WO2022141305A1 - 处理下行信号的方法及装置 - Google Patents

处理下行信号的方法及装置 Download PDF

Info

Publication number
WO2022141305A1
WO2022141305A1 PCT/CN2020/141827 CN2020141827W WO2022141305A1 WO 2022141305 A1 WO2022141305 A1 WO 2022141305A1 CN 2020141827 W CN2020141827 W CN 2020141827W WO 2022141305 A1 WO2022141305 A1 WO 2022141305A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource block
block group
dmrs port
indication information
dmrs
Prior art date
Application number
PCT/CN2020/141827
Other languages
English (en)
French (fr)
Inventor
宣一荻
谢信乾
郭志恒
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/141827 priority Critical patent/WO2022141305A1/zh
Priority to EP20967644.4A priority patent/EP4266797A4/en
Priority to CN202080107476.9A priority patent/CN116530133A/zh
Publication of WO2022141305A1 publication Critical patent/WO2022141305A1/zh
Priority to US18/343,811 priority patent/US20230345284A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present application relates to the field of communications, and more particularly, to a method and apparatus for processing downlink signals.
  • each antenna port is configured with different demodulation reference signals.
  • demodulation reference signal DMRS
  • each antenna port is configured with different demodulation reference signals.
  • DMRS demodulation reference signal
  • the DMRS corresponding to different antenna ports can be multiplexed by means of time division, frequency division and code division.
  • the terminal device Due to the upper limit of complexity in the channel estimation capability of the terminal device, that is, the number of times the terminal device detects the DMRS port is constrained by the performance of the hardware or chip, and the terminal device may not be able to detect all the DMRS ports corresponding to all scheduling bandwidths or scheduling sub-bandwidths. Randomly select a number of DMRS ports for detection, and perform interference suppression according to the detected channel results.
  • the detected DMRS ports may not be the DMRS ports with strong interference, or the detected DMRS ports may contain non-interfering DMRS ports. DMRS port, this will cause the performance of channel estimation to degrade and affect the accuracy of the information received by the terminal equipment.
  • the present application provides a method for processing downlink signals.
  • the terminal device dynamically allocates channel estimation resources according to the interference situation on each resource block group, so that the terminal device can suppress or eliminate the interference. The ability to play more fully, while reducing unnecessary computational overhead.
  • a first aspect provides a method for processing downlink signals, which can be executed by a terminal device, or can also be executed by a chip or circuit configured in the terminal device.
  • the method is described below by taking the terminal device as an example. It includes: the terminal device receives first indication information from the network device; and determining at least one first resource block group and at least one second resource block group according to the first indication information, where the first indication information is used to indicate the at least one first resource block group a resource block group and/or the at least one second resource block group; detecting a DMRS port, wherein the number of times of detecting a DMRS port on each first resource block group in the at least one first resource block group is greater than or equal to the first A preset value, the number of times of detecting DMRS ports on each second resource block group in the at least one second resource block group is less than the first preset value.
  • the terminal device can determine the time domain position and frequency domain position of the DMRS corresponding to the DMRS port according to the index of the DMRS port, and receive the DMRS signal on the time-frequency resources corresponding to the time domain position and the frequency domain position. , and the DMRS signal is detected to determine the channel coefficient of the channel corresponding to the signal associated with the DMRS port. Therefore, detecting a DMRS port can also be understood as determining a channel coefficient corresponding to the DMRS port.
  • the network device indicates to the terminal device the resource block group that suffers more interference and the resource block group that suffers less interference.
  • the terminal equipment then dynamically allocates channel estimation resources according to the interference conditions on each resource block group.
  • the terminal equipment increases the number of DMRS ports detected on the resource block group that suffers more interference, and fully exerts the ability to suppress or eliminate interference.
  • the terminal device reduces the number of DMRS ports detected on the resource block group with less interference, thereby reducing unnecessary computational overhead.
  • the number of channel estimations corresponding to the second resource block group may be reduced, or the number of times the terminal device detects the DMRS port on the second resource block group may be reduced;
  • the number of times of channel estimation of the first resource block group is increased, or the number of times of DMRS ports detected on the first resource block group can also be increased.
  • the first indication information may only indicate the first resource block group, or only indicate the second resource block group, or indicate the first resource block group and the second resource block group.
  • the terminal device can determine the first resource block group and the second resource block group according to the first indication information.
  • Both the first resource block group and the second resource block group are included in a third resource block group, and the third resource block group is a resource block group used for carrying downlink signals sent by the network device to the terminal device.
  • the terminal device receives second indication information from the network device, where the second indication information is used to indicate at least one first code division multiplexing CDM group, the at least one first CDM group
  • the group is a CDM group corresponding to the at least one first resource block group and including the DMRS port associated with the interference signal
  • the detecting the DMRS port includes: detecting the at least one first CDM group on the at least one first resource block group at least one DMRS port and at least one first DMRS port of the All DMRS ports, at least one first DMRS port, and at least one second DMRS port in the at least one first CDM group are detected on at least one first resource block group; wherein, the at least one first DMRS port is the network device
  • the at least one second DMRS port is the DMRS port corresponding to the at least one first resource block group, except all DMRS ports in the first CDM group and
  • the first DMRS port is in the first CDM group, or the first DMRS port is not in the first CDM group.
  • all the DMRS ports in the detected first CDM group include the DMRS port associated with the above-mentioned interference signal, and may also include the first DMRS port.
  • the terminal device detects all DMRS ports and the first DMRS port in the first CDM group according to the number of DMRS ports that can be detected on the first resource block group.
  • one or more second DMRS ports may also be detected.
  • the terminal device increases the number of DMRS ports detected on the resource block group that suffers more interference, and at the same time, the terminal device preferentially detects the DMRS ports in the first CDM group on the first resource block group.
  • the problem of insufficient detection of all DMRS ports associated with interference signals due to random selection of several DMRS ports for detection is reduced, and the ability to suppress interference is fully exerted.
  • third indication information from a network device is received, where the third indication information is used to indicate at least one third DMRS port, and the at least one third DMRS port is the same as the at least one third DMRS port.
  • the DMRS port corresponding to the second resource block group and associated with the interference signal includes: detecting at least one DMRS port and at least one first DMRS port in the at least one third DMRS port on the at least one second resource block group a DMRS port; or, detecting all DMRS ports, at least one first DMRS port and at least one fourth DMRS port in the at least one third DMRS port on the at least one second resource block group; wherein, the at least one first DMRS port A DMRS port is a DMRS port associated with a downlink signal to be sent by the network device to the terminal device, the at least one fourth DMRS port is a DMRS port corresponding to the at least one second resource block group, except for the at least one third DMRS port One or more of the DMRS ports other than the port.
  • the terminal device preferentially detects the third DMRS port indicated by the network device according to the number of DMRS ports it can detect on the second resource block group, and the bearer network device sends the The first DMRS port associated with the downlink signal to be sent by the terminal device.
  • the terminal device can detect the third DMRS port indicated by the network device according to the number of DMRS ports it can detect on the second resource block group, and the bearer network device sends In addition to the first DMRS port on which the terminal device is to send downlink signals, the fourth DMRS port can also be detected.
  • the at least one fourth DMRS port is one or more of the DMRS ports other than the at least one third DMRS port among the DMRS ports corresponding to the at least one second resource block group.
  • the terminal device reduces the number of times of detecting the DMRS port on the resource block group with less interference, and at the same time, the terminal device preferentially detects the third DMRS port.
  • the above solution reduces the situation that the terminal equipment performs channel estimation on DMRS ports without interference, and effectively saves the computational overhead for detecting DMRS ports or performing channel estimation on DMRS ports.
  • the power or strength of the interference signal received by the terminal device is greater than a second preset value, or the correlation between the DMRS port associated with the interference signal and the first DMRS port is greater than The third preset value.
  • the first preset value is determined, the first preset value is predefined, or the first preset value is indicated by the network device.
  • the method before determining the first preset value, further includes: sending fourth indication information to the network device, where the fourth indication information is used to indicate that the terminal device is in The maximum number of times to detect DMRS ports on one or more resource blocks.
  • the determining at least one first resource block group and at least one second resource block group according to the first indication information includes: the first indication information is used to indicate the at least one a first resource block group, determining a resource block group other than the at least one first resource block group in the third resource block group as the at least one second resource block group; or, the first indication information is used to indicate the at least one second resource block group a second resource block group, and the resource block group in the third resource block group except the at least one second resource block group is determined as the at least one first resource block group; wherein, the third resource block group is the bearer
  • the network device is to send the resource block group of the downlink signal to the terminal device.
  • the first indication information is used to indicate the at least one first resource block group and the at least one second resource block group
  • the method further includes: the third resource block Resource block groups in the group other than the at least one first resource block group and the at least one second resource block group are determined as at least one fourth resource block group.
  • the detecting a DMRS port further includes: the number of times of detecting a DMRS port on each fourth resource block group in the at least one fourth resource block group is less than or equal to The number of DMRS ports detected on each of the first resource block groups in the at least one first resource block group is greater than that detected on each of the second resource block groups in the at least one second resource block group The number of DMRS ports.
  • a method for processing downlink signals comprising: generating first indication information; sending the first indication information to a terminal device, where the first indication information is used to indicate at least one first resource block group and/or at least one second resource block group, the first indication information is used to indicate that the number of times that the terminal device detects the DMRS port on each of the first resource block group is greater than or equal to the first preset value, in each The number of times the DMRS port is detected on the second resource block group is less than the first preset value.
  • the network device indicates to the terminal device the resource block group that suffers more interference and the resource block group that suffers less interference.
  • the terminal equipment then dynamically allocates channel estimation resources according to the interference conditions on each resource block group.
  • the terminal equipment increases the number of DMRS ports detected on the resource block group that suffers more interference, and fully exerts the ability to suppress or eliminate interference.
  • the terminal device reduces the number of DMRS ports detected on the resource block group with less interference, thereby reducing unnecessary computational overhead.
  • the first indication information is used to indicate that the first resource block group is a resource block group in which the number of strongly interfering DMRS ports in the third resource block group is greater than or equal to a fourth preset value
  • the second resource block group is The block group may be a resource block group in which the number of strongly interfering DMRS ports in the third resource block group is less than or equal to the fifth preset value.
  • the fourth preset value is greater than the average number of DMRS ports detectable by the terminal device on each third resource block group
  • the fifth preset value is less than the average detectable number of DMRS ports by the terminal device on each third resource block group Number of DMRS ports.
  • second indication information is sent to the terminal device, where the second indication information is used to indicate at least one first code division multiplexing CDM group, and the at least one first CDM group is A CDM group corresponding to the at least one first resource block group and including the DMRS port associated with the interference signal.
  • third indication information is sent to the terminal device, where the third indication information is used to indicate at least one third DMRS port, and the at least one third DMRS port is associated with the at least one third DMRS port.
  • the second resource block group corresponds to and includes a DMRS port corresponding to the interference signal.
  • the power or strength of the interference signal received by the terminal device is greater than a second preset value, or the correlation between the DMRS port associated with the interference signal and the first DMRS port is greater than The third preset value.
  • the method before sending the first indication information to the terminal device, the method further includes: receiving fourth indication information from the terminal device, where the fourth indication information is used to indicate the The maximum number of times that the terminal device detects the DMRS port on one or more resource blocks; the first preset value is determined according to the fourth indication information.
  • the network device determines that the number of strongly interfering DMRS ports on one or more resource block groups is greater than each resource of the terminal device in the third resource block group If the average number of detectable DMRS ports in the block group is determined, the network device determines the average number of detectable DMRS ports in each resource block group in the third resource block group by the terminal device as the first preset value. Subsequently, the network device may not send the first preset value to the terminal device, or may send the first preset value to the terminal device.
  • the network device when the network device determines that the number of strongly interfering DMRS ports on all resource block groups in the third resource block group is less than or equal to that of the terminal device in each resource block group in the third resource block group On average, the number of detectable DMRS ports, the network device will re-determine a threshold, and determine the threshold as the first preset value.
  • the threshold is less than the average number of DMRS ports detectable by the terminal device on each resource block group in the third resource block group, and greater than the number of DMRS ports associated with downlink signals to be sent by the network device to the terminal device.
  • the method further includes: sending the first preset value to the terminal device.
  • an apparatus for processing downlink signals which includes: a transceiver module for receiving first indication information from a network device; a processing module for determining at least one first indication information according to the first indication information a resource block group and at least one second resource block group, the first indication information is used to indicate the at least one first resource block group and/or the at least one second resource block group; the processing module is further configured to detect the DMRS port , wherein the number of times of detecting DMRS ports on each first resource block group in the at least one first resource block group is greater than or equal to a first preset value, and in each first resource block group in the at least one second resource block group The number of times of detecting the DMRS port on the second resource block group is less than the first preset value.
  • the network device indicates to the terminal device the first resource block group that suffers more interference and the second resource block group that suffers less interference.
  • the terminal equipment then dynamically allocates channel estimation resources according to the interference conditions on each resource block group.
  • the terminal equipment increases the number of times of DMRS ports detected on the first resource block group, that is, the number of times of channel estimation on the first resource block group, so that the ability of the terminal equipment to suppress or eliminate interference is more fully exerted.
