WO2022141786A1 - 微装配用操作系统 - Google Patents

微装配用操作系统 Download PDF

Info

Publication number
WO2022141786A1
WO2022141786A1 PCT/CN2021/078810 CN2021078810W WO2022141786A1 WO 2022141786 A1 WO2022141786 A1 WO 2022141786A1 CN 2021078810 W CN2021078810 W CN 2021078810W WO 2022141786 A1 WO2022141786 A1 WO 2022141786A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
axis
motion platform
assembly
platform
Prior art date
Application number
PCT/CN2021/078810
Other languages
English (en)
French (fr)
Inventor
陈涛
田显东
田玉祥
孙立宁
黄志颖
倪克健
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2022141786A1 publication Critical patent/WO2022141786A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/02Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for mounting on a work-table, tool-slide, or analogous part
    • B23Q3/06Work-clamping means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/02Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for mounting on a work-table, tool-slide, or analogous part
    • B23Q3/06Work-clamping means
    • B23Q3/08Work-clamping means other than mechanically-actuated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/22Feeding members carrying tools or work
    • B23Q5/28Electric drives

Definitions

  • the invention belongs to the technical field of micro-assembly operations, and in particular relates to an operating system used in the field of micro-assembly.
  • micromanipulation is the study of positioning micro-objects of 1-100 ⁇ m in size. Manipulating these micro-scale parts without the use of micromanipulator tools is a great challenge due to the additional attraction of microscopic, observational difficulty, and high-precision requirements.
  • micro-grippers are usually designed to ensure compactness, accuracy, and controllability in size. Due to these characteristics, micro-grippers are widely used, especially in the fields of manufacturing, electronics, and biomedicine.
  • the target ball is easily deformed by force and has a large contact with other assembly components during assembly. Therefore, it is very important to control the assembly force and detect the size of the contact force. .
  • the vacuum adsorption micro-gripper developed by Harbin Institute of Technology, the gripper changes the size of the adsorption force by controlling the vacuum pressure, and can adsorb objects of different sizes, and by integrating end effectors of different sizes and shapes, the vacuum micro
  • the size of the target microelements (microspheres, thin-walled components, etc.) manipulated by the gripper can vary from tens of micrometers to millimeters.
  • the vacuum micro-gripper has a simple structure, is easy to install on the micro-operating mechanism for operation, and has soft contact with the target surface, which can prevent damage to the micro-objects.
  • the existing adsorption-based micro-assembly operating systems mainly have the following shortcomings:
  • the present invention provides an operating system for micro-assembly, which aims to realize the measurement of micro-force in the assembly process, solve the problem of tremor in the assembly process, save assembly time, and improve the success rate of micro-assembly and efficiency.
  • the overall technical solution adopted by the present invention is that the operating system uses a vacuum adsorber to adsorb the micro-devices, and a micro-force sensor is arranged in the vacuum adsorber to sense the assembly force.
  • a micro-force sensor for micro-assembly includes: a fixed end; and three parallel arranged first, second, and third cantilever beams, which are sequentially arranged on one side of the fixed end; wherein, the three cantilever beams have the same length and thickness Consistent, the width gradually increases; each cantilever beam is used as a force measurement section, and a measurement circuit composed of a force-sensitive resistor is installed on it.
  • the force-sensitive resistor senses the bending deformation of the free end of the cantilever beam and passes The micro-force signal is converted into an electrical signal.
  • both the free ends of the first cantilever beam and the second cantilever beam are provided with bosses, and the bosses of the free end of the first cantilever beam are larger than the free ends of the second cantilever beam.
  • the boss is high.
  • the measurement circuit is a Wheatstone bridge measurement circuit, including a first Wheatstone bridge on the first cantilever beam, a second Wheatstone bridge on the second cantilever beam, and a second Wheatstone bridge on the second cantilever beam. Third Wheatstone bridge on three cantilevers.
  • the first Wheatstone bridge includes four force-sensitive resistors R1, R2, R3, and R4, wherein R2 and R3 are set to strain when the first cantilever beam is under force In the largest area, its resistance value changes with the deformation of the first cantilever beam, and R1 and R4 are set on the fixed end face, and its resistance value does not change with the deformation of the first cantilever beam.
  • the R2, R1, R3, and R4 are electrically connected end to end in sequence, the connected ends of R1 and R2 are connected to the first output electrode of the first Wheatstone bridge, and the connected ends of R1 and R3 are connected to the first output electrode of the first Wheatstone bridge.
  • the first input electrode of a Wheatstone bridge is connected, the connected end of R2 and R4 is connected with the second input electrode of the first Wheatstone bridge, and the connected end of R3 and R4 is connected with the second output electrode of the first Wheatstone bridge;
  • the first input electrode of the first Wheatstone bridge and the second input electrode of the first Wheatstone bridge are respectively connected to both ends of the input voltage, and the first output electrode of the first Wheatstone bridge and the first Wheatstone bridge Two output electrodes output the measured voltage.
  • the second Wheatstone bridge includes four force-sensitive resistors R5, R6, R7, and R8, wherein R6 and R7 are set to strain when the second cantilever beam is under force In the largest area, its resistance value changes with the deformation of the second cantilever beam, R5 and R8 are set on the fixed end face, and its resistance value does not change with the deformation of the second cantilever beam.
  • the R6, R5, R7, and R8 are electrically connected end to end in sequence, the connected ends of R5 and R6 are connected to the first output electrode of the second Wheatstone bridge, and the connected ends of R5 and R7 are connected to the first output electrode of the second Wheatstone bridge.
  • the first input electrodes of the two Wheatstone bridges are connected, the connected ends of R6 and R8 are connected to the second input electrode of the second Wheatstone bridge, and the connected ends of R7 and R8 are connected to the second output electrode of the second Wheatstone bridge;
  • the first input electrode of the second Wheatstone bridge and the second input electrode of the second Wheatstone bridge are respectively connected to both ends of the input voltage, and the first output electrode of the second Wheatstone bridge and the second Wheatstone bridge Two output electrodes output the measured voltage.
  • the third Wheatstone bridge includes four force-sensitive resistors R9, R10, R11, and R12, wherein R10 and R11 are set at the maximum strain when the third cantilever beam is under force.
  • the resistance value of the region changes with the deformation of the third cantilever beam, and R9 and R12 are provided on the fixed end face, and the resistance value does not change with the deformation of the third cantilever beam.
  • the R10, R9, R11, and R12 are electrically connected end to end in sequence, the connected ends of R9 and R10 are connected to the first output electrode of the third Wheatstone bridge, and the connected ends of R9 and R11 are connected to the first output electrode of the third Wheatstone bridge.
  • the first input electrodes of the three Wheatstone bridges are connected, the connected ends of R10 and R12 are connected to the second input electrode of the third Wheatstone bridge, and the connected ends of R11 and R12 are connected to the second output electrode of the third Wheatstone bridge;
  • the first input electrode of the third Wheatstone bridge and the second input electrode of the third Wheatstone bridge are respectively connected to both ends of the input voltage, and the first output electrode of the third Wheatstone bridge and the third Wheatstone bridge Two output electrodes output the measured voltage.
  • the vacuum adsorber for micro-assembly has the above-mentioned micro-force sensor, and the vacuum adsorber comprises: a shell, in the form of a cone structure, with a small end and a large end, the end face of the small end is provided with a through hole; a back cover, is connected with the end face of the big end; a flexible wrist is located between the casing and the back cover and is fixedly connected inside the big end, and has an installation hole in the middle; and an adsorption mechanism is connected with the installation hole, It is used for adsorbing micro-parts; wherein, the micro-force sensor is installed on the flexible wrist to detect the deflection force of the latter caused by the adsorption mechanism; the adsorption mechanism includes a vacuum generator, a trachea and an adsorption mechanism that are connected in sequence. The vacuum generator is attached to the flexible wrist and is located in the back cover, the trachea is inserted and connected in the installation hole, and the front end of the a
  • the vacuum generator includes: a gas cylinder; a piston, which is slidably arranged in the gas cylinder; a spring; and an electromagnet;
  • the inner bottom of the gas cylinder is connected, and the electromagnet is fixedly installed in the back cover and is located directly under the gas cylinder.
  • a counterweight hole is opened under the gas cylinder for placing a counterweight to balance the weight between the adsorption mechanism itself and the micro-parts to be adsorbed.
  • the flexible wrist comprises: an outer frame, which is fixedly installed inside the big end; an outer ring; and an inner ring, which are arranged in sequence from the outside to the inside;
  • the frame, the inner ring and the outer ring are respectively rotatably connected, the outer ring can be rotated arbitrarily around the vertical central axis of the outer frame, and the inner ring can be rotated arbitrarily around the horizontal central axis of the outer ring;
  • the mounting hole It is arranged in the middle of the inner ring, and the vacuum generator is attached to the inner ring.
