WO2022143404A1 - 一种消光超低温固化粉末涂料组合物及其涂层 - Google Patents
一种消光超低温固化粉末涂料组合物及其涂层 Download PDFInfo
- Publication number
- WO2022143404A1 WO2022143404A1 PCT/CN2021/140855 CN2021140855W WO2022143404A1 WO 2022143404 A1 WO2022143404 A1 WO 2022143404A1 CN 2021140855 W CN2021140855 W CN 2021140855W WO 2022143404 A1 WO2022143404 A1 WO 2022143404A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- low temperature
- ultra
- powder coating
- acid value
- temperature curing
- Prior art date
Links
- 239000000843 powder Substances 0.000 title claims abstract description 80
- 239000008199 coating composition Substances 0.000 title claims abstract description 56
- 230000008033 biological extinction Effects 0.000 title claims abstract description 20
- 239000011247 coating layer Substances 0.000 title abstract 2
- 238000000576 coating method Methods 0.000 claims abstract description 73
- 239000002253 acid Substances 0.000 claims abstract description 64
- 239000011248 coating agent Substances 0.000 claims abstract description 64
- 229920001225 polyester resin Polymers 0.000 claims abstract description 51
- 239000004645 polyester resin Substances 0.000 claims abstract description 51
- 239000004925 Acrylic resin Substances 0.000 claims abstract description 39
- 229920000178 Acrylic resin Polymers 0.000 claims abstract description 39
- 238000012360 testing method Methods 0.000 claims abstract description 29
- 239000004593 Epoxy Substances 0.000 claims abstract description 17
- 238000004132 cross linking Methods 0.000 claims abstract description 4
- 238000013035 low temperature curing Methods 0.000 claims description 73
- 238000001723 curing Methods 0.000 claims description 27
- 235000017166 Bambusa arundinacea Nutrition 0.000 claims description 25
- 235000017491 Bambusa tulda Nutrition 0.000 claims description 25
- 241001330002 Bambuseae Species 0.000 claims description 25
- 235000015334 Phyllostachys viridis Nutrition 0.000 claims description 25
- 239000011425 bamboo Substances 0.000 claims description 25
- 238000010438 heat treatment Methods 0.000 claims description 10
- 230000009477 glass transition Effects 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 9
- 239000002023 wood Substances 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 4
- 238000005507 spraying Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 abstract description 6
- 239000002994 raw material Substances 0.000 description 77
- 230000000052 comparative effect Effects 0.000 description 34
- 239000003795 chemical substances by application Substances 0.000 description 25
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 22
- 239000013530 defoamer Substances 0.000 description 20
- 239000000126 substance Substances 0.000 description 20
- CMXKUJNZWYTFJN-XFUVECHXSA-N bolandiol Chemical compound O[C@H]1CC[C@@H]2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 CMXKUJNZWYTFJN-XFUVECHXSA-N 0.000 description 17
- 230000000694 effects Effects 0.000 description 15
- 239000000758 substrate Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 12
- 239000000945 filler Substances 0.000 description 8
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 6
- 239000012948 isocyanate Substances 0.000 description 6
- 238000011056 performance test Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- -1 isocyanate compounds Chemical class 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 238000000113 differential scanning calorimetry Methods 0.000 description 3
- 150000002513 isocyanates Chemical class 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- OUPZKGBUJRBPGC-UHFFFAOYSA-N 1,3,5-tris(oxiran-2-ylmethyl)-1,3,5-triazinane-2,4,6-trione Chemical compound O=C1N(CC2OC2)C(=O)N(CC2OC2)C(=O)N1CC1CO1 OUPZKGBUJRBPGC-UHFFFAOYSA-N 0.000 description 2
- 229920002522 Wood fibre Polymers 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000011094 fiberboard Substances 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000011416 infrared curing Methods 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 239000002025 wood fiber Substances 0.000 description 2
- QFGCFKJIPBRJGM-UHFFFAOYSA-N 12-[(2-methylpropan-2-yl)oxy]-12-oxododecanoic acid Chemical compound CC(C)(C)OC(=O)CCCCCCCCCCC(O)=O QFGCFKJIPBRJGM-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 241000282376 Panthera tigris Species 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/02—Processes for applying liquids or other fluent materials performed by spraying
- B05D1/04—Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
- B05D1/06—Applying particulate materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/14—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
- B05D7/16—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies using synthetic lacquers or varnishes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/06—Unsaturated polyesters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D167/00—Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/03—Powdery paints
Definitions
- the invention belongs to the field of powder coatings, in particular to a matting ultra-low temperature curing powder coating composition, and also relates to a matting ultra-low temperature curing coating prepared by applying the matting ultra-low temperature curing powder coating composition.
- Ultra-low temperature curing powder coatings have always been the main research and development direction in the field of powder coatings, especially suitable for substrates with low temperature curing requirements, such as wood or bamboo substrates with a certain moisture content or other heat-sensitive substrates. Its working principle is to realize the rapid and low-temperature curing effect of the substrate before the heat-sensitive change of the substrate, and avoid the problem of serious shrinkage and cracking of the coating caused by the evaporation or deformation of a large amount of water vapor during the heating and curing process of the substrate.
- the object of the present invention is to provide a matte ultra-low temperature curing powder coating composition and its coating, which can achieve curing at a temperature not higher than 125° C. and not longer than 30 minutes, and the cured coating film can be cured at a 60° light source at the same time.
- the gloss range under test is 2-20°, and it has good weather resistance, which can be used in indoor and outdoor fields.
- a matte ultra-low temperature curing powder coating composition comprising at least a high acid value polyester resin with an acid value of not less than 60mgKOH/g and a GMA acrylic resin with an epoxy equivalent of not more than 600g/eq, the high acid value polyester resin
- the cured coating film is formed by cross-linking and curing reaction with GMA acrylic resin at a temperature not higher than 125°C and not longer than 30 minutes.
- the gloss of the cured coating film under the test of 60° light source is 2-20°.
- the weight ratio of the high acid value polyester resin to the GMA acrylic resin ranges from 5:1 to 1:2.
- the weight proportion of the high acid value polyester resin in the matting low temperature curing powder coating ranges from 30 to 80 wt %.
- the acid value of the high acid value polyester resin is in the range of 65-150 mgKOH/g; and/or the softening point temperature of the high acid value polyester resin is in the range of 75-110°C, and/or the high acid value polyester resin has a softening point temperature in the range of 75-110° C.
- the glass transition temperature range of the acid value polyester resin is 45-65°C; and/or the viscosity of the high acid value polyester resin at 200°C is 500-2000 mPa.s.
- the epoxy equivalent of the GMA acrylic resin is 150-600 g/eq; and/or the softening point temperature of the GMA acrylic resin is in the range of 75-110°C.
- the particle size D50 of the matte low-temperature curing powder coating is not greater than 40 microns.
- a matting ultra-low temperature curing coating is obtained by spraying and curing a powder coating on a substrate, wherein the powder coating adopts the above-mentioned matting ultra-low temperature curing powder coating composition, and the curing temperature is not higher than 125°C.
- the heating method of the curing adopts hot air circulation heating, which is different from the conventional infrared curing method adopted by ordinary wooden or bamboo products, so that the substrate can be better protected from deformation or foaming. It is further beneficial to the quality of the cured coating film.
- the base material is a bamboo board or a wood board (including a solid wood board or a composite board, such as a wood fiber board, specifically including MDF).
- the bamboo board is pretreated by baking to control the moisture content of the bamboo board at 6-10%.
- GMA involved in this application is the abbreviation of Glycidyl methacylate, and its Chinese meaning refers to: glycidyl methacrylate; MDF is the abbreviation of Medium Density Fiberboard, and its Chinese meaning refers to: medium density fiberboard.
