WO2022143281A1 - 一种混凝土结构中钢筋状态检测方法 - Google Patents

一种混凝土结构中钢筋状态检测方法 Download PDF

Info

Publication number
WO2022143281A1
WO2022143281A1 PCT/CN2021/139910 CN2021139910W WO2022143281A1 WO 2022143281 A1 WO2022143281 A1 WO 2022143281A1 CN 2021139910 W CN2021139910 W CN 2021139910W WO 2022143281 A1 WO2022143281 A1 WO 2022143281A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel bar
capacitance
steel
peak
thickness
Prior art date
Application number
PCT/CN2021/139910
Other languages
English (en)
French (fr)
Inventor
王鹏刚
韩晓峰
金祖权
王德志
惠迎新
赵铁军
熊传胜
于泳
李宁
Original Assignee
青岛理工大学
宁夏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学, 宁夏大学 filed Critical 青岛理工大学
Publication of WO2022143281A1 publication Critical patent/WO2022143281A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/24Investigating the presence of flaws

Definitions

  • the invention relates to the field of non-destructive testing of concrete, in particular to a method for detecting the state of steel bars in a concrete structure.
  • the state of reinforcement in reinforced concrete structures has a profound impact on the state of the entire building/structure.
  • the completion acceptance after the building is completed, and the later reinforcement, the steel bars in the structure need to be tested.
  • the state of steel bars in reinforced concrete structures mainly includes the position of steel bars, the size of steel bars and the thickness of the protective layer of steel bars.
  • Reinforcing bars are the main stress-bearing components in buildings/structures. If the diameter of the reinforcing bars does not reach the design size, the bearing capacity of the reinforced concrete structure will be reduced, the service life of the reinforced concrete structure will be affected, and danger will be caused.
  • the thickness of the protective layer of the steel bar plays a very important role in the protection of the steel bar in the concrete structure.
  • 50010-2010 and "Code for Durability Design of Concrete Structures" GB/T50476-2019 put forward requirements for the minimum thickness of protective layer of reinforced concrete structures under different environmental conditions to ensure the durability and safety of buildings/structures; The harsher the environment the structure is in, the greater the minimum protective layer thickness is required. Therefore, the detection of steel bars in concrete structures is an important part of ensuring the safe service of buildings/structures.
  • Electromagnetic induction method is the most widely used detection method in contemporary steel bar detection. The technology is relatively mature and can relatively accurately locate the state of steel bars. However, this method is easily interfered by other factors such as material composition and environment.
  • the cover thickness often requires an assumed rebar diameter to be entered.
  • Infrared scanning technology uses an infrared scanner to scan and photograph the building structure, and analyzes the image to determine the state of the steel bars inside the concrete. It needs to be compared and determined, and the test process requires high-frequency magnetic field induction heating, which is inconvenient for on-site detection.
  • Tomography is also commonly used to evaluate concrete, but its application in practical engineering is limited due to expensive equipment and troublesome operation and data processing.
  • the present invention provides a method for detecting the state of steel bars in a concrete structure.
  • a method for detecting the state of steel bars in a concrete structure By performing targeted detection on the steel bars in concrete, and using its representation mapping and corresponding relationship, it is convenient to obtain information including the position of the steel bars, the size of the steel bars and the steel bars.
  • the thickness of the protective layer is more accurate, thereby improving the work efficiency of construction engineering acceptance and the detection, reinforcement and identification of existing reinforced concrete structures.
  • a method for detecting the state of steel bars in a concrete structure comprising the following steps:
  • the corresponding relationship between the detection position and the scanning detection capacitance value is established, and the reinforcement position, reinforcement size, and reinforcement thickness of the reinforcement layer of the reinforced concrete member are obtained in combination with the characterization mapping.
  • the characteristic mapping of the capacitance value data, the area of the capacitance peak and the state of the steel bar is calibrated.
  • the calibration process includes the calibration of the capacitance peak value and the steel bar diameter, the capacitance peak value and the steel bar protective layer thickness calibration, the capacitance peak area and the steel bar diameter calibration, the capacitance peak area and the steel bar protective layer thickness calibration, the capacitance peak value and the capacitance value. Calibration of peak area and steel diameter, capacitance peak and capacitance peak area and steel cover thickness calibration.
  • the diameter of the steel bar and the thickness of the protective layer are controlled to establish a characterization mapping between them and the capacitance value data and the area of the capacitance peak.
  • the steps of the scanning detection process are: adopting a capacitive steel bar detection device to detect the reinforced concrete structure.
  • the capacitive steel bar detection device is used to scan and detect concrete members with different steel bar diameters and different protective layer thicknesses respectively.
  • the X axis is the position of the polar plate, the diameter of the steel bar or the thickness of the steel protective layer, and the Y axis is the capacitance value detected by the capacitive steel bar detection device;
  • the movement direction of the capacitive steel bar detection device is the detection direction.
  • the X axis is the diameter of the steel bar or the thickness of the protective layer
  • the Y axis is the area of the capacitance peak obtained by the capacitive steel bar detection device through data processing.
  • the X axis is the capacitance peak value detected by the capacitive steel bar detection device
  • the Y axis is the area of the capacitance peak obtained by the capacitive steel bar detection device through data processing
  • the Z axis is the diameter of the steel bar used or The thickness of the cover of the rebar.
  • the present invention has the following advantages and positive effects:
  • the capacitance peak value By establishing the characterization relationship between the capacitance peak value, the capacitance peak area and the state of the steel bar, it provides a basis for quickly determining the state of the steel bar in the concrete after scanning the concrete.
  • the peak capacitance value is used It can directly exclude the influence of the non-rebar coverage area on the capacitance value, and only consider the parameters of the capacitance peak part to reduce the overall calculation difficulty; the area of the capacitance peak can more intuitively characterize the state of the steel bar and the change of the state of the steel bar, so as to realize the adjustment of the steel bar. Quick, intuitive comparison of different areas of concrete structures.
