WO2022142511A1 - 3d微电极的制备方法 - Google Patents

3d微电极的制备方法 Download PDF

Info

Publication number
WO2022142511A1
WO2022142511A1 PCT/CN2021/119872 CN2021119872W WO2022142511A1 WO 2022142511 A1 WO2022142511 A1 WO 2022142511A1 CN 2021119872 W CN2021119872 W CN 2021119872W WO 2022142511 A1 WO2022142511 A1 WO 2022142511A1
Authority
WO
WIPO (PCT)
Prior art keywords
microelectrode
preparing
electrode
flexible
conductive
Prior art date
Application number
PCT/CN2021/119872
Other languages
English (en)
French (fr)
Inventor
朱永刚
陈超湛
陈华英
冉斌
刘波
吕传文
Original Assignee
哈尔滨工业大学(深圳)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学(深圳) filed Critical 哈尔滨工业大学(深圳)
Priority to EP21913256.0A priority Critical patent/EP4166498A4/en
Priority to US18/019,447 priority patent/US20230286799A1/en
Publication of WO2022142511A1 publication Critical patent/WO2022142511A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • B81C99/0075Manufacture of substrate-free structures
    • B81C99/0085Manufacture of substrate-free structures using moulds and master templates, e.g. for hot-embossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/026Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/26Moulds or cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00111Tips, pillars, i.e. raised structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00444Surface micromachining, i.e. structuring layers on the substrate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0053Methods for producing microneedles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/003PET, i.e. poylethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2079/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
    • B29K2079/08PI, i.e. polyimides or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2083/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0361Tips, pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/04Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/05Arrays
    • B81B2207/056Arrays of static structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/03Processes for manufacturing substrate-free structures
    • B81C2201/034Moulding

