WO2022142475A1 - 一种 n 型高效太阳能电池及制备方法 - Google Patents

一种 n 型高效太阳能电池及制备方法 Download PDF

Info

Publication number
WO2022142475A1
WO2022142475A1 PCT/CN2021/118293 CN2021118293W WO2022142475A1 WO 2022142475 A1 WO2022142475 A1 WO 2022142475A1 CN 2021118293 W CN2021118293 W CN 2021118293W WO 2022142475 A1 WO2022142475 A1 WO 2022142475A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon wafer
gettering
solar cell
preparation
layer
Prior art date
Application number
PCT/CN2021/118293
Other languages
English (en)
French (fr)
Inventor
任常瑞
张佳舟
绪欣
符黎明
Original Assignee
常州时创能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州时创能源股份有限公司 filed Critical 常州时创能源股份有限公司
Publication of WO2022142475A1 publication Critical patent/WO2022142475A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/074Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a heterojunction with an element of Group IV of the Periodic Table, e.g. ITO/Si, GaAs/Si or CdTe/Si solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of solar cells, in particular to an N-type high-efficiency solar cell and a preparation method.
  • N-type solar cells such as heterojunction (HJT) cells and interdigital back-contact (IBC) cells.
  • HJT heterojunction
  • IBC interdigital back-contact
  • the present invention provides a method for preparing an N-type high-efficiency solar cell, which can reduce the metal impurity content in the N-type silicon wafer, further improve the minority carrier lifetime of the N-type silicon wafer, and thereby improve the cell efficiency.
  • the present invention also provides an N-type high-efficiency solar cell prepared by the above method.
  • the technical solution adopted in the present invention is a preparation method of an N-type high-efficiency solar cell, and the N-type high-efficiency solar cell is an N-type high-efficiency heterojunction solar cell made of an N-type silicon wafer; the preparation method The method is to first perform gettering treatment on the N-type silicon wafer, and then complete the conventional fabrication of the heterojunction solar cell; the gettering treatment includes the following steps:
  • the silicon wafer coated or deposited with the gettering source is subjected to heat treatment in a chain annealing furnace to complete the gettering, and a layer of gettering layer is formed on the surface of the silicon wafer;
  • step (1) the silicon wafer is cleaned by mixing alkali solution and then acid solution, in order to remove organic matter, damage layer, metal impurities and oxide layer on the surface of the silicon wafer.
  • step (2) a layer of gettering source is applied on the front or back of the silicon wafer by means of printing, rolling, spraying or spin coating the liquid source.
  • the liquid source is phosphorus-containing slurry or boron-containing slurry. Still further, the phosphorus-containing slurry includes a phosphoric acid solution.
  • step (2) a layer of gettering source is deposited on the front side or the back side of the silicon wafer by adopting a tubular diffusion furnace to pass into the liquid source.
  • liquid source is phosphorus oxychloride or boron tribromide.
  • step (3) the temperature of the chain annealing furnace is 500-800° C., and the time is 2-20 min.
  • the chain annealing furnace is provided with 4-6 temperature zones, and the temperature of each temperature zone can be set to be the same or different.
  • step (4) the gettering layer on the surface of the silicon wafer is removed by etching with alkaline solution.
  • the mass percentage concentration of the lye solution is 1-5%.
  • the temperature of the alkali solution corrosion is 60-65° C., and the time is 100-300 s.
  • the present invention also provides an N-type high-efficiency solar cell prepared by the above method.
  • the N-type high-efficiency solar cell is an N-type high-efficiency heterojunction solar cell.
  • the process temperature in the production process of heterojunction solar cells needs to be controlled at a low temperature, generally less than 300 ° C, and the whole process has no high temperature process, so the battery of this structure has high requirements on the metal impurity content of the silicon wafer, and the Quality requirements are becoming more and more demanding.
