WO2022143171A1 - 离心风机及具有其的洗涤设备 - Google Patents

离心风机及具有其的洗涤设备 Download PDF

Info

Publication number
WO2022143171A1
WO2022143171A1 PCT/CN2021/138319 CN2021138319W WO2022143171A1 WO 2022143171 A1 WO2022143171 A1 WO 2022143171A1 CN 2021138319 W CN2021138319 W CN 2021138319W WO 2022143171 A1 WO2022143171 A1 WO 2022143171A1
Authority
WO
WIPO (PCT)
Prior art keywords
volute
impeller
air inlet
axial
side wall
Prior art date
Application number
PCT/CN2021/138319
Other languages
English (en)
French (fr)
Inventor
王泽旺
崔灿
周方正
姜文锋
侯永顺
Original Assignee
青岛海尔滚筒洗衣机有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔滚筒洗衣机有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔滚筒洗衣机有限公司
Priority to EP21913912.8A priority Critical patent/EP4273406A1/en
Publication of WO2022143171A1 publication Critical patent/WO2022143171A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F25/00Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry and having further drying means, e.g. using hot air 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/162Sealings between pressure and suction sides especially adapted for elastic fluid pumps of a centrifugal flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet

Definitions

  • the present invention relates to washing equipment, in particular to centrifugal fans and washing equipment having the same.
  • Some existing washing equipment such as a drum heat pump washer-dryer all-in-one, all have a drying system, and the drying system can provide a drying function for washed wet items (such as clothes).
  • Drying systems typically include fans, heaters, and evaporative devices or other devices that cool moist hot air. During the drying process, the fan blows hot air heated by the heater into the washing tub. The hot air is mixed with the wet laundry in the washing tub to generate a hot and humid airflow. The moist hot air is then discharged from the washing drum into the return air channel.
  • the hot and humid airflow is cooled by the heat absorption of the evaporating device, and the water vapor in it is condensed and turned into water droplets, thereby achieving the purpose of dehumidifying and cooling the airflow.
  • the dehumidified air flow is re-sucked by the fan and recirculated.
  • the air supply volume of the fan is a key factor affecting the drying efficiency of the washing equipment.
  • the most commonly used fan is the centrifugal fan.
  • This centrifugal fan includes a volute and an impeller rotatably placed in the volute.
  • An air inlet is provided on the axial air inlet side wall of the volute, and an air inlet is also provided on the axial air inlet side wall of the impeller.
  • the two air inlets are aligned, and the axial inlet sidewall of the volute is opposite to the axial inlet sidewall of the impeller, but the axial inlet sidewall of the volute is opposite to the axial inlet sidewall of the impeller.
  • the present invention provides a centrifugal fan
  • the centrifugal fan includes: a volute, which has an axial air inlet side of the volute a wall with a volute air inlet on the volute axial air inlet side wall; and an impeller configured to be rotatably placed in the volute and having an impeller axial air inlet side wall, in the volute There is a first axial gap between the axial air inlet side wall of the impeller and the axial air inlet side wall of the volute.
  • the air inlet of the impeller wherein an outer annular protrusion extending outward from the axial air inlet side wall of the impeller is arranged around the air inlet of the impeller, and around the air inlet of the volute is arranged from the volute shaft an inner annular bulge extending inward toward the air inlet side wall, the outer annular bulge and the inner annular bulge are configured to be opposite to each other and spaced apart by a second axial gap, the second axial gap is smaller than The first axial gap enables the outer annular protrusion and the inner annular protrusion to form a wind inner circulation blocking structure together.
  • the inner annular protrusion and the outer annular protrusion are opposite to each other and are separated by a second axial gap, and the second axial gap is larger than the first axial gap between the axial inlet side wall of the volute and the axial inlet side wall of the impeller.
  • Axial clearance should be small. It is obvious that due to the blocking of the inner annular protrusion and the outer annular protrusion and the narrowed flow channel, the resistance of the wind flowing through the second axial gap is significantly higher than that when flowing through the first axial gap. Therefore, the outer annular bulge and the inner annular bulge together can block the wind from flowing into the air inlet of the impeller from the first axial gap. In other words, the outer annular bulge and the inner annular bulge together form a structure for blocking the inner air circulation, which can basically eliminate the phenomenon of inner air circulation, thereby increasing the effective air supply volume of the centrifugal fan.
  • the outer annular protrusion includes a multi-level outer annular step
  • the inner annular protrusion includes a multi-level inner annular step corresponding to the multi-level outer annular step.
  • the multi-stage steps extending in the axial direction of the fan form flow channels with a plurality of substantially right-angle turns, so that multi-stage blocking of wind can be achieved. Therefore, as the number of stages increases, the effect of the internal wind circulation blocking structure will be better.
  • an inner annular groove is formed between adjacent inner annular steps of the multi-stage inner annular steps.
  • the multi-level outer annular steps include three outer annular steps, and the multi-level inner annular steps include three inner annular steps.
  • the three outer annular steps and the three inner annular steps together form three air barriers that can prevent the internal circulation of the wind, and the manufacturing process of the entire fan is relatively simple.
  • a multi-stage outer annular step of the volute extending outward from the axial inlet side wall of the volute is arranged around the air inlet of the volute.
  • the step and the corresponding inner annular step extend in the opposite direction in the axial direction.
  • the outer annular protrusion and the inner annular protrusion are configured to share a centerline with the air inlet of the volute and the air inlet of the impeller.
  • the use of the same centerline makes the manufacture of centrifugal fans simpler and more convenient.
  • the outer annular protrusion is positioned close to the air inlet of the impeller, and the inner annular protrusion is positioned close to the air inlet of the volute.
  • the inner annular protrusion is made close to the air inlet of the volute, and the outer annular protrusion is made close to the air inlet of the impeller.
  • the centrifugal fan has the function of preventing the internal circulation of the air.
  • the impeller is disc-shaped, and a plurality of evenly spaced radial impeller air outlets are formed on the outer circumference of the impeller, and the radial impeller air outlets are formed in communication with each other.
  • the disc-shaped impeller is not only small in size, but also easy to produce.
  • the volute further includes a motor installation wall opposite to the axial air inlet side wall of the volute, and a motor shaft hole is provided on the motor installation wall and surrounds the motor.
  • the shaft holes are arranged along the circumference of a plurality of motor mounting holes. These motor mounting holes facilitate securing the motor to the volute.
  • the present invention also provides a washing device, the washing device is provided with a drying system, and the drying system includes any one of the above centrifugal fans.
  • the centrifugal fan of the present invention By using the centrifugal fan of the present invention, the drying air volume of the washing equipment can be increased, thereby improving the drying efficiency of the washing equipment.
  • Fig. 1 is a schematic diagram showing the air circulation path of the centrifugal fan of the prior art washing equipment
  • Fig. 2 is the partial sectional perspective schematic diagram of the embodiment of the centrifugal fan of the present invention.
  • Figure 3 is a partial cross-sectional plan view of an embodiment of the centrifugal fan of the present invention.
  • FIG. 4 is a schematic perspective view of a portion of an embodiment of a volute of a centrifugal fan of the present invention
  • FIG. 5 is a schematic plan view of a portion of an embodiment of a volute of a centrifugal fan of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a portion of the embodiment of the volute of the centrifugal fan of the present invention along the E-E section line of FIG. 5;
  • FIG. 7 is a partial enlarged view of part F of the embodiment of the volute of the centrifugal fan of the present invention shown in FIG. 6;
  • Fig. 8 is the perspective view of the embodiment of the impeller of the centrifugal fan of the present invention.
  • Fig. 9 is the front schematic view of the embodiment of the impeller of the centrifugal fan of the present invention.
  • Fig. 10 is the right side view of the embodiment of the impeller of the centrifugal fan of the present invention.
  • FIG. 11 is a partial enlarged view of part G of the embodiment of the impeller of the centrifugal fan of the present invention shown in FIG. 10 .
  • connection should be understood in a broad sense, for example, it may be a fixed connection, or a It is a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can also be the internal communication of two components.
  • connection should be understood in a broad sense, for example, it may be a fixed connection, or a It is a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can also be the internal communication of two components.
  • the centrifugal fan 1 includes: a volute 11 having an axial air inlet side wall 112 of the volute, and a volute air inlet 111 on the axial air inlet side wall 112 of the volute; and an impeller 12 configured to be rotatable It is placed in the volute 11 and has an impeller axial air inlet side wall 122, a first axial gap 14 between the impeller axial air inlet side wall 122 and the volute axial air inlet side wall 112, and the impeller shaft
  • the air inlet side wall 122 is provided with an impeller air inlet 121 that can be aligned with the volute air inlet 111, wherein, around the impeller air inlet 121, there is an outer annular protrusion extending outward from the impeller axial air inlet side wall 122 132, and an inner annular protrusion 131 extending inward from the
  • the second axial gap 15 is spaced apart, and the second axial gap 15 is smaller than the first axial gap 14 , so that the outer annular protrusion 132 and the inner annular protrusion 131 together constitute the wind inner circulation blocking structure 13 .
  • the airflow b entering the first axial gap between the volute axial inlet side wall 112 and the impeller axial inlet side wall 122 protrudes into the first axial direction from both sides when encountering