  • Fig. 1 is the schematic diagram of the front structure of the polar plate in Embodiments 1 and 2 of the present invention
  • Fig. 2 is the schematic diagram of detecting the position of steel bars in Embodiments 1 and 2 of the present invention
  • FIG. 3 is a schematic diagram of data analysis for detecting the diameter of steel bars and the peak value of capacitance in Embodiments 1 and 2 of the present invention
  • FIG. 4 is a schematic diagram of data analysis for detecting the thickness of the steel protective layer and the peak value of capacitance in Embodiments 1 and 2 of the present invention
  • Fig. 5 is the data analysis schematic diagram of detecting the diameter of steel bar and the area of capacitance peak in the embodiment 1 and 2 of the present invention
  • FIG. 6 is a schematic diagram of data analysis for detecting the thickness of the steel bar protective layer and the area of the capacitance peak in Embodiments 1 and 2 of the present invention
  • Fig. 7 is the data analysis schematic diagram of detecting steel bar diameter and capacitance peak value and the area of capacitance peak in embodiment 1, 2 of the present invention.
  • FIG. 8 is a schematic diagram of data analysis for detecting the thickness of the protective layer of the steel bar and the capacitance peak and the area of the capacitance peak in Embodiments 1 and 2 of the present invention.
  • the present invention proposes a concrete structure Rebar condition detection method.
  • FIGS. 1-8 a method for detecting the state of steel bars in a concrete structure is proposed.
  • the corresponding relationship between the detection position and the scanning detection capacitance value is established, and the reinforcement position, reinforcement size and reinforcement thickness of the reinforcement layer of the concrete member are obtained in combination with the characterization mapping.
  • C is the capacitance between the two plates of the capacitive sensor, in Farads (F); Q is the charged amount between the two plates, in Coulombs (C); U is the voltage between the plates, in Volts (V) are units.
  • the variation trend of the capacitance between the electrode plates characterizes the difference in the position of the steel bar, the size of the steel bar and the thickness of the steel cover in the concrete.
  • Calibration refers to establishing a characterization map of the state of the steel bar based on the capacitance value data and the area of the capacitance peak.
  • the above-mentioned process of establishing the characterization map is the calibration process.
  • the calibration process includes the calibration of the capacitance peak value and the steel bar diameter, the capacitance peak value and The calibration of the thickness of the steel cover, the calibration of the area of the capacitance peak and the diameter of the steel bar, the calibration of the area of the capacitance peak and the thickness of the steel cover, the calibration of the area of the capacitance peak and the capacitance peak and the diameter of the steel bar, and the area of the capacitance peak and the capacitance peak Calibration of rebar cover thickness.
  • the capacitance peak value By establishing the characterization relationship between the capacitance peak value, the capacitance peak area and the state of the steel bar, it provides a basis for quickly determining the state of the steel bar in the concrete after scanning the concrete. Compared with the traditional calculation of the steel bar state based on the capacitance value, the use of the capacitance peak value can directly eliminate the For the influence of the non-rebar coverage area on the capacitance value, only the parameters of the peak part of the capacitance are considered to reduce the overall calculation difficulty;
  • the area of the capacitance peak can more intuitively characterize the state of the steel bar and the change of the state of the steel bar, so as to achieve a quick and intuitive comparison of different areas of the concrete structure.
  • the electrode plate is used as the detection unit, which includes:
  • the reinforced concrete structure is detected by the electrode plate of the capacitive reinforcement detection device;
  • Input engineering information in the capacitive rebar detection device place the electrode plate on one side of the concrete, and scan the electrode plate along the concrete side to the other side at a constant speed to obtain the capacitance values at different positions.
  • the data of the capacitance value is processed and analyzed, and the corresponding relationship between the detection position and the scanning detection capacitance value is established.
  • the moving direction of the electrode plate of the capacitive rebar detection device is used as the detection direction;
  • the X axis is the position of the polar plate, the diameter of the steel bar or the thickness of the steel protective layer, and the Y axis is the capacitance value obtained by the capacitive steel bar detection device;
  • the position corresponding to the peak value of the capacitance is the position of the steel bar.
  • C is the capacitance value at the position of the steel bar
  • B is the diameter of the steel bar
  • a and b are the values obtained after fitting.
  • the capacitance value at the steel bar position and the steel bar diameter conform to a linear function relationship, and the steel bar diameter can be calculated according to the capacitance value at the steel bar position by formula (1).
  • C is the capacitance value at the steel bar position
  • D is the thickness of the steel bar protective layer
  • c, d, and e are the values obtained after fitting.
  • the capacitance at the steel bar position is determined.
  • the value and the diameter of the rebar conform to an exponential function relationship, and the thickness of the protective layer of the rebar can be calculated according to the capacitance value at the location of the rebar by formula (2).
  • the X axis is the diameter of the steel bar or the thickness of the protective layer
  • the Y axis is the area of the capacitance peak obtained by the capacitive steel bar detection device
  • A is the area of the capacitance peak calculated by the capacitive steel bar detection device after detection
  • B is the diameter of the steel bar
  • f and g are the values obtained after fitting, as shown in Figure 5, which shows the situation when the thickness of the steel bar protective layer is determined.
  • the diameter of the steel bar has a linear relationship with the area of the capacitance peak, and the diameter of the steel bar can be calculated according to the area of the capacitance peak by formula (3).
  • A is the area of the capacitance peak calculated by the capacitive rebar detection device after detection
  • D is the thickness of the protective layer of the rebar
  • h, i, and j are the values obtained after fitting, as shown in Figure 6, it is shown in Fig.
  • the thickness of the protective layer of the steel bar is related to the exponential relationship, and the thickness of the protective layer of the steel bar can be calculated according to the area of the capacitance peak by formula (4).
  • the X axis is the capacitance peak detected by the capacitive steel bar detection device
  • the Y axis is the area of the capacitance peak calculated after the capacitive steel bar detection device detects
  • the Z axis is the diameter of the steel bar used or the protection of the steel bar.