- the acid value data involved in this application are obtained by testing according to the testing standard GB/T2895-2008; the epoxy equivalent data involved are obtained by testing according to the testing standard GB/T4612-2008; the softening point temperature involved
- the data are obtained by testing according to the testing standard GB/T12007.6-1989, and the testing method used is the ring and ball method;
- the glass transition temperature data involved are detected by METTLER thermal analyzer, and the testing method used is differential scanning calorimetry DSC (English full name: Differential Scanning Calorimetry), its heating rate parameter is set at 20°C/min;
- the viscosity involved is detected by ICI cone and plate viscometer (CONE&PLATE), and the detection standard is based on GB/T 9751.1-2008;
- the diameter D50 data is obtained by testing with Malvern particle size analyzer 2000, based on the test standard GB/T 21782.1-2008.
- the present application creatively uses high acid value polyester resin and low epoxy equivalent GMA acrylic resin as the main raw materials of the powder coating composition, and the applicant is surprised to find that the use of the main raw material system brings the following positive technical effects at the same time:
- the high acid value polyester resin and the low epoxy equivalent GMA acrylic resin have high reactivity, so that the curing can be completed at a temperature not higher than 125°C and not longer than 30 minutes.
- the cured coating film has a matting effect, and the gloss under 60° light source test can be prepared Matte or low-gloss coated products in the range of 2-20°.
- the weather resistance of the main raw material system of the present invention is obviously better than that of the epoxy/polyester mixed system, and can be applied to indoor and outdoor fields.
- a matte ultra-low temperature curing powder coating composition comprising at least a high acid value polyester resin with an acid value of not less than 60mgKOH/g and a GMA acrylic resin with an epoxy equivalent of not more than 600g/eq, a high acid value polyester resin and GMA
- the acrylic resin undergoes a cross-linking and curing reaction at a temperature not higher than 125 ° C and not longer than 30 minutes to form a cured coating film, and the gloss range of the cured coating film under a 60° light source test is 2-20°, more preferably 2-10 °, to obtain excellent matting effect of the coating film;
- the sum of the weight parts of the high acid value polyester resin and the GMA acrylic resin accounts for the weight part ratio of the matting low temperature curing powder coating not less than 60wt%, more preferably not less than 60wt%, more preferably 65-96wt%; preferably, the weight ratio of high acid value polyester resin to GMA acrylic resin is in the range of 5:1-1:2, more preferably 3:1-1
- the epoxy equivalent weight of the GMA acrylic resin is 150-600 g/eq, more preferably 300-500 g/eq, even more preferably 350-450 g/eq; and/or the softening point temperature range of the GMA acrylic resin is 75- 110°C.
- the raw materials of the matting ultra-low temperature curing powder coating composition proposed in this embodiment may also include a defoaming agent and/or a degassing agent and/or a leveling agent.
- the proportion of parts should not exceed 5wt%, more preferably, 0.1-3wt%; the specific type can be based on the existing defoamer, degassing agent and leveling agent used in the field of powder coatings to achieve the corresponding additive effect.
- the curing agent can be selected from TGIC triglycidyl isocyanurate, Primid hydroxyalkylamide, isocyanate compounds (including various isocyanate compounds, specifically including blocked isocyanates, blocked isocyanates, Latent isocyanate and isocyanate compounds such as urea dione, etc.), DDDA dodecanedioic acid, sebacic acid, any one or more of them, the weight ratio of which can be added is preferably 0.05-6wt%, more preferably 0.5-3wt% %; pigments and/or fillers can be selected, for example, aluminum hydroxide, TiO 2 , etc., and the added weight ratio can preferably be 1-40wt%, which can be conventionally selected according to actual needs; Accelerator (can include imidazoles, ammonium and other curing accelerators), can further improve the reaction activity, the weight ratio of catalyst added can preferably be 0.1-3wt%, more preferably 0.1-2wt%, and even
- raw materials in parts by weight within the preferred parameter ranges proposed in the present application can be selected as the formula of the matting ultra-low temperature curing powder coating composition of the present application, and basically similar technical effects can be obtained.
- a large number of application comparisons combined with common knowledge and research and development experience it was found that when using raw materials in parts by weight outside the preferred parameters of the application as coating formulations to implement applications, the overall performance of the coating would be significantly weaker than those within the preferred parameters of the application. example, but there will also be certain positive technical effects.
- the above raw material formulations are respectively obtained by the known process preparation technology to obtain the extinction ultra-low temperature curing powder coating composition.
- the known process preparation technology usually includes: weighing, premixing, melt extrusion, milling, cyclone separation and other processes to prepare, of course, can also be Other well-known preparation techniques are used to obtain the matting ultra-low temperature curing powder coating composition of the present embodiment, and the present application has no particular limitation on its preparation process; More preferably, the particle size D50 is 15-35 microns, more preferably 20-30 microns, which is further beneficial for the cured coating film to obtain better leveling performance and surface fineness.
- this embodiment also proposes a matting ultra-low temperature curing coating, obtained by spraying and curing powder coating on a substrate, wherein the powder coating adopts the above-mentioned matting ultra-low temperature curing powder coating composition, and the curing temperature is not Above 125°C; preferably, the heating method of curing adopts hot air circulation heating, which is different from the conventional infrared curing method used by ordinary wooden or bamboo products (there is a local high temperature problem), and the hot air circulation heating method can provide more uniform heating.
- the temperature environment is better to protect the substrate from deformation and foaming problems, which is further beneficial to the quality of the cured coating film.
- the thickness of the extinction ultra-low temperature cured coating in this embodiment can be specifically selected according to actual needs, and the suggested coating thickness range is 60-120 ⁇ m (the detection standard is based on GB/T13452.2-2008).
- the substrate can be bamboo board or wood board (specifically, it can include solid wood board or composite board, and the composite template can include wood fiber board, such as MDF board, etc.), of course, it can also be other substrates with a certain moisture content or other heat-sensitive materials substrate.
- the bamboo board when used as the base material, the raw materials of the bamboo board are first subjected to surface grinding and sanding treatment, and then subjected to baking pretreatment, so as to control the moisture content of the bamboo board to 6-10%.
- the purpose is the same as the relevant records in the applicant's previous application CN110964409A, and this application will not further describe it.