  • the outer annular protrusion 132 and the inner annular protrusion 131 in the gap 14 are blocked, and the width D2 of the second axial gap 15 between the outer annular protrusion 132 and the inner annular protrusion 131 is significantly smaller than that of the second axial gap 15.
  • the width D1 of the first axial gap 14 also increases the resistance of the airflow b passing through the second axial gap 15 significantly, and finally forces the airflow b to be redirected and flow to the annular exhaust cavity 113 of the volute 11 .
  • the second axial gap 15 may have a plurality of turns to further increase the resistance of wind passing through.
  • FIG. 2 is a partial cross-sectional perspective view of an embodiment of the centrifugal fan of the present invention
  • FIG. 3 is a partial cross-sectional plan view of the embodiment of the centrifugal fan of the present invention.
  • the centrifugal fan 1 of the present invention includes a volute 11 and an impeller 12 .
  • the impeller 12 is configured to be rotatably arranged in the volute 11 .
  • the centrifugal fan 1 also includes a motor (not shown in the figure).
  • the impeller 12 forms a fixed connection with the drive shaft of the motor.
  • the impeller 12 When the centrifugal fan 1 is working, the impeller 12 is driven to rotate in the volute 11 by the drive shaft of the motor (not shown in the figure), and the wind is sucked into the impeller 12 along the direction of arrow a (also called the axial direction), Then, it is discharged into the annular exhaust cavity 113 of the volute 11 along the radial flow direction r, and finally blown out from the air outlet 118 of the volute (see FIG. 4 ). A suitable clearance needs to be left between the impeller 12 and the volute 11 to allow the rotation of the impeller 12 within the volute 11 to be unimpeded.
  • This gap includes an axial gap on two opposite axial sides of the impeller 12 (in the direction of the centerline c) and a radial gap on the outer circumference of the impeller 12, such as the first axial gap on the air inlet side 14.
  • the first axial gap 14 has a first axial width D1.
  • both the impeller 12 and the volute 11 may be made of suitable injection moulded materials.
  • the impeller 12 may be fabricated in a single injection molding process. The finished impeller 12 is placed in the cavity for making the volute 11 , and then not only the volute 11 is formed, but also the volute 11 and the impeller 12 are assembled together through one injection molding process.
  • the impeller 12 and the volute 11 may also be made of other suitable metal materials and by other suitable processes.
  • FIG. 4 is a schematic perspective view of a portion of an embodiment of a volute of a centrifugal fan of the present invention
  • FIG. 5 is a schematic plan view of a portion of an embodiment of a volute of a centrifugal fan of the present invention
  • FIG. 6 is a schematic view of the present invention along the E-E section line of FIG.
  • FIG. 7 is a partial enlarged view of part F of the portion of the embodiment of the volute of the inventive centrifugal fan shown in FIG. 6 .
  • the volute 11 includes an axial air inlet side wall 112 of the volute and an opposite motor mounting wall 114 .
  • the axial inlet side wall 112 of the volute and the motor installation wall 114 together form an impeller chamber (not shown in the figure) that can accommodate the impeller 12 .
  • An annular exhaust cavity 113 surrounding the impeller chamber is formed on the radial outer circumference of the impeller chamber.
  • the annular exhaust chamber 113 communicates with the impeller chamber so as to receive the airflow discharged from the impeller 12 .
  • the annular exhaust cavity 113 has a substantially rectangular cross-section, and four corners of the cross-section are rounded.
  • the width of the cross-section of the annular exhaust cavity 113 is larger than the width of the cross-section of the impeller chamber.
  • a volute air outlet 118 is provided in the circumferential direction of the annular air exhaust chamber 113 , and the annular air exhaust chamber 113 is directly communicated with the volute air outlet 118 so as to extend outward from the volute air outlet 118 Hair dryer.
  • the motor mounting wall 114 of the volute 11 is a thin wall with a predetermined thickness.
  • the predetermined thickness can be determined according to actual needs.
  • a motor shaft hole 141 is provided in the center of the motor mounting wall 114 to allow the drive shaft of the motor to rotatably pass therethrough.
  • the motor mounting wall 114 on the outer side surface of the motor mounting wall 114 (the right side surface based on the orientation shown in FIGS. 2 and 3 ), there is a drive shaft end for accommodating the motor (that is, the drive shaft from which the connecting groove (not marked in the figure).
  • the connecting groove is bounded by a circumferential end wall 142 .
  • the circumferential end wall 142 extends vertically outward for a first predetermined height from the outer side surface of the motor mounting wall 114 with the motor shaft hole 141 as the center.
  • the first predetermined height can be determined according to actual needs.
  • a first circumferential rib wall 143 and a second circumferential rib wall 144 are further provided on the outer surface of the motor mounting wall 114 .
  • the first circumferential rib wall 143 and the second circumferential rib wall 144 both surround the circumferential end wall 142 and are concentric with the circumferential end wall 142 .
  • the first circumferential rib wall 143 is located between the circumferential end wall 142 and the second circumferential rib wall 144 , preferably in an intermediate position between the circumferential end wall 142 and the second circumferential rib wall 144 .
  • the first circumferential rib wall 143 and the second circumferential rib wall 144 extend vertically outward from the outer side surface of the motor mounting wall 114 by a second predetermined height and a third predetermined height, respectively. Both the second predetermined height and the third predetermined height can be determined according to actual needs.
  • the first circumferential rib wall 143 is substantially flush with the circumferential end wall 142 and the second circumferential rib wall 144 extends outwardly beyond the first circumferential rib wall 143 and the circumferential end wall 142 . As shown in FIG.
  • a plurality of first radial ribs 145 are disposed between the first circumferential rib wall 143 and the circumferential end wall 142 .
  • Each first radial rib 145 extends radially from the circumferential end wall 142 to the first circumferential rib wall 143 .
  • Adjacent first radial ribs 145 are spaced apart by the same distance. Alternatively, the adjacent first radial ribs 145 may also be spaced unevenly according to actual needs.
  • a plurality of second radial ribs 146 are provided between the first circumferential rib wall 143 and the second circumferential rib wall 144 .
  • Each second radial rib 146 extends radially from the first circumferential rib wall 143 to the second circumferential rib wall 144 . Adjacent second radial ribs 146 are spaced apart by the same distance. Alternatively, the adjacent second radial ribs 146 may also be spaced unevenly according to actual needs.
  • the first circumferential rib wall 143 , the second circumferential rib wall 144 , the first radial rib 145 and the second radial rib 146 together may enhance the strength of the motor mounting wall 114 .
  • a plurality of spaced apart connecting posts are provided along the second circumferential rib wall 144 .
  • a motor connection hole 147 is provided on each connection post.
  • the connecting post may be separated from the second circumferential rib wall 144 or the second circumferential rib wall 144 may be eliminated.
  • a plurality of third radial ribs 148 are provided between the second circumferential rib wall 144 and the side wall forming the annular exhaust cavity 113 .
  • Each third radial rib 148 extends from the second circumferential rib wall 144 to the side wall forming the annular exhaust cavity 113 . Adjacent third radial ribs 148 are spaced apart by the same distance. Alternatively, the adjacent third radial ribs 148 may also be spaced unevenly according to actual needs. The third radial rib 148 can further enhance the strength of the volute 11 .
  • a volute air inlet 111 is provided in the center of the axial air inlet side wall 112 of the volute.
  • the volute air inlet 111 is surrounded by the peripheral wall 115 of the volute air inlet around the center line c.
  • the volute axial air inlet side wall 112 extends substantially radially from the volute air inlet peripheral wall 115 to the side wall forming the annular air outlet cavity 113 .
  • an inner annular protrusion 131 extending inward from the volute axial air inlet side wall 112 (based on the orientation shown in FIG. 6 , extending to the right) is provided.
  • the inner annular protrusion 131 shares the centerline c with the volute air inlet 111 , which facilitates the manufacture of the volute 11 .
  • the center of the inner annular protrusion 131 may deviate from the center of the volute air inlet 111 .
  • the inner annular protrusion 131 is a three-stage inner annular step close to the volute air inlet 111 : a first-stage inner annular step 131a, a second-stage inner annular step 131b, and the third inner annular step 131c.
  • the first-stage inner annular step 131 a is adjacent to the peripheral wall 115 of the volute air inlet and surrounds the peripheral wall 115 of the volute air inlet.
  • a first inner annular groove 133a is formed between the first-stage inner annular step 131a and the peripheral wall 115 of the air inlet of the volute.
  • the peripheral wall 115 of the inlet of the volute extends inward along the direction of the center line c beyond the first-stage inner annular step 131a.
  • the second-stage inner annular step 131b is adjacent to the first-stage inner annular step 131a and surrounds the first-stage inner annular step 131a.
  • the second-stage inner annular step 131b extends inward along the direction of the center line c beyond the first-stage inner annular step 131a.
  • a second inner annular groove 133b is formed between the second-stage inner annular step 131b and the first-stage inner annular step 131a.
  • the third-level inner annular step 131c is adjacent to and surrounds the second-level inner annular step 131b.
  • the third-stage inner annular step 131c extends inward along the direction of the center line c beyond the second-stage inner annular step 131b.
  • a third inner annular groove 133c is formed between the third-stage inner annular step 131c and the second-stage inner annular step 131b.
  • the first inner annular groove 133a, the second inner annular groove 133b, and the third inner annular groove 133c all belong to the inner annular groove 133c.