  • Layer thickness, a 1 - a 12 and b 1 -b 12 are the values obtained after fitting;
  • the above method solves the problem of accurately and non-destructively testing the state of steel bars in concrete when both the diameter of the steel bar and the thickness of the steel protective layer are unknown.
  • the above method is used to process and correct the test data of the capacitive steel bar detection equipment, the results are more accurate, the test is more efficient and convenient, and the detection process is not affected by material differences, effectively avoiding errors in complex construction environments.
  • FIGS. 1-8 a method for detecting the state of steel bars in a concrete structure is provided.
  • the electrode plate of the capacitive steel bar detection device in this embodiment As shown in Figure 1, the electrode plate of the capacitive steel bar detection device in this embodiment;
  • the electrode plate in this embodiment is composed of copper electrodes and polymethyl methacrylate; the copper electrodes are used to generate excitation voltage and induced voltage, the distance between the copper electrodes is 1cm, and the two copper electrodes are placed at the same level and the same On the horizontal plane, the size of the copper electrode is 7.5cm ⁇ 4.5cm ⁇ 0.1cm, and the size of the electrode plate is 10.2cm ⁇ 7.7cm ⁇ 0.3cm.
  • electrode plates of other materials and specifications can also be used. After changing the electrode plates, the distance between the electrodes can be adaptively adjusted to meet the detection requirements.
  • the detection principle is to determine the state of the steel bar according to the fluctuation of the capacitance value, the size of the capacitance value, and the area of the capacitance peak.
  • the capacitance value of the parallel capacitive rebar detection device can be calculated by the following formula:
  • C is the capacitance between the two polar plates of the capacitive rebar detection device, in Farads (F);
  • Q is the amount of charge between the two polar plates, in coulombs (C);
  • U is the voltage between the plates in volts (V).
  • the detection substance between the copper electrodes changes, that is, the charge quantity (Q) between the copper plates changes, while the voltage between the electrode plates remains unchanged, resulting in a change in the capacitance (C) between the electrode plates.
  • the detection method is a capacitive steel bar detection device based on the principle of electrostatic field capacitance to detect the state of steel bars in concrete, including the following implementation steps:
  • Calibration refers to establishing a characteristic mapping between the capacitance value and the state of the steel bar based on the capacitance value data.
  • the calibration includes the calibration of the capacitance peak value and the steel bar diameter, the capacitance peak value and the steel bar protective layer thickness calibration, the capacitance peak area and the steel bar diameter calibration, the capacitance peak area and the steel bar protective layer thickness calibration, the capacitance peak value and the peak value.
  • the capacity can be expressed as:
  • C is the capacitance between the two plates of the capacitive sensor, in Farads (F);
  • Q is the amount of charge between the two plates, in coulombs (C);
  • U is the voltage between the plates in volts (V).
  • the moving direction of the electrode plate is used as the detection direction
  • the X axis is the position of the electrode plate
  • the Y axis is the capacitance value measured by the capacitive steel bar detection device.
  • the position of the reinforcement in the concrete, the size of the reinforcement and the thickness of the reinforcement cover are calculated.
  • the position of the steel bar in the concrete can be determined by the position of the peak value of the capacitance
  • the corrected capacitance value of each position is plotted, as shown in Figure 2, indicating that the capacitance sensor can detect the positional relationship of the steel bar.
  • the electrode plate of the capacitive rebar detection device is placed on the surface of the reinforced concrete, and the electrode plate scans uniformly from one side to the other side along the surface of the reinforced concrete member with the same thickness of the protective layer of the steel bar and different diameters of the steel bar, and counts the capacitance peak value measured each time. Compare the relationship between the capacitance values of the same steel cover thickness under different steel diameters;
  • the electrode plate of the capacitive rebar detection device is placed on the surface of the reinforced concrete, and the electrode plate scans uniformly from one side to the other side along the surface of the reinforced concrete member with the same thickness of the steel protective layer and different steel diameters, and counts the capacitance after each measurement and processing.
  • the area of the peak value compare the area relationship of the capacitance peak value of the same steel protective layer thickness under different steel diameters;
  • A fB+g
  • A is the area of the capacitance peak obtained after detection and processing by the capacitive steel bar detection device
  • B is the diameter of the steel bar
  • f and g are the fitting
  • the electrode plate of the capacitive rebar detection device is placed on the surface of the reinforced concrete, and the electrode plate scans uniformly from one side to the other side along the surface of the reinforced concrete member with the same rebar diameter and different rebar protective layer thickness, and counts the detection of each capacitive rebar detection device.
  • the capacitance peak value of compare the relationship between the capacitance peak value of the same steel bar diameter under different steel protective layer thickness;
  • C the capacitance peak value detected by the capacitive steel bar detection device
  • D the thickness of the steel bar protection layer
  • c, d, and e are the The values obtained after fitting, as shown in Figure 4, show that capacitive sensing can detect the relationship between the thickness of the steel cover.
  • the electrode plate of the capacitive rebar detection device Place the electrode plate of the capacitive rebar detection device on the surface of the reinforced concrete, scan the electrode plate at a constant speed from one side to the other side of the surface of the reinforced concrete member with the same rebar diameter and different rebar protective layer thicknesses, and count each capacitive rebar detection device.
  • the area of the capacitance peak after detection and processing is compared, and the relationship between the area of the capacitance peak of the same steel bar diameter under different thickness of the steel protective layer is compared;
  • the capacitance value data capacitance peak value and capacitance peak area detected by the capacitive rebar detection device, the quantitative judgment error is small, which is convenient for on-site detection and realizes its application in practical engineering.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种混凝土结构中钢筋状态检测方法,依据扫描钢筋混凝土构件获取的电容值数据、电容峰的面积,建立二者与钢筋状态的表征映射;对不同规格的混凝土构件进行扫描检测;建立检测位置和扫描检测电容值的对应关系,结合表征映射获取混凝土构件的钢筋位置、钢筋尺寸、钢筋保护层厚度;通过对混凝土中的钢筋实施针对性检测,利用其表征映射及对应关系,便捷获取包括钢筋位置、钢筋尺寸和钢筋保护层厚度的较为准确的结果,从而提高建筑工程验收和既有钢筋混凝土结构的检测、加固与鉴定的工作效率。