Definitions

  • the invention relates to the preparation of electrodes, in particular to a preparation method of a 3D micro-electrode.
  • Electrochemical research is an analytical method that utilizes the electrochemical properties of substances to characterize and measure.
  • the electrochemical analysis method can not only realize the automatic recording of analysis results, but also facilitate the detection of trace substances, including glucose, sarcosine and urea, etc., which are widely used in industry, agriculture, food safety, etc.
  • micropillar array electrodes are mainly fabricated through complex photolithographic processes, including LIGA-like processes, carbonized photoresists patterned on substrates, and homoepitaxial growth.
  • Prehn et al. have reported the fabrication of micropillar array electrodes with 10 ⁇ m pillar height using lithography, metallization and electrodeposition techniques.
  • Second, Sanchez-Molas et al. fabricated micropillar array electrodes with taller micropillars (up to 125 ⁇ m) using sputtering and deep reactive ion etching (DRIE), which showed better clarity and repeatability.
  • DRIE deep reactive ion etching
  • the manufacturing process is often expensive and time-consuming. Additionally, both the aspect ratio and pillar height are limited by the lithography process.
  • the present invention aims to solve at least one of the technical problems existing in the prior art.
  • the present invention proposes a preparation method of 3d micro-electrode, which can prepare ultra-high micro-pillar array electrodes up to 500 ⁇ m to 2 mm, has the characteristics of low cost, high speed, high precision and flexibility, and can be used for electrochemical analysis in the field of wearable devices .
  • a first aspect of the present invention provides a method for preparing a 3D microelectrode, comprising the following steps:
  • a conductive layer is prepared on the flexible 3d microelectrode substrate to form a 3d microelectrode.
  • the flexible material is selected from any of PDMS, PET, and polyimide.
  • the flexible material is a PDMS solution
  • the mass ratio of the PDMS prepolymer to the curing agent in the PDMS solution is 10:1.
  • the 3d microelectrodes are array electrodes.
  • a single electrode in the array electrodes is a circular frustum electrode, a conical electrode, a cylindrical electrode, a triangular cylindrical electrode, a prismatic electrode or a spherical electrode.
  • the bottom circle radius of the frustum-shaped electrodes is 10-100 ⁇ m
  • the height is 100 ⁇ m-2 mm
  • the distance between the frustum-shaped electrodes is 100-500 ⁇ m.
  • the column height of a single electrode in the array electrodes ranges from 5 ⁇ m to 2 mm.
  • the 3D model of the 3D microelectrode is prepared by 3D printing.
  • the conductive layer in step (4) is a conductive metal layer or a conductive polymer layer.
  • the thickness of the conductive layer is 150-250 nm.
  • the material of the conductive metal layer includes gold, platinum or indium tin oxide.
  • step (4) a magnetron sputtering process is used to prepare a conductive metal layer, or a conductive polymer layer is coated to prepare a conductive polymer layer.
  • the 3d microelectrode has a base portion and a raised portion fixed on the base portion, and further comprises the step of preparing a non-conductive isolation layer on the base portion.
  • the material of the non-conductive isolation layer is selected from at least one of silicon nitride, silicon dioxide, and non-conductive polymers.
  • a non-conductive isolation layer is prepared on the substrate portion using chemical vapor deposition and lift-off techniques.
  • the preparation method of the 3d microelectrode according to the embodiment of the present invention has at least the following beneficial effects:
  • the shape of the 3D micro-electrode is obtained by first casting the flexible material for the first time, and then silanization is performed to form a polymer film on the surface of the flexible mold. After the second casting of the flexible material, the polymer film is formed.
  • the film can separate the front and rear models.
  • the method of the two-fold mold in the embodiment of the present invention can prepare 3d micro-electrodes with ultra-high micro-pillar heights.
  • the formed 3d micro-electrodes have low-cost, fast , high precision and flexibility, which can be used for electrochemical analysis in the field of wearable devices.
  • FIG. 1 is a schematic structural diagram of a 3d microelectrode according to an embodiment of the present invention.
  • Fig. 2 is a partial enlarged view of part A in Fig. 1;
  • 3 is a schematic diagram of the preparation process of the 3d microelectrode according to the embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a 3d microelectrode with a non-conductive isolation layer according to an embodiment of the present invention
  • the azimuth description such as the azimuth or position relationship indicated by up, down, front, rear, left, right, etc.
  • the azimuth description is based on the azimuth or position relationship shown in the drawings, only In order to facilitate the description of the present invention and simplify the description, it is not indicated or implied that the indicated device or element must have a particular orientation, be constructed and operated in a particular orientation, and therefore should not be construed as limiting the present invention.
  • FIG. 1 shows a schematic structural diagram of a 3d microelectrode
  • FIG. 2 is a partial enlarged view of part A in FIG. 1 .
  • the 3d microelectrode in this example is an array electrode
  • the 3d microelectrode includes a base portion 520 And the convex portion 510 fixed on the base portion 520, the single electrode has a frustum shape.
  • the shape of a single electrode is not limited to a truncated truncated shape, and can be changed to a conical shape, a cylindrical shape, a triangular prism shape, a prismatic shape, a spherical shape, etc. according to actual needs.
  • a 3D model 100 is printed out using a 3D printer.
  • the radius of the bottom circle of a single conical electrode in the 3D model 100 is 50 ⁇ m, the height is 500 ⁇ m, and the distance between the conical electrodes is 150 ⁇ m.
  • step (3) Perform silanization treatment on the side of the PDMS flexible mold 200 with the cavity 210.
  • perfluorooctyl trichlorosilane reagent is used to vacuum the mold for 20 minutes to perform silanization treatment.
  • the PDMS flexible mold is treated with silanization.
  • a layer of polymer film is formed on the surface of 200 , and this layer of polymer film can separate the PDMS to be subsequently cast from the PDMS flexible mold 200 .
  • the PDMS solution prepared in step (2) is cast on the side of the PDMS flexible mold 200 with the cavity 210, and the PDMS flexible 3d microelectrode substrate 300 is formed after demolding.
  • a layer of conductive layer 400 is sputtered on the PDMS flexible 3d microelectrode substrate 300 by using magnetron sputtering technology.
  • the thickness of the conductive layer 400 is 200 nm, and the material of the conductive layer 400 is gold, which is completed after cleaning The whole 3d microelectrode was fabricated.
  • the embodiment of the present invention utilizes the characteristics of high printing accuracy of 3D printing technology, can accurately print a 3D model with the same size as the target 3D microelectrode, and can flexibly design a 3D model with ultra-high micropillar height by using 3D printing technology, and then combine it twice PDMS is poured into the mold, and then a 3d micro-electrode with ultra-high micro-pillar height is prepared.
  • the micro-pillar height of the 3d micro-electrode is not limited by the process. Due to the preparation of high micro-pillar height, a larger electrode surface area can be obtained.
  • the preparation method of the embodiment of the present invention can prepare ultra-high
  • the 3d microelectrode with high micropillar height has a good application prospect in the field of electrochemical analysis, and can be used for the electrochemical analysis of trace substances.
  • the 3d microelectrode is based on a flexible material, such as the PDMS flexible 3d microelectrode substrate 300 in Figure 3, the formed 3d microelectrode is a flexible electrode, which can be used in the field of electrochemical analysis on wearable devices.
  • a non-conductive isolation layer 600 can be prepared on the base portion 520 of the 3d micro-electrode, The protruding portion 510 of the 3d micro-electrode is exposed, and the non-conductive isolation layer 600 can be made of different non-conductive materials, such as silicon nitride, silicon dioxide, non-conductive polymer and the like.
  • a combination of chemical vapor deposition (PECVD) and lift-off technology can be used to realize the preparation of the non-conductive isolation layer 600, which specifically includes the following steps: spin-coating a layer of positive photolithography on the base portion 520 of the 3d microelectrode Glue, using a designed mask for alignment exposure, the mask corresponding to the raised part 510 of the 3D micro-electrode is opaque to light, after developing and baking, remove the positive light cured on the corresponding base part 520 resist, and then the non-conductive isolation layer 600 is obtained by plasma-enhanced chemical vapor deposition of silicon dioxide. Finally, after stripping the uncured positive photoresist on the area corresponding to the raised portion 510 with acetone, the micro-pillar array electrode of the flexible substrate with the non-conductive isolation layer 600 can be obtained.
  • PECVD chemical vapor deposition
  • lift-off technology can be used to realize the preparation of the non-conductive isolation layer 600, which specifically includes the following steps: spin-coating a layer of positive