  • the present invention provides a method for preparing an N-type high-efficiency heterojunction solar cell, which can reduce the metal impurity content of the N-type silicon wafer and improve the utilization rate of the N-type silicon wafer on the heterojunction solar cell.
  • a layer of gettering source is coated or deposited on the front and back of the sheet, and the gettering source can be a phosphorus-containing liquid source or a boron-containing liquid source, which is then subjected to high-temperature heat treatment in a chain annealing furnace to complete the gettering.
  • the advancement of phosphorus element forms an N + doping layer on the surface of the silicon wafer, or the advancement of boron element forms a P doping layer on the surface of the silicon wafer.
  • the impurity atoms in the silicon wafer are also doped toward the surface N + .
  • the layer or P-doped layer migrates and diffuses, and is fixed in the N + -doped layer or P-doped layer to form a gettering layer on the surface of the silicon wafer, and finally remove the gettering layer by alkali etching, and finally achieve The purpose of reducing the content of metal impurities in silicon wafers.
  • the present invention adopts the method of external gettering, which greatly reduces the metal impurity content of the silicon wafer, improves the minority carrier life of the silicon wafer, and finally improves the conversion efficiency of the battery;
  • the present invention makes the battery efficiency distribution more concentrated and greatly improves product consistency
  • the present invention reduces the metal impurity content of the silicon wafer, thereby reducing the edge leakage rate of the battery and improving the battery yield;
  • the present invention improves the utilization rate of silicon wafers, relieves the pressure on upstream silicon wafer manufacturers, and reduces production costs;
  • the present invention has high production efficiency and low cost, and can be completed by using existing production line equipment, which is beneficial to industrialization promotion and application.
  • the N-type high-efficiency solar cell referred to in the present invention is an N-type high-efficiency heterojunction solar cell made of N-type silicon wafers.
  • the N-type silicon wafer after the incoming material inspection is taken, cleaned and surface passivated, and then the minority carrier lifetime is measured by the method of microwave photoconductivity to characterize the size of the bulk lifetime.
  • the N-type silicon wafer is first subjected to gettering treatment, and then the conventional fabrication of the solar cell is completed.
  • the gettering treatment includes the following steps:
  • the silicon wafer coated or deposited with the gettering source is subjected to heat treatment in a chain annealing furnace to complete the gettering, and a layer of gettering layer is formed on the surface of the silicon wafer;
  • step (4) can also remove the gettering layers on the front and back of the silicon wafer in the subsequent texturing process of conventional battery production, which further simplifies the process flow, so this step can be omitted.
  • the N-type silicon wafer coated or deposited with the gettering source on the front and the back is subjected to chain high-temperature gettering treatment, thereby reducing the metal impurity content of the silicon wafer and improving the life of the silicon wafer; and innovatively
  • chain annealing furnace makes the energy consumption of the whole process low (temperature 500 ⁇ 800 °C), short time (gettering time 2 ⁇ 20min), overcoming the high energy consumption of traditional tubular gettering treatment (temperature 850 ⁇ 900 °C), low capacity (gettering time 1 ⁇ 2h) shortcomings.
  • the number of temperature zones of the chain annealing furnace is not limited, and lamp tube heating and quartz rail transmission are used.
  • the invention is provided with 4-6 temperature zones, the temperature of each temperature zone can be adjusted within 500-800°C, and the belt speed is adjusted according to the actual gettering time.
  • a layer of gettering source on the surface of the silicon wafer by printing, rolling, spraying or spin coating a liquid source on the front and back of the silicon wafer respectively, and the liquid source can be a phosphorus-containing slurry or a boron-containing slurry
  • the liquid source can be a phosphorus-containing slurry or a boron-containing slurry
