WO2022143035A1 - 雾化装置、加热电路、方法、可读存储介质 - Google Patents

雾化装置、加热电路、方法、可读存储介质 Download PDF

Info

Publication number
WO2022143035A1
WO2022143035A1 PCT/CN2021/136079 CN2021136079W WO2022143035A1 WO 2022143035 A1 WO2022143035 A1 WO 2022143035A1 CN 2021136079 W CN2021136079 W CN 2021136079W WO 2022143035 A1 WO2022143035 A1 WO 2022143035A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
heating element
mcu
sampling
heating
Prior art date
Application number
PCT/CN2021/136079
Other languages
English (en)
French (fr)
Inventor
李亚飞
李祥忠
Original Assignee
江门摩尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江门摩尔科技有限公司 filed Critical 江门摩尔科技有限公司
Priority to EP21913776.7A priority Critical patent/EP4212982A4/en
Priority to JP2023514756A priority patent/JP2023549004A/ja
Priority to KR1020237008288A priority patent/KR20230049697A/ko
Publication of WO2022143035A1 publication Critical patent/WO2022143035A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor
    • G05D23/2401Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor using a heating element as a sensing element
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1906Control of temperature characterised by the use of electric means using an analogue comparing device
    • G05D23/1909Control of temperature characterised by the use of electric means using an analogue comparing device whose output amplitude can only take two discrete values
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0019Circuit arrangements

