WO2022142554A1 - 一种新型流体发电装置 - Google Patents

一种新型流体发电装置 Download PDF

Info

Publication number
WO2022142554A1
WO2022142554A1 PCT/CN2021/121670 CN2021121670W WO2022142554A1 WO 2022142554 A1 WO2022142554 A1 WO 2022142554A1 CN 2021121670 W CN2021121670 W CN 2021121670W WO 2022142554 A1 WO2022142554 A1 WO 2022142554A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan blade
power generation
generation device
fluid power
support
Prior art date
Application number
PCT/CN2021/121670
Other languages
English (en)
French (fr)
Inventor
高再起
Original Assignee
高再起
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高再起 filed Critical 高再起
Publication of WO2022142554A1 publication Critical patent/WO2022142554A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/30Wind motors specially adapted for installation in particular locations
    • F03D9/32Wind motors specially adapted for installation in particular locations on moving objects, e.g. vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a power generation device, in particular to a novel fluid power generation device.
  • Fluid power generation devices such as wind turbines usually install the fan blades on the top of the mandrel connected to the generator shaft.
  • the fan blades drive the main shaft to rotate under the action of wind, and its motion trajectory is vertical, thereby driving the motor to operate.
  • the mechanical load of this type of traditional wind turbine acts on the top of the tower, which requires high stability of the equipment.
  • the static force area relationship of this type of wind turbine in the motion circle area of the fan blade is roughly: blade pressure center-spindle 20%, blade pressure center-deformation part 16%, deformation part 3%, total force area 10% %.
  • the purpose of the present invention is to overcome the defects of the prior art and provide a novel fluid power generation device
  • the power generation device includes a mandrel sleeve 2 mechanically connected to the main shaft of the generator, wherein a fan is fixedly installed on the mandrel sleeve 2
  • the outer frame of the blade 1, the outer frame of the fan blade 1 includes the upper and lower fan blade cover 11, the lower fan blade cover 12 and the side shaft 18 which are symmetrical up and down.
  • the upper mandrel hole 14 is the center of the circle and N upper support arms 16 are evenly arranged, the center of the fan blade lower cover 12 is the lower mandrel hole 15 that matches the mandrel sleeve 2, and the lower mandrel hole 15 is the center of the circle.
  • the lower support arms 17 connect the distal ends of each pair of vertically symmetrical upper support arms 16 and the lower support arms 17 respectively through the side shafts 18, so as to realize the connection between the fan blade upper cover 11 and the fan blade lower cover 12;
  • a fan blade 3 is arranged in the outer frame 1 of the fan blade along the length direction of the side shaft 18, and the distal end of the fan blade 3 is hinged with the side shaft 18;
  • a limiting device matching the proximal end of the fan blade 3 is arranged on the mandrel sleeve 2 to make the fan blade 3 move around the side shaft 18 in one direction.
  • distal end is used to describe, without limitation, the ends of the blades or the upper and lower support arms away from the mandrel sleeve, correspondingly, their ends facing the mandrel sleeve can be expressed as "proximal” end”.
  • moving around the side axis in one direction refers to the action of the limiting device at the proximal end of the fan blade. Therefore, when subjected to the force of the fluid, it can only be opened in one direction around the side axis, and will follow the action of the force. Recloses when orientation changes.
  • the significance of the limiting device is to ensure that the fan blade can only be opened in one direction around the side shaft 18 under the stress state.
  • This one-way motion relationship establishes the transmission relationship of the present invention: when the combined body of the outer frame of the fan blade and the fan blade is subjected to the thrust of the fluid as a whole, the fan blade is moved according to the different position and force direction of each fan blade at that time. It is divided into a stressed fan blade and a non-stressed fan blade, as shown in Figure 5.
  • the second fan blade 302 and the third fan blade 303 are less affected by the thrust F because they are in the open state, so the second fan at the position B and the position C at this time will be used.
  • the blade 302 and the third blade 303 are defined as unstressed blades.
  • the first fan blade 301 in position A is in a closed state because it is restricted by the limiting device, so it is greatly affected by the thrust F, and the first fan blade 301 in this state is defined as a force-bearing fan blade.
  • the thrust F acts on the force-bearing fan blade, and the first fan blade 301 transmits the force to the mandrel sleeve, drives the mandrel sleeve to rotate around the shaft, and then transmits it to the generator main shaft mechanically connected with the mandrel sleeve, thereby realizing The generator operates.
  • the first fan blade 301 changes its position accordingly.
  • the limiting device The first fan blade 301 no longer plays a positional constraint role, and the first fan blade 301 is opened by the thrust F, and the first fan blade 301 at this time changes from the original force-bearing fan blade to a non-force-bearing fan blade.