  • phosphoric acid solution is rolled on the front and back of the silicon wafer to form a gettering source on the surface of the silicon wafer;
  • the silicon wafer coated with the gettering source is sent to the chain annealing furnace for heat treatment.
  • the chain annealing furnace is provided with 5 temperature zones, and the temperature of each temperature zone is set to 530°C, 670°C, and 770°C respectively. , 740 °C, 500 °C, divided into four groups, heat treatment through the chain annealing furnace for 2.5min, 5min, 20min and 22min respectively, to complete the advancement of phosphorus element, to form an N + doped layer on the surface of the silicon wafer, while impurities in the silicon wafer
  • the atoms also migrate and diffuse toward the surface N + doped layer, and are fixed in the surface N + doped layer to complete the gettering.
  • the N + doped layer on the surface of the silicon wafer is the gettering layer;
  • N-type high-efficiency heterojunction solar cells were fabricated by screen-printing metal electrodes.
  • steps (105) to (109) are conventional fabrication steps of a heterojunction solar cell.
  • the WT-2000 minority carrier lifetime was used to test the minority carrier lifetime of the silicon wafer before and after gettering, and the average value was measured at multiple points. The specific results are shown in Table 1.
  • the silicon wafer is sent to the tubular diffusion furnace.
  • the tubular diffusion furnace is filled with nitrogen and oxygen carrying a liquid source, and a layer of gettering source is deposited on the front and back of the silicon wafer by means of high temperature diffusion.
  • the liquid source can be Phosphorus oxychloride or boron tribromide, in this embodiment, a layer of boron source is deposited on the surface of the silicon wafer as a gettering layer by means of high temperature diffusion of boron tribromide in a tubular diffusion furnace;
  • the silicon wafer with the gettering source deposited on the surface is sent to the chain annealing furnace for gettering treatment.
  • the chain annealing furnace is provided with 5 temperature zones, and the temperature of each temperature zone is set to 530°C, 670°C, and 770°C respectively.
  • the atoms also migrate and diffuse toward the surface P-doped layer, and are fixed in the surface P-doped layer to complete the gettering.
  • the P-doped layer on the surface of the silicon wafer is the gettering layer;
  • N-type high-efficiency heterojunction solar cells were fabricated by screen-printing metal electrodes.
  • steps (204) to (208) are conventional fabrication steps of heterojunction solar cells. Specifically, step (204) not only realizes the removal of the gettering layers on the front and back of the silicon wafer, but also completes the texturing of the silicon wafer, which simplifies the process flow and also makes the gettering process and the texturing process well connected. together.
  • the WT-2000 minority carrier lifetime tester was used to test the minority carrier lifetime of the silicon wafer before and after gettering, and the average value of multiple points was measured. The specific results are shown in Table 2.
  • the present invention first coats or deposits a layer of gettering source on the front and back of the N-type silicon wafer, and the gettering source can be a phosphorus-containing liquid source or a boron-containing liquid source, and then undergoes heat treatment in a chain annealing furnace to complete the gettering.
  • the metal impurity content of the silicon wafer is greatly reduced, the minority carrier lifetime of the silicon wafer is improved, and the conversion efficiency of the cell is finally improved, and an N-type high-efficiency heterojunction solar cell is obtained.
  • the invention makes the cell efficiency distribution more concentrated, and the energy consumption of the whole process is low and the time is short, the utilization rate of the silicon rod is improved to a certain extent, and the purpose of reducing the production cost is achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种N型高效异质结太阳能电池及制备方法,所述N型高效太阳能电池为使用N型硅片制成的N型高效异质结太阳能电池;所述制备方法为先对N型硅片进行吸杂处理,再完成异质结太阳能电池的常规制作;所述吸杂处理包括如下步骤:(1)清洗硅片;(2)硅片正面和背面涂覆或沉积一层吸杂源;(3)将涂覆或沉积有吸杂源的硅片通过链式退火炉进行热处理完成吸杂,在硅片表面形成一层吸杂层;(4)腐蚀去除硅片表面的吸杂层。所述太阳能电池的制备方法降低了硅片体内的金属杂质含量,提高了硅片的少子寿命,最终提高了电池的转换效率;使得电池效率分布更集中,提高了产品一致性;降低了电池边缘漏电率,提高了电池良率。