- the application has specially carried out the following multiple groups of examples as the formula raw materials of the matte ultra-low temperature curing powder coating composition to carry out specific test performance comparisons:
- Embodiment 1 a kind of extinction ultra-low temperature curing powder coating composition, using the raw materials shown in the following table 1:
- GMA acrylic resin 250 Using GMA1618 from Ningbo Nanhai Chemical defoamer 10 With POWDERMATE 542DG from Troy deaerator 5 With OXYMELT A4 from Estren leveling agent 10 Adopted from BYK 3900P total 1000 /
- Embodiment 2 a kind of extinction ultra-low temperature curing powder coating composition, using the raw materials shown in the following table 2:
- Embodiment 3 a kind of extinction ultra-low temperature curing powder coating composition, adopts the raw material shown in the following table 3:
- Embodiment 4 a kind of extinction ultra-low temperature curing powder coating composition, adopts the raw material shown in the following table 4:
- raw material type parts by weight Specific raw material model High acid value polyester resin 500 Adopt TG0003 from Guangzhou Qingtian GMA acrylic resin 475 Using GMA1618 from Ningbo Nanhai Chemical defoamer 10 With POWDERMATE 542DG from Troy deaerator 5 With OXYMELT A4 from Estren leveling agent 10 Adopted from BYK 3900P total 1000 /
- Embodiment 5 a kind of extinction ultra-low temperature curing powder coating composition, using the raw materials shown in the following table 5:
- Embodiment 6 a kind of extinction ultra-low temperature curing powder coating composition, adopts the raw material shown in the following table 6:
- GMA acrylic resin 450 Using GMA1618 from Ningbo Nanhai Chemical defoamer 10 With POWDERMATE 542DG from Troy deaerator 5 With OXYMELT A4 from Estren leveling agent 10 Adopted from BYK 3900P filler 75 Aluminum hydroxide total 1000 /
- Embodiment 7 a kind of extinction ultra-low temperature curing powder coating composition, adopts the raw material shown in the following table 7:
- raw material type parts by weight Specific raw material model High acid value polyester resin 400 Adopt TG0003 from Guangzhou Qingtian GMA acrylic resin 575 Using GMA1618 from Ningbo Nanhai Chemical defoamer 10 With POWDERMATE 542DG from Troy deaerator 5 With OXYMELT A4 from Estren leveling agent 10 Adopted from BYK 3900P total 1000 /
- Embodiment 8 a kind of extinction ultra-low temperature curing powder coating composition, adopts the raw material shown in the following table 8:
- raw material type parts by weight Specific raw material model High acid value polyester resin 350 Adopt TG0003 from Guangzhou Qingtian GMA acrylic resin 625 Using GMA1618 from Ningbo Nanhai Chemical defoamer 10 With POWDERMATE 542DG from Troy deaerator 5 With OXYMELT A4 from Estren leveling agent 10 Adopted from BYK 3900P total 1000 /
- Embodiment 9 a kind of extinction ultra-low temperature curing powder coating composition, adopts the raw material shown in the following table 9:
- raw material type parts by weight Specific raw material model High acid value polyester resin 300 Adopt TG0003 from Guangzhou Qingtian GMA acrylic resin 600 Using GMA1618 from Ningbo Nanhai Chemical defoamer 10 With POWDERMATE 542DG from Troy deaerator 5 With OXYMELT A4 from Estren leveling agent 10 Adopted from BYK 3900P filler 75 Aluminum hydroxide total 1000 /
- Embodiment 10 a kind of extinction ultra-low temperature curing powder coating composition, using the raw materials shown in the following table 10:
- Embodiment 11 a kind of extinction ultra-low temperature curing powder coating composition, using the raw materials shown in the following table 11:
- High acid value polyester resin 600 Adopt TG0003 from Guangzhou Qingtian GMA acrylic resin 375 Using GMA1618 from Ningbo Nanhai Chemical defoamer 10 With POWDERMATE 542DG from Troy deaerator 5 With OXYMELT A4 from Estren leveling agent 10 Adopted from BYK 3900P total 1000 /
- Embodiment 12 a kind of extinction ultra-low temperature curing powder coating composition, using the raw materials shown in the following table 12:
- Embodiment 13 a kind of extinction ultra-low temperature curing powder coating composition, using the raw materials shown in the following table 13:
- Embodiment 14 a kind of extinction ultra-low temperature curing powder coating composition, adopts the raw material shown in the following table 14:
- Embodiment 15 a kind of extinction ultra-low temperature curing powder coating composition, using the raw materials shown in the following table 15:
- Comparative Example 1 This Comparative Example 1 uses the raw materials shown in Table 16 below:
- GMA acrylic resin 250 Using GMA1618 from Ningbo Nanhai Chemical defoamer 10 With POWDERMATE 542DG from Troy deaerator 5 With OXYMELT A4 from Estren leveling agent 10 Adopted from BYK 3900P total 1000 /
- Comparative Example 2 This Comparative Example 2 uses the raw materials shown in Table 17 below:
- Comparative Example 3 This Comparative Example 3 uses the raw materials shown in Table 18 below:
- Comparative example 4 This comparative example 4 adopts the pure epoxy powder coating for MDF (product number: 51210039) that can be cross-linked and cured at a temperature of 130°C, which is publicly sold in the market by Tiger China Surface Technology New Materials.
- Comparative Example 5 In this Comparative Example 5, a polyester/epoxy hybrid system powder coating that is publicly available on the market and can be cross-linked and cured at a temperature of 130° C. is used.
- Comparative Example 6 This Comparative Example 6 adopts the low temperature curing bamboo board powder coating proposed in Example 1 of CN110964409A.
- Comparative Example 7 This Comparative Example 7 uses the raw materials shown in Table 19 below:
- Comparative Example 8 This Comparative Example 8 uses the raw materials shown in Table 20 below:
- raw material type parts by weight Specific raw material model High acid value polyester resin 200 Adopt TG0003 from Guangzhou Qingtian GMA acrylic resin 600 Using GMA1618 from Ningbo Nanhai Chemical defoamer 10 With POWDERMATE 542DG from Troy deaerator 5 With OXYMELT A4 from Estren leveling agent 10 Adopted from BYK 3900P filler 175 Aluminum hydroxide total 1000 /
- Comparative Example 9 This Comparative Example 9 uses the raw materials shown in Table 21 below:
- raw material type parts by weight Specific raw material model High acid value polyester resin 100 Adopt TG0003 from Guangzhou Qingtian GMA acrylic resin 700 Using GMA1618 from Ningbo Nanhai Chemical defoamer 10 With POWDERMATE 542DG from Troy deaerator 5 With OXYMELT A4 from Estren leveling agent 10 Adopted from BYK 3900P filler 175 Aluminum hydroxide total 1000 /
- Comparative Example 10 This Comparative Example 10 uses the raw materials shown in Table 22 below:
- raw material type parts by weight Specific raw material model High acid value polyester resin 300 Adopt TG0003 from Guangzhou Qingtian GMA acrylic resin 100 Using GMA1618 from Ningbo Nanhai Chemical defoamer 10 With POWDERMATE 542DG from Troy deaerator 5 With OXYMELT A4 from Estren leveling agent 10 Adopted from BYK 3900P filler 575 Aluminum hydroxide total 1000 /
- the acid value of Guangzhou Kinte TG0003 involved in this embodiment is 74-82 mgKOH/g, the softening point temperature is 95-105°C, the glass transition temperature is about 52°C, and the viscosity at 200°C is 500-1500mPa .s;
- URALAC P 3250 of the DSM involved has an acid value of 70-85mgKOH/g, a glass transition temperature of about 55°C, and a viscosity of 500-2000mPa.s at 200°C;
- the polyester resin of Zhejiang Chuanhua Tiansong involved
- the acid value of TM5013 is 75-85mgKOH/g, the softening point temperature is 90-110°C, the glass transition temperature is 48-54°C, and the viscosity at 200°C is 500-2000mPa.s;
- the acid of SJ3B of Excalibur involved The value is 68-75mgKOH/g, the softening point temperature is 105
- powder coatings are respectively obtained in the present application through the same procedures (known process preparation technology) as weighing, premixing, melt extrusion, milling, and cyclone separation. combination.
- Example 1 the powder coating obtained in Example 1 was used, and the gelation time was detected at 125°C, and the gelation time was 290 seconds; after surface grinding, sanding and baking pretreatment, the water content was bamboo boards controlled at 6%, 8% and 10% were cured by hot air circulation for 15 minutes at 120°C to obtain bamboo board coatings.
- the test comparison results are shown in Table 23:
- the above table test shows that the bamboo board with the moisture content pre-controlled at 6-10% is more effective.
- Example 2 select the bamboo board whose moisture content is all controlled at 8% after baking pretreatment, and set three curing conditions respectively: 15 minutes of hot air circulation curing at 120°C, 125°C Under hot air circulation curing for 12 minutes, 130 °C under hot air circulation curing for 10 minutes, respectively, to obtain bamboo board coating, the performance test comparison results are shown in Table 24:
- the results show that the coatings show good surface resistance under the curing conditions of hot air circulation with a curing temperature of 120°C-130°C and a curing time of 10-15min.
- Comparative Example 8 Comparative Example 9, and Comparative Example 10 all performed poorly in cross-cutting, bending, and chemical resistance.
- the powder coating composition provided in this example has good substrate adhesion to the surface of a bamboo board substrate with a certain water content; at the same time, rapid curing under low temperature conditions is achieved, which not only satisfies the requirements of powder coating coating It is used for the basic performance of coating and protection, and effectively avoids the serious shrinkage of the coating film caused by the rapid evaporation of water on the bamboo board and the problems of deformation and cracking of the bamboo board; more importantly, the cured coating film obtained by this embodiment has The surface matte effect can be used to prepare matte or low-gloss coating products with a gloss range of 2-10° under a 60° light source test; in addition, it can be verified that the weather resistance of the main raw material system of this application is significantly better than that of epoxy/polyester Ester blend system for indoor and outdoor applications. Further, in Examples 1-15 of the present application, the applicant found that the low-temperature curing effects of Examples 1, 2, 3, 4, 10, 11, 12, 13, and 15 were more superior, and Examples 5, 6
- coating performance test data involved in this example are all conducted according to the test standards described in Table 26 below.