  • the first fan blade 301 moves to the rotated position D, the first fan blade 301 is closed under the action of the thrust F at this time, and the first fan blade 301 is closed.
  • the first fan blade 301 becomes the force-bearing fan blade again after being limited by the limiting device and continuously in the closed state.
  • the power generating device of the present invention further includes a stable support 4 .
  • the stabilizing bracket is used to improve the stability of the mandrel sleeve and the mandrel.
  • the stable bracket 4 includes a bracket outer frame 41 and a bracket foot 42.
  • the bracket outer frame 41 includes a bracket upper cover 43 with a mandrel sleeve hole, a bracket lower cover 44 and a connection between the bracket upper cover 43 and the bracket lower cover 44.
  • the bracket frame 45 , the bracket upper cover 43 and the bracket lower cover 44 are respectively mechanically connected to the mandrel sleeve 2 through bearings, and the bracket feet 42 are fixedly connected to the bracket lower cover 44 and the ground.
  • N is a natural number and N ⁇ 3.
  • the fan blade includes a fan blade frame 31 and a fan blade 32 fixed on the fan blade frame 31 .
  • the limiting device may be provided by a positioning pin 33 fixed on the mandrel sleeve and a positioning groove matching the positioning pin 33 provided at the proximal end of the blade frame 31 accomplish.
  • a positioning pin 33 fixed on the mandrel sleeve and a positioning groove matching the positioning pin 33 provided at the proximal end of the blade frame 31 accomplish.
  • Those skilled in the art can also make modifications or improvements to the limiting device according to the teachings of the prior art.
  • the novel fluid power generation device further comprises a speed change mechanism mechanically connected with the main shaft of the generator.
  • the novel fluid power generation device further includes a braking mechanism and/or an energy storage mechanism connected with the generator.
  • the fan blade in order to reduce the self-weight of the fan blade, is a resin fiber composite fan blade.
  • resin fiber composite fan blade Those skilled in the art can select light-weight resin fiber composite materials with sufficient strength to make fan blades according to the teachings of the prior art.
  • ceramic bearings can also be used to achieve underwater anti-corrosion function.
  • the novel fluid power generation device of the present invention is suitable for liquid fluid or gaseous fluid environment.
  • Those skilled in the art can select the appropriate size, the number of fan blades in each fan blade outer frame and the number of fan blade outer frame groups according to the specific environment, so as to adapt to different power generation needs in the interval below the stratosphere to -200 meters underwater.
  • the novel fluid power generation device of the present invention may include a plurality of sets of outer frames of fan blades arranged along the length of the mandrel.
  • the invention improves the installation position of the fan blade to be hinged with the side shaft through the brand-new design of the outer frame of the fan blade, so as to realize the state change of the fan blade in different positions under the fluid environment - part of the fan blade is subjected to force and is limited.
  • some of the fan blades are not subjected to force (or less force) and are not limited to become non-stressed fan blades. Effectively improve the torque force and efficiency per unit area of the carrier.
  • the fluid power generation device of the present invention is suitable for wind power generation or for power generation in rivers, ocean currents, and ocean currents.
  • the device of the present invention can be appropriately reduced in modules and installed on automobiles to realize mobile power generation, especially for electric vehicles as range extenders.
  • Those skilled in the art can connect the fluid power generation device of the present invention with the power system of the electric vehicle according to the already mastered technology.
  • the fluid power generation device of the present invention through structural improvement, changes the horizontally arranged mandrel of the conventional wind power generator to the vertically arranged mandrel, ensures the stability of the combination of the mandrel and the mandrel sleeve through the stabilizing bracket, and has low construction difficulty and high reliability.
  • the construction is relatively simple, and the general civil construction units can carry out the construction.
  • FIG. 1 is a schematic three-dimensional structure diagram of a fluid power generation device of the present invention
  • Fig. 2 is the three-dimensional structure diagram of the outer frame of the fan blade of the present invention.
  • FIG. 3 is a three-dimensional structural view of the outer frame of the fan blade and the stable support of the present invention
  • FIG. 4 is a front view of a fan blade of the present invention.
  • FIG. 5 is a schematic diagram of the motion relationship of the fluid power generation device of the present invention.
  • Fan blade outer frame 11. Fan blade upper cover; 12. Fan blade lower cover; 14. Upper mandrel hole; 15. Lower mandrel hole; 16. Upper support arm; 17. Lower support arm; 18. Side axis;
