WO2022141979A1 - 一种镍铁复合氧载体及其制备方法和应用 - Google Patents

一种镍铁复合氧载体及其制备方法和应用 Download PDF

Info

Publication number
WO2022141979A1
WO2022141979A1 PCT/CN2021/089758 CN2021089758W WO2022141979A1 WO 2022141979 A1 WO2022141979 A1 WO 2022141979A1 CN 2021089758 W CN2021089758 W CN 2021089758W WO 2022141979 A1 WO2022141979 A1 WO 2022141979A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
oxygen carrier
composite oxygen
iron composite
preparation
Prior art date
Application number
PCT/CN2021/089758
Other languages
English (en)
French (fr)
Inventor
王训
付根深
许婷婷
肖波
刘石明
胡智泉
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2022141979A1 publication Critical patent/WO2022141979A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/94Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention belongs to the technical field of chemical chain combustion oxygen carriers, in particular to a nickel-iron composite oxygen carrier and a preparation method and application thereof.
  • Hydrogen energy is considered as an ideal and efficient secondary energy carrier, its high calorific value can reach 143KJ/kg, second only to nuclear energy, and it is clean and pollution-free.
  • more than 85% of the global hydrogen is derived from the steam reforming or partial oxidation of fossil fuels such as natural gas, oil, and coal.
  • the steam reforming of methane is the main way of industrial hydrogen production. But this method of hydrogen production starts with the preparation of syngas, and then improves hydrogen purity through water vapor shift (WGS), pressure swing adsorption (PSA), and monoethanolamine (MEA) scrubbing.
  • WGS water vapor shift
  • PSA pressure swing adsorption
  • MEA monoethanolamine
  • bio-oil As the product of rapid pyrolysis of biomass, bio-oil not only has the advantages of carbon neutrality and regeneration, but also can better solve the problems of resource dispersion and low energy density in the process of biomass utilization.
  • the main problems existing in the application of bio-oil in chemical chain technology include: severe carbon deposition, too many impurity components in the produced hydrogen, which cannot be used directly, and will lead to rapid deactivation of oxygen carriers.
  • oxygen carrier is the core of chemical chain technology, and metal oxides such as Fe-, Ni-, Co-, Mn-, perovskite have been widely studied by researchers at home and abroad so far.
  • Iron-based oxygen carriers have attracted much attention due to their low cost, environmental friendliness, and good hydrogen production performance by reacting with water.
  • pure iron oxide has weak redox ability, is easy to deactivate, and has poor anti-carbon deposition ability, which affects hydrogen production. purity.
  • the nickel-based oxygen carrier has a large oxygen carrying capacity, and the metal Ni has a high activation effect on the CC bond and the CH bond. It is an important catalyst for industrial methane reforming to produce hydrogen.
  • NiO itself is toxic, prone to agglomeration and sintering, and the cost is high. limited its application.
  • bimetallic catalysts often have better dispersion, stronger anti-sintering ability, and higher intrinsic activity than single metal oxides, which can exhibit positive synergistic effects.
  • NiFe 2 O 4 spinel formed by NiO-Fe 2 O 3 composite at high temperature has higher oxygen transfer efficiency and cycle stability than NiO or Fe 2 O 3 alone.
  • the addition of Fe to the niobium ore catalyst can significantly improve the dispersion of Ni particles, promote the formation of Ni - Fe alloy, and improve the catalytic activity of the catalyst for benzene, but Liu et al . As a result, the particle size of the oxygen carrier becomes larger, which affects its reactivity.
  • the prior art still lacks a nickel-iron composite oxygen carrier with high catalytic efficiency.
  • the present invention provides a nickel-iron composite oxygen carrier, the purpose of which is to prepare NiO/Fe 2 O by utilizing the CH decoupling ability of nickel oxide and the unique advantages of iron oxide in hydrogen production 3 Composite oxygen carrier, which couples the chemical chain hydrogen production technology and the chemical chain reforming technology to obtain high-quality synthesis gas and pure hydrogen flow simultaneously in one process, thus solving the problem of low activity of a single oxygen carrier and carbon conversion efficiency Insufficient, poor hydrogen production capacity and other technical problems.
  • the detailed technical solutions of the present invention are as follows.
  • a method for preparing a nickel-iron composite oxygen carrier wherein the nickel oxide and ferric oxide are mixed with water and then dried at a constant temperature to obtain a precursor, and the precursor is heated at 900-1000 °C. After calcination at °C for 6-9h, the nickel-iron composite oxygen carrier can be obtained.
  • the mass ratio of the nickel oxide and the ferric oxide is (10-30): (70-90).
  • the mass ratio of the ferric oxide and the nickel oxide is (20-25):(75-80).
  • the mass ratio of the ferric oxide and the nickel oxide is 20:80.
  • the temperature of constant temperature drying is 100-120°C, and the drying time is 6-9h.
  • the nickel oxide and the ferric oxide are uniformly mixed by ball milling.
  • a nickel-iron composite oxygen carrier prepared according to the aforementioned preparation method.
  • an application of a nickel-iron composite oxygen carrier is provided, and the application is an application of coupling hydrogen production and synthesis gas based on chemical chain technology.
  • the reduced nickel-iron composite oxygen carrier reacts with water vapor to obtain hydrogen, and the reduced nickel-iron composite oxygen carrier is partially oxidized.
  • water vapor is also added in the step (1), and the volume ratio of the water vapor to the bio-oil is 2 or less.
  • the volume ratio is the gas-liquid volume ratio between the water vapor gas and the bio-oil liquid.
  • the reaction temperature of the step (1), step (2) and step (3) is 800-1000°C
  • the bio-oil is obtained by pyrolysis of organic solid waste
