WO2017133298A1 - 机柜用冷却风扇控制电路 - Google Patents

机柜用冷却风扇控制电路 Download PDF

Info

Publication number
WO2017133298A1
WO2017133298A1 PCT/CN2016/106179 CN2016106179W WO2017133298A1 WO 2017133298 A1 WO2017133298 A1 WO 2017133298A1 CN 2016106179 W CN2016106179 W CN 2016106179W WO 2017133298 A1 WO2017133298 A1 WO 2017133298A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
fan
power supply
control circuit
diode
Prior art date
Application number
PCT/CN2016/106179
Other languages
English (en)
French (fr)
Inventor
沈宏山
董卫红
陈文红
Original Assignee
南通贝思特机械工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通贝思特机械工程有限公司 filed Critical 南通贝思特机械工程有限公司
Publication of WO2017133298A1 publication Critical patent/WO2017133298A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids

Definitions

  • the utility model relates to the technical field of a cooling fan control circuit, in particular to a cooling fan control circuit for a cabinet.
  • the purpose of the utility model is to provide a cooling fan control circuit for a cabinet with simple structure, reasonable design and convenient use, which has the advantages of stable performance, good reproducibility consistency and reliable control.
  • the technical scheme adopted by the utility model is: it is composed of three parts: a voltage control working power supply, a temperature control circuit and a fan drive circuit; the input end of the voltage control control power supply is connected to the total power supply VCC, and the output end is connected.
  • the utility model has the beneficial effects that the cooling fan control circuit for the cabinet according to the present invention has stable performance, good reproducibility consistency, reliable control, simple structure, reasonable setting, low production cost, and the like. advantage.
  • 1 is a circuit control diagram of a first embodiment
  • FIG. 2 is a circuit control diagram of a second embodiment.
  • the voltage control control power supply is composed of a three-terminal power regulator U1, an electrolytic capacitor CD1, an electrolytic capacitor CD2, a ceramic capacitor C1, and a ceramic capacitor C2; a three-terminal power supply regulator
  • U1 is connected to the total power supply VCC
  • the output terminal is connected to the positive electrode of the electrolytic capacitor CD2 and the ceramic capacitor C2, and the output thereof serves as the power supply VDD to supply the working power of the temperature control circuit
  • the regulated power supply can be connected to the power supply VDD by using the total power supply VCC, and the resistance of the related resistor can be appropriately changed instead.
  • the temperature control circuit consists of a negative temperature coefficient temperature sensitive resistor RT, a resistor R1, a resistor R2, a resistor R3, a resistor R4, a resistor R5, a ceramic capacitor C3, a ceramic capacitor C4, and a photocoupler U2 without a base pin.
  • the adjustable shunt reference voltage source U3 is composed; the ceramic capacitor C3 is connected in parallel at the two ends of the negative temperature coefficient temperature sensitive resistor RT, the ceramic capacitor C4 is connected in parallel at the two ends of the resistor R4; the connection point of the resistor R1 and the resistor R2 is connected to the three ends
  • the reference input (Reference) end of the adjustable shunt reference voltage source U3 the cathode of the three-terminal adjustable shunt reference voltage source U3 is terminated with the cathode of the LED unit of the photocoupler U2 without the base pin, three ends