  • fan blade 31, fan blade frame; 32, fan blade; 33, positioning pin; 301, first fan blade; 302, second fan blade; 303, third fan blade;
  • Stable support 41. Support frame; 42. Support foot; 43. Support upper cover; 44. Support lower cover; 45. Support frame.
  • the present invention has several ways:
  • Example 1 Vertical placement of the device of the present invention in a gaseous or liquid fluid environment
  • the fluid power generation device shown in Figure 1 is placed vertically in a fluid environment.
  • the power generation device of the present invention can be installed in a single unit or in an array.
  • the outer frame of the fan blade is shown in Figure 2-3, including the upper and lower fan blade cover 11, the lower fan blade cover 12 and the side shaft 18 which are symmetrical up and down, and three fan blades 3 are installed along the length of the side shaft 18 respectively.
  • the fan blade 3 includes a fan blade frame 31 and a fan blade 32 arranged on the frame, wherein the fan blade 32 is made of resin fiber composite material.
  • the stabilizing bracket 4 includes a bracket outer frame 41 and a bracket foot 42.
  • the bracket outer frame 41 includes a bracket upper cover 43, a bracket lower cover 44 and a bracket frame 45, and is used to ensure a vertical mandrel sleeve. 2 stability.
  • the size of the fan blades in the gaseous fluid is 10m ⁇ 30m, and the rated power of the motor is 500-1000kw.
  • the mandrel is hooked to the pulley, and the speed is increased to 6000 rpm through gear transmission, and the brakes, clutches and generators are installed.
  • the installation of brakes, clutches and generators refers to the teaching of conventional wind power engineering construction.
  • the traditional three-blade wind turbine set in the same environment requires a blade size of 14 meters with an equivalent rotor area of 600 square meters, and the rated power of the matching motor is usually about 120 kilowatts, which is significantly smaller than this implementation. example.
  • the power generating devices of this embodiment can also be installed in a line.
  • Array installation has the advantages of low unit cost, high total power generation and easy maintenance.
  • Embodiment 2 Horizontally arranged fluid power generation device
  • the horizontal arrangement of the fluid power generation device of the present invention can be realized by means of a high-structure infrastructure. For example, install bearings at the top of the 2 Y-shaped claw supports on the flange at the top of the tower, set the mandrel and the mandrel sleeve horizontally, and then install the outer frame of the fan blade and the stable bracket to ensure the mandrel and the mandrel sleeve. stability, and then install the fan blades along the side shaft.
  • the horizontally arranged power generation device is generally suitable for projects with low power, wherein those skilled in the art can select appropriate fan blade specifications according to the rated power of the motor and the fluid environment parameters of the installation area.
  • the size of the fan blade is 1800mm ⁇ 8500mm, and the rated power of the motor is 30kw.
  • Example 3 The fluid power generation device of the present invention is set upside down
  • the device of the present invention is installed upside down underwater, that is, the generator is on the upper part, and the mandrel and the mandrel sleeve are below the generator. .
  • the orientation of the mandrel sleeve can be selected according to the underwater fluid conditions, such as vertical or horizontal.
  • the power generation device is applied underwater in a vertical arrangement.
  • the size of the fan blade is 10m ⁇ 30m
  • the rated power of the motor is 5-10MW.
  • the power generation device when used as a torrent power generation device, is set underwater in a horizontal setting, when the size of the fan blade is 1800mm ⁇ 8500mm, and the rated power of the motor is 200kw-1000KW.
  • the device of the present invention is superior to the traditional three-blade wind turbine in the parameters of each embodiment and the rated power of the generator used.
  • the force area of the fan blade of the fluid power generation device of the present invention is significantly larger than that of the traditional three-blade wind generator, so the torque is significantly larger than that of the traditional three-blade wind generator, usually several tens of times.
  • the rotating speed of the fan blades of the power generating device of the present invention is also significantly higher than that of the traditional three-blade wind turbine, so the converted power generation is also significantly improved.
  • the fluid power generation device of the present invention has the advantages of low center of gravity and higher safety.
  • the present invention adapts to the vertical generator through the improvement of the fan blade structure.
  • the fluid power generation device of the present invention is more stable, and the vertical axis fan blade is not affected by the wind direction.
  • the device length is small, which is convenient for transportation and construction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Oceanography (AREA)
  • Wind Motors (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种新型流体发电装置,发电装置包括与发电机主轴机械连接的芯轴套筒(2),芯轴套筒(2)上固定安装扇叶外框(1),扇叶外框(1)包括扇叶上盖(11)、扇叶下盖(12)和边轴(18),通过边轴(18)实现扇叶上盖(11)与扇叶下盖(12)的连接;在扇叶外框(1)内沿边轴(18)长度方向设置扇叶(3),扇叶(3)的远端与边轴(18)铰接;在芯轴套筒(2)上设置与扇叶(3)的近端匹配的限位装置使扇叶(3)单方向绕边轴(18)运动。