  • there are two pairs of the micro-force sensors one pair is respectively installed on the left and right sides of the side of the outer frame facing the small end, and is used to detect the deflection of the outer ring in the vertical direction
  • the other pair are respectively installed on the upper and lower sides of the surface of the outer ring facing the small end to detect the deflection of the inner ring in the horizontal direction.
  • the operating system for micro-assembly has the above-mentioned vacuum adsorber, and the operating system includes: an industrial computer, which is used to control the work of the whole system; a six-degree-of-freedom part assembly subsystem, which is used to adjust the position and attitude of the micro-parts to be assembled ;
  • the horizontal vision movement subsystem located on the left side of the 6DOF part assembly subsystem, is used to capture the horizontal image of the micro-parts to navigate the assembly process;
  • the vertical vision movement subsystem, located in the 6DOF part assembly subsystem The right side is used to capture the image in the vertical direction of the micro-parts to navigate the assembly process; and the part support platform is located on the front side of the six-degree-of-freedom part assembly subsystem for placing the micro-parts to be assembled; wherein, the six-freedom
  • the 1-degree parts assembly subsystem includes a base, an X-axis linear motion platform, a Y-axis linear motion platform, a Z-axis linear motion
  • the X-axis linear motion platform is driven by a first motor installed on the base to move linearly along the X-axis on the base; the Y-axis linear motion platform is installed on the base
  • the second motor on the X-axis linear motion platform drives the X-axis linear motion platform to move linearly along the Y-axis; the Z-axis linear motion platform passes through the third motor installed on the Y-axis linear motion platform
  • the Y-axis linear motion platform is driven to move linearly along the Z-axis;
  • the X-axis rotary motion platform is fixedly connected to the Z-axis linear motion platform; the two-degree-of-freedom active vibration suppression adjustment module is installed on the X-axis.
  • the fourth motor on the axis rotary motion platform drives the X axis rotary motion platform to rotate around the X axis.
  • the two-degree-of-freedom active vibration suppression adjustment module includes: a Y-axis deflection motion platform; a Z-axis deflection motion platform; and the vacuum adsorber; wherein the Y-axis deflection motion platform
  • the axis deflection motion platform is connected with the output end of the X axis rotary motion platform, the Z axis deflection motion platform is driven to rotate around the Y axis by a fifth motor installed on the Y axis deflection motion platform, and the vacuum
  • the adsorber is driven to deflect around the Z-axis by the sixth motor installed on the Z-axis deflection motion platform.
  • the horizontal vision movement subsystem includes: a base plate; a first X-axis movement platform; a first Y-axis movement platform; a first Z-axis movement platform; and a horizontal vision camera; Wherein, the horizontal vision camera can capture the image of the micro-part in the horizontal direction, and provide the field of view information in the Y-axis direction for the assembly process, which is used for the navigation of the assembly process.
  • the vertical vision movement subsystem includes: a bracket; a second X-axis movement platform; a second Z-axis movement platform; a second Y-axis movement platform; and a vertical vision camera;
  • the vertical vision camera can capture the image of the micro-part in the vertical direction, and provide the field of view information in the Z-axis direction for the assembly process, which is used for the navigation of the assembly process.
  • the industrial computer integrates a motion control card, a data acquisition card and a motor driver; the motion control card is used to control the motor work of each motion platform; the data acquisition card is used to The feedback signal of the micro-force sensor is collected; the motor driver is used for receiving control instructions from the motion control card and sending feedback information to the motion control card.
  • the micro-force sensor makes the range and resolution of the first, second, and third cantilever beams different, which not only improves the resolution of the micro-force detection, but also increases the range of the micro-force measurement. the accuracy of the test results;
  • the first, second, and third cantilever beams can be in contact with the micro-force signal to be detected in sequence through the bosses set at the free ends of the first and second cantilever beams to avoid the simultaneous contact of the three cantilever beams, ensuring the accuracy of the micro-force detection results. accuracy;
  • the change of force is detected by the Wheatstone bridge measurement circuit, the detection and control method is simple, and the stability is good;
  • the integrated design of vacuum generator, trachea and adsorption tube realizes the miniaturization of the adsorption gripper, and can always maintain a negative pressure state when adsorbing micro parts, and then use the "lever amplification" of the adsorption tube to separately Through the capture and detection of the deflection force during the assembly process by the flexible wrist and the micro-force sensor, the deflection detection of the micro-bull ( ⁇ N) level of force is realized;
  • the electromagnet is de-energized and demagnetized, so that it has no force on the piston, so the flexible wrist can accurately capture any deflection of the adsorption tube, which can effectively improve the accuracy of the force measurement of the micro-force sensor;
  • the micro-parts are in contact with each other, resulting in a force interaction, which makes the adsorption tube deflect, thereby driving the inner ring and the outer ring to deflect in the same direction, realizing the capture and micro force of the deflection force by the flexible wrist. Detection of deflection force by sensor;
  • the vacuum adsorber arranges the micro-force sensor in a tiny assembly space, realizes the detection of two-dimensional deflection force, and greatly improves the success rate and efficiency of micro-assembly;
  • Controlling each subsystem through the industrial computer can meet the requirements of intelligence and rapidity in the assembly process of micro-parts.
  • the operating system control method is simple and practical, and the assembly of micro-parts can be continuously carried out, which improves the speed and speed of the micro-assembly process. stability.
  • FIG. 1 is a schematic three-dimensional structure diagram of an operating system for micro-assembly disclosed in the present invention
  • Fig. 2 is a three-dimensional schematic diagram of a six-degree-of-freedom part assembly subsystem
  • FIG. 3 is a schematic three-dimensional structure diagram of a two-degree-of-freedom active vibration suppression adjustment module
  • Fig. 4 is the three-dimensional structure schematic diagram of the horizontal vision movement subsystem
  • Fig. 5 is the three-dimensional structure schematic diagram of the vertical vision movement subsystem
  • FIG. 6 is a schematic three-dimensional structure diagram of the vacuum adsorber for micro-assembly disclosed in the present invention.
  • Fig. 7 is A-A in Fig. 6 sectional view namely horizontal cross-sectional structure schematic diagram
  • FIG. 8 is a schematic diagram of a vertical cross-sectional structure in a section along the B-B direction in FIG. 6;
  • FIG. 9 is a schematic three-dimensional structure diagram of FIG. 6 after hiding the casing and the rear cover;
  • Fig. 10 is the three-dimensional structure schematic diagram of another angle of Fig. 9;
  • Fig. 11 is a three-dimensional schematic diagram of a vacuum generator and an adsorption tube
  • Fig. 12 is a three-dimensional schematic diagram of another angle of Fig. 11;
  • FIG. 13 is a schematic view of the longitudinal cross-sectional structure of FIG. 11;
  • Figure 14 is a schematic three-dimensional structure of a flexible wrist
  • Figure 15 is a schematic three-dimensional structure diagram of the flexible wrist after the outer ring and the inner ring are respectively deflected by a certain angle;
  • 16 is a schematic three-dimensional structure diagram of the front side of the micro-force sensor for micro-assembly disclosed in the present invention.
  • 17 is a schematic front view of the front side of the micro-force sensor for micro-assembly disclosed in the present invention.
  • FIG. 18 is a schematic diagram of the three-dimensional structure of the back surface of the micro-force sensor for micro-assembly disclosed in the present invention.
  • the operating system for micro-assembly disclosed in the embodiment of the present application includes: an industrial computer, which is used to control the operation of the overall system; and a six-degree-of-freedom part assembly subsystem I, which is used to adjust the micro-assembly to be assembled.
  • the position and attitude of part P1 (sub-part); the horizontal vision movement subsystem II, located on the left side of the 6-DOF part assembly subsystem I, is used to capture the horizontal image of the micro-part P1 to navigate the assembly process; the vertical vision movement subsystem III, located on the right side of the 6-DOF part assembly subsystem I, used to capture the vertical image of the micro-part P1 to navigate the assembly process; and a part support platform, located on the front side of the 6-DOF part assembly subsystem I, used for placing The micro-part P2 (mother part) to be assembled; wherein, the six-degree-of-freedom part assembly subsystem I includes the base I0, the X-axis linear motion platform I1, the Y-axis linear motion platform I2, the Z-axis linear motion platform I3, and the X-axis.
  • Vibration suppression control That is, through the linear motion of three axes, the rotational motion of one axis and the vibration suppression control of two degrees of freedom in the six-degree-of-freedom parts assembly subsystem I, the vibration problem in the assembly process is solved, the assembly time is saved, and the success of micro-assembly is improved. rate and efficiency.
  • the X-axis linear motion platform I1 is driven by the first motor I6 installed on the base I0 to move linearly along the X-axis on the base I0
  • the Y-axis linear motion platform I2 is driven by the second motor I6 installed on the X-axis linear motion platform I1.