  • the number of times of DMRS ports detected on the second resource block group is reduced, that is, the number of times of channel estimation on the second resource block group is reduced, and unnecessary computational overhead is reduced.
  • the transceiver module is further configured to receive second indication information from the network device, where the second indication information is used to indicate at least one first code division multiplexing CDM group, the The at least one first CDM group is a CDM group corresponding to the at least one first resource block group and including the DMRS port associated with the interference signal; the processing module is specifically further configured to: detect the at least one first resource block group on the at least one first resource block group at least one DMRS port and at least one first DMRS port in at least one first CDM group; or, detecting all DMRS ports and at least one first DMRS port in the at least one first CDM group on the at least one first resource block group DMRS port; or, detecting all DMRS ports, at least one first DMRS port, and at least one second DMRS port in the at least one first CDM group on the at least one first resource block group; wherein, the at least one first DMRS port One DMRS port is the DMRS
  • the transceiver module is further configured to receive third indication information from the network device, where the third indication information is used to indicate at least one third DMRS port, the at least one third The DMRS port is a DMRS port corresponding to the at least one second resource block group and associated with the interference signal;
  • the processing module is specifically further configured to: detect the at least one third DMRS port on the at least one second resource block group at least one DMRS port and at least one first DMRS port; or, detecting all DMRS ports, at least one first DMRS port and at least one fourth DMRS port of the at least one third DMRS port on the at least one second resource block DMRS port; wherein, the at least one first DMRS port is a DMRS port associated with a downlink signal to be sent by the network device to the terminal device, and the at least one fourth DMRS port is a DMRS port corresponding to the at least one second resource block group , one or more of the DMRS
  • the power or strength of the interference signal received by the terminal device is greater than a second preset value, or the correlation between the DMRS port associated with the interference signal and the first DMRS port is greater than The third preset value.
  • the processing module is further configured to: determine the first preset value, where the first preset value is predefined, or the first preset value is determined by the network device indication.
  • the transceiver module is further configured to: send fourth indication information to the network device, where the fourth indication information is used to instruct the terminal device to detect on one or more resource blocks Maximum number of DMRS ports.
  • the processing module is further configured to: the first indication information is used to indicate the at least one first resource block group, and divide the third resource block group by the at least one first resource block group.
  • a resource block group other than a resource block group is determined to be the at least one second resource block group; or, the first indication information is used to indicate the at least one second resource block group, in the third resource block group except the at least one second resource block group
  • a resource block group other than the second resource block group is determined as the at least one first resource block group; wherein, the third resource block group is a resource block group that carries the downlink signal to be sent by the network device to the terminal device.
  • the processing module is further configured to: resources in the third resource block group other than the at least one first resource block group and the at least one second resource block group The block group is determined to be at least one fourth resource block group.
  • the processing module is further configured to: the number of times of DMRS ports detected on each fourth resource block group in the at least one fourth resource block group is less than or equal to The number of DMRS ports detected on each of the first resource block groups in the at least one first resource block group is greater than that detected on each of the second resource block groups in the at least one second resource block group The number of DMRS ports.
  • an apparatus for processing downlink signals which is characterized by comprising: a processing module for generating first indication information; a transceiver module for sending the first indication information to a terminal device, the first indication The information is used to indicate at least one first resource block group and/or at least one second resource block group, and the first indication information is used to indicate that the number of times the terminal device detects DMRS ports on each of the first resource block groups is greater than or equal to For the first preset value, the number of times of detecting DMRS ports on each of the second resource block groups is less than the first preset value.
  • the transceiver module is further configured to: send second indication information to the terminal device, where the second indication information is used to indicate at least one first code division multiplexing CDM group, the The at least one first CDM group is a CDM group corresponding to the at least one first resource block group and including the DMRS port associated with the interference signal.
  • the transceiver module is further configured to: send third indication information to the terminal device, where the third indication information is used to indicate at least one third DMRS port, the at least one third DMRS port.
  • the DMRS port is a DMRS port corresponding to the at least one second resource block group and associated with the interference signal.
  • the transceiver module is further configured to receive fourth indication information from the terminal device, where the fourth indication information is used to indicate that the terminal device is on one or more resource blocks The maximum number of times of detecting the DMRS port; the processing module is further configured to determine the first preset value according to the fourth indication information.
  • the transceiver module is further configured to: send the first preset value to the terminal device.
  • a communication device which is characterized by comprising: a processor and a memory; the memory is used for storing a computer program; the processor is used for executing the computer program stored in the memory, so as to enable the communication
  • the apparatus executes the communication method of any one of claims 1 to 9, or executes the communication method of any one of claims 10 to 14.
  • a computer-readable storage medium wherein a computer program is stored on the computer-readable storage medium, and when the computer program is run on a computer, the computer is made to perform as claimed in claims 1 to 9. any one of the communication methods, or implement the communication method according to any one of claims 10 to 14 .
  • a seventh aspect provides a chip system, characterized by comprising: a processor for calling and running a computer program from a memory, so that a communication device installed with the chip system executes any one of claims 1 to 9 claim the communication method as claimed, or implement the communication method as claimed in any one of claims 10 to 14 .
  • a communication system includes at least one of the above-mentioned terminal devices and at least one of the above-mentioned network devices, for executing the communication method in the first aspect or the second aspect.
  • the network device indicates to the terminal device the resource block group that suffers more interference and the resource block group that suffers less interference.
  • the terminal equipment then dynamically allocates channel estimation resources according to the interference conditions on each resource block group.
  • the terminal equipment increases the number of DMRS ports detected on the resource block group that suffers more interference, and fully exerts the ability to suppress or eliminate interference.
  • the terminal device reduces the number of DMRS ports detected on the resource block group with less interference, thereby reducing unnecessary computational overhead.
  • FIG. 1 shows a schematic diagram of an example of a DMRS pattern in a 5G system.
  • FIG. 2 shows a schematic diagram of a scenario where a terminal device receives an interference signal.
  • FIG. 3 shows an example of a schematic interaction diagram of the method for processing downlink signals of the present application.
  • FIG. 4 shows a schematic block diagram of a resource block group carrying downlink signals of the present application.
  • FIG. 5 shows a schematic block diagram of an example of dynamic allocation of channel estimation resources by the terminal device of the present application.
  • FIG. 6 shows a schematic block diagram of still another example of dynamic allocation of channel estimation resources by the terminal device of the present application.
  • FIG. 7 is a schematic block diagram of an example of a terminal device of the present application.
  • FIG. 8 is a schematic block diagram of an example of an access node of the present application.
  • FIG. 9 is a schematic block diagram of an example of a communication device of the present application.
  • FIG. 10 is a schematic block diagram of still another example of the communication device of the present application.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • Terminal also known as user equipment (UE), mobile station (MS), or mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • terminals such as handheld devices with wireless connectivity, or in-vehicle devices, etc.
  • some examples of terminals are: mobile phone (mobile phone), tablet computer, notebook computer, PDA, mobile internet device (MID), wearable device, virtual reality (virtual reality, VR) device, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, and smart grids wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, or wireless terminals in smart homes, etc.
  • a network device is a device in a wireless network, such as a radio access network (RAN) node that accesses the terminal to the wireless network.
  • RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (RNC), Node B (Node B) B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), base band unit (base band unit) , BBU), or wireless fidelity (wireless fidelity, Wifi) access point (access point, AP), etc.
  • TRP transmission reception point
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home evolved NodeB, or home Node B, HNB
  • base band unit base band unit
  • the network device may include a centralized unit (centralized unit, CU) node, or a distributed unit (distributed unit, DU) node, or a RAN device including a CU node and a DU node.
  • a centralized unit centralized unit, CU
  • DU distributed unit
  • RAN device including a CU node and a DU node.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • general packet radio service general packet radio service, GPRS
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • the multiple access method usually adopts the orthogonal frequency division multiplexing access (OFDMA) method.
  • OFDM orthogonal frequency division multiplexing access
  • the main feature of OFDM is that the transmission resources are divided into mutually orthogonal time-frequency resource elements (REs), and the signals sent by the sender are all carried on the REs and transmitted to the receiver. They are orthogonal to each other, so that the receiving end can separately receive the signal sent on each RE.
  • the signal carried on the RE will be distorted after being transmitted through the channel, and the channel distortion is usually referred to as the channel coefficient.
  • the receiving end needs to estimate the channel coefficients.
  • the process of obtaining the channel information by the receiving end can also be called channel estimation.
  • the channel estimation scheme based on the reference signal is usually adopted, that is, the transmitting end A known signal is transmitted on a specific RE, the receiving end estimates the channel coefficient according to the received signal and the known signal, and interpolates the channel coefficients on other REs according to the channel coefficient obtained by the estimation, and then the data signal Receive demodulation.
  • the base station is equipped with multiple antennas to realize spatial multiplexing transmission using the multi-input multi-output (MIMO) technology, that is, to transmit multiple data streams on the same time-frequency resources , each data stream is transmitted on an independent spatial layer, and each spatial layer will be mapped to a different antenna port for transmission.
  • MIMO multi-input multi-output
  • Each antenna port is configured with different DMRSs, and the DMRSs corresponding to different antenna ports can be multiplexed by means of time division, frequency division, and code division.
  • the total number of DMRS ports is 6, and the number of CDM groups is 3.
  • the horizontal direction represents the time domain
  • the vertical direction represents the frequency domain
  • each small square represents a RE, in which DMRS ports 0 and 1 are multiplexed by orthogonal codes, so the RE corresponding to these two ports is also called a code.
  • Division multiplexing (code division multiplexing, CDM) group code division multiplexing
  • Subcarriers In a communication system using orthogonal frequency division multiplexing (OFDM) technology, the frequency domain resources are divided into several subresources, and each subresource in the frequency domain may be called a subcarrier. Subcarriers can also be understood as the minimum granularity of frequency domain resources. Among them, the OFDM technology is a multi-carrier modulation technology.
  • OFDM orthogonal frequency division multiplexing
  • Subcarrier spacing in a communication system using the OFDM technology, the spacing value between the center positions or peak positions of two adjacent subcarriers in the frequency domain.
  • the subcarrier spacing in the LTE system is 15kHz
  • the subcarrier spacing in the NR system in 5G may be 15kHz, or 30kHz, or 60kHz, or 120kHz, etc.
  • Resource block N consecutive subcarriers in the frequency domain may be called a resource block.
  • one resource block in the LTE system includes 12 subcarriers
  • one resource block in the NR system in 5G also includes 12 subcarriers.
  • the number of subcarriers included in one resource block may also be other values.
  • Time slot A time slot in the 5G NR system includes 14 OFDM symbols, the time slot length corresponding to the 15kHz subcarrier spacing is 1ms, and the time slot length corresponding to the 30kHz subcarrier spacing is 0.5ms.
  • Subframe The time length of a subframe in the 5G NR system is 1ms.
  • OFDM symbol the smallest time unit in the time domain in the OFDM system.
  • Time-frequency resource unit the smallest time-frequency resource granularity in the OFDM system, which is one OFDM symbol in the time domain and one subcarrier in the frequency domain.
  • Subband one subband includes one or more resource blocks in the frequency domain, or one subband may include one or more resource block groups in the frequency domain. Since each resource block group also includes multiple resource blocks, the size of one subband may be the same as or different from the size of one resource block group. When a subband has the same size as a resource block group, the subband can also be understood as a resource block group.
  • Antenna port In the 5G NR system, the antenna port is the logical port used for transmission, and one antenna port includes multiple physical antennas. From the receiver's point of view, each antenna port corresponds to an independent wireless channel.
  • the demodulation reference signal is a reference signal used to recover the received signal.
  • the DMRS is a signal known to both the sender and the receiver.
  • the sender transmits the DMRS and data to the receiver through the same port and wireless channel.
  • the receiving end obtains the channel coefficient according to the DMRS in the received signal, and demodulates and decodes the received signal according to the channel coefficient to obtain the transmitted data.
  • the channel coefficients from different antenna ports to the terminal are not the same, in order for the receiver to obtain the information transmitted on multiple spatial layers, it is necessary to estimate the channel coefficient between each antenna port and the terminal.
  • DMRSs corresponding to different antenna ports can be multiplexed by means of time division, frequency division, and code division.
  • 5G NR systems can support up to 12 MDRS ports.
  • Spatial layer In the existing wireless communication system, the base station is equipped with multiple antennas to realize spatial multiplexing transmission using MIMO technology, that is, multiple different data streams are transmitted on the same time-frequency resources, and each unrelated data stream is transmitted. Data streams are transmitted on a separate spatial layer, and each spatial layer will be mapped to a different antenna port for transmission.
  • the terminal device can determine the time domain position and frequency domain position of the DMRS corresponding to the DMRS port in one or more time slots according to the index of the DMRS port.
  • the DMRS signal is received on the frequency resource, and the DMRS signal is detected to determine the channel coefficient of the channel corresponding to the signal associated with the DMRS port. Therefore, detecting a DMRS port may also be referred to as determining a channel coefficient corresponding to the DMRS port.