Description

一种N型高效太阳能电池及制备方法 技术领域
本发明涉及太阳能电池技术领域,具体涉及一种N型高效太阳能电池及制备方法。
背景技术
目前全球大多数晶硅太阳能电池都采用传统P型电池的标准制程,但随着高效晶体硅电池制备技术的逐步发展,P型电池在转换效率达到22%以上后,面临着资本及技术投入边际效益率递减效应,转换效率难以再进一步提升。因此,大量的太阳能电池厂家开始将目光放在N型太阳能电池的商业化上,如异质结(HJT)电池和叉指状背接触(IBC)电池,N型硅片的少子寿命相比P型硅片的更高,有利于电池效率的进一步提升。
由于太阳能级的直拉单晶硅棒中的金属杂质,主要是过渡金属杂质的存在会形成深能级复合中心或者金属沉淀,然而异质结太阳能电池工艺流程中无高温过程使金属杂质迁移和分凝,导致硅片金属杂质含量对异质结太阳能电池的效率和良率影响很大。
技术解决方案
发明目的:本发明提出一种N型高效太阳能电池的制备方法,能够降低N型硅片中的金属杂质含量,进一步提升N型硅片的少子寿命,从而提高电池效率。
本发明还提出一种通过上述方法所制备的N型高效太阳能电池。
技术方案:本发明所采用的技术方案是一种N型高效太阳能电池的制备方法,所述N型高效太阳能电池为使用N型硅片制成的N型高效异质结太阳能电池;所述制备方法为先对N型硅片进行吸杂处理,再完成异质结太阳能电池的常规制作;所述吸杂处理包括如下步骤:
(1)清洗硅片;
(2)硅片正面和背面涂覆或沉积一层吸杂源;
(3)将涂覆或沉积有吸杂源的硅片通过链式退火炉进行热处理完成吸杂,在硅片表面形成一层吸杂层;
(4)腐蚀去除硅片表面的吸杂层。
其中,步骤(1)中,对硅片进行先碱液后酸液的混合清洗,目的是去除硅片表面的有机物、损伤层、金属杂质和氧化层。
其中,步骤(2)中,采用印刷、滚涂、喷涂或者旋涂液态源的方式在所述硅片正面或背面涂覆一层吸杂源。
进一步地,所述液态源为含磷浆料或含硼浆料。更进一步地,所述含磷浆料包括磷酸溶液。
其中,步骤(2)中,采用管式扩散炉通入液态源的方式在所述硅片正面或背面沉积一层吸杂源。
进一步地,所述液态源为三氯氧磷或三溴化硼。
其中,步骤(3)中,所述链式退火炉的温度为500~800℃,时间为2~20min。
进一步地,所述链式退火炉设置有4~6个温区,每个温区的温度可以设置相同或者不同。
其中,步骤(4)中,采用碱液腐蚀去除硅片表面的吸杂层。
进一步地,所述碱液的质量百分比浓度为1~5%。
更进一步地,所述碱液腐蚀的温度为60~65℃,时间为100~300s。
本发明还提供了一种通过上述方法所制备的N型高效太阳能电池。
进一步地,所述N型高效太阳能电池为N型高效异质结太阳能电池。
由于异质结太阳能电池制作过程中的工艺温度需控制在低温下完成,一般小于300℃,整个工艺无高温过程,因此该结构的电池对硅片的金属杂质含量要求很高,对硅片的质量要求越来越苛刻。
本发明提出一种N型高效异质结太阳能电池的制备方法,可降低N型硅片的金属杂质含量,提高N型硅片在异质结太阳能电池上的利用率,具体地,通过在硅片正面和背面涂覆或沉积一层吸杂源,其吸杂源可以为含磷液态源,也可以为含硼液态源,再通过链式退火炉进行高温热处理完成吸杂。吸杂过程中,磷元素的推进在硅片表面形成N +掺杂层,或者硼元素的推进在硅片表面形成P掺杂层,此时硅片体内的杂质原子也朝向表面N +掺杂层或P掺杂层进行迁移和扩散,并固定在N +掺杂层或P掺杂层中,在硅片表面形成吸杂层,最后再通过碱液腐蚀的方式去除吸杂层,最终达到降低硅片中金属杂质含量的目的。