  • the motor I7 drives the X-axis linear motion platform I1 to move linearly along the Y-axis
  • the Z-axis linear motion platform I3 drives the Y-axis linear motion platform I2 to move along the Z-axis through the third motor I8 installed on the Y-axis linear motion platform I2.
  • the X-axis rotary motion platform I4 is fixedly connected with the Z-axis linear motion platform I3, and the two-degree-of-freedom active vibration suppression adjustment module I5 is driven on the X-axis rotary motion platform by the fourth motor I9 installed on the X-axis rotary motion platform I4.
  • I4 rotates around the X axis.
  • the linear motion of the three-axis platform constitutes a mobile operating manipulator, and the position and posture of the micro-part P1 to be assembled can be roughly adjusted by the mobile operating manipulator.
  • the two-degree-of-freedom active vibration suppression adjustment module I5 includes a Y-axis deflection motion platform I51, a Z-axis deflection motion platform I52, and a vacuum adsorber I53 arranged in sequence, and the Y-axis deflection motion platform I51 is connected to the output end of the X-axis rotary motion platform I4. , the Z-axis deflection motion platform I52 is driven to rotate around the Y-axis by the fifth motor I54 installed on the Y-axis deflection motion platform I51, and the vacuum adsorber I53 is driven by the sixth motor I55 installed on the Z-axis deflection motion platform I52. Z-axis yaw motion.
  • the rotational motion of the X-axis, the deflection motion of the Y-axis and the Z-axis constitute a rotating operation manipulator, and the position and posture of the micro-part P1 to be assembled can be finely adjusted by the rotating operation manipulator to achieve a stable state.
  • the horizontal vision moving subsystem II includes a base plate II0, a first X-axis moving platform II1, a first Y-axis moving platform II2, a first Z-axis moving platform II3 and a horizontal vision camera II4, which are arranged in sequence.
  • the horizontal vision camera II4 is placed in the best viewing angle position to capture the horizontal image of the micro-part P1, and the field of view information in the Y-axis direction is provided for the assembly process. Navigate to the assembly process.
  • the vertical vision moving subsystem III includes a bracket III0, a second X-axis moving platform III1, a second Z-axis moving platform III2, a second Y-axis moving platform III3 and a vertical vision camera III4 arranged in sequence.
  • the vertical vision camera III4 is placed in the best viewing angle position to capture the vertical image of the micro-part P1, and the field of view information in the Z-axis direction is provided for the assembly process. Navigation for the assembly process.
  • the horizontal vision camera II4 and the vertical vision camera III4 are both CCD cameras.
  • the industrial computer integrates a motion control card, a data acquisition card and a motor driver.
  • the motion control card is used to control the motor work of each motion platform
  • the data acquisition card is used to collect the feedback signal of the micro force sensor 500.
  • the motor driver is used to receive control instructions from the motion control card and send feedback information to the motion control card. Controlling each subsystem through the industrial computer can meet the requirements of the intelligence and rapidity of the micro-part assembly process.
  • the operating system control method is simple and practical, and the assembly of micro-parts can be carried out continuously, which improves the rapidity and stability of the micro-assembly process. .
  • the vacuum adsorber I53 includes: a casing 100 , in the shape of a cone, with a small end 110 and a large end 120 , a through hole 111 is formed on the end face of the small end 110 ; a rear cover 200 , It is connected with the end face of the big end 120; the flexible wrist 300 is located between the casing 100 and the back cover 200 and is fixedly connected inside the big end 120, and has a mounting hole 331 in the middle; the adsorption mechanism 400 is connected with the mounting hole 331, and a micro-force sensor 500, which is installed on the flexible wrist 300 for detecting the deflection force of the latter caused by the adsorption mechanism 400; wherein the adsorption mechanism 400 includes a vacuum generator 410, a trachea 420 and an adsorption mechanism that are connected in sequence.
  • the tube 430 , the vacuum generator 410 is attached to the flexible wrist 300 and located in the back cover 200 , the air tube 420 is inserted and connected in the installation hole 331 , and the front end of the adsorption tube 430 extends out of the through hole 111 .
  • the vacuum generator 410 includes a gas cylinder 411, a piston 412, a spring 413 and an electromagnet 414 electrically connected to the industrial computer.
  • the piston 412 (indicated by a dotted line in Figure 12) is slidably arranged in the gas cylinder 411, Both ends of the spring 413 (indicated by dotted lines in FIG. 12 ) are respectively connected to the piston 412 and the inner bottom of the gas cylinder 411 .
  • the electromagnet 414 When the suction assembly task is performed, the electromagnet 414 is energized, and the piston 412 is pushed up by the magnetic force. At this time, the spring 412 is in a stretched state and the flexible wrist 300 does not work; when the piston 412 reaches the predetermined position in the air cylinder 411 (the most The upper end), the electromagnet 414 is broken and the electromagnetic force disappears, the piston 412 loses the effect of the magnetic force, the spring 413 retracts and pulls the piston 412 to move down, thereby generating a negative pressure (vacuum) inside the gas cylinder 411, and adsorbing the target ball through the front end of the adsorption tube 430, etc. Target micropart P1 for assembly.
  • the adsorption tube 430 does not have any contact with the through hole 111, so as to ensure that any deflection of the adsorption mechanism 400 can be transmitted to the flexible wrist 300 and detected by the micro-force sensor 500; and the electromagnet 414 is powered off. Loss of magnetism has no force on the piston 412 , so the flexible wrist 300 can accurately capture any deflection of the adsorption tube 430 , so that the force measured by the micro-force sensor 500 is more accurate.
  • the micro-part P1 at the front end of the adsorption tube 430 and the micro-part P2 on the part support platform are in contact with each other, and a force interaction is generated, which drives the adsorption tube 430 to deflect, and the adsorption tube 430 is connected to the flexible wrist 300 through the trachea 420.
  • the slight deflection of the adsorption tube 430 will drive the flexible wrist 300 to deflect in the same direction, and the adsorption tube 430 is equivalent to a lever amplifying mechanism.
  • the force is a micro-force amplification at the micro-bull ( ⁇ N) level, which is conducive to the capture of the deflection force by the flexible wrist 300, which is detected by the micro-force sensor 500, and then adjusts the posture of the adsorber to complete the assembly.
  • the integrated design of the vacuum generator 410, the gas pipe 420 and the adsorption tube 430 realizes the miniaturization of the adsorption gripper, and can always maintain a negative pressure state when adsorbing the micro-part P1, and then use the "lever amplification of the adsorption tube 430". ”, respectively, through the flexible wrist 300 and the micro force sensor 500 to capture and detect the deflection force during the assembly process, and realize the deflection detection of micro-bull ( ⁇ N) level of force.
  • counterweight hole 415 under the air cylinder 411, which is used to place counterweight to balance the weight between the adsorption mechanism 400 itself and the adsorbed micro-part P1, so that the flexible wrist 300 is always in a balanced state and eliminates the micro-force caused by the gravity of the micro-part P1 itself.
  • the impact of detection accuracy When the adsorbed parts are replaced, due to the weight change, the corresponding counterweight weight can be added or reduced in the counterweight hole 415, which makes the assembly process relatively simple, increases the applicability of the adsorber, and expands the applicable range of the adsorber. .
  • the outer end surface of the rear cover 200 is connected to the Z-axis deflection motion platform I52 through a quick-change head (not shown in the figure), which can realize quick-change of the entire vacuum adsorber I53 and is convenient for maintenance.
  • the flexible wrist 300 includes an outer frame 310 , an outer ring 320 and an inner ring 330 arranged in sequence from the outside to the inside.
  • the inner ring 330 and the outer ring 320 are respectively rotatably connected, the outer ring 320 can rotate freely around the vertical center axis of the outer frame 310, and the inner ring 330 can rotate arbitrarily around the horizontal center axis of the outer ring 320; the mounting holes 331 are provided in the inner ring In the middle of 330 , the vacuum generator 410 is attached to the inner ring 330 .
  • micro-force sensors 500 There are two pairs of micro-force sensors 500. One pair is installed on the left and right sides of the outer frame 310 facing the small end 110, and is used to detect the vertical deflection of the outer ring 320, and the other pair is installed on the outer ring 320 facing the small end 110. The upper and lower sides of one side are used to detect the deflection of the inner ring 330 in the horizontal direction.
  • the outer ring 320 and the outer frame 310 and the inner ring 330 and the outer ring 320 are connected by bearings and pins respectively, so as to realize a tight fit and facilitate rotation; wherein the outer frame 310 is in contact with the inside of the big end 120 of the housing 100 and the back cover 200 , the state remains stationary during operation; the outer ring 320 and the inner ring 330 are the main moving parts, as shown in Figure 14 and Figure 15 , the outer ring 320 can be around the vertical axis, that is, the pin in the vertical direction Any rotation, the inner ring 330 can be rotated arbitrarily around the horizontal axis, that is, the pin in the horizontal direction; the outer ring 320 and the inner ring 330 can be rotated arbitrarily in both vertical and horizontal directions.
  • the micro-parts are in contact with each other, resulting in the interaction of force, so that the adsorption tube 430 is deflected, thereby driving the inner ring 330 and the outer ring 320 to deflect in the same direction, realizing the capture of the deflection force by the flexible wrist 300, and then They are detected by two pairs of micro-force sensors 500 respectively.