- Test items Implement test standards Gloss (60° light source) ISO 2813-2014 gel time ISO 8130-6:1992 cross ISO 2409-2013 impact ISO 6272-1-2011, 2-2011 bending ISO 1519-2011 cupping ISO 1520-2006 MEK test GB/T 23989-2009 dry heat BS EN 12722-2009 damp heat BS EN 12721-2009 water resistant BS EN 12720-2009 Alcohol resistant (48%) BS EN 12720-2009 coffee resistant BS EN 12720-2009 liquid wax BS EN 12720-2009 Xenon lamp resistance test ISO 16474-2-2013
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Paints Or Removers (AREA)
Abstract
本发明公开了一种消光超低温固化粉末涂料组合物及其涂层,至少包括酸值不低于60mgKOH/g的高酸值聚酯树脂和环氧当量不高于600g/eq的GMA丙烯酸树脂,所述高酸值聚酯树脂与GMA丙烯酸树脂在不高于125℃温度且不长于30分钟下发生交联固化反应形成固化涂膜,固化涂膜在60°光源测试下的光泽度范围为2-20°;本发明可以实现不高于125℃温度且不长于30分钟下完成固化,同时其固化涂膜在60°光源测试下的光泽度范围为2-20°,而且具有良好的耐候性,可以应用于户内和户外领域。
Description
本申请要求于2020年12月29日提交中国国家知识产权局专利局,申请号为“2020115937366”、发明名称为“一种消光超低温固化粉末涂料组合物及其涂层”的中国专利申请优先权,其全部内容通过引用结合在本申请中。
本发明属于粉末涂料领域,具体涉及一种消光超低温固化粉末涂料组合物,本发明还涉及了应用该消光超低温固化粉末涂料组合物制备得到的消光超低温固化涂层。
超低温固化粉末涂料一直是粉末涂料领域的主要研究开发方向,尤其适合应用于具有低温固化需求的基材中,例如木质或竹质基材等具有一定含水率的基材或其他热敏性基材中,其工作原理是在基材发生热敏性变化前既实现了对基材的快速低温固化效果,避免基材在加热固化过程中会面临大量水气蒸发或形变导致涂层严重缩孔以及开裂等问题。
具体来说,为了实现超低温固化效果,已有相关技术(如本申请人的在先专利申请CN110964409A)提出采用环氧-聚酯混合粉末涂料体系,然而其固化涂膜难以实现哑光或低光效果,难以满足具有哑光或低光涂膜效果的应用场合。
因此,本申请人希望寻求技术方案来实现超低温固化的基础上,同时获得哑光或低光涂膜效果。
发明内容
有鉴于此,本发明的目的在于提供一种消光超低温固化粉末涂料组合物及其涂层,可以实现不高于125℃温度且不长于30分钟下完成固化,同时其 固化涂膜在60°光源测试下的光泽度范围为2-20°,而且具有良好的耐候性,可以应用于户内和户外领域。
本发明采用的技术方案如下:
一种消光超低温固化粉末涂料组合物,至少包括酸值不低于60mgKOH/g的高酸值聚酯树脂和环氧当量不高于600g/eq的GMA丙烯酸树脂,所述高酸值聚酯树脂与GMA丙烯酸树脂在不高于125℃温度且不长于30分钟下发生交联固化反应形成固化涂膜,固化涂膜在60°光源测试下的光泽度范围为2-20°。
优选地,所述高酸值聚酯树脂与所述GMA丙烯酸树脂的重量份比例范围为5:1-1:2。
优选地,所述高酸值聚酯树脂占所述消光低温固化粉末涂料的重量份比例范围为30-80wt%。
优选地,所述高酸值聚酯树脂的酸值范围为65-150mgKOH/g;和/或所述高酸值聚酯树脂的软化点温度范围为75-110℃,和/或所述高酸值聚酯树脂的玻璃化转变温度范围为45-65℃;和/或所述高酸值聚酯树脂在200℃下的粘度为500-2000mPa.s。
优选地,所述GMA丙烯酸树脂的环氧当量为150-600g/eq;和/或所述GMA丙烯酸树脂的软化点温度范围为75-110℃。
优选地,所述消光低温固化粉末涂料的粒径D50不大于40微米。
优选地,一种消光超低温固化涂层,通过在基材上喷涂、固化粉末涂料后得到,其中,所述粉末涂料采用如上所述的消光超低温固化粉末涂料组合物,所述固化温度不高于125℃。
优选地,所述固化的加热方式采用热风循环加热,该加热方式不同于普通木制或竹质产品采用的常规红外固化方式,这样能够更好地保护基材不会发生变形或起泡问题,进一步利于固化涂膜的质量。
优选地,所述基材采用竹板或木质板(包括实木板或复合木板,例如可以为木质纤维木板,具体包括MDF)。
优选地,所述竹板经过烘烤预处理,用于将所述竹板的含水量控制在6-10%。
本申请涉及的GMA是Glycidyl methacylate的缩写,其中文意思是指:甲基丙烯酸缩水甘油酯;MDF是Medium Density Fiberboard的缩写,其中文意思是指:中密度纤维板。
需要说明的是,本申请涉及的所有酸值数据均依据检测标准GB/T2895-2008进行测试得到;涉及的环氧当量数据均依据检测标准GB/T4612-2008进行测试得到;涉及的软化点温度数据均依据检测标准GB/T12007.6-1989进行测试得到,所采用测试方法为环球法;涉及的玻璃化温度数据是通过METTLER热分析仪检测得到,所采用测试方法采用差示扫描热法DSC(英文全称为:Differential Scanning Calorimetry),其加热升温速度参数设置在20℃/分钟;涉及的粘度是采用ICI锥板粘度计(CONE&PLATE)检测得到,检测标准依据是GB/T 9751.1-2008;粒径D50数据是采用马尔文粒度分析仪2000进行测试得到的,依据的测试标准为GB/T 21782.1-2008。
本申请创造性地高酸值聚酯树脂和低环氧当量GMA丙烯酸树脂作为粉末涂料组合物的主体原料,申请人惊喜地发现采用该主体原料体系同时带来了如下积极技术效果:
a.高酸值聚酯树脂和低环氧当量GMA丙烯酸树脂之间具有高反应活性,进而可以实现不高于125℃温度且不长于30分钟下完成固化。
b.利用高酸值聚酯树脂和低环氧当量GMA丙烯酸树脂之间同时存在表面张力不同而不兼容的特性,因而使得固化涂膜具有消光效果,可以制备在60°光源测试下的光泽度范围为2-20°的哑光或低光涂膜产品。
c.本发明的主体原料体系耐侯性明显好于环氧/聚酯混合体系,可以应用 于户内和户外领域。
一种消光超低温固化粉末涂料组合物,至少包括酸值不低于60mgKOH/g的高酸值聚酯树脂和环氧当量不高于600g/eq的GMA丙烯酸树脂,高酸值聚酯树脂与GMA丙烯酸树脂在不高于125℃温度且不长于30分钟下发生交联固化反应形成固化涂膜,固化涂膜在60°光源测试下的光泽度范围为2-20°,更优选为2-10°,获得优异的涂膜消光效果;优选地,高酸值聚酯树脂与GMA丙烯酸树脂的重量份之和占消光低温固化粉末涂料的重量份比例不低于60wt%,更优选为不低于60wt%,进一步优选为65-96wt%;优选地,高酸值聚酯树脂与GMA丙烯酸树脂的重量份比例范围为5:1-1:2,更优选为3:1-1:1,更进一步优选为3:1-3:2;高酸值聚酯树脂占消光低温固化粉末涂料的重量份比例范围为30-80wt%;更优选为40-70wt%,更进一步优选为45-65wt%;高酸值聚酯树脂的酸值范围为65-150mgKOH/g,更优选为65-100mgKOH/g,更进一步优选为65-85mgKOH/g;和/或高酸值聚酯树脂的软化点温度范围为75-110℃,和/或高酸值聚酯树脂的玻璃化转变温度范围为45-65℃;和/或高酸值聚酯树脂在200℃下的粘度为500-2000mPa.s,更优选地,在200℃下的粘度为500-1500mPa.s,更低的高酸值聚酯树脂粘度有利于获得优异的脱泡性能,最终可以获得更佳的涂膜流平和涂膜表面细腻度表现;GMA丙烯酸树脂的环氧当量为150-600g/eq,更优选为300-500g/eq,更进一步优选为350-450g/eq;和/或GMA丙烯酸树脂的软化点温度范围为75-110℃。