Definitions

  • the present invention relates to the field of atomization equipment, in particular to an atomization device, a heating circuit, a method and a readable storage medium.
  • the core element is the heating element
  • the core technology is the temperature control of the heating element
  • the key to temperature control is to measure the temperature of the heating element.
  • the heating element is usually a heating element resistor, which generates heat by supplying power to the heating element resistance, thereby heating the atomized substrate, so that the atomized substrate is heated to generate aerosol or aerosol.
  • a sampling resistor is usually connected in series with the heating loop to detect the resistance value of the heating element resistance, and then the voltage drop on the sampling resistor is amplified by the operational amplifier and then collected by the MCU (Microcontroller Unit).
  • LDO Low Dropout Regulator
  • the technical problem to be solved by the present invention is that the prior art has the defects of large error and high cost.
  • the technical solution adopted by the present invention to solve the technical problem is: constructing a heating circuit of an atomizing device, including a heating element resistor, an MCU, and a sampling resistor, and the resistance value of the sampling resistor is greater than that of the heating element resistor. resistance value of the sampling resistor, where,
  • the MCU controls the battery power supply to only supply power to the heating element resistance during the first period of the PWM (Pulse Width Modulation, pulse width modulation) cycle, so that the heating element resistance works normally;
  • PWM Pulse Width Modulation, pulse width modulation
  • the MCU controls the battery power supply to supply power to the sampling resistor and the heating element resistor in series, and collects the voltage of the heating element resistor and the voltage of the sampling resistor respectively,
  • the resistance value of the heating element resistance is calculated according to the resistance value of the sampling resistance and the collected voltage.
  • it also includes: a first driving unit, a second driving unit, and,
  • the MCU controls the first drive unit through its corresponding IO (Input/Output) port so that the battery power supply only supplies power to the heating element resistor;
  • the MCU controls the second drive unit through its corresponding IO port to make the battery power supply power for the sampling resistor and the heating element resistor in series, and through its corresponding IO port
  • the voltage of the heating element resistor and the voltage of the sampling resistor are collected respectively, and the resistance value of the heating element resistor is calculated according to the resistance value of the sampling resistor and the collected voltage.
  • the first driving unit includes a PMOS (Positive Channel Metal Oxide Semiconductor (P-channel metal oxide semiconductor) tube, a switching device, a third resistor and a fourth resistor, wherein the first IO port of the MCU is respectively connected to the control terminal of the switching device and the fourth resistor
  • the first end of the switching device and the second end of the fourth resistor are grounded respectively, and the second end of the switching device is respectively connected to the gate of the PMOS transistor and the third resistor.
  • the first end, the source of the PMOS tube and the second end of the third resistor are respectively connected to the battery power supply, the drain of the PMOS tube is connected to the first end of the heating element resistor, the The second terminal is grounded.
  • the second driving unit includes a first transistor, and the base of the first transistor is connected to the second IO port of the MCU, and the collector of the first transistor is connected to Battery power supply, the emitter of the first transistor is respectively connected to the first end of the sampling resistor and the third IO port of the MCU, and the second end of the sampling resistor is respectively connected to the first end of the heating element resistor.
  • the switching device includes NMOS (Negative Channel Metal Oxide Semiconductor (N-channel metal oxide semiconductor) tube, and the gate of the NMOS tube is connected to the first IO port of the MCU, the source of the NMOS tube is grounded, and the drain of the NMOS tube is connected to the The gate of the PMOS transistor and the first end of the third resistor.
  • NMOS Near Channel Metal Oxide Semiconductor
  • the switching device includes a second transistor and a fifth resistor, wherein the base of the second transistor is connected to the first end of the fourth resistor and the first end of the fifth resistor, respectively. one end, the collector of the second transistor is connected to the gate of the PMOS transistor and the first end of the third resistor, respectively, the emitter of the second transistor and the fourth resistor The second ends are respectively grounded, and the second end of the fifth resistor is connected to the first IO port of the MCU.
  • the present invention also constructs an atomizing device comprising the above-mentioned heating circuit.
  • the present invention also constructs a heating method for the atomizing device, which is applied to the MCU, including:
  • control the battery power supply to only supply power to the heating element resistance, so that the heating element resistance can work normally
  • the battery power supply is controlled to supply power to the sampling resistor and the heating element resistor in series, and the voltage of the heating element resistor and the voltage of the sampling resistor are respectively collected, wherein the The resistance value of the sampling resistor is greater than the resistance value of the heating element resistor;
  • the resistance value of the heating element resistor is calculated according to the resistance value of the sampling resistor and the collected voltage.
  • control the battery power supply to only supply power to the heating element resistance including:
  • the battery power supply only supplies power to the heating element resistor.
  • controlling the battery power supply to supply power to the sampling resistor and the heater resistor in series including:
  • the battery power supply can supply power to the sampling resistor and the heater resistor connected in series.
  • the present invention also constructs a readable storage medium storing a computer program that, when executed by a processor, implements the above-described heating method.
  • a detection circuit is added to the heating circuit of the atomizing device, and the MCU adopts the PWM driving method to realize the heating control, that is, the heating circuit and the detection circuit are controlled in different time periods. , specifically: in the first period of the PWM cycle, the MCU controls the battery power supply to only supply power to the heating body resistance, that is, controls the heating loop to work; in the second period of the PWM cycle, the MCU controls the battery power supply to be a series-connected sampling resistor and a heating element. The bulk resistance is powered, that is, the control detection loop works.
  • the sampling resistor since the sampling resistor only works when the resistance value of the heating element is detected (in the second period of the PWM cycle), and does not work at other times, the sampling resistor can be selected with a larger resistance value. In this way, on the one hand, since the accuracy of the sampling resistor with a larger resistance value can be made higher, the resistance value detection accuracy of the heating element resistor can be improved; Analog To Digital Converter (analog-to-digital converter) port) directly sampling, no need to use an operational amplifier to amplify, so it can improve the accuracy of voltage sampling, thereby improving the resistance detection accuracy of the heating element resistor is relatively high, at the same time, because no need to set the calculation amplifier, so the cost can be reduced.
  • Analog To Digital Converter analog-to-digital converter
  • Fig. 1 is the circuit diagram of the first embodiment of the heating circuit of the atomizing device of the present invention
  • Fig. 2 is the circuit diagram of the second embodiment of the heating circuit of the atomizing device of the present invention
  • FIG. 3 is a flow chart of Embodiment 1 of the heating method of the atomizing device of the present invention.
  • the present invention constructs a heating circuit for an atomizing device, the heating circuit includes an MCU, a heating element resistance, a sampling resistance, and The resistance value of the sampling resistor is greater than the resistance value of the heating element resistor.
  • the sampling resistor selects a high-precision resistor with a resistance value of ⁇ level (ie, a resistance of at least 1 ⁇ ).
  • the MCU controls the battery power supply to supply power only to the heating element resistance, so that the heating element resistance works normally; during the second period of the PWM period, the MCU controls the battery power supply to sample in series The resistance and the heating element resistance are powered, and in the second period, the voltage of the heating element resistance and the voltage of the sampling resistance are collected respectively, and the resistance value of the heating element resistance is calculated according to the resistance value of the sampling resistance and the collected voltage. It should be understood that the PWM period is equal to the sum of the first period and the second period.