  • the vacuum adsorber I53 arranges the micro-force sensor 500 in a tiny assembly space, realizes the detection of two-dimensional deflection force, and greatly improves the success rate and efficiency of the micro-assembly.
  • the micro-force sensor 500 is a composite range micro-force sensor, including a fixed end 540 and three parallel first, second and third cantilever beams 510, 520, 530, the three cantilever beams have the same length, the same thickness, and the width gradually increases; each cantilever beam is used as a force measurement section, and there is a measurement circuit composed of a force-sensitive resistor on it.
  • the force-sensitive resistor senses the cantilever beam freely. The bending deformation of the end and the measurement circuit converts the micro-force signal into an electrical signal.
  • the micro-force sensor 500 is fixed on the outer frame 310 and the outer ring 320 through the fixed end 540, and the free ends of its cantilever beam are suspended beside the outer ring 320 and the inner ring 330 respectively;
  • the first cantilever beam 510 is the narrowest,
  • the range is the smallest but the resolution can reach 20 ⁇ N
  • the third cantilever beam 530 is the widest and the range can reach 0.3N
  • the third cantilever beam 530 can play a role of protecting the first cantilever beam 510 .
  • the micro-force sensor makes the range and resolution of the first, second and third cantilever beams different, which not only improves the resolution of the micro-force detection, but also increases the range of the micro-force measurement, and also improves the micro-force detection result. accuracy.
  • Free ends (ie ends) of the first cantilever beam 510 and the second cantilever beam 520 are provided with bosses, and the bosses of the free ends of the first cantilever beam 510 are higher than the bosses of the free ends of the second cantilever beam 520 .
  • the boss it is possible to prevent the three cantilever beams from contacting the micro-force signal to be detected at the same time, thereby ensuring the accuracy of the micro-force detection result.
  • the boss of the first cantilever beam 510 first contacts the tiny force signal to be detected. At this stage, the force detection range is the smallest and the force detection resolution is the highest.
  • the second cantilever beam 520 contacts the micro-force signal to be detected.
  • the third cantilever beam 530 finally contacts the micro-force signal to be detected.
  • the force detection range at this stage is the largest.
  • the measurement circuit is a Wheatstone bridge measurement circuit, including a first Wheatstone bridge on the first cantilever beam 510 , a second Wheatstone bridge on the second cantilever beam 520 , and a third Wheatstone bridge on the third cantilever beam 530 . Wheatstone bridge.
  • the change of force is detected by the Wheatstone bridge measurement circuit, the detection and control method is simple, and the stability is good.
  • the first Wheatstone bridge includes four force-sensitive resistors R1 , R2 , R3 , and R4 , wherein R2 and R3 are located in the region where the first cantilever beam 510 is in a stressed state with the largest strain, and the resistance value varies with the first cantilever beam 510 .
  • the deformation changes, R1 and R4 are set on the end face of the fixed end 540, and their resistance value does not change with the deformation of the first cantilever beam 510;
  • the first output electrode of the Wheatstone bridge is connected, the connected ends of R1 and R3 are connected to the first input electrode of the first Wheatstone bridge, the connected ends of R2 and R4 are connected to the second input electrode of the first Wheatstone bridge, and the R3
  • the terminal connected to R4 is connected to the second output electrode of the first Wheatstone bridge; the first input electrode of the first Wheatstone bridge and the second input electrode of the first Wheatstone bridge are respectively connected to both ends of the input voltage, and the first Wheatstone bridge
  • the first output electrode of the pass bridge and the second output electrode of the first Wheatstone bridge output the measurement voltage.
  • the boss at the free end of the first cantilever beam 510 contacts the tiny force signal to be detected, the root of the first cantilever beam 510 is deformed, and the force-sensitive resistors R2 and R3 are deformed along with the first cantilever beam 510, and their resistance values are generated.
  • the change causes the output voltage of the first Wheatstone bridge circuit to change, and finally the magnitude of the force is obtained by calculating the proportional relationship between the output voltage and the force signal.
  • the second Wheatstone bridge includes four force-sensitive resistors R5 , R6 , R7 , and R8 , wherein R6 and R7 are located in the region where the second cantilever beam 520 has the largest strain when the second cantilever beam 520 is under force, and its resistance value varies with the second cantilever beam 520
  • the deformation changes, R5 and R8 are set on the end face of the fixed end 540, and their resistance value does not change with the deformation of the second cantilever beam 520;
  • the first output electrode of the Wheatstone bridge is connected, the connected ends of R5 and R7 are connected to the first input electrode of the second Wheatstone bridge, the connected ends of R6 and R8 are connected to the second input electrode of the second Wheatstone bridge, and R7 is connected to the second input electrode of the second Wheatstone bridge.
  • the terminal connected to R8 is connected to the second output electrode of the second Wheatstone bridge; the first input electrode of the second Wheatstone bridge and the second input electrode of the second Wheatstone bridge are respectively connected to both ends of the input voltage, and the second Wheatstone bridge
  • the first output electrode of the pass bridge and the second output electrode of the second Wheatstone bridge output the measurement voltage.
  • the boss at the free end of the second cantilever beam 520 contacts the tiny force signal to be detected, the root of the second cantilever beam 520 is deformed, and the force-sensitive resistors R6 and R7 are deformed along with the second cantilever beam 520, and their resistance values are generated.
  • the change causes the output voltage of the second Wheatstone bridge circuit to change, and finally the magnitude of the force is obtained by calculating the proportional relationship between the output voltage and the force signal.
  • the third Wheatstone bridge includes four force-sensitive resistors R9, R10, R11, and R12, wherein R10 and R11 are located in the region where the third cantilever beam 530 is in a state of stress, and its resistance value varies with the third cantilever beam 530
  • the deformation changes, R9 and R12 are set on the end face of the fixed end 540, and their resistance value does not change with the deformation of the third cantilever beam 530;
  • the first output electrode of the Wheatstone bridge is connected, the connected ends of R9 and R11 are connected to the first input electrode of the third Wheatstone bridge, the connected ends of R10 and R12 are connected to the second input electrode of the third Wheatstone bridge, and R11
  • the terminal connected to R12 is connected to the second output electrode of the third Wheatstone bridge; the first input electrode of the third Wheatstone bridge and the second input electrode of the third Wheatstone bridge are respectively connected to both ends of the input voltage, and the third Wheatstone bridge
  • the free end of the third cantilever beam 530 contacts the tiny force signal to be detected, the root of the third cantilever beam 530 is deformed, the force-sensitive resistors R10 and R11 are deformed with the third cantilever beam 530, and their resistance values change, The output voltage of the third Wheatstone bridge circuit changes, and finally the magnitude of the force is obtained by calculating the proportional relationship between the output voltage and the force signal.
  • the assembly of the micro-parts is carried out through the operating system composed of the above-mentioned parts, and the control method mainly includes the following steps: S1. Put the micro-part P1 (hereinafter referred to as P1) to be assembled into the adsorption area of the adsorption tube 430, and the micro-part P2 (hereinafter referred to as P2) is fixed on the part support platform; S2, the electromagnet 414 is controlled by the industrial computer to be powered on first and then powered off, so as to control the vacuum generator I53 to adsorb the micro-part P1; S3, the industrial computer controls the horizontal vision mover separately through the motion control card The first three-axis moving platform of system II moves and the second three-axis moving platform of vertical vision moving subsystem III moves, so that the horizontal vision camera II4 and the vertical vision camera III4 are in the best viewing angle position; S4, the industrial computer obtains the horizontal vision camera II4 and vertical vision camera III4 to obtain the position and attitude of P2, and control the six-degree-of-free
  • the industrial computer first controls the two-degree-of-freedom active vibration suppression adjustment module I5 to quickly realize P1 Then, in the process of controlling P1 to approach P2 through the six-degree-of-freedom part assembly subsystem I, slowly complete the fine adjustment of the attitude of P1; S5, when P1 and P2 are in contact with each other, drive the inner ring 330 and the outer ring 320 to deflect , the industrial computer controls the rotation direction, rotation angle and rotation speed of the corresponding motor according to the signal feedback of the corresponding micro-force sensor 500, respectively adjusts the inner ring 330 and the outer ring 320 to swing in the opposite direction, so that it is out of contact with the corresponding micro-force sensor 500 or Make the micro-force sensor 500 in a non-stressed state, so as to achieve the purpose of quickly making P1 in a stable state; S6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种微装配用操作系统,该操作系统包括工控机、六自由度零件装配子系统(I)、水平视觉移动子系统(II)、垂直视觉移动子系统(III)及零件支承平台,六自由度零件装配子系统包括依次设置的底座(I0)、X轴直线运动平台(I1)、Y轴直线运动平台(I2)、Z轴直线运动平台(I3)、X轴旋转运动平台(I4)及两自由度主动抑振调节模块(I5),两自由度主动抑振调节模块通过真空吸附器吸附待装配的微零件(P2)、用于实现微零件的快速抑振控制。通过六自由度零件装配子系统三轴的直线运动、一轴的旋转运动及两自由度的抑振控制,解决了装配过程中的震颤问题,节省了装配时间,提高了微装配的成功率和效率。