优选地,本实施例提出的消光超低温固化粉末涂料组合物原料还可以包括消泡剂和/或脱气剂和/或流平剂,建议这些助剂重量份数占消光低温固化粉末涂料的重量份比例范围分别不要超过5wt%,更优选地,为0.1-3wt%;具体类型可以根据粉末涂料领域所采用的现有消泡剂、脱气剂和流平剂来实现对应的助剂添加效果,本申请通过实验摸索验证后,消泡剂建议采用特洛伊的 POWDERMATE 542DG,脱气剂建议采用埃斯特伦的OXYMELT A4,流平剂建议采用毕克的BYK 3900P,可以分别对应获得良好的助剂功能效果;在其他实施方式中,也可以根据需要,选择添加合适比例的颜填料,这些都是本领域技术人员的常规技术手段。
还需要说明的是,根据实际应用需要本实施例提出的消光超低温固化粉末涂料组合物原料还可以添加各种公知的固化剂和/或颜料和/或填料和/或催化剂和/或其他助剂,其中优选地,固化剂可以选用TGIC异氰脲酸三缩水甘油酯、Primid羟烷基酰胺、异氰酸酯化合物(包括各种异氰酸的酯类化合物,具体包括封闭型异氰酸酯、封端型异氰酸酯、潜伏型异氰酸酯和尿素二酮等异氰酸酯化合物等)、DDDA十二烷二酸、癸二酸中的任意一种或几种,其添加重量比例可以优选为0.05-6wt%,更优选为0.5-3wt%;颜料和/或填料可以例如选用氢氧化铝、TiO
2等,其添加重量比例可以优选为1-40wt%,可根据实际需要进行常规选择添加重量比例;催化剂可具体采用各种公知的固化促进剂(可包括咪唑类、铵类等各类固化促进剂),可进一步提高反应活性,催化剂添加重量比例可以优选为0.1-3wt%,更优选为0.1-2wt%,更进一步优选为0.3-1wt%。
在本发明实施方式中,可以选择在本申请提出的优选参数范围内的重量份原料分别作为本申请消光超低温固化粉末涂料组合物的配方,均可以获得基本相似的技术效果,本申请人还通过大量实施应用对比结合公知常识以及研发经验,发现采用在本申请优选参数范围外的重量份原料作为涂料配方来实施应用时,其在涂层综合性能表现会明显弱于在本申请优选参数范围内的实施例,但也会有一定的积极技术效果。
将以上原料配方通过公知工艺制备技术分别得到消光超低温固化粉末涂料组合物,公知工艺制备技术通常包括:称量、预混、熔融挤出、磨粉、旋风分离等工序后制备得到,当然也可以采用其他公知制备工艺来得到本实施 例的消光超低温固化粉末涂料组合物,本申请对其制备工艺没有特别限定之处;优选地,消光低温固化粉末涂料组合物的粒径D50不大于40微米,更优选地,粒径D50为15-35微米,进一步优选为20-30微米,进一步利于固化涂膜获得更佳的流平性能和表面细腻度。
优选地,本实施例还提出了一种消光超低温固化涂层,通过在基材上喷涂、固化粉末涂料后得到,其中,粉末涂料采用如上所述的消光超低温固化粉末涂料组合物,固化温度不高于125℃;优选地,固化的加热方式采用热风循环加热,该加热方式不同于普通木制或竹质产品采用的常规红外固化方式(存在局部高温问题),热风循环加热方式能够提供更加均匀的温度环境,更好地保护基材不会发生变形和起泡问题,进一步利于固化涂膜的质量。优选地,本实施例的消光超低温固化涂层厚度可以根据实际需要进行具体选择,建议的涂层厚度范围为60-120μm(检测标准依据是GB/T13452.2-2008)。
具体优选地,基材可以竹板或木质板(具体可包括实木板或复合木板,复合模板可包括木质纤维板,例如MDF板等),当然也可以为其他具有一定含水率的基材或其他热敏性基材。优选地,当采用竹板作为基材时,将竹板原料首先进行表面打磨和砂光处理,然后再进行烘烤预处理,用于将竹板的含水量控制在6-10%,其技术目的同本申请人的在先申请CN110964409A中的相关记载,对此本申请不再展开说明。
为了验证本申请实施时的技术效果,本申请特别进行了以下多组实施例作为消光超低温固化粉末涂料组合物的配方原料进行具体测试性能对比:
实施例1:一种消光超低温固化粉末涂料组合物,采用如下表1所示的原料:
表1实施例1中消光超低温固化粉末涂料组合物的配方
原料类型 | 重量份 | 具体原料型号 |
高酸值聚酯树脂 | 725 | 采用来自广州擎天的TG0003 |
GMA丙烯酸树脂 | 250 | 采用来自宁波南海化学的GMA1618 |
消泡剂 | 10 | 采用来自特洛伊的POWDERMATE 542DG |
脱气剂 | 5 | 采用来自埃斯特伦的OXYMELT A4 |
流平剂 | 10 | 采用来自BYK 3900P |
总量 | 1000 | / |
实施例2:一种消光超低温固化粉末涂料组合物,采用如下表2所示的原料:
表2实施例2中消光超低温固化粉末涂料组合物的配方
原料类型 | 重量份 | 具体原料型号 |
高酸值聚酯树脂 | 725 | 采用来自DSM的URALAC P 3250 |
GMA丙烯酸树脂 | 250 | 采用来自宁波南海化学的GMA1618 |
消泡剂 | 10 | 采用来自特洛伊的POWDERMATE 542DG |
脱气剂 | 5 | 采用来自埃斯特伦的OXYMELT A4 |
流平剂 | 10 | 采用来自BYK 3900P |
总量 | 1000 | / |
实施例3:一种消光超低温固化粉末涂料组合物,采用如下表3所示的原料:
表3实施例3中消光超低温固化粉末涂料组合物的配方
原料类型 | 重量份 | 具体原料型号 |
高酸值聚酯树脂 | 600 | 采用来自广州擎天的TG0003 |
GMA丙烯酸树脂 | 400 | 采用来自宁波南海化学的GMA1618 |
消泡剂 | 0 | / |
脱气剂 | 0 | / |
流平剂 | 0 | / |
总量 | 1000 | / |
实施例4:一种消光超低温固化粉末涂料组合物,采用如下表4所示的原料:
表4实施例4中消光超低温固化粉末涂料组合物的配方
原料类型 | 重量份 | 具体原料型号 |
高酸值聚酯树脂 | 500 | 采用来自广州擎天的TG0003 |
GMA丙烯酸树脂 | 475 | 采用来自宁波南海化学的GMA1618 |
消泡剂 | 10 | 采用来自特洛伊的POWDERMATE 542DG |
脱气剂 | 5 | 采用来自埃斯特伦的OXYMELT A4 |
流平剂 | 10 | 采用来自BYK 3900P |
总量 | 1000 | / |
实施例5:一种消光超低温固化粉末涂料组合物,采用如下表5所示的原料:
表5实施例5中消光超低温固化粉末涂料组合物的配方
原料类型 | 重量份 | 具体原料型号 |
高酸值聚酯树脂 | 495 | 采用来自广州擎天的TG0003 |
GMA丙烯酸树脂 | 495 | 采用来自宁波南海化学的GMA1618 |
消泡剂 | 0 | / |
脱气剂 | 5 | 采用来自埃斯特伦的OXYMELT A4 |
流平剂 | 5 | 采用来自BYK 3900P |
总量 | 1000 | / |
实施例6:一种消光超低温固化粉末涂料组合物,采用如下表6所示的原料:
表6实施例6中消光超低温固化粉末涂料组合物的配方
原料类型 | 重量份 | 具体原料型号 |
高酸值聚酯树脂 | 450 | 采用来自广州擎天的TG0003 |
GMA丙烯酸树脂 | 450 | 采用来自宁波南海化学的GMA1618 |
消泡剂 | 10 | 采用来自特洛伊的POWDERMATE 542DG |
脱气剂 | 5 | 采用来自埃斯特伦的OXYMELT A4 |
流平剂 | 10 | 采用来自BYK 3900P |
填料 | 75 | 氢氧化铝 |
总量 | 1000 | / |
实施例7:一种消光超低温固化粉末涂料组合物,采用如下表7所示的原料:
表7实施例7中消光超低温固化粉末涂料组合物的配方
原料类型 | 重量份 | 具体原料型号 |
高酸值聚酯树脂 | 400 | 采用来自广州擎天的TG0003 |
GMA丙烯酸树脂 | 575 | 采用来自宁波南海化学的GMA1618 |
消泡剂 | 10 | 采用来自特洛伊的POWDERMATE 542DG |
脱气剂 | 5 | 采用来自埃斯特伦的OXYMELT A4 |
流平剂 | 10 | 采用来自BYK 3900P |
总量 | 1000 | / |
实施例8:一种消光超低温固化粉末涂料组合物,采用如下表8所示的原料:
表8实施例8中消光超低温固化粉末涂料组合物的配方
原料类型 | 重量份 | 具体原料型号 |
高酸值聚酯树脂 | 350 | 采用来自广州擎天的TG0003 |
GMA丙烯酸树脂 | 625 | 采用来自宁波南海化学的GMA1618 |
消泡剂 | 10 | 采用来自特洛伊的POWDERMATE 542DG |
脱气剂 | 5 | 采用来自埃斯特伦的OXYMELT A4 |
流平剂 | 10 | 采用来自BYK 3900P |
总量 | 1000 | / |
实施例9:一种消光超低温固化粉末涂料组合物,采用如下表9所示的原料:
表9实施例9中消光超低温固化粉末涂料组合物的配方
原料类型 | 重量份 | 具体原料型号 |
