base station preferentially uses the direct link to send the data packets identified by the QFI. That is, the data packets identified by these QFIs are preferentially mapped to DRB 1 for transmission.
  • all data packets may be mapped to DRB 1 for transmission without discovery on other DRBs, and it is not limited to shunting data packets to different DRBs for transmission.
  • the ATSSS rule is Load balance, that is, the load-based offloading mode, and indicates that one or more QFI-identified data packets use the sending ratio of different links, for example, the direct link Direct_Path_1 is 0.5, If the indirect link Indirect_Path_1 is 0.3, and the indirect link Indirect_Path_2 is 0.2, the base station maps the data packets identified by the QFI to the corresponding DRB according to the ratio.
  • the ATSSS rule may also indicate that the base station may offload the data packets identified by the QFI according to the wireless link conditions (eg, channel quality, load conditions, etc.).
  • the base station can perform data flow distribution according to the channel quality of the indirect link and the direct link.
  • Method 2 When using the traffic distribution method based on the granularity of the service flow, the base station needs to have the ability to identify the address information of the data packet sent by the N3 interface, that is, according to the quintuple information of the data packet (source IP address of the data packet, source port , destination IP address, destination port and transport layer protocol) to confirm the service flow corresponding to the ATSSS rule, and then perform the corresponding data packet distribution according to the ATSSS rule.
  • the base station needs to have the ability to identify the address information of the data packet sent by the N3 interface, that is, according to the quintuple information of the data packet (source IP address of the data packet, source port , destination IP address, destination port and transport layer protocol) to confirm the service flow corresponding to the ATSSS rule, and then perform the corresponding data packet distribution according to the ATSSS rule.
  • each rule is for different service streams, for example, it is also a video stream, and only the service stream of Baidu Video is distributed, while other video service streams are divided.
  • quintuple information will be given, so that the base station can identify the data packets of Baidu video according to the information, and perform offloading of these data packets.
  • the specific offloading method is similar to the aforementioned offloading of the QFI granularity, except that the offloading granularity here has changed, which will not be repeated here.
  • the UE processes the uplink data according to the ATSSS rule, and the base station processes the downlink data according to the ATSSS rule.
  • step S916 and step S917 may be performed simultaneously.
  • the way of implementing ATSSS rules on the UE side is similar to the processing on the base station side. According to the instructions of the ATSSS rules, it can be a method based on QFI granularity or service flow granularity. When processing uplink data packets, different links are selected for transmission.
  • the ATSSS rule is a Priority-based offload mode, that is, setting priorities for different links to send data.
  • the ATSSS rule will indicate that the processing rule for a data packet with one or more QFI identifiers is that the direct link is high priority, and the non-direct link is low priority.
  • the direct link is preferentially sent. That is, the data packets identified by these QFIs are preferentially mapped to the uplink DRB of the directly connected link for transmission.
  • the service flow may also be distributed processing according to, for example, quintuple information, which will not be repeated here.
  • a method in which the offload point is at the base station and the base station executes link control rules.
  • the base station can select an appropriate link for the remote terminal device according to the link control rule to send downlink data packets to the remote terminal device.
  • the base station can provide a more flexible data transmission service for the remote terminal equipment.
  • FIG. 10 shows a schematic structural diagram of a scenario of another embodiment of the present application.
  • the UE is controlled by the same base station through the direct link and the relay-based indirect link, and path offload or path selection is performed at the base station, while the ATSSS rules are implemented by the UPF network.
  • FIG. 11 shows another example of a schematic interaction diagram of the multi-access session management method of the present application.
  • the SMF creates or modifies a corresponding N4 session for the UPF according to the PCC rule.
  • step S1108 the SMF will configure some other information together when configuring the ATSSS rule to the UPF according to the different granularity of data distribution.
  • the ATSSS rules and "some other information" here constitute the link control rules described in this application.
  • link control rules corresponding to different offload granularities in step S1108 do not need to be executed at the same time, and only one of them may be executed at a time.
  • Mode 1 A single service flow is mapped to multiple QFIs.
  • the SMF has obtained the PCC rules including the ATSSS rules of the service flow from the PCF.
  • the SMF allocates QFIs, on the basis that different QFIs are allocated to different service flows, the same service flow also allocates multiple different QFIs. Further, the multiple different QFIs are bound to multiple links one by one. It should be noted that the QoS parameters of the QoS flows indicated by multiple different QFIs allocated by the same service flow are the same.
  • a corresponding number of QFIs may be allocated according to the radio side link information of the UE. For example, a corresponding number of QFIs are allocated according to the number of directly connected links and non-directly connected links that exist.
  • the SMF can configure multiple different QFIs corresponding to a service flow to the UPF together with the ATSSS rules.
  • the link information on the radio access network side is: direct link Direct_Path_1, indirect link Indirect_Path_1 and indirect link Indirect_Path_2, then SMF can map the same service flow to Direct_Path_1 as QFI 1 , mapped to Indirect_Path_1 is QFI 2, mapped to Indirect_Path_2 is QFI 3. Afterwards, the SMF configures this mapping relationship to the UPF that executes the offloading rule through the N4 session establishment or change message.
  • the service flows are allocated to the QFIs corresponding to different radio access network side links, or the corresponding QFI identifiers are used to indicate that the service flows are offloaded to different radio access networks. side link.
  • mapping relationship includes the mapping relationship between the service flow and multiple QFIs, or more specifically, the mapping relationship between the link information corresponding to each QFI.
  • this mapping relationship can only indicate the corresponding relationship between multiple QFIs and data packets belonging to the same service flow, and does not indicate the corresponding relationship between QFIs and links, and UPF configures the corresponding QFI logo on the data packet according to the mapping relationship. .
  • the mapping relationship indicates that QFI1 and QFI 2 correspond to 50% of the data packets, then UPF will configure QFI1 and QFI 2 on the data packets of this service flow at a ratio of 1:1. 's identification.
  • the mapping relationship may indicate the corresponding relationship between the QFI and multiple links
  • the UPF configures the corresponding QFI identifier on the data packet according to the mapping relationship and the specific ATSSS rule.
  • the ATSSS rule based on load selection
  • UPF instructs the direct link and indirect link to transmit 50% of the data packets, and the direct link corresponds to QFI_1 and the indirect link corresponds to QFI_2, then UPF first needs to
  • the identifiers of QFI1 and QFI 2 can be configured on the data packets of the service flow at a ratio of 1:1.
  • the radio side link information is bound to the service flow.
  • the SMF may configure the link identification information and the corresponding link connection relationship to the UPF together with the ATSSS rule.
  • the direct link is Direct_Path_1
  • the indirect link is Indirect_Path_1
  • the indirect link is Indirect_Path_2.
  • the UPF binds the data stream and the link identifier when using different links for downlink data transmission according to the ATSSS rules.
  • the IP data packet of a certain service flow needs to be sent through a direct link, and the UPF adds the link identifier Direct_Path_1 before the IP data packet of the service flow, so that the access network device can The information selects the corresponding link to send the data packet.
  • the anchor UPF is connected to different access network devices (two N3 interfaces) or the UPF ( two N9 ports) connection.
  • the UPF needs to offload the service flow, the same service flow is offloaded to different interfaces, and the QFI used by the different interfaces is the same (because currently the same service flow and QoS flow have a one-to-one mapping relationship).
  • the UPF that performs service flow offloading has only one interface with the access network device, that is, the N3 interface. If different service flows are not additionally identified during the offloading, the access network device cannot determine the specific offloading manner.
  • the SMF generates an ATSSS rule for the UE to transmit uplink data for the UE according to the ATSSS rule information in the PCC rule.
  • the SMF network element sends a feedback message to the AMF after completing the establishment or modification of the PDU session.
  • the "MA PDU session acceptance indication" is carried with the message, which can be the Namf_Communication_N1N2MessageTransfer message defined in the existing standard.
  • the ATSSS rules for the remote UE are carried with the N1 message, and the QoS configuration information is carried with the N2 message.
  • step S1108 all the QFI configurations need to be added in the QoS configuration information, that is, the corresponding relationship between the QFI and the wireless side link.
  • QFI 1 is used for the direct link Direct_Path_1
  • QFI 2 is used for the direct link Indirect_Path_1
  • QFI 3 is used for the direct link Indirect_Path_2.
  • the QoS parameters corresponding to QFI 1, QFI 2, and QFI 3 are configured It is also sent to the radio access network device together with the N2 message.
  • the AMF sends the PDU session information to the base station through the N2 message.
  • S1111 to S1115 are the same as the above-mentioned S911 to S915, and are not repeated here.
  • the UPF performs corresponding distribution processing on the downlink data packets according to the ATSSS rules allocated by the SMF.
  • the UPF uses different QFIs for identification for different links when distributing the service flow according to the ATSSS rule.
  • the ATSSS rule is based on load selection (Load Balance), and the distribution rule indicates the ratio of sending data packets of one or more service flows using different links. For example, if the direct link Direct_Path_1 is 0.5, the indirect link Indirect_Path_1 is 0.3, and the indirect link Indirect_Path_2 is 0.2, the UPF maps these service flows to QFI 1, On QFI 2 and QFI 3.
  • Load Balance load selection
  • the ATSSS rule is based on link state selection (Active-Standby), and the shunt rule indicates that when there are multiple links, one or more links are selected to be in the Active (active) state, while other links are in the Standby state. (standby) state.
  • the UPF receives this rule, it sends data according to the status indications of different links in the rule.
  • the link has direct and indirect links, and the link information received by UPF only distinguishes between direct links and indirect links, select the direct link as the active state and the indirect link as the active state.
  • the UPF can set the active or standby state for each indirect link. For another example, when the link has only indirect links, the UPF may also set the status of each link to active or standby according to the received link information. In this way, the UPF maps the service flow to the QFI corresponding to the link whose state is active.
  • the UPF will, according to the ATSSS rules, assign corresponding wireless labels to different data packets when distributing the service flow. Sidelink ID.
  • the ATSSS rule is Load Balance (load balancing distribution mode), and the distribution rule indicates the ratio of sending data packets of one or more service flows using different links. For example, if the direct link Direct_Path_1 is 0.5, the indirect link Indirect_Path_1 is 0.3, and the indirect link Indirect_Path_2 is 0.2, the UPF will use the ratio of 5:3:2 for these service flows in these service flows.
  • the header of the data packet is marked with the marks of Direct_Path_1, Indirect_Path_1 and Indirect_Path_2.
  • the UPF adds indication information to the GTP-U (GPRS Tunneling Protocol-User Plane, GPRS Tunneling Protocol user plane part) header of the encapsulated service message, indicating the radio access network side used by the encapsulated user message Link information used (Direct_Path_1, Indirect_Path_1 or Indirect_Path_2).
  • GTP-U GPRS Tunneling Protocol-User Plane, GPRS Tunneling Protocol user plane part
  • the ATSSS rule is based on link state selection (Active-Standby), and the shunt rule indicates that when there are multiple links, one or more links are selected to be in the Active (active) state, while other links are in the Standby state. (standby) state.
  • the shunt rule indicates that when there are multiple links, one or more links are selected to be in the Active (active) state, while other links are in the Standby state. (standby) state.
  • UPF marks the link identifier of the active link in the packet header of the data packet of the service flow corresponding to the ATSSS rule.
  • the UE processes the uplink data according to the ATSSS rule, and the UPF processes the downlink data according to the ATSSS rule.
  • the radio access network device maps the QFI to the corresponding DRB for transmission according to the mapping relationship between the QFI and the radio side link in the QoS configuration information.
  • the wireless access network device selects the corresponding wireless side link according to the wireless side link identification information before the data packet sent by the UPF, and maps the data packet to the corresponding wireless side link. transmission on the DRB.
  • S1116 and S1117 may be executed simultaneously.
  • a user plane function is used to map a service flow to multiple QoS flows according to the link control rule, that is, a service flow corresponds to the identifiers of different QoS flows, or the user plane function is used according to the link control rule. Bind the wireless side link information with the service flow, and control, switch and offload the data transmission between the base station and the terminal equipment, making the data transmission between the base station and the terminal equipment more flexible and reducing the changes on the core network side .
  • FIG. 12 shows a schematic structural diagram of a scenario of still another embodiment of the present application.
  • the UE is directly connected to an access network device through a direct link, and is indirectly connected to another base station through a relay-based indirect link, and performs path shunting or path selection in the UPF.
  • ATSSS rules Also performed by the UPF network.
  • FIG. 13 shows another example of a schematic interaction diagram of the multi-access session management method of the present application.
  • step S1301 is the same as the aforementioned step S901.
  • the remote UE when the remote UE is directly connected to one access network device and indirectly connected to another access network device through a relay, the remote UE can send a NAS message to the AMF through one of the access network devices to request establishment or update PDU session.
  • the sending method and content of the request message are the same as the foregoing step S902.
  • the remote UE sends the request message over a link that can optionally establish a connection later. Specifically, if the remote UE first connects to the core network through an indirect link, and then establishes a direct link with another access network device, the PDU session establishment or modification request can be sent to the AMF through the direct link.
  • the AMF forwards the PDU session establishment or modification request message of the UE.
  • the message carries the identification information of the newly accessed radio access network device (used to indicate the base station that needs N2 information), and the information of the connection between the remote UE and the radio access network device (for example, the number of radio access network links, the radio identification or address information of the access network device).
  • the relay information after the access network device information or the information of the direct link and the indirect link may be further indicated.
  • base station 1 (RAN_1) is connected to the UE through a direct link
  • base station 2 (RAN_2) is connected to the UE through a non-direct link.
  • the base station 1 is connected to the UE through a direct link
  • the number of indirect links existing between the base station 1 and the UE at the same time the base station 2 is connected to the UE through the indirect link, and the indirect link between the base station 2 and the UE the number of links.
  • link identification information can also be given, such as the direct link RAN_1_Direct_Path_1 of base station 1, the indirect link RAN_1_Indirect_Path_1 of base station 1, a direct link RAN_2_Direct_Path_1 of base station 2, and another direct link of base station 2.
  • S1304 to S1305 are the same as steps S904 to S905 in the first and second embodiments.
  • the SMF requests the PCF for the PCC rule.
  • the request message carries radio access network device information, such as the number of radio access network links.
  • the link between base station 1 and the remote UE includes a direct link, that is, the link between base station 1 and the remote UE is a direct link and one or more indirect links, and the link between base station 2 and the remote UE is a direct link and one or more indirect links. If the links between them are all indirect links, the PCF can only distinguish between base stations with direct links and base stations with only indirect links when formulating traffic distribution rules.
  • the radio access network device information may indicate the number of direct links and indirect links between the base station 1 and the remote UE, and the number of indirect links between the base station 2 and the remote UE.
  • the radio access network device information may indicate specific link identification information, such as RAN_1_Direct_Path_1, RAN_1_Indirect_Path_1, RAN_2_Indirect_Path_1, RAN_2_Indirect_Path_2, and so on.
  • the specific generation method of the link control rule can refer to the case of step S906 or step S1108; the base station can also perform path offloading or path selection according to other existing methods.
  • the generation manner of the link control rule may be as follows.
  • the ATSSS rule is priority-based, which sets priorities for different links to send data, and the PCF can instruct to set the base station with a direct link to a high priority, and a non-direct link
  • the base station has a low priority, and further, the PCF can further set priorities for multiple indirect links.
  • RAN_1_Direct_Path_1 is a high priority link, or base station 1 is high priority and base station 2 is low priority.
  • the links of RAN_1_Indirect_Path_1, RAN_2_Direct_Path_1, and RAN_2_Direct_Path_2 have relatively low priorities, and the PCF can further prioritize the links with low priorities.
  • the specific generation method of the offload rule can refer to the case of step S906 or step S1108, or the base station can perform path offload or path selection according to the existing method, which will not be repeated here. .
  • the ATSSS rule is based on load balance, in which the PCF can set the sending ratio of the number of packets for different links.
  • the PCF can send the data volume sending ratio of each base station in the Load Balance to the SMF along with the ATSSS rules. Later, when the UPF performs service offloading, it can process downlink data according to this ratio.
  • the UE when it performs uplink data offloading, it can also use the corresponding base station to transmit uplink data according to the proportion.
  • the proportion of upstream and downstream service distribution can be different.
  • the specific generation method of the offload rules of the multiple links on each base station can refer to the case of step S906 or step S1108 (for example, for RAN_1, the multiple links on base station 1 0.8 ratio of service flow is further offloaded by each link), or the base station performs path offloading or path selection according to the existing method, which will not be repeated here.
  • step S1307 is the same as step S907, and details are not repeated here.
  • the SMF configures a packet forwarding rule for the UPF.
  • the ATSSS rules are sent to the UPF together with the radio access network link information.
  • the radio access network link information may be identification or address information of a radio access network device, or may be specific link identification information.
  • the specific link identification information may be, for example, RAN_1_Direct_Path_1, RAN_1_Indirect_Path_1, RAN_2_Direct_Path_1, RAN_2_Direct_Path_2. As described in step S1306, these identification information correspond to the ATSSS rules.
  • the SMF configures an N2 message for the radio access network device.
  • the SMF configures the N2 message for the radio access network device.
  • the N1N2 information sent by the SMF to the AMF carries the radio access network device identifier. If the QoS configuration is changed after the PDU session is changed, the SMF needs to send the N2 message to all base stations connected to the UE at the same time, so the radio access network device ID here is the ID of all base stations connected to the UE.
  • the AMF sends the N1N2 information to these radio access network devices.
  • These radio access network devices forward the N1 information to the remote UE and feed back the N2 information to the AMF.
  • steps S1310 to S1312 are processed according to steps S910 to S912, or the base station performs path offloading or path selection in an existing manner, which will not be repeated here.
  • S1313 to S1315 are the same as steps S913 to S915.
  • the UPF performs downlink data packet distribution according to the data packet forwarding rule configured by the SMF, the ATSSS rule and the radio access network link information. Specifically, according to the ATSSS rule, the service flow is distributed to different radio access network device interfaces, that is, multiple N3 interfaces.
  • the ATSSS rule is priority-based, that is, setting priorities for different links to send data. For example, base station 1 (RAN_1) with a direct link has a high priority, and base station 2 (RAN_2) with a non-direct link has a low priority.
  • the UPF preferentially sends the service flow indicated by the ATSSS through the interface of RAN_1 (that is, setting the radio access network device address of the data packet to the address of RAN_1).
  • the specific generation method of the offload rule can refer to the case of step S906 or step S1108, or the base station performs path offload or path selection according to the existing method, which will not be repeated here.
  • the UE processes the uplink data according to the ATSSS rule, and the UPF processes the downlink data according to the ATSSS rule.
  • step S1316 and step S1317 may be performed simultaneously.
  • the method 1300 may be performed independently, or may be combined with the method 900 or the method 1100 .
  • the UE is connected to the core network through multiple radio access network devices, and is connected to the multiple radios through direct links and indirect links, or through multiple indirect links.
  • the method that the offload point is in the UPF, and the UPF executes the link control rules, realizes the data offload when multiple base stations are accessed.
  • the The application scenarios of this application are more complete.
  • FIG. 14 is a schematic block diagram of a communication apparatus for multi-access session management provided by an embodiment of the present application.
  • the communication device 10 may include a transceiver module 11 and a processing module 12 .
  • the communication apparatus 10 may correspond to the radio access network device in the above method embodiment.
  • it may be the RAN, or a chip configured in the RAN.
  • the communication device 10 may correspond to the RAN in the method 400 , the method 600 , the method 700 , the method 900 , the method 1100 , and the method 1300 according to the embodiments of the present application.
  • Method 400, or method 500 in FIG. 5, or method 600 in FIG. 6, or method 700 in FIG. 7, or method 900 in FIG. 9, or method 1100 in FIG. 11, or method 1300 in FIG. 13 A module of the method performed by the RAN.
  • each unit in the communication device 10 and the above-mentioned other operations and/or functions are respectively the method 400 in FIG. 4 , the method 500 in FIG. 5 , the method 600 in FIG. 6 , or the method 700 in FIG. 7 . , or the method 900 in FIG. 9 , or the method 1100 in FIG. 11 , or the corresponding flow of the method 1300 in FIG. 13 .
  • the transceiver module 11 can be used to execute steps S403 and S405 of the method 400
  • the processing module 12 can be used to execute the step S404 of the method 400 .
  • the transceiver module 11 can be used to execute step S505 in the method 500 .
  • the transceiver module 11 can be used to execute steps S603 and S605 of the method 600
  • the processing module 12 can be used to execute the step S604 of the method 600 .
  • the transceiver module 11 can be used to execute step S703 in the method 700 .
  • the transceiver module 11 can be used to execute steps S901 , S910 , S911 , S912 , and S917 of the method 900
  • the processing module 12 can be used to execute the step S916 of the method 900 .
  • the transceiver module 11 can be used to execute steps S1101 , S1110 , S1111 , S1112 , and S1117 in the method 1100 .
  • the transceiver module 11 can be used to execute steps S1301 , S1310a , S1310b , S1311a , S1311b , S1312a , and S1312b in the method 1300 .
  • the transceiver module 11 is used to obtain the link control rule 01; the processing module 12 is used to determine the target link among multiple links between the RAN and the remote terminal equipment UE according to the link control rule 01; the transceiver Module 11 transmits data with the remote UE through the target link.
  • the multiple links include direct-connected links and indirect-connected links, or the multiple links include multiple indirect-connected links.
  • the processing module 12 is specifically configured to: determine the identifier QFI of the QoS flow that transmits the data; determine the link corresponding to the QFI among the multiple links according to the link control rule 01, and the link corresponding to the QFI is the target link.