Description

微装配用操作系统 技术领域
本发明属于微装配操作技术领域,具体涉及一种用于微装配领域的操作系统。
背景技术
近几十年来,工业装配领域对微操作的需求增加了,这是由于技术进步到微尺度组件装配的本质。微操作是对1~100µm大小的微物体进行定位的研究。由于微观额外的吸引力、观测难度、高精度要求,这些微尺寸零件在不使用微操作器工具的情况下进行操作是一个极大的挑战。
为了提高效率和产品的质量,各国正研究使用自动化机器人来支持微操作设备。微夹持器作为微操作的关键,通常被设计来保证尺寸的紧凑性、准确性和可控性,由于这些特性,微夹持器被广泛应用,特别是在制造、电子和生物医学领域。
复杂微器件在国防工业、国民经济中得到了越来越广泛的应用,其在促进武器装备小型化、智能化进程及提升民用高科技产品性能方面发挥着重要的作用,并且复杂微器件装配技术对于降低制造成本、实现复杂三维微细结构等方面有着重要意义。
而其中一项的装配难点在于微球靶器件的装配,靶球受力很容易发生变形,并且在装配时与其他装配部件有较大的接触,所以控制装配力以及检测接触力的大小很关键。
哈尔滨工业大学研发的真空吸附式微夹持器,该夹持器通过控制真空压强改变吸附力的大小,可以做到吸附不同大小的物体,并且通过整合不同大小和形状的末端执行器,由真空微夹工具操纵的目标微元件(微球、薄壁组件等)的尺寸可以从几十微米到毫米不等。真空微夹持器结构简单,易于安装在微操作机构上进行操作,其与目标表面接触柔软,可以防止对微物体的损坏。然而,真空微夹工具的小型化和精确控制是比较困难的,而且在该真空吸附式微夹持器中,无法做到对吸附目标的受力检测。
技术问题
目前所出现的基于吸附式微装配操作系统,主要存在以下不足:
1、由于其采用吸附式微夹持器,所以在零件进行装配时无法进行装配力测量,即无法在吸附器前端吸附管处集成传感器检测装配力。
2、对零件的柔性装配过程中遇到的震颤问题,一般会依赖于操作人员的经验进行主动干扰调整,或是等待零件自主趋于稳定,这都会耽误装配的时间,不能满足零件装配过程中对智能化、快速性的要求。
3、操作人员在操作过程需要长时间集中精力,劳动强度大,难以提供持续性的工作产出。
技术解决方案
针对现有技术存在的缺陷,本发明提供了一种微装配用操作系统,其目的在于实现装配过程中微力的测量,并解决装配过程中的震颤问题,节省装配时间,提高微装配的成功率和效率。
为实现上述目的,本发明采用的整体技术方案是:该操作系统通过真空吸附器来吸附微器件 ,真空吸附器中设置微力传感器感知装配力。
具体地,微装配用微力传感器,包括:固定端;及三根平行排布的第一、二、三悬臂梁,其依次设于所述固定端一侧;其中,三根悬臂梁的长度相等、厚度一致、宽度逐渐增加;每根悬臂梁作为力的测量段使用、其上设有由力敏电阻组成的测量电路,所述力敏电阻感测悬臂梁自由端的弯曲形变并通过所述测量电路将微力信号转换为电信号。
在本申请公开的一个实施例中,所述第一悬臂梁和第二悬臂梁的自由端均设有凸台,且所述第一悬臂梁自由端的凸台比所述第二悬臂梁自由端的凸台高。
在本申请公开的一个实施例中,所述测量电路为惠斯通电桥测量电路,包括第一悬臂梁上的第一惠斯通电桥、第二悬臂梁上的第二惠斯通电桥及第三悬臂梁上的第三惠斯通电桥。
在本申请公开的一个实施例中,所述第一惠斯通电桥包括四个力敏电阻R1、R2、R3、R4,其中R2和R3设于所述第一悬臂梁处于受力状态时应变最大的区域、其电阻值随所述第一悬臂梁的形变发生变化,R1和R4设于所述固定端端面上、其电阻值不随所述第一悬臂梁的形变发生变化。
在本申请公开的一个实施例中,所述R2、R1、R3、R4依次首尾电连接,R1和R2相连端与第一惠斯通电桥的第一输出电极相连,R1和R3相连端与第一惠斯通电桥的第一输入电极相连,R2和R4相连端与第一惠斯通电桥的第二输入电极相连,R3和R4相连端与第一惠斯通电桥的第二输出电极相连;所述第一惠斯通电桥第一输入电极和第一惠斯通电桥第二输入电极分别连接输入电压两端,所述第一惠斯通电桥第一输出电极和第一惠斯通电桥第二输出电极输出测量电压。
在本申请公开的一个实施例中,所述第二惠斯通电桥包括四个力敏电阻R5、R6、R7、R8,其中R6和R7设于所述第二悬臂梁处于受力状态时应变最大的区域、其电阻值随所述第二悬臂梁的形变发生变化,R5和R8设于所述固定端端面上、其电阻值不随所述第二悬臂梁的形变发生变化。
在本申请公开的一个实施例中,所述R6、R5、R7、R8依次首尾电连接,R5和R6相连端与第二惠斯通电桥的第一输出电极相连,R5和R7相连端与第二惠斯通电桥的第一输入电极相连,R6和R8相连端与第二惠斯通电桥的第二输入电极相连,R7和R8相连端与第二惠斯通电桥的第二输出电极相连;所述第二惠斯通电桥第一输入电极和第二惠斯通电桥第二输入电极分别连接输入电压两端,所述第二惠斯通电桥第一输出电极和第二惠斯通电桥第二输出电极输出测量电压。
在本申请公开的一个实施例中,所述第三惠斯通电桥包括四个力敏电阻R9、R10、R11、R12,其中R10和R11设于第三悬臂梁处于受力状态时应变最大的区域、其电阻值随所述第三悬臂梁的形变发生变化,R9和R12设于所述固定端端面上、其电阻值不随所述第三悬臂梁的形变发生变化。
在本申请公开的一个实施例中,所述R10、R9、R11、R12依次首尾电连接,R9和R10相连端与第三惠斯通电桥的第一输出电极相连,R9和R11相连端与第三惠斯通电桥的第一输入电极相连,R10和R12相连端与第三惠斯通电桥的第二输入电极相连,R11和R12相连端与第三惠斯通电桥的第二输出电极相连;所述第三惠斯通电桥第一输入电极和第三惠斯通电桥第二输入电极分别连接输入电压两端,所述第三惠斯通电桥第一输出电极和第三惠斯通电桥第二输出电极输出测量电压。
微装配用真空吸附器,具有以上所述的微力传感器,所述真空吸附器包括:外壳,呈锥体结构,具有小端与大端,所述小端端面上开设有通孔;后盖,与所述大端端面相连接;柔性腕,位于所述外壳与后盖之间且固定连接在所述大端内部,其中部具有一安装孔;及吸附机构,与所述安装孔相连接,用于吸附微零件;其中,所述微力传感器安装在所述柔性腕上、用于检测后者由所述吸附机构引起的偏转力;所述吸附机构包括依次连通的真空发生器、气管及吸附管,所述真空发生器贴合在所述柔性腕上且位于所述后盖内,所述气管穿插连接在所述安装孔内,所述吸附管前端延伸至所述通孔外。
在本申请公开的一个实施例中,所述真空发生器包括:气筒;活塞,滑动设于所述气筒内;弹簧;及电磁铁;其中,所述弹簧两端分别与所述活塞、所述气筒内底部相连接,所述电磁铁固定安装在所述后盖内且位于所述气筒正下方。
在本申请公开的一个实施例中,所述气筒下方开设有配重孔、用来放置配重以平衡所述吸附机构本身与被吸附微零件之间的重量。
在本申请公开的一个实施例中,所述柔性腕包括从外到内依次设置的:外框,固定安装在所述大端内部;外环;及内环;其中,所述外环与外框、内环与外环分别转动连接,所述外环可绕所述外框的竖直中轴线任意转动,所述内环可绕所述外环的水平中轴线任意转动;所述安装孔设于所述内环中部,所述真空发生器贴合在所述内环上。
在本申请公开的一个实施例中,所述微力传感器共设有两对,一对分别安装在所述外框朝向所述小端的一面左右侧、用于检测所述外环竖直方向的偏转,另一对分别安装在所述外环朝向所述小端的一面上下侧、用于检测所述内环水平方向的偏转。
微装配用操作系统,具有以上所述的真空吸附器,所述操作系统包括:工控机,用于控制整体系统工作;六自由度零件装配子系统,用于调整待装配微零件的位置和姿态;水平视觉移动子系统,位于所述六自由度零件装配子系统左侧,用于捕捉微零件水平方向的图像以导航装配过程;垂直视觉移动子系统,位于所述六自由度零件装配子系统右侧,用于捕捉微零件竖直方向的图像以导航装配过程;及零件支承平台,位于所述六自由度零件装配子系统前侧,用于放置待装配微零件;其中,所述六自由度零件装配子系统包括依次设置的底座、X轴直线运动平台、Y轴直线运动平台、Z轴直线运动平台、X轴旋转运动平台及两自由度主动抑振调节模块,所述两自由度主动抑振调节模块通过所述真空吸附器吸附待装配的微零件、用于实现微零件的快速抑振控制。
在本申请公开的一个实施例中,所述X轴直线运动平台通过安装在所述底座上的第一电机驱使在所述底座上沿X轴直线运动;所述Y轴直线运动平台通过安装在所述X轴直线运动平台上的第二电机驱使在所述X轴直线运动平台上沿Y轴直线运动;所述Z轴直线运动平台通过安装在所述Y轴直线运动平台上的第三电机驱使在所述Y轴直线运动平台上沿Z轴直线运动;所述X轴旋转运动平台与所述Z轴直线运动平台固定连接;所述两自由度主动抑振调节模块通过安装在所述X轴旋转运动平台上的第四电机驱使在所述X轴旋转运动平台上绕X轴旋转运动。
在本申请公开的一个实施例中,所述两自由度主动抑振调节模块包括依次设置的:Y轴偏转运动平台;Z轴偏转运动平台;及所述的真空吸附器;其中,所述Y轴偏转运动平台与所述X轴旋转运动平台的输出端相连接,所述Z轴偏转运动平台通过安装在所述Y轴偏转运动平台上的第五电机驱使绕Y轴偏转运动,所述真空吸附器通过安装在所述Z轴偏转运动平台上的第六电机驱使绕Z轴偏转运动。
在本申请公开的一个实施例中,所述水平视觉移动子系统包括依次设置的:底板;第一X轴移动平台;第一Y轴移动平台;第一Z轴移动平台;及水平视觉摄像头;其中,所述水平视觉摄像头可捕捉微零件水平方向的图像,为装配过程提供Y轴方向的视场信息,用于装配过程的导航。
在本申请公开的一个实施例中,所述垂直视觉移动子系统包括依次设置的:支架;第二X轴移动平台;第二Z轴移动平台;第二Y轴移动平台;及垂直视觉摄像头;
其中,所述垂直视觉摄像头可捕捉微零件竖直方向的图像,为装配过程提供Z轴方向的视场信息,用于装配过程的导航。
在本申请公开的一个实施例中,所述工控机集成运动控制卡、数据采集卡及电机驱动器于一体;所述运动控制卡用于控制各运动平台的电机工作;所述数据采集卡用于采集所述微力传感器的反馈信号;所述电机驱动器用于接收来自所述运动控制卡的控制指令和向所述运动控制卡发送反馈信息。
有益效果
通过上述技术方案的启示可知,可归纳出本发明的有益效果是:
1、微力传感器通过改变悬臂梁的宽度,使第一、二、三悬臂梁的量程和分辨率不同,既提高了微力检测的分辨率,又增大了微力测量的量程范围,也提高了微力检测结果的准确性;
2、通过设于第一、二悬臂梁自由端的凸台,使第一、二、三悬臂梁能够依次与待检测的微小力信号接触而避免三个悬臂梁同时接触,保证了微力检测结果的准确性;
3、通过惠斯通电桥测量电路检测力的变化,检测和控制方法简单,稳定性好;
4、将真空发生器、气管及吸附管一体化设计,实现了吸附式夹持器的微型化,并在吸附微零件时能够始终保持负压状态,然后利用吸附管的“杠杆放大”,分别通过柔性腕和微力传感器对装配过程中偏转力的捕捉和检测,实现了微牛(µN)级别微小受力的偏转检测;
5、通过电磁铁断电失磁,使得其对活塞没有作用力,所以柔性腕是可以精准的捕捉到吸附管的任何偏转,从而能够有效提高微力传感器测力的准确性;
6、通过配重孔放置配重以平衡吸附机构本身与被吸附微零件之间的重量,消除微零件自身重力对微力检测精度的影响,使装配过程相对简单并且增加了吸附器的适用性,扩大了吸附器的适用范围;
7、在装配时,微零件之间相互接触,产生力的相互作用,使得吸附管发生偏转,从而带动内环和外环发生相同方向的偏转,,实现了柔性腕对偏转力的捕捉和微力传感器对偏转力的检测;
8、真空吸附器将微力传感器布置在微小的装配空间中,实现了二维偏转力的检测,极大地提高了微装配的成功率和效率;
9、通过六自由度零件装配子系统三轴的直线运动、一轴的旋转运动及两自由度的抑振控制,解决了装配过程中的震颤问题,节省了装配时间,提高了微装配的成功率和效率;
10、通过工控机控制各子系统,能够满足微零件装配过程的智能化和快速性的要求,操作系统控制方法简单实用,可以持续性进行微零件的装配,提高了微装配过程的快速性及稳定性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明公开的微装配用操作系统的立体结构示意图;
图2为六自由度零件装配子系统的立体结构示意图;
图3为两自由度主动抑振调节模块的立体结构示意图;
图4为水平视觉移动子系统的立体结构示意图;
图5为垂直视觉移动子系统的立体结构示意图;
图6为本发明公开的微装配用真空吸附器的立体结构示意图;
图7为图6中A-A向剖视即水平横截面结构示意图;
图8为图6中B-B向剖视即竖直横截面结构示意图;
图9为图6隐藏外壳和后盖之后的立体结构示意图;
图10为图9另一个角度的立体结构示意图;
图11为真空发生器与吸附管的立体结构示意图;
图12为图11另一个角度的立体结构示意图;
图13为图11的纵截面结构示意图;
图14为柔性腕的立体结构示意图;
图15为柔性腕中外环和内环分别偏转一定角度后的立体结构示意图;
图16为本发明公开的微装配用微力传感器正面的立体结构示意图;
图17为本发明公开的微装配用微力传感器正面的前视结构示意图;
图18为本发明公开的微装配用微力传感器背面的立体结构示意图。
本发明的实施方式
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本发明的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
 