Description

一种混凝土结构中钢筋状态检测方法 技术领域
本发明涉及混凝土无损检测领域,特别涉及一种混凝土结构中钢筋状态检测方法。
背景技术
本部分的陈述仅仅是提供了与本发明相关的背景技术,并不必然构成现有技术。
钢筋混凝土结构中钢筋状态对整个建/构筑物的状态有的深远的影响。为保证建筑的安全使用、建筑完成之后的竣工验收以及后期的加固,都需要对结构中的钢筋进行检测。依据《建筑工程施工质量验收统一标准》GB50300-2013,钢筋混凝土结构中钢筋的状态主要包括钢筋的位置,钢筋的尺寸以及钢筋的保护层厚度等是否与设计相同。钢筋作为建/构筑物中主要的受力构件,如果钢筋直径达不到设计尺寸,会导致钢筋混凝土结构承载力降低,影响钢筋混凝土结构的使用寿命,造成危险。钢筋的保护层厚度对混凝土结构中钢筋的保护起到了十分重要的作用,《混凝土结构设计规范》GB 50010-2010 、《混凝土结构耐久性设计规范》GB/T50476-2019中对不同使用环境条件下的钢筋混凝土结构最小保护层厚度提出了要求,以确保建/构筑物的耐久性和安全性;建/构筑物所处的环境越恶劣,要求最小保护层厚度越大。因此对混凝土结构中钢筋状态进行检测是确保建/构筑物安全服役的重要一环。
现有技术中针建/构筑物中钢筋进行检测的方法已有很多,其中主要包括声发射、电磁感应法、微波检测法、红外线扫描和层析成像等技术。声发射技术是借助专用的检测仪器来收集声发射信号,经过对信号的处理得到与特征相对应的声发射参数,通过分析声发射参数来判断构件的位置、状态;但是该方法多用于混凝土的损伤检测。电磁感应法是当代在钢筋检测中应用最广泛的检测方法,技术相对成熟,能够相对准确的定位钢筋的状态,但是此方法容易受材料成分、环境等其他因素的干扰,并且用此种方法确定保护层厚度时往往需要输入一个假定的钢筋直径。红外线扫描技术是利用红外线扫描器对建筑结构进行扫描摄像,通过对图像的分析判定混凝土内部钢筋的状态,该方法具有非接触、大面积扫查、结果直观等优点,但在定量判断上误差较大,需对比确定,而且试验过程需要进行高频磁场感应加热,现场检测不方便。层析成像技术也常用于评估混凝土,但是由于设备昂贵,且操作、数据处理麻烦,限制了其在实际工程中的应用。
技术解决方案
本发明针对现有技术存在的缺陷,提供一种混凝土结构中钢筋状态检测方法,通过对混凝土中的钢筋实施针对性检测,利用其表征映射及对应关系,便捷获取包括钢筋位置、钢筋尺寸和钢筋保护层厚度较为准确的结果,从而提高建筑工程验收和既有钢筋混凝土结构的检测、加固与鉴定的工作效率。
为了实现上述目的,采用以下技术方案:
一种混凝土结构中钢筋状态检测方法,包括以下步骤:
依据扫描钢筋混凝土构件获取的电容值数据、电容峰的面积,建立二者与钢筋状态的表征映射;
对不同规格的钢筋混凝土构件进行扫描检测;
建立检测位置和扫描检测电容值的对应关系,结合表征映射获取钢筋混凝土构件的钢筋位置、钢筋尺寸、钢筋保护层厚度。
进一步地,标定电容值数据、电容峰的面积与钢筋状态的表征映射。
进一步地,标定过程包括电容峰值与钢筋直径的标定、电容峰值与钢筋保护层厚度的标定、电容峰的面积与钢筋直径的标定、电容峰的面积与钢筋保护层厚度的标定、电容峰值和电容峰的面积与钢筋直径的标定、电容峰值和电容峰的面积与钢筋保护层厚度的标定。
进一步地,控制钢筋直径、保护层厚度变化,建立其与电容值数据、电容峰的面积的表征映射。
进一步地,所述扫描检测过程的步骤为:采用电容式钢筋检测装置对钢筋混凝土结构检测。
进一步地,将电容式钢筋检测装置电极板放置于混凝土一侧,输入工程信息,将电极板沿混凝土一侧向另一侧匀速扫描,得到不同位置的电容值。
进一步地,利用电容式钢筋检测装置对不同钢筋直径、不同保护层厚度的混凝土构件分别进行扫描检测。
进一步地,沿着检测方向,建立二维坐标系,X轴为极板所处的位置、钢筋直径或钢筋保护层厚度,Y轴为电容式钢筋检测装置检测得出的电容值;
其中电容式钢筋检测装置的移动方向为检测方向。
进一步地,沿着检测方向,建立二维坐标系,X轴为钢筋直径或保护层厚度,Y轴为电容式钢筋检测装置通过数据处理得出的电容峰的面积。
进一步地,建立三维坐标系,X轴为电容式钢筋检测装置检测得出的电容峰值,Y轴为电容式钢筋检测装置通过数据处理得出电容峰的面积,Z轴为所采用的钢筋直径或钢筋的保护层厚度。
有益效果
与现有技术相比,本发明具有的优点和积极效果是:
(1)通过对混凝土中的钢筋实施针对性检测,利用其表征映射及对应关系,便捷获取包括钢筋位置、钢筋尺寸和钢筋保护层厚度的较为准确的结果,从而提高建筑工程验收和既有钢筋混凝土结构的检测、加固与鉴定的工作效率。
(2)通过建立电容峰值、电容峰面积和钢筋状态的表征关系,为扫描混凝土后快速确定钢筋在混凝土中的状态提供依据,相较于传统的依据电容值进行钢筋状态的计算,采用电容峰值能够直接排除非钢筋覆盖区域对电容值的影响,只考虑电容峰值部分的参数,减少整体的计算难度;采用电容峰的面积能够更为直观的表征钢筋状态和钢筋状态的变化,从而实现对钢筋混凝土结构不同区域的快速、直观对比。
(3)首次解决了在钢筋直径与钢筋保护层厚度均未知的情况下,对混凝土中钢筋状态进行精准测定,根据所测得的电容峰值与峰的面积即可得到钢筋直径与钢筋保护层厚度。
(4)通过电容传感器进行检测与数据修正,结果更为准确、高效和便捷且电容传感器检测过程中不受材料差异的影响,有效地避免复杂施工环境下的误差。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明实施例1、2中极板正面结构的示意图;
图2为本发明实施例1、2中检测钢筋位置的示意图;
图3为本发明实施例1、2检测钢筋直径与电容峰值的数据分析示意图;
图4为本发明实施例1、2中检测钢筋保护层厚度与电容峰值的数据分析示意图;
图5为本发明实施例1、2中检测钢筋直径与电容峰的面积的数据分析示意图;
图6为本发明实施例1、2中检测钢筋保护层厚度与电容峰的面积的数据分析示意图;
图7为本发明实施例1、2中检测钢筋直径与电容峰值和电容峰的面积的数据分析示意图;
图8为本发明实施例1、2中检测钢筋保护层厚度与电容峰值和电容峰的面积的数据分析示意图。
本发明的实施方式
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步地说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合;