高酸值聚酯树脂 | 300 | 采用来自广州擎天的TG0003 |
GMA丙烯酸树脂 | 600 | 采用来自宁波南海化学的GMA1618 |
消泡剂 | 10 | 采用来自特洛伊的POWDERMATE 542DG |
脱气剂 | 5 | 采用来自埃斯特伦的OXYMELT A4 |
流平剂 | 10 | 采用来自BYK 3900P |
填料 | 75 | 氢氧化铝 |
总量 | 1000 | / |
实施例10:一种消光超低温固化粉末涂料组合物,采用如下表10所示的原料:
表10实施例10中消光超低温固化粉末涂料组合物的配方
原料类型 | 重量份 | 具体原料型号 |
高酸值聚酯树脂 | 700 | 采用来自广州擎天的TG0003 |
GMA丙烯酸树脂 | 275 | 采用来自宁波南海化学的GMA1618 |
消泡剂 | 10 | 采用来自特洛伊的POWDERMATE 542DG |
脱气剂 | 5 | 采用来自埃斯特伦的OXYMELT A4 |
流平剂 | 10 | 采用来自BYK 3900P |
总量 | 1000 | / |
实施例11:一种消光超低温固化粉末涂料组合物,采用如下表11所示的原料:
表11实施例11中消光超低温固化粉末涂料组合物的配方
原料类型 | 重量份 | 具体原料型号 |
高酸值聚酯树脂 | 600 | 采用来自广州擎天的TG0003 |
GMA丙烯酸树脂 | 375 | 采用来自宁波南海化学的GMA1618 |
消泡剂 | 10 | 采用来自特洛伊的POWDERMATE 542DG |
脱气剂 | 5 | 采用来自埃斯特伦的OXYMELT A4 |
流平剂 | 10 | 采用来自BYK 3900P |
总量 | 1000 | / |
实施例12:一种消光超低温固化粉末涂料组合物,采用如下表12所示的原料:
表12实施例12中消光超低温固化粉末涂料组合物的配方
原料类型 | 重量份 | 具体原料型号 |
高酸值聚酯树脂 | 800 | 采用来自广州擎天的TG0003 |
GMA丙烯酸树脂 | 175 | 采用来自宁波南海化学的GMA1618 |
消泡剂 | 10 | 采用来自特洛伊的POWDERMATE 542DG |
脱气剂 | 5 | 采用来自埃斯特伦的OXYMELT A4 |
流平剂 | 10 | 采用来自BYK 3900P |
总量 | 1000 | / |
实施例13:一种消光超低温固化粉末涂料组合物,采用如下表13所示的原料:
实施例14:一种消光超低温固化粉末涂料组合物,采用如下表14所示的 原料:
表14实施例14中消光超低温固化粉末涂料组合物的配方
原料类型 | 重量份 | 具体原料型号 |
高酸值聚酯树脂 | 725 | 采用来自神剑的SJ3B |
GMA丙烯酸树脂 | 250 | 采用来自宁波南海化学的GMA1618 |
消泡剂 | 10 | 采用来自特洛伊的POWDERMATE 542DG |
脱气剂 | 5 | 采用来自埃斯特伦的OXYMELT A4 |
流平剂 | 10 | 采用来自BYK 3900P |
总量 | 1000 | / |
实施例15:一种消光超低温固化粉末涂料组合物,采用如下表15所示的原料:
表15实施例15中消光超低温固化粉末涂料组合物的配方
对比例1:本对比例1采用如下表16所示的原料:
表16对比例1的原料配方
原料类型 | 重量份 | 具体原料型号 |
中酸值聚酯树脂 | 725 | 采用来自ALLNEX的Crylcoat 2671-3 |
GMA丙烯酸树脂 | 250 | 采用来自宁波南海化学的GMA1618 |
消泡剂 | 10 | 采用来自特洛伊的POWDERMATE 542DG |
脱气剂 | 5 | 采用来自埃斯特伦的OXYMELT A4 |
流平剂 | 10 | 采用来自BYK 3900P |
总量 | 1000 | / |
对比例2:本对比例2采用如下表17所示的原料:
表17对比例2的原料配方
原料类型 | 重量份 | 具体原料型号 |
高酸值聚酯树脂 | 925 | 采用来自广州擎天的TG0003 |
GMA丙烯酸树脂 | 50 | 采用来自宁波南海化学的GMA1618 |
消泡剂 | 10 | 采用来自特洛伊的POWDERMATE 542DG |
脱气剂 | 5 | 采用来自埃斯特伦的OXYMELT A4 |
流平剂 | 10 | 采用来自BYK 3900P |
总量 | 1000 | / |
对比例3:本对比例3采用如下表18所示的原料:
表18对比例3的原料配方
对比例4:本对比例4采用老虎中国表面技术新材料在市场上公开销售的可在130℃温度下交联固化的MDF用纯环氧粉末涂料(产品号为:51210039)。
对比例5:本对比例5采用在市场上公开销售的可在130℃温度下交联固化的聚酯/环氧混合体系粉末涂料。
对比例6:本对比例6采用CN110964409A实施例1提出的低温固化竹板粉末涂料。
对比例7:本对比例7采用如下表19所示的原料:
表19对比例7的原料配方
对比例8:本对比例8采用如下表20所示的原料:
表20对比例8的原料配方
原料类型 | 重量份 | 具体原料型号 |
高酸值聚酯树脂 | 200 | 采用来自广州擎天的TG0003 |
GMA丙烯酸树脂 | 600 | 采用来自宁波南海化学的GMA1618 |
消泡剂 | 10 | 采用来自特洛伊的POWDERMATE 542DG |
脱气剂 | 5 | 采用来自埃斯特伦的OXYMELT A4 |
流平剂 | 10 | 采用来自BYK 3900P |
填料 | 175 | 氢氧化铝 |
总量 | 1000 | / |
对比例9:本对比例9采用如下表21所示的原料:
表21对比例9的原料配方
原料类型 | 重量份 | 具体原料型号 |
高酸值聚酯树脂 | 100 | 采用来自广州擎天的TG0003 |
GMA丙烯酸树脂 | 700 | 采用来自宁波南海化学的GMA1618 |
消泡剂 | 10 | 采用来自特洛伊的POWDERMATE 542DG |
脱气剂 | 5 | 采用来自埃斯特伦的OXYMELT A4 |
流平剂 | 10 | 采用来自BYK 3900P |
填料 | 175 | 氢氧化铝 |
总量 | 1000 | / |
对比例10:本对比例10采用如下表22所示的原料:
表22对比例10的原料配方
原料类型 | 重量份 | 具体原料型号 |
高酸值聚酯树脂 | 300 | 采用来自广州擎天的TG0003 |
GMA丙烯酸树脂 | 100 | 采用来自宁波南海化学的GMA1618 |
消泡剂 | 10 | 采用来自特洛伊的POWDERMATE 542DG |
脱气剂 | 5 | 采用来自埃斯特伦的OXYMELT A4 |
流平剂 | 10 | 采用来自BYK 3900P |
填料 | 575 | 氢氧化铝 |
总量 | 1000 | / |
需要说明的是,本实施例涉及的广州擎天的TG0003酸值为74-82mgKOH/g,软化点温度为95-105℃;玻璃化温度约52℃;在200℃下的粘度为500-1500mPa.s;涉及的DSM的URALAC P 3250酸值为70-85mgKOH/g,玻璃化温度约55℃,在200℃下的粘度为500-2000mPa.s;涉及的浙江传化天松的聚酯树脂TM5013的酸值为75-85mgKOH/g,软化点温度为90-110℃,玻璃化温度为48-54℃,在200℃下的粘度为500-2000mPa.s;涉及的神剑的SJ3B的酸值为68-75mgKOH/g,软化点温度为105-115℃,玻璃化温度约为53℃,在200℃温度下的粘度范围为3500-5000mPa.s;涉及ALLNEX 的Crylcoat 2671-3的酸值为45-51mgKOH/g,玻璃化温度约为58℃,在200℃温度下的粘度范围为4300-7300mPa.s;涉及的宁波南海化学的GMA1618的环氧当量为400-430g/eq,软化点温度为92-97℃;涉及的中添的GMA树脂T-700的环氧当量为710-740g/eq,软化点温度为软化点温度为120-130℃。
本申请按以上各实施例1-15以及对比例1-10提出的原料配方通过相同的称量、预混、熔融挤出、磨粉、旋风分离等工序(公知工艺制备技术)分别得到粉末涂料组合物。
一、首先采用实施例1制得的粉末涂料,在125℃条件下进行胶化时间检测,其胶化时间为290秒;分别选取经过表面打磨、砂光以及烘烤预处理后,含水量分别控制在6%、8%以及10%的竹板,在120℃下热风循环固化15分钟,分别得到竹板涂层,测试对比结果如下表23:
表23不同含水量的竹板涂层性能测试对比