  • the synthesis gas is CO and H 2 gas mixture.
  • the nickel-iron composite oxygen carrier prepared by the present invention can effectively overcome the low reduction kinetics of single iron oxide, has excellent oxygen migration rate, and improves the carbon conversion rate in the reduction stage and the hydrogen production capacity in the water vapor oxidation stage;
  • the preparation method of the nickel-iron composite oxygen carrier of the present invention is simple, the cost is low, and it is beneficial to industrial production and application, wherein the NiO in the 20% NiO/Fe 2 O 3 oxygen carrier has the best dispersibility, the largest specific surface area, and the production of hydrogen production. Compared with pure Fe 2 O 3 , the yield of pure hydrogen is increased by 30%.
  • the nickel-iron composite oxygen carrier of the invention has the advantages of high activity, strong selectivity of the target product, outstanding hydrogen production capacity, etc., and realizes the co-production of bio-oil chemical chain hydrogen and synthesis gas; through the optimization of process parameters, high efficiency can be achieved , high-selectivity reformation of bio-oil into high-quality syngas, the purity of syngas is close to 80%, of which H 2 /CO reaches 2; the purity of hydrogen can also be as high as 95% in the steam oxidation stage, which fully meets the requirements of industrial applications .
  • the nickel-iron composite oxygen carrier co-preparing method for hydrogen and synthesis gas of the present invention overcomes the application defect of bio-oil in the chemical chain technology, and can promote the higher-value utilization of bio-oil, Get richer energy products; better economy, stronger practicability, and broader application prospects.
  • Fig. 2 is the SEM images of the composite oxygen carriers prepared in Examples 1-5 of the present invention and Comparative Example 1, wherein a in Fig. 2 is Comparative Example 1, b in Fig. 2 is Example 1, and Fig. 2 is c is Embodiment 2, d in FIG. 2 is Embodiment 3, e in FIG. 2 is Embodiment 4, and f in FIG. 2 is Embodiment 5.
  • Fig. 3 is the test chart of the synthesis gas yield of application examples 1.1-1.6.
  • Fig. 4 is the hydrogen purity test chart of application examples 1.1-1.6.
  • Fig. 5 is the XRD test chart of the phase structure of the bio-oil reduction stage of application examples 1.1-1.6.
  • FIG. 6 is the XRD test chart of the phase structure in the water vapor oxidation stage of application examples 1.1-1.6.
  • FIG. 7 is a test chart of the synthesis gas yield of application example 1.3 and application example 2.1-2.4.
  • FIG. 8 is a test chart of hydrogen purity of application example 1.3 and application example 2.1-2.4.
  • Fig. 9 is the test chart of the synthesis gas yield of application examples 3.1-3.5.
  • Fig. 10 is the hydrogen purity test chart of Application Examples 3.1-3.5.
  • a nickel-iron composite oxygen carrier is prepared by the following method:
  • a nickel-iron composite oxygen carrier is prepared by the following method:
  • a nickel-iron composite oxygen carrier is prepared by the following method:
  • a ferrite carrier prepared by the following method:
  • Step 2 Pour the solution in the ball mill into a beaker, dry it in a constant temperature drying oven at 105°C for 6 hours, and evaporate excess solvent water; then put it in a muffle furnace and calcinate at 900°C for 6 hours to obtain pure Fe 2 O 3 oxygen carrier.
  • the first set of application examples In a fixed-bed tubular reactor, the oxygen carrier is passed into bio-oil successively to prepare synthesis gas, and then steam is used to prepare hydrogen, as described below.
  • the carrier gas flow rate (air, nitrogen) is 500ml/min; the unit of time interval for chromatographic recording of tail gas components is seconds, and the content of each component in the tail gas is calculated on the basis of 500ml/min nitrogen.
  • reaction temperature is different, specifically, the 20% NiO/Fe 2 O 3 composite oxygen carrier is reacted at different reaction temperatures, as described below.
  • the carrier gas flow rates (air, nitrogen) in the above-mentioned embodiments are all 500ml/min; the unit of time interval for chromatographic recording of tail gas components is seconds, and the content of each component in the tail gas is calculated on the basis of 500ml/min nitrogen.
  • the hydrogen purity test will be carried out in application examples 1.1-1.6, and the test results are shown in FIG. 4 . It can be seen from Figure 4 that the hydrogen purity has been significantly improved with the addition of NiO, from 70% to 86%, which fully demonstrates the excellent performance of the NiO/Fe 2 O 3 composite oxygen carrier, in which 20% NiO/Fe 2 O 3 supports Oxygen yields the highest hydrogen production. Overall, 20%NiO/Fe 2 O 3 oxygen carrier has the best performance in synthesis gas and hydrogen production in the whole process.
  • the XRD test was carried out on the phase structure of the bio-oil reduction stage of application examples 1.1-1.6, and the test results are shown in FIG. 5 . It can be seen from Figure 5 that most of pure Fe 2 O 3 can only be reduced to Fe 3 O 4 and a small amount to Fe and FeO, while the NiO/Fe 2 O 3 composite oxygen carrier is mainly reduced to Ni-Fe alloy. This fully demonstrates the excellent performance of NiO/Fe 2 O 3 composite oxygen carrier.
  • the application example 1.3 and application examples 2.1-2.4 were tested for synthesis gas yield, and the test results are shown in FIG. 7 . It can be seen from Fig. 7 that the syngas yield at 900°C is the highest.
  • the hydrogen purity test will be carried out in application examples 3.1-3.5, and the test results are shown in FIG. 10 . It can be seen from Figure 10 that the yield and purity of hydrogen are in a competitive relationship with the addition of water vapor. When the S/O is 1.2, the purity of hydrogen has reached 95%, which meets the requirements of industrial applications. Therefore, a volume ratio (S/O) of water vapor to bio-oil of 1.2 is the most suitable ratio.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