Description

一种新型流体发电装置 【技术领域】
本发明涉及发电装置,特别是一种新型流体发电装置。
【背景技术】
流体发电装置如风力发电机通常将扇叶安装在与发电机转轴相连的芯轴顶端,扇叶在风力作用下驱使主轴转动,其运动轨迹为垂直方向,从而驱动电机运作。这类传统的风力发电机的力学荷载作用于塔杆顶部,对设备稳定性的要求高。此外,这类风力发电机在扇叶的运动圆面积内静止受力面积关系大致为:叶压中心-主轴20%、叶压中心-变形部16%、变形部3%,总受力面积10%。
对流体发电装置的改进,包括力学改进与结构改进一直是本领域的追求。
【发明内容】
本发明的目的是克服现有技术缺陷,提供一种新型流体发电装置,所述发电装置包括与发电机主轴机械连接的芯轴套筒2,其中,所述芯轴套筒2上固定安装扇叶外框1,所述扇叶外框1包括上下对称的扇叶上盖11、扇叶下盖12和边轴18,扇叶上盖11中央是与芯轴套筒2匹配的上芯轴孔14,以上芯轴孔14为圆心均匀设置N根上支撑臂16,扇叶下盖12中央是与芯轴套筒2匹配的下芯轴孔15,以下芯轴孔15为圆心均匀设置N根下支撑臂17,分别通过边轴18连接每一对上下对称的上支撑臂16与下支撑臂17的远端部,实现扇叶上盖11与扇叶下盖12的连接;
在扇叶外框1内沿边轴18长度方向设置扇叶3,扇叶3的远端与边轴18铰接;
在芯轴套筒2上设置与扇叶3的近端匹配的限位装置使扇叶3单方向绕边轴18运动。
在本发明中,术语“远端”用于非限制性地描述扇叶或上、下支 撑臂的远离芯轴套筒的一端,对应地,它们朝向芯轴套筒的一端可表述为“近端”。
在本发明中,“单方向绕边轴运动”是指扇叶近端受限位装置的作用,因此在受到流体的力的作用时,只能绕边轴朝一个方向打开,并随着作用力方向变化时重新闭合。
在本发明中,限位装置的意义在于确保扇叶在受力状态下只能绕边轴18单向打开。这种单向运动关系确立了本发明的传动关系:当扇叶外框与扇叶的联合体整体受到流体的推力时,根据每个扇叶当时所处位置与受力方向不同,将扇叶分为受力扇叶与非受力扇叶,如图5所示。
图5展示了当N=3即扇叶外框中设置三片扇叶的流体发电装置在受力时的运动关系。当流体发电装置受到流体推力F时,此时第二扇叶302和第三扇叶303由于处于打开状态而受到推力F的作用较小,因此将此时处于位置B和位置C的第二扇叶302和第三扇叶303定义为非受力扇叶。同时,处于位置A的第一扇叶301由于被限位装置限制而处于闭合状态,因此受到推力F的作用较大,将该状态下的第一扇叶301定义为受力扇叶。推力F作用于受力扇叶,第一扇叶301将受力传递至芯轴套筒,驱使芯轴套筒绕轴转动,再传动至与芯轴套筒机械连接的发电机主轴,从而实现发电机运作。
随着推力F作用于受力扇叶而驱使芯轴套筒转动的运动过程,第一扇叶301随之改变位置,由原A位置逆时针方向运动至转过B位置时,此时限位装置不再对第一扇叶301起到位置约束作用,第一扇叶301受推力F作用而打开,此时的第一扇叶301由原受力扇叶变为非受力扇叶。
随着扇叶外框与扇叶联合体继续绕轴作逆时针方向转动,当第一扇叶301运动至转过位置D时,此时在推力F作用下第一扇叶301被关闭,并被限制装置限位而持续处于关闭状态,第一扇叶301重新成为受力扇叶。