Abstract

本发明公开了一种3d微电极的制备方法,包括以下步骤:(1)制备3d微电极的3d模型;(2)在所述3d模型上浇铸柔性材料,脱模后形成具有空腔的柔性模具,所述柔性模具的所述空腔与所述3d模型能够贴合;(3)对所述柔性模具进行硅烷化处理,然后在所述柔性模具具有所述空腔的一面浇铸柔性材料,脱模后形成柔性3d微电极基底;(4)在所述柔性3d微电极基底上制备导电层,形成3d微电极。本发明采用3d打印技术和两次倒模的方式,能够制备出超高微柱高度的3d微电极,同时由于使用柔性材料作为基底,形成的3d微电极具备低成本、快速、高精度和柔性的特质,可用于在可穿戴设备上的电化学分析领域。

Description

3d微电极的制备方法
本申请要求于2020年12月30日提交中国专利局、申请号为CN202011622362.6、发明名称为“3d微电极的制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电极的制备,尤其是涉及一种3d微电极的制备方法。
背景技术
电化学研究是利用物质的电化学性质进行表征和测量的分析方法。采用电化学的分析方法不但可以实现自动记录分析结果,而且还有利于对痕量物质的检测,包括葡萄糖、肌氨酸和尿素等,在工业、农业、食品安全等方面应用广泛。
目前,微柱阵列电极主要是通过复杂的光刻工艺制造的,包括类似LIGA的工艺,碳化在基板上构图的光刻胶以及同质外延生长。Prehn等人已报道利用光刻,金属化和电沉积技术制造了具有10μm柱高的微柱阵列电极。其次,Sanchez-Molas等人用溅射和深反应离子刻蚀(DRIE)制备了具有更高微柱(最大125μm)的微柱阵列电极,这种方法显示出更好的清晰度和可重复性。然而,制造过程通常不仅昂贵而且耗时。另外,纵横比和立柱高度都受到光刻工艺的限制。此外,单纯使用3d技术制备电化学检测传感器,则需要购买高昂的3d打印机,且打印传感器的耗费时间长。由于制备高的微柱高度可获得更大的电极表面积,更大的表面积有利于获得更大的响应电流,因此制备具有更高微柱的微柱阵列电极对于开发用于化学和生物物质的低成本和高灵敏度微传感器至关重要。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种3d微电极的制备方法,能够制备高达500μm到2mm的超高微柱阵列电极,具备低成本、快速、高精度和柔性的特质,可用于可穿戴设备领域的电化学分析。
为了实现上述发明目的,本发明提供以下技术方案:
本发明的第一方面,提供一种3d微电极的制备方法,包括以下步骤:
(1)制备3d微电极的3d模型;
(2)在所述3d模型上浇铸柔性材料,脱模后形成具有空腔的柔性模具,所述柔性模具的所述空腔与所述3d模型能够贴合;
(3)对所述柔性模具进行硅烷化处理,然后在所述硅烷化处理后的柔性模具具有所述空腔的一面浇铸柔性材料,脱模后形成柔性3d微电极基底;
(4)在所述柔性3d微电极基底上制备导电层,形成3d微电极。
优选地,所述柔性材料选自PDMS、PET、聚酰亚胺中的任一种。
优选地,所述柔性材料为PDMS溶液,所述PDMS溶液中PDMS预聚体与固化剂的质量比为10:1。
优选地,所述3d微电极为阵列电极。
优选地,所述阵列电极中的单个电极为圆台形电极、圆锥形电极、圆柱形电极、三角柱形电极、棱柱形电极或球形电极。
优选地,所述圆台形电极的底圆半径为10~100μm,高度为100μm~2mm,圆台形电极之间的距离为100~500μm。
优选地,所述阵列电极中的单个电极的柱高范围为5μm~2mm。
优选地,采用3d打印的方式制备3d微电极的3d模型。
优选地,步骤(4)中所述导电层为导电金属层或导电聚合物层。
优选地,所述导电层的厚度为150~250nm。
优选地,所述导电金属层的材料包括金、铂或氧化铟锡。
优选地,步骤(4)中采用磁控溅射的工艺制备导电金属层,或涂覆导电聚合物制备导电聚合物层。
优选地,所述3d微电极具有基底部分和固定在所述基底部分上的凸起部分,还包括在所述基底部分上制备非导电隔离层的步骤。
优选地,所述非导电隔离层的材料选自氮化硅、二氧化硅、不导电聚合物的至少一种。
优选地,采用化学气相沉积和剥离技术在所述基底部分上制备非导电 隔离层.
根据本发明实施例的3d微电极的制备方法,至少具有如下有益效果:
本发明实施例首先利用第一次浇铸柔性材料来复制获取3d微电极的形貌,然后进行硅烷化处理,使柔性模具表面形成一层高分子膜,在第二次浇铸柔性材料后该高分子膜能够使得前后两次的模型分离,本发明实施例两次倒模的方式,能够制备出超高微柱高度的3d微电极,同时由于使用柔性材料作为基底,形成的3d微电极具备低成本、快速、高精度和柔性的特质,可用于可穿戴设备领域的电化学分析。