  • the processing module 12 is further configured to: determine the service flow corresponding to the data; determine the link corresponding to the service flow among the multiple links according to the link control rule 01, and the link corresponding to the service flow is the target chain road.
  • the processing module 12 is further configured to: determine the identifier QFI of the QoS flow that transmits the data; determine the link selection rule corresponding to the QFI according to the link control rule 01; determine among the multiple links according to the link selection rule the target link.
  • the link control rule 01 includes the corresponding relationship between the QFI and the link selection rule.
  • the RAN determines to use the link control rule 01 corresponding to the QFI.
  • the processing module 12 is further configured to: determine the service flow corresponding to the data transmission; determine the link selection rule corresponding to the service flow according to the link control rule 01; determine among the multiple links according to the link selection rule the target link.
  • the link control rule 01 includes the corresponding relationship between the service flow and the link selection rule.
  • the processing module 12 is further configured to determine the link control rule 01 corresponding to the adopted service flow.
  • the link selection rule includes one or more of the following: selection based on priority, selection based on load, selection based on data transmission ratio, selection based on round-trip delay, and selection based on channel quality.
  • the transceiver module 11 is further configured to: send at least one of link selection capability information and link information of the RAN to the access and mobility management function network element AMF; wherein the link selection capability information is used to indicate that the RAN can Support the link control rule 01 corresponding to QFI and/or the link control rule 01 corresponding to the service flow; the link information is used to indicate the link type of the multiple links, and the link type is a direct link or a non-connected link. Directly connected links; or, the link information is used to indicate the number of multiple links; or, the link information is used to indicate multiple link identifiers of the multiple links, and the multiple link identifiers are used for The link type of each link in the plurality of links is respectively indicated.
  • the RAN acquiring the link control rule 01 includes: the RAN receiving the link control rule 01 from the session management function network element SMF.
  • FIG. 15 is a schematic block diagram of a communication apparatus for multi-access session management provided by an embodiment of the present application.
  • the communication device 20 may include a transceiver module 21 and a processing module 22 .
  • the communication device 20 may correspond to the UPF in the above method embodiment. Or it can be a chip configured in the UPF.
  • the communication device 20 may correspond to the user plane function in the method 500 , the method 600 , the method 900 , the method 1100 , and the method 1300 according to the embodiments of the present application, and the communication device 20 may include a method for executing the method in FIG. 5 . 500 or method 600 in FIG. 6 or method 900 in FIG. 9 , or method 1100 in FIG. 11 , or a module of a method performed by UPF in method 1300 in FIG. 13 .
  • each unit in the communication device 20 and the above-mentioned other operations and/or functions are for implementing the method 500 in FIG. 5 , the method 600 in FIG. 6 , the method 900 in FIG. 9 , or the method 1100 in FIG. 11 , respectively. , or the corresponding flow of the method 1300 in FIG. 13 .
  • the transceiver module 21 can be used to perform steps S503 and S505 in the method 500
  • the processing module 22 can be used to perform the step S504 in the method 500 .
  • the transceiver module 21 can be used to execute steps S603 and S605 of the method 600
  • the processing module 22 can be used to execute the step S604 of the method 600 .
  • the transceiver module 21 can be used to execute steps S908 and S914 in the method 900 .
  • the transceiver module 21 can be used to execute steps S1108 and S1114 in the method 1100
  • the processing module 22 can be used to execute the step S1116 of the method 1100 .
  • the transceiver module 21 can be used to perform steps S1308 and S1314 in the method 1300
  • the processing module 22 can be used to perform the step S1316 of the method 1300 .
  • the transceiver module 21 is used to receive the link control rule 02 from the session management function network element; the processing module 22 is used to divide a service flow into multiple QoS flows according to the link control rule 02; the transceiver The module 21 is further configured to send the identifiers QFI of the multiple QoS flows to the radio access network device.
  • the link control rule 02 includes the corresponding relationship between the identification QFI of the multiple QoS flows and the link selection rule
  • the link selection rule includes one or more of the following: priority-based selection, load-based selection, data-based Transmission ratio selection, selection based on round-trip delay, selection based on channel quality.
  • the RAN it is convenient for the RAN to map the QFI of the QoS flow to a target link among multiple links between the RAN and the remote UE.
  • the multiple links include direct-connected links and indirect-connected links, or the multiple links include multiple indirect-connected links.
  • the transceiver module 21 is used to receive the link control rule 03 from the session management function network element; the processing module 22 is used to determine the link identification information corresponding to the service flow according to the link control rule 03, the The link identification information is used to identify the link between the radio access network device and the remote UE; the transceiver module 21 is also used to send the link identification information to the RAN.
  • the transceiver module 21 is further configured to: send data corresponding to the service flow to the RAN, where the data carries the link identification information.
  • multiple links are included between the RAN and the remote UE, and the multiple links include direct links and indirect links, or the multiple links include multiple indirect links.
  • the link control rule 03 includes the corresponding relationship between the service flow and the link identification information.
  • the link control rule 03 includes the correspondence between the service flow and the link selection rule, and the link selection rule includes one or more of the following: priority-based selection, load-based selection, and data-based transmission ratio selection. , based on round-trip delay selection, based on channel quality selection.
  • the processing module 22 is further configured to determine, according to the link control rule 03, to select the RAN from multiple RANs to transmit the service flow.
  • FIG. 16 is a schematic block diagram of a communication apparatus for multi-access session management provided by an embodiment of the present application.
  • the communication device 30 may include a transceiver module 31 and a processing module 32 .
  • the communication device 30 may correspond to the SMF in the above method embodiment. Or it can be a chip configured in the SMF.
  • the communication apparatus 30 may correspond to the session management function in the method 400, the method 600, the method 700, the method 900, the method 1100, and the method 1300 according to the embodiments of the present application, and the communication apparatus 30 may include a method for executing FIG. 4 method 400 in FIG. 5 , or method 500 in FIG. 5 , or method 600 in FIG. 6 , or method 700 in FIG. 7 , or method 900 in FIG. 9 , or method 1100 in FIG. Modules of the method performed by the SMF in method 1300.
  • each unit in the communication device 30 and the above-mentioned other operations and/or functions are for implementing the method 400 in FIG. 4 , the method 500 in FIG. 5 , the method 600 in FIG. 6 , or the method in FIG. 7 , respectively. 700 , or the method 900 in FIG. 9 , or the method 1100 in FIG. 11 , or the corresponding flow of the method 1300 in FIG. 13 .
  • the transceiver module 31 can be used to execute steps S401 and S403 of the method 400
  • the processing module 32 can be used to execute the step S402 of the method 400 .
  • the transceiver module 31 can be used to perform steps S501 and S503 in the method 500
  • the processing module 32 can be used to perform the step S502 in the method 500 .
  • the transceiver module 31 can be used to execute steps S601 and S603 of the method 600
  • the processing module 32 can be used to execute the step S602 of the method 600 .
  • the transceiver module 31 can be used to execute step S701 in the method 700 .
  • the transceiver module 31 can be used to execute steps S903 , S904 , S905 , S906 , S907 , S908 , S909 , S913 , S914 , and S915 in the method 900 .
  • the transceiver module 31 can be used to execute steps S1103 , S1104 , S1105 , S1106 , S1107 , S1108 , S11011 , S1113 , S1114 , and S1115 in the method 1100 .
  • the transceiver module 31 can be used to execute steps S1303 , S1304 , S1305 , S1306 , S1307 , S1308 , S13013 , S1313 , S1314 , and S1315 in the method 1300 .
  • the transceiver module 31 is used to receive the policy from the policy and control function PCF; the processing module 32 is used to formulate the link control rule 01 according to the policy; the transceiver module 31 is further for sending the link control rule 01 to the radio access network device, the link control rule 01 including the correspondence between the QoS flow and one or more of the multiple links between the RAN and the remote UE, and/or The link control rule 01 includes the correspondence between the traffic flow and one or more of the multiple links between the RAN and the remote UE.
  • the multiple links include direct-connected links and indirect-connected links, or the multiple links include multiple indirect-connected links.
  • the link control rule 01 further includes the corresponding relationship between the QFI and the link selection rule.
  • the link control rule 01 further includes the correspondence between the service flow and the link selection rule.
  • the link selection rule includes one or more of the following: selection based on priority, selection based on load, selection based on data transmission ratio, selection based on round-trip delay, and selection based on channel quality.
  • the transceiver module 31 is further configured to: receive link information from the RAN; wherein, the link information is used to indicate the link type of the multiple links, and the link type is a direct link or a non-direct link or, the link information is used to indicate the number of multiple links; or, the link information is used to indicate multiple link identifiers of the multiple links, and the multiple link identifiers are used to respectively indicate the The link type of each of the multiple links.
  • the processing module 32 is further configured to formulate the link control rule 01 according to the link information and the policy.
  • the transceiver module 31 is further configured to receive link selection capability information from the RAN, where the link selection capability information is used to indicate that the RAN can support the link control rule 01 corresponding to the QFI and/or the link corresponding to the service flow Control rule 01; the processing module 32 is further configured to formulate the link control rule 01 according to the link selection capability information and the policy.
  • the transceiver module 31 is used to receive the policy from the policy and control function PCF; the processing module 32 is used to formulate the link control rule 04 according to the policy; the transceiver module 31, For sending the link control rule 04 to the user plane function, the link control rule 04 includes a correspondence between a service flow and multiple QoS flows, or includes a correspondence between service flows and link identification information, the link identification The information is used to identify the links between the radio access network equipment and the remote UE, the RAN is connected to the UPF.
  • the multiple links include direct-connected links and indirect-connected links, or the multiple links include that the multiple links include multiple indirect-connected links.
  • the link control rule 04 includes the correspondence between the service flow and the link identification information.
  • the link control rule 04 includes the corresponding relationship between the identification QFI of the multiple QoS flows and the link selection rule, or, the link control rule 04 includes the correspondence relationship between the service flow and the link selection rule,
  • the link selection rule includes one or more of the following: priority-based selection, load-based selection, data-based transmission ratio selection, round-trip delay-based selection, and channel quality-based selection.
  • the link control rule 04 includes a radio access network device selection rule
  • the radio access network device selection rule includes one or more of the following: priority-based selection, load-based selection, data-based transmission ratio selection, based on Round-trip delay selection, based on channel quality selection.
  • FIG. 17 is a schematic block diagram of a communication apparatus for multi-access session management provided by an embodiment of the present application.
  • the communication device 40 may include a transceiver module 41 and a processing module 42 .
  • the communication device 40 may correspond to the UE in the above method embodiment. Or it may be a chip configured in the UE.
  • the communication apparatus 40 may correspond to the terminal device in the method 400 , the method 700 , the method 900 , the method 1100 , and the method 1300 according to the embodiments of the present application, and the communication apparatus 40 may include a method for executing the method 400 in FIG. 4 . , or the method 500 in FIG. 5 , or the method 700 in FIG. 7 , or the method 900 in FIG. 9 , or the method 1100 in FIG. 11 , or the method performed by the UPF in the method 1300 in FIG. 13 .
  • each unit in the communication device 40 and the above-mentioned other operations and/or functions are for implementing the method 400 in FIG. 4 , the method 500 in FIG. 5 , the method 700 in FIG. 7 , or the method in FIG. 9 , respectively. 900 , or the method 1100 in FIG. 11 , or the corresponding flow of the method 1300 in FIG. 13 .
  • the transceiver module 41 can be used to execute step S405 in the method 400 .
  • the transceiver module 41 can be used to execute step S505 in the method 500 .
  • the transceiver module 41 can be used to execute steps S701 and S703 in the method 700
  • the processing module 42 can be used to execute the step S702 of the method 700 .
  • the transceiver module 41 can be used to execute steps S901 , S902 , S911 and S917 in the method 900 .
  • the transceiver module 41 can be used to execute steps S1101 , S1102 , S1111 , and S1117 in the method 1100 .
  • the transceiver module 41 can be used to execute steps S1301 , S1102 , S1313a , S1313b , and S1317 in the method 1300 .
  • the transceiver module 41 is used to receive the link control rule 05 from the session management network element; the processing module 42 is used to determine, according to the link control rule 05, to determine among multiple links between the RAN and the terminal device Target link; the transceiver module 41 is used to transmit data with the RAN through the target link.
  • the multiple links include direct-connected links and indirect-connected links, or the multiple links include multiple indirect-connected links.
  • FIG. 18 is a schematic diagram of a communication apparatus 50 for multi-access session management provided by an embodiment of the present application.
  • the apparatus 50 may be a RAN, or a chip or a chip system located on the RAN.
  • the apparatus 50 may include a processor 51 (ie, an example of a processing module) and a memory 32 .
  • the memory 32 is used to store instructions
  • the processor 31 is used to execute the instructions stored in the memory 32, so that the device 30 can be implemented as shown in FIG. 4 or 5 or 6 or 7 or 9 or 11 or 13 Steps performed by the RAN in the corresponding method.
  • the device 50 may further include an input port 53 (ie, an example of a transceiver module) and an output port 54 (ie, another example of a transceiver module).
  • the processor 51, the memory 52, the input port 53 and the output port 54 can communicate with each other through an internal connection path to transmit control and/or data signals.
  • the memory 52 is used to store a computer program, and the processor 51 can be used to call and run the computer program from the memory 52 to control the input port 53 to receive signals, control the output port 54 to send signals, and complete the process of the terminal device in the above method. step.
  • the memory 52 may be integrated in the processor 51 or may be provided separately from the processor 51 .
  • the communication device 50 is a communication device
  • the input port 53 is a receiver
  • the output port 54 is a transmitter.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the input port 53 is an input interface
  • the output port 54 is an output interface
  • the functions of the input port 53 and the output port 54 can be considered to be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • the processor 51 can be considered to be implemented by a dedicated processing chip, a processing circuit, a processor or a general-purpose chip.
  • a general-purpose computer may be used to implement the communication device provided by the embodiments of the present application.
  • the program codes that will implement the functions of the processor 51 , the input port 53 and the output port 54 are stored in the memory 52 .
  • the modules or units in the communication apparatus 50 may be used to perform actions or processing procedures performed by the random access device (eg, terminal device) in the above method, and detailed descriptions thereof are omitted here to avoid repetition.
  • the random access device eg, terminal device
  • FIG. 19 is a schematic diagram of a communication apparatus 60 for multi-access session management provided by an embodiment of the present application.
  • the apparatus 40 may be a user plane function, such as UPF.
  • the apparatus 60 may include a processor 61 (ie, an example of a processing module) and a memory 62 .
  • the memory 62 is used for storing instructions
  • the processor 61 is used for executing the instructions stored in the memory 62, so that the apparatus 60 can implement the access in the corresponding method as shown in FIG. 5 or FIG. 6 or FIG. 9 or FIG. 11 or FIG. 13 .
  • the device 60 may further include an input port 63 (ie, an example of a transceiver module) and an output port 64 (ie, another example of a transceiver module).
  • the processor 61, the memory 62, the input port 63 and the output port 64 can communicate with each other through an internal connection path to transmit control and/or data signals.
  • the memory 62 is used to store a computer program, and the processor 61 can be used to call and run the computer program from the memory 62 to control the input port 63 to receive signals, control the output port 64 to send signals, and complete the process of the terminal device in the above method. step.
  • the memory 62 can be integrated in the processor 61 or can be provided separately from the processor 61 .
  • the input port 63 is a receiver
  • the output port 64 is a transmitter.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the input port 63 is an input interface
  • the output port 64 is an output interface
  • the functions of the input port 63 and the output port 64 can be considered to be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • the processor 61 can be considered to be implemented by a dedicated processing chip, a processing circuit, a processor or a general-purpose chip.
  • a general-purpose computer may be used to implement the communication device provided by the embodiments of the present application.
  • the program codes to realize the functions of the processor 61 , the input port 63 and the output port 64 are stored in the memory 62 , and the general-purpose processor implements the functions of the processor 61 , the input port 63 and the output port 64 by executing the codes in the memory 62 .
  • each module or unit in the communication apparatus 60 may be used to perform each action or process performed by the device (ie, the access node) that accepts random access in the above method.
  • FIG. 20 is a schematic diagram of a communication device 70 for multi-access session management provided by an embodiment of the present application.
  • the device 70 may be a session management function, or may be a chip or a system-on-a-chip located on the SMF. .
  • the apparatus 70 may include a processor 71 (ie, an example of a processing module) and a memory 72 .
  • the memory 72 is used for storing instructions
  • the processor 71 is used for executing the instructions stored in the memory 72, so that the device 70 can be implemented as shown in FIG. 4 or FIG. 5 or FIG. 6 or FIG. 7 or 9 or FIG. 11 or FIG. 13
  • the steps performed by the SMF in the corresponding method are shown in FIG. 4 or FIG. 5 or FIG. 6 or FIG. 7 or 9 or FIG. 11 or FIG. 13 The steps performed by the SMF in the corresponding method.
  • the device 70 may further include an input port 73 (ie, an example of a transceiver module) and an output port 74 (ie, another example of a transceiver module).
  • the processor 71, the memory 72, the input port 73 and the output port 74 can communicate with each other through an internal connection path to transmit control and/or data signals.
  • the memory 72 is used to store a computer program, and the processor 71 can be used to call and run the computer program from the memory 72 to control the input port 73 to receive signals, control the output port 74 to send signals, and complete the process of the terminal device in the above method. step.
  • the memory 72 may be integrated in the processor 71 or may be provided separately from the processor 71 .
  • the communication device 70 is a communication device
  • the input port 73 is a receiver
  • the output port 74 is a transmitter.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the input port 73 is an input interface
  • the output port 74 is an output interface
  • the functions of the input port 77 and the output port 74 can be considered to be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • the processor 71 can be considered to be implemented by a dedicated processing chip, a processing circuit, a processor or a general-purpose chip.
  • a general-purpose computer may be used to implement the communication device provided by the embodiments of the present application.
  • the program codes that will implement the functions of the processor 71 , the input port 73 and the output port 74 are stored in the memory 72 , and the general-purpose processor implements the functions of the processor 71 , the input port 73 and the output port 74 by executing the codes in the memory 72 .
  • each module or unit in the communication apparatus 70 may be used to perform each action or process performed by the random access device (eg, terminal device) in the above method, and detailed descriptions thereof are omitted here to avoid repetition.
  • the random access device eg, terminal device
  • FIG. 21 is a schematic diagram of a communication apparatus 80 for multi-access session management provided by an embodiment of the present application.
  • the apparatus 80 may be a terminal device, including various handheld devices and vehicle-mounted devices with wireless communication functions. , wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of terminals, mobile stations, terminals, user equipment, soft terminals, etc., and can also be chips or chip systems located on the terminal equipment. .
  • the apparatus 80 may include a processor 81 (ie, an example of a processing module) and a memory 82 .
  • the memory 82 is used for storing instructions
  • the processor 81 is used for executing the instructions stored in the memory 82, so that the device 80 can be implemented as shown in FIG. 4 or 5 or 6 or 7 or 9 or 11 or 13 Steps performed by the terminal device in the corresponding method.
  • the device 80 may further include an input port 83 (ie, an example of a transceiver module) and an output port 84 (ie, another example of a transceiver module).
  • the processor 81, the memory 82, the input port 83 and the output port 84 can communicate with each other through an internal connection path to transmit control and/or data signals.
  • the memory 82 is used to store a computer program, and the processor 81 can be used to call and run the computer program from the memory 82 to control the input port 83 to receive signals, control the output port 84 to send signals, and complete the process of the terminal device in the above method. step.
  • the memory 82 may be integrated in the processor 81 or may be provided separately from the processor 81 .
  • the input port 83 is a receiver
  • the output port 84 is a transmitter.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the input port 83 is an input interface
  • the output port 84 is an output interface
  • the functions of the input port 83 and the output port 84 can be considered to be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • the processor 81 can be considered to be implemented by a dedicated processing chip, a processing circuit, a processor or a general-purpose chip.
  • a general-purpose computer may be used to implement the communication device provided by the embodiments of the present application.
  • the program codes that will implement the functions of the processor 81 , the input port 83 and the output port 84 are stored in the memory 82 , and the general-purpose processor implements the functions of the processor 81 , the input port 83 and the output port 84 by executing the codes in the memory 82 .
  • each module or unit in the communication apparatus 80 may be used to perform each action or process performed by a device (eg, terminal device) performing random access in the above method, and detailed descriptions thereof are omitted here to avoid repetition.
  • a device eg, terminal device
  • the processor may be a central processing unit (CPU, central processing unit), and the processor may also be other general-purpose processors, digital signal processors (DSP, digital signal processors), dedicated integrated Circuit (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processors
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDR SDRAM Double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • Embodiments of the present application further provide a computer-readable storage medium, on which computer instructions for implementing the method executed by the terminal device or the method executed by the network device in the foregoing method embodiments are stored.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the terminal device or the method executed by the network device in the above method embodiments.
  • Embodiments of the present application further provide a computer program product containing instructions, when the instructions are executed by a computer, the instructions cause the computer to implement the method executed by the terminal device in the above method embodiments, the method executed by the session management function network element, or the method executed by the session management function network element.
  • An embodiment of the present application further provides a communication system, where the communication system includes the wireless access network device and the session management function network element in the above embodiment, wherein the wireless access network device is configured to receive data from the session management function network element According to the link control rule, the target link is determined in the multiple links of the wireless access network and the terminal device according to the link control rule, and data is transmitted through the target link; the session management function network element is used to receive data from Policy and control function policy, and formulate link control rules according to the policy.