  • Interference signal In a communication system, for a terminal device, in the received downlink signal, in addition to the signal sent by the network device to the terminal device, there may also be other signals that the terminal device is not expected to receive. For example, when the first terminal device communicates with the first network device, when the first terminal device receives a downlink signal sent by the first network device on a time-frequency resource, there may be a second terminal device on the same time-frequency resource that sends a downlink signal. The uplink signal sent by the second network device or the downlink signal sent by the second network device, the uplink signal from the second terminal device or the downlink signal from the second network device, are not required for the first terminal device to receive the downlink signal from the first network device.
  • the desired signal can also be understood as an interference signal.
  • Interference suppression when the terminal device receives the downlink signal, it uses the channel coefficient corresponding to the interference signal to process the received downlink signal, so as to realize the process of weakening and eliminating the influence of the interference signal.
  • Strong interference DMRS port a DMRS port associated with a strong interference signal, where the strong interference signal is an interference signal whose power or strength received by the terminal device is greater than a second preset value.
  • the correlation between the strongly interfering DMRS port and the first DMRS port is greater than a third preset value, and the first DMRS port is a DMRS port associated with a downlink signal to be sent by the network device to the terminal device.
  • the network device sends two different signals to two terminal devices on the same time-frequency resource. For example, the network device sends the first signal to the first terminal, and the network device sends the first signal to the first terminal.
  • the second terminal sends the second signal. Since the two terminal devices receive the same time-frequency resources for the signal, for the first terminal device, when it receives the required first signal, it will also receive the second signal. At this time, the second signal It will cause interference to the first signal received by the first terminal. Therefore, for the first terminal device, the second signal is an interference signal. Similarly, for the second terminal that needs to receive the second signal, it also receives the first signal while receiving the second signal. At this time, the first signal is an interference signal to the second terminal device.
  • Scenario 2 As shown in (b) of Figure 2, the first network device sends a downlink signal to the first terminal device, and the second network device in another adjacent cell receives the uplink signal sent by the second terminal device, then the first When the terminal device receives the downlink signal, it also receives the uplink signal sent by the second terminal. At this time, the uplink signal from the second terminal device is an interference signal to the first terminal.
  • the network device is a full-duplex network device, that is, the network device can simultaneously send and receive signals on the same frequency domain resources.
  • the network device sends downlinks to the first terminal
  • the second terminal is sending an uplink signal to the network device
  • the first terminal will receive an uplink signal sent by the second terminal when receiving the downlink signal, and the uplink signal is regarded as an interference signal to the first terminal.
  • the number of CDM groups that do not carry data can be included according to the antenna port (antenna port(s)) field in the downlink control information (DCI) sent by the network device. (number of CDMs group without data), to determine whether other DMRS ports are occupied by other terminal devices except the DMRS ports that it is using.
  • DCI downlink control information
  • the channel estimation capability of the terminal device has an upper limit of complexity, that is, the number of times the terminal device detects the DMRS port (or, in other words, the number of times the DMRS port is channel estimated) is constrained by hardware or chips. If the terminal determines that there are already occupied DMRS ports in the remaining DMRS ports, especially when the terminal equipment performs space division multiplexing on a subband basis, the terminal equipment may not be able to detect all DMRS ports on all subbands, and the terminal may randomly select all DMRS ports. Channel estimation is performed on several DMRS ports, channel coefficients of these DMRS ports are determined, and then interference suppression is performed.
  • the terminal device can only support detection of 4 DMRS ports in each subband, but the 5G NR system specifies that a maximum of 12 DMRS ports can be used, the terminal device cannot blindly detect DMRS ports on all subbands, and can only detect DMRS ports on all subbands. 4 DMRS ports are randomly selected for channel estimation.
  • the terminal device randomly selects several DMRS ports for channel estimation, the power of the interference signal corresponding to the selected DMRS port may be small, and the DMRS port associated with the interference signal whose power is greater than a preset value is not performed. detection, resulting in the inability to exert the ability of terminal equipment to suppress or eliminate interference.
  • the terminal equipment may perform channel estimation on the non-interfering DMRS ports in each sub-band, resulting in unnecessary computational overhead; for sub-bands with more interference, several DMRS ports are randomly selected. Not enough to detect all DMRS ports associated with interfering signals to completely suppress the interference.
  • FIG. 3 is a schematic interaction diagram of the method 300 of the present application.
  • a network device generates first indication information.
  • the network device sends the first indication information to the terminal device, and correspondingly, the terminal device receives the first indication information from the network device.
  • the first indication information is used to indicate at least one first resource block group and/or at least one second resource block group.
  • the first indication information may indicate the first resource block group and/or the second resource block group in the following three ways.
  • the first indication information is used to indicate at least one first resource block group and/or at least one second resource block group.
  • the first indication information may include a field indicating at least one first resource block group and/or at least one second resource block group by means of indicating a resource block index.
  • the length N of this field is determined by K states of the combination of the first resource block group and the second resource block group, and can indicate one of the K states. For example, when the number of resource block groups included in the scheduled bandwidth is 4, the resource block group numbers are from 0 to 3.
  • the length of the field corresponding to the second indication information is
  • the first indication information is used to indicate at least one first resource block group and/or at least one second resource block group.
  • the first indication information may include a first field and/or a second field, where the first field is used to indicate at least one first resource block group, and the second field is used to indicate at least one second resource block group.
  • the first indication information is used to indicate at least one first resource block group, and the first indication information includes a first field; the first indication information is used to indicate at least one second resource block group, and the first indication information includes a first field.
  • Two fields; the first indication information is used to indicate at least one first resource block group and at least one second resource block group, and the first indication information includes a first field and a second field.
  • the first field and/or the second field respectively indicate at least one first resource block group and/or at least one second resource block group by means of a bitmap
  • the bit length of the bitmap is N, which can also be understood.
  • the bitmap includes N bits, wherein each bit corresponds to a resource block group, and different values of each bit are used to indicate different states of a resource block group.
  • the value of N is the number of resource block groups in the scheduled bandwidth. For example, if a bit in the bitmap is set to 1, it means that the resource block group corresponding to this bit is the first resource block group; otherwise, if a certain bit in the bitmap is set to 1 A bit is set to 0, indicating that the resource block group corresponding to this bit is not the first resource block group.
  • bit in the bitmap is set to 1, it means that the resource block group corresponding to this bit is the second resource block group; on the contrary, if a bit in the bitmap is set to 0, it means that the resource block group corresponding to this bit is the second resource block group. Resource block group.
  • the first indication information is used to indicate one less first resource block group and/or at least one second resource block group
  • the first indication information may include a first field and/or a second field
  • the first field is used to indicate At least one first resource block group
  • the second field is used to indicate at least one second resource block group.
  • the first indication information is used to indicate at least one first resource block group, and the first indication information includes a first field
  • the first indication information is used to indicate at least one second resource block group
  • the first indication information includes a first field.
  • Two fields; the first indication information is used to indicate at least one first resource block group and at least one second resource block group, and the first indication information includes a first field and a second field.
  • the first field and the second field respectively indicate at least one first resource block group and at least one second resource block group by means of an index.
  • the first field length N1 is determined by the K1 states of the first resource block group
  • the second field length N2 is determined by the K2 states of the second resource block group
  • the length N of the first resource and the second field is determined by the first resource block.
  • the K states of the combination of the block group and the second resource block group may indicate one of the K states. How to determine the above K1, K2, and K states is the same as the method.
  • the first indication information may only indicate the first resource block group, or only indicate the second resource block group, or indicate the first resource block group and the second resource block group.
  • the terminal device can determine the first resource block group and the second resource block group according to the first indication information.
  • Both the first resource block group and the second resource block group are included in a third resource block group, and the third resource block group is a resource block group used for carrying downlink signals sent by the network device to the terminal device.
  • the first resource block group and the second resource block group are determined with respect to the network device.
  • the first resource block group may be a resource block group in which the number of strongly interfering DMRS ports in the third resource block group is greater than or equal to a fourth preset value.
  • the second resource block group may be a resource block group in which the number of strongly interfering DMRS ports in the third resource block group is less than or equal to the fifth preset value.
  • the resource block group when the number of its corresponding strongly interfering DMRS ports is greater than or equal to the fourth preset value, the resource block group is the first resource block group; When the number of the corresponding strong interfering DMRS ports is less than or equal to the fifth preset value, the resource block group is the second resource block group.
  • the fourth preset value is greater than or equal to the average number of DMRS ports detectable by the terminal device on each third resource block group, and the fifth preset value is less than or equal to the terminal device on each third resource block group. Average number of detectable DMRS ports.
  • the terminal device needs to increase the number of channel estimations in the first resource block group, or it can be said that the first resource block group is a resource block group for which the network device instructs the terminal device to increase the number of channel estimations.
  • the terminal device needs to reduce the number of channel estimations in the second resource block group, or it can be said that the second resource block group is a resource block group for which the network device instructs the terminal device to reduce the number of channel estimations.
  • the first indication information may be carried in the first downlink control information DCI.
  • the network device may also send indication information for indicating the third resource block group to the terminal device.
  • the indication information for indicating the third resource block group may be carried in the first DCI.
  • the network device may indicate the bearer to the terminal device through a frequency domain resource assignment (frequency domain resource assignment) field and a physical resource block (physical resource block, PRB) bundling size indicator (PRB bundling size indicator) field in the first DCI Resource block group for downlink signals to be sent.
  • the frequency domain resource allocation field in the DCI sent by the network device to the terminal device indicates a frequency domain resource used for carrying downlink signals, and the frequency domain resource includes one or more resource blocks RB. As shown in FIG.
  • the frequency domain resource includes 12 RBs, numbered 0 to 11. Further, the network device indicates the size of each resource block group in the third resource block group through the PRB bundle size field in the DCI. As shown in FIG. 4 , the network device indicates that each resource block group in the third resource block group includes 2 RBs. The six resource block groups are numbered resource block groups 0 to 5.
  • the network device may also send indication information for indicating the first DMRS port to the terminal device.
  • the indication information for indicating the first DMRS port may be carried in the first DCI.
  • the first DMRS port is a DMRS port associated with a downlink signal to be sent by the network device to the terminal device.
  • the network device may also send indication information for indicating the first time period to the terminal device.
  • the indication information for indicating the first time period may be carried in the first DCI.
  • the first time period is the time period during which the terminal device receives the downlink signal.
  • the first time period may be determined through a time domain resource allocation field in the first DCI.
  • the first DCI may also be used to instruct the terminal device to receive the downlink signal carried on the third resource block group within the first time period.
  • the terminal device After receiving the first DCI, the terminal device receives the downlink signal carried in the third resource block group within the first time period, and processes the downlink signal, and the processing may include detecting the downlink signal on the third resource block group. DMRS port.
  • the terminal device determines at least one first resource block group and at least one second resource block group according to the first indication information.
  • the first indication information is used to indicate at least one first resource block group
  • the terminal device determines resource block groups in the third resource block group other than the at least one first resource block group as at least one second resource block group .
  • the first indication information is used to indicate at least one second resource block group, and a resource block group other than the at least one second resource block group in the third resource block group is determined as the at least one first resource block group.
  • the first indication information is used to indicate at least one first resource block group and at least one second resource block group.
  • the terminal device determines, in the third resource block group, resource block groups other than the at least one first resource block group and the at least one second resource block group as at least one fourth resource block group.
  • the terminal device receives the DCI from the network device, and determines, according to the frequency domain resource allocation field, a frequency domain resource that bears the downlink signal to be sent by the network device to the terminal device, where the frequency domain resource includes one or more RBs. Then, the terminal device determines the third resource block group according to the frequency domain resource and the PRB bundle size indication field. Specifically, as shown in FIG. 4 , the terminal device may determine that the frequency domain resource bearing the downlink signal to be sent includes 12 RBs, and further, the frequency domain resource may be divided into 6 resource block groups, wherein each third resource block Group includes 2 RBs.
  • the terminal device After receiving the first indication information, the terminal device determines all the first resource block groups and all the second resource block groups in the third resource block group according to the first indication information. Specifically, the above three methods may be used.
  • the terminal device detects the DMRS port.
  • the number of times of detecting DMRS ports on each first resource block group in the at least one first resource block group is greater than or equal to a first preset value, and in each second resource block group in the at least one second resource block group The number of times the DMRS port is detected on the resource block group is less than the first preset value.
  • the number of times the terminal device performs channel estimation on the first resource block group is greater than or equal to the first preset value, and the number of times the terminal device performs channel estimation on the second resource block group is less than the first preset value.
  • the terminal device After receiving the first indication information, the terminal device will dynamically allocate channel estimation resources, where the channel estimation resources can be understood as computing resources used for channel estimation.
  • the dynamic allocation is specifically to reduce the number of channel estimations corresponding to the second resource block group, or it can also reduce the number of DMRS ports detected by the terminal device on the second resource block group; increase the channel estimation of the first resource block group. The number of times, or the number of times of increasing the DMRS ports detected on the first resource block group.
  • Fig. 5 shows a schematic block diagram of dynamic allocation of channel estimation resources by a terminal device of the present application.
  • the network device schedules a third resource block group for the terminal device to transmit downlink signals, and there are 6 resource block groups in the third resource block group, numbered as resource block groups 0 to 5 . It is assumed that the terminal device can perform channel estimation on 4 DMRS ports on each resource block group, and the terminal device performs channel estimation on DMRS ports 0, 1, 6, and 7 on each resource block group.