为了方便叙述,本发明中如果出现“上”、“下”、“左”、“右”字样,仅表示与附图本身的上、下、左、右方向一致,并不对结构起限定作用,仅仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的设备或元件必须具有特定的方位,以特定的方位构造和操作,因此不能理解为对本发明的限制。
正如背景技术中所介绍的,现有技术中,在钢筋直径与钢筋保护层厚度均未知的情况下,难以对混凝土中钢筋状态进行精准测定;针对上述问题,本发明提出了一种混凝土结构中钢筋状态检测方法。
实施例1
本发明的一种典型的实施方式中,如图1-图8所示,提出了一种混凝土结构中钢筋状态检测方法。
包括以下步骤:
依据扫描混凝土获取的电容值数据、电容峰的面积,建立二者与钢筋状态的表征映射;
对不同规格的钢筋混凝土构件进行扫描检测;
建立检测位置和扫描检测电容值的对应关系,结合表征映射获取混凝土构件的钢筋位置、钢筋尺寸、钢筋保护层厚度。
通过对混凝土中的钢筋实施针对性检测,利用其表征映射及对应关系,便捷获取包括钢筋位置、钢筋尺寸和钢筋保护层厚度的较为准确的结果,从而提高建筑工程验收和既有钢筋混凝土结构的检测、加固与鉴定的工作效率。
根据电容峰值的位置、电容峰值的数值和电容峰的面积等数据来判定钢筋的状态,其所利用的计算公式如下:
Figure 109675dest_path_image001
其中,C是电容传感器两极板之间的电容量,以法拉(F)为单位;Q是两极板之间的带电量,以库伦(C)为单位;U是极板之间的电压,以伏特(V)为单位。
电极板之间电容量的变化趋势,表征出混凝土中钢筋位置、钢筋尺寸和钢筋保护层厚度的不同。
标定是指依据电容值数据、电容峰的面积建立其与钢筋状态的表征映射,上述的表征映射的建立过程即为标定过程,具体的,标定过程包括电容峰值与钢筋直径的标定、电容峰值与钢筋保护层厚度的标定、电容峰的面积与钢筋直径的标定、电容峰的面积与钢筋保护层厚度的标定、电容峰值和电容峰的面积与钢筋直径的标定、电容峰值和电容峰的面积与钢筋保护层厚度的标定。
通过建立电容峰值、电容峰面积和钢筋状态的表征关系,为扫描混凝土后快速确定钢筋在混凝土中的状态提供依据,相较于传统的依据电容值进行钢筋状态的计算,采用电容峰值能够直接排除非钢筋覆盖区域对电容值的影响,只考虑电容峰值部分的参数,减少整体的计算难度;
需要指出的是,采用电容峰的面积能够更为直观的表征钢筋状态和钢筋状态的变化,从而实现对混凝土结构不同区域的快速、直观对比。
在对混凝土构件进行扫描检测的过程中,采用电极板作为检测单元,具体包括:
用电容式钢筋检测装置的电极板对钢筋混凝土结构进行检测;
在电容式钢筋检测装置中输入工程信息,将电极板放置于混凝土一侧,将电极板沿混凝土一侧向另一侧匀速扫描,得到不同位置的电容值。
在扫描获取电容值后,对电容值的数据进行处理和分析,建立检测位置和扫描检测电容值的对应关系。
具体步骤如下:
电容式钢筋检测装置的电极板移动方向作为检测方向;
沿着检测方向,建立二维坐标系,X轴为极板所处的位置、钢筋直径或钢筋保护层厚度,Y轴为电容式钢筋检测装置得出的电容值;
检测钢筋位置:电容峰值所对应的位置即为钢筋位置。
检测钢筋直径与电容峰值的关系式为:C=aB+b                   (1)
其中,C为钢筋位置处的电容值,B为钢筋的直径, a、b为拟合后得到的数值。如图3所示表明在钢筋保护层厚度确定的情况下,钢筋位置处的电容值与钢筋直径符合线性函数关系,可以通过公式(1)根据钢筋位置处的电容值计算得到钢筋直径。
检测钢筋保护层的厚度与电容峰值的关系式为:C=c*d D+e          (2)
其中,C为钢筋位置处的电容值,D为钢筋保护层厚度, c、d、e为拟合后得到的数值,如图4 所示表明在钢筋直径确定的情况下,钢筋位置处的电容值与钢筋直径符合指数函数关系,可以通过公式(2)根据钢筋位置处的电容值计算得到钢筋保护层厚度。
沿着检测方向,建立二维坐标系,X轴为钢筋直径或保护层厚度,Y轴为电容式钢筋检测装置得出的电容峰的面积;
检测钢筋直径与峰的面积的关系式为:A=fB+g                   (3)
其中,A为电容式钢筋检测装置检测后计算得到的电容峰的面积,B为钢筋的直径, f、g为拟合后得到的数值,如图5所示表明在钢筋保护层厚度确定的情况下,钢筋直径与电容峰的面积符合线性关系,可以通过公式(3)根据电容峰的面积计算得到钢筋直径。
检测钢筋保护层的厚度与峰的面积的关系式为:A=h*i D+j          (4)
其中,A为电容式钢筋检测装置检测后计算得到的电容峰的面积,D为钢筋保护层厚度, h、i、j为拟合后得到的数值,如图6 所示表明在钢筋直径确定的情况下,钢筋保护层厚度与符合指数关系,可以通过公式(4)根据电容峰的面积计算得到钢筋保护层厚度。
建立三维坐标系,X轴为电容式钢筋检测装置检测得出的电容峰值,Y轴为电容式钢筋检测装置检测后计算得出电容峰的面积,Z轴为所采用的钢筋直径或钢筋的保护层厚度,a 1- a 12 b 1-b 12为拟合后得到的数值;
钢筋直径和电容峰值、峰的面积的关系式为:
z=a 1+a 2*(a 3/((1+((x-a 4)/a 5) 2)*(1+((y-a 6)/a 7) 2))+(1-a 8)*exp(-0.5*((x-a 9)/a 10) 2-0.5*((y-a 11)/ a 12) 2))                                                      (5)
钢筋保护层厚度和电容峰值、峰的面积的关系式为,
z=b 1+b 2*exp(-0.5*pow((log(x/b 3)/b 4),2))+b 5*exp(-0.5*pow((log(y/b 6)/b 7),2))+b 8*exp(-0.5*(pow((log(x/b 9)/b 10),2)+pow((log(y/b 11)/b 12),2)))                (6)
上述方法解决了在钢筋直径与钢筋保护层厚度均未知的情况下,对混凝土中钢筋状态进行精准无损测试,根据所测得的电容峰值与峰的面积即可得到钢筋直径与钢筋保护层厚度。
通过上述方法对电容式钢筋检测设备测试数据进行处理和修正,结果更为准确,测试更为高效、便捷,且检测过程中不受材料差异性的影响,有效地避免复杂施工环境下的误差。
实施例2