  • An embodiment of the present application further provides a communication system, where the communication system includes the user plane function and the session management function network element in the above embodiments, wherein the user plane function is used to receive link control from the session management function network element rules, according to the link control rule, a service flow is distributed to multiple QoS flows, and the identifiers of the multiple QoS flows are sent to the wireless access network device; or, the user plane function is used to receive data from The link control rule of the session management function network element, the link identification information corresponding to the service flow is determined according to the link control rule, and the link identification information is sent to the wireless access network device; the session management function The network element is used to receive the policy from the policy and control function, and formulate link control rules according to the policy.
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that contains one or more sets of available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a ROM, a RAM, a magnetic disk, or an optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种多接入会话管理方法、装置和系统,该方法包括:无线接入网设备获取链路控制规则01;该无线接入网设备根据该链路控制规则01在该无线接入网设备与远程终端设备的多条链路中确定目标链路;该无线接入网设备通过该目标链路与该远程终端设备传输数据。本申请实施例的方法、装置和系统,在远程终端设备通过直连链路和非直连链路接入网络时,根据链路控制规则对不同链路进行数据的分流、选择和切换,以提高远程终端设备的无线应用使用体验。

Description

多接入会话管理方法、装置和系统
本申请要求于2020年12月31日提交中国国家知识产权局、申请号为202011634204.2、发明名称为“多接入会话管理方法、装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且,更具体地,涉及多接入会话方法、装置和系统。
背景技术
为了提高无线频谱利用率并为蜂窝网络覆盖之外的终端提供蜂窝网络服务,蜂窝通信网络引入了基于邻近服务(proximity-based services,ProSe)通信。具体而言,在ProSe通信中,距离邻近的终端可以直接建立通信链路,而不用再通过基站转发通信。在4G ProSe通信中,与蜂窝网络建立Uu连接的中继终端可以通过与用户设备(user equipment,UE)使用PC5接口直接连接为蜂窝网络提供更大的网络覆盖范围。同样的,在5G ProSe通信中,远程UE通过中继UE连接到蜂窝网络的通信方式进行进一步的演进。目前,一个远程UE连接到网络,可以通过一个中继UE连接到基站,或者直接与基站连接,每个UE在基站侧可以使用的无线带宽是受限的。
目前,对于网络侧与UE传输数据的分流、选择和切换,主要应用于UE通过第三代合作伙伴计划(the 3rd generation partnership project,3GPP)和非3GPP两种接入网接入蜂窝网络的场景,是通过在UE和用户面功能(user plane function,UPF)之间建立两个端到端独立的链路来进行的。而UE仅通过3GPP接入网接入蜂窝网络时,对于需要对数据进行分流、选择和切换的场景,目前尚没有对应的解决方案。
发明内容
本申请提供一种多接入会话管理方法、装置和系统,使得终端设备能够通过直连链路和非直连链路或通过多条非直连链路接入网络,并能够根据链路控制规则对不同传输链路进行数据的分流、选择和切换,以提高远程终端设备的无线应用使用体验。
第一方面,提供了一种多接入会话管理方法,该方法包括:无线接入网设备获取链路控制规则01;该无线接入网设备根据该链路控制规则01在该无线接入网设备与远程终端设备的多条链路中确定目标链路;该无线接入网设备通过该目标链路与该远程终端设备传输数据。
本实施例的技术方案中,针对终端设备通过多条链路与无线接入网设备连接的场景,给出了分流点在基站,和基站执行链路控制规则的方法。当远程终端设备通过多条链路连接到核心网时,基站可以根据链路控制规则为远程终端设备选择合适的链路将下行数据包发送给远程终端设备。由此,基站可以为远程终端设备提供更灵活的数据发送服务。
结合第一方面,在第一方面的某些实现方式中,该多条链路包括直连链路和非直连链路,或者该多个链路包括多条非直连链路。
结合第一方面,在第一方面的某些实现方式中,该无线接入网设备根据该链路控制规则01在该无线接入网设备与远程终端设备的多条链路中确定目标链路,包括:该无线接入网设备确定传输该数据的服务质量流的标识;该无线接入网设备根据该链路控制规则01在该多条链路中确定该服务质量流的标识对应的链路,该服务质量流的标识对应的链路为该目标链路。
在一些可能的实现方式中,该链路控制规则包括该服务质量流的标识,和该服务质量流的标识对应的链路的对应关系。
结合第一方面,在第一方面的某些实现方式中,该无线接入网设备根据该链路控制规则01在该无线接入网设备与远程终端设备的多条链路中确定目标链路,包括:该无线接入网设备确定该数据对应的业务流;该无线接入网设备根据该链路控制规则01在该多条链路中确定该业务流对应的链路,该业务流对应的链路为该目标链路。
在一些可能的实现方式中,该链路控制规则包括该业务流和该业务流对应的链路的对应关系。
在一些可能的实现方式中,该无线接入网设备根据数据包包头的业务流标识确定该数据包对应的业务流,该业务流标识由用户面功能设置在数据包包头。
应理解,该业务流标识可以是三元组或五元组信息、或者应用标识(application ID,APP ID)、或者介质访问控制(Media Access Control,MAC)地址。
结合第一方面,在第一方面的某些实现方式中,该无线接入网设备根据该链路控制规则01在该无线接入网设备与远程终端设备的多条链路中确定目标链路,包括:该无线接入网设备确定传输该数据的服务质量流的标识;该无线接入网设备根据该链路控制规则01确定该服务质量流的标识对应的链路选择规则;该无线接入网设备根据该链路选择规则在该多条链路中确定该目标链路。
结合第一方面,在第一方面的某些实现方式中,该链路控制规则01包括该服务质量流的标识和该链路选择规则的对应关系。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该无线接入网设备确定采用服务质量流的标识对应的链路控制规则01。
结合第一方面,在第一方面的某些实现方式中,该无线接入网设备根据该链路控制规则01在该无线接入网设备与远程终端设备的多条链路中确定目标链路包括:该无线接入网设备确定传输该数据对应的业务流;该无线接入网设备根据该链路控制规则01确定该业务流对应的链路选择规则;该无线接入网设备根据该链路选择规则在该多条链路中确定该目标链路。
在一些可能的实现方式中,该无线接入网设备根据数据包包头的业务流标识确定该数据包对应的业务流,该业务流标识由用户面功能设置在数据包包头。
应理解,该业务流标识可以是三元组或五元组信息、或者APP ID、或者MAC地址。
结合第一方面,在第一方面的某些实现方式中,该链路控制规则01包括该业务流和该链路选择规则的对应关系。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该无线接入网设备确 定采用业务流对应的链路控制规则01。
结合第一方面,在第一方面的某些实现方式中,该链路选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该无线接入网设备向接入和移动管理功能网元发送该无线接入网设备的链路选择能力信息和链路信息中的至少一个;其中,该链路选择能力信息用于指示该无线接入网设备能够支持服务质量流的标识对应的链路控制规则01和/或业务流对应的链路控制规则01;该链路信息用于指示该多条链路的链路类型,该链路类型为直连链路或非直连链路;或者,该链路信息用于指示多条链路的数量;或者,该链路信息用于指示该多条链路的多个链路标识,该多个链路标识用于分别指示该多个链路中的每一条链路的链路类型。
在一些可能的实现方式中,该多条链路包括直连链路和非直连链路时,该链路信息可以进一步指示直连链路的数量和非直连链路的数量;或者该多个链路包括多条非直连链路时,该链路信息可以进一步指示多条非直连链路的数量。
结合第一方面,在第一方面的某些实现方式中,该无线接入网设备获取链路控制规则01包括:该无线接入网设备接收来自会话管理功能网元的链路控制规则01。
第二方面,提供了一种多接入会话管理方法,该方法包括:
会话管理功能网元接收来自策略和控制功能的策略;
该会话管理功能网元根据该策略制定链路控制规则01;
该会话管理功能网元向无线接入网设备发送该链路控制规则01,该链路控制规则01包括服务质量流与该无线接入网设备和远程终端设备之间多条链路中的一条或多条的对应关系,和/或该链路控制规则01包括业务流与该无线接入网设备和远程终端设备之间多条链路中的一条或多条的对应关系。
本实施例的技术方案中,针对终端设备通过多条链路与无线接入网设备连接的场景,给出了分流点在基站,和基站执行链路控制规则的方法。当远程终端设备通过多条链路连接到核心网时,会话管理功能网元根据接收到的策略为基站制定链路控制规则,使得基站可以为远程终端设备选择合适的链路将下行数据包发送给远程终端设备。由此,UE的无线应用使用体验得以提高。
结合第二方面,在第二方面的某些实现方式中,该多条链路包括直连链路和非直连链路,或者该多条链路包括多条非直连链路。
结合第二方面,在第二方面的某些实现方式中,该链路控制规则01包括该服务质量流的标识与链路选择规则的对应关系。
结合第二方面,在第二方面的某些实现方式中,该链路控制规则01还包括该业务流与链路选择规则的对应关系。
结合第二方面,在第二方面的某些实现方式中,该链路选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
结合第二方面,在第二方面的某些实现方式中,该会话管理功能网元根据该策略制定链路控制规则01,包括:接收来自该无线接入网设备的链路信息;其中,该链路信息用 于指示该多条链路的链路类型,该链路类型为直连链路或非直连链路;或者,该链路信息用于指示多条链路的数量;或者,该链路信息用于指示该多条链路的多个链路标识,该多个链路标识用于分别指示该多个链路中的每一条链路的链路类型;该会话管理功能网元根据该链路信息和该策略制定该链路控制规则01。
在一些可能的实现方式中,该多条链路包括直连链路和非直连链路时,该链路信息可以进一步指示直连链路的数量和非直连链路的数量;或者该多个链路包括多条非直连链路时,该链路信息可以进一步指示多条非直连链路的数量。
结合第二方面,在第二方面的某些实现方式中,该会话管理功能网元根据该链路选择能力信息和该策略制定该链路控制规则01,还包括:该会话管理功能网元接收来自该无线接入网设备的链路选择能力信息,该链路选择能力信息用于指示该无线接入网设备能够支持服务质量流的标识对应的该链路控制规则01和/或业务流对应的该链路控制规则01;该会话管理功能网元根据该链路选择能力信息和该策略制定该链路控制规则01。
第三方面,提供了一种多接入会话管理方法,该方法包括:用户面功能接收来自会话管理功能网元的链路控制规则02;该用户面功能根据该链路控制规则02将一条业务流分流到多条服务质量服务质量流;该用户面功能向无线接入网设备发送该多条服务质量流的标识。
本实施例的技术方案中,针对终端设备通过直连链路和非直连链路,或者通过多条非直连链路与无线接入网设备连接的场景,给出了分流点在基站,而用户面功能执行数据链路控制规则的方法。本实施例通过用户面功能根据链路控制规则将一条业务流映射到多个服务质量流上,即一个业务流与不同的服务质量流的标识相对应,对基站与终端设备之间的数据传输进行控制、切换和分流,使得基站与终端设备之间的数据传输更加灵活的同时接入网设备不需要做额外的改动。
结合第三方面,在第三方面的某些实现方式中,该链路控制规则02包括该多条服务质量流的标识和链路选择规则的对应关系,该链路选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
结合第三方面,在第三方面的某些实现方式中,对于该多条服务质量流中的一条服务质量流,该无线接入网设备将该服务质量流的标识映射到该无线接入网设备和远程终端设备之间多条链路中的一条目标链路。
结合第三方面,在第三方面的某些实现方式中,该无线接入网设备通过该目标链路与该远程终端设备传输该服务质量流的数据。
结合第三方面,在第三方面的某些实现方式中,该多条链路包括直连链路和非直连链路,或者该多条链路包括多条非直连链路。
第四方面,提供了一种多接入会话管理方法,其特征在于,该方法包括:
用户面功能接收来自会话管理功能网元的链路控制规则03;
该用户面功能根据该链路控制规则03,确定业务流对应的链路标识信息,该链路标识信息用于标识无线接入网设备和远程终端设备之间的链路;
该用户面功能向该无线接入网设备发送该链路标识信息。
本实施例的技术方案中,针对终端设备通过直连链路和非直连链路,或者通过多条非 直连链路与无线接入网设备连接的场景,给出了分流点在基站,而用户面功能执行数据链路控制规则的方法。本实施例通过用户面功能根据链路控制规则将无线侧链路信息与业务流绑定,对基站与终端设备之间的数据传输进行控制、切换和分流,使得基站与终端设备之间的数据传输更加灵活的同时减少了核心网侧的改动。
结合第四方面,在第四方面的某些实现方式中,该用户面功能向该无线接入网设备发送该链路标识信息包括:该用户面功能向该无线接入网设备发送该业务流对应的数据,该数据携带该链路标识信息。
结合第四方面,在第四方面的某些实现方式中,该无线接入网设备和该远程终端设备之间包括多条链路,该多条链路包括直连链路和非直连链路,或者该多条链路包括多条非直连链路。
结合第四方面,在第四方面的某些实现方式中,该链路控制规则03包括该业务流和该链路标识信息的对应关系。
结合第四方面,在第四方面的某些实现方式中,该链路控制规则03包括该业务流和链路选择规则的对应关系,该链路选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:该用户面功能根据该链路控制规则03,确定从多个无线接入网设备选择该无线接入网设备传输该业务流。
本实施例的技术方案中,针对终端设备通过多个无线接入网设备与核心网连接,并且通过直连链路和非直连链路,或者通过多条非直连链路与该多个无线接入网设备连接的场景,给出了分流点在用户面功能,由用户面功能执行链路控制规则的方法,实现了多基站接入时的数据分流,结合终端设备通过同一基站接入核心网的方案,使得本申请的应用场景更加完整。
在一些可能的实现方式中,该链路控制规则包括无线接入网设备的选择规则,该无线接入网设备选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
第五方面,提供一种多接入会话管理方法,包括:会话管理功能网元接收来自策略和控制功能的策略;该会话管理功能网元根据该策略制定链路控制规则04;该会话管理功能网元向用户面功能发送该链路控制规则04,该链路控制规则04包括一条业务流和多条服务质量流的对应关系,或者包括业务流和链路标识信息的对应关系,该链路标识信息用于标识无线接入网设备和远程终端设备之间的多条链路,该无线接入网设备与该用户面功能连接。
本实施例的技术方案中,针对终端设备通过直连链路和非直连链路,或者通过多条非直连链路与无线接入网设备连接的场景,给出了分流点在基站,而用户面功能执行数据链路控制规则的方法。会话管理功能网元根据接收到的策略为用户面功能制定链路控制规则,以便于用户面功能根据该链路控制规则,对基站与终端设备之间的数据传输进行控制、切换和分流,使得基站与终端设备之间的数据传输更加灵活的同时减少了核心网侧的改动。
结合第五方面,在第五方面的某些实现方式中,该多条链路包括直连链路和非直连链路,或者该多条链路包括多条非直连链路。
结合第五方面,在第五方面的某些实现方式中,该链路控制规则04包括该业务流和 该链路标识信息的对应关系。
结合第五方面,在第五方面的某些实现方式中,该链路控制规则04包括该多条服务质量流的标识和链路选择规则的对应关系,或者,该链路控制规则04包括该业务流和链路选择规则的对应关系,其中,该链路选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
结合第五方面,在第五方面的某些实现方式中,该链路控制规则04包括无线接入网设备选择规则,无线接入网设备选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
在一些可能的实现方式中,该链路控制规则还包括多个无线接入网设备的标识信息。
第六方面,提供一种多接入会话管理方法,其特征在于,包括:终端设备接收来自会话管理网元会话管理功能网元的链路控制规则05;该终端设备根据该链路控制规则05,确定在无线接入网设备与该终端设备的多条链路中确定目标链路;该终端设备通过该目标链路与该无线接入网设备传输数据。
结合第六方面,在第六方面的某些实现方式中,该多条链路包括直连链路和非直连链路,或者该多个链路包括多条非直连链路。
本实施例的技术方案中,针对终端设备通过直连链路和非直连链路,或者通过多条非直连链路与无线接入网设备连接的场景,给出了终端设备执行链路控制规则的方法。使得终端设备在向接入网设备发送数据时,也能够实现数据的控制、切换和分流,使得终端设备和接入网设备间的数据传输更加灵活。
第七方面,提供一种多接入会话管理的装置,包括:收发模块,用于获取链路控制规则01;处理模块,用于根据该链路控制规则01在该无线接入网设备与远程终端设备的多条链路中确定目标链路;该收发模块通过该目标链路与该远程终端设备传输数据。
结合第七方面,在第七方面的某些实现方式中,该多条链路包括直连链路和非直连链路,或者该多个链路包括多条非直连链路。
结合第七方面,在第七方面的某些实现方式中,该处理模块用于:确定传输该数据的服务质量流的标识;根据该链路控制规则01在该多条链路中确定该服务质量流的标识对应的链路,该服务质量流的标识对应的链路为该目标链路。
结合第七方面,在第七方面的某些实现方式中,该处理模块还用于:确定该数据对应的业务流;根据该链路控制规则01在该多条链路中确定该业务流对应的链路,该业务流对应的链路为该目标链路。
结合第七方面,在第七方面的某些实现方式中,该处理模块还用于:确定传输该数据的服务质量流的标识;根据该链路控制规则01确定该服务质量流的标识对应的链路选择规则;根据该链路选择规则在该多条链路中确定该目标链路。
结合第七方面,在第七方面的某些实现方式中,该链路控制规则01包括该服务质量流的标识和该链路选择规则的对应关系。
结合第七方面,在第七方面的某些实现方式中,该装置还包括:该无线接入网设备确定采用服务质量流的标识对应的链路控制规则01。
结合第七方面,在第七方面的某些实现方式中,该无线接入网设备根据该链路控制规则01在该无线接入网设备与远程终端设备的多条链路中确定目标链路包括:该无线接入 网设备确定传输该数据对应的业务流;该无线接入网设备根据该链路控制规则01确定该业务流对应的链路选择规则;该无线接入网设备根据该链路选择规则在该多条链路中确定该目标链路。
结合第七方面,在第七方面的某些实现方式中,该链路控制规则01包括该业务流和该链路选择规则的对应关系。
结合第七方面,在第七方面的某些实现方式中,该装置还包括:该无线接入网设备确定采用业务流对应的链路控制规则01。
结合第七方面,在第七方面的某些实现方式中,该链路选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
结合第七方面,在第七方面的某些实现方式中,该收发模块还用于:向接入和移动管理功能网元发送该无线接入网设备的链路选择能力信息和链路信息中的至少一个;其中,该链路选择能力信息用于指示该无线接入网设备能够支持服务质量流的标识对应的链路控制规则01和/或业务流对应的链路控制规则01;该链路信息用于指示该多条链路的链路类型,该链路类型为直连链路或非直连链路;或者,该链路信息用于指示多条链路的数量;或者,该链路信息用于指示该多条链路的多个链路标识,该多个链路标识用于分别指示该多个链路中的每一条链路的链路类型。
结合第七方面,在第七方面的某些实现方式中,该无线接入网设备获取链路控制规则01包括:该无线接入网设备接收来自会话管理功能网元的链路控制规则01。
第八方面,提供一种多接入会话管理装置,其特征在于,包括:收发模块,用于接收来自策略和控制功能PCF的策略;处理模块,用于根据该策略制定链路控制规则01;该收发模块,还用于向无线接入网设备发送该链路控制规则01,该链路控制规则01包括服务质量流与该无线接入网设备和远程终端设备之间多条链路中的一条或多条的对应关系,和/或该链路控制规则01包括业务流与该无线接入网设备和远程终端设备之间多条链路中的一条或多条的对应关系。
结合第八方面,在第八方面的某些实现方式中,该多条链路包括直连链路和非直连链路,或者该多条链路包括多条非直连链路。
结合第八方面,在第八方面的某些实现方式中,该链路控制规则01还包括该服务质量流的标识与链路选择规则的对应关系。
结合第八方面,在第八方面的某些实现方式中,该链路控制规则01还包括该业务流与链路选择规则的对应关系。
结合第八方面,在第八方面的某些实现方式中,该链路选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
结合第八方面,在第八方面的某些实现方式中,该收发模块还用于:接收来自该无线接入网设备的链路信息;其中,该链路信息用于指示该多条链路的链路类型,该链路类型为直连链路或非直连链路;或者,该链路信息用于指示多条链路的数量;或者,该链路信息用于指示该多条链路的多个链路标识,该多个链路标识用于分别指示该多个链路中的每一条链路的链路类型;该会话管理功能网元根据该链路信息和该策略制定该链路控制规则 01。
结合第八方面,在第八方面的某些实现方式中,该收发模块还用于接收来自该无线接入网设备的链路选择能力信息,该链路选择能力信息用于指示该无线接入网设备能够支持服务质量流的标识对应的该链路控制规则01和/或业务流对应的该链路控制规则01;该处理模块还用于根据该链路选择能力信息和该策略制定该链路控制规则01。
第九方面,提供一种多接入会话管理装置,其特征在于,包括:收发模块,用于接收来自会话管理功能网元的链路控制规则02;处理模块,用于根据该链路控制规则02将一条业务流分流到多条服务质量服务质量流;该收发模块还用于向无线接入网设备发送该多条服务质量流的标识。
结合第九方面,在第九方面的某些实现方式中,该链路控制规则02包括该多条服务质量流的标识和链路选择规则的对应关系,该链路选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