  • the inner annular protrusion 131 may employ one, two, or more than three steps. Alternatively, the inner annular groove may be eliminated between adjacent steps. Alternatively, the inner annular protrusions 131 may adopt other suitable forms of protrusions, such as corrugated shapes, to block the wind. Alternatively, the inner annular protrusion 131 may be positioned away from the volute inlet 111 , eg, positioned near the middle of the inner side of the volute axial inlet sidewall 112 .
  • a volute outer annular step 116 is provided on the outer side of the volute axial inlet side wall 112 around the volute air inlet 111 , so that the scroll The housing axial inlet sidewall 112 maintains a relatively thin wall and lighter weight.
  • the outer volute annular step 116 includes a first-stage outer volute annular step 116a, a second-stage outer volute annular step 116b, and a third-stage outer volute annular step 116b. Annular step 116c.
  • the first-stage outer annular step 116a of the volute is adjacent to the peripheral wall 115 of the air inlet of the volute and surrounds the peripheral wall 115 of the air inlet of the volute.
  • the peripheral wall 115 of the inlet of the volute extends outward along the direction of the center line c beyond the first-stage outer annular step 116a of the volute.
  • the first-stage volute outer annular step 116a and the first-stage inner annular step 131a are aligned with each other in the direction of the centerline c and extend in opposite directions.
  • the second stage outer volute annular step 116b is adjacent to the first stage outer volute annular step 116a and surrounds the first stage outer volute annular step 116a.
  • the outer annular step 116a of the first-stage volute extends outward along the direction of the center line c beyond the outer annular step 116b of the second-stage volute.
  • the second-stage volute outer annular step 116b and the second-stage inner annular step 131b are aligned with each other in the direction of the centerline c and extend in opposite directions.
  • the third stage outer volute annular step 116c is adjacent to and surrounds the second stage outer volute annular step 116b.
  • the outer annular step 116b of the second-stage volute extends outward along the direction of the center line c beyond the outer annular step 116c of the third-stage volute.
  • the third-stage volute outer annular step 116c and the third-stage inner annular step 131c are aligned with each other in the direction of the centerline c and extend in opposite directions.
  • the outer volute annular step 116 may employ one, two, or more than three steps.
  • the stepped protrusion design can be eliminated on the outer side of the volute axial inlet side wall 112 .
  • a plurality of reinforcing ribs 117 are provided on the outer side of the axial air inlet side wall 112 of the volute.
  • Each reinforcing rib 117 extends radially outward from the outer circumference of the outer volute annular step 116 to the side wall forming the annular exhaust cavity 113 .
  • Adjacent reinforcing ribs 117 have the same circumferential distance. Alternatively, according to actual needs, the circumferential distances between adjacent reinforcing ribs 117 may also be different.
  • FIG. 8 is a perspective view of an embodiment of an impeller of a centrifugal fan of the present invention
  • FIG. 9 is a schematic front view of an embodiment of an impeller of a centrifugal fan of the present invention
  • FIG. 10 is a right side view of an embodiment of the impeller of a centrifugal fan of the present invention
  • FIG. 11 is a partial enlarged view of part G of the embodiment of the impeller of the centrifugal fan of the present invention shown in FIG. 10 .
  • the impeller 12 is a substantially disk-shaped impeller.
  • the impeller 12 has an impeller axial inlet side wall 122 , a blade bottom wall 124 , and a plurality of uniformly spaced blades 123 .
  • each blade 123 is integrally formed with the blade bottom wall 124 and extends from the blade bottom wall 124 along the direction of the centerline c perpendicularly toward the impeller axial inlet side wall 122 .
  • Each blade 123 is also integrally formed with the impeller axial inlet side wall 122 on the portion near the outer circumference of the impeller 12 , but on the portion near the center of the impeller 12 , each blade 123 is formed with the impeller axial inlet side wall 122 .
  • a central hub 126 is provided in the center of the blade bottom wall 124 .
  • the central hub 126 is a substantially cylindrical body around the centerline c.
  • the central hub 126 is integrally formed with the blade bottom wall 124 , and extends from the blade bottom wall 124 to a predetermined height vertically toward the impeller axial inlet side wall 122 along the center line c.
  • the predetermined height should be lower than the maximum height of each blade 123 .
  • a center shaft hole 127 centered on the center line c is formed in the center of the center hub 126 .
  • the central shaft hole 127 penetrates the entire central shaft hub 126 . In the assembled state of the impeller 12 and the volute 11 , the central shaft hole 127 is aligned with the motor shaft hole 141 on the motor mounting wall 114 and shares the central line c.
  • the drive shaft of the motor can extend from the motor shaft hole 141 into the central shaft hole 127 and thus can be fixed with the central shaft hub 126 so that the motor can drive the impeller 12 to rotate through the drive shaft.
  • a plurality of radial impeller air outlets 129 are evenly distributed on the radial outer circumference 128 of the impeller 12 .
  • Each radial impeller air outlet 129 communicates with the gap between the corresponding vanes 123 so that the airflow drawn into the impeller 12 can be discharged from the radial impeller air outlet 129 .
  • each radial impeller air outlet 129 communicates with the annular exhaust cavity 113 of the volute 11 .
  • an impeller air inlet 121 is provided in the center of the axial air inlet side wall 122 of the impeller.
  • the impeller air inlet 121 is centered on the center line c and is surrounded by the impeller air inlet peripheral wall 125 .
  • the impeller air inlet 121 and the volute air inlet 111 are aligned and share the center line c.
  • the impeller air inlet peripheral wall 125 is sleeved on the inner end of the volute air inlet peripheral wall 115 opposite to the impeller 12 , and a predetermined radial gap is formed with the outer periphery of the inner end to allow the impeller 12 to rotate relative to the volute 11 .
  • an outer annular protrusion 132 is provided on the outer side of the impeller axial air inlet side wall 122 around the impeller air inlet 121 .
  • the outer annular protrusion 132 extends outward from the axial inlet side wall 122 of the impeller and extends outward along the center line c.
  • the outer annular protrusion 132 shares the centerline c with the impeller air inlet 121 , which facilitates the manufacture of the impeller 12 . According to actual needs, the center of the outer annular protrusion 132 may deviate from the center of the impeller air inlet 121 . In one or more embodiments, the outer annular protrusion 132 is positioned proximate the impeller air inlet 121, such an arrangement may obviate the need to adjust the size of the entire impeller.
  • the outer annular protrusion 132 is opposite to the inner annular protrusion 131 and is spaced apart from the second axial gap 15 smaller than the first axial gap 14, so together they can form a wind turbine.
  • Circulation blocking structure 13 In the assembled state of the impeller 12 and the volute 11, the outer annular protrusion 132 is opposite to the inner annular protrusion 131 and is spaced apart from the second axial gap 15 smaller than the first axial gap 14, so together they can form a wind turbine. Circulation blocking structure 13 .
  • the outer annular protrusion 132 includes three outer annular steps: a first outer annular step 132a, a second outer annular step 132b, and a first outer annular step 132b.
  • the first-stage outer annular step 132a is adjacent to the peripheral wall 125 of the impeller air inlet and surrounds the peripheral wall 125 of the impeller air inlet.
  • the second-level outer annular step 132b is adjacent to and surrounds the first-level outer annular step 132a.
  • the first outer annular step 132a extends outward beyond the second outer annular step 132b.
  • the third outer annular step 132c is adjacent to and surrounds the second outer annular step 132b.
  • the second outer annular step 132b extends outward beyond the third outer annular step 132c.
  • the first-stage outer annular step 132a of the impeller 12 is opposite to the first-stage inner annular step 131a of the volute 11, and is formed therebetween
  • the second axial gap 15; the second-stage outer annular step 132b is opposite to the second-stage inner annular step 131b, and a second axial gap 15 is formed therebetween;
  • the third-stage outer annular step 132c is opposite to the third-stage inner annular step 131b
  • the annular steps 131c are opposed to each other, and the second axial gap 15 is formed therebetween.
  • the width D2 of the second axial gap 15 is significantly smaller than the width D1 of the first axial gap 14 .
  • the second axial gap 15 forms three approximately right-angled turns. This design of the second axial gap 15 will significantly increase the resistance of the wind flowing through the second axial gap 15, so the effect of blocking the internal circulation of the wind is further enhanced.
  • the outer annular protrusion 132 may take one, two, or more than three steps and mate with the inner annular protrusion 131 .
  • the outer annular protrusions 132 may adopt other suitable forms of protrusions, such as corrugations, to block the wind.
  • the outer annular protrusion 132 may be positioned away from the impeller air inlet 121 , eg, positioned near the middle of the outer side of the impeller axial air inlet sidewall 122 .
  • the invention also relates to a washing device (not shown in the figures).
  • the washing equipment includes, but is not limited to, a front-loading washing machine and a top-loading washing machine.
  • the washing device is provided with a drying system (not shown in the figure), and the washing device includes any one of the centrifugal fans 1 as described above.
  • the centrifugal fan 1 By using the centrifugal fan 1, the effective air supply volume of the centrifugal fan can be increased without increasing the power of the centrifugal fan, thereby improving the drying efficiency of the washing equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种离心风机(1)及具有其的洗涤设备。离心风机(1)包括:蜗壳(11),其具有蜗壳轴向进风侧壁(112),在蜗壳轴向进风侧壁(112)上设有蜗壳进风口(111);和叶轮(12),其配置成可转动地置于蜗壳(11)中并且具有叶轮轴向进风侧壁(122),在叶轮轴向进风侧壁(122)与蜗壳轴向进风侧壁(112)之间具有第一轴向间隙(14),在叶轮轴向进风侧壁(122)上设有可与蜗壳进风口(111)对齐的叶轮进风口(121),其中,围绕叶轮进风口(121)设有从叶轮轴向进风侧壁(122)向外延伸的外环状凸起(132),并且围绕蜗壳进风口(111)设有从蜗壳轴向进风侧壁(112)向内延伸的内环状凸起(131),外环状凸起(132)和内环状凸起(131)配置成彼此相对并间隔第二轴向间隙(15),第二轴向间隙(15)小于第一轴向间隙(14),使得外环状凸起(132)和内环状凸起(131)一起构成风内循环阻挡结构(13)。这种阻挡结构可基本消除风内循环现象并增加送风量。