本发明的另一典型实施例中,结合图1-图8,提供一种混凝土结构中钢筋状态检测方法。
如图1所示,为本实施例中电容式钢筋检测装置的电极板;
本实施例中的电极板由铜电极、聚甲基丙烯酸甲酯组成;铜电极用于产生激励电压和感应电压,铜电极之间的间距为1cm,两块铜电极放置于同一水平高度和同一水平面,铜电极的尺寸为7.5cm×4.5cm×0.1cm,电极板的尺寸为10.2cm×7.7cm×0.3cm。
可以理解的是,也可以采用其他材质、其他规格的电极板,改变电极板后,对电极之间的间距进行适应性调整以满足检测需求即可。
检测原理是根据电容值的波动情况以及电容值的大小、电容峰的面积判定钢筋的状态。
并联电容式钢筋检测装置的电容值可通过以下公式计算:
Figure 574154dest_path_image002
其中,C是电容式钢筋检测装置两极板之间的电容量,以法拉(F)为单位;
Q是两极板之间的带电量,以库伦(C)为单位;
U是极板之间的电压,以伏特(V)为单位。
由于电极板之间的距离与电极板的有效面积保持不变,铜电极之间的检测物质发生变化,即铜极板之间的带电量(Q)发生变化,而电极板之间的电压保持不变,致使电极板之间的电容量(C)发生变化。
电极板之间混凝土中钢筋位置、尺寸以及保护层厚度的不同,都会导致电极板之间的带电量(Q)发生变化,通过此原理检测混凝土中钢筋的状态。
检测方法是基于静电场电容原理的电容式钢筋检测装置检测混凝土中的钢筋状态,包括有以下实施步骤:
1)标定
标定是指依据电容值数据建立其与钢筋状态的表征映射。所述的标定包括,电容峰值与钢筋直径的标定、电容峰值与钢筋保护层厚度的标定、电容峰的面积与钢筋直径的标定、电容峰的面积与钢筋保护层厚度的标定、电容峰值和峰的面积与钢筋直径的标定、电容峰值和峰的面积与钢筋保护层厚度的标定。具体地,
1.1电容峰值与钢筋直径的标定
1.1.1将不同直径的钢筋放入保护层厚度相同的混凝土中;
1.1.2对混凝土的参数进行设定,混凝土介电常数设置为6,其他参数均为设备初始参数;
1.1.3使用电容式钢筋检测装置将电极板沿混凝土一侧向另一侧匀速地进行扫描,测得不同钢筋直径对应的电容峰值,建立电容峰值与钢筋直径的一一对应关系;
1.1.4将得到的电容值带入公式(1)中对钢筋直径进行检测;表征电容峰值与钢筋直径关系的公式(1)为,C=aB+b ;
1.2电容峰值与钢筋保护层厚度的标定
1.2.1将直径相同钢筋放入不同保护层厚度的混凝土中;
1.2.2对混凝土的参数进行设定,混凝土介电常数设置为6,其他参数均为设备初始参数;
1.2.3将电容式钢筋检测装置的极板沿混凝土中钢筋一侧向另一侧匀速扫描,测得不同钢筋保护层厚度对应的电容峰值,建立电容峰值与钢筋保护层厚度的一一对应关系;
1.2.4将检测得到的电容值带入公式(2)中,对钢筋保护层厚度进行检测;表征电容值与钢筋保护层厚度关系的公式(2)为,C=c*d D+e ;
1.3 电容峰的面积与钢筋直径的标定
1.3.1将不同直径的钢筋放入保护层厚度相同的混凝土中;
1.3.2对混凝土的参数进行设定,混凝土介电常数设置为6,其他参数均为设备初始参数;
1.3.3使用电容式钢筋检测装置将电极板沿混凝土一侧向另一侧匀速地进行扫描,检测和处理不同钢筋直径对应的电容峰的面积,所采用的基线为5.8pF,建立电容峰的面积与钢筋直径的一一对应关系;
1.3.4将检测和数据处理之后得到的电容峰的面积带入公式(3)中对钢筋直径进行检测;表征电容峰的面积与钢筋直径关系的公式(3)为,A=fB+g ;
1.4电容峰的面积与钢筋保护层厚度的标定
1.4.1将直径相同钢筋放入不同保护层厚度的混凝土中;
1.4.2对混凝土的参数进行设定,混凝土介电常数设置为6,其他参数均为设备初始参数;
1.4.3将电容式钢筋检测装置的极板沿混凝土中钢筋一侧向另一侧匀速扫描,检测和处理不同钢筋保护层厚度对应的电容峰的面积,所采用的基线为5.8pF,建立电容峰的面积与钢筋保护层厚度的一一对应关系;
1.4.4将检测和数据处理之后得到的电容峰的面积带入公式(4)中,对钢筋保护层厚度进行检测;表征电容峰的面积与钢筋保护层厚度关系的公式(4)为,A=h*i D+j 。
1.5电容峰值、峰的面积与钢筋直径的标定
1.5.1将不同直径的钢筋放入保护层厚度相同的混凝土中;
1.5.2对混凝土的参数进行设定,混凝土介电常数设置为6,其他参数均为设备初始参数;
1.5.3使用电容式钢筋检测装置将电极板沿混凝土一侧向另一侧匀速地进行扫描,测得不同钢筋直径对应的电容峰值和数据处理之后得到的峰的面积,建立电容峰值、峰的面积与钢筋直径的一一对应关系;
1.5.4将检测得到的电容峰值和数据处理之后的峰面积带入公式(5)中对钢筋直径进行检测;表征电容峰值、峰的面积与钢筋直径关系的公式(5)为,z=a 1+a 2*(a 3/((1+((x-a 4)/a 5) 2)*(1+((y-a 6)/a 7) 2))+(1-a 8)*exp(-0.5*((x-a 9)/ a 10) 2-0.5*((y- a 11)/ a 12) 2)) ;
1.6电容峰值、峰的面积与钢筋保护层厚度的标定
1.6.1将相同直径的钢筋放入保护层厚度不同的混凝土中;
1.6.2对混凝土的参数进行设定,混凝土介电常数设置为6,其他参数均为设备初始参数;
1.6.3使用电容钢筋检测装置将电极板沿混凝土一侧向另一侧匀速地进行扫描,测得不同钢筋保护层厚度对应的电容峰值和数据处理之后得到的峰的面积,建立电容峰值、峰的面积与钢筋保护层厚度的一一对应关系;
1.6.4将检测得到的电容峰值和数据处理之后得到的峰面积带入公式(6)中对钢筋直径进行检测;表征电容峰值、峰的面积与钢筋保护层厚度关系的公式(6)为,
z=b 1+b 2*exp(-0.5*pow((log(x/b 3)/b 4),2))+b 5*exp(-0.5*pow((log(y/b 6)/b 7),2))+b 8*exp(-0.5*(pow((log(x/b 9)/b 10),2)+pow((log(y/b 11)/b 12),2)))。
2)有限元计算获取数据
2.1对电容式钢筋检测装置和不同钢筋直径、不同保护层厚度的钢筋混凝土构件分别进行扫描;
2.2对钢筋混凝土结构进行检测
将电容式钢筋检测装置的电极板放置于混凝土一侧,输入必要工程信息及设备参数,将电极板沿混凝土一侧向另一侧匀速扫描,得到不同位置的电容值,极板之间的电容量可表示为:
Figure 383979dest_path_image002