结合第九方面,在第九方面的某些实现方式中,对于该多条服务质量流中的一条服务质量流,以便于该无线接入网设备将该服务质量流的标识映射到该无线接入网设备和远程终端设备之间多条链路中的一条目标链路。
结合第九方面,在第九方面的某些实现方式中,以便于该无线接入网设备通过该目标链路与该远程终端设备传输该服务质量流的数据。
结合第九方面,在第九方面的某些实现方式中,该多条链路包括直连链路和非直连链路,或者该多条链路包括多条非直连链路。
第十方面,提供一种多接入会话管理装置,其特征在于,包括:收发模块,用于接收来自会话管理功能网元的链路控制规则03;处理模块,用于根据该链路控制规则03,确定业务流对应的链路标识信息,该链路标识信息用于标识无线接入网设备和远程终端设备之间的链路;该收发模块,还用于向该无线接入网设备发送该链路标识信息。
结合第十方面,在第十方面的某些实现方式中,该收发模块还用于:向该无线接入网设备发送该业务流对应的数据,该数据携带该链路标识信息。
结合第十方面,在第十方面的某些实现方式中,该无线接入网设备和该远程终端设备之间包括多条链路,该多条链路包括直连链路和非直连链路,或者该多条链路包括多条非直连链路。
结合第十方面,在第十方面的某些实现方式中,该链路控制规则03包括该业务流和该链路标识信息的对应关系。
结合第十方面,在第十方面的某些实现方式中,该链路控制规则03包括该业务流和链路选择规则的对应关系,该链路选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
结合第十方面,在第十方面的某些实现方式中,该装置还包括:该用户面功能根据该链路控制规则03,确定从多个无线接入网设备选择该无线接入网设备传输该业务流。
第十一方面,提供一种多接入会话管理装置,其特征在于,包括:收发模块,用于接收来自策略和控制功能的策略;处理模块,用于根据该策略制定链路控制规则04;该收发模块,用于向用户面功能发送该链路控制规则04,该链路控制规则04包括一条业务流 和多条服务质量流的对应关系,或者包括业务流和链路标识信息的对应关系,该链路标识信息用于标识无线接入网设备和远程终端设备之间的多条链路,该无线接入网设备与该UPF连接。
结合第十一方面,在第十一方面的某些实现方式中,该多条链路包括直连链路和非直连链路,或者该多条链路包括该多条链路包括多条非直连链路。
结合第十一方面,在第十一方面的某些实现方式中,该链路控制规则04包括该业务流和该链路标识信息的对应关系。
结合第十一方面,在第十一方面的某些实现方式中,该链路控制规则04包括该多条服务质量流的标识和链路选择规则的对应关系,或者,该链路控制规则04包括该业务流和链路选择规则的对应关系,其中,该链路选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
结合第十一方面,在第十一方面的某些实现方式中,该链路控制规则04包括无线接入网设备选择规则,无线接入网设备选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
第十二方面,提供一种多接入会话管理装置,其特征在于,包括:收发模块,用于接收来自会话管理网元的链路控制规则05;处理模块,用于根据该链路控制规则05,确定在无线接入网设备与该终端设备的多条链路中确定目标链路;该收发模块,用于通过该目标链路与该RAN传输数据。
结合第十二方面,在第十二方面的某些实现方式中,该多条链路包括直连链路和非直连链路,或者该多个链路包括多条非直连链路。
第十三方面,提供一种通信装置,该装置包括:处理器和存储器;该存储器,用于存储计算机程序;该处理器,用于执行该存储器中存储的计算机程序,以使得该通信装置执行第一方面至第六方面中任一方面的方法及其实施例。
第十四方面,提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,当该计算机程序在计算机上运行时,使得该计算机执行第一方面至第六方面中任一方面的方法及其实施例。
第十五方面,提供一种芯片系统,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片系统地通信设备执行第一方面至第六方面中任一方面的方法及其实施例。
第十六方面,提供一种通信系统,该通信系统包括无线接入网设备和会话管理功能网元,其中该无线接入网设备用于执行第一方面的方法,该会话管理功能网元用于执行第二方面的方法及其实施例。
第十七方面,提供一种通信系统,该通信系统包括用户面功能和会话管理功能网元,其中该用户面功能用于执行第三方面或第四方面的方法及其实施例,该会话管理功能网元用于执行第五方面的方法及其实施例。
根据本申请实施例的方案,能够在终端设备通过直连链路和非直连链路接入网络时,根据链路控制规则对不同传输链路进行数据的分流、选择和切换,以提高远程终端设备的无线应用使用体验。
附图说明
图1示出了4G和5G系统中ProSe通信架构的示意图。
图2示出了5G系统下UE通过中继连接到网络的ProSe通信架构示意图。
图3示出了本申请的实施例适用的场景的一例的示意性框图。
图4示出了本申请多接入会话管理方法的一例示意性交互图。
图5示出了本申请多接入会话管理方法的又一例示意性交互图。
图6示出了本申请多接入会话管理方法的再一例示意性交互图。
图7示出了本申请多接入会话管理方法的再一例示意性交互图。
图8示出了本申请的实施例适用的场景的又一例的示意性框图。
图9示出了本申请多接入会话管理方法的再一例示意性交互图。
图10示出了本申请的实施例适用的场景的再一例的示意性框图。
图11示出了本申请多接入会话管理方法的再一例示意性交互图。
图12示出了本申请的实施例适用的场景的再一例的示意性框图。
图13示出了本申请多接入会话管理方法的再一例示意性交互图。
图14是本申请实施例提供的无线接入网设备的一例的示意性框图。
图15是本申请实施例提供的用户面功能的一例的示意性框图。
图16是本申请实施例提供的会话管理功能网元的一例的示意性框图。
图17是本申请实施例提供的终端设备的一例的示意性框图。
图18是本申请的用于多接入会话管理的通信装置的一例的示意性框图。
图19是本申请的用于多接入会话管理的通信装置的再一例的示意性框图。
图20是本申请的用于多接入会话管理的通信装置的再一例的示意性框图。
图21是本申请的用于多接入会话管理的通信装置的再一例的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
本申请实施例中的终端设备可以指用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端 设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是GSM系统或码分多址CDMA中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(nodeB,NB),还可以是LTE系统中的演进型基站(evolutional nodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
为了提高无线频谱利用率并为蜂窝网络覆盖之外的终端提供蜂窝网络服务,蜂窝通信网络引入了ProSe通信。具体而言,在ProSe通信中,距离邻近的终端可以直接建立通信链路,而不用再通过基站转发通信。3GPP组织在第四代移动网络(the 4th generation,4G)和5G的标准制定中对ProSe通信进行了相关的标准制定工作,具体的ProSe通信架构如图1所示。如图1中的(a)所示,在4G ProSe通信中,与蜂窝网络建立Uu连接的中继终端可以通过与UE使用PC5接口直接连接为蜂窝网络提供更大的网络覆盖范围。这种连接方式首先被用于公共安全场景。例如,当地震发生时,可能有部分基站受灾而不能继续提供网络接入服务。在其他仍然可以继续工作基站覆盖范围内的中继终端可以为该基站覆盖范围之外的UE提供网络接入服务。同样的,在5G通信系统中,ProSe通信架构如图1中的(b)所示。UE通过Relay连接到蜂窝网络的通信方式将进行进一步的演进。图2示出了5G系统下UE通过中继连接到网络的ProSe(ProSe UE-to-Network Relay)通信架构示意图。其中Remote UE为需要通过中继与下一代无线接入网(next generation-radio access network,NG-RAN)连接的终端。
具体地,图1中的(a)是ProSe通信的4G系统架构的示意图。如图1中的(a)所示,该系统框架可以包括下列网元:
1、用户设备(user equipment,UE),也可以称为终端设备。
2、演进的通用移动通信系统陆地无线接入网(evolved universal mobile telecommunications system terrestrial radio access network,E-UTRAN),即长期演进(long term evolution,LTE)中的移动通信无线网络。
3、服务网关(serving gateway,SGW):是终止于E-UTRAN接口的网关,该设备的主要功能包括:进行演进基站(evolved node B,eNodeB)间切换时,可以作为本地锚定点,并协助完成eNodeB的重排序功能;具有重排序功能;执行合法侦听功能;进行数据包的路由和前转;在上行和下行传输层进行分组标记;空闲状态下,下行分组缓冲和发起网络触发的服务请求功能;用于运营商间的计费等。
4、分组数据网关(packet data network gateway,PGW):主要用于提供用户的会话管理和承载控制、数据转发、网络之间互连的协议(internet protocol,IP)地址分配以及非3GPP用户接入等功能。
5、移动管理实体(mobility management entity,MME):主要用于负责移动性管理、承载管理、用户的鉴权认证、跨MME切换时进行MME的选择、SGW和PGW的选择等功能。
6、归属用户服务器(home subscriber server,HSS):主要用于处理调用/会话的IP多媒体子系统(IP multimedia subsystem,IMS)网络实体的主要用户数据库。它包含用户配置文件,执行用户的身份验证和授权,并可提供有关用户物理位置的信息等。
7、安全用户面定位平台(secure user plane location platform,SLP):主要用于为网络侧网元提供UE的定位信息。
在第三代合作伙伴计划(the 3rd generation partnership project,3GPP)制定的4G架构中,由用户面逻辑网元ProSe功能(Prose Function),管理与控制UE的ProSe通信,其功能主要包括:
ProSe通信参数分配,包括UE可以使用ProSe通信的范围,即UE可以在哪些公共陆地移动网络(public land mobile network,PLMN)中使用ProSe通信,当UE在网络覆盖范围外时可以使用的ProSe通信频段等。
ProSe通信发现管理功能,包括为UE分配用于ProSe通信节点发现的参数等。
与4G核心网,即演进的分组核心网(evolved packet core,EPC)网元交互功能,包括与HSS交互进行UE的ProSe通信授权认证等。
其中,每个PLMN中仅有一个部署了ProSeFunction的用户面网元,当UE需要使用ProSe通信时,需要向UE的归属PLMN(home PLMN,HPLMN)申请ProSe发现参数等ProSe服务相关参数。若UE处于其他PLMN(即,访问的PLMN,visiting PLMN,VPLMN)服务时,则UE需要通过VPLMN中的ProSe功能向HPLMN中的ProSe Function申请ProSe发现参数等ProSe服务相关参数。
由于本申请的通信接口切换的方法可以是基于第5代(the 5th generation,5G)移动通信技术以及未来的其他移动通信技术,下面将结合图1中的(b)介绍本申请实施例的又一种系统架构。
图1中的(b)是本申请实施例的5G系统架构的示意图。如图1中的(b)所示,该系统框架可以包括下列网元:
1、UE。
2、无线接入网(radio access network,RAN):基于无线通信技术实现接入网络功能的接入网可以称为RAN,RAN主要用于提供UE无线接入移动网络的接口,能够管理无线资源,为UE提供接入服务,进而完成控制信号和用户数据在UE和核心网之间的转发, 例如RAN设备可以是基站等。在5G系统中采用的无线接入网为下一代无线接入网(next generation radio access network,NG-RAN),例如,该5G系统中的接入网设备称为下一代基站节点(next generation Node Base station,gNB)。
3、接入和移动性管理功能(access and mobility management function,AMF):主要用于移动性管理和接入管理等。具体地,AMF可以用于实现移动性管理实体(mobility management entity,MME)的功能中除会话管理之外的其它功能,例如,合法监听、或接入授权(或鉴权)等功能。
4、会话管理功能(session management function,SMF):主要用于会话管理、UE的网络互连协议(internet protocol,IP)地址分配和管理、选择可管理用户平面功能、策略控制、或收费功能接口的终结点以及下行数据通知、为用户面功能配置路由信息等。
5、策略控制功能(policy control function,PCF):用于指导网络行为的统一策略框架,为控制平面功能网元(例如AMF,SMF网元等)提供策略规则信息等。
6、统一数据管理(unified data management,UDM):用于处理用户标识、接入鉴权、注册、或移动性管理等。
7、用户平面功能(user plane function,UPF):用于分组路由和转发、或用户面数据的服务质量(quality of service,QoS)处理等。UPF具体分为中间-UPF(intermediate-UPF,I-UPF)和锚点UPF(anchor-UPF,A-UPF)。其中,I-UPF与接入网RAN连接,A-UPF为会话锚点的UPF,A-UPF又可以称为PDU会话锚点(PDU session anchor,PSA)。
8、应用功能(application function,AF):主要支持与第三代合作伙伴计划(3rd generation partnership project,3GPP)核心网交互来提供服务,例如,影响数据路由决策、策略控制功能、或者向网络侧提供第三方的一些服务。可理解为第三方服务器,例如,Internet中的应用服务器,提供相关业务信息,包括向PCF提供业务对应的服务质量需求信息,以及向PSA-UPF发送业务的用户面数据信息。AF也可以是服务提供商(content provider,CP)。本申请实施例中,ProSe应用服务器即为一种AF。
9、网络能力开放功能(network exposure function,NEF),连接核心网网元与外部应用服务器,对外部应用服务器向核心网发起业务请求时提供认证与数据转发等服务。
10、数据网络(data network,DN):用于提供传输数据的网络,例如,Internet网络等。
11、统一数据存储功能(unified data repository,UDR):用于为PCF策略提供存储和检索,开放的结构化数据的存储和检索和应用功能请求的用户信息存储等。
本申请主要涉及用户终端,接入侧设备以及核心网控制面网元。其中,核心网网元包括:
1、无线接入网络(radio access network,RAN),本申请中主要对应为接入网设备,负责无线资源管理,上下行数据分类和服务质量(quality of service,QoS)应用,以及与控制面网元完成信令处理,与用户面功能网元完成数据转发等功能。例如,接入网设备可以是基站、宽带网络业务网关(broadband network gateway,BNG)、汇聚交换机、非3GPP接入设备等。基站可以包括各种形式的基站,例如宏基站、微基站(也称为小站)、接入点等,本申请实施例对此不作具体限定。例如,无线接入网设备可以是4G网络中的演进型通用陆地无线接入网(evolved universal terrestrial radio access network,E-UTRAN)设备、 5G网络中的NG-RAN设备等。
2、接入及移动性管理功能(access and mobility management function,AMF),主要承担终端接入蜂窝网络的管理功能,例如移动性管理等。
3、会话管理功能(session management function,SMF),管理用户协议数据单元(protocl data unit,PDU)会话创建,删除等,维护PDU会话上下文及用户面转发管道信息。
4、用户面功能(user plane function,UPF),主要负责分组数据包的转发、QoS控制、计费信息统计等。
5、统一数据存储库(unified data repository,UDR),用于为PCF策略提供存储和检索,开放的结构化数据的存储和检索和应用功能请求的用户信息存储等。
6、统一数据管理(unified data management,UDM),用于管理用户的签约数据和鉴权数据。
7、用户设备(user equipment,UE),可以称之为终端设备(terminal),该终端可以支持ProSe通信或者其他业务。用户设备支持通过PC5接口或者Uu接口接收或发送消息。当终端通过中继连接至网络时,可以称之为远程UE(Remote UE)。
8、中继(relay),可以是UE(如上所述的UE,此时可以称中继为Relay UE),也可以是无线接入设备,例如运营商部署的类似于路由器的接入设备,客户终端设备(customer-premises equipment,CPE)等。
9、策略控制网元(policy control function,PCF),包含用户签约数据管理功能、策略控制功能、计费策略控制功能、QoS控制等。在5G通信系统中,策略控制网元可以是PCF,在未来的通信系统(如6G通信系统)中,策略控制网元可以仍是PCF网元,或者也可以具有其它名称,本申请并不限定。
在介绍本申请实施例之前,首先简单介绍几个与本申请实施例相关的概念。
直连链路和非直连链路
直连链路为UE通过与RAN直接连接的无线传输路径接入3GPP网络。
非直连链路为UE通过中继UE接入3GPP网络的非直接的无线传输路径。
2、PDU会话,以及RAN如何将从UPF接收到的数据包发送给UE。
SMF以PDU会话为粒度为UE提供数据服务管理。一个PDU会话通常代表了一种服务,例如语音服务(例如,可以是打电话)、上网(例如,可以是访问百度,看优酷视频等)、短信服务等等。
以上网服务为例,当UE需要浏览网页或者观看视频时,需要的数据服务需求是不一样的,浏览网页一般是一段数据包的下载,而视频业务是持续的大量数据包的下载,此外对于视频的清晰度不同,数据包下载量也不同。因此,对于上网服务而言(同一个PDU会话),不同的业务需要不同的QoS。所以,进一步的针对不同业务,会话管理网元在同一个PDU会话下,会将业务流与不同的QoS流进行绑定。
具有相同QoS需求(或者说QoS参数)的业务流会绑定到同一个QoS流进行数据包的传输。而不同业务所对应的QoS参数,由SMF根据本地配置的规则,或者从PCF动态获取QoS规则来进行业务流绑定,这个规则包含在策略与计费控制规则(policy and charging control,PCC)中。PCC规则中一般包括规则标识(rule identifier),服务数据流监测(Service data flow detection,用于检测数据包是属于哪个业务流,通常根据五元组进 行检测,即IP地址,端口号等),QoS参数(5G QoS identifier,上下行最大比特速率等),还有多接入(multi-access PDU,MA PDU)会话的规则。
SMF根据PCC规则,将不同的业务流绑定到不同的QoS流,并以服务质量标识(QoS flow ID,QFI)进行标识。之后,将不同QFI的转发规则(包括数据包检测规则,转发路由,无线接入网设备的地址信息等)发送给UPF,以及将QoS配置信息(QFI和对应的QoS参数)发送给基站。这样UPF通过N3接口与基站连接后,并使用SMF分配的QFI对数据包进行标识,基站就可以知道接收到的数据包对应的具体QoS参数信息。
基站在接收到QoS配置信息后,将QFI映射数据无线承载(data radio bearer,DRB)上发送给UE。当UE通过中继连接到基站时,在无线接入网侧存在两种链路,即,直连链路(directpath)和非直连链路(indirectpath)。
3、多接入会话管理技术
在本申请中,MA PDU会话表示的场景为UE可以通过基于中继终端设备的非直接连接以及与基站直接连接这两种不同的传输路径接入网络,而MA PDU会话管理技术用于对不同的传输路径进行数据的分流、选择和切换。
需要说明的是,本申请中的PDU会话为MA PDU会话,或者可以定义为多链路PDU(multi-link PDU,ML PDU)会话,也可能是其他名称,本申请不做限定。本申请中的多接入会话管理技术,也称为链路选择规则,在本申请的实施例中也称为接入流分流、选择和切换(accesstrafficsteering,switching,splitting,ATSSS)规则,也可以是多链路分流、选择和切换(multi-linksteering,switchingandsplitting,MLSSS)规则。
4、链路控制规则
本申请中的链路控制规则包括上述链路选择规则,以及数据包检测规则(packet detection rule,PDR)等。PDR中包括数据包检测信息、链路选择规则的ID、QoS流执行的规则的ID等。数据包检测信息可以是同于表示业务流的信息,例如IP地址等。
5、分流点
第一网元通过一条路径接收到数据,随后在向第二网元传输该数据时,可以通过至少两条链路进行传输。本申请中的分流点,可以理解为在该第一网元处。需要说明的是,数据在分流点进行数据分流时,可能只选择其中一条链路进行传输,也可能选择其中的部分链路进行传输,也可能将数据分流到每一条链路进行传输。
作为一个示例,该第一网元可以是RAN,该第二网元可以是UE,则RAN和UE之间可以通过至少一条直连链路和至少一条非直连链路进行数据传输,或者通过至少两条非直连链路进行数据传输。RAN可以作为分流点。
目前,一个UE可以通过一个中继UE连接到网络,或者直接与基站连接到网络,每个UE在基站侧可以使用的无线带宽是受限的。而UE的数据分流主要应用于UE通过3GPP和非3GPP两种接入网接入蜂窝网络的场景,是通过在UE和UPF之间建立两个端到端独立的链路来进行的。但是,如果当UE可以通过多个中继连接到网络时,则基站可以为远程UE分配更多的无线带宽,或根据不同业务和不同的链路质量情况,对UE的下行数据进行分流,以提高远程UE的无线应用使用体验。
具体地,当UE可以通过中继非直接接入网络以及与基站直接连接这两种不同无线传输路径接入网络时,也可以为不同传输路径进行数据分流。针对基于中继的多接入会话管 理方法,目前可能不能支持这样的应用场景,例如:
UE通过中继与基站连接的同时,可能与同一个基站存在直连链路,也可能与不同的基站存在直连链路。此时,数据分流可以在基站执行。对于基站处理数据分流的情况,目前还没有相关的方案。
UE可以通过多个中继接入网络,而不同的中继可能连接了相同的基站,也可能连接了不同的基站。此时,核心网需要根据UE接入网络的无线信息为核心网的传输路径进行相应的配置。
因此,本申请针对上述所指出的场景特点,给出了相应的解决方案。下面结合图2至图13详细介绍本申请实施例。
本申请中,远程UE可以同时通过多个中继UE接入蜂窝网络,具体场景如图3所示。
在远程UE侧,远程UE可以通过直接链路以及非直接链路与基站建立无线网络侧连接。并且,远程UE可以通过上述方式与多个基站同时建立连接。
而在接入网设备侧,一个接入网设备可能与远程UE通过直接链路和非直接链路建立连接;或者,一个接入网设备仅与远程UE建立直接连接;或者,一个接入网设备仅与远程UE建立至少一条非直接连接。