Description

离心风机及具有其的洗涤设备 技术领域
本发明涉及洗涤设备,具体地涉及离心风机以及具有其的洗涤设备。
背景技术
现有的部分洗涤设备,例如滚筒热泵洗干一体机,都具有烘干系统,通过烘干系统可对经过洗涤的潮湿物品(例如衣物)提供烘干功能。烘干系统通常包括风机、加热器、和蒸发装置或其它可冷却湿热空气的装置。在烘干过程中,风机向洗涤筒内吹送经过加热器加热的热风。该热风在洗涤筒内与潮湿的衣物混合,产生湿热气流。湿热气流然后从洗涤筒排出进入回风通道。在回风通道中,湿热气流通过蒸发装置的吸热被降温,其中的水汽因此产生冷凝而变成水珠,从而达到对气流除湿降温的目的。除湿后的气流被风机重新吸入并进行新的循环。
风机的送风量是影响洗涤设备的烘干效率的关键因素。目前经常采用的风机形式为离心风机。这种离心风机包括蜗壳和可转动地置于蜗壳中的叶轮。在蜗壳的轴向进风侧壁上设有进风口,并且在叶轮的轴向进风侧壁上也设有进风口。在蜗壳与叶轮的组装状态下,两个进风口对齐,并且蜗壳的轴向进风侧壁与叶轮的轴向进风侧壁相对,但是蜗壳的轴向进风侧壁与叶轮的轴向进风侧壁之间留有间隙,以便允许叶轮可相对于蜗壳进行旋转。由于叶轮与蜗壳之间的间隙分别连通叶轮的进风口和出风口,因此在离心风机内形成一条潜在的风循环路径。当离心风机工作时,一部分气流会从叶轮的径向出风口沿着该风循环路径返回到叶轮进风口并重新被叶轮吸入,如图1中的白色箭头所示,因此风在离心风机内形成无效的循环(其可被称为“风内循环”)。这种风内循环降低了离心风机的有效送风量,进而降低了洗涤设备的烘干效率。
相应地,本领域需要一种新的技术方案来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决离心风机的风内循环的技术问题,本发明提供了一种离心风机,所述离心风机包括:蜗壳,其具有蜗壳轴向进风侧壁,在所述蜗壳轴向进风侧壁上设有蜗壳进风口;和叶轮,其配置成可转动地置于所述蜗壳中并且具有叶轮轴向进风侧壁,在所述叶轮轴向进风侧壁与所述蜗壳轴向进风侧壁之间具有第一轴向间隙,在所述叶轮轴向进风侧壁上设有可与所述蜗壳进风口对齐的叶轮进风口,其中,围绕所述叶轮进风口设有从所述叶轮轴向进风侧壁向外延伸的外环状凸起,并且围绕所述蜗壳进风口设有从所述蜗壳轴向进风侧壁向内延伸的内环状凸起,所述外环状凸起和所述内环状凸起配置成彼此相对并间隔第二轴向间隙,所述第二轴向间隙小于所述第一轴向间隙,使得所述外环状凸起和所述内环状凸起一起构成风内循环阻挡结构。
本领域技术人员能够理解的是,在本发明离心风机的技术方案中,在蜗壳轴向进风侧壁上围绕蜗壳进风口设有从蜗壳轴向进风侧壁向内延伸的内环状凸起,并且在叶轮轴向进风侧壁上围绕叶轮进风口设有从叶轮轴向进风侧壁向外延伸的外环状凸起。内环状凸起与外环状凸起彼此相对并且间隔第二轴向间隙,并且该第二轴向间隙比蜗壳轴向进风侧壁与叶轮轴向进风侧壁之间的第一轴向间隙要小。很明显的是,由于内环状凸起和外环状凸起的阻挡以及收窄的流道,风流过第二轴向间隙时的阻力比流过第一轴向间隙时的阻力要明显增大,因此外环状凸起和内环状凸起一起可起到阻挡风从第一轴向间隙流入叶轮进风口的作用。换言之,外环状凸起和内环状凸起一起构成风内循环阻挡结构,可基本消除风内循环现象,从而增加离心风机的有效送风量。
在上述离心风机的优选技术方案中,所述外环状凸起包括多级外环形台阶,并且所述内环状凸起包括与所述多级外环形台阶相对应的多级内环形台阶。这种在风机轴向上延伸的多级台阶形成具有多个大致直角拐弯的流道,从而可实现对风的多级阻挡。因此随着台阶级数的增加,风内循环阻挡结构的效果就会越好。
在上述离心风机的优选技术方案中,在所述多级内环形台阶的相邻内环形台阶之间形成有内环形凹槽。通过配置这些内环形凹槽,可降低蜗壳的总重量,同时也节省了蜗壳所用材料量。
在上述离心风机的优选技术方案中,所述多级外环形台阶包括三级外环形台阶,并且所述多级内环形台阶包括三级内环形台阶。三级外环形 台阶和三级内环形台阶一起形成可阻止风内循环的三道风屏障,同时整个风机的制造工艺也相对简单。
在上述离心风机的优选技术方案中,围绕所述蜗壳进风口设有从所述蜗壳轴向进风侧壁向外延伸的多级蜗壳外环形台阶,每级所述蜗壳外环形台阶与对应一级所述内环形台阶沿轴向朝相反方向延伸。设计这些蜗壳外环形台阶是为了降低蜗壳的重量,同时也节省了蜗壳所用材料量。
在上述离心风机的优选技术方案中,所述外环状凸起和所述内环状凸起配置成可与所述蜗壳进风口和叶轮进风口共用中心线。使用同一中心线使得离心风机的制造更简单、方便。
在上述离心风机的优选技术方案中,所述外环状凸起定位靠近所述叶轮进风口,并且所述内环状凸起定位靠近所述蜗壳进风口。靠近蜗壳进风口制造内环状凸起,并且靠近叶轮进风口制造外环状凸起,基本不需要改变蜗壳和叶轮的尺寸,但却使离心风机具有了阻止风内循环的功能。
在上述离心风机的优选技术方案中,所述叶轮为圆盘形,在所述叶轮的外周上形成有多个均匀间隔开的径向叶轮出风口,所述径向叶轮出风口连通形成在所述蜗壳内的环形排风腔。圆盘形的叶轮不仅体积小,而且便于生产。
在上述离心风机的优选技术方案中,所述蜗壳还包括与所述蜗壳轴向进风侧壁相对的电机安装壁,在所述电机安装壁上设有电机轴孔和围绕所述电机轴孔沿周向布置的多个电机安装孔。这些电机安装孔便于将电机固定到蜗壳上。
本发明还提供一种洗涤设备,所述洗涤设备设有烘干系统,并且所述烘干系统包括如上任一种的离心风机。通过使用本发明的离心风机,可增加洗涤设备的烘干风量,进而提高洗涤设备的烘干效率。
附图说明
下面参照附图来描述本发明的优选实施方式,附图中:
图1是显示现有技术洗涤设备的离心风机的风内循环路径的示意图;
图2是本发明离心风机的实施例的局部剖面立体示意图;
图3是本发明离心风机的实施例的局部剖面平面示意图;
图4是本发明离心风机的蜗壳的实施例的部分的立体示意图;
图5是本发明离心风机的蜗壳的实施例的部分的平面示意图;
图6是沿图5的E-E剖面线的本发明离心风机的蜗壳的实施例的部分的剖面示意图;
图7是图6所示的本发明离心风机的蜗壳的实施例的部分的F部局部放大图;
图8是本发明离心风机的叶轮的实施例的立体示意图;
图9是本发明离心风机的叶轮的实施例的正面示意图;
图10是本发明离心风机的叶轮的实施例的右视图;
图11是图10所示的本发明离心风机的叶轮的实施例的G部局部放大图。
附图标记列表:
1、离心风机;11、蜗壳;111、蜗壳进风口;112、蜗壳轴向进风侧壁;113、环形排风腔;114、电机安装壁;141、电机轴孔;142、周向端壁;143、第一周向肋壁;144、第二周向肋壁;145、第一径向肋;146、第二径向肋;147、电机安装孔;148、第三径向肋;115、蜗壳进风口周壁;116、蜗壳外环形台阶;116a、第一级蜗壳外环形台阶;116b、第二级蜗壳外环形台阶;116c、第三级蜗壳外环形台阶;117、蜗壳轴向进风侧壁上的加强肋;118、蜗壳出风口;12、叶轮;121、叶轮进风口;122、叶轮轴向进风侧壁;123、叶片;124、叶片底壁;125、叶轮进风口周壁;126、中心轴毂;127、中心轴孔;128;叶轮外周;129、径向叶轮出风口;13、风内循环阻挡结构;131、内环状凸起;131a、第一级内环形台阶;131b、第二级内环形台阶;131c、第三级内环形台阶;132、外环状凸起;132a、第一级外环形台阶;132b、第二级外环形台阶;132c、第三级外环形台阶;133、内环形凹槽;133a、第一内环形凹槽;133b、第二内环形凹槽;133c、第三内环形凹槽;14、第一轴向间隙;15、第二轴向间隙。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
需要说明的是,在本发明的描述中,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“设置”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
为了解决离心风机的风内循环的技术问题,本发明提供一种离心风机1。该离心风机1包括:蜗壳11,其具有蜗壳轴向进风侧壁112,在蜗壳轴向进风侧壁112上设有蜗壳进风口111;和叶轮12,其配置成可转动地置于蜗壳11中并且具有叶轮轴向进风侧壁122,在叶轮轴向进风侧壁122与蜗壳轴向进风侧壁112之间具有第一轴向间隙14,在叶轮轴向进风侧壁122上设有可与蜗壳进风口111对齐的叶轮进风口121,其中,围绕叶轮进风口121设有从叶轮轴向进风侧壁122向外延伸的外环状凸起132,并且围绕蜗壳进风口111设有从蜗壳轴向进风侧壁112向内延伸的内环状凸起131,外环状凸起132和内环状凸起131配置成彼此相对并间隔第二轴向间隙15,第二轴向间隙15小于第一轴向间隙14,使得外环状凸起132和内环状凸起131一起构成风内循环阻挡结构13。如图3所示,进入位于蜗壳轴向进风侧壁112和叶轮轴向进风侧壁122之间的第一轴向间隙内的气流b在遇到从两侧突入到第一轴向间隙14中的外环状凸起132和内环状凸起131时受到阻挡,并且外环状凸起132和内环状凸起131之间的第二轴向间隙15的宽度D2明显小于第一轴向间隙14的宽度D1,使得气流b要通过第二轴向间隙15的阻力也显著增加,最终迫使风流b改向并流向蜗壳11的环形排风腔113。进一步地,第二轴向间隙15可具有多个拐弯,以进一步增加风通过的阻力。
图2是本发明离心风机的实施例的局部剖面立体示意图,而图3是本发明离心风机的实施例的局部剖面平面示意图。如图2和图3所示,本发明离心风机1包括蜗壳11和叶轮12。叶轮12配置成可转动地布置在蜗壳11中。 离心风机1还包括电机(图中未示出)。叶轮12与电机的驱动轴形成固定连接。当离心风机1工作时,通过电机的驱动轴(图中未示出)驱动叶轮12在蜗壳11内旋转,风沿着箭头a的方向(也称为轴向方向)被吸入叶轮12中,然后沿着径向流向r排入到蜗壳11的环形排风腔113中,最后从蜗壳出风口118(参见图4)吹出。在叶轮12与蜗壳11之间需要留有适当的间隙,以允许叶轮12在蜗壳11内的旋转不受妨碍。这个间隙包括位于叶轮12的两个相对轴向侧(沿着中心线c的方向)上的轴向间隙和位于叶轮12外周上的径向间隙,例如位于进风一侧的第一轴向间隙14。第一轴向间隙14具有第一轴向宽度D1。可选地,叶轮12和蜗壳11可都由适当的注塑材料制成。例如,叶轮12可通过一次注塑成型工艺制成。将制成的叶轮12放置到用于制作蜗壳11的型腔中,再通过一次注塑成型工艺不仅制成蜗壳11,而且同时将蜗壳11与叶轮12组装到一起。替代地,叶轮12和蜗壳11也可由其它合适的金属材料并通过其它合适的工艺制成。
图4是本发明离心风机的蜗壳的实施例的部分的立体示意图,图5是本发明离心风机的蜗壳的实施例的部分的平面示意图,图6是沿图5的E-E剖面线的本发明离心风机的蜗壳的实施例的部分的剖面示意图,而图7是图6所示的本发明离心风机的蜗壳的实施例的部分的F部局部放大图。如图2至图6所示,蜗壳11包括蜗壳轴向进风侧壁112和相对的电机安装壁114。蜗壳轴向进风侧壁112和电机安装壁114一起围成可容纳叶轮12的叶轮室(图中未标示)。在叶轮室的径向外周上形成有围绕叶轮室的环形排风腔113。环形排风腔113与叶轮室相连通,以便可接收从叶轮12排出的气流。如图2和图3所示,在一种或多种实施例中,环形排风腔113具有大致矩形的横截面,并且该横截面的四个拐角均倒圆角。沿着轴向方向(即中心线c的方向),环形排风腔113的横截面的宽度要大于叶轮室的横截面的宽度。如图4和图5所示,在环形排风腔113的周向上设有蜗壳出风口118,并且环形排风腔113与蜗壳出风口118直接连通,以便从蜗壳出风口118向外吹风。
如图2和图3所示,在一种或多种实施例中,蜗壳11的电机安装壁114为具有预定厚度的薄壁。该预定厚度可根据实际需要确定。在电机安装壁114的中心设有电机轴孔141,以允许电机的驱动轴可转动地从其中穿过。如图2和图3所示,在电机安装壁114的外侧表面(基于图2和图3所示方位,为右侧表面)上设有用于容纳电机的驱动轴端(即驱动轴从其向外延伸的端 部)的连接槽(图中未标示)。连接槽由周向端壁142围成。周向端壁142以电机轴孔141为中心自电机安装壁114的外侧表面垂直地向外延伸第一预定高度。该第一预定高度可根据实际需要确定。在组装状态下,电机的驱动轴端插入到该连接槽中,并且电机的驱动轴穿过电机轴孔141延伸到叶轮室中。
如图2和图3所示,在一种或多种实施例中,在电机安装壁114的外侧表面上还设有第一周向肋壁143和第二周向肋壁144。第一周向肋壁143和第二周向肋壁144均环绕周向端壁142并且与周向端壁142同心。第一周向肋壁143位于周向端壁142与第二周向肋壁144之间,优选地位于周向端壁142与第二周向肋壁144之间的中间位置。第一周向肋壁143和第二周向肋壁144分别自电机安装壁114的外侧表面垂直地向外延伸第二预定高度和第三预定高度。该第二预定高度和第三预定高度都可根据实际需要确定。在一种或多种实施例中,第一周向肋壁143与周向端壁142大致平齐,而第二周向肋壁144向外延伸超过第一周向肋壁143和周向端壁142。如图2所示,在一种或多种实施例中,在第一周向肋壁143与周向端壁142之间设置多个第一径向肋145。每个第一径向肋145从周向端壁142沿径向延伸到第一周向肋壁143。相邻的第一径向肋145之间间隔相同的距离。替代地,相邻的第一径向肋145之间根据实际需要也可形成不均匀地间隔。如图2所示,在一种或多种实施例中,在第一周向肋壁143与第二周向肋壁144之间设有多个第二径向肋146。每个第二径向肋146从第一周向肋壁143沿径向延伸到第二周向肋壁144。相邻的第二径向肋146之间间隔相同的距离。替代地,相邻的第二径向肋146之间根据实际需要也可形成不均匀地间隔。第一周向肋壁143、第二周向肋壁144、第一径向肋145和第二径向肋146一起可增强电机安装壁114的强度。