  • the terminal device receives the first indication information, and determines, according to the first indication information, that resource block group 0 is the first resource block group, and determines that the third resource block group 3 and 5 are the second resource block group, then the terminal device is in the first resource block group.
  • the number of detected DMRS ports is increased on the group (resource block group 0), and the number of detected DMRS ports on each second resource block group (resource block groups 3, 4, and 5) is decreased respectively.
  • the terminal device may detect DMRS ports 0 to 8 on resource block group 0, and the terminal device may detect only DMRS ports 0 and 1 on resource block groups 3, 4, and 5. It can be seen from the above that the number of DMRS ports detected by the terminal device on the first resource block group is greater than the number of DMRS ports detected on the second resource block group, that is, the number of times the terminal device performs channel estimation on the first resource block group is greater than The number of times the terminal device performs channel estimation on the second resource block group.
  • the network device indicates to the terminal device the first resource block group that suffers more interference and the second resource block group that suffers less interference.
  • the terminal equipment then dynamically allocates channel estimation resources according to the interference conditions on each resource block group.
  • the terminal equipment increases the number of times of DMRS ports detected on the first resource block group, that is, the number of times of channel estimation on the first resource block group, so that the ability of the terminal equipment to suppress or eliminate interference is more fully exerted.
  • the number of times of DMRS ports detected on the second resource block group is reduced, that is, the number of times of channel estimation on the second resource block group is reduced, and unnecessary computational overhead is reduced.
  • method 300 further includes:
  • the network device sends the second indication information to the terminal device, and correspondingly, the terminal device receives the second indication information.
  • the second indication information is used to indicate at least one first code division multiplexing CDM group, the at least one first CDM group corresponds to the at least one first resource block group, and the at least one first CDM group includes signals associated with interference signals DMRS port.
  • the second indication information may indicate the first CDM group by means of an index.
  • the network device will display the second indication information in the second indication information. indicates that the CDM group on all the first resource block groups is the first CDM group.
  • the third resource block group is divided into resource block groups 0 to 5, and each resource block group is composed of 2 RBs.
  • There are 12 DMRS ports on each resource block numbered DMRS ports 0 to 11.
  • the 12 DMRS ports are divided into 3 CDM groups, numbered CDM groups 0 to 2. It is assumed that the first indication information indicates that resource block groups 0 and 3 are the first resource block group.
  • the terminal device learns that on resource block group 0, CDM groups 0 and 1 are the first CDM group, and on resource block group 3, CDM groups 1 and 2 are the first CDM group. Then, when the second indication information indicates the first CDM group corresponding to the first resource block group, it specifically indicates that the first CDM groups on resource block groups 0 and 3 are CDM groups 1, 2, and 3.
  • the power or strength at which the terminal device receives the interference signal is greater than the second preset value, or the correlation between the DMRS port associated with the interference signal and the first DMRS port is greater than the third preset value.
  • the interference signal that satisfies the foregoing conditions is also referred to as a strong interference signal
  • the DMRS port associated with the interference signal that satisfies the foregoing condition is referred to as a strong interference DMRS port.
  • the second indication information may be carried in DCI. Further, the second indication information and the first indication information may be carried in the same DCI. That is, the second indication information and the first indication information may be carried in the first DCI.
  • the terminal device may further include the following solutions when detecting the DMRS port.
  • the terminal device detects the DMRS port on the at least one first resource block group according to the second indication information, including the following three possible situations:
  • At least one DMRS port and at least one first DMRS port in the at least one first CDM group are detected.
  • the terminal device preferentially detects one or more DMRS ports in the first CDM group that are associated with the interference signal and bearer network equipment according to the number of DMRS ports that can be detected on the first resource block group.
  • first DMRS port may or may not be in the first CDM group.
  • all DMRS ports and at least one first DMRS port in the at least one first CDM group are detected.
  • the terminal device preferentially detects all DMRS ports and the first DMRS port in the first CDM group according to the number of DMRS ports that can be detected on the first resource block group.
  • all the DMRS ports in the detected first CDM group include the DMRS port associated with the above-mentioned interference signal, and may also include the first DMRS port.
  • all DMRS ports, at least one first DMRS port, and at least one second DMRS port in the at least one first CDM group are detected.
  • the terminal device For the first resource block group, according to the number of DMRS ports that the terminal device can detect on the first resource block group, in addition to detecting all DMRS ports and the first DMRS port in the first CDM group, it can also detect one or more DMRS ports. a second DMRS port.
  • the at least one first DMRS port is a DMRS port associated with a downlink signal to be sent by the network device to the terminal device
  • the at least one second DMRS port is one of the DMRS ports corresponding to the at least one first resource block group. , one or more of the DMRS ports except all the DMRS ports in the first CDM group and all the ports in the at least one first DMRS port.
  • the interference signal is the above-mentioned strong interference signal. That is, the power or strength of the interference signal received by the terminal device is greater than the second preset value, or the correlation between the DMRS port associated with the interference signal and the first DMRS port is greater than the third preset value.
  • the terminal device can carry the channel coefficient of the DMRS port carrying the interference signal detected on the first resource block group and the first DMRS port associated with the downlink signal sent by the network device to the terminal device on the first resource block group.
  • the channel coefficient is used to process the downlink signal received by the terminal device on the first resource block group, such as interference suppression and demodulation.
  • the network device further indicates, for the first resource block group, the DMRS port that includes the correlation of the interference signal the first CDM group, the terminal device preferentially detects the DMRS ports in the first CDM group on the first resource block group.
  • the problem of insufficient detection of all DMRS ports associated with interference signals due to random selection of several DMRS ports for detection is reduced, so that the ability of terminal equipment to suppress interference is more fully exerted.
  • this solution effectively reduces signaling overhead compared to further enumerating all DMRS ports associated with interference signals on the first resource block.
  • method 300 further includes:
  • the network device sends third indication information to the terminal device, where the third indication information is used to indicate at least one third DMRS port, where the at least one third DMRS port corresponds to the at least one second resource block group and is associated with the interference signal DMRS port,
  • each resource block in the first resource block group has 12 DMRS ports, numbered DMRS ports 0 to 11.
  • the 12 DMRS ports are divided into 3 CDM groups, numbered CDM groups 0 to 2.
  • the CDM group 0 includes DMRS ports 0, 1, 6, and 7, the CDM group 1 includes DMRS ports 2, 3, 8, and 9, and the CDM group 2 includes DMRS ports 4, 5, 10, and 11.
  • the DMRS port associated with the downlink signal sent by the network device to the terminal device is DMRS port 0, and the strong interference DMRS ports are DMRS ports 1, 2, and 6. Since CDM group 0 includes strong interference DMRS ports 1 and 6, CDM group 1 includes If the DMRS port 2 is strongly interfered, the network device will indicate CDM groups 0 and 1 to the terminal device in the second indication information.
  • the above-mentioned "at least one third DMRS port” may be all or part of all DMRS ports in the second resource block group and all DMRS ports corresponding to the interference signal.
  • the third indication information indicates at least one corresponding third DMRS port for all the second resource block groups, and may also indicate at least one corresponding third DMRS port for each second resource block group. Examples of these two methods are given below.
  • the third resource block group includes 12 RBs, which are divided into 6 resource block groups, numbered as resource block groups 0 to 5, where resource block groups 3 and 4 are the second resource block group.
  • DMRS port 0 on one RB and DMRS port 3 on another RB in resource block group 3 are DMRS ports associated with interfering signals.
  • DMRS port 2 on one RB and DMRS port 3 on another RB in resource block group 4 are DMRS ports associated with interfering signals.
  • the third indication information indicates that the DMRS ports 0, 2, and 3 corresponding to the resource block groups 3 and 4 are the third DMRS ports, or the third indication information may indicate the DMRS ports corresponding to the resource block groups 3 and 4. Some of the DMRS ports in 0, 2, and 3 are the third DMRS ports.
  • the third indication information indicates that the DMRS ports 0 and 3 corresponding to the resource block group 3 are the third DMRS ports, and indicates that the DMRS ports 2 and 3 corresponding to the resource block 4 are the first DMRS ports, or the third DMRS ports.
  • the indication information may indicate that some DMRS ports in DMRS ports 0 and 3 corresponding to resource block group 3 and some DMRS ports in DMRS ports 2 and 3 corresponding to resource block group 4 are the third DMRS ports.
  • the power or strength at which the terminal device receives the interference signal is greater than the second preset value, or the correlation between the DMRS port associated with the interference signal and the first DMRS port is greater than the third preset value.
  • the interference signal that satisfies the foregoing conditions is also referred to as a strong interference signal
  • the DMRS port associated with the interference signal that satisfies the foregoing condition is referred to as a strong interference DMRS port.
  • the third indication information may be carried in DCI. Further, the third indication information and the first indication information may be carried in the same DCI. That is, the third indication information and the first indication information may be carried in the first DCI.
  • the terminal device may further include the following solutions when detecting the DMRS port.
  • the terminal device detects the DMRS port on the at least one second resource block group according to the third indication information, including the following two possible situations:
  • At least one DMRS port and at least one first DMRS port in the at least one third DMRS port are detected.
  • the terminal device preferentially detects the third DMRS port indicated by the network device according to the number of DMRS ports it can detect on the second resource block group, and the third DMRS port that bears the downlink signal to be sent by the network device to the terminal device.
  • a DMRS port For the second resource block group, the terminal device preferentially detects the third DMRS port indicated by the network device according to the number of DMRS ports it can detect on the second resource block group, and the third DMRS port that bears the downlink signal to be sent by the network device to the terminal device.
  • all DMRS ports, at least one first DMRS port and at least one fourth DMRS port in the at least one third DMRS port mentioned above are detected.
  • a fourth DMRS port can also be detected.
  • the at least one fourth DMRS port is one or more of the DMRS ports other than the at least one third DMRS port among the DMRS ports corresponding to the at least one second resource block group.
  • the terminal device may, according to the channel coefficient of the third DMRS port and the channel coefficient of the DMRS port associated with the downlink signal sent by the network device carried on the second resource block group to the terminal device, to the terminal device in the second resource block group.
  • the received downlink signal is processed, such as interference suppression, demodulation, decoding and other processing.
  • the network device further indicates the third DMRS port for the second resource block group, and the terminal device preferentially detects the DMRS port.
  • the third DMRS port For the resource block group with less interference, the situation that the terminal device performs channel estimation on the DMRS port without interference is reduced, and the computational overhead for detecting the DMRS port or performing the channel estimation on the DMRS port is effectively saved.
  • FIG. 6 shows a schematic block diagram of still another example of dynamic allocation of channel estimation resources by the terminal device of the present application.
  • the terminal device receives downlink signals on the third resource block groups 0 to 5, and the DMRS port associated with the downlink signal is DMRS port 0.
  • the network equipment is configured with 12 DMRS ports for terminal equipment, numbered DMRS ports 0 to 11, divided into 3 CDM groups, numbered CDM group 0 to 2, CDM group 0 includes DMRS ports 0, 1, 6, 7, CDM Group 1 includes DMRS ports 2, 3, 8, 9, and CDM group 2 includes DMRS ports 4, 5, 10, 11.
  • the first indication information indicates that the first resource block group is resource block group 0, and the second resource block group is resource block groups 3, 4, and 5.
  • the second indication information indicates CDM groups 0 and 1 on the first resource block group, and the terminal device preferentially detects the DMRS ports included in CDM groups 0 and 1, that is, DMRS ports 0 to 3 and DMRS ports 6 to 9.
  • the terminal device can detect other DMRSs on the first resource block group port, such as DMRS port 4, or other ports.
  • the terminal device also needs to detect the DMRS port associated with its downlink signal. Since the DMRS port 0 is already included in the CDM group 0, the channel coefficient of the DMRS port 0 can be determined.
  • the third indication information indicates DMRS port 5, and the terminal device detects DMRS port 5 on the second resource block group.
  • the terminal device also needs to detect the DMRS port associated with its downlink signal, that is, detect the DMRS port 0.
  • the network device may only send the first indication information, or the network device may send the first indication information and the second indication information, or the network device may send the first indication information and the third indication information, or the network device may send the first indication information indication information, second indication information and third indication information.
  • the terminal device performs corresponding processing according to the received indication information.
  • the solutions in the embodiments of the present application including the first indication information, the second indication information, and the third indication information are only examples, and are not limited in the present application.
  • method 300 further includes:
  • the foregoing terminal device detecting the DMRS port may further include: the terminal device detecting the DMRS port on the fourth resource block group.
  • the number of times that the terminal device detects DMRS ports on each fourth resource block group in the at least one fourth resource block group is less than or equal to each first resource in the at least one first resource block group
  • the number of DMRS ports detected on the block group is greater than the number of DMRS ports detected on each of the second resource block groups in the at least one second resource block group.
  • the terminal device determines that the fourth resource block group is resource block groups 1 and 2, and the terminal device can keep the DMRS detected on the fourth resource block group
  • the number of ports does not change, that is to say, the number of channel estimations on the fourth resource block group remains unchanged.