提供了一种镍铁复合氧载体及其制备方法和应用,属于化学链燃烧氧载体技术领域。制备方法包括将氧化镍和三氧化二铁加水混合均匀后恒温干燥得到前驱体,将前驱体在900-1000℃煅烧6-9h,即可获得镍铁复合氧载体。制备方法简单,成本低,制备出的镍铁复合氧载体,能够有效克服单一氧化铁低还原动力学特性,具有优异的氧迁移速率,提高还原阶段碳转化率以及水蒸气氧化阶段的产氢能力,完全满足工业化应用要求。

Description

一种镍铁复合氧载体及其制备方法和应用 【技术领域】
本发明属于化学链燃烧氧载体技术领域,具体涉及一种镍铁复合氧载体及其制备方法和应用。
【背景技术】
氢能被认为是一种最理想和高效的二次能源载体,它的高位热值可达143KJ/kg,仅次于核能,并且清洁无污染。但是目前全球范围85%以上的氢气来源天然气、石油、煤等化石燃料的蒸汽重整或部分氧化,其中甲烷的蒸汽重整更是工业化制氢主要途径。但这种制氢方式首先是合成气的制备,再通过水汽变换(WGS)、变压吸附(PSA)和单乙醇胺(MEA)洗涤来提高氢纯度。这不仅忽略了合成气自身的高利用价值,如费托合成制柴油,甲醇合成等,还导致氢气损失达30%。化学链技术是一种近些年来备受关注的先进高效的转化技术,其作为关键媒介的氧载体,不仅具备优异的氧化还原能力,还起到热量传递的作用。
生物油作为生物质快速热解后的产物,不仅具有碳中性,可再生的优势,而且能够较好地解决生物质利用过程中存在的资源分散、能量密度低等问题。但目前关于生物油在化学链技术方面的应用主要存在的问题包括:碳沉积严重,制取的氢气中杂质组分过多,无法直接利用,且会导致氧载体的迅速失活。
因此氧载体作为化学链技术的核心,Fe-,Ni-,Co-,Mn-,钙钛矿等金属氧化物到目前为止已经得到了国内外学者的广泛研究。铁基氧载体由于成本低,环境友好,且与水反应有良好的制氢性能而备受关注,但纯氧化铁面临氧化还原能力弱,易失活,且抗积碳能力差从而影响制氢的纯度。镍基氧载体载氧量大,且金属Ni对C-C键,C-H键具有高度的活化作用,是 工业甲烷重整制氢的重要催化剂;但是NiO自身有毒,易发生团聚和烧结,且成本高昂,限制了其应用。不过研究发现,双金属催化剂往往比单一金属氧化物具有更好的分散性,更强的抗烧结能力,以及更高的本征活性,能够展现出积极的协同作用。比如NiO-Fe 2O 3复合材料在高温下形成的NiFe 2O 4尖晶石比单独的NiO或Fe 2O 3具有更高的氧转移效率和循环稳定性,Liu等报道在负载镍的坡列铌矿催化剂中加入Fe可以显著提高Ni粒子的分散性,促进Ni-Fe合金的形成,提高催化剂对苯的催化活性,但是Liu等人也发现过多的NiFe 2O 4结构的出现反而会导致氧载体颗粒尺寸变大,影响其反应活性。
因此,现有技术仍缺乏一种高催化效率的镍铁复合氧载体。
【发明内容】
针对现有技术的改进需求,本发明提供了一种镍铁复合氧载体,其目的在于通过借助氧化镍的C-H解耦能力,氧化铁在制氢方面的独特优势,制备出NiO/Fe 2O 3复合氧载体,将化学链制氢技术与化学链重整制技术耦合,实现在一个流程内同时获取高品质的合成气以及纯净的氢气流,由此解决单一氧载体活性低、碳转化效率不足,制氢能力差等技术问题。本发明详细技术方案如下所述。
为实现上述目的,按照本发明的一个方面,提供了一种镍铁复合氧载体的制备方法,将氧化镍和三氧化二铁加水混合均匀后恒温干燥得到前驱体,将前驱体在900-1000℃煅烧6-9h,即可获得镍铁复合氧载体。
作为优选,所述氧化镍和三氧化二铁的质量之比为(10-30):(70-90)。
作为优选,所述三氧化二铁和氧化镍的质量之比为(20-25):(75-80),优选的,所述三氧化二铁和氧化镍的质量之比为20:80。
作为优选,恒温干燥的温度为100-120℃,干燥时间为6-9h。
作为优选,所述氧化镍和所述三氧化二铁通过球磨混合均匀。
按照本发明的另一方面,提供了一种镍铁复合氧载体,根据前面所述 的制备方法制备而成。
按照本发明的另一方面,提供了一种镍铁复合氧载体的应用,所述应用为基于化学链技术耦合制氢与合成气的应用。
作为优选,包括以下步骤:
(1)将镍铁复合氧载体与生物油混合,获得还原态的镍铁复合氧载体和合成气;
(2)还原态的镍铁复合氧载体与水蒸气反应,获得氢气,还原态的镍铁复合氧载体得到部分氧化。
(3)部分氧化后的镍铁复合氧载体通过空气彻底氧化,完成再生。
作为优选,所述步骤(1)中还加入了水蒸气,所述水蒸气与生物油的体积之比值为2以下。体积之比是水蒸气气体与生物油液体之间的气液体积比。