如图2所示,在一种或多种实施例中,沿着第二周向肋壁144设有多个相互间隔开的连接柱(图中未标示)。在每个连接柱上设有电机连接孔147。当电机与蜗壳组装到一起时,通过这些电机连接孔147可将电机固定在蜗壳11上。替代地,连接柱可与第二周向肋壁144分开或者取消第二周向肋壁144。如图2所示,在一种或多种实施例中,在第二周向肋壁144与形成环形排风腔113的侧壁之间设有多个第三径向肋148。每个第三径向肋148从第二周向肋壁144延伸到形成环形排风腔113的侧壁。相邻的第三径向肋148之间间隔相同的距离。替代地,相邻的第三径向肋148之间根据实际需要也可形成不均匀地间隔。第三径向肋148可进一步提高蜗壳11的强度。
如图3至图6所示,在蜗壳轴向进风侧壁112的中心设有蜗壳进风口111。蜗壳进风口111由蜗壳进风口周壁115绕中心线c围成。蜗壳轴向进风侧壁112从蜗壳进风口周壁115大致沿径向延伸到形成环形排风腔113的侧壁。如图6和图7所示,围绕蜗壳进风口111设有从蜗壳轴向进风侧壁112向内延伸(基于图6所示方位,向右延伸)的内环状凸起131。在一种或多种实施例中,内环状凸起131与蜗壳进风口111共用中心线c,这样便于制造蜗壳11。替代,根据实际需要,内环状凸起131的中心可偏离蜗壳进风口111的中心。如图7所示,在一种或多种实施例中,内环状凸起131为靠近蜗壳进风口111的三级内环形台阶:第一级内环形台阶131a,第二级内环形台阶131b,和第三级内环形台阶131c。第一级内环形台阶131a与蜗壳进风口周壁115相邻并且围绕蜗壳进风口周壁115。在一种或多种实施例中,为了节省材料并且减轻蜗壳11的重量,在第一级内环形台阶131a与蜗壳进风口周壁115之间形成有第一内环形凹槽133a。在蜗壳轴向进风侧壁112内侧上,蜗壳进风口周壁115沿着中心线c的方向向内延伸超过第一级内环形台阶131a。第二级内环形台阶131b与第一级内环形台阶131a相邻并且围绕第一级内环形台阶131a。在蜗壳轴向进风侧壁112内侧上,第二级内环形台阶131b沿着中心线c的方向向内延伸超过第一级内环形台阶131a。在一种或多种实施例中,为了节省材料并且减轻蜗壳11的重量,在第二级内环形台阶131b与第一级内环形台阶131a之间形成有第二内环形凹槽133b。第三级内环形台阶131c与第二级内环形台阶131b相邻并且围绕第二级内环形台阶131b。在蜗壳轴向进风侧壁112内侧上,第三级内环形台阶131c沿着中心线c的方向向内延伸超过第二级内环形台阶131b。在一种或多种实施例中,为了节省材料并且减轻蜗壳11的重量,在第三级内环形台阶131c与第二级内环形台阶131b之间形成有第三内环形凹槽133c。第一内环形凹槽133a、第二内环形凹槽133b、和第三内环形凹槽133c都属于内环形凹槽133c。
替代地,内环状凸起131可采用一级、两级、或多于三级的台阶。可选地,在相邻台阶之间可取消内环形凹槽。替代地,内环状凸起131可采用例如波纹状等其它合适形式的凸起,以对风起到阻挡作用。替代地,内环状凸起131可定位远离蜗壳进风口111,例如定位靠近蜗壳轴向进风侧壁112内侧的中部。
如图3至图7所示,在一种或多种实施例中,在蜗壳轴向进风侧壁112的外侧上围绕蜗壳进风口111设有蜗壳外环形台阶116,以使蜗壳轴向进风侧壁112保持相对薄的壁和更轻的重量。如图7所示,在一种或多种实施例中,蜗壳外环形台阶116包括第一级蜗壳外环形台阶116a,第二级蜗壳外环形台阶116b,和第三级蜗壳外环形台阶116c。第一级蜗壳外环形台阶116a与蜗壳进风口周壁115相邻并且围绕蜗壳进风口周壁115。在蜗壳轴向进风侧壁112外侧上,蜗壳进风口周壁115沿着中心线c的方向向外延伸超过第一级蜗壳外环形台阶116a。第一级蜗壳外环形台阶116a与第一级内环形台阶131a沿中心线c的方向彼此对齐并向相反方向延伸。第二级蜗壳外环形台阶116b与第一级蜗壳外环形台阶116a相邻并且围绕第一级蜗壳外环形台阶116a。在蜗壳轴向进风侧壁112外侧上,第一级蜗壳外环形台阶116a沿着中心线c的方向向外延伸超过第二级蜗壳外环形台阶116b。第二级蜗壳外环形台阶116b与第二级内环形台阶131b沿中心线c的方向彼此对齐并向相反方向延伸。第三级蜗壳外环形台阶116c与第二级蜗壳外环形台阶116b相邻并且围绕第二级蜗壳外环形台阶116b。在蜗壳轴向进风侧壁112外侧上,第二级蜗壳外环形台阶116b沿着中心线c的方向向外延伸超过第三级蜗壳外环形台阶116c。第三级蜗壳外环形台阶116c与第三级内环形台阶131c沿中心线c的方向彼此对齐并向相反方向延伸。
替代地,蜗壳外环形台阶116可采用一级、二级、或多于三级的台阶。替代地,在蜗壳轴向进风侧壁112外侧上可取消台阶形凸起的设计。如图4所示,在一种或多种实施例中,在蜗壳轴向进风侧壁112外侧上设有多个加强肋117。每个加强肋117从蜗壳外环形台阶116的外周沿径向向外延伸到形成环形排风腔113的侧壁。相邻加强肋117之间具有相同的周向距离。替代地,根据实际需要,相邻加强肋117之间的周向距离也可不相同。
图8是本发明离心风机的叶轮的实施例的立体示意图,图9是本发明离心风机的叶轮的实施例的正面示意图,图10是本发明离心风机的叶轮的实施例的右视图,而图11是图10所示的本发明离心风机的叶轮的实施例的G部局部放大图。如图8至图10所示,在一种或多种实施例中,叶轮12为大致圆盘形的叶轮。该叶轮12具有叶轮轴向进风侧壁122、叶片底壁124、和多个均匀间隔开的叶片123。
参见图2和图3,每个叶片123都与叶片底壁124形成一体,并且从叶片底壁124沿着中心线c的方向垂直地朝向叶轮轴向进风侧壁122延伸。每个叶片123在靠近叶轮12外周的部分上与叶轮轴向进风侧壁122也形成一体,但是在靠近叶轮12中心的部分上,每个叶片123与叶轮轴向进风侧壁122形成有预定的间隔,以允许风可均匀地进入所有相邻叶片之间的间隙。参见图2和图3,在叶片底壁124的中心设有中心轴毂126。中心轴毂126为围绕中心线c的大致圆柱体。中心轴毂126与叶片底壁124形成为一体,并且从叶片底壁124沿着中心线c垂直地朝向叶轮轴向进风侧壁122延伸预定高度。该预定高度应当低于每个叶片123的最大高度。在中心轴毂126的中心形成有以中心线c为中心的中心轴孔127。中心轴孔127贯穿整个中心轴毂126。在叶轮12与蜗壳11的组装状态下,中心轴孔127与电机安装壁114上的电机轴孔141对齐并且共用中心线c。因此,电机的驱动轴可从电机轴孔141延伸到中心轴孔127中并因此可与中心轴毂126固定在一起,使得电机可通过驱动轴驱动叶轮12旋转。如图8和图10所示,在叶轮12的径向的外周128上均匀分布有多个径向叶轮出风口129。每个径向叶轮出风口129都与对应叶片123之间的间隙连通,以便被吸入到叶轮12中的气流可从径向叶轮出风口129排出。在叶轮12与蜗壳11的组装状态下,每个径向叶轮出风口129都与蜗壳11的环形排风腔113连通。