  • the terminal can detect DMRS port 0 in the fourth resource block group (resource block groups 1 and 2). , 1, 6, 7.
  • the terminal device may also reduce or increase the number of times of detecting DMRS ports on the fourth resource block group, that is, reduce or increase the number of channel estimation times on the fourth resource block group, as long as the number of times of detecting DMRS ports or channel estimation after the reduction or increase The number of times can satisfy the above conditions. Further, the terminal device may also determine the channel coefficients of the detected DMRS ports of the fourth resource block group. That is, the terminal device performs channel estimation on the detected DMRS port of the fourth resource block to obtain a channel coefficient. Further, the terminal device can, according to the channel coefficient and the channel coefficient of the DMRS port associated with the downlink signal sent by the network device carried on the fourth resource block group to the terminal device, to the terminal device on the fourth resource block group. The downlink signal is processed, such as interference suppression and demodulation.
  • the method 300 may further include the following steps.
  • Step 1 the terminal device sends fourth indication information to the network device, where the fourth indication information is used to instruct the terminal device to detect the maximum number of DMRS ports on one or more resource blocks.
  • the fourth indication information is used to indicate the maximum number of times the terminal device detects the DMRS port on one or more resource blocks.
  • step 1 can also be understood as the terminal device sending the maximum number of times the terminal device detects DMRS ports on one or more resource block groups to the network device.
  • the terminal device determines the maximum number of times N of detecting the DMRS port. It should be understood that the maximum number of times is limited by resources such as hardware and chips allocated by the terminal device for detecting the DMRS port, and may be a fixed value predetermined by the terminal device or a dynamic value. The dynamic value changes dynamically as the resource allocated by the terminal device for detecting the DMRS port changes.
  • the terminal device can report its ability to detect the DMRS port to the network device in various ways. That is to say, the terminal device can report the maximum number of times it detects the DMRS port to the network device in various ways.
  • Manner 1 The terminal device sends to the network device the maximum number of times the terminal device detects the DMRS port on multiple resource blocks or multiple resource block groups.
  • the terminal device sends fourth indication information to the network device, where the fourth indication information includes one or more fields, where the one or more fields are used to indicate the maximum number of times the terminal device detects the DMRS port.
  • the fourth indication information includes a field, and the field is used to indicate the maximum number N of times the terminal device detects the DMRS port.
  • the fourth indication information includes three fields, a first field, a second field and a third field. The three fields are used to indicate the maximum number of times N of detecting the DMRS port of the terminal device.
  • N N1 ⁇ N2 ⁇ N3, where the first field is used to indicate the number N1 of DMRS ports detectable by the terminal device on each resource block, the second field is used to indicate the number N2 of resource blocks or resource block groups, The three fields are used to indicate the number N3 of receiving antennas of the terminal device.
  • the terminal device sends to the network device the maximum number of times the terminal device detects the DMRS port on one resource block or one resource block group.
  • the terminal device sends fourth indication information to the network device, where the fourth indication information includes one or more fields, where the one or more fields are used to indicate that the terminal device is on each resource block or resource block group The maximum number of times to detect a DMRS port.
  • the preset value of the number of blocks, specifically, N4 may be an initial bandwidth or a bandwidth part (bandwidth part, BWP) including the number of resource blocks or resource block groups.
  • the terminal device may also report its capability of detecting the DMRS port to the network device in other manners.
  • step 2 the network device determines the first preset value according to the fourth indication information.
  • the network device determines that the number of strongly interfering DMRS ports on one or more resource block groups is greater than the average number of terminal equipment in each resource block group in the third resource block group If the number of detectable DMRS ports is determined, the network device determines, on average, the number of DMRS ports detectable by the terminal device on each resource block group in the third resource block group as the first preset value. Subsequently, the network device may not send the first preset value to the terminal device, or may send the first preset value to the terminal device.
  • the network device determines that the number of strongly interfering DMRS ports on all resource block groups in the third resource block group is less than or equal to the average number of available terminal equipment on each resource block group in the third resource block group.
  • the network device will re-determine a threshold, and determine the threshold as the first preset value.
  • the threshold is less than the average number of DMRS ports that the terminal device can detect on each resource block group in the third resource block group, and is greater than the number of DMRS ports associated with downlink signals to be sent by the network device to the terminal device.
  • the network device Before determining the first preset value, the network device needs to determine the average number of times that the terminal device can detect the DMRS port on each resource block group according to the capability information for detecting the DMRS port reported by the terminal device, that is, to determine when the terminal device detects the DMRS port. , the average number of detectables on each resource block group.
  • the network device determines, according to the fourth indication information, the average number of times N RBG that the terminal device can detect the DMRS port on each resource block group when detecting the DMRS port on the third resource block group.
  • the third resource block group is a resource block group that bears the downlink signal to be sent by the network device to the terminal device.
  • the network device may first determine the average number of DMRS ports detectable on each resource block group of the terminal device in the third resource block group according to N RBG .
  • the network device may determine the average detectable DMRS ports on each resource block group when the terminal device detects the DMRS ports on the third resource block group according to the predetermined number of receiving antennas N3′ and N RBG quantity which is
  • the network device may further determine the number of strongly interfered DMRS ports and the The size relationship is determined to determine the first preset value.
  • the network device determines that in the third resource block group, the number of strongly interfering DMRS ports on one or more resource block groups is greater than , the NRBG may be determined as the first preset value.
  • the first threshold is determined as the first preset value.
  • the first threshold is less than N RBG and greater than the number of detections required by the terminal device to detect all the first DMRS ports on one resource block group, where the first DMRS port is a downlink signal to be sent by the network device to the terminal device Associated DMRS port.
  • the network device may predetermine the number of receiving antennas of the terminal device.
  • the strong interference DMRS port is the DMRS port associated with the strong interference signal
  • the strong interference signal is the interference signal whose power or strength received by the terminal device is greater than the second preset value.
  • the correlation between the strongly interfering DMRS port and the first DMRS port is greater than a third preset value
  • the first DMRS port is a DMRS port associated with a downlink signal to be sent by the network device to the terminal device.
  • the second preset value here may be determined according to the transmission power of the network device, or a certain value predetermined for the network device.
  • the third preset value here may be a certain value predetermined for the network device.
  • the second preset value and the third preset value may also be determined in other manners, which are not limited in this application.
  • step 3 the terminal device determines a first preset value, and the first preset value may be predefined or indicated by the network device.
  • the first preset value may be the terminal device according to the pre-configured itself in one or more. It is determined by the maximum number of times of detecting DMRS ports on multiple resource blocks and the number of resource block groups included in the third resource block group, that is, the first preset value may be predefined; when the terminal device receives an instruction from the network device When the first preset value is , the terminal device determines the first preset value according to the instruction of the network device.
  • the terminal device determines the first preset value according to the instruction of the network device.
  • the first preset value can be processed according to the first preset value.
  • the value detects the DMRS port on the third resource block group that carries the downlink signal, and does not need to determine the first preset value before each time the DMRS port is detected.
  • FIG. 7 is a schematic block diagram of a communication apparatus for processing downlink signals provided by an embodiment of the present application.
  • the communication device 10 may include a transceiver module 11 and a processing module 12 .
  • the communication apparatus 10 may correspond to the terminal device in the above method embodiment.
  • it may be user equipment, or a chip configured in the user equipment.
  • the communication apparatus 10 may correspond to the terminal device in the method 300 according to the embodiment of the present application, and the communication apparatus 10 may include a module for executing the method performed by the terminal device in the method 300 in FIG. 3 . Moreover, each unit in the communication device 10 and the above-mentioned other operations and/or functions are respectively for realizing the corresponding flow of the method 300 in FIG. 3 .
  • the transceiver module 11 can be used to perform step S302 in the method 300
  • the processing module 12 can be used to perform steps S303 and S304 in the method 300 .
  • the transceiver module 11 is used to receive first indication information from the network device; the processing module 12 is used to determine at least one first resource block group and at least one second resource block group according to the first indication information, and the first An indication information is used to indicate the at least one first resource block group and/or the at least one second resource block group; the processing module 12 is further configured to detect a DMRS port, wherein the at least one first resource block group The number of times the DMRS port is detected on each first resource block group is greater than or equal to the first preset value, and the number of times the DMRS port is detected on each second resource block group in the at least one second resource block group is less than the first default value.
  • the transceiver module 11 is further configured to receive second indication information from the network device, where the second indication information is used to indicate at least one first code division multiplexing CDM group, and the at least one first CDM group is related to the at least one first CDM group. corresponding to the first resource block group, and the at least one first CDM group includes a DMRS port associated with the interference signal; the processing module 12 is specifically further configured to: detect the at least one first resource block group on the at least one first resource block group at least one DMRS port and at least one first DMRS port in the CDM group; or, detecting all DMRS ports and at least one first DMRS port in the at least one first CDM group on the at least one first resource block group; or , detect all DMRS ports, at least one first DMRS port, and at least one second DMRS port in the at least one first CDM group on the at least one first resource block group; wherein, the at least one first DMRS port is The DMRS port associated with the downlink signal to be
  • the transceiver module 11 is further configured to receive third indication information from the network device, where the third indication information is used to indicate at least one third DMRS port, and the at least one third DMRS port is associated with the at least one second resource block group
  • the processing module 12 is specifically further configured to: detect at least one DMRS port and at least one first DMRS port in the at least one third DMRS port on the at least one second resource block group port; or, detecting all DMRS ports, at least one first DMRS port and at least one fourth DMRS port in the at least one third DMRS port on the at least one second resource block group; wherein, the at least one first DMRS port
  • the port is a DMRS port associated with a downlink signal to be sent by the network device to the terminal device
  • the at least one fourth DMRS port is a DMRS port corresponding to the at least one second resource block group, except for the at least one third DMRS port one
  • the power or strength of the interference signal received by the terminal device is greater than a second preset value, or the correlation between the DMRS port associated with the interference signal and the first DMRS port is greater than a third preset value.
  • the processing module 12 is further configured to: determine the first preset value, where the first preset value is predefined, or the first preset value is indicated by the network device.
  • the transceiver module 11 is further configured to: send fourth indication information to the network device, where the fourth indication information is used to indicate the maximum number of times the terminal device detects the DMRS port on one or more resource blocks.
  • the processing module 12 is further configured to: the first indication information is used to indicate the at least one first resource block group, and to determine the resource block group other than the at least one first resource block group in the third resource block group as the at least one second resource block group; or, the first indication information is used to indicate the at least one second resource block group, and determine a resource block group other than the at least one second resource block group in the third resource block group is the at least one first resource block group; wherein, the third resource block group is a resource block group that carries the downlink signal to be sent by the network device to the terminal device.
  • the processing module 12 is further configured to: determine a resource block group other than the at least one first resource block group and the at least one second resource block group in the third resource block group as at least one fourth resource block group.
  • the processing module 12 is further configured to: the number of times of the DMRS ports detected on each fourth resource block group in the at least one fourth resource block group is less than or equal to that in each of the at least one first resource block group The number of DMRS ports detected on the first resource block group is greater than the number of DMRS ports detected on each of the second resource block groups in the at least one second resource block group.
  • FIG. 8 is a schematic block diagram of a communication apparatus for processing downlink signals provided by an embodiment of the present application.
  • the communication device 20 may include a transceiver module 21 and a processing module 22 .
  • the communication apparatus 20 may correspond to the network device in the above method embodiment.
  • it may be the RAN, or a chip configured in the RAN.
  • the communication apparatus 20 may correspond to the network device in the method 300 according to the embodiment of the present application, and the communication apparatus 20 may include a module for executing the method performed by the network device in the method 300 in FIG. 3 . Moreover, each unit in the communication device 20 and the above-mentioned other operations and/or functions are respectively for realizing the corresponding flow of the method 300 in FIG. 3 .
  • the transceiver module 21 can be used to execute step S302 of the method 300
  • the processing module 22 can be used to execute the step S301 of the method 300 .
  • the processing module 22 is used to generate first indication information; the transceiver module 21 is used to send the first indication information to the terminal device, where the first indication information is used to indicate at least one first resource block group and/or at least one A second resource block group, the first indication information is used to indicate that the number of times the terminal device detects the DMRS port on each of the first resource block group is greater than or equal to the first preset value, in each of the second resource block The number of times the DMRS port is detected on the group is less than the first preset value.
  • the transceiver module 21 is further configured to: send second indication information to the terminal device, where the second indication information is used to indicate at least one first code division multiplexing CDM group, the at least one first CDM group and the at least one first CDM group Resource block groups correspond, and the at least one first CDM group includes DMRS ports associated with interference signals.
  • the transceiver module 21 is further configured to: send third indication information to the terminal device, where the third indication information is used to indicate at least one third DMRS port, and the at least one third DMRS port is associated with the at least one second resource block group The DMRS port that corresponds to and is associated with the interfering signal.
  • the transceiver module 21 is further configured to receive fourth indication information from the terminal device, where the fourth indication information is used to indicate the maximum number of times the terminal device detects the DMRS port on one or more resource blocks; the processing module 22 is further for determining the first preset value according to the fourth indication information.
  • the transceiver module 21 is further configured to: send the first preset value to the terminal device.