有益效果
有益效果:与现有技术相比,本发明具有以下显著优点:
(1)本发明采用外吸杂的方式,大大降低了硅片的金属杂质含量,提高了硅片的少子寿命,最终提高了电池的转换效率;
(2)本发明使得电池效率分布更集中,大大提高了产品一致性;
(3)本发明降低了硅片的金属杂质含量,进而降低了电池边缘漏电率,提高了电池良率;
(4)本发明提高了硅片的利用率,缓解了上游硅片厂家的压力,降低了生产成本;
(5)本发明生产效率高,成本低,利用现有的产线设备便能完成,有利于产业化推广应用。
本发明的最佳实施方式
下面结合实施例对本发明的技术方案作进一步的说明。
本发明所指的N型高效太阳能电池为使用N型硅片制成的N型高效异质结太阳能电池。
在本发明中,取来料检验后的N型硅片,清洗并做表面钝化,然后采用微波光电导的方法测试少子寿命用来表征体寿命的大小。
本发明的N型高效异质结太阳能电池的制备方法,先对N型硅片进行吸杂处理,再完成太阳能电池的常规制作,所述吸杂处理包括如下步骤:
(1)清洗硅片;
(2)硅片正面和背面涂覆或沉积一层吸杂源;
(3)将涂覆或沉积有吸杂源的硅片通过链式退火炉进行热处理完成吸杂,在硅片表面形成一层吸杂层;
(4)腐蚀去除硅片表面的吸杂层。
作为本发明的另一个优选方案,步骤(4)也可以在后续常规电池制作的制绒工序中去除硅片正面和背面的吸杂层,进一步简化了工艺流程,因此可以省去该步骤。
在本发明中,将正面和背面涂覆或沉积有吸杂源的N型硅片通过链式高温吸杂处理,降低了硅片的金属杂质含量,提高了硅片体寿命;而且创新性地引入链式退火炉,使得整个工艺过程的能耗低(温度500~800℃)、时间短(吸杂时间2~20min),克服了传统管式吸杂处理的能耗高(温度850~900℃)、产能低(吸杂时间1~2h)的缺点。
在本发明中,链式退火炉的温区数量不作限制,采用灯管加热和石英轨道传输。本发明设置有4~6个温区,每个温区的温度均可在500~800℃内可调,带速根据实际吸杂时间进行调整。
实施例1
(101)取少子寿命相同或接近的N型硅片,先NaOH清洗,再HF和HCL混合清洗,烘干;
(102)分别在硅片的正面和背面采用印刷、滚涂、喷涂或者旋涂液态源的方式在硅片表面涂覆一层吸杂源,液态源可以为含磷浆料或含硼浆料,本实施例在硅片正面和背面滚涂磷酸溶液在硅片表面形成吸杂源;
(103)将表面涂覆有吸杂源的硅片送入链式退火炉进行热处理,链式退火炉设置有5个温区,各温区的温度分别设为530℃、670℃、770℃、740℃、500℃,分四组,分别通过链式退火炉热处理2.5min、5min、20min和22min,完成磷元素的推进,在硅片表面形成N +掺杂层,同时硅片体内的杂质原子也朝向表面N +掺杂层进行迁移和扩散,并固定在表面的N +掺杂层中,完成吸杂,此时硅片表面的N +掺杂层为吸杂层;
(104)将吸杂后的硅片采用质量百分比浓度为1%的KOH溶液于65℃清洗150s去除硅片表面的吸杂层;
(105)硅片制绒;
(106)硅片正面和背面沉积本征非晶硅层;
(107)在本征非晶硅层的正面和背面沉积掺杂非晶硅;
(108)硅片正面和背面沉积透明导电薄膜;
(109)丝网印刷金属电极制得N型高效异质结太阳能电池片。
其中,步骤(105)至步骤(109)为异质结太阳能电池的常规制作步骤。