通常上表测试可知,将含水量预先控制在6-10%的竹板实施效果更佳。
二、然后采用实施例1制得的粉末涂料,选取经过烘烤预处理后,含水量均控制在8%的竹板,分别设置三个固化条件:120℃下热风循环固化15分钟、125℃下热风循环固化12分钟、130℃下热风循环固化10分钟,分别得到竹板涂层,性能测试对比结果如下表24:
表24不同固化条件下的涂层性能测试对比
通过上表24可看出,结果表明在热风循环方式下的固化温度为120℃-130℃,固化时间为10-15min的固化条件下,涂层均表现出很好的表面抗性。
三、最后分别采用实施例1-15以及比较例1-10制得的粉末涂料,选取经过烘烤预处理后,含水量均控制在8%的竹板,在120℃下热风循环固化15分钟,分别得到竹板涂层,性能测试对比结果如下表25:
表25各组实施例以及对比例的性能测试对比
对比例8、对比例9、对比例10在划格、弯曲以及耐化学性上均表现较差。
经过对比测试后发现,本实施例提供的粉末涂料组合物与具有一定含水量的竹板基材表面具有良好的基材附着力;同时实现了低温条件下的快速固化,既满足粉末涂料涂层用于涂装防护的基本性能,又有效避免了竹板水分急速蒸发而导致的涂膜严重缩孔以及竹板变形、开裂问题;更为重要的是,通过本实施例得到的固化涂膜具有表面消光效果,可以制备在60°光源测试下的光泽度范围为2-10°的哑光或低光涂膜产品;此外,可以验证本申请的主体原料体系耐侯性明显好于环氧/聚酯混合体系,可以应用于户内和户外领域。进一步来说,在本申请例1-15中,申请人发现,实施例1、2、3、4、10、11、12、13、15的低温固化效果表现更加优越,实施例5、6以及14次之,
实施例7、8以及9的低温固化效果表现相对最差。
需要特别说明的是,本实施例涉及的涂层性能测试数据均是依据下表26所述的测试标准进行的。
表26测试项目和测试标准
测试项目 | 执行测试标准 |
光泽(60°光源) | ISO 2813-2014 |
胶化时间 | ISO 8130-6:1992 |
划格 | ISO 2409-2013 |
冲击 | ISO 6272-1-2011、2-2011 |
弯曲 | ISO 1519-2011 |
杯突 | ISO 1520-2006 |
MEK测试 | GB/T 23989-2009 |
干热 | BS EN 12722-2009 |
湿热 | BS EN 12721-2009 |
耐水 | BS EN 12720-2009 |
耐酒精(48%) | BS EN 12720-2009 |
耐咖啡 | BS EN 12720-2009 |
液蜡 | BS EN 12720-2009 |
耐氙灯测试 | ISO 16474-2-2013 |
需要特别说明的是,本领域技术人员同样可以将本申请提出的消光低温固化粉末涂料应用于基材为实木板或MDF等木质基材或其他具有类似需求基材的涂装防护,可以获得与类似的低温固化以及消光涂膜效果,本申请不再具体展开说明。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
Claims (10)
- 一种消光超低温固化粉末涂料组合物,其特征在于,至少包括酸值不低于60mgKOH/g的高酸值聚酯树脂和环氧当量不高于600g/eq的GMA丙烯酸树脂,所述高酸值聚酯树脂与GMA丙烯酸树脂在不高于125℃温度且不长于30分钟下发生交联固化反应形成固化涂膜,固化涂膜在60°光源测试下的光泽度范围为2-20°。
- 根据权利要求1所述的消光超低温固化粉末涂料组合物,其特征在于,所述高酸值聚酯树脂与所述GMA丙烯酸树脂的重量份比例范围为5:1-1:2。
- 根据权利要求1所述的消光超低温固化粉末涂料组合物,其特征在于,所述高酸值聚酯树脂占所述消光低温固化粉末涂料的重量份比例范围为30-80wt%。
- 根据权利要求1所述的消光超低温固化粉末涂料组合物,其特征在于,所述高酸值聚酯树脂的酸值范围为65-150mgKOH/g;和/或所述高酸值聚酯树脂的软化点温度范围为75-110℃,和/或所述高酸值聚酯树脂的玻璃化转变温度范围为45-65℃;和/或所述高酸值聚酯树脂在200℃下的粘度为500-2000mPa.s。
- 根据权利要求1所述的消光超低温固化粉末涂料组合物,其特征在于,所述GMA丙烯酸树脂的环氧当量为150-600g/eq;和/或所述GMA丙烯酸树脂的软化点温度范围为75-110℃。
- 根据权利要求1所述的消光超低温固化粉末涂料组合物,其特征在于,所述消光低温固化粉末涂料的粒径D50不大于40微米。
- 一种消光超低温固化涂层,通过在基材上喷涂、固化粉末涂料后得到,其特征在于,所述粉末涂料采用如权利要求1-6之一所述的消光超低温固化粉末涂料组合物,所述固化温度不高于125℃。
- 根据权利要求7所述的消光超低温固化涂层,其特征在于,所述固化 的加热方式采用热风循环加热。
- 根据权利要求7所述的消光超低温固化涂层,其特征在于,所述基材采用竹板或木质板。
- 根据权利要求9所述的消光超低温固化涂层,其特征在于,所述竹板经过烘烤预处理,用于将所述竹板的含水量控制在6-10%。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011593736.6A CN112680074B (zh) | 2020-12-29 | 2020-12-29 | 一种消光超低温固化粉末涂料组合物及其涂层 |
CN202011593736.6 | 2020-12-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022143404A1 true WO2022143404A1 (zh) | 2022-07-07 |
Family
ID=75455204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/140855 WO2022143404A1 (zh) | 2020-12-29 | 2021-12-23 | 一种消光超低温固化粉末涂料组合物及其涂层 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112680074B (zh) |
WO (1) | WO2022143404A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112724803B (zh) * | 2020-12-29 | 2022-06-07 | 老虎表面技术新材料(苏州)有限公司 | 一种平面粉末涂料组合物及其涂层 |
CN112680074B (zh) * | 2020-12-29 | 2022-05-06 | 老虎表面技术新材料(苏州)有限公司 | 一种消光超低温固化粉末涂料组合物及其涂层 |
CN115215997B (zh) * | 2022-09-05 | 2024-01-23 | 黄山市源润新材料科技有限公司 | 一种高硬度、无光型粉末涂料用聚酯树脂及其制备方法 |
CN115717013B (zh) * | 2022-12-23 | 2024-04-05 | 老虎表面技术新材料(清远)有限公司 | 一种透明粉末涂料组合物及其涂层 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5744522A (en) * | 1996-09-13 | 1998-04-28 | Mitsui Toatsu Chemicals, Inc. | Low gloss coating compositions |
CN1339547A (zh) * | 2000-08-23 | 2002-03-13 | 机械工业部广州电器科学研究所 | 热固性耐候低光粉末涂料及其制备方法 |
CN1708561A (zh) * | 2002-11-07 | 2005-12-14 | 舒飞士特种化工有限公司 | 粉末涂料组合物 |
US7034075B1 (en) * | 2000-11-28 | 2006-04-25 | H. B. Fuller Licensing & Financing Inc. | Low gloss powder coating compositions |
EP2027937A1 (en) * | 2007-08-24 | 2009-02-25 | DuPont Powder Coatings Ibérica, S.L. | Process of powder coating aluminium substrates |