附图说明
图1为本发明实施例3d微电极的一种结构示意图;
图2为图1中A部分的局部放大图;
图3为本发明实施例3d微电极的制备过程示意图;
图4为本发明实施例具有非导电隔离层的3d微电极的结构示意图;
附图标记:3d模型100、PDMS柔性模具200、空腔210、PDMS柔性3d微电极基底300、导电层400、凸起部分510、基底部分520、非导电隔离层600。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置 或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,若干的含义是一个以上,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
本发明的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
参见图1,图1示出了3d微电极的一种结构示意图,图2为图1中A部分的局部放大图,该示例中的3d微电极为阵列电极,该3d微电极包括基底部分520和固定在基底部分520的凸起部分510,单个电极呈圆台形。可以理解的是,单个电极的形状不限于圆台形,根据实际需求可以更改为圆锥形、圆柱形、三角柱形、棱柱形、球形等。
以下结合图3,具体描述图1中的3d微电极的制备过程:
(1)根据图1中3d微电极的结构设计,使用3d打印机打印出3d模型100,3d模型100中单个圆锥形电极的底圆半径为50μm,高度为500μm,圆锥形电极之间的距离为150μm。
(2)按照PDMS预聚体:固化剂的质量比=10:1的比例混合形成PDMS溶液,以打印完成的3d模型100为模具,在3d模型100上浇铸PDMS溶液,脱模后形成PDMS柔性模具200,该PDMS柔性模具200具有空腔210,并且由于PDMS柔性模具200是以3d模型100为模具脱 模制得,因此空腔210与3d模型100能够贴合。
(3)对PDMS柔性模具200具有空腔210的一侧进行硅烷化处理,本实施例中使用全氟辛基三氯硅烷试剂对模具真空沉积20分钟以进行硅烷化处理,处理后PDMS柔性模具200的表面会形成一层高分子膜,这一层高分子膜可以使后续浇铸的PDMS与PDMS柔性模具200分离。在PDMS柔性模具200具有空腔210的一面浇铸步骤(2)配制的PDMS溶液,脱模后形成PDMS柔性3d微电极基底300。
(4)利用磁控溅射技术在PDMS柔性3d微电极基底300上溅射一层导电层400,本实施例中导电层400的厚度为200nm,导电层400的材料为金,清洗后即完成了整个3d微电极的制备。
本发明实施例利用3d打印技术打印精度高的特点,能够精准打印出与目标3d微电极尺寸一致的3d模型,同时利用3d打印技术能够灵活设计出具有超高微柱高度的3d模型,然后结合两次PDMS倒模,进而制备出具有超高微柱高度的3d微电极,该3d微电极的微柱高度不受工艺的限制,由于制备高的微柱高度可获得更大的电极表面积,更大的表面积有利于获得更大的响应电流,因此制备具有更高微柱的微柱阵列电极对于开发用于化学和生物物质的低成本和高灵敏度微传感器至关重要,利用本发明实施例的制备方法能够制备出超高微柱高度的3d微电极,在电化学分析领域具有较好的应用前景,可用于痕量物质的电化学分析。并且由于3d微电极是以柔性材料作为基底,如图3的PDMS柔性3d微电极基底300,因此形成的3d微电极为柔性电极,可用于可穿戴设备上的电化学分析领域。
参见图4,为增强电极的电流密度和避开微柱阵列自身带有的扩散重叠,实现更有效的电化学检测,可以在3d微电极的基底部分520上制备一层非导电隔离层600,而3d微电极的凸起部分510则裸露出来,非导电隔离层600可以用不同的不导电材料,例如氮化硅,二氧化硅,不导电聚合物等。具体可采用化学气相沉积(PECVD)和剥离技术(lift-off)技术结合实现非导电隔离层600的制备,具体包括以下步骤:在3d微电极的基底部分520上旋涂一层正性光刻胶,利用设计好的掩膜板进行对准曝光, 该掩模板对应3d微电极的凸起部分510的区域不透光,经过显影、烘烤后,去除对应基底部分520上固化的正性光刻胶,然后再通过等离子体增强化学气相沉积二氧化硅获得非导电隔离层600。最后,使用丙酮剥离对应凸起部分510区域上未固化的正性光刻胶之后,即可获得具有非导电隔离层600的柔性基底的微柱阵列电极。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (15)