  • FIG. 9 is a schematic diagram of a communication apparatus 30 for processing downlink signals according to an embodiment of the present application.
  • the apparatus 30 may be a terminal device, including various handheld devices with wireless communication functions, vehicle-mounted devices, etc.
  • the apparatus 30 may include a processor 31 (ie, an example of a processing module) and a memory 32 .
  • the memory 32 is used for storing instructions
  • the processor 31 is used for executing the instructions stored in the memory 32, so that the apparatus 30 implements the steps performed by the terminal device in the method corresponding to FIG. 3 .
  • the device 30 may further include an input port 33 (ie, an example of a transceiver module) and an output port 34 (ie, another example of a transceiver module).
  • the processor 31, the memory 32, the input port 33 and the output port 34 can communicate with each other through an internal connection path to transmit control and/or data signals.
  • the memory 32 is used to store a computer program, and the processor 31 can be used to call and run the computer program from the memory 32 to control the input port 33 to receive signals, control the output port 34 to send signals, and complete the process of the terminal device in the above method. step.
  • the memory 32 may be integrated in the processor 31 or may be provided separately from the processor 31 .
  • the input port 33 is a receiver
  • the output port 34 is a transmitter.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the input port 33 is an input interface
  • the output port 34 is an output interface
  • the functions of the input port 33 and the output port 34 can be considered to be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • the processor 31 can be considered to be implemented by a dedicated processing chip, a processing circuit, a processor or a general-purpose chip.
  • a general-purpose computer may be used to implement the communication device provided by the embodiments of the present application.
  • the program codes that will implement the functions of the processor 31 , the input port 33 and the output port 34 are stored in the memory 32 , and the general-purpose processor implements the functions of the processor 31 , the input port 33 and the output port 34 by executing the codes in the memory 32 .
  • each module or unit in the communication apparatus 30 may be used to perform each action or process performed by the device (eg, terminal device) for processing downlink signals in the above method.
  • FIG. 10 is a schematic diagram of a communication apparatus 40 for processing downlink signals according to an embodiment of the present application.
  • the communication apparatus 40 may be a network device, including a network element having an access function for terminal equipment, such as RAN et al.
  • the communication device 40 may include a processor 41 (ie, an example of a processing module) and a memory 42 .
  • the memory 42 is used for storing instructions
  • the processor 41 is used for executing the instructions stored in the memory 42, so that the apparatus 40 implements the steps performed by the network device in the method corresponding to FIG. 3 .
  • the communication device 40 may further include an input port 43 (ie, an example of a transceiver module) and an output port 44 (ie, another example of a transceiver module).
  • the processor 41, the memory 42, the input port 43 and the output port 44 can communicate with each other through an internal connection path to transmit control and/or data signals.
  • the memory 42 is used to store a computer program, and the processor 41 can be used to call and run the computer program from the memory 42 to control the input port 43 to receive signals, control the output port 44 to send signals, and complete the network device in the above method. step.
  • the memory 42 may be integrated in the processor 41 or may be provided separately from the processor 41 .
  • the input port 43 is a receiver
  • the output port 44 is a transmitter.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the input port 43 is an input interface
  • the output port 44 is an output interface
  • the functions of the input port 43 and the output port 44 can be considered to be realized by a transceiver circuit or a dedicated chip for transceiver.
  • the processor 41 can be considered to be implemented by a dedicated processing chip, a processing circuit, a processor or a general-purpose chip.
  • a general-purpose computer may be used to implement the communication device provided by the embodiments of the present application.
  • the program codes that will implement the functions of the processor 41 , the input port 43 and the output port 44 are stored in the memory 42 , and the general-purpose processor implements the functions of the processor 41 , the input port 43 and the output port 44 by executing the codes in the memory 42 .
  • the modules or units in the communication apparatus 40 may be used to perform actions or processing procedures performed by the device (ie, network device) for sending downlink signals in the above method.
  • the processor may be a central processing unit (CPU, central processing unit), and the processor may also be other general-purpose processors, digital signal processors (DSP, digital signal processors), dedicated integrated Circuit (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processors
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable read-only memory (EPROM). Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous DRAM
  • SDRAM Double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • Embodiments of the present application further provide a computer-readable storage medium, on which computer instructions for implementing the method executed by the terminal device or the method executed by the network device in the foregoing method embodiments are stored.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the terminal device or the method executed by the network device in the above method embodiments.
  • Embodiments of the present application further provide a computer program product including instructions, which, when executed by a computer, cause the computer to implement the method executed by the terminal device or the method executed by the network device in the above method embodiments.
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server or data center by wire (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that contains one or more sets of available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a ROM, a RAM, a magnetic disk, or an optical disk and other mediums that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种处理下行信号的方法及装置,该方法包括:终端设备接收来自网络设备的第一指示信息;根据该第一指示信息确定至少一个第一资源块组和至少一个第二资源块组,该第一指示信息用于指示该至少一个第一资源块组和/或该至少一个第二资源块组;检测DMRS端口,其中,在该至少一个第一资源块组中的每个第一资源块组上检测DMRS端口的次数大于或等于第一预设值,在该至少一个第二资源块组中的每个第二资源块组上检测DMRS端口的次数小于该第一预设值。通过增加该第一资源块组上检测DMRS端口的次数,充分发挥了终端设备干扰抑制的能力;减少该第二资源块组上检测DMRS端口的次数,减少了不必要的计算开销。

Description

处理下行信号的方法及装置 技术领域
本申请涉及通信领域,并且更具体地,涉及处理下行信号的方法及装置。
背景技术