  • the anode of the adjustable shunt reference voltage source U3 is terminated with the anode of the power supply VDD; the end of the resistor R3 is connected to the power supply VDD, one end is connected to the anode of the photocoupler U2 without the base pin, and the anode without the base pin
  • the negative pole of the coupler U2 and the three-terminal adjustable shunt reference voltage source U3 The ca
  • the c-pole of the transistor of the photocoupler U2 without the base pin is connected to the resistor R4, and the e-pole of the transistor of the photocoupler U2 without the base pin is connected to the resistor R5 and the resistor R6, and the other end of the resistor R5 is grounded.
  • the three-terminal adjustable shunt reference voltage source U3 is an integrated circuit TL431.
  • the current flowing through the resistor R3 when the three-terminal adjustable shunt reference voltage source U3 is turned on should not be too small, preferably 15 mA to 20 mA;
  • the operating threshold of the three-terminal adjustable shunt reference voltage source U3 is R2/(RT +R1+R2) ⁇ VDD>V Ref , the three-terminal adjustable shunt reference U3 selects the V Ref of the TL431 to be 2.5V.
  • the fan drive circuit is composed of a DC fan FAN, an N-type MOS transistor Q1, a resistor R6, a current limiting protection resistor R7, a diode D1, and a diode D2; the anode of the DC fan FAN is connected to the total power supply VCC, and the negative pole is connected to the D pole of the N-type MOS transistor Q1.
  • the S pole of the N-type MOS transistor Q1 is grounded through the current limiting protection resistor R7; the diode D1 is connected in parallel to the two ends of the DC fan FAN; the diode D2 is connected in parallel to the S and D poles of the N-type MOS transistor Q1;
  • the N-type MOS transistor Q1 selects IRF5430A;
  • the voltage of the DC fan FAN is DC 24V or other working voltage; the total power supply VCC is the power supply that is consistent with the operating voltage of the fan; the power supply VDD is the regulated power supply, the total power supply VCC and the power supply VDD are common (negative); The working power of the fan FAN is directly supplied by the total power supply VCC; the total power supply VCC is regulated by the three-terminal power regulator U1 to provide a power supply for the control circuit.
  • the negative temperature coefficient temperature sensitive resistor RT is used as a sensor for detecting the temperature inside the cabinet. It can be taken out by a twisted pair and placed in a typical area where cooling is required.
  • the ceramic capacitor C3 is directly connected in parallel at both ends of the negative temperature coefficient temperature sensitive resistor RT to improve signal transmission. Stability.
  • the fan is started to perform forced air cooling.
  • the fan driving circuit is composed of a DC fan FAN, a high power transistor Q1, a resistor R6, a current limiting protection resistor R7, a diode D1, and a diode D2;
  • the anode of the fan FAN is connected to the total power supply VCC, the negative pole is connected to the c pole of the high power transistor Q1, and the e pole of the high power transistor Q1 is grounded through the current limiting protection resistor R7;
  • the diode D1 is connected in parallel to the direct current Both ends of the fan FAN; the diode D2 is connected in parallel to the c and e poles of the high power transistor Q1.
  • the utility model has the beneficial effects that the cooling fan control circuit for the cabinet according to the present invention has the advantages of stable performance, good reproducibility consistency, reliable control, simple structure, reasonable setting and low production cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