  • a detection circuit is additionally added to the heating circuit, and the MCU adopts the PWM driving method to realize the heating control, that is, the heating circuit and the detection circuit are controlled in different time periods. Specifically: in the PWM In the first period of the cycle, the MCU controls the battery power supply to supply power only to the heating element resistor, that is, controls the heating loop to work; in the second period of the PWM cycle, the MCU controls the battery power supply to supply power to the sampling resistor and the heating element resistor in series, that is, The control detection loop works.
  • the sampling resistor since the sampling resistor only works during the detection of the resistance value of the heating element resistance (in the second period of the PWM cycle), and does not work at other times, the sampling resistor can be selected with a larger resistance value In this way, on the one hand, since the accuracy of the sampling resistor with a larger resistance value can be made higher, the resistance value detection accuracy of the heating element resistor can be improved; on the other hand, since the voltage on the sampling resistor can be passed through the MCU ( It has ADC port) for direct sampling, no need to use an operational amplifier to amplify, so it can improve the accuracy of voltage sampling, and thus improve the resistance detection accuracy of the heating element resistance. At the same time, because no operational amplifier is required, it can reduce costs .
  • the heating circuit of the present invention further includes a first drive unit and a second drive unit, and the MCU controls the first drive unit through its corresponding IO port during the first period of the PWM cycle
  • the drive unit makes the battery power supply power only for the heating body resistor;
  • the MCU controls the second drive unit through its corresponding IO port during the second period of the PWM cycle to make the battery power supply the sampling resistor and the
  • the heating body resistance is powered, and the voltage of the heating body resistance and the voltage of the sampling resistance are collected respectively through its corresponding IO port, and the voltage of the heating body resistance is calculated according to the resistance value of the sampling resistance and the collected voltage. resistance.
  • FIG. 1 is a circuit diagram of the first embodiment of the heating circuit of the atomizing device of the present invention, and the heating circuit of this embodiment includes an MCU U1 (ie, microcontroller U1 ), heating element resistor R2 , sampling resistor R1 , a first driving unit and a second driving unit, and the resistance value of sampling resistor R1 is greater than that of heating element resistor R2 .
  • MCU U1 ie, microcontroller U1
  • heating element resistor R2 ie, microcontroller U1
  • sampling resistor R1 ie, microcontroller U1
  • sampling resistor R1 ie, a first driving unit and a second driving unit
  • the resistance value of sampling resistor R1 is greater than that of heating element resistor R2 .
  • the first drive unit includes a PMOS transistor Q1, an NMOS transistor Q3, a third resistor R3 and a fourth resistor R4, wherein the first IO port (PMOS) of the MCU U1 is respectively connected to the gate of the NMOS transistor Q3 and the fourth resistor R4.
  • PMOS first IO port
  • the drain of the NMOS transistor Q3 is respectively connected to the gate of the PMOS transistor Q1 and the first end of the third resistor R3, the source of the PMOS transistor Q1
  • the electrode and the second end of the third resistor R3 are respectively connected to the battery power supply (BAT)
  • the drain of the PMOS transistor Q1 is connected to the first end of the heating element resistor R2, and the second end of the heating element resistor R2 is grounded.
  • the second driving unit includes a first transistor Q2, and the base of the first transistor Q2 is connected to the second IO port (ISEN) of the MCU U1, and the collector of the first transistor Q2 is connected to the battery power supply (BAT) , the emitter of the first transistor Q2 is respectively connected to the first end of the sampling resistor R1 and the third IO port (IS1) of the MCU U1, and the second end of the sampling resistor R1 is respectively connected to the first end of the heating element resistor R2 and the MCU It should be understood that the third IO port (IS1) and the fourth IO port (IS2) of MCU U1 are AD ports.
  • the first IO port (PMOS) of the MCU U1 outputs a high level, and the NMOS transistor Q3 is turned on, thereby making the PMOS transistor Q1 turn on.
  • the second IO port (ISEN) of MCU U1 outputs a low level, and the first transistor Q2 is turned off.
  • the voltage of the battery power supply (VBAT) is directly loaded onto the heating element resistor R2 through the PMOS transistor Q1, and the heating element resistor R2 starts to work normally;
  • the first IO port (PMOS) of the MCU U1 outputs a low level, and the NMOS transistor Q3 is turned off, so that the PMOS transistor Q1 is turned off, and the heating element resistor R2 stops heating.
  • the second IO port (ISEN) of MCU U1 outputs a high level, and the first transistor Q2 is turned on.
  • the current flows from the battery power supply (VBAT) to the ground via the first transistor Q2, the sampling resistor R1, and the heating element resistor R2.
  • the base voltage of the first transistor Q2 is the high level of the IO port of the MCU U1.
  • the emitter of the first transistor Q2 is turned on.
  • Fig. 2 is a circuit diagram of the second embodiment of the heating circuit of the atomizing device of the present invention. Compared with the embodiment shown in Fig. 1, the heating circuit of this embodiment is different only in that the switching device is replaced by the NMOS transistor Q3 with the second embodiment.
  • the transistor Q4 and the fifth resistor R5, and the base of the second transistor Q4 is respectively connected to the first end of the fourth resistor R4 and the first end of the fifth resistor R5, and the collector of the second transistor Q4 Connect the gate of the PMOS transistor Q1 and the first end of the third resistor R3 respectively, the emitter of the second transistor Q4 and the second end of the fourth resistor R4 are grounded respectively, and the second end of the fifth resistor R5 is connected to the MCU U1
  • the first IO port (PMOS). Other identical parts are not repeated here.
  • the first IO port (PMOS) of the MCU U1 outputs a high level, and the second transistor Q4 is turned on, thereby making the PMOS transistor Q1 turned on.
  • the second IO port (ISEN) of MCU U1 outputs a low level, and the first transistor Q2 is turned off.
  • the voltage of the battery power supply (VBAT) is directly loaded onto the heating element resistor R2 through the PMOS transistor Q1, and the heating element resistor R2 starts to work normally;
  • the first IO port (PMOS) of the MCU U1 outputs a low level, and the second transistor Q4 is turned off, so that the PMOS transistor Q1 is turned off, and the heating element resistor R2 stops heating.
  • the second IO port (ISEN) of MCU U1 outputs a high level, and the first transistor Q2 is turned on.
  • the current flows from the battery power supply (VBAT) to the ground via the first transistor Q2, the sampling resistor R1, and the heating element resistor R2.
  • the base voltage of the first transistor Q2 is the high level of the IO port of the MCU U1.
  • the emitter of the first transistor Q2 is turned on.
  • the present invention also constructs an atomizing device, the atomizing device includes a heating circuit, and the structure of the heating circuit can be referred to as described above.
  • Embodiment 3 is a flow chart of Embodiment 1 of the heating method of the atomizing device of the present invention.
  • the heating method of this embodiment is applied to the MCU, and specifically includes the following steps:
  • Step S10 During the first period of the PWM cycle, control the battery power supply to only supply power to the heating element resistance, so that the heating element resistance works normally;
  • Step S20 In the second period of the PWM cycle, control the battery power supply to supply power to the sampling resistor and the heating element resistor in series, and collect the voltage of the heating element resistor and the voltage of the sampling resistor respectively, wherein , the resistance of the sampling resistor is greater than the resistance of the heater resistor;
  • Step S30 Calculate the resistance value of the heating element resistor according to the resistance value of the sampling resistor and the collected voltage.
  • heating control and resistance value detection are performed on the resistance of the heating element in different time periods. Specifically: in the first period of the PWM cycle, the MCU controls the battery power supply to only supply power to the heating element resistance, that is, Control the heating element resistor to work normally; in the second period of the PWM cycle, the MCU controls the battery power supply to supply power to the sampling resistor and the heating element resistor in series, that is, to detect the resistance value of the heating element resistor. Since the sampling resistor only works when detecting the resistance value of the heating element resistance (in the second period of the PWM cycle), and does not work at other times, the sampling resistor can be selected as a resistor with a larger resistance value.
  • the MCU can control the first drive unit so that the battery power supply only supplies power to the heating element resistor.
  • the MCU can control the second drive unit to make the battery power supply power for the sampling resistor and the heater resistor connected in series.
  • the present invention also constructs a readable storage medium in which a computer program is stored, and which, when executed by a processor, implements the above-described heating method.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Resistance Heating (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