作为优选,所述步骤(1)、步骤(2)和步骤(3)的反应温度为800-1000℃,所述生物油为有机固废热解而成,所述合成气为CO和H 2的混合气体。
本发明的有益效果有:
(1)本发明制备出的镍铁复合氧载体,能够有效克服单一氧化铁低还原动力学特性,具有优异的氧迁移速率,提高还原阶段碳转化率以及水蒸气氧化阶段的产氢能力;
(2)本发明镍铁复合氧载体的制备方法简单,成本低,有利于工业化生产应用,其中20%NiO/Fe 2O 3氧载体中的NiO分散性最好,比表面积最大,制氢产率最高,相较于纯Fe 2O 3,纯氢产量提高30%。
(3)本发明镍铁复合氧载体具有活性高,目标产物选择性强,制氢能力突出等优势,实现了生物油化学链氢与合成气的共制备;通过工艺参数的优化,可高效率,高选择性的将生物油重整为高品质合成气,其合成气纯度接近80%,其中H 2/CO达到2;在蒸汽氧化阶段氢气的纯度也可高达95%,完全满足工业化应用要求。
(4)本发明的镍铁复合氧载体共制备氢与合成气方法与现有的化学链技术相比,克服了生物油在化学链技术中应用缺陷,能够促进生物油更加高值化利用,得到更丰富的能源产品;经济性更好,实用性更强,具有更广阔的应用前景。
【附图说明】
图1是本发明实施例1-5和对比实施例1制备的复合氧载体XRD图。
图2是本发明实施例1-5和对比实施例1制备的复合氧载体SEM图,其中,图2中的a为对比实施例1,图2中的b为实施例1,图2中的c为实施例2,图2中的d为实施例3,图2中的e为实施例4,图2中的f为实施例5。
图3是应用实施例1.1-1.6合成气产率测试图。
图4是应用实施例1.1-1.6氢气纯度测试图。
图5是应用实施例1.1-1.6生物油还原阶段物相结构XRD测试图。
图6是应用实施例1.1-1.6水蒸气氧化阶段物相结构XRD测试图。
图7是应用实施例1.3和应用实施例2.1-2.4合成气产率测试图。
图8是应用实施例1.3和应用实施例2.1-2.4氢气纯度测试图。
图9是应用实施例3.1-3.5合成气产率测试图。
图10是应用实施例3.1-3.5氢气纯度测试图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例
实施例1
一种镍铁复合氧载体,通过以下方法制备而成:
(1)称取10g的氧化镍(NiO)粉末,90g的氧化铁(Fe 2O 3)粉末,一起倒入球磨罐内,然后向罐内加入200ml去离子水,以300r/min的转速,球磨2小时。
(2)将球磨罐中的溶液倒入烧杯,在105℃的恒温干燥箱内,干燥6h,蒸发多余的溶剂水得到前驱体,将前驱体放入马弗炉内,900℃下煅烧6小时,得到镍铁复合氧载体,记为10%NiO/Fe 2O 3复合氧载体。
实施例2
一种镍铁复合氧载体,通过以下方法制备而成:
(1)称取15g的氧化镍(NiO)粉末,85g的氧化铁(Fe 2O 3)粉末,一起倒入球磨罐内,然后向罐内加入200ml去离子水,以300r/min的转速,球磨2小时。
(2)将球磨罐中的溶液倒入烧杯,在105℃的恒温干燥箱内,干燥6h,蒸发多余的溶剂水,得到前驱体,将前驱体放入马弗炉内,900℃下煅烧6小时,得到镍铁复合氧载体,记为15%NiO/Fe 2O 3复合氧载体。
实施例3
一种镍铁复合氧载体,通过以下方法制备而成:
(1)称取20.000g的氧化镍(NiO)粉末,80.000g的氧化铁(Fe 2O 3)粉末,一起倒入球磨罐内,然后向罐内加入200ml去离子水,以300r/min的转速,球磨2小时。
(2)将球磨罐中的溶液倒入烧杯,在105℃的恒温干燥箱内,干燥6h,蒸发多余的溶剂水,得到前驱体,将前驱体放入马弗炉内,900℃下煅烧6小时,得到镍铁复合氧载体,记为20%NiO/Fe 2O 3复合氧载体。
实施例4
(1)称取25g的氧化镍(NiO)粉末,75g的氧化铁(Fe 2O 3)粉末,一起倒入球磨罐内,然后向罐内加入200ml去离子水,以300r/min的转速, 球磨2小时。
(2)将球磨罐中的溶液倒入烧杯,在105℃的恒温干燥箱内,干燥6h,蒸发多余的溶剂水得到前驱体,将前驱体放入马弗炉内,900℃下煅烧6小时,得到镍铁复合氧载体,记为25%NiO/Fe 2O 3复合氧载体。
实施例5
(1)称取30.000g的氧化镍(NiO)粉末,70.000g的氧化铁(Fe 2O 3)粉末,一起倒入球磨罐内,然后向罐内加入200ml去离子水,以300r/min的转速,球磨2小时。
(2)将球磨罐中的溶液倒入烧杯,在105℃的恒温干燥箱内,干燥6h,蒸发多余的溶剂水得到前驱体,将前驱体入马弗炉内,900℃下煅烧6小时,得到镍铁复合氧载体,记为30%NiO/Fe 2O 3复合氧载体。