其中,C是电容传感器两极板之间的电容量,以法拉(F)为单位;
Q是两极板之间的带电量,以库伦(C)为单位;
U是极板之间的电压,以伏特(V)为单位。
3)数据处理与分析
3.1沿电极板移动方向作为检测方向;
3.2建立二维坐标系,X轴为电极板所处的位置,Y轴为电容式钢筋检测装置实测得出的电容值。
利用上述数据,对混凝土中钢筋的位置、钢筋尺寸和钢筋保护层的厚度进行计算。
检测钢筋位置
通过电容峰值位置情况,可判定钢筋在混凝土中的位置;
将电容式钢筋检测装置的电极板放置于钢筋混凝土表面,将电极板沿钢筋混凝土表面一侧向另一侧匀速扫描,以2mm为步长,测得钢筋混凝土构件每个位置的电容值;
将获得修正后的每个位置的电容值进行绘制,如图2所示的表明电容传感器能够检测钢筋的位置关系。
检测钢筋的直径
将电容式钢筋检测装置的电极板放置于钢筋混凝土表面,电极板沿相同钢筋保护层厚度、不同钢筋直径的钢筋混凝土构件表面一侧向另一侧匀速扫描,统计每一次测得的电容峰值,比较相同钢筋保护层厚度在不同钢筋直径下的电容值的关系;
钢筋直径与电容值的关系式为:C=aB+b ,其中,C为电容式钢筋检测装置检测的电容值,B为钢筋的直径,a、b为拟合后得到的数值,如图3 所示表明电容传感能够检测钢筋的直径关系。
将电容式钢筋检测装置的电极板放置于钢筋混凝土表面,电极板沿相同钢筋保护层厚度、不同钢筋直径的钢筋混凝土构件表面一侧向另一侧匀速扫描,统计每一次测得和处理之后电容峰值的面积,比较相同钢筋保护层厚度在不同钢筋直径下的电容峰值的面积关系;
钢筋直径与电容峰的面积的关系式为:A=fB+g ,其中,A为电容式钢筋检测装置检测和处理之后得到的电容峰的面积,B为钢筋的直径, f、g为拟合后得到的数值,如图5所示表明电容传感能够检测钢筋的直径关系。
检测钢筋的保护层厚度
将电容式钢筋检测装置的电极板放置于钢筋混凝土表面,电极板沿相同钢筋直径、不同钢筋保护层厚度的钢筋混凝土构件表面一侧向另一侧匀速扫描,统计每一次电容式钢筋检测装置检测的电容峰值,比较相同钢筋直径在不同钢筋保护层厚度下的电容峰值的关系;
钢筋保护层厚度与电容峰的面积的关系式为:C=c*d D+e ,其中,C为电容式钢筋检测装置检测的电容峰值,D为钢筋保护层厚度, c、d、e为拟合后得到的数值,如图4 所示表明电容传感能够检测钢筋保护层厚度的关系。
将电容式钢筋检测装置的电极板放置于钢筋混凝土表面,将电极板沿相同钢筋直径、不同钢筋保护层厚度的钢筋混凝土构件表面一侧向另一侧匀速扫描,统计每一次电容式钢筋检测装置检测和处理之后电容峰的面积,比较相同钢筋直径在不同钢筋保护层厚度下的电容峰的面积的关系;
钢筋保护层厚度与电容峰的面积的关系式为:A=h*i D+j ,其中,A为电容式钢筋检测装置检测和处理之后得到的电容峰的面积,D为钢筋保护层厚度, h、i、j为拟合后得到的数值,如图6 所示表明电容传感能够检测钢筋保护层厚度的关系。
通过利用电容式钢筋检测装置检测的电容值数据、电容峰值和电容峰的面积,实现定量判断上误差较小,方便进行现场检测,实现其在实际工程中的应用。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种混凝土结构中钢筋状态检测方法,其特征在于,包括以下步骤:
    依据扫描钢筋混凝土构件获取的电容值数据、电容峰的面积,建立二者与钢筋状态的表征映射;
    对不同规格的混凝土构件进行扫描检测;
    建立检测位置和扫描检测电容值的对应关系,结合表征映射获取混凝土构件的钢筋位置、钢筋尺寸、钢筋保护层厚度。
  2. 如权利要求1所述的混凝土结构中钢筋状态检测方法,其特征在于,标定电容值数据、电容峰的面积与钢筋状态的表征映射。
  3. 如权利要求2所述的混凝土结构中钢筋状态检测方法,其特征在于,标定过程包括电容峰值与钢筋直径的标定、电容峰值与钢筋保护层厚度的标定、电容峰的面积与钢筋直径的标定、电容峰的面积与钢筋保护层厚度的标定、电容峰值和电容峰的面积与钢筋直径的标定、电容峰值和电容峰的面积与钢筋保护层厚度的标定。
  4. 如权利要求3所述的混凝土结构中钢筋状态检测方法,其特征在于,控制钢筋直径、保护层厚度变化,建立其与电容值数据、电容峰的面积的表征映射。
  5. 如权利要求1所述的混凝土结构中钢筋状态检测方法,其特征在于,所述扫描检测过程的步骤为:将电容式钢筋检测装置进行参数设定并对不同状态的钢筋混凝土构件进行检测。
  6. 如权利要求5所述的混凝土结构中钢筋状态检测方法,其特征在于,将电容式钢筋检测装置电极板放置于钢筋混凝土构件一侧,在电容式钢筋检测装置中输入工程信息,将电极板沿钢筋混凝土构件一侧向另一侧匀速扫描,得到不同位置的电容值。
  7. 如权利要求5所述的混凝土结构中钢筋状态检测方法,其特征在于,利用电容式钢筋检测装置对不同钢筋直径、不同保护层厚度的混凝土构件分别进行扫描检测。
  8. 如权利要求1所述的混凝土结构中钢筋状态检测方法,其特征在于,沿着检测方向,建立二维坐标系,X轴为极板所处的位置、钢筋直径或钢筋保护层厚度,Y轴为电容式钢筋检测装置检测得出的电容值;
    其中电容式钢筋检测装置扫描检测过程中的移动方向为检测方向。
  9. 如权利要求8所述的混凝土结构中钢筋状态检测方法,其特征在于,沿着检测方向,建立二维坐标系,X轴为钢筋直径或保护层厚度,Y轴为电容式钢筋检测装置通过数据处理得出的电容峰的面积。
  10. 如权利要求8所述的混凝土结构中钢筋状态检测方法,其特征在于,建立三维坐标系,X轴为电容钢筋检测装置检测得出的电容峰值,Y轴为电容式钢筋检测装置通过数据处理得出电容峰的面积,Z轴为所采用的钢筋直径或钢筋的保护层厚度。
PCT/CN2021/139910 2020-12-28 2021-12-21 一种混凝土结构中钢筋状态检测方法 WO2022143281A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011584264.8A CN112630270A (zh) 2020-12-28 2020-12-28 一种混凝土结构中钢筋状态检测方法
CN202011584264.8 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022143281A1 true WO2022143281A1 (zh) 2022-07-07