具体地,如图3所示,远程UE分别通过基于中继_1和中继_2的非直连链路与RAN_1连接,也通过一条直连链路与RAN_1连接。远程UE分别通过基于中继_3和中继_4的非直连链路与RAN_2连接。需要说明的是,图3的中的分流点_1在RAN_1,分流点_2在UPF,这里的分流点可以是路径分流点,也可以是路径选择点。换句话说,RAN_1与UE之间传输的数据可能分流到3条链路上进行传输,也可能分流到其中2条链路上进行传输,也可能选择其中一条链路进行传输。UPF与两个RAN之间传输的数据可能分流到RAN_1和RAN_2上进行传输,也有可能选择其中一个RAN进行传输。
另外,执行链路控制规则的网元可以是RAN_1和/或RAN_2,也可以是UPF。在以后的申请中也有可能是与现有系统中RAN或UPF功能相同或类似的其他的网元,本申请对此不做限定。
下面结合图4,对本申请实施例的多接入会话管理方法400进行详细说明。图4示出了本申请多接入会话管理方法的一例示意性交互图。
S401,SMF接收来自PCF的策略。
S402,SMF根据该策略制定链路控制规则01。
作为一个示例,SMF接收来自该RAN的链路信息;其中,该链路信息用于指示远程UE与该RAN之间的多条链路的链路类型,该链路类型为直连链路或非直连链路;或者,该链路信息用于指示该多条链路的多个链路标识,该多个链路标识用于分别指示该多个链路中的每一条链路的链路类型;该SMF根据该链路信息和该策略制定该链路控制规则01。
关于上述“SMF根据该链路选择能力信息和该策略制定该链路控制规则01”,作为一个示例,所述SMF接收来自所述RAN的链路选择能力信息,所述链路选择能力信息用于指示所述RAN能够支持服务质量流的标识对应的所述链路控制规则01和/或业务流对应的所述链路控制规则01;所述SMF根据所述链路选择能力信息和所述策略制定所述链路控制规则01。
S403,SMF向RAN发送该链路控制规则01。
需要说明的是,RAN除了接收来自SMF的该链路控制规则01,还可以从本地获取该链路控制规则01,或者还可以通过其他方式获得该链路控制规则01,本申请对比不作限定。
应理解,该链路控制规则01包括服务质量流与所述无线接入网设备和远程终端设备之间多条链路中的一条或多条的对应关系,和/或所述链路控制规则01包括业务流与所述无线接入网设备和远程终端设备之间多条链路中的一条或多条的对应关系。
该链路控制规则01还包括QFI与链路选择规则的对应关系,和/或所述业务流和所述链路选择规则的对应关系。该链路选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
S404,RAN根据该链路控制规则01在该RAN与远程终端设备UE的多条链路中确定目标链路。
应理解,该多条链路包括直连链路和非直连链路,或者该多个链路包括多条非直连链路。RAN和远程UE在传输数据时,该数据可以以QoS流为粒度,也可以以业务流为粒度。RAN可能只具备以QoS流为粒度或者以业务流为粒度的能力,RAN也可能同时具备两种能力。当RAN只具备其中一种能力时,RAN收到的链路控制规则01也是针对该能力的规则,当RAN具备两种能力时,RAN收到的链路控制规则01中可能会包括一个指示信息,RAN可以根据该指示信息确定根据哪一种粒度使用链路控制规则01来传输数据。
关于以QoS流为粒度:
作为一个示例,该RAN确定传输该数据的QoS流的标识QFI;该RAN根据该链路控制规则01在该多条链路中确定该QFI对应的链路,该QFI对应的链路为该目标链路。
作为一个示例,该RAN确定传输该数据的QoS流的标识QFI;该RAN根据该链路控制规则01确定该QFI对应的链路选择规则;该RAN根据该链路选择规则在该多条链路中确定该目标链路。
作为一个示例,该链路控制规则01包括该QFI和该链路选择规则的对应关系。
作为一个示例,当RAN具备上述两种能力时,该RAN确定采用QFI对应的链路控制规则01。
关于以业务流为粒度:
作为一个示例,该RAN确定该数据对应的业务流;该RAN根据该链路控制规则01在该多条链路中确定该业务流对应的链路,该业务流对应的链路为该目标链路。
作为一个示例,该RAN确定传输该数据对应的业务流;该RAN根据该链路控制规则01确定该业务流对应的链路选择规则;该RAN根据该链路选择规则在该多条链路中确定该目标链路。
作为一个示例,链路控制规则01包括该业务流和该链路选择规则的对应关系。
作为一个示例,当RAN具备上述两种能力时,该RAN确定采用业务流对应的链路控制规则01。
应理解,上述该链路选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
S405,RAN通过该目标链路与该远程UE传输数据。
作为一个示例,该方法还包括:
该RAN向AMF发送该RAN的链路选择能力信息和链路信息中的至少一个;其中,该链路选择能力信息用于指示该RAN能够支持QFI对应的链路控制规则01和/或业务流对应的链路控制规则01;该链路信息用于指示该多条链路的链路类型,该链路类型为直连链路或非直连链路;或者,该链路信息用于指示多条链路的数量;或者,该链路信息用于指示该多条链路的多个链路标识,该多个链路标识用于分别指示该多个链路中的每一条链路的链路类型。
随后AMF会将上述信息转发给SMF。
在本申请实施例中,针对终端设备通过多条链路与无线接入网设备连接的场景,给出了分流点在基站,和基站执行链路控制规则的方法。当远程终端设备通过多条链路连接到核心网时,基站可以根据链路控制规则为远程终端设备选择合适的链路将下行数据包发送给远程终端设备。由此,基站可以为远程终端设备提供更灵活的数据发送服务。
下面结合图5,对本申请实施例的多接入会话管理方法500进行详细说明。图5示出了本申请多接入会话管理方法的又一例示意性交互图。
应理解,本申请实施例中,UPF在执行链路控制规则时,是以Q oS流为粒度对数据包进行分流的。
S501,SMF接收来自PCF的策略。
S502,SMF根据该策略制定链路控制规则02。
应理解,SMF根据该策略制定链路控制规则04,该链路控制规则04可以是针对UPF以QoS为粒度进行分流的链路控制规则02,也可以包括链路控制规则02和以其他粒度进行分流的其他链路控制规则。
作为一个示例,该链路控制规则02包括一条业务流和多条QoS流的对应关系,或者包括业务流和链路标识信息的对应关系,该链路标识信息用于标识无线接入网设备RAN和远程UE之间的多条链路,该RAN与该UPF连接。
具体地,该多条链路包括直连链路和非直连链路,或者该多条链路包括该多条链路包括多条非直连链路。
作为一个示例,该链路控制规则04包括该多条QoS流的标识QFI和链路选择规则的对应关系,和/或业务流和链路选择规则的对应关系,
其中,该链路选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
S503,SMF向UPF发送该链路控制规则02。
作为一个示例,该链路控制规则02包括该多条QoS流的标识QFI和链路选择规则的对应关系,该链路选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
S504,UPF根据该链路控制规则02将一条业务流分流到多条服务质量QoS流。
具体地,对于该多条QoS流中的一条QoS流,该RAN将该QoS流的标识QFI映射到该RAN和远程UE之间多条链路中的一条目标链路。
应理解,SMF制定的链路控制规则02中,还包括一个业务流和多个QFI的对应关系,以及每个QFI与该多条链路中的每一条链路一一对应的关系。UPF根据上述对应关系,会在一个业务流对应的不同的数据包上配置不同的QFI。
S505,UPF向RAN发送该多条QoS流的标识QFI。
作为一个示例,UPF在向RAN传输属于一个业务流的数据包时,该数据包上配置有与该业务流对应的多个QFI。SMF发送给RAN的N2消息中携带的QoS配置信息中包括QFI与该多个链路的对应关系。RAN通过该目标链路与该远程UE传输该QoS流的数据,具体地,RAN根据QoS配置信息中的QFI与无线侧链路的映射关系,将QFI映射到目标链路对应的DRB上进行传输。
在本申请实施例中,针对终端设备通过直连链路和非直连链路,或者通过多条非直连链路与无线接入网设备连接的场景,给出了分流点在基站,而用户面功能执行数据链路控制规则的方法。本实施例通过用户面功能根据链路控制规则将一条业务流映射到多个服务质量流上,即一个业务流与不同的服务质量流的标识相对应,对基站与终端设备之间的数据传输进行控制、切换和分流,使得基站与终端设备之间的数据传输更加灵活的同时接入网设备不需要做额外的改动。
下面结合图6,对本申请实施例的多接入会话管理方法600进行详细说明。图6示出了本申请多接入会话管理方法的再一例示意性交互图。
应理解,本申请实施例中,UPF在执行链路控制规则时,是以业务流为粒度对数据包进行分流的。
S601,SMF接收来自PCF的策略。
S602、SMF根据该策略制定链路控制规则03。
应理解,SMF根据该策略制定链路控制规则04,该链路控制规则04可以是针对UPF以业务流为粒度进行分流的链路控制规则03,也可以包括链路控制规则03和以其他粒度进行分流的其他链路控制规则。
作为一个示例,该链路控制规则03包括一条业务流和多条QoS流的对应关系,或者包括业务流和链路标识信息的对应关系,该链路标识信息用于标识无线接入网设备和远程UE之间的多条链路,该RAN与该UPF连接。
该多条链路包括直连链路和非直连链路,或者该多条链路包括该多条链路包括多条非直连链路。
作为一个示例,该链路控制规则04包括该多条QoS流的标识QFI和链路选择规则的对应关系,和/或业务流和链路选择规则的对应关系,
其中,该链路选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
S603、SMF向UPF发送链路控制规则03。
该链路控制规则03包括该业务流和该链路标识信息的对应关系。
该链路控制规则03包括该业务流和链路选择规则的对应关系,该链路选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
S604、UPF根据该链路控制规则03确定业务流对应的链路标识信息,该链路标识信息用于标识无线接入网设备和远程UE之间的链路。
S605、UPF向该RAN发送该链路标识信息。
具体地,该UPF向该RAN发送该业务流对应的数据,该数据携带该链路标识信息。 该RAN和该远程UE之间包括多条链路,该多条链路包括直连链路和非直连链路,或者该多条链路包括多条非直连链路。
在本申请实施例中,针对终端设备通过多个无线接入网设备与核心网连接,并且通过直连链路和非直连链路,或者通过多条非直连链路与该多个无线接入网设备连接的场景,给出了分流点在用户面功能,由用户面功能执行链路控制规则的方法。通过用户面功能根据链路控制规则将无线侧链路信息与业务流绑定,对基站与终端设备之间的数据传输进行控制、切换和分流,使得基站与终端设备之间的数据传输更加灵活的同时减少了核心网侧的改动。
另外,该方法还包括:
该链路控制规则04包括无线接入网设备选择规则,无线接入网设备选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
该UPF根据该链路控制规则03,确定从多个RAN选择该RAN传输该业务流。
应理解,该链路控制规则03中也包括上述无线接入网设备选择规则,UPF根据该无线接入网设备选择规则,在与之连接的多个RAN中确定目标RAN进行传输数据。
所述链路控制规则包括无线接入网设备的选择规则,所述无线接入网设备选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
可选的,所述链路控制规则03还包括多个RAN的标识信息。
进一步地,针对UE通过多个无线接入网设备与核心网连接,并且通过直连链路和非直连链路,或者通过多条非直连链路与该多个无线接入网设备连接的场景,给出了分流点在UPF,由UPF执行链路控制规则的方法,实现了多基站接入时的数据分流,结合UE通过同一基站接入核心网的方案,使得本申请的应用场景更加完整。
下面结合图7,对本申请实施例的多接入会话管理方法700进行详细说明。图7示出了本申请多接入会话管理方法的再一例示意性交互图。
S701、SMF向UE发送链路控制规则05。
S702、UE根据该链路控制规则05,确定在RAN与UE的多条链路中确定目标链路。
该多条链路包括直连链路和非直连链路,或者该多个链路包括多条非直连链路。
S703、UE通过该目标链路与RAN传输数据。
在本申请实施例中,终端设备通过直连链路和非直连链路,或者通过多条非直连链路与无线接入网设备连接的场景,给出了UE执行链路控制规则的方法。使得UE在向接入网设备发送数据时,也能够实现数据的控制、切换和分流,使得UE和接入网设备间的数据传输更加灵活。
图8是本申请的实施例的应用场景示意性结构图。如图8所示,远程UE与基站存在直连链路(direct path),同时可以通过中继与同一基站存在非直连链路(indirect path)。其中,可能存在多条非直连链路的情况,即一个远程UE可以通过多个中继连接到同一个或者不同的无线接入网设备上(例如基站)。此时,由基站进行下行数据的分流,即执行路径选择规则。这里所说的“不同的无线接入网设备”,在逻辑上属于同一个RAN,即UE通过多个中继连接到不同的RAN上,但是这些RAN由同一个控制器进行控制,此时由控 制器来执行路径选择规则。例如,UE通过多个中继连接到不同的分布式单元(distributed unit,DU)上,而这些不同的DU都和同一个集中式单元(centralized unit,CU)连接,此时则是由CU来控制这些DU,也是由着一个CU来执行路径选择。
下面结合图9,对本申请实施例的多接入会话管理方法900进行详细说明。图9是本申请多接入会话管理方法的再一例示意性交互图。
S901,远程UE建立通过中继连接到基站的非直接链路,与此同时,远程UE保持与同一基站的直接链路。此外,当UE建立了多个链路时,链路信息可以存储在AMF中的UE上下文中。具体的,该链路信息可以包括以下信息中的至少一个:UE连接的无线接入网设备信息(例如基站标识)、UE连接的中继信息(例如中继的标识信息,可以由基站提供)。
S902,由远程UE向AMF发起PDU会话建立或更新请求,或由基站向AMF发起PDU会话更新请求。
作为一个示例,当PDU会话请求由远程UE发起时,远程UE向AMF发送非接入层(non-access stratum,NAS)消息,其中包括了PDU会话建立或更改请求消息。远程UE可以通过非直连链路或直连链路向基站发送NAS消息,基站将NAS消息转发给AMF。或者,远程UE可以通过非直连链路或通过直连链路向基站发送包括了NAS消息的无线资源控制(radioresourcecontrol,RRC)消息,之后基站将RRC消息中包含的NAS消息转发给AMF网元。
在NAS消息中,携带消息有:由远程UE生成的PDU会话ID(PDU session ID)、MA PDU会话请求指示(图9中的“MA PDU Request”)、请求的PDU会话类型、N1会话管理(session management)SM容器(N1SM container)。另外,N1SM容器中包括了PDU会话建立或更改请求。
应理解,上述MA PDU Request为现有标准中用于非3GPP多接入分流的多PDU会话请求指示。本申请中的多接入场景与非3GPP的多接入场景有所不同,所以这里可以沿用现有的MA PDU Request指示,或者为一个新定义的指示,用于标识多接入会话建立的请求。例如,MA Relaying PDU Request或MA 3GPP PDU Request等等,或者可以是其他的表达方式,本申请对此不做限定。
其中,请求类型可以是“初始请求”(initial request),用于建立一个新的PDU会话;或者可以是“现存的PDU会话”(existing PDU session),用于指示已经存在一个PDU会话且该会话是在3GPP接入和非3GPP接入之间的切换;或者可以是从4G网络切换至5G网络时,指示原4G网络中使用的公共数据网络(public data network,PDN)连接。N1SM容器中的PDU会话建立或更改请求消息中可以包括:PDU session ID(与NAS消息中的PDUsession ID一致)、请求的PDU会话类型(IP类型、非IP类型或以太类型等)、UE可以支持的ATSSS能力信息。例如,该ATSSS能力信息可以是多路传输控制协议(MultiPath TCP,MPTCP)能力或ATSSS底层(ATSSS low-layer,ATSSS-LL)能力等。
UE可以在NAS消息或者PDU会话建立或更改请求消息中携带:UE的无线侧接入信息,例如UE指示在无线侧存在直接链路与非直接链路;UE通过中继连接到基站的中继标识信息等。
其中,“UE指示在无线侧存在直接链路与非直接链路”,可以是UE指示无线接入网 侧链路的数量,例如直连链路的数量和非直连链路的数量,或者所有链路的总数量。进一步地,UE还可以将不同的链路进行标识,例如直连链路为Direct_Path_1,非直连链路为Indirect_Path_1。当存在多条非直连链路时,可以继续对不同的非直连链路进行标识,如Indirect_Path_2,Indirect_Path_3等。UE可以在NAS消息或者PDU会话建立或更改请求消息中将这些链路标识一同发送给AMF或SMF。同时,UE可以将这些标识信息通过RRC消息发送给无线接入网设备,用于统一标识以指示不同的链路。又或者,这些标识信息可以作为UE的上下文记录在基站和/或AMF中。
可选的,上述的链路标识信息可以由基站进行分配,并发送给UE。
作为一个示例,当PDU会话更新消息由基站发起时,即基站向AMF发送N2消息。该N2消息中包括PDU会话ID,N2SM信息。其中,N2SM信息中可以包括:UE的无线侧接入信息,例如,UE可以指示在无线侧存在的多条链路的数量,或者UE可以进一步指示直接链路与非直接链路的数量信息。例如,当远程UE通过新的中继连接到原来的基站,那么基站则会在向AMF发送的N2消息中包括的UE的无线侧接入消息中指示无线侧存在直接链路与非直接链路的数量信息。进一步地,接入网设备也可以将不同的链路进行标识,例如直连链路为Direct_Path_1,非直连链路为Indirect_Path_1。当存在多条非直连链路时,可以继续对不同的非直连链路进行标识,如Indirect_Path_2,Indirect_Path_3等。接入网设备可以在N2消息中将这些链路标识一同发送给AMF或SMF。
此外,N2消息和/或N2SM信息中,可以包括基站的能力信息,或者AMF可以根据本地配置和基站的标识或地址信息中获得基站的能力信息。这里的基站的能力信息,即基站可以基于QFI进行业务分流的能力,还是基于业务流粒度进行分流的能力。
S903,AMF转发UE的MA PDU会话建立或更改请求消息给SMF。
如果在步骤S902中,由UE请求建立PDU会话,根据NAS消息中的MA PDU会话请求指示,AMF如果支持MA PDU会话,则选择一个同样可以支持MA PDU会话的SMF网元。
如果在步骤S902中,由基站请求建立PDU会话,根据PDU会话ID向管理该PDU会话ID的SMF网元发起更新UE的SM上下文请求。
作为一个示例,该请求消息可以使用3GPP标准中定义的Nsmf_PDUSession_CreateSMContext或Nsmf_PDUSession_UpdateSMContext服务消息,随消息可以携带:UE的标识信息,MA PDU请求指示等。其中,UE的标识信息可以是用户永久标识(subscription permanent identifier,SUPI)或通用公共用户标识(generic public subscription identifier,GPSI)。
此外,可选的,随请求消息还可以携带无线接入网侧的链路信息和/或基站的能力信息。
无线接入网侧的链路信息可以是无线接入网侧的链路的数量,例如直连链路的数量和非直连链路的数量,或者所有链路的总数量。进一步地,如果步骤2中,UE的请求消息携带了具体的链路标识,链路信息还可以包括无线接入网侧的链路的标识,例如直连链路和/或非直连链路的标识等。此外,SMF在创建或更新UE的SM上下时,也可以将这些链路对应的标识信息记录在SM上下文中。
基站的能力信息,在本申请的实施例中主要是指基站支持的路径分流的能力,即基站 可以基于QFI进行业务分流或者链路选择,还是基于业务粒度的分流能力。
S904,可选的,SMF从UDM获取UE的会话签约数据。
如果SMF本地没有UE的SM上下文,SMF从UDM或UDR获取UE的会话签约数据,并为UE创建UE会话上下文。
S905,SMF向AMF发送UE会话上下文创建或更改反馈。
如果SMF为UE创建了UE会话上下文,则向AMF反馈确认消息并反馈一个SM上下文标识,该消息可以根据步骤S902中的消息进行反馈,例如通过Nsmf_PDUSession_CreateSMContext消息反馈或者Nsmf_PDUSession_Update SMContext消息反馈。
如果SMF为UE更新了UE会话上下文,则不需要进行反馈。
另外,如果SMF拒绝为UE创建或更改PDU会话,则SMF可以向AMF发送相应的拒绝消息并通过NAS消息通知UE,同时携带拒绝原因。同时,SMF可以指示AMF释放PDU会话ID相应的无线资源。
S906,可选的,如果SMF使用动态PCC规则配置,则SMF可以选择PCF网元,请求PCC规则。
或者,SMF可以适用本地配置的默认PCC规则,或者适用动态PCC规则。
当SMF向PCF请求PCC规则时,随PCC规则请求消息,可以携带一些必要信息:用户标识信息(SUPI或GPSI等),PDU会话ID,MA PDU请求指示(用于指示PCF该会话是基于中继的多接入的PDU会话)。
可选的,随消息还可以携带一些可选信息:无线接入网侧的链路信息和/或基站的能力信息等。
其中,无线接入网侧的链路信息可以是无线接入网侧的链路的数量(直连链路的数量和非直连链路的数量,或者所有链路的总数量)和/或无线接入网侧的链路的标识(即,直连链路和/或非直连链路的标识)等。基站的能力信息可以是指基站支持路径分流的能力,或者更进一步的表示基于QFI进行业务分流和/或基于业务粒度的分流能力。
从而,PCF可以根据随PCC规则请求消息携带的必要信息和可选信息判断是否为该PDU会话提供MA PDU会话的PCC规则。
其中,PCF根据SMF发送的必要信息判断是否为该PDU会话提供MA PDU会话的PCC规则。可选地,PCF根据MA PDU请求指示所携带的信息以及运营商的策略和用户的签约数据判断是否为该PDU会话提供MA PDU会话的PCC规则。
另外,PCF还可以根据可选信息判断是否为该PDU会话提供MA PDU会话的PCC规则。例如,根据UE的非直接连接的数量和用户签约数据中指示的UE可以连接的非直接连接数量上限判断UE是否超出了签约信息中规定的连接数量。具体地,PCF可以携带SMF发送的用户标识向UDM或UDR请求该用户的签约数据,并根据签约数据中的信息判断是否为UE提供MA PDU的业务传输路径选择或分流服务。
作为一个示例,对于SMF携带了无线接入网侧的链路信息,而没有提供基站的能力信息的情况,PCF会根据SMF提供的链路信息设置PCC规则,同时可以根据本地的默认配置,将ATSSS规则的传输路径选择或分流粒度设置为QoS流粒度或者业务流粒度。
例如,SMF向PCF请求PCC规则时,携带了无线接入网侧的链路数量,如UE在无 线接入网设备上的连接信息为一条直连链路和两条非直连链路。
ATSSS规则可以是包括在PCC规则中,或者是单独的规则信息。在本申请中ATSSS规则也可以称为链路选择规则。
例如,如果ATSSS规则为基于优先级(Priority-based)的分流模式,即为不同链路设置优先级发送数据,PCF可以指示设置直连链路为高优先级,非直连链路为低优先级。
进一步地,如果PCF为多条非直连链路设置了同样的优先级,则基站可以根据本地配置的规则处理数据分流方式,例如结合非直连链路中中继的负载情况,或者无线信道质量等自行执行数据分流策略。或者,PCF可以对多条非直连链路进一步设置优先级。
例如,SMF向PCF请求PCC规则(或ATSSS规则)时,携带了无线接入网侧的链路标识,例如,链路标识信息:直连链路为Direct_Path_1,非直连链路为Indirect_Path_2和Indirect_Path_3。
具体地,如果ATSSS规则为负载均衡(Load balance)的分流模式,即PCF可以为不同链路设置数据包数量的发送比例。例如,Direct_Path_1为0.5,Indirect_Path_1为0.3,Indirect_Path_2为0.2。PCF可以随ATSSS规则将Load balance中每条链路的数据量发送比例一同发送给SMF。之后基站在进行业务分流时,可以根据这个比例处理下行数据。