对比实施例1
一种铁氧载体,通过以下方法制备而成:
(1)称取100g的氧化铁粉末(Fe 2O 3),倒入球磨罐内,然后向罐内加入200ml去离子水,以300r/min的转速,球磨2小时。
步骤2,将球磨罐中的溶液倒入烧杯,在105℃的恒温干燥箱内,干燥6h,蒸发多余的溶剂水;随后放入马弗炉内,900℃下煅烧6小时,得到纯Fe 2O 3氧载体。
测试实施例
1.XRD测试。将实施例1-5和对比实施例1制备的氧载体进行XRD测试,测试结果如图1所示。从图1中可以看出NiO的添加会导致NiFe 2O 4结构的出现,且NiO添加量越多,NiFe 2O 4的衍射峰强度就越强,并且在2θ=35.65°、43.91°和63.75°处NiO的峰和NiFe 2O 4的峰出现重叠。
2.SEM测试。将实施例1-5和对比实施例1制备的氧载体进行,测试结果如图2所示,其中,图2中的a为对比实施例1,图2中的b为实施例1,图2中的c为实施例2,图2中的d为实施例3,图2中的e为实施例4, 图2中的f为实施例5。从图2中可知,不同NiO添加量会导致制备的NiO/Fe2O3复合载氧体的形貌特征有明显不同,其中20%NiO/Fe2O3载氧体的分散性最好,孔隙结构最丰富。
应用实施例
1.第一组应用实施例。将氧载体在固定床管式反应器中,先后通入生物油制备合成气,然后通过水蒸汽制备氢气,具体如下所述。
应用实施例1.1 10%NiO/Fe 2O 3复合氧载体
(1)称取10g载氧体放入固定床管式反应器,在空气氛围下升温至900℃,然后再用氮气吹托10min,排净管内空气后,利用注射泵通入为2.8ml,流速为0.14ml/min的生物油,利用在线色谱分析尾气组分含量及产率;
(2)待色谱中各气体组分浓度降至0.5%以下,通入10ml,流速为0.165ml/min的去离子水,利用在线色谱分析氢气浓度及产量。
(3)通入空气彻底氧化,完成再生。
其中,载气流速(空气,氮气)均为500ml/min;色谱对尾气组分记录时间间隔单位为秒,其中尾气各组分含量以500ml/min氮气为基准计算。
应用实施例1.2 15%NiO/Fe 2O 3复合氧载体。
应用实施例1.3 20%NiO/Fe 2O 3复合氧载体。
应用实施例1.4 25%NiO/Fe 2O 3复合氧载体。
应用实施例1.5 30%NiO/Fe 2O 3复合氧载体。
应用实施例1.6 Fe 2O 3氧载体。
2.第二组应用实施例。本应用实施例与第一组实施例不同之处在于,反应温度不同,具体为将20%NiO/Fe 2O 3复合载氧体在不同反应温度下反应,具体如下所述。
应用实施例2.1反应温度为800℃。
应用实施例2.2反应温度为850℃。
应用实施例2.3反应温度为950℃。
应用实施例2.4反应温度为1000℃。
3.第三组应用实施例。本应用实施例与第一组应用实施例的区别在于,步骤(1)中通入了水蒸气,具体如上所述。
应用实施例3.1水蒸气为1.12ml,流速为0.056ml/min
(1)称取实例4制备的20%NiO/Fe 2O 3复合载氧体10.000g,放入固定床管式反应器,实验在900℃下进行。在空气氛围下升温至900℃,然后再用氮气吹托10min,排净管内空气后,利用注射泵共通入为2.8ml、流速为0.14ml/min的生物油和1.12ml、流速为0.056ml/min的水蒸气;同时利用在线色谱分析尾气组分含量及产率;
(2)待色谱中各气体组分浓度降至0.5%以下,通入10ml,流速为0.165ml/min的去离子水,利用在线色谱分析氢气浓度及产量。
(3)通入空气彻底氧化,完成再生。
进一步的,上述实施例中的载气流速(空气,氮气)均为500ml/min;色谱对尾气组分记录时间间隔单位为秒,其中尾气各组分含量以500ml/min氮气为基准计算。
应用实施例3.2水蒸气的流量为2.24ml,流速为0.112ml/min。
应用实施例3.3水蒸气的流量为3.36ml,流速为0.168ml/min。
应用实施例3.4水蒸气的流量改为4.48ml,流速为0.224ml/min。
应用实施例3.5水蒸气的流量改为5.60ml,流速为0.28ml/min。
将应用实施例1.1-1.6进行合成气产率测试,测试结果如图3所示。从图3中可知,随着NiO的添加量增加,其合成气产率呈现明显提升,随后缓慢降低,20%NiO/Fe 2O 3载氧体的合成气产率最高,可达993.3ml/g。合成气的纯度从72%逐步降低至64.4%左右,这是因为NiO的加入,不仅会带来更多的晶格氧,而且形成的NiFe 2O 4结构会提高Fe 2O 3氧化还原活性,促进Fe 2O 3晶格氧的释放,从而提高了生物油的重整效果。另外H 2/CO维持在1左右,但随NiO的添加略微上升,这与Ni对H 2有更强的选择性有关。