  1. 一种3d微电极的制备方法,其特征在于,包括以下步骤:
    (1)制备3d微电极的3d模型;
    (2)在所述3d模型上浇铸柔性材料,脱模后形成具有空腔的柔性模具,所述柔性模具的所述空腔与所述3d模型能够贴合;
    (3)对所述柔性模具进行硅烷化处理,然后在所述硅烷化处理后的柔性模具具有所述空腔的一面浇铸柔性材料,脱模后形成柔性3d微电极基底;
    (4)在所述柔性3d微电极基底上制备导电层,形成3d微电极。
  2. 根据权利要求1所述的3d微电极的制备方法,其特征在于,所述柔性材料选自PDMS、PET、聚酰亚胺中的任一种。
  3. 根据权利要求2所述的3d微电极的制备方法,其特征在于,所述柔性材料为PDMS溶液,所述PDMS溶液中PDMS预聚体与固化剂的质量比为10:1。
  4. 根据权利要求1所述的3d微电极的制备方法,其特征在于,所述3d微电极为阵列电极。
  5. 根据权利要求4所述的3d微电极的制备方法,其特征在于,所述阵列电极中的单个电极为圆台形电极、圆锥形电极、圆柱形电极、三角柱形电极、棱柱形电极或球形电极。
  6. 根据权利要求5所述的3d微电极的制备方法,其特征在于,所述圆台形电极的底圆半径为10~100μm,高度为100μm~2mm,圆台形电极之间的距离为100~500μm。
  7. 根据权利要求4所述的3d微电极的制备方法,其特征在于,所述阵列电极中的单个电极的柱高范围为5μm~2mm。
  8. 根据权利要求1所述的3d微电极的制备方法,其特征在于,采用3d打印的方式制备3d微电极的3d模型。
  9. 根据权利要求1所述的3d微电极的制备方法,其特征在于,步骤(4)中所述导电层为导电金属层或导电聚合物层。
  10. 根据权利要求1或9所述的3d微电极的制备方法,其特征在于,所述导电层的厚度为150~250nm。
  11. 根据权利要求9所述的3d微电极的制备方法,其特征在于,所述导电金属层的材料包括金、铂或氧化铟锡。
  12. 根据权利要求9所述的3d微电极的制备方法,其特征在于,步骤(4)中采用磁控溅射的工艺制备导电金属层,或涂覆导电聚合物制备导电聚合物层。
  13. 根据权利要求1所述的3d微电极的制备方法,其特征在于,所述3d微电极具有基底部分和固定在所述基底部分上的凸起部分,还包括在所述基底部分上制备非导电隔离层的步骤。
  14. 根据权利要求13所述的3d微电极的制备方法,其特征在于,所述非导电隔离层的材料选自氮化硅、二氧化硅、不导电聚合物的至少一种。
  15. 根据权利要求13或14所述的3d微电极的制备方法,其特征在于,采用化学气相沉积和剥离技术在所述基底部分上制备非导电隔离层.
PCT/CN2021/119872 2020-12-30 2021-09-23 3d微电极的制备方法 WO2022142511A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21913256.0A EP4166498A4 (en) 2020-12-30 2021-09-23 METHOD FOR MANUFACTURING 3D MICROELECTRODE
US18/019,447 US20230286799A1 (en) 2020-12-30 2021-09-23 Manufacturing method for 3d microelectrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011622362.6 2020-12-30
CN202011622362.6A CN112811386A (zh) 2020-12-30 2020-12-30 3d微电极的制备方法