目前,在无线通信系统中,考虑到不同天线端口到终端设备的信道系数不尽相同,为了接收端能够获取多个空间层上传输的信息,通过为每个天线端口配置不同的解调参考信号(demodulation reference signal,DMRS),以实现对每个天线端口与终端设备之间的信道状态都进行估计,获得每个天线端口与终端之间的信道系数。不同天线端口对应的DMRS可采用时分、频分及码分等方式进行复用。
由于终端设备信道估计能力存在复杂度上限,即终端设备检测DMRS端口的次数受到硬件或芯片的性能约束,终端设备可能无法检测所有调度带宽或者调度子带宽对应的全部DMRS端口,此时,终端设备随机选择若干个DMRS端口进行检测,并根据检测的信道结果进行干扰抑制,被检测的若干个DMRS端口中可能不是强干扰的DMRS端口,或者,被检测的若干个DMRS端口可能包含了无干扰的DMRS端口,这会造成信道估计的性能下降,影响终端设备的接收信息的准确性。
发明内容
本申请提供一种处理下行信号的方法,在终端设备接收的下行信号受到干扰时,终端设备根据各个资源块组上所受干扰的情况对信道估计资源进行动态分配,使得终端设备抑制或消除干扰的能力发挥得更加充分,同时减少了不必要的计算开销。
第一方面,提供了一种处理下行信号的方法,该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或电路执行,以下以该方法由终端设备为例进行描述。包括:终端设备接收来自网络设备的第一指示信息;根据该第一指示信息确定至少一个第一资源块组和至少一个第二资源块组,该第一指示信息用于指示该至少一个第一资源块组和/或该至少一个第二资源块组;检测DMRS端口,其中,在该至少一个第一资源块组中的每个第一资源块组上检测DMRS端口的次数大于或等于第一预设值,在该至少一个第二资源块组中的每个第二资源块组上检测DMRS端口的次数小于该第一预设值。
应理解,关于检测DMRS端口,终端设备可以根据DMRS端口的索引确定该DMRS端口对应的DMRS的时域位置和频域位置,在该时域位置和频域位置对应的时频资源上接收DMRS信号,并对该DMRS信号进行检测,以确定该DMRS端口关联的信号所对应的信道的信道系数。因此,检测DMRS端口也可以理解为确定该DMRS端口对应的信道系数。
上述技术方案中,网络设备向终端设备指示出受到干扰较多的资源块组和受到干扰较少的资源块组。终端设备再根据各个资源块组上所受干扰的情况对信道估计资源进行动态 分配。终端设备增加了受干扰较多的资源块组上检测的DMRS端口的次数,充分发挥抑制或消除干扰的能力。终端设备减少受干扰较少的资源块组上检测的DMRS端口的次数,减少了不必要的计算开销。
在一些可能的实现方式中,终端设备检测DMRS端口时,可以减少第二资源块组对应的信道估计次数,或者也可以是减小终端设备在第二资源块组上检测的DMRS端口的次数;增加第一资源块组的信道估计次数,或者也可以是增加在第一资源块组上检测的DMRS端口的次数。
应理解,第一指示信息可能仅指示第一资源块组,或者仅指示第二资源块组,或者指示第一资源块组和第二资源块组。对于这三种情况,终端设备均能根据第一指示信息确定出第一资源块组和第二资源块组。第一资源块组和第二资源块组都是包括在第三资源块组中的,第三资源块组是用于承载网络设备向终端设备发送的下行信号的资源块组。
结合第一方面,在一些可能的实现方式中,终端设备接收来自网络设备的第二指示信息,该第二指示信息用于指示至少一个第一码分复用CDM组,该至少一个第一CDM组为与该至少一个第一资源块组对应,且包含干扰信号关联的DMRS端口的CDM组,该检测DMRS端口包括:在该至少一个第一资源块组上检测该至少一个第一CDM组中的至少一个DMRS端口和至少一个第一DMRS端口;或者,在该至少一个第一资源块组上检测该至少一个第一CDM组中的所有DMRS端口和至少一个第一DMRS端口;或者,在该至少一个第一资源块组上检测该至少一个第一CDM组中的所有DMRS端口,至少一个第一DMRS端口,以及至少一个第二DMRS端口;其中,该至少一个第一DMRS端口为该网络设备向终端设备待发送的下行信号关联的DMRS端口,该至少一个第二DMRS端口为该至少一个第一资源块组对应的DMRS端口中,除该第一CDM组中的所有DMRS端口和该至少一个第一DMRS端口中的所有端口以外的DMRS端口中的一个或者多个。
在一些可能的实现方式中,该第一DMRS端口在该第一CDM组中,或者,该第一DMRS端口不在该第一CDM组中。
在一些可能的实现方式中,检测的第一CDM组中的所有DMRS端口中,包括与上述干扰信号关联的DMRS端口,也可能包括第一DMRS端口。
在一些可能的实现方式中,针对第一资源块组,终端设备根据自身在第一资源块组上能够检测的DMRS端口的次数,除了检测第一CDM组中的所有DMRS端口和第一DMRS端口外,还可以检测一个或多个第二DMRS端口。
上述技术方案中,终端设备增加在受干扰较多的资源块组上检测的DMRS端口的次数,同时,终端设备优先检测第一资源块组上的第一CDM组中的DMRS端口。减少了因随机选择若干个DMRS端口进行检测而造成不足以检测所有的与干扰信号关联的DMRS端口的问题,充分发挥抑制干扰的能力。
结合第一方面,在一些可能的实现方式中,接收来自网络设备的第三指示信息,该第三指示信息用于指示至少一个第三DMRS端口,该至少一个第三DMRS端口为与该至少一个第二资源块组对应,且与干扰信号关联的DMRS端口,该检测DMRS端口包括:在该至少一个第二资源块组上检测该至少一个第三DMRS端口中的至少一个DMRS端口和至少一个第一DMRS端口;或者,在该至少一个第二资源块组上检测该至少一个第三DMRS端口中的全部DMRS端口、至少一个第一DMRS端口和至少一个第四DMRS端口; 其中,该至少一个第一DMRS端口为该网络设备向该终端设备待发送的下行信号关联的DMRS端口,该至少一个第四DMRS端口为该至少一个第二资源块组对应的DMRS端口中,除该至少一个第三DMRS端口以外的DMRS端口中的一个或者多个。
在一些可能的实现方式中,针对第二资源块组,终端设备根据自身在第二资源块组上能够检测的DMRS端口的次数,优先检测网络设备指示的第三DMRS端口,以及承载网络设备向终端设备待发送下行信号关联的第一DMRS端口。
在一些可能的实现方式中,针对第二资源块组,终端设备根据自身在第二资源块组上能够检测的DMRS端口的次数,除了检测网络设备指示的第三DMRS端口,以及承载网络设备向终端设备待发送下行信号的第一DMRS端口之外,还可以检测第四DMRS端口。该至少一个第四DMRS端口为该至少一个第二资源块组对应的DMRS端口中,除该至少一个第三DMRS端口以外的DMRS端口中的一个或者多个。
上述技术方案中,终端设备减少在受干扰较少的资源块组上检测的DMRS端口的次数,同时,终端设备优先检测第三DMRS端口。针对受到干扰较少的资源块组,上述方案减少了终端设备对无干扰的DMRS端口进行信道估计的情况,有效节省了用于检测DMRS端口或者对DMRS端口进行信道估计的计算开销。
结合第一方面,在一些可能的实现方式中,该终端设备接收该干扰信号的功率或者强度大于第二预设值,或者,该干扰信号关联的DMRS端口与该第一DMRS端口的相关性大于第三预设值。
结合第一方面,在一些可能的实现方式中,确定该第一预设值,该第一预设值为预定义的,或者,该第一预设值由该网络设备指示。
结合第一方面,在一些可能的实现方式中,在确定该第一预设值之前,该方法还包括:向该网络设备发送第四指示信息,该第四指示信息用于指示该终端设备在一个或多个资源块上检测DMRS端口的最大次数。
结合第一方面,在一些可能的实现方式中,该根据该第一指示信息确定至少一个第一资源块组和至少一个第二资源块组,包括:该第一指示信息用于指示该至少一个第一资源块组,将第三资源块组中除该至少一个第一资源块组以外的资源块组确定为该至少一个第二资源块组;或者,该第一指示信息用于指示该至少一个第二资源块组,将该第三资源块组中除该至少一个第二资源块组以外的资源块组确定为该至少一个第一资源块组;其中,该第三资源块组为承载该网络设备向终端设备待发送下行信号的资源块组。
结合第一方面,在一些可能的实现方式中,该第一指示信息用于指示该至少一个第一资源块组和该至少一个第二资源块组,该方法还包括:将该第三资源块组中除该至少一个第一资源块组和该至少一个第二资源块组以外的资源块组确定为至少一个第四资源块组。
结合第一方面,在一些可能的实现方式中,该检测DMRS端口,还包括:在该至少一个第四资源块组中的每个第四资源块组上检测的DMRS端口的次数小于或等于在该至少一个第一资源块组中的每个该第一资源块组上检测的DMRS端口的次数,且大于在该至少一个第二资源块组中的每个该第二资源块组上检测的DMRS端口的次数。
第二方面,提供了一种处理下行信号的方法,其特征在于,包括:生成第一指示信息;向终端设备发送该第一指示信息,该第一指示信息用于指示至少一个第一资源块组和/或至少一个第二资源块组,该第一指示信息用于指示终端设备在每个该第一资源块组上检测 DMRS端口的次数大于或等于该第一预设值,在每个该第二资源块组上检测DMRS端口的次数小于该第一预设值。
上述技术方案中,网络设备向终端设备指示出受到干扰较多的资源块组和受到干扰较少的资源块组。终端设备再根据各个资源块组上所受干扰的情况对信道估计资源进行动态分配。终端设备增加了受干扰较多的资源块组上检测的DMRS端口的次数,充分发挥抑制或消除干扰的能力。终端设备减少受干扰较少的资源块组上检测的DMRS端口的次数,减少了不必要的计算开销。
在一些可能的实现方式中,第一指示信息用于指示该第一资源块组为第三资源块组中强干扰DMRS端口数量大于或等于第四预设值的资源块组,该第二资源块组可以为第三资源块组中强干扰DMRS端口数量小于或等于第五预设值的资源块组。其中,第四预设值大于该终端设备在每个第三资源块组上平均可检测的DMRS端口数量,第五预设值小于该终端设备在每个第三资源块组上平均可检测的DMRS端口数量。
结合第二方面,在一些可能的实现方式中,向该终端设备发送第二指示信息,该第二指示信息用于指示至少一个第一码分复用CDM组,该至少一个第一CDM组为与该至少一个第一资源块组对应,且包含干扰信号关联的DMRS端口的CDM组。
结合第二方面,在一些可能的实现方式中,向该终端设备发送第三指示信息,该第三指示信息用于指示至少一个第三DMRS端口,该至少一个第三DMRS端口与所述至少一个第二资源块组对应,且包括与干扰信号对应的DMRS端口。
结合第一方面,在一些可能的实现方式中,该终端设备接收该干扰信号的功率或者强度大于第二预设值,或者,该干扰信号关联的DMRS端口与该第一DMRS端口的相关性大于第三预设值。
结合第二方面,在一些可能的实现方式中,在该向终端设备发送第一指示信息之前,该方法还包括:接收来自该终端设备的第四指示信息,该第四指示信息用于指示该终端设备在一个或多个资源块上检测DMRS端口的最大次数;根据该第四指示信息确定该第一预设值。
在一些可能的实现方式中,在第三资源块组中,当网络设备确定有一个或多个资源块组上的强干扰DMRS端口的数量大于终端设备在第三资源块组中的每一个资源块组上平均可检测DMRS端口的数量,则网络设备将终端设备在第三资源块组中的每一个资源块组上平均可检测DMRS端口的数量确定为第一预设值。随后,网络设备可以不向终端设备发送第一预设值,也可以向终端设备发送第一预设值。
在一些可能的实现方式中,当网络设备确定第三资源块组中的所有资源块组上的强干扰DMRS端口的数量都小于或等于终端设备在第三资源块组中的每一个资源块组上平均可检测DMRS端口的数量,则网络设备会重新确定一个阈值,将该阈值确定为第一预设值。该阈值小于终端设备在第三资源块组中的每一个资源块组上平均可检测DMRS端口的数量,大于网络设备向终端设备待发送的下行信号关联的DMRS端口的数量。
结合第二方面,在一些可能的实现方式中,在根据该第四指示信息确定该第一预设值之后,该方法还包括:向该终端设备发送该第一预设值。
第三方面,提供了一种处理下行信号的装置,其特征在于,包括:收发模块,用于接收来自网络设备的第一指示信息;处理模块,用于根据该第一指示信息确定至少一个第一 资源块组和至少一个第二资源块组,该第一指示信息用于指示该至少一个第一资源块组和/或该至少一个第二资源块组;处理模块,还用于检测DMRS端口,其中,在该至少一个第一资源块组中的每个第一资源块组上检测DMRS端口的次数大于或等于第一预设值,在该至少一个第二资源块组中的每个第二资源块组上检测DMRS端口的次数小于该第一预设值。
本实施例的技术方案中,网络设备在向终端设备指示出受到干扰较多的第一资源块组和受到干扰较少的第二资源块组。终端设备再根据各个资源块组上所受干扰的情况对信道估计资源进行动态分配。终端设备增加了第一资源块组上检测的DMRS端口的次数,也就是增加了第一资源块组上信道估计的次数,使得终端设备抑制或消除干扰的能力发挥得更加充分。减少了第二资源块组上检测的DMRS端口的次数,也就是减少了第二资源块组上信道估计的次数,减少了不必要的计算开销。
结合第三方面,在一些可能的实现方式中,该收发模块,还用于接收来自网络设备的第二指示信息,该第二指示信息用于指示至少一个第一码分复用CDM组,该至少一个第一CDM组为与该至少一个第一资源块组对应,且包含干扰信号关联的DMRS端口的CDM组;该处理模块具体还用于:在该至少一个第一资源块组上检测该至少一个第一CDM组中的至少一个DMRS端口和至少一个第一DMRS端口;或者,在该至少一个第一资源块组上检测该至少一个第一CDM组中的所有DMRS端口和至少一个第一DMRS端口;或者,在该至少一个第一资源块组上检测该至少一个第一CDM组中的所有DMRS端口,至少一个第一DMRS端口,以及至少一个第二DMRS端口;其中,该至少一个第一DMRS端口为该网络设备向终端设备待发送的下行信号关联的DMRS端口,该至少一个第二DMRS端口为该至少一个第一资源块组对应的DMRS端口中,除该第一CDM组中的所有DMRS端口和该至少一个第一DMRS端口中的所有端口以外的DMRS端口中的一个或者多个。
结合第三方面,在一些可能的实现方式中,该收发模块,还用于接收来自网络设备的第三指示信息,该第三指示信息用于指示至少一个第三DMRS端口,该至少一个第三DMRS端口为与该至少一个第二资源块组对应,且与干扰信号关联的DMRS端口;该处理模块具体还用于:在该至少一个第二资源块组上检测该至少一个第三DMRS端口中的至少一个DMRS端口和至少一个第一DMRS端口;或者,在该至少一个第二资源块组上检测该至少一个第三DMRS端口中的全部DMRS端口、至少一个第一DMRS端口和至少一个第四DMRS端口;其中,该至少一个第一DMRS端口为该网络设备向该终端设备待发送的下行信号关联的DMRS端口,该至少一个第四DMRS端口为该至少一个第二资源块组对应的DMRS端口中,除该至少一个第三DMRS端口以外的DMRS端口中的一个或者多个。
结合第三方面,在一些可能的实现方式中,该终端设备接收该干扰信号的功率或者强度大于第二预设值,或者,该干扰信号关联的DMRS端口与该第一DMRS端口的相关性大于第三预设值。
结合第三方面,在一些可能的实现方式中,该处理模块还用于:确定该第一预设值,该第一预设值为预定义的,或者,该第一预设值由该网络设备指示。
结合第三方面,在一些可能的实现方式中,该收发模块还用于:向该网络设备发送第 四指示信息,该第四指示信息用于指示该终端设备在一个或多个资源块上检测DMRS端口的最大次数。
结合第三方面,在一些可能的实现方式中,该处理模块具体还用于:该第一指示信息用于指示该至少一个第一资源块组,将第三资源块组中除该至少一个第一资源块组以外的资源块组确定为该至少一个第二资源块组;或者,该第一指示信息用于指示该至少一个第二资源块组,将该第三资源块组中除该至少一个第二资源块组以外的资源块组确定为该至少一个第一资源块组;其中,该第三资源块组为承载该网络设备向终端设备待发送下行信号的资源块组。
结合第三方面,在一些可能的实现方式中,该处理模块具体还用于:将该第三资源块组中除该至少一个第一资源块组和该至少一个第二资源块组以外的资源块组确定为至少一个第四资源块组。
结合第三方面,在一些可能的实现方式中,该处理模块具体还用于:在该至少一个第四资源块组中的每个第四资源块组上检测的DMRS端口的次数小于或等于在该至少一个第一资源块组中的每个该第一资源块组上检测的DMRS端口的次数,且大于在该至少一个第二资源块组中的每个该第二资源块组上检测的DMRS端口的次数。
第四方面,提供了一种处理下行信号的装置,其特征在于,包括:处理模块,用于生成第一指示信息;收发模块,用于向终端设备发送该第一指示信息,该第一指示信息用于指示至少一个第一资源块组和/或至少一个第二资源块组,该第一指示信息用于指示终端设备在每个该第一资源块组上检测DMRS端口的次数大于或等于该第一预设值,在每个该第二资源块组上检测DMRS端口的次数小于该第一预设值。