一种雾化装置、加热电路、方法、可读存储介质,加热电路包括发热体电阻、MCU及采样电阻,且采样电阻的阻值大于发热体电阻的阻值,其中,MCU在PWM周期的第一时段内,控制电池电源仅为发热体电阻供电;MCU在PWM周期的第二时段内,控制电池电源为相串联的采样电阻和发热体电阻供电,而且,分别采集发热体电阻的电压及采样电阻的电压,并根据采样电阻的阻值及所采集的电压计算发热体电阻的阻值。

Description

雾化装置、加热电路、方法、可读存储介质 技术领域
本发明涉及雾化设备领域,尤其涉及一种雾化装置、加热电路、方法、可读存储介质。
背景技术
在雾化装置中,其核心的元件就是加热元件,核心技术就是对加热元件的温度控制,而进行温度控制的关键是对加热元件的温度进行测量。而且,加热元件通常为发热体电阻,通过给发热体电阻供电使其产生热量,从而加热雾化基质,以使雾化基质升温后产生气雾或气溶胶。在目前的加热电路中,通常通过在加热回路上串联一个采样电阻来检测发热体电阻的阻值,然后通过运算放大器将采样电阻上的压降放大后给MCU(Microcontroller Unit,微控制单元)采集及计算,MCU先通过I=U 1/R 1来获得电流,其中,U 1为采样电阻上的压降,R 1为采样电阻的阻值,I为电流。因为MCU电压通常通过LDO(Low Dropout Regulator,低压差线性稳压器)降压后获得,MCU能采集到的电压小于加热电源(电池)的电压,故发热体电阻上的电压还需要经过采样电阻分压后给MCU采集,然后通过R 2=U 2/I算得发热体电阻的阻值,其中,U 2为发热体电阻上的压降,R 2为发热体电阻的阻值。这种方式由于采样电阻串联在加热回路上,故采样阻值要非常小(mΩ级别)才能不影响加热效率,因为采样电阻上压降非常小,需要增加运放将采样电阻的压降放大。由于采样电阻非常小,阻值本身精度难以做到非常高,另外还有运算放大器本身的误差,这样采样到的电流误差就比较大,再加上采样电阻的精度误差使得采集到的发热体电阻上的电压也存在误差,从而通过R 2=U 2/I计算到的发热体电阻的阻值误差就比较大,而且由于需要增加运算放大器,成本比较高。
技术问题
本发明要解决的技术问题在于,现有技术存在的误差大、成本高的缺陷。
技术解决方案
本发明解决其技术问题所采用的技术方案是:构造一种雾化装置的加热电路,包括发热体电阻、MCU,还包括采样电阻,且所述采样电阻的阻值大于所述发热体电阻的阻值的采样电阻,其中,
所述MCU在PWM(Pulse Width Modulation,脉冲宽度调制)周期的第一时段内,控制电池电源仅为所述发热体电阻供电,以使所述发热体电阻正常工作;
所述MCU在PWM周期的第二时段内,控制电池电源为相串联的所述采样电阻和所述发热体电阻供电,而且,分别采集所述发热体电阻的电压及所述采样电阻的电压,并根据所述采样电阻的阻值及所采集的电压计算所述发热体电阻的阻值。
可选地,还包括:第一驱动单元、第二驱动单元,而且,
所述MCU在PWM周期的第一时段内,通过其相应IO(Input/Output)口控制所述第一驱动单元使电池电源仅为所述发热体电阻供电;
所述MCU在PWM周期的第二时段内,通过其相应IO口控制所述第二驱动单元使电池电源为相串联的所述采样电阻和所述发热体电阻供电,而且,通过其相应IO口分别采集所述发热体电阻的电压及所述采样电阻的电压,并根据所述采样电阻的阻值及所采集的电压计算所述发热体电阻的阻值。
可选地,所述第一驱动单元包括PMOS(Positive Channel Metal Oxide Semiconductor,P沟道金属氧化物半导体)管、开关器件、第三电阻及第四电阻,其中,所述MCU的第一IO口分别连接所述开关器件的控制端及所述第四电阻的第一端,所述开关器件的第一端及所述第四电阻的第二端分别接地,所述开关器件的第二端分别连接所述PMOS管的栅极及所述第三电阻的第一端,所述PMOS管的源极及所述第三电阻的第二端分别接电池电源,所述PMOS管的漏极连接所述发热体电阻的第一端,所述发热体电阻的第二端接地。
可选地,所述第二驱动单元包括第一三极管,而且,所述第一三极管的基极连接所述MCU的第二IO口,所述第一三极管的集电极连接电池电源,所述第一三极管的发射极分别连接所述采样电阻的第一端及所述MCU的第三IO口,所述采样电阻的第二端分别连接所述发热体电阻的第一端及所述MCU的第四IO口。
可选地,所述开关器件包括NMOS(Negative Channel Metal Oxide Semiconductor,N沟道金属氧化物半导体)管,且所述NMOS管的栅极连接所述MCU的第一IO口,所述NMOS管的源极接地,所述NMOS管的漏极分别连接所述PMOS管的栅极及所述第三电阻的第一端。
可选地,所述开关器件包括第二三极管和第五电阻,其中,所述第二三极管的基极分别连接所述第四电阻的第一端及所述第五电阻的第一端,所述第二三极管的集电极分别连接所述PMOS管的栅极及所述第三电阻的第一端,所述第二三极管的发射极及所述第四电阻的第二端分别接地,所述第五电阻的第二端连接所述MCU的第一IO口。
本发明还构造一种雾化装置,包括以上所述的加热电路。
本发明还构造一种雾化装置的加热方法,应用于MCU,包括:
在PWM周期的第一时段内,控制电池电源仅为发热体电阻供电,以使所述发热体电阻正常工作;
在PWM周期的第二时段内,控制所述电池电源为相串联的采样电阻和所述发热体电阻供电,并分别采集所述发热体电阻的电压及所述采样电阻的电压,其中,所述采样电阻的阻值大于所述发热体电阻的阻值;