优选地,本发明的发电装置还包括稳固支架4。由于芯轴套筒2 和芯轴具备一定长度和安装高度,稳固支架用于提高芯轴套筒和芯轴的稳定性。所述稳固支架4包括支架外框41和支架足42,所述支架外框41包括具有芯轴套筒孔的支架上盖43、支架下盖44和连接支架上盖43与支架下盖44的支架边框45,支架上盖43和支架下盖44分别通过轴承与芯轴套筒2机械连接,支架足42固定连接支架下盖44与地。
在本发明中,N是自然数且N≥3。当N=3时,即扇叶上盖11设置3根上支撑臂,对应地,扇叶下盖12设置3根下支撑臂,因此,扇叶外框中安装3片扇叶。每一片扇叶间的角距离为120°。
在本发明中,所述扇叶包括扇叶骨架31和固定在扇叶骨架31上的扇叶片32。
在本发明中,根据一种可选的实施方式,限位装置可以通过固定在芯轴套筒上的定位销33和设置在扇叶骨架31近端的与所述定位销33匹配的定位槽实现。本领域技术人员也可以根据现有技术的教导,对限位装置进行变型或改进。
根据一种优选的实施方式,所述新型流体发电装置还包括与发电机主轴机械连接的变速机构。
所述新型流体发电装置还包括与发电机连接的刹车机构和/或储能机构。
与流体发电装置相匹配的变速机构、刹车机构和储能机构的设计与制造是本领域技术人员的公知常识,在此不做赘述。
在本发明中,为了减轻扇叶自重,所述扇叶片是树脂纤维复合材料扇叶片。本领域技术人员可根据现有技术的教导,选用轻质且具备足够强度的树脂纤维复合材料制作扇叶片。
进一步地,还可以采用陶瓷轴承以实现水下防腐功能。
本发明的新型流体发电装置适用于液态流体或气态流体环境。本领域技术人员可根据具体环境选择适当的尺寸、每个扇叶外框内的扇叶数量和扇叶外框组数,以适应于平流层以下至-水下200米区间的不同发电需求。
本发明的新型流体发电装置可包括沿芯轴长度方向设置的多组扇叶外框。
本发明通过崭新的扇叶外框设计,将扇叶的安装位置改进为与边轴铰接,实现处于不同位置的扇叶在流体环境下的状态变化——部分扇叶受力且被限位而处于受力扇叶、部分扇叶不受力(或受力较小)且不被限位而成为非受力扇叶,通过受力扇叶驱动主轴转动,从而实现流体力学最大受力面积,有效提高了载体单位面积扭矩力及效率。
通过调整尺寸及扇叶外框中扇叶的数量,本发明的流体发电装置适用于风力发电或用于河流、海流、洋流激流发电,随着流体环境调整扇叶数量,能有效提高发电效率。本领域技术人员还可以根据本发明的技术方案进行适当变型,例如将本发明的装置适当缩小模块而安装于汽车上实现移动发电,特别是应用于电动汽车作为增程器。本领域技术人员根据已经掌握的技术能够将本发明的流体发电装置与电动汽车的动力系统进行连接。
本发明的流体发电装置通过结构改进,将常规风力发电机水平设置的芯轴设置改为垂直设置的芯轴,通过稳固支架确保芯轴与芯轴套筒组合体的稳定性,建造难度低、施工较简单,一般土建施工单位均可施工。
【附图说明】
图1为本发明的流体发电装置的立体结构示意图;
图2为本发明的扇叶外框立体结构图;
图3为本发明的扇叶外框与稳固支架立体结构图;
图4为本发明的扇叶主视图;
图5为本发明的流体发电装置运动关系示意图。
其中:
1、扇叶外框;11、扇叶上盖;12、扇叶下盖;14、上芯轴孔;15、下芯轴孔;16、上支撑臂;17、下支撑臂;18、边轴;
2、芯轴套筒;
3、扇叶;31、扇叶骨架;32、扇叶片;33、定位销;301、第一 扇叶;302、第二扇叶;303、第三扇叶;