一种机柜用冷却风扇控制电路,其由稳压控制工作电源、温度控制电路和风扇驱动电路三个部分组成,稳压控制工作电源由三端电源稳压器U1、电解电容CD1、电解电容CD2、瓷片电容C1、瓷片电容C2组成,温度控制电路由负温度系数温敏电阻RT、电阻R1、电阻R2、电阻R3、电阻R4、电阻R5和无基极引脚的光电耦合器U2、三端可调分流基准电压源U3组成,风扇驱动电路由N型MOS管Q1、电阻R6、限流保护电阻R7、二极管D1、二极管D2组成。该控制电路性能稳定、控制可靠,具有结构简单、设计合理、制作成本低等优点。

Description

机柜用冷却风扇控制电路 技术领域
本实用新型涉及冷却风扇控制电路技术领域,具体涉及一种机柜用冷却风扇控制电路。
背景技术
随着现代技术的发展,几乎所有的装备特别是汽车制造专用装备都需要自动化控制。自动化控制的机柜,都涉及到通风和散热,机柜内的温度控制是提高和保证控制可靠性的重要措施。但是目前的机柜内的温度控制普遍存在温控的性价比不高,具体表现为两种极端,一是采用复杂且价格高的温控装置如智能化的控制实现,二是采用简单的电压比较器的控制方案,成本低、性能差、可靠性不高。
实用新型内容
本实用新型的目的在于针对现有技术的缺陷和不足,提供一种结构简单、设计合理、使用方便的机柜用冷却风扇控制电路,它性能稳定、再现性一致性好、控制可靠。
为实现上述目的,本实用新型采用的技术方案是:它由稳压控制工作电源、温度控制电路和风扇驱动电路三个部分组成;稳压控制工作电源的输入端连接总电源VCC,输出端连接温度控制电路;温度控制电路的另一端接地;风扇驱动电路的一端连接总电源VCC,另一端接地。
采用上述结构后,本实用新型有益效果为:本实用新型所述的机柜用冷却风扇控制电路,它性能稳定、再现性一致性好、控制可靠,且具有结构简单、设置合理、制作成本低等优点。
附图说明
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是具体实施方式一的电路控制图;
图2是具体实施方式二的电路控制图。
具体实施方式
下面结合附图,对本实用新型作进一步的说明。
具体实施方式一,参看图1所示,稳压控制工作电源由三端电源稳压器U1、电解电容CD1、电解电容CD2、瓷片电容C1、瓷片电容C2组成;三端电源稳压器U1的输入端接总电源VCC、电解电容CD1的正极和瓷片电容C1,输出端接电解电容CD2的正极和瓷片电容C2,其输出作为电源VDD提供温度控制电路的工作电源;
所述的稳压控制工作电源可采用总电源VCC与电源VDD相连,适当变更相关电阻的阻值代替。
温度控制电路由负温度系数温敏电阻RT、电阻R1、电阻R2、电阻R3、电阻R4、电阻R5、瓷片电容C3、瓷片电容C4和无基极引脚的光电耦合器U2、三端可调分流基准电压源U3组成;瓷片电容C3并联在负温度系数温敏电阻RT的两端,瓷片电容C4并联在电阻R4的两端;电阻R1与电阻R2的连接点接入三端可调分流基准电压源U3的参考输入(Reference)端,三端可调分流基准电压源U3的阴极(Cathode)端接无基极引脚的光电耦合器U2的发光二极管单元的阴极,三端可调分流基准电压源U3的阳极(Anode)端接电源VDD的负极;电阻R3一端接电源VDD,一端接无基极引脚的光电耦合器U2发光二极管的正极,无基极引脚的光电耦合器U2发光二极的负极与三端可调分流基准电压源U3的 阴极(Cathode)端相连,三端可调分流基准电压源U3的阳极(Anode)端接地。无基极引脚的光电耦合器U2的晶体管的c极与电阻R4相连,无基极引脚的光电耦合器U2的晶体管的e极与电阻R5、电阻R6相连,电阻R5的另一端接地。
作为优选,三端可调分流基准电压源U3,选用集成电路TL431。为了保证控制的灵敏度,三端可调分流基准电压源U3导通时电阻R3上流过的电流不宜太小,优选15mA~20mA;三端可调分流基准电压源U3的工作阀值R2/(RT+R1+R2)×VDD>VRef,三端可调分流基准电压源U3选用TL431的VRef值为2.5V。
风扇驱动电路由直流风扇FAN、N型MOS管Q1、电阻R6、限流保护电阻R7、二极管D1、二极管D2组成;直流风扇FAN的正极接总电源VCC,负极接N型MOS管Q1的D极,N型MOS管Q1的S极通过限流保护电阻R7接地;二极管D1并联于直流风扇FAN的两端;二极管D2并联于N型MOS管Q1的S、D极两端;
作为优选,所述的N型MOS管Q1选用IRF5430A;
直流风扇FAN的电压选用直流24V或其他工作电压;总电源VCC为与风扇工作电压一致的电源;电源VDD为经过稳压后的控制用电源,总电源VCC和电源VDD共地(负极);直流风扇FAN的工作电源直接由总电源VCC供给;总电源VCC经过三端电源稳压器U1稳压后提供控制电路工作的电源。
负温度系数温敏电阻RT作为检测机柜内温度的传感器,可用双绞线引出安放在需要冷却的典型区域,瓷片电容C3直接并联在负温度系数温敏电阻RT的两端,以提高信号传输的稳定性。
一般设置当机柜内温度高于30℃就启动风扇进行强制通风冷却。
具体实施方式二,参看图2所示,在具体实施方式一的基础上,风扇驱动电路由直流风扇FAN、大功率三极管Q1、电阻R6、限流保护电阻R7、二极管D1、二极管D2组成;流风扇FAN的正极接总电源VCC,负极接大功率三极管Q1的c极,大功率三极管Q1的e极通过限流保护电阻R7接地;二极管D1并联于直流 风扇FAN的两端;二极管D2并联于大功率三极管Q1的c、e极两端。
本实用新型有益效果为:本实用新型所述的机柜用冷却风扇控制电路,它性能稳定、再现性一致性好、控制可靠,且具有结构简单、设置合理、制作成本低等优点。
以上所述,仅用以说明本实用新型的技术方案而非限制,本领域普通技术人员对本实用新型的技术方案所做的其它修改或者等同替换,只要不脱离本实用新型技术方案的精神和范围,均应涵盖在本实用新型的权利要求范围当中。