CN101787239A (zh) * | 2009-12-31 | 2010-07-28 | 广东银洋树脂有限公司 | 环保型粉末涂料树脂的制备方法 |
CN103415545A (zh) * | 2011-02-14 | 2013-11-27 | 佐敦粉末涂料(N)公司 | 粉末涂料 |
CN109385191A (zh) * | 2018-10-30 | 2019-02-26 | 安徽省华安进出口有限公司 | 一种低光泽抗划伤的聚酯粉末涂料 |
CN109401573A (zh) * | 2018-10-30 | 2019-03-01 | 安徽省华安进出口有限公司 | 一种聚酯/gma粉末涂料 |
CN109486373A (zh) * | 2018-10-30 | 2019-03-19 | 安徽省华安进出口有限公司 | 一种耐候低光泽粉末涂料 |
CN112680074A (zh) * | 2020-12-29 | 2021-04-20 | 老虎表面技术新材料(苏州)有限公司 | 一种消光超低温固化粉末涂料组合物及其涂层 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60312695T2 (de) * | 2002-06-19 | 2007-12-06 | Cytec Surface Specialties, S.A. | Halb-glänzende pulverbeschichtungszusammensetzungen |
CN1219006C (zh) * | 2003-07-10 | 2005-09-14 | 广州电器科学研究院 | 一种热固性低温固化耐候低光粉末涂料 |
JP2006070082A (ja) * | 2004-08-31 | 2006-03-16 | Dainippon Ink & Chem Inc | 艶消し粉体塗料用樹脂組成物 |
WO2019074041A1 (ja) * | 2017-10-13 | 2019-04-18 | 日本ペイント・インダストリアルコーティングス株式会社 | 粉体塗料組成物及び塗膜形成方法 |
-
2020
- 2020-12-29 CN CN202011593736.6A patent/CN112680074B/zh active Active
-
2021
- 2021-12-23 WO PCT/CN2021/140855 patent/WO2022143404A1/zh active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5744522A (en) * | 1996-09-13 | 1998-04-28 | Mitsui Toatsu Chemicals, Inc. | Low gloss coating compositions |
CN1339547A (zh) * | 2000-08-23 | 2002-03-13 | 机械工业部广州电器科学研究所 | 热固性耐候低光粉末涂料及其制备方法 |
US7034075B1 (en) * | 2000-11-28 | 2006-04-25 | H. B. Fuller Licensing & Financing Inc. | Low gloss powder coating compositions |
CN1708561A (zh) * | 2002-11-07 | 2005-12-14 | 舒飞士特种化工有限公司 | 粉末涂料组合物 |
EP2027937A1 (en) * | 2007-08-24 | 2009-02-25 | DuPont Powder Coatings Ibérica, S.L. | Process of powder coating aluminium substrates |
CN101787239A (zh) * | 2009-12-31 | 2010-07-28 | 广东银洋树脂有限公司 | 环保型粉末涂料树脂的制备方法 |
CN103415545A (zh) * | 2011-02-14 | 2013-11-27 | 佐敦粉末涂料(N)公司 | 粉末涂料 |
CN109385191A (zh) * | 2018-10-30 | 2019-02-26 | 安徽省华安进出口有限公司 | 一种低光泽抗划伤的聚酯粉末涂料 |
CN109401573A (zh) * | 2018-10-30 | 2019-03-01 | 安徽省华安进出口有限公司 | 一种聚酯/gma粉末涂料 |
CN109486373A (zh) * | 2018-10-30 | 2019-03-19 | 安徽省华安进出口有限公司 | 一种耐候低光泽粉末涂料 |
CN112680074A (zh) * | 2020-12-29 | 2021-04-20 | 老虎表面技术新材料(苏州)有限公司 | 一种消光超低温固化粉末涂料组合物及其涂层 |
Also Published As
Publication number | Publication date |
---|---|
CN112680074A (zh) | 2021-04-20 |
CN112680074B (zh) | 2022-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022143404A1 (zh) | 一种消光超低温固化粉末涂料组合物及其涂层 | |
AU2005262289B8 (en) | Powder coating composition | |
KR20080066847A (ko) | 저 방사성 분말 코팅 | |
KR20080105031A (ko) | 코일 코팅용 저광택 코일 분말 코팅 조성물 | |
CN106366801A (zh) | 一种单组份热塑性丙烯酸哑光面漆 | |
WO1999037410A1 (en) | Method of forming multilayered topcoat film | |
WO2022143403A1 (zh) | 一种平面粉末涂料组合物及其涂层 | |
KR100759909B1 (ko) | 분체도료의 제조 방법, 분체도료 및 도막 형성 방법 | |
KR20100125378A (ko) | 분체 도료 조성물용으로 적합한 수지 | |
EP1176175B1 (en) | Matte texture powder coatings | |
JP6021192B2 (ja) | 塗装方法及びそれにより得られる塗装体 | |
CN112745740B (zh) | 一种消光耐刮擦粉末涂料组合物及其制备方法和消光耐刮擦涂层 | |
AU2006331758B2 (en) | Powder coating composition suitable for thermo-sensitive substrates | |
US9963595B2 (en) | Coating composition and method for producing powder coating | |
US6433099B1 (en) | Fine textured powder coatings for wood substrates | |
JPS6154063B2 (zh) | ||
CN108531056B (zh) | 热敏性基材粉末涂层及其制备方法 | |
JP2003026989A (ja) | 熱硬化型粉体塗料組成物 | |
TW202337554A (zh) | 粉末塗料系統 | |
JP4563533B2 (ja) | 熱硬化型粉体塗料組成物 | |
JP2003073615A (ja) | 熱硬化型粉体塗料組成物 | |
JPS6311951B2 (zh) | ||
JPH09271718A (ja) | 複層塗膜形成方法 | |
MX2008007907A (en) | Powder coating composition suitable for thermo-sensitive substrates | |
JPS6344027B2 (zh) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21914141 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21914141 Country of ref document: EP Kind code of ref document: A1 |