4、稳固支架;41、支架外框;42、支架足;43、支架上盖;44、支架下盖;45、支架边框。
【具体实施方式】
以下实施例用于非限制性地解释本发明的技术方案。
本发明有几种方式:
实施例1在气态流体或液态流体环境中垂直放置本发明的装置
图1所示的流体发电装置垂直放置在流体环境中。垂直放置时,根据发电规模或工程指标,可单体设置或阵列式设置本发明的发电装置。
扇叶外框如图2-3所示,包括上下对称的扇叶上盖11、扇叶下盖12和边轴18,分别沿边轴18长度方向安装三片扇叶3。扇叶3如图4所示,包括扇叶骨架31和设置在骨架上的扇叶片32,其中,扇叶片32采用树脂纤维复合材料制作。
稳固支架4如图1和3所示,包括支架外框41和支架足42,支架外框41包括支架上盖43、支架下盖44和支架边框45,用于确保垂直设置的芯轴套筒2的稳定性。
在本实施例中,气态流体中扇叶规格为10m×30m,电机额定功率500-1000kw。
发电装置主体安装后,芯轴挂接皮带轮,通过齿轮传动实现增速至6000转,并安装刹车、离合器、发电机。其中,刹车、离合器和发电机的安装参考常规风电工程施工教导。
与之相比,在同一环境中设置的传统三叶风力发电机,其等同风轮面积600平方米的风叶规格需要14米长,通常匹配的电机额定功率约为120千瓦,显著小于本实施例。
进一步地,还可以将本实施例的发电装置进行阵容式安装。阵列式安装具有单位造价低、总发电量高和易于维护的优势。
实施例2水平设置的流体发电装置
在微风或常年风力较弱的地区,可借助高架构基础建筑实现本发 明的流体发电装置的水平设置。例如,在塔杆顶端法兰盘上的2个Y型羊角支撑顶部装入轴承,水平设置芯轴和芯轴套筒,再安装扇叶外框和稳固支架以确保芯轴和芯轴套筒的稳定性,然后沿边轴安装扇叶。
水平设置的发电装置通常适用于功率较小的工程,其中,本领域技术人员可根据电机的额定功率和安装区域的流体环境参数选择适当的扇叶规格。在本实施例中,采用扇叶规格为1800mm×8500mm,电机额定功率30kw。
实施例3倒置设置本发明的流体发电装置
此外,当流体发电装置设置在洋流环境中时,借助浮体或浮筏辅助安装,将本发明的装置倒置安装在水下,即发电机处于上部,而芯轴和芯轴套筒处于发电机以下。
倒置安装时,可依据水下流体条件选择芯轴套筒的设置方向,例如垂直设置或水平设置。
例如,将发电装置以垂直设置方式应用于水下,当扇叶规格为10m×30m时,电机额定功率为5-10MW。
或者,将类似地,作为激流发电装置时,将发电装置以水平设置方式设置在水下,当扇叶规格为1800mm×8500mm,电机额定功率200kw-1000KW。
综上所述,本发明的装置在各实施例参数和所用发电机的额定功率上均优于传统的三叶风力发电机。得益于扇叶结构的改进,本发明的流体发电装置的扇叶受力面积显著大于传统三叶风力发电机,因而扭矩显著大于传统三叶风力发电机,通常可达其几十倍。以低于15m/s的风速计算,本发明的发电装置的扇叶转速也显著高于传统三叶风力发电机,因此转化的发电量也显著提高。
此外,由于扇叶形状的改进,本发明的流体发电装置具有重心低的优势,安全性更高的优点。
综上所述,本发明通过扇叶结构改进而适配垂直发电机,与传统的三叶风力发电机相比,本发明的流体发电装置稳定性更强,垂直轴扇叶不受风力方向的影响,此外器件长度较小,便于运输和制作施工。