下面结合附图对本发明的实施例进行详细说明。
参见图1~图18所示,本发明申请实施例所公开的微装配用操作系统,包括:工控机,用于控制整体系统工作;六自由度零件装配子系统Ⅰ,用于调整待装配微零件P1(子零件)的位置和姿态;水平视觉移动子系统Ⅱ,位于六自由度零件装配子系统Ⅰ左侧,用于捕捉微零件P1水平方向的图像以导航装配过程;垂直视觉移动子系统Ⅲ,位于六自由度零件装配子系统Ⅰ右侧,用于捕捉微零件P1竖直方向的图像以导航装配过程;及零件支承平台,位于六自由度零件装配子系统Ⅰ前侧,用于放置待装配微零件P2(母零件);其中,六自由度零件装配子系统Ⅰ包括依次设置的底座Ⅰ0、X轴直线运动平台Ⅰ1、Y轴直线运动平台Ⅰ2、Z轴直线运动平台Ⅰ3、X轴旋转运动平台Ⅰ4及两自由度主动抑振调节模块Ⅰ5,两自由度主动抑振调节模块Ⅰ5通过真空吸附器Ⅰ53吸附待装配的微零件P1(比如靶球)、用于实现微零件P1的快速抑振控制。即通过六自由度零件装配子系统Ⅰ三轴的直线运动、一轴的旋转运动及两自由度的抑振控制,解决了装配过程中的震颤问题,节省了装配时间,提高了微装配的成功率和效率。
具体地,X轴直线运动平台Ⅰ1通过安装在底座Ⅰ0上的第一电机Ⅰ6驱使在底座Ⅰ0上沿X轴直线运动,Y轴直线运动平台Ⅰ2通过安装在X轴直线运动平台Ⅰ1上的第二电机Ⅰ7驱使在X轴直线运动平台Ⅰ1上沿Y轴直线运动,Z轴直线运动平台Ⅰ3通过安装在Y轴直线运动平台Ⅰ2上的第三电机Ⅰ8驱使在Y轴直线运动平台Ⅰ2上沿Z轴直线运动,X轴旋转运动平台Ⅰ4与Z轴直线运动平台Ⅰ3固定连接,两自由度主动抑振调节模块Ⅰ5通过安装在X轴旋转运动平台Ⅰ4上的第四电机Ⅰ9驱使在X轴旋转运动平台Ⅰ4上绕X轴旋转运动。三轴平台的直线运动构成移动操作机械手,通过移动操作机械手能够对待装配微零件P1的位置和姿态进行粗调整。
两自由度主动抑振调节模块Ⅰ5包括依次设置的Y轴偏转运动平台Ⅰ51、Z轴偏转运动平台Ⅰ52及真空吸附器Ⅰ53,Y轴偏转运动平台Ⅰ51与X轴旋转运动平台Ⅰ4的输出端相连接,Z轴偏转运动平台Ⅰ52通过安装在Y轴偏转运动平台Ⅰ51上的第五电机Ⅰ54驱使绕Y轴偏转运动,真空吸附器Ⅰ53通过安装在Z轴偏转运动平台Ⅰ52上的第六电机Ⅰ55驱使绕Z轴偏转运动。X轴的旋转运动、Y轴及Z轴的偏转运动构成旋转操作机械手,通过旋转操作机械手能够对待装配微零件P1的位置和姿态进行精调整,实现稳定状态。
水平视觉移动子系统Ⅱ包括依次设置的底板Ⅱ0、第一X轴移动平台Ⅱ1、第一Y轴移动平台Ⅱ2、第一Z轴移动平台Ⅱ3及水平视觉摄像头Ⅱ4。通过第一X、Y、Z三轴移动平台相互间的移动,使水平视觉摄像头Ⅱ4处于最佳视角位置以捕捉微零件P1水平方向的图像,为装配过程提供Y轴方向的视场信息,用于装配过程的导航。
垂直视觉移动子系统Ⅲ包括依次设置的支架Ⅲ0、第二X轴移动平台Ⅲ1、第二Z轴移动平台Ⅲ2、第二Y轴移动平台Ⅲ3及垂直视觉摄像头Ⅲ4。通过第二X、Z、Y三轴移动平台相互间的移动,使垂直视觉摄像头Ⅲ4处于最佳视角位置以捕捉微零件P1竖直方向的图像,为装配过程提供Z轴方向的视场信息,用于装配过程的导航。
在本实施例中,水平视觉摄像头Ⅱ4与垂直视觉摄像头Ⅲ4均为CCD相机。
所述工控机(图中未示出)集成运动控制卡、数据采集卡及电机驱动器于一体,运动控制卡用于控制各运动平台的电机工作,数据采集卡用于采集微力传感器500的反馈信号,电机驱动器用于接收来自运动控制卡的控制指令和向运动控制卡发送反馈信息。通过工控机控制各子系统,能够满足微零件装配过程的智能化和快速性的要求,操作系统控制方法简单实用,可以持续性进行微零件的装配,提高了微装配过程的快速性及稳定性。
参见图6~图15所示,所述的真空吸附器Ⅰ53包括:外壳100,呈锥体结构,具有小端110与大端120,小端110端面上开设有通孔111;后盖200,与大端120端面相连接;柔性腕300,位于外壳100与后盖200之间且固定连接在大端120内部,其中部具有一安装孔331;吸附机构400,与安装孔331相连接,用于吸附微零件P1;及微力传感器500,安装在柔性腕300上,用于检测后者由吸附机构400引起的偏转力;其中,吸附机构400包括依次连通的真空发生器410、气管420及吸附管430,真空发生器410贴合在柔性腕300上且位于后盖200内,气管420穿插连接在安装孔331内,吸附管430前端延伸至通孔111外。
参见图11~图13所示,真空发生器410包括气筒411、活塞412、弹簧413及与工控机电性连接的电磁铁414,活塞412(图12中用虚线表示)滑动设于气筒411内,弹簧413(图12中用虚线表示)两端分别与活塞412、气筒411内底部相连接,电磁铁414固定安装在后盖200内且位于气筒411正下方。
在进行吸附装配任务时,电磁铁414通电,通过磁力作用推动活塞412使其上移,此时弹簧412处于拉伸状态、柔性腕300不工作;当活塞412到达气筒411内的预定位置(最上端),电磁铁414断电磁力消失,活塞412失去磁力的作用,弹簧413回缩拉动活塞412下移,从而在气筒411内部产生负压(真空),通过吸附管430的前端吸附靶球等目标微零件P1以进行装配。在吸附微零件P1过程中,吸附管430不与通孔111发生任何接触,以保证吸附机构400的任何偏转均能传递到柔性腕300而被微力传感器500检测到;而且由于电磁铁414断电失磁对活塞412没有作用力,所以柔性腕300是可以精准的捕捉到吸附管430的任何偏转,从而使微力传感器500测得的力更加准确。在装配过程中,吸附管430前端微零件P1与零件支承平台上的微零件P2相互接触,产生力的相互作用,带动吸附管430发生偏转,而吸附管430通过气管420与柔性腕300连接在一起,吸附管430的微小偏转都会带动柔性腕300发生相同方向的偏转,并且吸附管430相当于杠杆放大机构,在微零件相互接触处发生的微小偏转,通过吸附管430可以将吸附目标所需力本是微牛(µN)级别的微力放大,有利于柔性腕300对偏转力的捕捉,从而被微力传感器500检测到,进而调整吸附器的位姿完成装配。将真空发生器410、气管420及吸附管430一体化设计,实现了吸附式夹持器的微型化,并在吸附微零件P1时能够始终保持负压状态,然后利用吸附管430的“杠杆放大”,分别通过柔性腕300和微力传感器500对装配过程中偏转力的捕捉和检测,实现了微牛(µN)级别微小受力的偏转检测。
气筒411下方开设有配重孔415、用来放置配重以平衡吸附机构400本身与被吸附微零件P1之间的重量,使柔性腕300始终保持平衡的状态,消除微零件P1自身重力对微力检测精度的影响。当更换被吸附的零件后由于重量发生改变,所以可以在配重孔415中添加或者减少相应的配重重量,使装配过程相对简单并且增加了吸附器的适用性,扩大了吸附器的适用范围。
后盖200外端面通过快换头(图中未示出)与Z轴偏转运动平台Ⅰ52相连接,可以实现整个真空吸附器Ⅰ53的快换,维护方便。
参见图14和图15所示,柔性腕300包括从外到内依次设置的外框310、外环320及内环330,外框310固定安装在大端120内部,外环320与外框310、内环330与外环320分别转动连接,外环320可绕外框310的竖直中轴线任意转动,内环330可绕外环320的水平中轴线任意转动;安装孔331设于内环330中部,真空发生器410贴合在内环330上。