进一步地,UE在执行上行数据分流时,也可以根据比例使用相应的链路进行上行数据发送。这里上下行的业务分流比例是可以不同的。
应理解,现有的ATSSS规则的各种分流模式都适用于本申请的实施例,包括但不局限于上述两种可能的实现方式,其余方式的实施在此不做赘述。
作为一个示例,对于SMF只携带了基站能力信息,而没有提供无线接入网侧的链路信息,则PCF会根据基站的能力信息为SMF生成相应的数据分流粒度,同时可以根据本地配置中的无线接入网侧的链路信息为SMF配置默认的业务分流规则。
例如,PCF可以根据基站能力信息为SMF生成相应的业务分流粒度,即是基于QoS流粒度的分流还是基于业务流粒度的分流方式。
具体地,如果是基于QoS流粒度的分流,则PCF需要将相同的QoS参数(例如5QI)的业务流配置相同的业务分流方式。如果是基于业务流粒度的分流方式,则PCF可以根据不同的业务,为不同的业务流分配分流规则。而对于本地配置中的无线接入网侧的链路信息,可以是默认只区分直连链路和非直连链路,PCF同样可以根据本地配置为SMF配置默认的数据分流规则,比如基于优先级的分流模式下,只区分直连链路和非直连链路的优先级,或者也可以是其他的分流模式。
作为一个示例,对于SMF同时携带了基站的能力信息和无线接入网侧的链路信息,则PCF根据这些信息为SMF设置相应的分流粒度和ATSSS规则。具体内容如上所述。
S907,PCF为MA PDU会话提供ATSSS规则信息。
具体的,ATSSS规则可以是但不限于如下规则:
基于链路状态选择(Active-standby):当一条链路不可用时,所有业务流切换到另一条链路;
基于优先级选择(Priority-based):当高优先级链路饱和时,使用另一链路传输后续数据流;
基于往返时延选择(Lowest Round-Trip Time(RTT)):基于RTT测量采用lowest RTT 链路传输数据包;
基于负载选择(Load balance):两链路按比例同时传输数据,分流比例由网络侧提供。
S908,SMF根据PCC规则为UPF创建或更改相应的N4会话。
SMF根据UE可以支持的ATSSS能力信息(例如,MPTCP能力或ATSSS-LL能力)以及PCC规则中的ATSSS规则信息为UE生成用于UE传输上行数据的ATSSS规则。
S909,SMF网元完成PDU会话建立或更改后向AMF发送反馈消息。
随消息携带“MA PDU会话接受指示”,该消息可以是现有标准中定义的Namf_Communication_N1N2MessageTransfermessage消息。
其中,N2消息中会携带该PDU会话中的QoS配置信息,包括QFI及对应的QoS参数。N1消息中会携带UE处理上行数据包的QoS规则,同样的规则中包括QFI及对应的QoS参数。此外,随N1消息携带用于远程UE的ATSSS规则,随N2消息携带用于基站的ATSSS规则。
S910,AMF通过N2消息将PDU会话信息发送给基站。
同时该信息携带用于基站的ATSSS规则。
S911,基站转发SMF的N1消息给远程UE(其中包括了用于远程UE的ATSSS规则)。
S912,基站根据N2消息中的QoS信息,判断无线侧是否可以满足QoS参数的需求,并将结果通过N2信息随N2PDU会话反馈消息发送给AMF。
S913,AMF将N2信息转发给SMF。
S914,SMF将无线侧信息随N4会话更改消息发送给UPF。
S915,SMF将PDU会话上下文更新结果反馈给AMF。
S916,RAN执行ATSSS规则。
基站通过N2消息接收到ATSSS规则或可以执行ATSSS规则的指示后,对N3接口发来的数据进行相应的分流处理。在执行ATSSS规则,可以基于两种粒度进行数据的分流、选择或控制。本实施例中的分流处理主要依据两种方式,一种是基于QoS流粒度的分流,另一种是基于业务流粒度的分流。
方式一,当使用基于QoS流粒度的分流方式时,基站为远程UE的非直连链路和直连链路分别分配了DRB配置用于在远程UE和基站之间传输无线数据,假设直连链路Direct_Path_1与DRB 1对应,非直连链路Indirect_Path_1与DRB 2对应,非直连链路Indirect_Path_2与DRB 3对应。
应理解,本申请的实施例还支持这样的情况:基站可以为每条直连链路配置多个DRB的情况,及将一条直连链路映射到多个DRB上。例如,为直连链路Direct_Path_1配置DRB 1和DRB 4。当基站从N3接口接收到从UPF发送的下行数据包时,每个数据包头会有相应的QFI信息。基站基于QFI信息,根据ATSSS规则,将同一QFI标识的数据包分别分配到不同的DRB进行无线传输。
作为一个示例,如果ATSSS规则为Priority-based,即为不同链路设置优先级发送数据,且指示了针对某一个或多个QFI标识的数据包的处理规则为直连链路为高优先级,非直连链路为低优先级,则基站在发送这些QFI标识的数据包时,优先使用直连链路发送。即,这些QFI标识的数据包优先映射到DRB 1进行发送。
应理解,在进行路径选择或者路径分流时,可能所有的数据包都映射到DRB 1上进行发送,不在其他DRB上进行发现,并不局限于要将数据包分流到不同的DRB上进行传输。
作为一个示例,如果ATSSS规则为Load balance,即为基于负载选择的分流模式,且指示了某一个或多个QFI标识的数据包使用不同链路的发送比例,例如直连链路Direct_Path_1为0.5,非直连链路Indirect_Path_1为0.3,非直连链路Indirect_Path_2为0.2,则基站根据该比例将这些QFI标识的数据包按比例映射到对应的DRB上。
作为一个示例,ATSSS规则也可以是指示基站可以根据无线链路情况(例如信道质量,负载情况等)对QFI所标识的数据包进行分流。例如,基站可以根据非直连链路和直连链路的信道质量进行数据流分流。同样的,也可以结合直连和非直连链路的负载情况,由基站自主为两条链路合理的分配权重进行业务流分流。
方式二,当使用基于业务流粒度的分流方式时,基站需要具备可以识别N3接口发来的数据包地址信息的能力,即根据数据包的五元组信息(数据包的源IP地址,源端口,目的IP地址,目的端口和传输层协议)确认ATSSS规则对应的业务流,之后在根据ATSSS规则进行相应的数据包分流。
具体的,与上述方式一不同的是,本方法中的ATSSS规则中,各规则是针对不同的业务流的,例如同样是视频流,仅针对百度视频的业务流进行分流,而其他视频业务流可能有不同的ATSSS规则,或不进行分流处理。为了识别出百度的业务流,在ATSSS规则中,会给出例如五元组信息,使得基站可以根据这些信息识别出百度视频的数据包,并对这些数据包执行分流。而具体的分流方法类似于上述的QFI粒度的分流,只是这里的分流粒度发生了变化,这里不再赘述。
S917,UE根据ATSSS规则处理上行数据,基站根据ATSSS规则处理下行数据。
应理解,步骤S916和步骤S917可以同时执行。
对于UE侧执行ATSSS规则的方式与基站侧的处理类似,根据ATSSS规则的指示,可以是基于QFI粒度或业务流粒度的方法,在处理上行数据包时,选择不同的链路发送。
作为一个示例,如果ATSSS规则为Priority-based的分流模式,即为不同链路设置优先级发送数据。
对于基于QFI粒度的分流方式,ATSSS规则会指示针对某一个或多个QFI标识的数据包的处理规则为直连链路为高优先级,非直连链路为低优先级,则UE在发送这些QFI标识的数据包时,优先使用直连链路发送。即,这些QFI标识的数据包优先映射到直连链路的上行DRB上进行发送。
对于基于针对业务流粒度的分流方式,则同样的可以根据例如五元组信息,对业务流进行分流处理,此处不再赘述。
在本申请实施例中,针对终端设备通过多条链路与无线接入网设备连接的场景,给出了分流点在基站,和基站执行链路控制规则的方法。当远程终端设备通过多条链路连接到核心网时,基站可以根据链路控制规则为远程终端设备选择合适的链路将下行数据包发送给远程终端设备。由此,基站可以为远程终端设备提供更灵活的数据发送服务。
图10示出了本申请又一实施例的场景的示意性结构图。
如图10所示,UE通过直连链路和基于中继的非直连链路受同一个基站控制,在基站 进行路径分流或路径选择,而ATSSS规则由UPF网络执行。
下面结合图11,对本申请实施例的多接入会话管理方法1100进行详细说明。图11示出了本申请多接入会话管理方法的再一例示意性交互图。
S1101至S1107与步骤S901至S907一致。
S1108,SMF根据PCC规则为UPF创建或更改相应的N4会话。
PCC规则中,指示了不同的业务流对应的QoS参数信息,以及ATSSS规则信息。
在步骤S1108中,SMF会根据数据分流粒度的不同,在将ATSSS规则配置给UPF时,会一同配置一些其他信息。这里的ATSSS规则和“一些其他信息”构成了本申请中的所述的链路控制规则。
应理解,步骤S1108中不同的分流粒度所对应的链路控制规则并不需要同时执行,一次只执行其中一种即可。
方式一,单业务流映射多QFI。
在此之前,SMF已经从PCF获取了包括该业务流的ATSSS规则的PCC规则。此时,SMF在分配QFI时,在不同的业务流分配不同的QFI的基础上,同一个业务流也分配多个不同的QFI。进一步地,该多个不同的QFI与多条链路一一绑定。需要说明的是,由同一个业务流分配的多个不同的QFI所指示的QoS流的QoS参数是相同的。
作为一个示例,对于同一个业务流而言,可以根据UE的无线侧链路信息分配相应数量的QFI。例如,根据存在的直连链路和非直连链路的数量分配相应数量的QFI。SMF可以将一个业务流对应的多个不同的QFI随ATSSS规则一同配置给UPF。
作为一个示例,如果无线接入网侧的链路信息为:直连链路Direct_Path_1,非直连链路Indirect_Path_1和非直连链路Indirect_Path_2,则SMF可以将同一个业务流映射到Direct_Path_1为QFI 1,映射到Indirect_Path_1为QFI 2,映射到Indirect_Path_2为QFI 3。之后,SMF将这个映射关系通过N4会话建立或更改消息配置给执行分流规则的UPF。UPF在执行分流规则时,根据具体的分流规则,将业务流分配到不同的无线接入网侧链路对应的QFI上或者说用相应的QFI标识指示该业务流分流到不同的无线接入网侧链路。
具体地,上述映射关系包括业务流与多个QFI的映射关系,或者更详细的,每个QFI对应的链路信息的映射关系。
应理解,该映射关系可以只指示多个QFI与属于同一业务流的数据包的对应关系,并没有指示出QFI与链路的对应关系,UPF根据该映射关系在数据包上配置对应的QFI标识。例如,ATSSS规则为基于负载选择,而该映射关系指示QFI1和QFI 2分别与50%的数据包对应,那么UPF会在该业务流的数据包上以1:1的比例分别配置QFI1和QFI 2的标识。
或者,该映射关系可能指示QFI与多个链路的对应关系,UPF根据该映射关系和具体的ATSSS规则在数据包上配置对应的QFI标识。例如,UPF根据基于负载选择的ATSSS规则指示了直连链路与非直连链路各传输50%的数据包,且直连链路对应QFI_1,非直连链路对应QFI_2,那么UPF首先要根据链路与QFI的对应关系,以及具体的ATSSS规则才能在该业务流的数据包上以1:1的比例分别配置QFI1和QFI 2的标识。
方式二,无线侧链路信息与业务流绑定。
作为一个示例,如果UE或者接入网设备提供了不同链路的标识信息,则SMF可以 将链路标识信息和对应的链路连接关系随ATSSS规则一同配置给UPF。例如,直连链路为Direct_Path_1,非直连链路为Indirect_Path_1和非直连链路为Indirect_Path_2。由UPF根据ATSSS规则在分流时,使用不同链路进行下行数据发送时,对数据流与链路标识进行绑定。具体地,根据ATSSS规则,某业务流的IP数据包需要通过直连链路发送,则UPF在该业务流的IP数据包前加上链路标识Direct_Path_1,这样接入网设备就可以根据该标识信息选择对应的链路进行数据包的发送。
需要说明的是,目前,针对不同的接入网接口(3GPP和非3GPP接入),锚点UPF是分别与不同的接入网设备(两个N3接口)或与接入网设备的UPF(两个N9接口)连接。当UPF需要针对业务流进行分流时,将同一业务流分流到不同的接口,而不同接口所使用的QFI是相同的(因为目前同一个业务流与QoS流是一对一的映射关系)。但是,对于本实施例中的场景,执行业务流分流的UPF与接入网设备只有一个接口,即N3接口。如果不对不同的业务流在分流时进行额外标识,则接入网设备无法确定具体的分流方式。所以在SMF为UPF配置数据包转发规则时,需要对需要执行ATSSS规则的业务流进行额外的处理,具体可以采用上述处理方式,单业务流映射多QFI方式和无线侧链路信息与业务流绑定方式。
此外,SMF根据PCC规则中的ATSSS规则信息为UE生成用于UE传输上行数据的ATSSS规则。
S1109,SMF网元完成PDU会话建立或更改后向AMF发送反馈消息。
随消息携带“MA PDU会话接受指示”,该消息可以是现有标准中定义的Namf_Communication_N1N2MessageTransfer message消息。此外,随N1消息携带用于远程UE的ATSSS规则,随N2消息携带QoS配置信息。
如果在步骤S1108中使用方式一,则在QoS配置信息中,需要加入所有的QFI配置,即,QFI与无线侧链路的对应关系。作为一个示例,QFI 1用于直连链路Direct_Path_1,QFI 2用于直连链路Indirect_Path_1,QFI 3用于直连链路Indirect_Path_2,同样的,QFI 1、QFI 2、QFI 3对应的QoS参数配置也随N2消息一同发送给无线接入网设备。
S1110,AMF通过N2消息将PDU会话信息发送给基站。
S1111至S1115,与上述S911至S915相同,此处不多赘述。
S1116,UPF根据SMF分配的ATSSS规则,对下行数据包进行相应的分流处理。
与S1108中的方式一对应,则UPF根据ATSSS规则,在对业务流进行分流时,为不同的链路使用不同的QFI进行标识。
作为一个示例,ATSSS规则为基于负载选择(Load Balance),该分流规则指示了某一个或多个业务流的数据包使用不同链路的发送比例。例如,直连链路Direct_Path_1为0.5,非直连链路Indirect_Path_1为0.3,非直连链路Indirect_Path_2为0.2,则UPF根据该比例将这些业务流按照5:3:2的比例映射到QFI 1、QFI 2和QFI 3上。
作为一个示例,ATSSS规则为基于链路状态选择(Active-Standby),该分流规则指示了存在多个链路时,选择一个或多个链路为Active(激活)状态,而其他链路为Standby(待命)状态。例如,当UPF接收到这个规则时,根据规则中不同链路的状态指示进行数据的发送。例如链路有直连和非直连链路时,且UPF接收到的链路信息只区分直连链路和非直连链路时,选择直连链路为激活状态,非直连链路为待命状态;或者进一步地, UPF接收到的链路信息具体到了每一条非直连链路的链路标识,则UPF可以对于每一条非直连链路设置激活或者待命状态。又例如,链路只有非直连链路时,UPF也可以根据接收到的链路信息设置每一条链路的状态为激活或者待命。这样UPF就把业务流映射到状态为激活的链路对应的QFI上。
与S1108中的方式二对应,若SMF为UPF配置了无线侧链路信息与业务流绑定的方法,则UPF根据ATSSS规则,在对业务流进行分流时,为不同的数据包打上相应的无线侧链路标识。
作为一个示例,ATSSS规则为Load Balance(负载均衡的分流模式),该分流规则指示了某一个或多个业务流的数据包使用不同链路的发送比例。例如,直连链路Direct_Path_1为0.5,非直连链路Indirect_Path_1为0.3,非直连链路Indirect_Path_2为0.2,则UPF根据该比例将这些业务流按照5:3:2的比例在这些业务流的数据包包头打上Direct_Path_1、Indirect_Path_1和Indirect_Path_2的标识。具体地,UPF在封装业务报文的GTP-U(GPRS Tunneling Protocol-User Plane,GPRS隧道协议用户面部分)报文头中添加指示信息,指示封装的用户报文所使用的无线接入网侧所使用的链路信息(Direct_Path_1、Indirect_Path_1或Indirect_Path_2)。
作为一个示例,ATSSS规则为基于链路状态选择(Active-Standby),该分流规则指示了存在多个链路时,选择一个或多个链路为Active(激活)状态,而其他链路为Standby(待命)状态。如前所述,UPF根据ATSSS规则和链路信息设置完链路的状态之后,UPF就在与该ATSSS规则对应的业务流的数据包的包头打上状态为激活的链路的链路标识。
S1117,UE根据ATSSS规则处理上行数据,UPF根据ATSSS规则处理下行数据。
如果SMF使用了上述方式一,无线接入网设备则根据QoS配置信息中的QFI与无线侧链路的映射关系,将QFI映射到相应的DRB上进行传输。
如果SMF使用了上述方式二,则无线接入网设备根据UPF发来的数据包前的无线侧链路标识信息,选择对应的无线侧链路,将该数据包映射到无线侧链路对应的DRB上进行传输。
需要说明的是,S1116和S1117可以同时执行。
在本实施例中,针对终端设备通过直连链路和非直连链路,或者通过多条非直连链路与无线接入网设备连接的场景,给出了分流点在基站,而用户面功能执行数据链路控制规则的方法。本实施例通过用户面功能根据链路控制规则将一条业务流映射到多个服务质量流上,即一个业务流与不同的服务质量流的标识相对应,或者通过用户面功能根据链路控制规则将无线侧链路信息与业务流绑定,对基站与终端设备之间的数据传输进行控制、切换和分流,使得基站与终端设备之间的数据传输更加灵活的同时减少了核心网侧的改动。
图12示出了本申请再一实施例的场景的示意性结构图。
如图12所示,UE通过直连链路与一个接入网设备直接连接,通过基于中继的非直连链路与另一个基站非直接连接,在UPF进行路径分流或路径选择,ATSSS规则也由UPF网络执行。
下面结合图13,对本申请实施例的多接入会话管理方法1300进行详细说明。图13示出了本申请多接入会话管理方法的再一例示意性交互图。
S1301,与前述步骤S901相同。
S1302,当远程UE与一个接入网设备直接连接,而与另一个接入网设备通过中继进行非直接连接时,远程UE可以通过其中一个接入网设备向AMF发送NAS消息请求建立或更新PDU会话。请求消息发送方式与内容与前述步骤S902相同。
作为一个示例,远程UE通过可以选择后建立连接的链路发送请求消息。具体地,远程UE先通过非直接链路连接到核心网,之后才与另一个接入网设备建立了直接链路,则PDU会话建立或更改请求可以通过直接链路向AMF发送。
关于选择哪条链路发送该请求消息,还可以使用其他的方式进行,本申请对此不做限定。
S1303,AMF转发UE的PDU会话建立或更改请求消息。
随消息携带新接入的无线接入网设备标识信息(用于指示需要N2信息的基站),以及远程UE与无线接入网设备连接的信息(例如,无线接入网链路的数量,无线接入网设备的标识或地址信息)。
可选的,可以进一步指示接入网设备信息后的中继信息或者直连链路和非直连链路信息。例如,基站1(RAN_1)通过直连链路与UE连接,基站2(RAN_2)通过非直连链路与UE连接。或者基站1通过直连链路与UE连接,以及基站1与UE之间同时存在的非直连链路数量,基站2通过非直连链路与UE连接,以及基站2与UE之间非直连链路的数量。进一步地,也可以给出具体的链路标识信息,例如基站1的直连链路RAN_1_Direct_Path_1,基站1的非直连链路RAN_1_Indirect_Path_1,基站2的一条直连链路RAN_2_Direct_Path_1,基站2的另一条直连链路RAN_2_Direct_Path_2。
S1304至S1305,同实施例一和二中的步骤S904至步骤S905。
S1306,SMF向PCF请求PCC规则。
请求消息携带无线接入网设备信息,例如无线接入网链路的数量。
例如基站1和远程UE之间的链路包括直连链路,即基站1和远程UE之间的链路为一条直连链路和一条或多条非直连链路,基站2和远程UE之间的链路全都是非直连链路,那么PCF在制定分流规则时可以只区分存在直连链路的基站和只存在非直连链路的基站。
或者,进一步地,无线接入网设备信息可以指示基站1和远程UE之间的直连链路和非直连链路的数量,基站2和远程UE之间的非直连链路的数量。
或者,更进一步地,无线接入网设备信息可以指示具体的链路标识信息,例如RAN_1_Direct_Path_1,RAN_1_Indirect_Path_1,RAN_2_Indirect_Path_1,RAN_2_Indirect_Path_2等。
对于同一基站存在多条链路的情况,链路控制规则的具体生成方式可以参见步骤S906或步骤S1108的情况;也可以由基站按照其他现有的方式进行路径分流或路径选择。
本实施例针对不同基站的情况进行说明。对于存在多个基站的情况,链路控制规则的生成方式可以是如下示例。
作为一个示例,ATSSS规则为基于优先级选择(Priority-based),该规则为不同链路设置优先级发送数据,PCF可以指示设置具有直连链路的基站为高优先级,非直连链路的基站为低优先级,进一步地,PCF可以进一步的对多条非直连链路进一步设置优先级。
例如,如果链路信息为RAN_1_Direct_Path_1,RAN_1_Indirect_Path_1,RAN_2_Direct_Path_1,RAN_2_Direct_Path_2,则RAN_1_Direct_Path_1为高优先级链路, 或者说基站1为高优先级而基站2为低优先级。而RAN_1_Indirect_Path_1,RAN_2_Direct_Path_1,RAN_2_Direct_Path_2这些链路的优先级相对较低,PCF可以对低优先级的链路做进一步的优先级排序。同样的,对于同一基站存在多条链路的情况,分流规则的具体生成方式可以参见步骤S906或步骤S1108的情况,或者由基站按照现有的方式进行路径分流或路径选择,此处不再赘述。
作为一个示例,ATSSS规则为基于负载选择(Load Balance),该规则中PCF可以为不同链路设置数据包数量的发送比例。
例如,设置RAN_1为0.8,RAN_2为0.2。PCF可以随ATSSS规则将Load Balance中每个基站的数据量发送比例一同发送给SMF。之后UPF在进行业务分流时,可以根据这个比例处理下行数据。
与上述方式类似,UE在执行上行数据分流时,也可以根据比例使用相应的基站进行上行数据发送。这里上下行的业务分流比例是可以不同的。
同样,对于同一基站存在多条链路的情况,每个基站上的多条链路的分流规则的具体生成方式可以参见步骤S906或步骤S1108的情况(例如对于RAN_1而言,基站1上的多条链路对0.8比例的业务流做进一步的分流),或者由基站按照现有的方式进行路径分流或路径选择,此处不再赘述。
S1307,与步骤S907相同,在此不多赘述。
S1308,SMF为UPF配置数据包转发规则。
其中,将ATSSS规则与无线接入网链路信息一同发送给UPF。无线接入网链路信息可以是无线接入网设备的标识或地址信息,或者可以是具体的链路标识信息。
作为一个示例,具体的链路标识信息可以例如RAN_1_Direct_Path_1,RAN_1_Indirect_Path_1,RAN_2_Direct_Path_1,RAN_2_Direct_Path_2。如步骤S1306所述,这些标识信息与ATSSS规则相对应。
S1309,SMF为该无线接入网设备配置N2消息。
根据步骤S1303中,PDU会话建立或更改请求消息中指示的无线接入网设备标识信息,SMF为该无线接入网设备配置N2消息。
具体的,在SMF发送给AMF的N1N2信息中,携带该无线接入网设备标识。如果PDU会话更改后,QoS配置发生更改,则SMF需要将N2消息同时发送给所有与UE连接的基站,所以这里的无线接入网设备标识为所有与UE连接的基站标识。
S1310至S1312,根据步骤S1309中,SMF指示的无线接入网设备标识,AMF将N1N2信息发送给这些无线接入网设备。这些无线接入网设备将N1信息转发给远程UE并反馈N2信息给AMF。
对于存在多条链路连接的基站而言,步骤S1310至S1312根据步骤S910至S912进行相应处理,或者由基站按照现有的方式进行路径分流或路径选择,此处不再赘述。
S1313至S1315,与步骤S913至步骤S915相同。