将应用实施例1.1-1.6进行氢气纯度测试,测试结果如图4所示。从图4中可知氢气纯度随NiO的加入得到了明显提高,从70%提升到86%,充分说明NiO/Fe 2O 3复合载氧体的优异性能,其中20%NiO/Fe 2O 3载氧体的制氢产率最高。综合来看20%NiO/Fe 2O 3载氧体在整个过程制合成气和制氢性能表现最为优异。
将应用实施例1.1-1.6生物油还原阶段物相结构进行XRD测试,测试结果如图5所示。从图5中可知,纯Fe 2O 3大部分只能被还原至Fe 3O 4,少量还原至Fe和FeO,而NiO/Fe 2O 3复合载氧体则主要还原至Ni-Fe合金。这充分说明了NiO/Fe 2O 3复合载氧体性能的优异。
将应用实施例1.1-1.6水蒸气氧化阶段物相结构进行XRD测试。测试结果如图6所示。从图6中则可知,被还原后的纯Fe 2O 3只能被氧化至Fe 3O 4,而Ni/Fe合金则能被部分氧化再生,其中单质Ni由于热力学原因无法被水蒸气直接氧化至NiO。
将应用实施例1.3和应用实施例2.1-2.4进行合成气产率测试,测试结果如图7所示。从图7中可知900℃的合成气产率最高。
将应用实施例1.3和应用实施例2.1-2.4进行氢气纯度测试,测试结果如图8所示。从图8中可知900℃下氢气的产率最高。
将应用实施例3.1-3.5进行合成气产率测试,测试结果如图9所示。从图9可知,合成气产率随水蒸气添加量增加而提高,而合成气纯度呈现先增高后下降的趋势,在水蒸气量与生物油量体积比(S/O)为1.2时,合成气纯度最高,达到80%以上,其H 2/CO也刚好为2。
将应用实施例3.1-3.5进行氢气纯度测试,测试结果如图10所示。由图10可知,氢气的产率和纯度随水蒸气的加入而呈现相互竞争的关系。当S/O为1.2时,氢气的纯度已经达到95%,满足工业应用要求。因此水蒸气量与生物油量体积比(S/O)为1.2是最合适的比例。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种镍铁复合氧载体的制备方法,其特征在于,将氧化镍和三氧化二铁加水混合均匀后恒温干燥得到前驱体,将前驱体在900-1000℃煅烧6-9h,即可获得镍铁复合氧载体。
  2. 根据权利要求1所述的制备方法,其特征在于,所述氧化镍和三氧化二铁的质量之比为(10-30):(70-90)。
  3. 根据权利要求2所述的制备方法,其特征在于,所述三氧化二铁和氧化镍的质量之比为(20-25):(75-80),优选的,所述三氧化二铁和氧化镍的质量之比为20:80。
  4. 根据权利要求2或3所述的制备方法,其特征在于,恒温干燥的温度为100-120℃,干燥时间为6-9h。
  5. 根据权利要求1所述的制备方法,其特征在于,所述氧化镍和所述三氧化二铁通过球磨混合均匀。
  6. 一种镍铁复合氧载体,其特征在于,根据权利要求1-5任一项所述的制备方法制备而成。
  7. 根据权利要求6所述的镍铁复合氧载体的应用,其特征在于,所述应用为基于化学链技术耦合制氢与合成气的应用。
  8. 根据权利要求7所述的镍铁复合氧载体的应用,其特征在于,包括以下步骤:
    (1)将镍铁复合氧载体与生物油混合,获得还原态的镍铁复合氧载体和合成气;
    (2)还原态的镍铁复合氧载体与水蒸气反应,获得氢气,还原态的镍铁复合氧载体得到部分氧化;
    (3)部分氧化后的镍铁复合氧载体通过空气彻底氧化,完成再生。
  9. 根据权利要求8所述的镍铁复合氧载体的应用,其特征在于,所述 步骤(1)中还加入了水蒸气,所述水蒸气与生物油的体积之比值为2以下。
  10. 根据权利要求8所述的镍铁复合氧载体的应用,其特征在于,所述步骤(1)、步骤(2)和步骤(3)的反应温度为800-1000℃,所述生物油为有机固废热解而成,所述合成气为CO和H 2的混合气体。
PCT/CN2021/089758 2020-12-31 2021-04-26 一种镍铁复合氧载体及其制备方法和应用 WO2022141979A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011629463.6A CN112827494A (zh) 2020-12-31 2020-12-31 一种镍铁复合氧载体及其制备方法和应用
CN202011629463.6 2020-12-31