Claims (8)

  1. 新型流体发电装置,所述发电装置包括与发电机主轴机械连接的芯轴套筒(2),其特征在于所述芯轴套筒(2)上固定安装扇叶外框(1),所述扇叶外框(1)包括上下对称的扇叶上盖(11)、扇叶下盖(12)和边轴(18),扇叶上盖(11)中央是与芯轴套筒(2)匹配的上芯轴孔(14),以上芯轴孔(14)为圆心均匀设置N根上支撑臂(16),扇叶下盖(12)中央是与芯轴套筒(2)匹配的下芯轴孔(15),以下芯轴孔(15)为圆心均匀设置N根下支撑臂(17),分别通过边轴(18)连接每一对上下对称的上支撑臂(16)与下支撑臂(17)的远端部,实现扇叶上盖(11)与扇叶下盖(12)的连接;
    在扇叶外框(1)内沿边轴(18)长度方向设置扇叶(3),扇叶(3)的远端与边轴(18)铰接;
    在芯轴套筒(2)上设置与扇叶(3)的近端匹配的限位装置使扇叶(3)单方向绕边轴(18)运动。
  2. 根据权利要求1所述的新型流体发电装置,其特征在于所述发电装置还包括稳固支架(4),所述稳固支架(4)包括支架外框(41)和支架足(42),所述支架外框(41)包括具有芯轴套筒孔的支架上盖(43)、支架下盖(44)和连接支架上盖(43)与支架下盖(44)的支架边框(45),支架上盖(43)和支架下盖(44)分别通过轴承与芯轴套筒(2)机械连接,支架足(42)固定连接支架下盖(44)与地。
  3. 根据权利要求1所述的新型流体发电装置,其特征在于N是自然数且N≥3。
  4. 根据权利要求1所述的新型流体发电装置,其特征在于所述扇叶包括扇叶骨架(31)和固定在扇叶骨架(31)上的扇叶片(32)。
  5. 根据权利要求1所述的新型流体发电装置,其特征在于所述新型流体发电装置还包括与发电机主轴机械连接的变速机构。
  6. 根据权利要求1所述的新型流体发电装置,其特征在于所述 扇叶片是树脂纤维复合材料扇叶片。
  7. 根据权利要求1所述的新型流体发电装置,其特征在于所述流体是液态流体或气态流体。
  8. 根据权利要求1所述的新型流体发电装置,其特征在于所述新型流体发电装置包括沿芯轴长度方向设置的多组扇叶外框。
PCT/CN2021/121670 2020-12-31 2021-09-29 一种新型流体发电装置 WO2022142554A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011640066.9A CN112682261A (zh) 2020-12-31 2020-12-31 一种新型流体发电装置
CN202011640066.9 2020-12-31

Publications (1)

Publication Number Publication Date
WO2022142554A1 true WO2022142554A1 (zh) 2022-07-07

Family

ID=75456715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121670 WO2022142554A1 (zh) 2020-12-31 2021-09-29 一种新型流体发电装置

Country Status (2)