采用WT-2000少子寿命仪测试吸杂前和吸杂后的硅片少子寿命,测量多个点取平均值,具体结果见表1。
表1 实施例1吸杂前和吸杂后的硅片少子寿命
Figure dest_path_image001
由表1可以看出,硅片经过2.5min的吸杂,平均少子寿命由3684us提高至3798us;硅片经过5min的吸杂,平均少子寿命由3684us提高至3856us;当吸杂时间为20min时,硅片的平均少子寿命达到峰值4020us,可见硅片的平均少子寿命随吸杂时间的增加有所提高。但是当吸杂时间为22min时,硅片的平均少子寿命反而下降。
实施例2
(201)取少子寿命相同或接近的N型硅片,先NaOH清洗,再HF和HCL混合清洗,烘干;
(202)将硅片送入管式扩散炉,管式扩散炉内通有携带液态源的氮气和氧气,通过高温扩散的方式在硅片正面和背面沉积一层吸杂源,液态源可以为三氯氧磷或三溴化硼,本实施例通过管式扩散炉高温扩散三溴化硼的方式在硅片表面沉积一层硼源作为吸杂层;
(203)将表面沉积有吸杂源的硅片送入链式退火炉进行吸杂处理,链式退火炉设置有5个温区,各温区的温度分别设为530℃、670℃、770℃、740℃、500℃,分四组,分别通过链式退火炉热处理2.5min、5min、20min和22min,完成硼元素的推进,在硅片表面形成P掺杂层,同时硅片体内的杂质原子也朝向表面P掺杂层进行迁移和扩散,并固定在表面的P掺杂层中,完成吸杂,此时硅片表面的P掺杂层为吸杂层;
(204)将吸杂后的硅片采用质量百分比浓度为5%的NaOH溶液进行常规制绒,制绒过程同时去除吸杂层;
(205)硅片正面和背面沉积本征非晶硅层;
(206)在本征非晶硅层的正面和背面沉积掺杂非晶硅;
(207)硅片正面和背面沉积透明导电薄膜;
(208)丝网印刷金属电极制得N型高效异质结太阳能电池片。
其中,步骤(204)至步骤(208)为异质结太阳能电池的常规制作步骤。具体地,步骤(204)既实现了去除硅片正面和背面的吸杂层,同时又完成了对硅片的制绒,简化工艺流程的同时也使得吸杂工艺同制绒工序很好地衔接在一起。
采用WT-2000少子寿命仪测试吸杂前和吸杂后的硅片少子寿命,测量多个点取平均值,具体结果见表2。
表2 实施例2吸杂前和吸杂后的硅片少子寿命
Figure 358205dest_path_image002
由表2可以看出,硅片经过2.5min的吸杂,平均少子寿命由2197us提高至2222us;经过5min的吸杂,平均少子寿命由2197us提高至2275us;当吸杂时间为20min时,硅片的平均少子寿命达到峰值2390us,可见硅片的平均少子寿命随吸杂时间的增加有所提高。同样地,当吸杂时间为22min时,硅片的平均少子寿命反而下降。
从表1和表2可以看出,较高温度下,热处理时间越长,会给硅片带来其他负面的影响,比如热损伤形成缺陷等导致少子寿命反而降低。链式退火炉内由于光的辐照,加速了吸杂过程中磷元素或硼元素的扩散系数,使得吸杂处理的时间较短,该时间对提升硅片性能具有非常重要的作用。
综上,本发明先在N型硅片正面和背面涂覆或沉积一层吸杂源,吸杂源可以为含磷液态源或含硼液态源,再经过链式退火炉进行热处理完成吸杂,大大降低了硅片的金属杂质含量,提高了硅片少子寿命,最终提高了电池的转换效率,制得N型高效异质结太阳能电池。本发明使得电池效率分布更加集中,而且整个工艺过程的能耗低、时间短,在一定程度上提高了硅棒利用率,达到了降低生产成本的目的。