Publications (1)

Publication Number Publication Date
WO2022142511A1 true WO2022142511A1 (zh) 2022-07-07

Family

ID=75854528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119872 WO2022142511A1 (zh) 2020-12-30 2021-09-23 3d微电极的制备方法

Country Status (4)

Country Link
US (1) US20230286799A1 (zh)
EP (1) EP4166498A4 (zh)
CN (1) CN112811386A (zh)
WO (1) WO2022142511A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112811386A (zh) * 2020-12-30 2021-05-18 哈尔滨工业大学(深圳) 3d微电极的制备方法
CN114001845A (zh) * 2021-10-22 2022-02-01 北京航空航天大学杭州创新研究院 基于高密度微结构阵列电极的力敏传感器的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050261632A1 (en) * 2004-05-18 2005-11-24 Bai Xu High-Aspect-Ratio Microdevices and Methods for Transdermal Delivery and Sampling of Active Substances
KR100957487B1 (ko) * 2009-10-07 2010-05-14 주식회사 엔엔피 플라스틱 전극필름 제조방법
CN105615874A (zh) * 2016-03-01 2016-06-01 中国科学院半导体研究所 可用于动态心电测量的柔性心电电极及制作方法
CN108831627A (zh) * 2018-06-12 2018-11-16 青岛理工大学 基于3d打印和液桥转印制造大面积透明电极的方法
CN108975266A (zh) * 2018-07-17 2018-12-11 中北大学 基于针尖阵列结构的石墨烯-pdms柔性衬底心电干电极及其制备方法
CN109115376A (zh) * 2018-09-28 2019-01-01 清华大学深圳研究生院 一种电容式柔性压力传感器及其制备方法
CN109186817A (zh) * 2018-09-13 2019-01-11 深圳光韵达机电设备有限公司 一种电容式柔性压力传感器及其制造方法
CN109998533A (zh) * 2019-01-11 2019-07-12 北京大学 一种柔性微针电极阵列装置及制备方法
CN112811386A (zh) * 2020-12-30 2021-05-18 哈尔滨工业大学(深圳) 3d微电极的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29717809U1 (de) * 1997-10-07 1998-03-05 Kurt Schwabe Inst Fuer Mes Und Elektrochemische Arrayelektrode
US20110319786A1 (en) * 2009-11-20 2011-12-29 Rebello Keith J Apparatus and Method for Measuring Physiological Functions
WO2014144219A1 (en) * 2013-03-15 2014-09-18 University Of Washington Through Its Center For Commercialization Device and methods comprising microelectrode arrays for electroconductive cells
CN105147280A (zh) * 2015-06-13 2015-12-16 深圳市前海安测信息技术有限公司 具有空心凸起结构的柔性神经微电极阵列及其制备方法
CN106946221A (zh) * 2017-03-20 2017-07-14 中北大学 基于“v”型槽阵列电极的柔性压力传感器制作方法
CN109970023A (zh) * 2017-12-28 2019-07-05 中国科学院沈阳自动化研究所 一种柔性微电极的制造方法
CN112138145B (zh) * 2020-08-11 2023-10-24 兰州大学 一种用于治疗复发性阿弗他溃疡的可溶性载药微针贴片及其制备方法和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050261632A1 (en) * 2004-05-18 2005-11-24 Bai Xu High-Aspect-Ratio Microdevices and Methods for Transdermal Delivery and Sampling of Active Substances
KR100957487B1 (ko) * 2009-10-07 2010-05-14 주식회사 엔엔피 플라스틱 전극필름 제조방법
CN105615874A (zh) * 2016-03-01 2016-06-01 中国科学院半导体研究所 可用于动态心电测量的柔性心电电极及制作方法
CN108831627A (zh) * 2018-06-12 2018-11-16 青岛理工大学 基于3d打印和液桥转印制造大面积透明电极的方法
CN108975266A (zh) * 2018-07-17 2018-12-11 中北大学 基于针尖阵列结构的石墨烯-pdms柔性衬底心电干电极及其制备方法
CN109186817A (zh) * 2018-09-13 2019-01-11 深圳光韵达机电设备有限公司 一种电容式柔性压力传感器及其制造方法
CN109115376A (zh) * 2018-09-28 2019-01-01 清华大学深圳研究生院 一种电容式柔性压力传感器及其制备方法
CN109998533A (zh) * 2019-01-11 2019-07-12 北京大学 一种柔性微针电极阵列装置及制备方法
CN112811386A (zh) * 2020-12-30 2021-05-18 哈尔滨工业大学(深圳) 3d微电极的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4166498A4 *