Publications (1)

Publication Number Publication Date
WO2022141979A1 true WO2022141979A1 (zh) 2022-07-07

Family

ID=75924845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089758 WO2022141979A1 (zh) 2020-12-31 2021-04-26 一种镍铁复合氧载体及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN112827494A (zh)
WO (1) WO2022141979A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115382553B (zh) * 2022-08-24 2024-05-24 中国环境科学研究院 一种镧铁镍复合金属氧化物及其制备方法和应用
CN116459835A (zh) * 2023-04-24 2023-07-21 华中科技大学 一种Co-Fe基光热氧载体及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130022931A1 (en) * 2011-07-21 2013-01-24 National Tsing Hua University Chemical looping combustion method using dual metal compound oxide
US20130130032A1 (en) * 2011-11-23 2013-05-23 National Tsing Hua University Fe-ni compound oxide for chemical looping combustion process and method of manufacturing the same
CN103466724A (zh) * 2013-09-16 2013-12-25 华北电力大学 一种微波水热法制备纳米铁酸镍复合载氧体的方法
CN103556184A (zh) * 2013-11-13 2014-02-05 昆明冶金研究院 一种全润湿型纳米NiFe2O4-NiO-Cu-Ni金属陶瓷惰性阳极的制备方法
CN104194834A (zh) * 2014-07-11 2014-12-10 中国科学院广州能源研究所 一种生物质热解及生物质热解气化学链制氢的装置
CN104909735A (zh) * 2014-03-13 2015-09-16 江苏联合金陶特种材料科技有限公司 一种耐高温耐腐蚀陶瓷材料及其制备方法
CN107849462A (zh) * 2015-07-14 2018-03-27 巴布考克及威尔考克斯公司 通过金属氧化物循环还原和氧化的合成气生产
CN109433212A (zh) * 2018-11-05 2019-03-08 宁夏大学 一种煤化学链气化制富氢合成气中磁性载氧体及其制备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130022931A1 (en) * 2011-07-21 2013-01-24 National Tsing Hua University Chemical looping combustion method using dual metal compound oxide
US20130130032A1 (en) * 2011-11-23 2013-05-23 National Tsing Hua University Fe-ni compound oxide for chemical looping combustion process and method of manufacturing the same
CN103466724A (zh) * 2013-09-16 2013-12-25 华北电力大学 一种微波水热法制备纳米铁酸镍复合载氧体的方法
CN103556184A (zh) * 2013-11-13 2014-02-05 昆明冶金研究院 一种全润湿型纳米NiFe2O4-NiO-Cu-Ni金属陶瓷惰性阳极的制备方法
CN104909735A (zh) * 2014-03-13 2015-09-16 江苏联合金陶特种材料科技有限公司 一种耐高温耐腐蚀陶瓷材料及其制备方法
CN104194834A (zh) * 2014-07-11 2014-12-10 中国科学院广州能源研究所 一种生物质热解及生物质热解气化学链制氢的装置
CN107849462A (zh) * 2015-07-14 2018-03-27 巴布考克及威尔考克斯公司 通过金属氧化物循环还原和氧化的合成气生产
CN109433212A (zh) * 2018-11-05 2019-03-08 宁夏大学 一种煤化学链气化制富氢合成气中磁性载氧体及其制备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIM KYEONGSOOK, YANG SEUGRAN, SHIN KEESAM: "Effect of the Addition of CeO 2 or MgO on the Oxygen Carrier Capacity and Rate of Redox Reactions of NiO/Fe 2 O 3 /Al 2 O 3 Oxygen Carriers", ACS OMEGA, ACS PUBLICATIONS, US, vol. 3, no. 4, 30 April 2018 (2018-04-30), US , pages 4378 - 4383, XP055948258, ISSN: 2470-1343, DOI: 10.1021/acsomega.8b00228 *
KUO YU-LIN; HSU WEU-MAU; CHIU PING-CHIN; TSENG YAO-HSUAN; KU YOUNG: "Assessment of redox behavior of nickel ferrite as oxygen carriers for chemical looping process", CERAMICS INTERNATIONAL, ELSEVIER, AMSTERDAM., NL, vol. 39, no. 5, 26 December 2012 (2012-12-26), NL , pages 5459 - 5465, XP028526905, ISSN: 0272-8842, DOI: 10.1016/j.ceramint.2012.12.055 *