Claims (12)

  1. 一种N型高效太阳能电池的制备方法,其特征在于:所述N型高效太阳能电池为使用N型硅片制成的N型高效异质结太阳能电池;所述制备方法为先对N型硅片进行吸杂处理,再完成异质结太阳能电池的常规制作;所述吸杂处理包括如下步骤:
    (1)清洗硅片;
    (2)硅片正面和背面涂覆或沉积一层吸杂源;
    (3)将涂覆或沉积有吸杂源的硅片通过链式退火炉进行热处理完成吸杂,在硅片表面形成一层吸杂层;
    (4)腐蚀去除硅片表面的吸杂层。
  2. 根据权利要求1所述的制备方法,其特征在于:步骤(2)中,采用印刷、滚涂、喷涂或者旋涂液态源的方式在所述硅片正面和背面涂覆一层吸杂源。
  3. 根据权利要求2所述的制备方法,其特征在于:所述液态源为含磷浆料或含硼浆料。
  4. 根据权利要求1所述的制备方法,其特征在于:步骤(2)中,采用管式扩散炉通入液态源的方式在所述硅片正面和背面沉积一层吸杂源。
  5. 根据权利要求4所述的制备方法,其特征在于:所述液态源为三氯氧磷或三溴化硼。
  6. 根据权利要求1所述的制备方法,其特征在于:步骤(3)中,所述链式退火炉的温度为500~800℃,时间为2~20min。
  7. 根据权利要求6所述的制备方法,其特征在于:所述链式退火炉设置有4~6个温区,每个温区的温度可以设置相同或者不同。
  8. 根据权利要求1所述的制备方法,其特征在于:步骤(4)中,采用碱液腐蚀去除硅片表面的吸杂层。
  9. 根据权利要求8所述的制备方法,其特征在于:所述碱液的质量百分比浓度为1~5%。
  10. 根据权利要求9所述的制备方法,其特征在于:所述碱液腐蚀的温度为60~65℃,时间为100~300s。
  11. 一种N型高效太阳能电池,其特征在于:所述N型高效太阳能电池根据权利要求1-10中任一项的方法制备而成。
  12. 根据权利要求11所述的N型高效太阳能电池,其特征在于:所述N型高效太阳能电池为N型高效异质结太阳能电池。
PCT/CN2021/118293 2020-12-28 2021-09-14 一种 n 型高效太阳能电池及制备方法 WO2022142475A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011573231.3A CN112289895B (zh) 2020-12-28 2020-12-28 一种n型高效太阳能电池及制备方法
CN202011573231.3 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022142475A1 true WO2022142475A1 (zh) 2022-07-07

Family

ID=74426450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118293 WO2022142475A1 (zh) 2020-12-28 2021-09-14 一种 n 型高效太阳能电池及制备方法

Country Status (2)

Country Link
CN (1) CN112289895B (zh)
WO (1) WO2022142475A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112289894A (zh) * 2020-12-28 2021-01-29 常州时创能源股份有限公司 一种高效异质结太阳能电池及制备方法
CN112289895B (zh) * 2020-12-28 2021-07-27 常州时创能源股份有限公司 一种n型高效太阳能电池及制备方法
CN112909130A (zh) * 2021-03-17 2021-06-04 苏州联诺太阳能科技有限公司 一种太阳能电池片的制备方法
CN113257953A (zh) * 2021-04-18 2021-08-13 安徽华晟新能源科技有限公司 N型硅片的吸杂方法和磷吸杂设备
CN113206169A (zh) * 2021-04-18 2021-08-03 安徽华晟新能源科技有限公司 一种铝吸杂方法和铝吸杂设备
CN113471311B (zh) * 2021-07-06 2023-05-23 安徽华晟新能源科技有限公司 一种异质结电池及其制备方法
CN113793800B (zh) * 2021-08-18 2024-04-09 万华化学集团电子材料有限公司 一种半导体单晶硅片的除杂工艺及制造工艺
CN114496733B (zh) * 2022-04-15 2022-07-29 济南晶正电子科技有限公司 一种高电阻率复合衬底、制备方法及电子元器件
CN115148848A (zh) * 2022-06-27 2022-10-04 常州时创能源股份有限公司 链式吸杂用磷源及其制备方法和应用
CN117457791A (zh) * 2023-10-20 2024-01-26 安徽华晟新能源科技有限公司 一种异质结电池硅片处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005311126A (ja) * 2004-04-22 2005-11-04 Shin Etsu Handotai Co Ltd p型シリコン単結晶ウェーハ及びその製造方法
CN101944554A (zh) * 2010-09-16 2011-01-12 浙江大学 一种硅片的硼铝共吸杂方法
CN103928573A (zh) * 2014-04-25 2014-07-16 南开大学 一种用于制备太阳电池的硅片磷铝联合变温吸杂方法
CN104882514A (zh) * 2015-05-13 2015-09-02 浙江晶科能源有限公司 一种太阳能电池的制作方法
CN112289895A (zh) * 2020-12-28 2021-01-29 常州时创能源股份有限公司 一种n型高效太阳能电池及制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101667605B (zh) * 2009-09-03 2011-09-21 无锡尚品太阳能电力科技有限公司 一种硅片的磷吸杂工艺
CN101857972B (zh) * 2010-03-26 2012-06-27 浙江大学 一种用于制造太阳电池的硅片磷扩散吸杂工艺
CN203503678U (zh) * 2012-07-23 2014-03-26 东莞市长安东阳光铝业研发有限公司 一种hit太阳能电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005311126A (ja) * 2004-04-22 2005-11-04 Shin Etsu Handotai Co Ltd p型シリコン単結晶ウェーハ及びその製造方法
CN101944554A (zh) * 2010-09-16 2011-01-12 浙江大学 一种硅片的硼铝共吸杂方法
CN103928573A (zh) * 2014-04-25 2014-07-16 南开大学 一种用于制备太阳电池的硅片磷铝联合变温吸杂方法
CN104882514A (zh) * 2015-05-13 2015-09-02 浙江晶科能源有限公司 一种太阳能电池的制作方法
CN112289895A (zh) * 2020-12-28 2021-01-29 常州时创能源股份有限公司 一种n型高效太阳能电池及制备方法