Claims (6)

  1. 机柜用冷却风扇控制电路,其特征在于:它由稳压控制工作电源、温度控制电路和风扇驱动电路三个部分组成;稳压控制工作电源的输入端连接总电源VCC,输出端连接温度控制电路;温度控制电路的另一端接地;风扇驱动电路的一端连接总电源VCC,另一端接地。
  2. 根据权利要求1所述的机柜用冷却风扇控制电路,其特征在于所述的稳压控制工作电源由三端电源稳压器U1、电解电容CD1、电解电容CD2、瓷片电容C1、瓷片电容C2组成;三端电源稳压器U1的输入端接总电源VCC、电解电容CD1的正极和瓷片电容C1,输出端接电解电容CD2的正极和瓷片电容C2。
  3. 根据权利要求1所述的机柜用冷却风扇控制电路,其特征在于所述的稳压控制工作电源为总电源VCC与电源VDD相连。
  4. 根据权利要求1所述的机柜用冷却风扇控制电路,其特征在于所述的温度控制电路由负温度系数温敏电阻RT、电阻R1、电阻R2、电阻R3、电阻R4、电阻R5、瓷片电容C3、瓷片电容C4和无基极引脚的光电耦合器U2、三端可调分流基准电压源U3组成;瓷片电容C3并联在负温度系数温敏电阻RT的两端,瓷片电容C4并联在电阻R4的两端;电阻R1与电阻R2的连接点接入三端可调分流基准电压源U3的参考输入(Reference)端,三端可调分流基准电压源U3的阴极(Cathode)端接无基极引脚的光电耦合器U2的发光二极管单元的阴极,三端可调分流基准电压源U3的阳极(Anode)端接电源VDD的负极;电阻R3一端接电源VDD,一端接无基极引脚的光电耦合器U2发光二极管的正极,无基极引脚的光电耦合器U2发光二极的负极与三端可调分流基准电压源U3的阴极(Cathode)端相连,三端可调分流基准电压源U3的阳极(Anode)端接地。无基极引脚的光电耦合器U2的晶体管的c极与电阻R4相连,无基极引脚的光电耦合器U2的晶体管的e极与电阻R5、电阻R6相连,电阻R5的另一端接地。
  5. 根据权利要求1所述的机柜用冷却风扇控制电路,其特征在于所述的风扇驱动电路由直流风扇FAN、N型MOS管Q1、电阻R6、限流保护电阻R7、二极管D1、二极管D2组成;直流风扇FAN的正极接总电源VCC,负极接N型MOS管Q1的D极,N型MOS管Q1的S极通过限流保护电阻R7接地;二极管D1并联于直流风扇FAN的两端;二极管D2并联于N型MOS管Q1的S、D极两端。
  6. 根据权利要求1所述的机柜用冷却风扇控制电路,其特征在于所述的风扇驱动电路由直流风扇FAN、大功率三极管Q1、电阻R6、限流保护电阻R7、二极管D1、二极管D2组成;流风扇FAN的正极接总电源VCC,负极接大功率三极管Q1的c极,大功率三极管Q1的e极通过限流保护电阻R7接地;二极管D1并联于直流风扇FAN的两端;二极管D2并联于大功率三极管Q1的c、e极两端。
PCT/CN2016/106179 2016-02-02 2016-11-17 机柜用冷却风扇控制电路 WO2017133298A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201620110476 2016-02-02
CN201620110476.5 2016-02-02

Publications (1)

Publication Number Publication Date
WO2017133298A1 true WO2017133298A1 (zh) 2017-08-10

Family

ID=59500545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106179 WO2017133298A1 (zh) 2016-02-02 2016-11-17 机柜用冷却风扇控制电路