如图8和图9所示,在叶轮轴向进风侧壁122的中心设有叶轮进风口121。叶轮进风口121以中心线c为中心并且由叶轮进风口周壁125围成。在叶轮12与蜗壳11的组装状态下,叶轮进风口121与蜗壳进风口111对齐并且共用中心线c。叶轮进风口周壁125套在蜗壳进风口周壁115的与叶轮12相对的内侧端上,并且与内侧端的外周之间形成有预定径向间隙,以便允许叶轮12相对于蜗壳11进行旋转。如图10和图11所示,围绕叶轮进风口121在叶轮轴向进风侧壁122的外侧上设有外环状凸起132。该外环状凸起132从叶轮轴向进风侧壁122向外延伸沿中心线c向外延伸。在一种或多种实施例中,外环状凸起132与叶轮进风口121共用中心线c,这样便于制造叶轮12。根据实际需要,外环状凸起132的中心可偏离叶轮进风口121的中心。在一种或多种实施例中,外环状凸起132定位靠近叶轮进风口121,这样的布置可免去调整整个叶轮尺寸的需要。在叶轮12与蜗壳11的组装状态下,外环状凸起132与内环 状凸起131相对并且间隔比第一轴向间隙14小的第二轴向间隙15,因此一起可构成风内循环阻挡结构13。
如图10和图11所示,在一种或多种实施例中,外环状凸起132包括三级外环形台阶:第一级外环形台阶132a,第二级外环形台阶132b,和第三级外环形台阶132c。第一级外环形台阶132a与叶轮进风口周壁125相邻并且围绕叶轮进风口周壁125。沿着中心线c,叶轮进风口周壁125向外延伸超过第一级外环形台阶132a。第二级外环形台阶132b与第一级外环形台阶132a相邻并且围绕第一级外环形台阶132a。沿着中心线c,第一级外环形台阶132a向外延伸超过第二级外环形台阶132b。第三级外环形台阶132c与第二级外环形台阶132b相邻并且围绕第二级外环形台阶132b。沿着中心线c,第二级外环形台阶132b向外延伸超过第三级外环形台阶132c。参见图2和图3,在叶轮12与蜗壳11的组装状态下,叶轮12的第一级外环形台阶132a与蜗壳11的第一级内环形台阶131a相对,并且在二者之间形成第二轴向间隙15;第二级外环形台阶132b与第二级内环形台阶131b相对,并且在二者之间形成第二轴向间隙15;第三级外环形台阶132c与第三级内环形台阶131c相对,并且在二者之间形成第二轴向间隙15。如图3所示,第二轴向间隙15的宽度D2要明显小于第一轴向间隙14的宽度D1。进一步地,如图3所示,由于三级对应的内外环形台阶彼此错开,因此第二轴向间隙15形成三个大致直角的拐弯。第二轴向间隙15的这种设计将明显增加风流过第二轴向间隙15的阻力,因此阻挡风内循环的效果得到进一步地加强。
替代地,外环状凸起132可采用一级、二级、或多于三级的台阶,并且与内环状凸起131相匹配。替代地,外环状凸起132可采用例如波纹状等其它合适形式的凸起,以对风起到阻挡作用。替代地,外环状凸起132可定位远离叶轮进风口121,例如定位靠近叶轮轴向进风侧壁122外侧的中部。
本发明还涉及一种洗涤设备(图中未示出)。该洗涤设备包括但不限于滚筒洗衣机和波轮洗衣机。该洗涤设备设有烘干系统(图中未示出),并且该洗涤设备包括如上所述的任一种离心风机1。通过使用该离心风机1,在不增加离心风机功率的情况下,就可增加离心风机的有效送风量,进而可提高洗涤设备的烘干效率。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于 这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对来自不同实施例的技术特征进行组合,也可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种离心风机,其特征在于,所述离心风机包括:
    蜗壳,其具有蜗壳轴向进风侧壁,在所述蜗壳轴向进风侧壁上设有蜗壳进风口;和
    叶轮,其配置成可转动地置于所述蜗壳中并且具有叶轮轴向进风侧壁,在所述叶轮轴向进风侧壁与所述蜗壳轴向进风侧壁之间具有第一轴向间隙,在所述叶轮轴向进风侧壁上设有可与所述蜗壳进风口对齐的叶轮进风口,
    其中,围绕所述叶轮进风口设有从所述叶轮轴向进风侧壁向外延伸的外环状凸起,并且围绕所述蜗壳进风口设有从所述蜗壳轴向进风侧壁向内延伸的内环状凸起,所述外环状凸起和所述内环状凸起配置成彼此相对并间隔第二轴向间隙,所述第二轴向间隙小于所述第一轴向间隙,使得所述外环状凸起和所述内环状凸起一起构成风内循环阻挡结构。
  2. 根据权利要求1所述的离心风机,其特征在于,所述外环状凸起包括多级外环形台阶,并且所述内环状凸起包括与所述多级外环形台阶相对应的多级内环形台阶。
  3. 根据权利要求2所述的离心风机,其特征在于,在所述多级内环形台阶的相邻内环形台阶之间形成有内环形凹槽。
  4. 根据权利要求2所述的离心风机,其特征在于,所述多级外环形台阶包括三级外环形台阶,并且所述多级内环形台阶包括三级内环形台阶。
  5. 根据权利要求2所述的离心风机,其特征在于,围绕所述蜗壳进风口设有从所述蜗壳轴向进风侧壁向外延伸的多级蜗壳外环形台阶,每级所述蜗壳外环形台阶与对应一级所述内环形台阶沿轴向朝相反方向延伸。
  6. 根据权利要求1-5任一项所述的离心风机,其特征在于,所述外环 状凸起和所述内环状凸起配置成可与所述蜗壳进风口和所述叶轮进风口共用中心线。
  7. 根据权利要求1-5任一项所述的离心风机,其特征在于,所述外环状凸起定位靠近所述叶轮进风口,并且所述内环状凸起定位靠近所述蜗壳进风口。
  8. 根据权利要求1-5所述的离心风机,其特征在于,所述叶轮为圆盘形,在所述叶轮的外周上形成有多个均匀间隔开的径向叶轮出风口,所述径向叶轮出风口连通形成在所述蜗壳内的环形排风腔。
  9. 根据权利要求1-5任一项所述的离心风机,其特征在于,所述蜗壳还包括与所述蜗壳轴向进风侧壁相对的电机安装壁,在所述电机安装壁上设有电机轴孔和围绕所述电机轴孔沿周向布置的多个电机安装孔。
  10. 一种洗涤设备,其特征在于,所述洗涤设备设有烘干系统,并且所述烘干系统包括根据权利要求1-9任一项所述的离心风机。
PCT/CN2021/138319 2021-01-04 2021-12-15 离心风机及具有其的洗涤设备 WO2022143171A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21913912.8A EP4273406A1 (en) 2021-01-04 2021-12-15 Centrifugal fan and washing apparatus provided with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110003957.1 2021-01-04
CN202110003957.1A CN114718888A (zh) 2021-01-04 2021-01-04 离心风机及具有其的洗涤设备