微力传感器500共设有两对,一对分别安装在外框310朝向小端110的一面左右侧、用于检测外环320竖直方向的偏转,另一对分别安装在外环320朝向小端110的一面上下侧、用于检测内环330水平方向的偏转。具体地,外环320与外框310、内环330与外环320分别用轴承和销钉连接,实现紧配合的同时方便转动;其中外框310与外壳100的大端120内部和后盖200接触,工作时保持不动的状态;外环320和内环330是主要的活动部件,如图14和图15所示的位姿,外环320可以绕着竖直轴也就是竖直方向的销钉任意转动,内环330可以绕着水平轴也就是水平方向的销钉任意转动;外环320和内环330可以实现竖直和水平两个方向的任意转动。在装配时,微零件之间相互接触,产生力的相互作用,使得吸附管430发生偏转,从而带动内环330和外环320发生相同方向的偏转,实现柔性腕300对偏转力的捕捉,进而分别由两对微力传感器500检测到。本真空吸附器Ⅰ53将微力传感器500布置在微小的装配空间中,实现了二维偏转力的检测,极大地提高了微装配的成功率和效率。
参见图16~图18所示,所述的微力传感器500为复合量程微力传感器,包括固定端540及依次设于固定端540一侧的三根平行排布的第一、二、三悬臂梁510、520、530,三根悬臂梁的长度相等、厚度一致、宽度逐渐增加;每根悬臂梁作为力的测量段使用、其上设有由力敏电阻组成的测量电路,力敏电阻感测悬臂梁自由端的弯曲形变并通过测量电路将微力信号转换为电信号。在实际应用测量时,微力传感器500通过固定端540固定在外框310与外环320上、其悬臂梁的自由端分别悬空置于外环320、内环330旁边;第一悬臂梁510最窄、量程最小但是分辨率可达20µN,第三悬臂梁530最宽、量程可达0.3N,而且第三悬臂梁530可以起到保护第一悬臂梁510的作用。微力传感器通过改变悬臂梁的宽度,使第一、二、三悬臂梁的量程和分辨率不同,既提高了微力检测的分辨率,又增大了微力测量的量程范围,也提高了微力检测结果的准确性。
第一悬臂梁510和第二悬臂梁520的自由端(即末端)均设有凸台,且第一悬臂梁510自由端的凸台比第二悬臂梁520自由端的凸台高。通过该凸台,能够避免三个悬臂梁同时接触待检测的微小力信号,保证微力检测结果的准确性。检测时,第一悬臂梁510的凸台最先接触待检测的微小力信号,此阶段的力检测量程最小、力检测分辨率最高,并在第一悬臂梁510达到最大检测值前,第二悬臂梁520的凸台接着接触待检测的微小力信号,同样在第二悬臂梁520达到最大检测值前,第三悬臂梁530最后接触待检测的微小力信号,此阶段的力检测量程最大。
所述测量电路为惠斯通电桥测量电路,包括第一悬臂梁510上的第一惠斯通电桥、第二悬臂梁520上的第二惠斯通电桥及第三悬臂梁530上的第三惠斯通电桥。通过惠斯通电桥测量电路检测力的变化,检测和控制方法简单,稳定性好。
第一惠斯通电桥包括四个力敏电阻R1、R2、R3、R4,其中R2和R3设于第一悬臂梁510处于受力状态时应变最大的区域、其电阻值随第一悬臂梁510的形变发生变化,R1和R4设于固定端540端面上、其电阻值不随第一悬臂梁510的形变发生变化;R2、R1、R3、R4依次首尾电连接,R1和R2相连端与第一惠斯通电桥的第一输出电极相连,R1和R3相连端与第一惠斯通电桥的第一输入电极相连,R2和R4相连端与第一惠斯通电桥的第二输入电极相连,R3和R4相连端与第一惠斯通电桥的第二输出电极相连;第一惠斯通电桥第一输入电极和第一惠斯通电桥第二输入电极分别连接输入电压两端,第一惠斯通电桥第一输出电极和第一惠斯通电桥第二输出电极输出测量电压。实际测量时,第一悬臂梁510自由端的凸台接触待检测的微小力信号,第一悬臂梁510根部发生形变,力敏电阻R2和R3随着第一悬臂梁510发生形变,其电阻值产生变化,使得第一惠斯通电桥电路输出电压发生变化,最终通过输出电压与力信号的比例关系计算获得力的大小。
第二惠斯通电桥包括四个力敏电阻R5、R6、R7、R8,其中R6和R7设于第二悬臂梁520处于受力状态时应变最大的区域、其电阻值随第二悬臂梁520的形变发生变化,R5和R8设于固定端540端面上、其电阻值不随第二悬臂梁520的形变发生变化;R6、R5、R7、R8依次首尾电连接,R5和R6相连端与第二惠斯通电桥的第一输出电极相连,R5和R7相连端与第二惠斯通电桥的第一输入电极相连,R6和R8相连端与第二惠斯通电桥的第二输入电极相连,R7和R8相连端与第二惠斯通电桥的第二输出电极相连;第二惠斯通电桥第一输入电极和第二惠斯通电桥第二输入电极分别连接输入电压两端,第二惠斯通电桥第一输出电极和第二惠斯通电桥第二输出电极输出测量电压。实际测量时,第二悬臂梁520自由端的凸台接触待检测的微小力信号,第二悬臂梁520根部发生形变,力敏电阻R6和R7随着第二悬臂梁520发生形变,其电阻值产生变化,使得第二惠斯通电桥电路输出电压发生变化,最终通过输出电压与力信号的比例关系计算获得力的大小。
第三惠斯通电桥包括四个力敏电阻R9、R10、R11、R12,其中R10和R11设于第三悬臂梁530处于受力状态时应变最大的区域、其电阻值随第三悬臂梁530的形变发生变化,R9和R12设于固定端540端面上、其电阻值不随第三悬臂梁530的形变发生变化;R10、R9、R11、R12依次首尾电连接,R9和R10相连端与第三惠斯通电桥的第一输出电极相连,R9和R11相连端与第三惠斯通电桥的第一输入电极相连,R10和R12相连端与第三惠斯通电桥的第二输入电极相连,R11和R12相连端与第三惠斯通电桥的第二输出电极相连;第三惠斯通电桥第一输入电极和第三惠斯通电桥第二输入电极分别连接输入电压两端,第三惠斯通电桥第一输出电极和第三惠斯通电桥第二输出电极输出测量电压。实际测量时,第三悬臂梁530自由端接触待检测的微小力信号,第三悬臂梁530根部发生形变,力敏电阻R10和R11随着第三悬臂梁530发生形变,其电阻值产生变化,使得第三惠斯通电桥电路输出电压发生变化,最终通过输出电压与力信号的比例关系计算获得力的大小。
通过上述零部件组成的操作系统进行微零件的装配,其控制方法主要包括以下步骤:S1、将待装配的微零件P1(以下简称P1)放入吸附管430吸附区域、微零件P2(以下简称P2)固定在零件支承平台上;S2、通过工控机控制电磁铁414先通电后断电,从而控制真空发生器Ⅰ53吸附住微零件P1;S3、工控机通过运动控制卡分别控制水平视觉移动子系统Ⅱ的第一三轴移动平台移动和垂直视觉移动子系统Ⅲ的第二三轴移动平台移动,使水平视觉摄像头Ⅱ4和垂直视觉摄像头Ⅲ4处于最佳视角位置;S4、工控机获取水平视觉摄像头Ⅱ4和垂直视觉摄像头Ⅲ4的图片信息从而获取P2的位置与姿态,并控制六自由度零件装配子系统Ⅰ调整P1的姿态,此时工控机先控制两自由度主动抑振调节模块Ⅰ5快速实现P1状态的稳定,然后在通过六自由度零件装配子系统Ⅰ控制P1接近P2的过程中,缓慢完成P1姿态的精调整;S5、在P1与P2相互接触时,带动内环330和外环320偏转,工控机根据相应微力传感器500的信号反馈控制相应电机的旋转方向、旋转角度和旋转速度,分别调节内环330和外环320向反方向偏摆,使其与对应的微力传感器500脱离接触或者使微力传感器500处于不受力状态,从而达到快速使P1处于平稳状态的目的;S6、当外环320与外框310左右侧的微力传感器500均脱离接触或者微力传感器500不受力时,则说明外环320处于不受力的稳定状态,此时外环320调节完毕;S7、当内环330与外环320上下侧的微力传感器500均脱离接触或者微力传感器500不受力时,则说明内环330处于不受力的稳定状态,此时内环330调节完毕;S8、当内环330和外环320均调节完毕,说明被吸附的P1调节完毕,处于稳定状态;S9、此时活塞412到达最大量程处,真空发生器410停止工作,释放装配完毕的P1,完成装配过程。
上述实施例只是本发明的较佳实施例,并不是对本发明技术方案的限制,只要是不经过创造性劳动即可在上述实施例的基础上实现的技术方案,均应视为落入本发明专利的权利保护范围内。