Also Published As

Publication number Publication date
CN112289895A (zh) 2021-01-29
CN112289895B (zh) 2021-07-27

Similar Documents

Publication Publication Date Title
WO2022142475A1 (zh) 一种 n 型高效太阳能电池及制备方法
WO2023116080A1 (zh) 一种高效异质结太阳能电池及制备方法
US7611977B2 (en) Process of phosphorus diffusion for manufacturing solar cell
WO2024077795A1 (zh) 一种无掩膜层联合钝化背接触电池及其制备方法
CN103367551B (zh) 一种晶体硅太阳能电池的扩散工艺
CN101587919A (zh) 晶体硅太阳能电池选择性发射结的制备方法
CN102332491B (zh) 一种太阳能硅片快速烧结的方法
CN112542531A (zh) 一种硅片预处理及异质结电池制备方法
CN102044594A (zh) 一种提高晶体硅太阳能电池扩散均匀性的工艺
CN106601835A (zh) 一种单晶硅异质结太阳能电池片绒面尺寸的控制方法
CN114975643A (zh) N-TOPCon光伏太阳能电池制备方法及太阳能电池
CN114284395A (zh) 一种先制绒后吸杂的硅基异质结太阳能电池的制备方法
CN114823969A (zh) 一种提升钝化接触结构性能的低温氢等离子体辅助退火方法和TOPCon太阳能电池
CN112349802B (zh) 一种铸锭单晶或多晶非晶硅异质结太阳电池的制作方法
CN104009114B (zh) 准单晶硅太阳能电池片的制造方法
CN114628547B (zh) 一种背表面局域形貌的太阳电池及其制备方法
CN116053353A (zh) 硼掺杂选择性发射极的制备方法及n型晶体硅太阳能电池
CN110739366B (zh) 一种修复perc太阳能电池背膜激光开槽损伤的方法
CN109427929A (zh) 一种perc微小图形印刷单晶太阳能电池片的制备方法
CN113161447A (zh) 一种铸造单晶或多晶类硅片的磷氢退火预处理方法
CN112436063B (zh) 一种铸造单晶硅异质结太阳电池制备方法
CN209929332U (zh) 用于槽式晶硅制绒设备的鼓泡装置
CN109427921A (zh) 一种常规多晶二次印刷太阳能电池片的制备方法
CN117976777A (zh) 一种提高异质结电池返工效率的方法
CN114093963A (zh) 一种硅基异质结太阳能电池结构及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913222

Country of ref document: EP

Kind code of ref document: A1