Publications (1)

Publication Number Publication Date
WO2022143171A1 true WO2022143171A1 (zh) 2022-07-07

Family

ID=82233519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138319 WO2022143171A1 (zh) 2021-01-04 2021-12-15 离心风机及具有其的洗涤设备

Country Status (3)

Country Link
EP (1) EP4273406A1 (zh)
CN (1) CN114718888A (zh)
WO (1) WO2022143171A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928096A (ja) * 1982-08-06 1984-02-14 Matsushita Electric Ind Co Ltd 送風機
EP1045177A1 (en) * 1999-04-13 2000-10-18 Iveco Magirus Ag Centrifugal pump
JP2003083292A (ja) * 2001-09-06 2003-03-19 Ishikawajima Harima Heavy Ind Co Ltd 高速遠心ポンプ用羽根車
JP2004011525A (ja) * 2002-06-06 2004-01-15 Mitsubishi Heavy Ind Ltd 遠心ポンプ
CN205937176U (zh) * 2016-08-17 2017-02-08 常州天兴环保科技有限公司 一种frp新型离心式风机
CN206017213U (zh) * 2016-08-30 2017-03-15 青州四海透平动力设备有限公司 单级高速离心鼓风机
CN107044434A (zh) * 2017-05-09 2017-08-15 福建东亚环保科技股份有限公司 一种小型高压离心鼓风机
CN108180153A (zh) * 2017-12-27 2018-06-19 豫新汽车空调股份有限公司 一种离心风机
CN207621052U (zh) * 2017-11-01 2018-07-17 沈阳鼓风机集团齿轮压缩机有限公司 一种单级组装式离心鼓风机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928096A (ja) * 1982-08-06 1984-02-14 Matsushita Electric Ind Co Ltd 送風機
EP1045177A1 (en) * 1999-04-13 2000-10-18 Iveco Magirus Ag Centrifugal pump
JP2003083292A (ja) * 2001-09-06 2003-03-19 Ishikawajima Harima Heavy Ind Co Ltd 高速遠心ポンプ用羽根車
JP2004011525A (ja) * 2002-06-06 2004-01-15 Mitsubishi Heavy Ind Ltd 遠心ポンプ
CN205937176U (zh) * 2016-08-17 2017-02-08 常州天兴环保科技有限公司 一种frp新型离心式风机
CN206017213U (zh) * 2016-08-30 2017-03-15 青州四海透平动力设备有限公司 单级高速离心鼓风机
CN107044434A (zh) * 2017-05-09 2017-08-15 福建东亚环保科技股份有限公司 一种小型高压离心鼓风机
CN207621052U (zh) * 2017-11-01 2018-07-17 沈阳鼓风机集团齿轮压缩机有限公司 一种单级组装式离心鼓风机
CN108180153A (zh) * 2017-12-27 2018-06-19 豫新汽车空调股份有限公司 一种离心风机

Also Published As

Publication number Publication date
CN114718888A (zh) 2022-07-08
EP4273406A1 (en) 2023-11-08

Similar Documents

Publication Publication Date Title
EP2966215A1 (en) Drain pump assembly and dryer for clothes having the same
WO2017071638A1 (zh) 干衣机
US9493903B2 (en) Impeller assembly for an appliance
EP3133295B1 (en) Diffuser, airflow generating apparatus, and electrical device
US9243844B2 (en) Dryer appliance with an impeller assembly
US20050081575A1 (en) Condensing apparatus for washing and drying machine
US7223068B2 (en) Housing for axial flow heat-dissipating fan
US9617678B2 (en) Impeller housing for an appliance
WO2022143171A1 (zh) 离心风机及具有其的洗涤设备
US3504444A (en) Air circulation arrangement for dryers
WO2024051360A1 (zh) 电机及风机
US20130330182A1 (en) Centrifugal blower
KR200436612Y1 (ko) 공기조화기용 양흡입 블로아
JP7006195B2 (ja) 送風機
CN114109869A (zh) 一种风机及使用该风机的家电
WO2024018651A1 (ja) 送風機並びにこれを備えた洗濯乾燥機及び乾燥機
CN219568408U (zh) 衣物处理设备
WO2022213747A1 (zh) 壁挂式洗涤设备
CN211972780U (zh) 干衣设备
CN209860739U (zh) 一种风机用散热型交流感应电动机
CN113446264B (zh) 风机和洗衣机
KR102252511B1 (ko) 팬모터
JP2010065616A (ja) 遠心式送風機および遠心式送風機を具備した乾燥装置
US11053632B2 (en) Dryer appliance and impeller housing
CN117626612A (zh) 工艺空气通道和衣物处理设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021913912

Country of ref document: EP

Effective date: 20230802