S1316,UPF根据SMF配置的数据包转发规则,ATSSS规则以及无线接入网链路信息进行下行数据包的分流。具体的,根据ATSSS规则,将业务流分流到不同的无线接入网设备接口,即多个N3接口。
作为一个示例,ATSSS规则为基于优先级选择(Priority-based),即为不同链路设置 优先级发送数据。例如,有直连链路的基站1(RAN_1)为高优先级,非直连链路的基站2(RAN_2)为低优先级。此时,UPF将ATSSS指示的业务流优先通过RAN_1的接口发送(即将数据包的无线接入网设备地址设置为RAN_1的地址)。
对于同一基站存在多条链路的情况,分流规则的具体生成方式可以参见步骤S906或步骤S1108的情况,或者由基站按照现有的方式进行路径分流或路径选择,此处不再赘述。
S1317,UE根据ATSSS规则处理上行数据,UPF根据ATSSS规则处理下行数据。
应理解,步骤S1316和步骤S1317可以同时执行。
需要说明的是,方式1300可以独立进行,也可以与方法900,或者方法1100结合。
在本申请的实施例中,针对UE通过多个无线接入网设备与核心网连接,并且通过直连链路和非直连链路,或者通过多条非直连链路与该多个无线接入网设备连接的场景,给出了分流点在UPF,由UPF执行链路控制规则的方法,实现了多基站接入时的数据分流,结合UE通过同一基站接入核心网的方案,使得本申请的应用场景更加完整。
以上,结合图4至图13详细说明了本申请实施例提供的方法。以下,结合图14至图21详细说明本申请实施例提供的通信装置。
图14是本申请实施例提供的用于多接入会话管理的通信装置的示意性框图。如图所示,该通信装置10可以包括收发模块11和处理模块12。
在一种可能的设计中,该通信装置10可对应于上文方法实施例中的无线接入网设备。例如,可以为RAN,或者配置于RAN中的芯片。
具体地,该通信装置10可对应于根据本申请实施例的方法400、方法600、方法700、方法900、方法1100、方法1300中的RAN,该通信装置10可以包括用于执行图4中的方法400、或图5中的方法500、或图6中的方法600、或图7中的方法700、或图9中的方法900、或图11中的方法1100、或图13中的方法1300中的RAN执行的方法的模块。并且,该通信装置10中的各单元和上述其他操作和/或功能分别为了图4中的方法400、或图5中的方法500、或图6中的方法600、或图7中的方法700、或图9中的方法900、或图11中的方法1100、或图13中的方法1300的相应流程。
其中,当该通信装置10用于执行图4中的方法400时,收发模块11可用于执行方法400中的步骤S403、S405,处理模块12可用于执行方法400中的步骤S404。
当该通信装置10用于执行图5中的方法500时,收发模块11可用于执行方法500中的步骤S505。
当该通信装置10用于执行图6中的方法600时,收发模块11可用于执行方法600中的步骤S603、S605,处理模块12可用于执行方法600中的步骤S604。
当该通信装置10用于执行图7中的方法700时,收发模块11可用于执行方法700中的步骤S703。
当该通信装置10用于执行图9中的方法900时,收发模块11可用于执行方法900中的步骤S901、S910、S911、S912、S917,处理模块12可用于执行方法900中的步骤S916。
当该通信装置10用于执行图11中的方法1100时,收发模块11可用于执行方法1100中的步骤S1101、S1110、S1111、S1112、S1117。
当该通信装置10用于执行图13中的方法1300时,收发模块11可用于执行方法1300中的步骤S1301、S1310a、S1310b、S1311a、S1311b、S1312a、S1312b。
具体地,收发模块11,用于获取链路控制规则01;处理模块12,用于根据该链路控制规则01在该RAN与远程终端设备UE的多条链路中确定目标链路;该收发模块11通过该目标链路与该远程UE传输数据。
可选地,该多条链路包括直连链路和非直连链路,或者该多个链路包括多条非直连链路。
该处理模块12具体用于:确定传输该数据的QoS流的标识QFI;根据该链路控制规则01在该多条链路中确定该QFI对应的链路,该QFI对应的链路为该目标链路。
该处理模块12还用于:确定该数据对应的业务流;根据该链路控制规则01在该多条链路中确定该业务流对应的链路,该业务流对应的链路为该目标链路。
该处理模块12还用于:确定传输该数据的QoS流的标识QFI;根据该链路控制规则01确定该QFI对应的链路选择规则;根据该链路选择规则在该多条链路中确定该目标链路。其中,该链路控制规则01包括该QFI和该链路选择规则的对应关系。
可选地,该RAN确定采用QFI对应的链路控制规则01。
该处理模块12具体还用于:确定传输该数据对应的业务流;根据该链路控制规则01确定该业务流对应的链路选择规则;根据该链路选择规则在该多条链路中确定该目标链路。
其中,该链路控制规则01包括该业务流和该链路选择规则的对应关系。
该处理模块12还用于确定采用业务流对应的链路控制规则01。
可选地,该链路选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
该收发模块11还用于:向接入和移动管理功能网元AMF发送该RAN的链路选择能力信息和链路信息中的至少一个;其中,该链路选择能力信息用于指示该RAN能够支持QFI对应的链路控制规则01和/或业务流对应的链路控制规则01;该链路信息用于指示该多条链路的链路类型,该链路类型为直连链路或非直连链路;或者,该链路信息用于指示多条链路的数量;或者,该链路信息用于指示该多条链路的多个链路标识,该多个链路标识用于分别指示该多个链路中的每一条链路的链路类型。
可选地,该RAN获取链路控制规则01包括:该RAN接收来自会话管理功能网元SMF的链路控制规则01。
图15是本申请实施例提供的用于多接入会话管理的通信装置的示意性框图。如图所示,该通信装置20可以包括收发模块21和处理模块22。
在一种可能的设计中,该通信装置20可对应于上文方法实施例中的UPF。或者可以是配置于UPF中的芯片。
具体地,该通信装置20可对应于根据本申请实施例的方法500、方法600、方法900、方法1100、方法1300中的用户面功能,该通信装置20可以包括用于执行图5中的方法500或图6中的方法600或图9中的方法900、或图11中的方法1100、或图13中的方法1300中的UPF执行的方法的模块。并且,该通信装置20中的各单元和上述其他操作和/或功能分别为了实现图5中的方法500、或图6中的方法600或图9中的方法900、或图11中的方法1100、或图13中的方法1300的相应流程。
当该通信装置20用于执行图5中的方法500时,收发模块21可用于执行方法500中的步骤S503、S505,处理模块22可用于执行方法500中的步骤S504。
其中,当该通信装置20用于执行图6中的方法600时,收发模块21可用于执行方法600中的步骤S603、S605,处理模块22可用于执行方法600中的步骤S604。
当该通信装置20用于执行图9中的方法900时,收发模块21可用于执行方法900中的步骤S908、S914。
当该通信装置20用于执行图11中的方法1100时,收发模块21可用于执行方法1100中的步骤S1108、S1114,处理模块22可用于执行方法1100中的步骤S1116。
当该通信装置20用于执行图13中的方法1300时,收发模块21可用于执行方法1300中的步骤S1308、S1314,处理模块22可用于执行方法1300中的步骤S1316。
具体地,收发模块21用于接收来自会话管理功能网元的链路控制规则02;处理模块22,用于根据该链路控制规则02将一条业务流分流到多条服务质量QoS流;该收发模块21还用于向无线接入网设备发送该多条QoS流的标识QFI。其中,该链路控制规则02包括该多条QoS流的标识QFI和链路选择规则的对应关系,该链路选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
可选地,对于该多条QoS流中的一条QoS流,以便于该RAN将该QoS流的标识QFI映射到该RAN和远程UE之间多条链路中的一条目标链路。
可选地,以便于该RAN通过该目标链路与该远程UE传输该QoS流的数据。
其中,该多条链路包括直连链路和非直连链路,或者该多条链路包括多条非直连链路。
或者,具体地,收发模块21,用于接收来自会话管理功能网元的链路控制规则03;处理模块22,用于根据该链路控制规则03,确定业务流对应的链路标识信息,该链路标识信息用于标识无线接入网设备和远程UE之间的链路;该收发模块21,还用于向该RAN发送该链路标识信息。
该收发模块21还用于:向该RAN发送该业务流对应的数据,该数据携带该链路标识信息。其中,该RAN和该远程UE之间包括多条链路,该多条链路包括直连链路和非直连链路,或者该多条链路包括多条非直连链路。
其中,该链路控制规则03包括该业务流和该链路标识信息的对应关系。
可选地,该链路控制规则03包括该业务流和链路选择规则的对应关系,该链路选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
该处理模块22,还用于根据该链路控制规则03,确定从多个RAN选择该RAN传输该业务流。
图16是本申请实施例提供的用于多接入会话管理的通信装置的示意性框图。如图所示,该通信装置30可以包括收发模块31和处理模块32。
在一种可能的设计中,该通信装置30可对应于上文方法实施例中的SMF。或者可以是配置于SMF中的芯片。
具体地,该通信装置30可对应于根据本申请实施例的方法400、方法600、方法700、方法900、方法1100、方法1300中的会话管理功能,该通信装置30可以包括用于执行图4中的方法400、或图5中的方法500、或图6中的方法600、或图7中的方法700、或图9中的方法900、或图11中的方法1100、或图13中的方法1300中的SMF执行的方法的 模块。并且,该通信装置30中的各单元和上述其他操作和/或功能分别为了实现图4中的方法400、或图5中的方法500、或图6中的方法600、或图7中的方法700、或图9中的方法900、或图11中的方法1100、或图13中的方法1300的相应流程。
其中,当该通信装置30用于执行图4中的方法400时,收发模块31可用于执行方法400中的步骤S401、S403,处理模块32可用于执行方法400中的步骤S402。
当该通信装置30用于执行图5中的方法500时,收发模块31可用于执行方法500中的步骤S501、S503,处理模块32可用于执行方法500中的步骤S502。
当该通信装置30用于执行图6中的方法600时,收发模块31可用于执行方法600中的步骤S601、S603,处理模块32可用于执行方法600中的步骤S602。
当该通信装置10用于执行图7中的方法700时,收发模块31可用于执行方法700中的步骤S701。
当该通信装置30用于执行图9中的方法900时,收发模块31可用于执行方法900中的步骤S903、S904、S905、S906、S907、S908、S909、S913、S914、S915。
当该通信装置30用于执行图11中的方法1100时,收发模块31可用于执行方法1100中的步骤S1103、S1104、S1105、S1106、S1107、S1108、S11011、S1113、S1114、S1115。
当该通信装置30用于执行图13中的方法1300时,收发模块31可用于执行方法1300中的步骤S1303、S1304、S1305、S1306、S1307、S1308、S13013、S1313、S1314、S1315。
在本申请的一个实施例中,具体地,收发模块31,用于接收来自策略和控制功能PCF的策略;处理模块32,用于根据该策略制定链路控制规则01;该收发模块31,还用于向无线接入网设备发送该链路控制规则01,该链路控制规则01包括QoS流与该RAN和远程UE之间多条链路中的一条或多条的对应关系,和/或该链路控制规则01包括业务流与该RAN和远程UE之间多条链路中的一条或多条的对应关系。
其中,该多条链路包括直连链路和非直连链路,或者该多条链路包括多条非直连链路。
可选地,该链路控制规则01还包括该QFI与链路选择规则的对应关系。
可选地,该链路控制规则01还包括该业务流与链路选择规则的对应关系。
可选地,该链路选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
该收发模块31还用于:接收来自该RAN的链路信息;其中,该链路信息用于指示该多条链路的链路类型,该链路类型为直连链路或非直连链路;或者,该链路信息用于指示多条链路的数量;或者,该链路信息用于指示该多条链路的多个链路标识,该多个链路标识用于分别指示该多个链路中的每一条链路的链路类型。
该处理模块32,还用于根据该链路信息和该策略制定该链路控制规则01。
该收发模块31还用于接收来自该RAN的链路选择能力信息,该链路选择能力信息用于指示该RAN能够支持QFI对应的该链路控制规则01和/或业务流对应的该链路控制规则01;该处理模块32还用于根据该链路选择能力信息和该策略制定该链路控制规则01。
在本申请的另一个实施例中,具体地,收发模块31,用于接收来自策略和控制功能PCF的策略;处理模块32,用于根据该策略制定链路控制规则04;该收发模块31,用于向用户面功能发送该链路控制规则04,该链路控制规则04包括一条业务流和多条QoS流的对应关系,或者包括业务流和链路标识信息的对应关系,该链路标识信息用于标识无线 接入网设备和远程UE之间的多条链路,该RAN与该UPF连接。
其中,该多条链路包括直连链路和非直连链路,或者该多条链路包括该多条链路包括多条非直连链路。
可选地,该链路控制规则04包括该业务流和该链路标识信息的对应关系。
可选地,该链路控制规则04包括该多条QoS流的标识QFI和链路选择规则的对应关系,或者,该链路控制规则04包括该业务流和链路选择规则的对应关系,
其中,该链路选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
可选地,该链路控制规则04包括无线接入网设备选择规则,无线接入网设备选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
图17是本申请实施例提供的用于多接入会话管理的通信装置的示意性框图。如图所示,该通信装置40可以包括收发模块41和处理模块42。
在一种可能的设计中,该通信装置40可对应于上文方法实施例中的UE。或者可以是配置于UE中的芯片。
具体地,该通信装置40可对应于根据本申请实施例的方法400、方法700、方法900、方法1100、方法1300中的终端设备,该通信装置40可以包括用于执行图4中的方法400、或图5中的方法500、或图7中的方法700、或图9中的方法900、或图11中的方法1100、或图13中的方法1300中的UPF执行的方法的模块。并且,该通信装置40中的各单元和上述其他操作和/或功能分别为了实现图4中的方法400、或图5中的方法500、或图7中的方法700、或图9中的方法900、或图11中的方法1100、或图13中的方法1300的相应流程。
其中,当该通信装置40用于执行图4中的方法400时,收发模块41可用于执行方法400中的步骤S405。
当该通信装置40用于执行图5中的方法500时,收发模块41可用于执行方法500中的步骤S505。
当该通信装置40用于执行图7中的方法700时,收发模块41可用于执行方法700中的步骤S701、S703,处理模块42可用于执行方法700中的步骤S702。
当该通信装置40用于执行图9中的方法900时,收发模块41可用于执行方法900中的步骤S901、S902、S911、S917。
当该通信装置40用于执行图11中的方法1100时,收发模块41可用于执行方法1100中的步S1101、S1102、S1111、S1117。
当该通信装置40用于执行图13中的方法1300时,收发模块41可用于执行方法1300中的步骤S1301、S1102、S1313a、S1313b、S1317。
具体地,收发模块41,用于接收来自会话管理网元的链路控制规则05;处理模块42,用于根据该链路控制规则05,确定在RAN与该终端设备的多条链路中确定目标链路;该收发模块41,用于通过该目标链路与该RAN传输数据。
其中,该多条链路包括直连链路和非直连链路,或者该多个链路包括多条非直连链路。
图18为本申请实施例提供的用于多接入会话管理的通信装置50的示意图,如图18 所示,该装置50可以为RAN,也可以为位于RAN上的芯片或芯片系统等。
该装置50可以包括处理器51(即,处理模块的一例)和存储器32。该存储器32用于存储指令,该处理器31用于执行该存储器32存储的指令,以使该装置30实现如图4或图5或图6或图7或图9或图11或图13中对应的方法中RAN执行的步骤。
进一步地,该装置50还可以包括输入口53(即,收发模块的一例)和输出口54(即,收发模块的另一例)。进一步地,该处理器51、存储器52、输入口53和输出口54可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器52用于存储计算机程序,该处理器51可以用于从该存储器52中调用并运行该计算机程序,以控制输入口53接收信号,控制输出口54发送信号,完成上述方法中终端设备的步骤。该存储器52可以集成在处理器51中,也可以与处理器51分开设置。
可选地,若该通信装置50为通信设备,该输入口53为接收器,该输出口54为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该通信装置50为芯片或电路,该输入口53为输入接口,该输出口54为输出接口。
作为一种实现方式,输入口53和输出口54的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器51可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的通信设备。即将实现处理器51、输入口53和输出口54功能的程序代码存储在存储器52中,通用处理器通过执行存储器52中的代码来实现处理器51、输入口53和输出口54的功能。
其中,通信装置50中各模块或单元可以用于执行上述方法中进行随机接入的设备(例如,终端设备)所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置19所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图19为本申请实施例提供的用于多接入会话管理的通信装置60的示意图,如图19所示,该装置40可以为用户面功能,如UPF等。
该装置60可以包括处理器61(即,处理模块的一例)和存储器62。该存储器62用于存储指令,该处理器61用于执行该存储器62存储的指令,以使该装置60实现如图5或图6或图9或图11或图13中对应的方法中接入节点执行的步骤。
进一步地,该装置60还可以包括输入口63(即,收发模块的一例)和输出口64(即,收发模块的另一例)。进一步地,该处理器61、存储器62、输入口63和输出口64可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器62用于存储计算机程序,该处理器61可以用于从该存储器62中调用并运行该计算机程序,以控制输入口63接收信号,控制输出口64发送信号,完成上述方法中终端设备的步骤。该存储器62可以集成在处理器61中,也可以与处理器61分开设置。
可选地,若该通信装置60为通信设备,该输入口63为接收器,该输出口64为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该通信装置60为芯片或电路,该输入口63为输入接口,该输出口64为输出接口。
作为一种实现方式,输入口63和输出口64的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器61可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的通信设备。即将实现处理器61、输入口63和输出口64功能的程序代码存储在存储器62中,通用处理器通过执行存储器62中的代码来实现处理器61、输入口63和输出口64的功能。
其中,通信装置60中各模块或单元可以用于执行上述方法中接受随机接入的设备(即,接入节点)所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置60所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图20为本申请实施例提供的用于多接入会话管理的通信装置70的示意图,如图20所示,该装置70可以为会话管理功能,也可以为位于SMF上的芯片或芯片系统等。
该装置70可以包括处理器71(即,处理模块的一例)和存储器72。该存储器72用于存储指令,该处理器71用于执行该存储器72存储的指令,以使该装置70实现如图4或图5或图6或图7或图9或图11或图13中对应的方法中SMF执行的步骤。
进一步地,该装置70还可以包括输入口73(即,收发模块的一例)和输出口74(即,收发模块的另一例)。进一步地,该处理器71、存储器72、输入口73和输出口74可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器72用于存储计算机程序,该处理器71可以用于从该存储器72中调用并运行该计算机程序,以控制输入口73接收信号,控制输出口74发送信号,完成上述方法中终端设备的步骤。该存储器72可以集成在处理器71中,也可以与处理器71分开设置。
可选地,若该通信装置70为通信设备,该输入口73为接收器,该输出口74为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该通信装置70为芯片或电路,该输入口73为输入接口,该输出口74为输出接口。
作为一种实现方式,输入口77和输出口74的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器71可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的通信设备。即将实现处理器71、输入口73和输出口74功能的程序代码存储在存储器72中,通用处理器通过执行存储器72中的代码来实现处理器71、输入口73和输出口74的功能。
其中,通信装置70中各模块或单元可以用于执行上述方法中进行随机接入的设备(例如,终端设备)所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置70所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图21为本申请实施例提供的用于多接入会话管理的通信装置80的示意图,如图21 所示,该装置80可以为终端设备,包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的终端,移动台,终端,用户设备,软终端等等,也可以为位于终端设备上的芯片或芯片系统等。
该装置80可以包括处理器81(即,处理模块的一例)和存储器82。该存储器82用于存储指令,该处理器81用于执行该存储器82存储的指令,以使该装置80实现如图4或图5或图6或图7或图9或图11或图13中对应的方法中终端设备执行的步骤。
进一步地,该装置80还可以包括输入口83(即,收发模块的一例)和输出口84(即,收发模块的另一例)。进一步地,该处理器81、存储器82、输入口83和输出口84可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器82用于存储计算机程序,该处理器81可以用于从该存储器82中调用并运行该计算机程序,以控制输入口83接收信号,控制输出口84发送信号,完成上述方法中终端设备的步骤。该存储器82可以集成在处理器81中,也可以与处理器81分开设置。
可选地,若该通信装置80为通信设备,该输入口83为接收器,该输出口84为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该通信装置80为芯片或电路,该输入口83为输入接口,该输出口84为输出接口。