Country Link
CN (1) CN112682261A (zh)
WO (1) WO2022142554A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112682261A (zh) * 2020-12-31 2021-04-20 高再起 一种新型流体发电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2136343Y (zh) * 1992-10-16 1993-06-16 北京市西城区新开通用试验厂 风帆式风力动力装置
CN2193936Y (zh) * 1994-03-21 1995-04-05 北京市西城区新开通用试验厂 具有双重生态工程效益的数控风帆发电装置
CN1109140A (zh) * 1994-03-21 1995-09-27 北京市西城区新开通用试验厂 具有双重生态工程效益的数控风帆发电装置
JPH0960573A (ja) * 1995-08-21 1997-03-04 Hakko Denki Kk 風力発電装置
CN109519327A (zh) * 2017-10-24 2019-03-26 许昌义 重力自调式风力发电机
CN112682261A (zh) * 2020-12-31 2021-04-20 高再起 一种新型流体发电装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4408955A (en) * 1980-06-18 1983-10-11 Wagle Joseph A Wind operated wheel
DE10239498A1 (de) * 2002-08-28 2004-03-11 Josef Gail Windkraftmaschine
KR101016239B1 (ko) * 2009-02-11 2011-02-25 강승구 원심력이용 도어날개 개폐 방식의 수직축 풍력터빈
CN201588735U (zh) * 2009-12-24 2010-09-22 周骋 垂直式翻转叶轮及一种垂直式风力发电机
WO2015199447A1 (ko) * 2014-06-26 2015-12-30 김형근 회전축의 회전수가 발전기 회전율과 동일한 회전발전장치
CN214741836U (zh) * 2020-12-31 2021-11-16 高再起 一种新型流体发电装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2136343Y (zh) * 1992-10-16 1993-06-16 北京市西城区新开通用试验厂 风帆式风力动力装置
CN2193936Y (zh) * 1994-03-21 1995-04-05 北京市西城区新开通用试验厂 具有双重生态工程效益的数控风帆发电装置
CN1109140A (zh) * 1994-03-21 1995-09-27 北京市西城区新开通用试验厂 具有双重生态工程效益的数控风帆发电装置
JPH0960573A (ja) * 1995-08-21 1997-03-04 Hakko Denki Kk 風力発電装置
CN109519327A (zh) * 2017-10-24 2019-03-26 许昌义 重力自调式风力发电机
CN112682261A (zh) * 2020-12-31 2021-04-20 高再起 一种新型流体发电装置

Also Published As

Publication number Publication date
CN112682261A (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
CN101943127B (zh) 集风立式风力发电系统
US4735552A (en) Space frame wind turbine
EP0022635B1 (en) Fluid powered tracked vehicle for generating electricity
CN102449878B (zh) 用于风力涡轮机的发电机
US8464990B2 (en) Pole mounted rotation platform and wind power generator
WO2016173304A1 (zh) 一种新型风力机联动变桨系统
WO2010098813A1 (en) Wind energy device
MX2007013790A (es) Sistemas y metodos para turbinas ancladas.
US8749088B2 (en) Methods and devices for generating electricity from high altitude wind sources
CN101603507A (zh) 立轴变桨直驱风力发电机
WO2011106919A1 (zh) 风力发电装置
WO2022142554A1 (zh) 一种新型流体发电装置
CN102865193A (zh) 风叶转向控制系统及旋帆式风机
CN101368544A (zh) 组合式共轴垂直轴风力发电机
CN208456780U (zh) 一种风力发电装置
WO2002014688A1 (fr) Eolienne a ossature combinee
CN108518304A (zh) 风力发电机、垂直轴风轮及其变桨方法
KR20130077366A (ko) 블레이드장치 및 이를 이용한 풍력/수력 발전장치
CN104005914A (zh) 一种风力发电系统及其发电方法
CN101761451A (zh) 高空风力发电装置
CN214741836U (zh) 一种新型流体发电装置
CN103511185A (zh) 一种带h型风叶的垂直轴风车
CN101004167A (zh) 花瓣状风叶垂直轴高效风力发电机
KR101346179B1 (ko) 풍력발전기용 블레이드 그립핑 장치
CN101952588B (zh) 升降式高空风力发电设备及其涡流发电装置、高空载体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913299

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21913299

Country of ref document: EP

Kind code of ref document: A1