根据所述采样电阻的阻值及所采集的电压计算所述发热体电阻的阻值。
可选地,控制电池电源仅为发热体电阻供电,包括:
通过控制第一驱动单元使所述电池电源仅为发热体电阻供电。
可选地,控制所述电池电源为相串联的采样电阻和所述发热体电阻供电,包括:
通过控制第二驱动单元使所述电池电源为相串联的采样电阻和所述发热体电阻供电。
本发明还构造一种可读存储介质,存储有计算机程序,所述计算机程序在被处理器执行时实现以上所述的加热方法。
有益效果
本发明所提供的技术方案,雾化装置的加热电路中除了设置加热回路外,还额外增加了一路检测回路,且MCU采用PWM驱动方式实现加热控制,即,分时段控制加热回路及检测回路工作,具体地:在PWM周期的第一时段,MCU控制电池电源仅为发热体电阻供电,即,控制加热回路工作;在PWM周期的第二时段,MCU控制电池电源为相串联的采样电阻和发热体电阻供电,即,控制检测回路工作。在该加热电路中,由于采样电阻仅在对发热体电阻的阻值检测时(PWM周期的第二时段内)工作,其它时刻不工作,所以,该采样电阻可选用较大阻值的电阻,这样,一方面,由于较大阻值的采样电阻的精度可以做的更高,所以可提高发热体电阻的阻值检测精度;另一方面,由于采样电阻上的电压可通过MCU(具有ADC(Analog To Digital Converter,模拟数字转换器)口)直接进行采样,不再需要使用运算放大器放大,因此可提高电压采样的精度,进而提高发热体电阻的阻值检测精度比较高,同时,由于不需要设置运算放大器,所以可降低成本。
附图说明
为了更清楚地说明本发明实施例,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。附图中:
图1是本发明雾化装置的加热电路实施例一的电路图;
图2是本发明雾化装置的加热电路实施例二的电路图;
图3是本发明雾化装置的加热方法实施例一的流程图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
针对现有的加热电路存在发热体阻值的检测精度不高、成本较大的技术问题,本发明构造一种雾化装置的加热电路,该加热电路包括MCU、发热体电阻、采样电阻,且采样电阻的阻值大于发热体电阻的阻值,例如,采样电阻选用阻值为Ω级别(即至少1Ω的电阻)的高精度电阻。而且,MCU在PWM周期的第一时段内,控制电池电源仅为发热体电阻供电,以使所述发热体电阻正常工作;MCU在PWM周期的第二时段内,控制电池电源为相串联的采样电阻和发热体电阻供电,而且,在第二时段内,分别采集发热体电阻的电压及采样电阻的电压,并根据采样电阻的阻值及所采集的电压计算发热体电阻的阻值。应理解,PWM周期等于第一时段与第二时段之和。
在该实施例中,加热电路中除了设置加热回路外,还额外增加了一路检测回路,且MCU采用PWM驱动方式实现加热控制,即,分时段控制加热回路及检测回路工作,具体地:在PWM周期的第一时段,MCU控制电池电源仅为发热体电阻供电,即,控制加热回路工作;在PWM周期的第二时段,MCU控制电池电源为相串联的采样电阻和发热体电阻供电,即,控制检测回路工作。在该实施例的加热电路中,由于采样电阻仅在对发热体电阻的阻值检测时(PWM周期的第二时段内)工作,其它时刻不工作,所以,该采样电阻可选用较大阻值的电阻,这样,一方面,由于较大阻值的采样电阻的精度可以做的更高,所以可提高发热体电阻的阻值检测精度;另一方面,由于采样电阻上的电压可通过MCU(具有ADC口)直接进行采样,不再需要使用运算放大器放大,因此可提高电压采样的精度,进而提高发热体电阻的阻值检测精度比较高,同时,由于不需要设置运算放大器,所以可降低成本。
进一步地,在一个可选实施例中,本发明的加热电路还包括第一驱动单元和第二驱动单元,而且,MCU在PWM周期的第一时段内,通过其相应IO口控制所述第一驱动单元使电池电源仅为所述发热体电阻供电;MCU在PWM周期的第二时段内,通过其相应IO口控制所述第二驱动单元使电池电源为相串联的所述采样电阻和所述发热体电阻供电,而且,通过其相应IO口分别采集所述发热体电阻的电压及所述采样电阻的电压,并根据所述采样电阻的阻值及所采集的电压计算所述发热体电阻的阻值。
图1是本发明雾化装置的加热电路实施例一的电路图,该实施例的加热电路包括MCU U1(即微控制器U1)、发热体电阻R2、采样电阻R1、第一驱动单元及第二驱动单元,且采样电阻R1的阻值大于发热体电阻R2的阻值。
第一驱动单元包括PMOS管Q1、NMOS管Q3、第三电阻R3及第四电阻R4,其中,MCU U1的第一IO口(PMOS)分别连接NMOS管Q3的栅极及第四电阻R4的第一端,NMOS管Q3的源极及第四电阻R4的第二端分别接地,NMOS管Q3的漏极分别连接PMOS管Q1的栅极及第三电阻R3的第一端,PMOS管Q1的源极及第三电阻R3的第二端分别接电池电源(BAT),PMOS管Q1的漏极连接发热体电阻R2的第一端,发热体电阻R2的第二端接地。
第二驱动单元包括第一三极管Q2,而且,第一三极管Q2的基极连接MCU U1的第二IO口(ISEN),第一三极管Q2的集电极连接电池电源(BAT),第一三极管Q2的发射极分别连接采样电阻R1的第一端及MCU U1的第三IO口(IS1),采样电阻R1的第二端分别连接发热体电阻R2的第一端及MCU的第四IO口(IS2),应理解,MCU U1的第三IO口(IS1)及第四IO口(IS2)为AD口。
下面说明该加热电路的工作原理:
在每个PWM周期的第一时段内,MCU U1的第一 IO口(PMOS)输出高电平,NMOS管Q3导通,从而使得PMOS管Q1导通。同时,MCU U1的第二IO口(ISEN)输出低电平,第一三极管Q2关断。此时,电池电源(VBAT)的电压通过PMOS管Q1直接加载到发热体电阻R2上,发热体电阻R2开始正常工作;
在每个PWM周期的第二时段内,MCU U1的第一 IO口(PMOS)输出低电平,NMOS管Q3关断,从而使得PMOS管Q1关断,发热体电阻R2停止加热。同时,MCU U1的第二IO口(ISEN)输出高电平,第一三极管Q2导通。此时,电流从电池电源(VBAT)经由第一三极管Q2、采样电阻R1、发热体电阻R2到地。而且,第一三极管Q2的基极电压为MCU U1的IO口的高电平,由于第一三极管Q2基极电压的钳位作用,导通时第一三极管Q2的发射极电压略小于其基极电压,所以,此时MCU U1的第三、四IO口(IS1、IS2)的电压都小于MCU U1的IO口的高电平,故MCU U1的第三、四IO口(IS1、IS2)可直接进行电压采样,假设MCU U1的第三IO口所采样的电压为VIS1,MCU U1的第四IO口所采样的电压为VIS2,然后,根据以下公式计算检测回路的电流I:I=( VIS1-VIS2)/R 1,其中,R 1为采样电阻R1的阻值,再根据以下公式计算发热体电阻R2的阻值R 2:R 2 = VIS2/I = R 1*VIS2/( VIS1-VIS2)。
图2是本发明雾化装置的加热电路实施例二的电路图,该实施例的加热电路相比图1所示的实施例,所不同的仅是:开关器件由NMOS管Q3替换成了第二三极管Q4和第五电阻R5,而且,第二三极管Q4的基极分别连接第四电阻R4的第一端及第五电阻R5的第一端,第二三极管Q4的集电极分别连接PMOS管Q1的栅极及第三电阻R3的第一端,第二三极管Q4的发射极及第四电阻R4的第二端分别接地,第五电阻R5的第二端连接MCU U1的第一IO口(PMOS)。其它相同的部分在此不做赘述。
下面说明该加热电路的工作原理:
在每个PWM周期的第一时段内,MCU U1的第一 IO口(PMOS)输出高电平,第二三极管Q4导通,从而使得PMOS管Q1导通。同时,MCU U1的第二IO口(ISEN)输出低电平,第一三极管Q2关断。此时,电池电源(VBAT)的电压通过PMOS管Q1直接加载到发热体电阻R2上,发热体电阻R2开始正常工作;
在每个PWM周期的第二时段内,MCU U1的第一 IO口(PMOS)输出低电平,第二三极管Q4关断,从而使得PMOS管Q1关断,发热体电阻R2停止加热。同时,MCU U1的第二IO口(ISEN)输出高电平,第一三极管Q2导通。此时,电流从电池电源(VBAT)经由第一三极管Q2、采样电阻R1、发热体电阻R2到地。而且,第一三极管Q2的基极电压为MCU U1的IO口的高电平,由于第一三极管Q2基极电压的钳位作用,导通时第一三极管Q2的发射极电压略小于其基极电压,所以,此时MCU U1的第三、四IO口(IS1、IS2)的电压都小于MCU U1的IO口的高电平,故MCU U1的第三、四IO口(IS1、IS2)可直接进行电压采样,假设MCU U1的第三IO口所采样的电压为VIS1,MCU U1的第四IO口所采样的电压为VIS2,然后,根据以下公式计算检测回路的电流I:I=( VIS1-VIS2)/R 1,其中,R 1为采样电阻R1的阻值,再根据以下公式计算发热体电阻R2的阻值R 2:R 2 = VIS2/I = R 1*VIS2/( VIS1-VIS2)。
本发明还构造一种雾化装置,该雾化装置包括加热电路,且该加热电路的结构可参照前文所述。
图3是本发明雾化装置的加热方法实施例一的流程图,该实施例的加热方法应用于MCU中,而且,具体包括以下步骤:
步骤S10.在PWM周期的第一时段内,控制电池电源仅为发热体电阻供电,以使所述发热体电阻正常工作;
步骤S20.在PWM周期的第二时段内,控制所述电池电源为相串联的采样电阻和所述发热体电阻供电,并分别采集所述发热体电阻的电压及所述采样电阻的电压,其中,所述采样电阻的阻值大于所述发热体电阻的阻值;
步骤S30.根据所述采样电阻的阻值及所采集的电压计算所述发热体电阻的阻值。
在该实施例中,在一个PWM周期内,对发热体电阻分时段进行加热控制及阻值检测,具体地:在PWM周期的第一时段,MCU控制电池电源仅为发热体电阻供电,即,控制发热体电阻正常工作;在PWM周期的第二时段,MCU控制电池电源为相串联的采样电阻和发热体电阻供电,即,检测发热体电阻的阻值。由于采样电阻仅在对发热体电阻的阻值检测时(PWM周期的第二时段内)工作,其它时刻不工作,所以,该采样电阻可选用较大阻值的电阻,这样,一方面,由于较大阻值的采样电阻的精度可以做的更高,所以可提高发热体电阻的阻值检测精度;另一方面,由于采样电阻上的电压可通过MCU(具有ADC口)直接进行采样,不再需要使用运算放大器放大,因此可提高电压采样的精度,进而提高发热体电阻的阻值检测精度比较高,同时,由于不需要设置运算放大器,所以可降低成本。
进一步地,MCU可通过控制第一驱动单元使所述电池电源仅为发热体电阻供电。相应地,MCU可通过控制第二驱动单元使所述电池电源为相串联的采样电阻和所述发热体电阻供电。
本发明还构造一种可读存储介质,该可读存储介质存储有计算机程序,而且,该计算机程序在被处理器执行时实现以上所述的加热方法。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何纂改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (11)