作为一种实现方式,输入口83和输出口84的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器81可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的通信设备。即将实现处理器81、输入口83和输出口84功能的程序代码存储在存储器82中,通用处理器通过执行存储器82中的代码来实现处理器81、输入口83和输出口84的功能。
其中,通信装置80中各模块或单元可以用于执行上述方法中进行随机接入的设备(例如,终端设备)所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置80所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
应理解,本申请实施例中,该处理器可以为中央处理单元(CPU,central processing unit),该处理器还可以是其他通用处理器、数字信号处理器(DSP,digital signal processor)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随 机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由终端设备执行的方法,或由会话管理功能网元执行的方法,或由用户面功能执行的方法,或由无线接入网设备执行的方法。
本申请实施例还提供一种通信系统,该通信系统包括上文实施例中的无线接入网设备和会话管理功能网元,其中所述无线接入网设备用于接收来自会话管理功能网元的链路控制规则,根据链路控制规则在无线接入网和终端设备的多条链路中确定目标链路,并通过该目标链路传输数据;所述会话管理功能网元用于接收来自策略与控制功能的策略,并根据该策略制定链路控制规则。
本申请实施例还提供一种通信系统,该通信系统包括上文实施例中的用户面功能和会话管理功能网元,其中所述用户面功能用于接收来自会话管理功能网元的链路控制规则,根据所述链路控制规则将一条业务流分流到多条服务质量流,并向无线接入网设备发送所述多条服务质量流的标识;或者,所述用户面功能用于接收来自会话管理功能网元的链路控制规则,根据所述链路控制规则确定业务流对应的链路标识信息,并向所述无线接入网设备发送所述链路标识信息;所述会话管理功能网元用于接收来自策略与控制功能的策略,并根据该策略制定链路控制规则。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的 先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (44)

  1. 一种多接入会话管理方法,其特征在于,包括:
    无线接入网设备获取链路控制规则01;
    所述无线接入网设备根据所述链路控制规则01在所述无线接入网设备与远程终端设备的多条链路中确定目标链路;
    所述无线接入网设备通过所述目标链路与所述远程终端设备传输数据。
  2. 根据权利要求1所述的方法,其特征在于,所述多条链路包括直连链路和非直连链路,或者所述多个链路包括多条非直连链路。
  3. 根据权利要求1或2所述的方法,其特征在于,所述无线接入网设备根据所述链路控制规则01在所述无线接入网设备与远程终端设备的多条链路中确定目标链路,包括:
    所述无线接入网设备确定传输所述数据的服务质量流的标识;
    所述无线接入网设备根据所述链路控制规则01在所述多条链路中确定所述服务质量流的标识对应的链路,所述服务质量流的标识对应的链路为所述目标链路。
  4. 根据权利要求1或2所述的方法,其特征在于,所述无线接入网设备根据所述链路控制规则01在所述无线接入网设备与远程终端设备的多条链路中确定目标链路,包括:
    所述无线接入网设备确定所述数据对应的业务流;
    所述无线接入网设备根据所述链路控制规则01在所述多条链路中确定所述业务流对应的链路,所述业务流对应的链路为所述目标链路。
  5. 根据权利要求1或2所述的方法,其特征在于,所述无线接入网设备根据所述链路控制规则01在所述无线接入网设备与远程终端设备的多条链路中确定目标链路,包括:
    所述无线接入网设备确定传输所述数据的服务质量流的标识;
    所述无线接入网设备根据所述链路控制规则01确定所述服务质量流的标识对应的链路选择规则;
    所述无线接入网设备根据所述链路选择规则在所述多条链路中确定所述目标链路。
  6. 根据权利要求5所述的方法,其特征在于,所述链路控制规则01包括所述服务质量流的标识和所述链路选择规则的对应关系。
  7. 根据权利要求5或6所述的方法,其特征在于,所述方法还包括:所述无线接入网设备确定采用服务质量流的标识对应的链路控制规则01。
  8. 根据权利要求1或2所述的方法,其特征在于,所述无线接入网设备根据所述链路控制规则01在所述无线接入网设备与远程终端设备的多条链路中确定目标链路包括:
    所述无线接入网设备确定传输所述数据对应的业务流;
    所述无线接入网设备根据所述链路控制规则01确定所述业务流对应的链路选择规则;
    所述无线接入网设备根据所述链路选择规则在所述多条链路中确定所述目标链路。
  9. 根据权利要求8所述的方法,其特征在于,所述链路控制规则01包括所述业务流和所述链路选择规则的对应关系。
  10. 根据权利要求8或9所述的方法,所述方法还包括:所述无线接入网设备确定采用业务流对应的链路控制规则01。
  11. 根据权利要求5至10中任一项所述的方法,其特征在于,所述链路选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
  12. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述无线接入网设备向接入和移动管理功能网元发送所述无线接入网设备的链路选择能力信息和链路信息中的至少一个;
    其中,所述链路选择能力信息用于指示所述无线接入网设备能够支持服务质量流的标识对应的链路控制规则01和/或业务流对应的链路控制规则01;
    所述链路信息用于指示所述多条链路的链路类型,所述链路类型为直连链路或非直连链路;
    或者,所述链路信息用于指示所述多条链路的数量;
    或者,所述链路信息用于指示所述多条链路的多个链路标识,所述多个链路标识用于分别指示所述多个链路中的每一条链路的链路类型。
  13. 根据权利要求1所述的方法,其特征在于,所述无线接入网设备获取链路控制规则01包括:
    所述无线接入网设备接收来自会话管理功能网元的链路控制规则01。
  14. 一种多接入会话管理方法,其特征在于,包括:
    会话管理功能网元接收来自策略和控制功能的策略;
    所述会话管理功能网元根据所述策略制定链路控制规则01;
    所述会话管理功能网元向无线接入网设备发送所述链路控制规则01,所述链路控制规则01包括服务质量流与所述无线接入网设备和远程终端设备之间多条链路中的一条或多条的对应关系,和/或所述链路控制规则01包括业务流与所述无线接入网设备和远程终端设备之间多条链路中的一条或多条的对应关系。
  15. 根据权利要求14所述的方法,其特征在于,所述多条链路包括直连链路和非直连链路,或者所述多条链路包括多条非直连链路。
  16. 根据权利要求14或15所述的方法,其特征在于,所述链路控制规则01包括所述服务质量流的标识与链路选择规则的对应关系。
  17. 根据权利要求14或15所述的方法,其特征在于,所述链路控制规则01还包括所述业务流与链路选择规则的对应关系。
  18. 根据权利要求16或17所述的方法,其特征在于,所述链路选择规则包括以下一个或多个:
    基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
  19. 根据权利要求14至18中任一项所述的方法,其特征在于,所述会话管理功能网元根据所述策略制定链路控制规则01,包括:
    接收来自所述无线接入网设备的链路信息;
    其中,所述链路信息用于指示所述多条链路的链路类型,所述链路类型为直连链路或非直连链路;
    或者,所述链路信息用于指示所述多条链路的数量;
    或者,所述链路信息用于指示所述多条链路的多个链路标识,所述多个链路标识用于分别指示所述多个链路中的每一条链路的链路类型;
    所述会话管理功能网元根据所述链路信息和所述策略制定所述链路控制规则01。
  20. 根据权利要求14所述的方法,其特征在于,所述会话管理功能网元根据所述链路选择能力信息和所述策略制定所述链路控制规则01,还包括:
    所述会话管理功能网元接收来自所述无线接入网设备的链路选择能力信息,所述链路选择能力信息用于指示所述无线接入网设备能够支持服务质量流的标识对应的所述链路控制规则01和/或业务流对应的所述链路控制规则01;
    所述会话管理功能网元根据所述链路选择能力信息和所述策略制定所述链路控制规则01。
  21. 一种多接入会话管理方法,其特征在于,包括:
    用户面功能接收来自会话管理功能网元的链路控制规则02;
    所述用户面功能根据所述链路控制规则02将一条业务流分流到多条服务质量流;
    所述用户面功能向无线接入网设备发送所述多条服务质量流的标识。
  22. 根据权利要求21所述的方法,其特征在于,所述链路控制规则02包括所述多条服务质量流的标识和链路选择规则的对应关系,所述链路选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
  23. 根据权利要求21或22所述的方法,其特征在于,
    对于所述多条服务质量流中的一条服务质量流,所述无线接入网设备将所述服务质量流的标识映射到所述无线接入网设备和远程终端设备之间多条链路中的一条目标链路。
  24. 根据权利要求23所述的方法,其特征在于,所述无线接入网设备通过所述目标链路与所述远程终端设备传输所述服务质量流的数据。
  25. 根据权利要求23或24的方法,其特征在于,所述多条链路包括直连链路和非直连链路,或者所述多条链路包括多条非直连链路。
  26. 一种多接入会话管理方法,其特征在于,包括:
    用户面功能接收来自会话管理功能网元的链路控制规则03;
    所述用户面功能根据所述链路控制规则03,确定业务流对应的链路标识信息,所述链路标识信息用于标识无线接入网设备和远程终端设备之间的链路;
    所述用户面功能向所述无线接入网设备发送所述链路标识信息。
  27. 根据权利要求26所述的方法,其特征在于,所述用户面功能向所述无线接入网设备发送所述链路标识信息包括:
    所述用户面功能向所述无线接入网设备发送所述业务流对应的数据,所述数据携带所述链路标识信息。
  28. 根据权利要求26或27所述的方法,其特征在于,所述无线接入网设备和所述远程终端设备之间包括多条链路,所述多条链路包括直连链路和非直连链路,或者所述多条链路包括多条非直连链路。
  29. 根据权利要求26至28中任一项所述的方法,其特征在于,所述链路控制规则03包括所述业务流和所述链路标识信息的对应关系。
  30. 根据权利要求26至29中任一项所述的方法,其特征在于,所述链路控制规则03包括所述业务流和链路选择规则的对应关系,所述链路选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
  31. 根据权利要求26至30中任一项所述的方法,其特征在于,所述方法还包括:所述用户面功能根据所述链路控制规则03,确定从多个无线接入网设备选择所述无线接入网设备传输所述业务流。
  32. 一种多接入会话管理方法,其特征在于,包括:
    会话管理功能网元接收来自策略和控制功能的策略;
    所述会话管理功能网元根据所述策略制定链路控制规则04;
    所述会话管理功能网元向用户面功能发送所述链路控制规则04,所述链路控制规则04包括一条业务流和多条服务质量流的对应关系,或者包括业务流和链路标识信息的对应关系,所述链路标识信息用于标识无线接入网设备和远程终端设备之间的多条链路,所述无线接入网设备与所述用户面功能连接。
  33. 根据权利要求32所述的方法,其特征在于,所述多条链路包括直连链路和非直连链路,或者所述多条链路包括多条非直连链路。
  34. 根据权利要求32或33所述的方法,其特征在于,所述链路控制规则04包括所述业务流和所述链路标识信息的对应关系。
  35. 根据权利要求32所述的方法,其特征在于,所述链路控制规则04包括所述多条服务质量流的标识和链路选择规则的对应关系,或者,所述链路控制规则04包括所述业务流和链路选择规则的对应关系,
    其中,所述链路选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
  36. 根据权利要求35所述的方法,其特征在于,所述链路控制规则04包括无线接入网设备选择规则,无线接入网设备选择规则包括以下一个或多个:基于优先级选择、基于负载选择、基于数据的发送比例选择、基于往返时延选择、基于信道质量选择。
  37. 一种多接入会话管理方法,其特征在于,包括:
    终端设备接收来自会话管理网元的链路控制规则05;
    所述终端设备根据所述链路控制规则05,确定在无线接入网设备所述终端设备的多条链路中确定目标链路;
    所述终端设备通过所述目标链路与所述无线接入网设备传输数据。
  38. 根据权利要求37所述的方法,其特征在于,所述多条链路包括直连链路和非直连链路,或者所述多个链路包括多条非直连链路。
  39. 一种多接入会话管理的装置,其特征在于,包括:
    用于实现权利要求1至13中任一项所述方法的单元;或者,
    用于实现权利要求14至20中任一项所述方法的单元;或者,
    用于实现权利要求21至25中任一项所述方法的单元;或者,
    用于实现权利要求25至31中任一项所述方法的单元;或者,
    用于实现权利要求32至36中任一项所述方法的单元;或者,
    用于实现权利要求37至38中任一项所述方法的单元。
  40. 一种通信装置,其特征在于,包括:
    处理器和存储器;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述通信装置执行权利要求1至13中任一项所述的通信方法,或执行权利要求14至20中任一项所述的通信方法,或执行权利要求21至25中任一项所述的通信方法,或执行权利要求26至31中任一项所述的通信方法,或执行权利要求32至36中任一项所述的通信方法,或执行权利要求37或38所述的通信方法。
  41. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至13中任一项所述通信方法,或执行如权利要求14至20中任一项所述的通信方法,或执行如权利要求21至25中任一项所述的通信方法,或执行如权利要求26至31中任一项所述的通信方法,或执行如权利要求32至36中任一项所述的通信方法,或执行如权利要求37或38所述的通信方法。
  42. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片系统地通信设备执行如权利要求1至13中任一项所述的通信方法,或执行如权利要求14至20中任一项所述的通信方法,或执行如权利要求21至25中任一项所述的通信方法,或执行如权利要求26至31中任一项所述的通信方法,或执行如权利要求32至36中任一项所述的通信方法,或执行如权利要求37或38所述的通信方法。
  43. 一种通信系统,其特征在于,所述通信系统包括无线接入网设备和会话管理功能网元,其中所述无线接入网设备用于执行如权利要求1至13中任一项所述的方法,所述会话管理功能网元用于执行如权利要求14至20中任一项所述的方法。
  44. 一种通信系统,其特征在于,所述通信系统包括用户面功能和会话管理功能网元,其中所述用户面功能用于执行如权利要求21至25中任一项所述的方法,或执行如权利要求26至31中任一项所述的方法,所述会话管理功能网元用于执行如权利要求32至36中任一项所述的方法。
PCT/CN2021/141947 2020-12-31 2021-12-28 多接入会话管理方法、装置和系统 WO2022143618A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011634204.2 2020-12-31
CN202011634204.2A CN114765829A (zh) 2020-12-31 2020-12-31 多接入会话管理方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2022143618A1 true WO2022143618A1 (zh) 2022-07-07

Family

ID=82260215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141947 WO2022143618A1 (zh) 2020-12-31 2021-12-28 多接入会话管理方法、装置和系统

Country Status (2)

Country Link
CN (1) CN114765829A (zh)
WO (1) WO2022143618A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115460669A (zh) * 2022-11-11 2022-12-09 深圳市摩尔环宇通信技术有限公司 毫米波通信方法和相关毫米波通信系统
WO2023001109A1 (zh) * 2021-07-19 2023-01-26 维沃移动通信有限公司 多路径数据发送方法、装置及设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024050838A1 (zh) * 2022-09-09 2024-03-14 华为技术有限公司 一种通信方法及装置
CN118056425A (zh) * 2022-09-16 2024-05-17 北京小米移动软件有限公司 信息处理方法及装置、通信设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200178196A1 (en) * 2017-08-11 2020-06-04 Idac Holdings, Inc. Traffic steering and switching between multiple access networks
CN111492679A (zh) * 2018-04-04 2020-08-04 Oppo广东移动通信有限公司 用于多接入分流/导流操作的装置和方法
CN112153758A (zh) * 2018-04-10 2020-12-29 华为技术有限公司 通信方法和通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200178196A1 (en) * 2017-08-11 2020-06-04 Idac Holdings, Inc. Traffic steering and switching between multiple access networks
CN111492679A (zh) * 2018-04-04 2020-08-04 Oppo广东移动通信有限公司 用于多接入分流/导流操作的装置和方法
CN112153758A (zh) * 2018-04-10 2020-12-29 华为技术有限公司 通信方法和通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL INC.: "Network-controlled Traffic Steering for Multi-access PDU Session", 3GPP DRAFT; S2-184828_TRAFFIC STEERING FOR MULTI-ACCESS PDU SESSION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Newport Beach, USA; 20180528 - 20180601, 22 May 2018 (2018-05-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051535377 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023001109A1 (zh) * 2021-07-19 2023-01-26 维沃移动通信有限公司 多路径数据发送方法、装置及设备
CN115460669A (zh) * 2022-11-11 2022-12-09 深圳市摩尔环宇通信技术有限公司 毫米波通信方法和相关毫米波通信系统
CN115460669B (zh) * 2022-11-11 2023-01-13 深圳市摩尔环宇通信技术有限公司 毫米波通信方法和相关毫米波通信系统

Also Published As

Publication number Publication date
CN114765829A (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
WO2022143618A1 (zh) 多接入会话管理方法、装置和系统
EP3525545B1 (en) Methods for selecting session and service continuity mode in a wireless communication system
US11375517B2 (en) End to end slicing in wireless communications systems
US11638234B2 (en) Apparatus and methods for enhanced paging in wireless networks
US20210219364A1 (en) Resource establishing method, and device
JP2021518684A (ja) アクセストラフィックステアリング、スイッチング、及び/又は、分割動作のための装置及び方法
EP3664507B1 (en) Communication methods for a master base station and a terminal
JP2020512777A (ja) 中継通信方法ならびに中継通信装置およびシステム
RU2691083C1 (ru) Устройство, способ и система обработки пользовательских данных
JP7477661B2 (ja) データ伝送方法および装置
WO2021088977A1 (zh) 一种数据传输的方法及相关设备
WO2014047942A1 (zh) 传输数据的方法、用户设备和网络侧设备
CN116233564A (zh) 传输组播业务的方法和装置
WO2022089164A1 (zh) 多路径传输方法和通信装置
JP2021530171A (ja) 経路選択方法、端末デバイス及びネットワークデバイス
US20230035694A1 (en) Service guarantee method and apparatus
WO2020252710A1 (zh) 无线通信方法和设备
WO2021226937A1 (zh) 一种多路径传输方法及装置、网络设备、终端
WO2018170747A1 (zh) 一种通信方法及装置
AU2021308253A1 (en) Communication method and communication apparatus
CN109842956B (zh) 一种业务数据的路由方法、服务网关及移动管理实体
WO2015018324A1 (zh) 一种多接入系统中实现ip流移动性的方法和装置
WO2022002119A1 (zh) 一种通信方法及装置
WO2020199215A1 (zh) 传输数据的方法、终端设备和核心网设备
WO2016164723A1 (en) Application intelligence controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21914353

Country of ref document: EP

Kind code of ref document: A1