Country Status (1)

Country Link
WO (1) WO2017133298A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109340160A (zh) * 2018-09-21 2019-02-15 孙可歆 防“蹬被子”风扇
CN109347063A (zh) * 2018-11-30 2019-02-15 武汉精能电子技术有限公司 一种功率器件过热检测保护电路
CN110273853A (zh) * 2019-05-28 2019-09-24 苏州伟创电气设备技术有限公司 一种风扇控制电路及变频器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2419401Y (zh) * 2000-05-12 2001-02-14 台湾达隆工业股份有限公司 具有温度控制电风扇转速的控制装置
CN201540494U (zh) * 2009-10-09 2010-08-04 刘忠信 抽油机控制柜智能风冷控制系统
CN202125451U (zh) * 2011-07-08 2012-01-25 胜利油田胜利工程建设(集团)有限责任公司 抽油机控制柜自动风冷控制系统
CN202673734U (zh) * 2012-06-25 2013-01-16 广东东研网络科技股份有限公司 一种宽范围散热风扇控制电路
CN204283959U (zh) * 2014-11-26 2015-04-22 深圳市三巨电机有限公司 一种智能温控风扇调节装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2419401Y (zh) * 2000-05-12 2001-02-14 台湾达隆工业股份有限公司 具有温度控制电风扇转速的控制装置
CN201540494U (zh) * 2009-10-09 2010-08-04 刘忠信 抽油机控制柜智能风冷控制系统
CN202125451U (zh) * 2011-07-08 2012-01-25 胜利油田胜利工程建设(集团)有限责任公司 抽油机控制柜自动风冷控制系统
CN202673734U (zh) * 2012-06-25 2013-01-16 广东东研网络科技股份有限公司 一种宽范围散热风扇控制电路
CN204283959U (zh) * 2014-11-26 2015-04-22 深圳市三巨电机有限公司 一种智能温控风扇调节装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109340160A (zh) * 2018-09-21 2019-02-15 孙可歆 防“蹬被子”风扇
CN109347063A (zh) * 2018-11-30 2019-02-15 武汉精能电子技术有限公司 一种功率器件过热检测保护电路
CN109347063B (zh) * 2018-11-30 2024-03-15 武汉精能电子技术有限公司 一种功率器件过热检测保护电路
CN110273853A (zh) * 2019-05-28 2019-09-24 苏州伟创电气设备技术有限公司 一种风扇控制电路及变频器

Similar Documents

Publication Publication Date Title
WO2017133298A1 (zh) 机柜用冷却风扇控制电路
CN209419945U (zh) 一种led驱动电源过温保护电路
CN205356150U (zh) 可调稳压电源电路
CN205141635U (zh) 一种电机过热保护报警电路
CN112290665A (zh) 自动识别供电类型多电源均衡器节能采集设备及控制方法
CN204535873U (zh) 一种低成本高精度温度计
CN208621708U (zh) 一种市电掉电信号传输电路
CN204536951U (zh) 一种电暖扇智能加热电路
CN210776688U (zh) 一种极低成本的理想二极管电路装置
CN209029912U (zh) 一种控制电路
CN204695263U (zh) 一种冷热两用鼠标垫电路
CN105471421B (zh) 一种电平转换电路
CN209012103U (zh) 一种温控自动调速风扇电路
CN207924538U (zh) 一种具有上下限位功能的双控调温器
CN104853511A (zh) 一种基于精密反向电流源的门极驱动式低功耗测温系统
CN201886372U (zh) 带隙基准电压检测电路
CN202210346U (zh) 设备环境参数远程监测器
CN208110428U (zh) 一种温度补偿电路
CN215117120U (zh) 一种机载摄像头低温加热系统
CN204719579U (zh) 电子式交流稳压器控制电路
CN205880705U (zh) 一种温度控制系统
CN204881902U (zh) 一种用于单个ad口的温度检测电路
CN204390089U (zh) 温室大棚温湿度控制装置
CN207601736U (zh) 具有散热控制功能的计算机
CN205160371U (zh) 一种钳位电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889105

Country of ref document: EP

Kind code of ref document: A1