  1. 一种雾化装置的加热电路,包括发热体电阻、MCU,其特征在于,还包括采样电阻,且所述采样电阻的阻值大于所述发热体电阻的阻值的采样电阻,其中,
    所述MCU在PWM周期的第一时段内,控制电池电源仅为所述发热体电阻供电,以使所述发热体电阻正常工作;
    所述MCU在PWM周期的第二时段内,控制电池电源为相串联的所述采样电阻和所述发热体电阻供电,而且,分别采集所述发热体电阻的电压及所述采样电阻的电压,并根据所述采样电阻的阻值及所采集的电压计算所述发热体电阻的阻值。
  2. 根据权利要求1所述的雾化装置的加热电路,其特征在于,还包括:第一驱动单元、第二驱动单元,而且,
    所述MCU在PWM周期的第一时段内,通过其相应IO口控制所述第一驱动单元使电池电源仅为所述发热体电阻供电;
    所述MCU在PWM周期的第二时段内,通过其相应IO口控制所述第二驱动单元使电池电源为相串联的所述采样电阻和所述发热体电阻供电,而且,通过其相应IO口分别采集所述发热体电阻的电压及所述采样电阻的电压,并根据所述采样电阻的阻值及所采集的电压计算所述发热体电阻的阻值。
  3. 根据权利要求2所述的雾化装置的加热电路,其特征在于,所述第一驱动单元包括PMOS管、开关器件、第三电阻及第四电阻,其中,所述MCU的第一IO口分别连接所述开关器件的控制端及所述第四电阻的第一端,所述开关器件的第一端及所述第四电阻的第二端分别接地,所述开关器件的第二端分别连接所述PMOS管的栅极及所述第三电阻的第一端,所述PMOS管的源极及所述第三电阻的第二端分别接电池电源,所述PMOS管的漏极连接所述发热体电阻的第一端,所述发热体电阻的第二端接地。
  4. 根据权利要求3所述的雾化装置的加热电路,其特征在于,所述第二驱动单元包括第一三极管,而且,所述第一三极管的基极连接所述MCU的第二IO口,所述第一三极管的集电极连接电池电源,所述第一三极管的发射极分别连接所述采样电阻的第一端及所述MCU的第三IO口,所述采样电阻的第二端分别连接所述发热体电阻的第一端及所述MCU的第四IO口。
  5. 根据权利要求3所述的雾化装置的加热电路,其特征在于,所述开关器件包括NMOS管,且所述NMOS管的栅极连接所述MCU的第一IO口,所述NMOS管的源极接地,所述NMOS管的漏极分别连接所述PMOS管的栅极及所述第三电阻的第一端。
  6. 根据权利要求3所述的雾化装置的加热电路,其特征在于,所述开关器件包括第二三极管和第五电阻,其中,所述第二三极管的基极分别连接所述第四电阻的第一端及所述第五电阻的第一端,所述第二三极管的集电极分别连接所述PMOS管的栅极及所述第三电阻的第一端,所述第二三极管的发射极及所述第四电阻的第二端分别接地,所述第五电阻的第二端连接所述MCU的第一IO口。
  7. 一种雾化装置,其特征在于,包括权利要求1-6任一项所述的加热电路。
  8. 一种雾化装置的加热方法,应用于MCU,其特征在于,包括:
    在PWM周期的第一时段内,控制电池电源仅为发热体电阻供电,以使所述发热体电阻正常工作;
    在PWM周期的第二时段内,控制所述电池电源为相串联的采样电阻和所述发热体电阻供电,并分别采集所述发热体电阻的电压及所述采样电阻的电压,其中,所述采样电阻的阻值大于所述发热体电阻的阻值;
    根据所述采样电阻的阻值及所采集的电压计算所述发热体电阻的阻值。
  9. 根据权利要求8所述的雾化装置的加热方法,其特征在于,控制电池电源仅为发热体电阻供电,包括:
    通过控制第一驱动单元使所述电池电源仅为发热体电阻供电。
  10. 根据权利要求8所述的雾化装置的加热方法,其特征在于,控制所述电池电源为相串联的采样电阻和所述发热体电阻供电,包括:
    通过控制第二驱动单元使所述电池电源为相串联的采样电阻和所述发热体电阻供电。
  11. 一种可读存储介质,存储有计算机程序,其特征在于,所述计算机程序在被处理器执行时实现权利要求8-10任一项所述的加热方法。
PCT/CN2021/136079 2020-12-30 2021-12-07 雾化装置、加热电路、方法、可读存储介质 WO2022143035A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21913776.7A EP4212982A4 (en) 2020-12-30 2021-12-07 ATOMIZER, HEATING CIRCUIT, METHOD AND READABLE STORAGE MEDIUM
JP2023514756A JP2023549004A (ja) 2020-12-30 2021-12-07 霧化装置、加熱電気回路、方法、読取可能記憶媒体
KR1020237008288A KR20230049697A (ko) 2020-12-30 2021-12-07 무화장치, 가열전기회로, 방법 및 판독 가능한 저장 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202023298846.8U CN214151517U (zh) 2020-12-30 2020-12-30 雾化装置及其加热电路
CN202023298846.8 2020-12-30