Also Published As

Publication number Publication date
CN112827494A (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
Vozniuk et al. Spinel mixed oxides for chemical-loop reforming: from solid state to potential application
Zhu et al. Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation
WO2022141979A1 (zh) 一种镍铁复合氧载体及其制备方法和应用
CN106902837B (zh) 一种负载型镍钨双金属复合氧化物及其制备方法和应用
KR102184878B1 (ko) 케미컬 루핑 연소에 의한 일산화탄소의 제조방법
CN105013506B (zh) 用于甲烷催化裂解的双功能催化剂及其制法与制氢方法
CN111363570B (zh) 一种利用废弃物制取富甲烷气体的方法
CN110721690B (zh) 一种生物油水蒸气重整制氢用Ni-Fe双金属多功能催化剂
CN111644175B (zh) 一种Ni-煤矸石灰催化剂及其制备方法和在焦油蒸汽重整反应中的应用
CN110876941B (zh) 一种负载型铁钨双金属复合氧化物及其制备方法和应用
Luo et al. Hydrogen and syngas co-production by coupling of chemical looping water splitting and glycerol oxidation reforming using Ce–Ni modified Fe-based oxygen carriers
Wang et al. Optimization of nickel-iron bimetallic oxides for coproduction of hydrogen and syngas in chemical looping reforming with water splitting process
Gao et al. Performance evaluation of rare earth (La, Ce and Y) modified CoFe2O4 oxygen carriers in chemical looping hydrogen generation from hydrogen-rich syngas
Wang et al. Double adjustment of Ni and Co in CeO2/La2Ni2-xCoxO6 double perovskite type oxygen carriers for chemical looping steam methane reforming
CN112604691B (zh) 一种逆水煤气变换催化剂及其制备方法和应用
Yan et al. Syngas production and gas-N evolution over heterogeneously doped La-Fe-O perovskite-type oxygen carriers in chemical looping gasification of microalgae
CN112811476B (zh) 一种镍掺杂钙铁石型氧载体及其制备方法和应用
WO2022160487A1 (zh) 一种改性镍铁复合氧载体及其制备方法和应用
CN111644169A (zh) 金属复合改性纳米氧化锆催化剂及其制备方法和应用
CN114192157B (zh) 一种纳米铁基费托合成催化剂及其制备方法和应用
Li et al. Oxygen uncoupling chemical looping gasification of biomass over heterogeneously doped La-Fe-O perovskite-type oxygen carriers
Wang et al. Solar-driven chemical looping reforming of methane over SrFeO3-δ-Ca0. 5Mn0. 5O nanocomposite foam
Danhua et al. Performance of NiO-CeO2/γ-Al2O3 composite oxygen carriers for hydrogen generation with chemical looping reforming
CN113522293A (zh) 一种甲烷二氧化碳干重整制氢催化剂的制备方法和应用
CN111215082B (zh) 一种甲烷化催化剂及其制备和低氢碳比合成气甲烷化

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21912742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21912742

Country of ref document: EP

Kind code of ref document: A1