Also Published As

Publication number Publication date
EP4166498A4 (en) 2024-02-07
US20230286799A1 (en) 2023-09-14
CN112811386A (zh) 2021-05-18
EP4166498A1 (en) 2023-04-19

Similar Documents

Publication Publication Date Title
WO2022142511A1 (zh) 3d微电极的制备方法
US10088751B2 (en) Fabrication of free standing membranes and use thereof for synthesis of nanoparticle patterns
EP0766820B1 (en) The production of electrodes for electrochemical sensing
CN102788777B (zh) 微流控表面增强拉曼散射检测器件及其制备方法与应用
JP2008525798A (ja) マイクロ流体検定デバイス
CA2668943A1 (en) Photonic crystal sensors with integrated fluid containment structure
CN112808335B (zh) 一种用于水体多参数检测的微流控芯片的制备方法
KR20070113557A (ko) 바이오칩용 기판 패턴의 제조방법 및 이를 이용한 바이오칩
WO2016202667A1 (en) Electrode structure and method of manufacturing an electrode structure
CA2504080C (en) A manufacturing method of a microchemical chip made of a resin and a microchemical chip made of a resin by the method
JP2007522448A5 (zh)
KR20150040939A (ko) 마이크로캐리어 제조 방법
Doan et al. Low-cost photolithographic fabrication of nanowires and microfilters for advanced bioassay devices
CN107758605B (zh) 一种微电极阵列芯片及其制作方法
JP6759881B2 (ja) 生体分子検出装置および生体分子検出装置の製造方法
CN113307223A (zh) 一种纳米孔局部亲疏水性修饰的方法
CN113063831A (zh) 微流控芯片及其制作方法、测试生化需氧量的方法及装置
KR101483964B1 (ko) 습식 두드림을 통한 나노전극 제조방법 및 이를 통해 제조된 나노전극
KR100722321B1 (ko) 모세관력 리소그래피와 자기조립단분자막을 이용한 단백질패턴 형성 방법 및 이를 이용하여 제조된 단백질칩
CN212722901U (zh) 一种等离激元增强荧光免疫检测芯片
CN214174155U (zh) 太赫兹波浓度传感芯片及检测套件
JP4966694B2 (ja) 微細構造金型の製造方法
KR20110024623A (ko) 공간 분리형 나노 어레이 바이오칩 및 이의 제조방법
KR20050010423A (ko) 미세유체채널이 집적화된 3차원 전극시스템 및 그 제작 방법
Kocharekar et al. Paper Microfluidics in Microbial World

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021913256

Country of ref document: EP

Effective date: 20230110

NENP Non-entry into the national phase

Ref country code: DE