Publications (1)

Publication Number Publication Date
WO2022143035A1 true WO2022143035A1 (zh) 2022-07-07

Family

ID=77544907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136079 WO2022143035A1 (zh) 2020-12-30 2021-12-07 雾化装置、加热电路、方法、可读存储介质

Country Status (5)

Country Link
EP (1) EP4212982A4 (zh)
JP (1) JP2023549004A (zh)
KR (1) KR20230049697A (zh)
CN (1) CN214151517U (zh)
WO (1) WO2022143035A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214151517U (zh) * 2020-12-30 2021-09-07 江门摩尔科技有限公司 雾化装置及其加热电路
CN115813026B (zh) * 2022-12-23 2024-01-02 深圳美众联科技有限公司 一种双雾化芯的电子烟及其热量均衡控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080197856A1 (en) * 2004-06-30 2008-08-21 Robert Bosch Gmbh Circuit Arrangement to Diagnose a Heating Resistor
CN108873976A (zh) * 2018-06-25 2018-11-23 深圳市丽福科技有限责任公司 电子烟的温度控制系统
CN109567280A (zh) * 2019-01-16 2019-04-05 深圳市海派特光伏科技有限公司 雾化器阻值检测电路和电子烟
CN109656283A (zh) * 2019-01-22 2019-04-19 河南中烟工业有限责任公司 基于分时处理的发热丝的温度控制电路及温度控制方法
CN110313643A (zh) * 2019-07-03 2019-10-11 深圳瀚星翔科技有限公司 电子烟及电子烟加热的控制方法
CN111436668A (zh) * 2020-03-27 2020-07-24 河南中烟工业有限责任公司 一种电子雾化烟的控制电路
CN214151517U (zh) * 2020-12-30 2021-09-07 江门摩尔科技有限公司 雾化装置及其加热电路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102322385B1 (ko) * 2017-10-24 2021-11-04 니뽄 다바코 산교 가부시키가이샤 에어로졸 생성 장치, 에어로졸 생성 장치의 제어 방법, 에어로졸원 또는 향미원의 잔량 추정 방법, 및 이 방법들을 프로세서에 실행시키기 위한 프로그램
WO2019239548A1 (ja) * 2018-06-14 2019-12-19 日本たばこ産業株式会社 電源ユニット、香味生成装置、方法及びプログラム
JP6667709B1 (ja) * 2019-10-24 2020-03-18 日本たばこ産業株式会社 エアロゾル吸引器の電源ユニット

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080197856A1 (en) * 2004-06-30 2008-08-21 Robert Bosch Gmbh Circuit Arrangement to Diagnose a Heating Resistor
CN108873976A (zh) * 2018-06-25 2018-11-23 深圳市丽福科技有限责任公司 电子烟的温度控制系统
CN109567280A (zh) * 2019-01-16 2019-04-05 深圳市海派特光伏科技有限公司 雾化器阻值检测电路和电子烟
CN109656283A (zh) * 2019-01-22 2019-04-19 河南中烟工业有限责任公司 基于分时处理的发热丝的温度控制电路及温度控制方法
CN110313643A (zh) * 2019-07-03 2019-10-11 深圳瀚星翔科技有限公司 电子烟及电子烟加热的控制方法
CN111436668A (zh) * 2020-03-27 2020-07-24 河南中烟工业有限责任公司 一种电子雾化烟的控制电路
CN214151517U (zh) * 2020-12-30 2021-09-07 江门摩尔科技有限公司 雾化装置及其加热电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4212982A4 *

Also Published As

Publication number Publication date
CN214151517U (zh) 2021-09-07
JP2023549004A (ja) 2023-11-22
KR20230049697A (ko) 2023-04-13
EP4212982A1 (en) 2023-07-19
EP4212982A4 (en) 2024-03-13

Similar Documents

Publication Publication Date Title
WO2022143035A1 (zh) 雾化装置、加热电路、方法、可读存储介质
TWI223489B (en) DC-DC converter
WO2015161626A1 (zh) 开关控制方法、开关控制电路及调控器、存储介质
CN109062304B (zh) 一种恒流负载电路和一种电子负载及相关系统
CN106385734A (zh) 一种电压采样电路
CN114062765B (zh) 一种低功耗高精度电压检测电路
CN110176853A (zh) 电流感测设备以及相关联的方法
CN103743934A (zh) 高精度高边电流检测电路
CN110244211B (zh) 一种瞬态热阻测试电路
CN205642489U (zh) 一种低功耗浸入型热式气体流量测量装置
US8476942B2 (en) Summation circuit in DC-DC converter
CN107132405B (zh) 一种用于同步降压型变换器的过零检测电路
WO2017133298A1 (zh) 机柜用冷却风扇控制电路
CN114009847B (zh) 用于电子雾化装置的控制单元、电子雾化装置、控制方法
WO2016078078A1 (zh) 一种电池启动电流测试的充电器系统
CN214380661U (zh) 一种电源供电电路
CN206181440U (zh) 电压采样电路
CN210442473U (zh) 一种瞬态热阻测试电路
WO2022056923A1 (zh) 恒流源采样电路和方法
CN111323634B (zh) 一种宽范围电流采样电路
CN110647185A (zh) 一种高精度测温控温电路
WO2014117602A1 (zh) 一种恒流环路
CN112242789B (zh) 开关电源芯片、适用于极性反转的开关电源变换器
CN109710012B (zh) 一种模拟电池
CN219875469U (zh) 带有诊断和主动保护功能的汽车高边驱动电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913776

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023514756

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237008288

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021913776

Country of ref document: EP

Effective date: 20230412

NENP Non-entry into the national phase

Ref country code: DE