Claims (10)

  1. 微装配用操作系统,其特征在于,所述操作系统包括:真空吸附器;工控机,用于控制整体系统工作;六自由度零件装配子系统,用于调整待装配微零件的位置和姿态;水平视觉移动子系统,位于所述六自由度零件装配子系统左侧,用于捕捉微零件水平方向的图像以导航装配过程;垂直视觉移动子系统,位于所述六自由度零件装配子系统右侧,用于捕捉微零件竖直方向的图像以导航装配过程;及零件支承平台,位于所述六自由度零件装配子系统前侧,用于放置待装配微零件;其中,所述六自由度零件装配子系统包括依次设置的底座、X轴直线运动平台、Y轴直线运动平台、Z轴直线运动平台、X轴旋转运动平台及两自由度主动抑振调节模块,所述两自由度主动抑振调节模块通过所述真空吸附器吸附待装配的微零件、用于实现微零件的快速抑振控制。
  2. 根据权利要求1所述的微装配用操作系统,其特征在于,所述X轴直线运动平台通过安装在所述底座上的第一电机驱使在所述底座上沿X轴直线运动;所述Y轴直线运动平台通过安装在所述X轴直线运动平台上的第二电机驱使在所述X轴直线运动平台上沿Y轴直线运动;所述Z轴直线运动平台通过安装在所述Y轴直线运动平台上的第三电机驱使在所述Y轴直线运动平台上沿Z轴直线运动;所述X轴旋转运动平台与所述Z轴直线运动平台固定连接;所述两自由度主动抑振调节模块通过安装在所述X轴旋转运动平台上的第四电机驱使在所述X轴旋转运动平台上绕X轴旋转运动。
  3. 根据权利要求1或2所述的微装配用操作系统,其特征在于,所述两自由度主动抑振调节模块包括依次设置的:Y轴偏转运动平台;Z轴偏转运动平台;及所述的真空吸附器;其中,所述Y轴偏转运动平台与所述X轴旋转运动平台的输出端相连接,所述Z轴偏转运动平台通过安装在所述Y轴偏转运动平台上的第五电机驱使绕Y轴偏转运动,所述真空吸附器通过安装在所述Z轴偏转运动平台上的第六电机驱使绕Z轴偏转运动。
  4. 根据权利要求3所述的微装配用操作系统,其特征在于,所述水平视觉移动子系统包括依次设置的:底板;第一X轴移动平台;第一Y轴移动平台;第一Z轴移动平台;及水平视觉摄像头;其中,所述水平视觉摄像头可捕捉微零件水平方向的图像,为装配过程提供Y轴方向的视场信息,用于装配过程的导航。
  5. 根据权利要求4所述的微装配用操作系统,其特征在于,所述垂直视觉移动子系统包括依次设置的:支架;第二X轴移动平台;第二Z轴移动平台;第二Y轴移动平台;及垂直视觉摄像头;其中,所述垂直视觉摄像头可捕捉微零件竖直方向的图像,为装配过程提供Z轴方向的视场信息,用于装配过程的导航。
  6. 根据权利要求1所述的微装配用操作系统,其特征在于,所述真空吸附器包括:微力传感器;外壳,呈锥体结构,具有小端与大端,所述小端端面上开设有通孔;后盖,与所述大端端面相连接;柔性腕,位于所述外壳与后盖之间且固定连接在所述大端内部,其中部具有一安装孔;及吸附机构,与所述安装孔相连接,用于吸附微零件;其中,所述微力传感器安装在所述柔性腕上、用于检测后者由所述吸附机构引起的偏转力;所述吸附机构包括依次连通的真空发生器、气管及吸附管,所述真空发生器贴合在所述柔性腕上且位于所述后盖内,所述气管穿插连接在所述安装孔内,所述吸附管前端延伸至所述通孔外。
  7. 根据权利要求6所述的微装配用真空吸附器,其特征在于,所述真空发生器包括:气筒;活塞,滑动设于所述气筒内;弹簧;及电磁铁;其中,所述弹簧两端分别与所述活塞、所述气筒内底部相连接,所述电磁铁固定安装在所述后盖内且位于所述气筒正下方。
  8. 根据权利要求7所述的微装配用真空吸附器,其特征在于,所述气筒下方开设有配重孔、用来放置配重以平衡所述吸附机构本身与被吸附微零件之间的重量。
  9. 根据权利要求6~8中任意一项所述的微装配用真空吸附器,其特征在于,所述柔性腕包括从外到内依次设置的:外框,固定安装在所述大端内部;外环;及内环;其中,所述外环与外框、内环与外环分别转动连接,所述外环可绕所述外框的竖直中轴线任意转动,所述内环可绕所述外环的水平中轴线任意转动;所述安装孔设于所述内环中部,所述真空发生器贴合在所述内环上。
  10. 根据权利要求9所述的微装配用真空吸附器,其特征在于,所述微力传感器共设有两对,一对分别安装在所述外框朝向所述小端的一面左右侧、用于检测所述外环竖直方向的偏转,另一对分别安装在所述外环朝向所述小端的一面上下侧、用于检测所述内环水平方向的偏转。
PCT/CN2021/078810 2020-12-31 2021-03-03 微装配用操作系统 WO2022141786A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011614492.5 2020-12-31
CN202011614492.5A CN112676889B (zh) 2020-12-31 2020-12-31 微装配用操作系统

Publications (1)

Publication Number Publication Date
WO2022141786A1 true WO2022141786A1 (zh) 2022-07-07

Family

ID=75455401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078810 WO2022141786A1 (zh) 2020-12-31 2021-03-03 微装配用操作系统

Country Status (2)

Country Link
CN (1) CN112676889B (zh)
WO (1) WO2022141786A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116394190A (zh) * 2023-03-30 2023-07-07 深圳市亿图视觉自动化技术有限公司 一种曲面屏幕的组装方法及组装设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114986115B (zh) * 2022-06-15 2024-02-27 中机中联工程有限公司 具有人手力度感知能力的六轴重载装配机械手及控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100212133A1 (en) * 2009-02-26 2010-08-26 Lawrence Livermore National Security, Llc Method and system for assembling miniaturized devices
CN102773817A (zh) * 2012-08-16 2012-11-14 中国科学院自动化研究所 一种圆形薄片类零件的夹持装置和方法
CN102873523A (zh) * 2012-09-13 2013-01-16 中国科学院自动化研究所 基于显微视觉的微器件装配在线检测装置
CN206326618U (zh) * 2017-01-01 2017-07-14 浙江师范大学 一种强力吸附的机器人抓手
CN107379004A (zh) * 2017-08-29 2017-11-24 天津大学 一种三自由度中空柔性手腕
CN109538591A (zh) * 2019-01-17 2019-03-29 中国工程物理研究院激光聚变研究中心 基于微预紧力监测的微米级金属丝高精度自动微装配设备
CN109623317A (zh) * 2019-01-17 2019-04-16 中国工程物理研究院激光聚变研究中心 微米级金属丝高精度自动微装配方法及装置
CN111299996A (zh) * 2020-03-10 2020-06-19 重庆大学 一种微夹持机器人

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19954369A1 (de) * 1999-11-11 2001-05-31 Metronom Indvermessung Gmbh Werkstückeinspannvorrichtung
CN102581837B (zh) * 2012-03-28 2014-11-26 中国科学院自动化研究所 微小件真空夹持装置
CN103252739B (zh) * 2013-05-17 2015-04-08 沈阳理工大学 一种真空吸附式微小件夹持装置
CN104290056B (zh) * 2014-09-19 2015-12-02 哈尔滨工业大学 一种单针式微米级对象拾放装置及方法
CN105149897B (zh) * 2015-07-28 2017-05-03 哈尔滨工业大学 一种锥球腔微小零件自动精密装配平台及装配方法
CN105598694A (zh) * 2016-03-29 2016-05-25 中国工程物理研究院激光聚变研究中心 一种微米级的轴与孔的装配装置
CN106271587A (zh) * 2016-10-24 2017-01-04 中国工程物理研究院激光聚变研究中心 一种微器件空间角度装配装置
CN109539989B (zh) * 2019-01-17 2024-04-16 中国工程物理研究院激光聚变研究中心 一种应用于复杂多构型微零件自动装配的在线检测系统
CN110849330B (zh) * 2019-11-26 2020-09-11 大连理工大学 惯性摆装配设备视觉深度方向的安装偏角标定装置及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100212133A1 (en) * 2009-02-26 2010-08-26 Lawrence Livermore National Security, Llc Method and system for assembling miniaturized devices
CN102773817A (zh) * 2012-08-16 2012-11-14 中国科学院自动化研究所 一种圆形薄片类零件的夹持装置和方法
CN102873523A (zh) * 2012-09-13 2013-01-16 中国科学院自动化研究所 基于显微视觉的微器件装配在线检测装置
CN206326618U (zh) * 2017-01-01 2017-07-14 浙江师范大学 一种强力吸附的机器人抓手
CN107379004A (zh) * 2017-08-29 2017-11-24 天津大学 一种三自由度中空柔性手腕
CN109538591A (zh) * 2019-01-17 2019-03-29 中国工程物理研究院激光聚变研究中心 基于微预紧力监测的微米级金属丝高精度自动微装配设备
CN109623317A (zh) * 2019-01-17 2019-04-16 中国工程物理研究院激光聚变研究中心 微米级金属丝高精度自动微装配方法及装置
CN111299996A (zh) * 2020-03-10 2020-06-19 重庆大学 一种微夹持机器人

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116394190A (zh) * 2023-03-30 2023-07-07 深圳市亿图视觉自动化技术有限公司 一种曲面屏幕的组装方法及组装设备
CN116394190B (zh) * 2023-03-30 2023-11-07 深圳市亿图视觉自动化技术有限公司 一种曲面屏幕的组装方法及组装设备

Also Published As

Publication number Publication date
CN112676889A (zh) 2021-04-20
CN112676889B (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
WO2022141786A1 (zh) 微装配用操作系统
JP2500366B2 (ja) 3次元自由運動装置
Guan et al. A modular biped wall-climbing robot with high mobility and manipulating function
US10857669B2 (en) Modular angular-momentum driven magnetically connected robots
Wang et al. A flexure-based kinematically decoupled micropositioning stage with a centimeter range dedicated to micro/nano manufacturing
CN111351615B (zh) 空间站机械臂六维力传感器高精度小型化在轨标定装置及标定方法
JPH02504244A (ja) ロボットに用いる関節装置
CN112775639B (zh) 一种柔性装配系统及方法
CN107414823A (zh) 根据力矩调整平衡的方法及装置
CN107378527A (zh) 一种压电驱动式两自由度解耦微摆动平台
CN114088556B (zh) 密封件测试装置
CN113848751A (zh) 一种无拖曳航天器的地面模拟系统
Karidis et al. The Hummingbird minipositioner-providing three-axis motion at 50 G's with low reactions
Li et al. An untethered tripodal miniature piezoelectric robot with strong load capacity inspired by land motion of seals
CN114152271A (zh) 多轴集成的微机电系统惯性器件测试装置、系统及方法
Wason et al. Vision guided multi-probe assembly of 3d microstructures
CN104678781B (zh) 仿壁虎空间机器人姿态调控与着陆实验系统及方法
CN207071931U (zh) 根据力矩调整平衡的装置
CN207206468U (zh) 一种基于末端视觉检测的柔性臂振动测量装置
CN111896162A (zh) 空间失控翻滚卫星单自由度非接触式消旋模拟测试平台及方法
Chen et al. Design and Verification of Microgravity Simulation System for Space Station Manipulator
CN214238222U (zh) 一种基于柔性腕结构的电磁驱动微夹持器
CN206696718U (zh) 一种刚柔杆型平面并联平台的振动测量控制装置
CN112762139B (zh) 一种两自由度旋转调节装置及其主动抑振控制方法
CN219294030U (zh) 工业机器人故障诊断实验台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21912556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21912556

Country of ref document: EP

Kind code of ref document: A1