Family

ID=75285728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139910 WO2022143281A1 (zh) 2020-12-28 2021-12-21 一种混凝土结构中钢筋状态检测方法

Country Status (2)

Country Link
CN (1) CN112630270A (zh)
WO (1) WO2022143281A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115545500A (zh) * 2022-10-13 2022-12-30 中宬建设管理有限公司 一种用于工程监理的钢筋工程质量检测方法及系统
CN116090724A (zh) * 2022-08-26 2023-05-09 佛冈达味特钢有限公司 一种基于钢筋生产的智慧管理平台
CN116307939A (zh) * 2023-05-17 2023-06-23 国网安徽省电力有限公司合肥供电公司 一种水泥电杆质量智能预筛检分析系统
CN117705953A (zh) * 2024-02-06 2024-03-15 江苏省特种设备安全监督检验研究院 一种基于声发射和层析成像技术的损伤检测方法及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112630270A (zh) * 2020-12-28 2021-04-09 青岛理工大学 一种混凝土结构中钢筋状态检测方法
CN113566692B (zh) * 2021-07-23 2023-12-08 国网天津市电力公司电力科学研究院 一种电缆水泥保护盖板质量的无损检测方法
CN114777642B (zh) * 2022-03-16 2023-07-28 交通运输部公路科学研究所 一种在役混凝土路面板传荷构件三维空间位置检测系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100186504A1 (en) * 2008-11-21 2010-07-29 Hilti Aktiengesellschaft Method and hand-operated sensor with adaptive detection threshold for the detection of foreign objects embedded in building structure subgrades
US20150097589A1 (en) * 2013-10-08 2015-04-09 University Of Florida Research Foundation, Inc. Corrosion detection in structural tendons
JP2015121472A (ja) * 2013-12-24 2015-07-02 国立大学法人岩手大学 コンクリート体の空洞部検知システム及びコンクリート体の空洞部検知方法
CN207717597U (zh) * 2018-01-22 2018-08-10 青岛理工大学 一种电容式钢筋锈蚀监测装置
WO2019210389A1 (en) * 2018-05-03 2019-11-07 Pouria Ghods Construction material assessment method and systems
CN110836631A (zh) * 2019-11-22 2020-02-25 青岛理工大学 混凝土中钢筋检测装置及其方法
CN111257377A (zh) * 2020-02-17 2020-06-09 青岛理工大学 一种ect传感器标定方法
CN112630270A (zh) * 2020-12-28 2021-04-09 青岛理工大学 一种混凝土结构中钢筋状态检测方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3535117C1 (de) * 1985-10-02 1986-12-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Verfahren und Vorrichtung zum Vermessen von in nichtmagnetischen Materialien verlegten ferromagnetischen Gegenstaenden
CN2366823Y (zh) * 1998-06-23 2000-03-01 中国地震局工程力学研究所 电磁感应式钢筋扫描仪
CN201069438Y (zh) * 2007-08-20 2008-06-04 中交四航工程研究院有限公司 钢筋锈蚀监测装置
JP2009257795A (ja) * 2008-04-12 2009-11-05 Kajima Corp 鉄筋コンクリート構造物の被り厚さ管理方法
CN104634238A (zh) * 2015-02-16 2015-05-20 中交第二航务工程局有限公司 测定钢筋保护层厚度的方法及装置
RU155814U1 (ru) * 2015-04-23 2015-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Петербургский государственный университет путей сообщения Императора Александра I" Дефектоскоп
JP7032722B2 (ja) * 2017-07-14 2022-03-09 国立研究開発法人産業技術総合研究所 鉄筋コンクリートの鉄筋腐食評価方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100186504A1 (en) * 2008-11-21 2010-07-29 Hilti Aktiengesellschaft Method and hand-operated sensor with adaptive detection threshold for the detection of foreign objects embedded in building structure subgrades
US20150097589A1 (en) * 2013-10-08 2015-04-09 University Of Florida Research Foundation, Inc. Corrosion detection in structural tendons
JP2015121472A (ja) * 2013-12-24 2015-07-02 国立大学法人岩手大学 コンクリート体の空洞部検知システム及びコンクリート体の空洞部検知方法
CN207717597U (zh) * 2018-01-22 2018-08-10 青岛理工大学 一种电容式钢筋锈蚀监测装置
WO2019210389A1 (en) * 2018-05-03 2019-11-07 Pouria Ghods Construction material assessment method and systems
CN110836631A (zh) * 2019-11-22 2020-02-25 青岛理工大学 混凝土中钢筋检测装置及其方法
CN111257377A (zh) * 2020-02-17 2020-06-09 青岛理工大学 一种ect传感器标定方法
CN112630270A (zh) * 2020-12-28 2021-04-09 青岛理工大学 一种混凝土结构中钢筋状态检测方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116090724A (zh) * 2022-08-26 2023-05-09 佛冈达味特钢有限公司 一种基于钢筋生产的智慧管理平台
CN116090724B (zh) * 2022-08-26 2023-09-26 佛冈达味特钢有限公司 一种基于钢筋生产的智慧管理平台
CN115545500A (zh) * 2022-10-13 2022-12-30 中宬建设管理有限公司 一种用于工程监理的钢筋工程质量检测方法及系统
CN116307939A (zh) * 2023-05-17 2023-06-23 国网安徽省电力有限公司合肥供电公司 一种水泥电杆质量智能预筛检分析系统
CN116307939B (zh) * 2023-05-17 2023-08-18 国网安徽省电力有限公司合肥供电公司 一种水泥电杆质量智能预筛检分析系统
CN117705953A (zh) * 2024-02-06 2024-03-15 江苏省特种设备安全监督检验研究院 一种基于声发射和层析成像技术的损伤检测方法及系统
CN117705953B (zh) * 2024-02-06 2024-04-09 江苏省特种设备安全监督检验研究院 一种基于声发射和层析成像技术的损伤检测方法及系统

Also Published As

Publication number Publication date
CN112630270A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
WO2022143281A1 (zh) 一种混凝土结构中钢筋状态检测方法
WO2021098197A1 (zh) 混凝土中钢筋检测装置及其方法
CN108254438A (zh) 基于兰姆波的不均匀截面结构损伤识别成像方法及系统
WO2021189893A1 (zh) 一种ect传感器结构优化与电磁场分析方法
Cheng et al. Development of a capacitive sensor for concrete structure health monitoring
EP3039649A1 (en) Method of analyzing deformations in a laminated object and according system
CN113325079A (zh) 基于瑞利波能量衰减的混凝土裂纹绝对尺寸量化检测方法
CN110146003A (zh) 一种利用稀土永磁材料测量钢管管壁厚度及质量缺陷方法
CN114509504A (zh) 一种正交异性钢桥面板疲劳裂纹组合式监测方法及系统
CN104345216A (zh) 测量水泥电阻率和水泥28天强度的方法和装置
Ai et al. Damage localization on reinforced concrete slab structure using electromechanical impedance technique and probability-weighted imaging algorithm
CN104165795A (zh) 一种古建筑木梁的剩余抗弯承载力测定方法
US11511493B2 (en) Method for automated quality monitoring and control of cementitious/concrete 3D printing/additive manufacturing
Abdelraheem et al. IoT-based interdigital capacitance sensing system for damage detection in CFRP-concrete structures
Deresse et al. Fracture mode analysis of cementitious mortars by simultaneous application of 4D-XCT and acoustic emission technique
CN112991260A (zh) 光和超声复合激励的红外无损检测系统
WO2023155805A1 (zh) 集成电路的磁场检测方法、装置及缺陷检测方法、装置
CN108982655B (zh) 一种t型蜿蜒激励式涡流传感器及其线圈绕制方法
Wildy et al. An algorithm for identifying a crack within a measured displacement field
Hou et al. Tomographic imaging of crack damage in cementitious structural components
CN208888079U (zh) 一种建筑混凝土质量检测工具
Chen et al. Damage Location for a Steel Plate Using Distributed Sensors Based on EMI Method
Hobst et al. Various control methods developed for fibre concrete structures
CN117269613B (zh) 一种基于多频测量网格的双模式检测多参数反演方法
Hong et al. Reference-free infrared thermography detection with subsurface heating for deep cavity in adhesive of hidden frame glass curtain wall

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21914020

Country of ref document: EP

Kind code of ref document: A1