结合第四方面,在一些可能的实现方式中,该收发模块还用于:向该终端设备发送第二指示信息,该第二指示信息用于指示至少一个第一码分复用CDM组,该至少一个第一CDM组为与该至少一个第一资源块组对应,且包含干扰信号关联的DMRS端口的CDM组。
结合第四方面,在一些可能的实现方式中,该收发模块还用于:向该终端设备发送第三指示信息,该第三指示信息用于指示至少一个第三DMRS端口,该至少一个第三DMRS端口为与该至少一个第二资源块组对应,且与干扰信号关联的DMRS端口。
结合第四方面,在一些可能的实现方式中,该收发模块还用于,接收来自该终端设备的第四指示信息,该第四指示信息用于指示该终端设备在一个或多个资源块上检测DMRS端口的最大次数;该处理模块还用于,根据该第四指示信息确定该第一预设值。
结合第四方面,在一些可能的实现方式中,该收发模块还用于:向该终端设备发送该第一预设值。
第五方面,提供了一种通信装置,其特征在于,包括:处理器和存储器;该存储器,用于存储计算机程序;该处理器,用于执行该存储器中存储的计算机程序,以使得该通信装置执行权利要求1至9中任一项该的通信方法,或执行权利要求10至14中任一项该的通信方法。
第六方面,提供了一种计算机可读存储介质,其特征在于,该计算机可读存储介质上存储有计算机程序,当该计算机程序在计算机上运行时,使得该计算机执行如权利要求1至9中任一项该通信方法,或执行如权利要求10至14中任一项该的通信方法。
第七方面,提供了一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片系统地通信设备执行如权利要求1至9中任一项该的通信方法,或执行如权利要求10至14中任一项该的通信方法。
第八方面,提供了一种通信系统,该通信系统包括至少一个上述终端设备和至少一个上述网络设备,用于执行第一方面或第二方面中的通信方法。
根据本申请实施例的方案,网络设备向终端设备指示出受到干扰较多的资源块组和受到干扰较少的资源块组。终端设备再根据各个资源块组上所受干扰的情况对信道估计资源进行动态分配。终端设备增加了受干扰较多的资源块组上检测的DMRS端口的次数,充分发挥抑制或消除干扰的能力。终端设备减少受干扰较少的资源块组上检测的DMRS端口的次数,减少了不必要的计算开销。
附图说明
图1示出了5G系统中DMRS图样的一例示意图。
图2示出了终端设备接收干扰信号的场景示意图。
图3示出了本申请的处理下行信号的方法的一例示意性交互图。
图4示出了本申请的承载下行信号的资源块组的示意性框图。
图5示出了本申请的终端设备对信道估计资源进行动态分配的一例的示意性框图。
图6示出了本申请的终端设备对信道估计资源进行动态分配的再一例的示意性框图。
图7是本申请的终端设备的一例的示意性框图。
图8是本申请的接入节点的一例的示意性框图。
图9是本申请的通信装置的一例的示意性框图。
图10是本申请的通信装置的再一例的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
1)、终端,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、或移动终端(mobile terminal,MT)等,是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、或车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality, AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、或智慧家庭(smart home)中的无线终端等。
2)、网络设备是无线网络中的设备,例如将终端接入到无线网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、5G系统或新无线(new radio,NR)等。
在介绍本申请实施例之前,首先简单介绍几个与本申请实施例相关的概念。
在5G新空口(new radio interface,NR)系统和长期演进(long term evolution,LTE)系统中,多址接入方式通常采用正交频分多址(orthogonal frequency division multiplexing access,OFDMA)方式。正交频分多址方式的主要特点是将传输资源划分为相互正交的时频资源单元(resource element,RE),发送端发送的信号都承载在RE上传输给接收端,由于不同的RE之间相互正交,使得接收端可以对每个RE上发送的信号进行单独接收。考虑到无线信道的衰落特性,RE上承载的信号经过信道传输后将产生畸变,通常将该信道畸变称为信道系数。为了能够对接收的信号进行恢复,接收端需要对信道系数进行估计,接收端获得信道信息的过程也可以称为信道估计,现有技术中通常采用基于参考信号进行信道估计的方案,即发送端在特定的RE上传输已知的信号,接收端根据接收到的信号及已知信号对信道系数进行估计,并根据此估计获得的信道系数对其他RE上的信道系数进行插值,进而对数据信号进行接收解调。
在现有无线通信系统中,基站端配备多根天线以采用多输入多输出(multi-input multi-output,MIMO)技术实现空间复用传输,即在相同的时频资源上传输多个数据流,每个数据流在一个独立的空间层上传输,并且每个空间层将映射到不同的天线端口上进行发送。考虑到不同天线端口到终端设备的信道系数不尽相同,为了接收端能够获取多个空间层上传输的信息,需要对每个天线端口与终端之间的信道系数都进行估计,所以需要为每个天线端口配置不同的DMRS,不同天线端口对应的DMRS可采用时分、频分及码分 等方式进行复用。示例性的,如图1所示,DMRS端口的总数为6,CDM组的个数为3。其中,水平方向代表时域,竖直方向代表频域,每个小方块代表一个RE,其中DMRS端口0和1通过正交码进行复用,所以这两个端口对应的RE又称为一个码分复用(code division multiplexing,CDM)组。
1、子载波:采用正交频分复用(orthogonal frequency division multiplexing,OFDM)技术的通信系统中将频域资源划分为若干个子资源,每个频域上的子资源可称为一个子载波。子载波也可以理解为频域资源的最小粒度。其中,OFDM技术是一种多载波调制技术。
2、子载波间隔:采用OFDM技术的通信系统中,频域上相邻的两个子载波的中心位置或峰值位置之间的间隔值。例如,LTE系统中的子载波间隔为15kHz,5G中NR系统的子载波间隔可以是15kHz,或30kHz,或60kHz,或120kHz等。
3、资源块:频域上连续的N个子载波可称为一个资源块。例如,LTE系统中的一个资源块包括12个子载波,5G中NR系统的一个资源块也包括12子载波。随着通信系统的演进,一个资源块包括的子载波个数也可以是其他值。
4、时隙:5G NR系统中一个时隙包括14个OFDM符号,15kHz子载波间隔对应的时隙长度为1ms,30kHz子载波间隔对应的时隙长度为0.5ms。
5、子帧:5G NR系统中一个子帧的时间长度为1ms。
6、OFDM符号:OFDM系统中时域上最小的时间单元。
7、时频资源单元:OFDM系统中最小的时频资源粒度,时域上为一个OFDM符号,频域上为一个子载波。
8、子带:一个子带包括频域上的一个或多个资源块,或者,一个子带可以包括频域上的一个或者多个资源块组。由于每个资源块组同样包含多个资源块,因此,一个子带的大小可以与一个资源块组的大小相同,也可以不同。当一个子带与一个资源块组的大小相同时,子带也可以理解为资源块组。
9、天线端口:5G NR系统中,天线端口是用于传输的逻辑端口,一个天线端口包括多个物理天线。从接收端的角度看,每一个天线端口对应于一个独立的无线信道。
10、DMRS:解调参考信号是用于对接收信号进行恢复的参考信号,DMRS为发送端和接收端均已知的信号,发送端将DMRS和数据经过相同的端口和无线信道传输给接收端,接收端根据接收的信号中的DMRS,获得信道系数,并根据信道系数对接收到的信号进行解调和译码,获得发送的数据。5G NR系统中,考虑到不同天线端口到终端的信道系数不尽相同,为了接收端能够获取多个空间层上传输的信息,需要对每个天线端口与终端之间的信道系数都进行估计,所以需要为每个天线端口配置不同的DMRS,不同天线端口对应的DMRS可采用时分、频分及码分等方式进行复用。目前,5G NR系统最大可支持12个MDRS端口。
11、空间层:现有无线通信系统中,基站端配备多根天线以采用MIMO技术实现空间复用传输,即在相同的时频资源上传输多个不相同的数据流,每个不相关的数据流在一个独立的空间层上传输,并且每个空间层将映射到不同的天线端口上进行发送。
12、检测DMRS端口:终端设备可以根据DMRS端口的索引确定该DMRS端口对应的DMRS在一个或多个时隙内的时域位置和频域位置,在该时域位置和频域位置对应的时频资源上接收DMRS信号,并对该DMRS信号进行检测,确定该DMRS端口关联的信 号所对应的信道的信道系数。因此,检测DMRS端口也可以称为确定该DMRS端口对应的信道系数。
13、干扰信号:通信系统中,对某一个终端设备而言,在接收的下行信号中,除网络设备发送给该终端设备的信号外,还可能存在其他的不期望该终端设备接收的信号。例如,第一终端设备与第一网络设备进行通信时,第一终端设备在一块时频资源上接收第一网络设备发送的下行信号时,在相同的时频资源上可能存在第二终端设备发送的上行信号或者第二网络设备发送的下行信号,来自第二终端设备的上行信号或者第二网络设备的下行信号,对第一终端设备需要接收第一网络设备的下行信号而言,都是不期望接收的信号,也可以理解为干扰信号。
14、干扰抑制:终端设备在接收下行信号时,利用干扰信号对应的信道系数对接收的下行信号进行处理,实现减弱消除干扰信号影响的过程。
15、强干扰DMRS端口:与强干扰信号关联的DMRS端口,强干扰信号为终端设备接收的功率或强度大于第二预设值的干扰信号。或者,强干扰DMRS端口与第一DMRS端口的相关性大于第三预设值,第一DMRS端口为该网络设备向该终端设备待发送的下行信号关联的DMRS端口。
下面以图2中的(a)、(b)、(c)为例介绍本申请中终端设备受到干扰信号影响的场景。
场景1:图2中的(a)所示,网络设备在相同的时频资源上给两个终端设备发送两份不同的信号,例如网络设备给第一终端发送第一信号,网络设备给第二终端发送第二信号,由于两个终端设备接收信号的时频资源相同,对于第一终端设备,其在接收所需的第一信号时,也会接收到第二信号,此时第二信号会对第一终端接收的第一信号造成干扰,因此,对于第一终端设备来说,第二信号是干扰信号。同理,对于需要接收第二信号的第二终端来说,其在接收第二信号的同时也会接收第一信号,此时第一信号对第二终端设备而言,为干扰信号。
场景2:图2中的(b)所示,第一网络设备向第一终端设备发送下行信号,另一相邻小区中的第二网络设备接收第二终端设备发送的上行信号,那么第一终端设备在接收下行信号时也会收到第二终端发送的上行信号,此时,该来自第二终端设备的上行信号对第一终端来说,是干扰信号。
场景3:图2中的(c)所示,网络设备为全双工网络设备,即该网络设备可以在相同的频域资源上同时进行发送和接收信号,当网络设备向第一终端发送下行信号时,若第二终端正在给该网络设备发送上行信号,第一终端在接收下行信号时会收到第二终端发送的上行信号,该上行信号视对第一终端来说,是干扰信号。
目前,终端设备和网络设备进行下行通信时,可以根据网络设备发送的下行控制信息(downlink control information,DCI)中的天线端口(antenna port(s))字段包括的不承载数据的CDM组的数量(number of CDMs group without data),确定除自身正在使用的DMRS端口之外,其余DMRS端口是否被其他终端设备占用。
终端设备信道估计能力存在复杂度上限,即终端设备检测DMRS端口的次数(或者说,对DMRS端口进行信道估计的次数)受到硬件或芯片约束。若终端确定其余DMRS端口中存在已经被占用的DMRS端口,尤其当终端设备以子带为单位进行空分复用时, 终端设备可能无法检测所有子带上的全部DMRS端口,则终端可能随机选择若干的DMRS端口进行信道估计,确定这些DMRS端口的信道系数,之后再进行干扰抑制。
例如,假设终端设备仅能支持在每个子带检测4个DMRS端口,但是在5G NR系统中规定了最多可以使用12个DMRS端口,则终端设备无法盲检所有子带上的DMRS端口,仅能随机选择4个DMRS端口进行信道估计。
由此可见,当终端设备随机选择若干个DMRS端口进行信道估计时,选择的DMRS端口对应的干扰信号的功率可能较小,而没有对功率大于某一预设值的干扰信号关联的DMRS端口进行检测,导致无法发挥终端设备抑制或消除干扰的能力。尤其在子带传输场景,终端设备在每个子带备可能会在无干扰的DMRS端口进行信道估计,造成不必要的计算开销;对于干扰较多的子带来说,随机选择的若干个DMRS端口不足以检测所有与干扰信号关联的DMRS端口,无法完全抑制干扰。
下面结合图3,对本申请实施例的处理下行信号的方法300进行详细说明。图3是本申请的方法300的示意性交互图。
S301,网络设备生成第一指示信息。
S302,网络设备向终端设备发送第一指示信息,相应的,终端设备接收来自网络设备的第一指示信息。
具体地,该第一指示信息用于指示至少一个第一资源块组和/或至少一个第二资源块组。
第一指示信息可以通过以下三种方式指示第一资源块组和/或第二资源块组。
方式一,第一指示信息用于指示至少一个第一资源块组和/或至少一个第二资源块组。可选的,第一指示信息可以包括一个字段,该一个字段通过指示资源块索引的方式指示至少一个第一资源块组和/或至少一个第二资源块组。该字段的长度N由第一资源块组和第二资源块组组合的K种状态所确定,可以指示K种状态中的一种。例如,当调度的带宽中包含的资源块组的数目为4个时,资源块组编号从0至3。当第一指示信息指示一个第一资源块组和一个第二资源块组时,第一资源块组和第二资源块组的组合共有K=(1,4)·(1,3)种状态,(P,Q)表示Q中选P的组合数,即从Q个资源块组中选择P个第一或第二资源块组。此时第二指示信息对应的字段长度为
Figure PCTCN2020141827-appb-000001
方式二,第一指示信息用于指示至少一个第一资源块组和/或至少一个第二资源块组。第一指示信息可以包括第一字段和/或第二字段,第一字段用于指示至少一个第一资源块组,第二字段用于指示至少一个第二资源块组。具体地,第一指示信息用于指示至少一个第一资源块组,该第一指示信息包括第一字段;第一指示信息用于指示至少一个第二资源块组,该第一指示信息包括第二字段;第一指示信息用于指示至少一个第一资源块组和至少一个第二资源块组,该第一指示信息包括第一字段和第二字段。可选的,第一字段和/或第二字段分别通过位图的方式指示至少一个第一资源块组和/或至少一个第二资源块组,该位图的比特长度为N,也可以理解为该位图包括N个比特,其中,每个比特对应一个资源块组,每个比特的不同值用于指示一个资源块组的不同的状态。N的取值为调度的带宽中资源块组的数量,例如,若位图中某个比特置为1,表示此比特对应的资源块组为第一资源块组;反之,若位图中某个比特置为0,表示此比特对应的资源块组不为第一资源块组。或者,若位图中比特置为1,表示此比特对应的资源块组为第二资源块组;反之, 若位图中某个比特置为0,表示此比特对应的资源块组为第二资源块组。
方式三,第一指示信息用于指示少一个第一资源块组和/或至少一个第二资源块组,第一指示信息可以包括第一字段和/或第二字段,第一字段用于指示至少一个第一资源块组,第二字段用于指示至少一个第二资源块组。具体地,第一指示信息用于指示至少一个第一资源块组,该第一指示信息包括第一字段;第一指示信息用于指示至少一个第二资源块组,该第一指示信息包括第二字段;第一指示信息用于指示至少一个第一资源块组和至少一个第二资源块组,该第一指示信息包括第一字段和第二字段。可选地,第一字段和第二字段通过索引的方式分别指示至少一个第一资源块组和至少一个第二资源块组。第一字段长度N1有第一资源块组的K1种状态所确定,第二字段长度N2由第二资源块组的K2种状态所确定,第一资源和第二字段的长度N由第一资源块组和第二资源块组组合的K种状态所确定,可以指示K种状态中的一种。如何确定上述K1、K2、K种状态与方式一同理。
应理解,第一指示信息可能仅指示第一资源块组,或者仅指示第二资源块组,或者指示第一资源块组和第二资源块组。对于这三种情况,终端设备均能根据第一指示信息确定出第一资源块组和第二资源块组。第一资源块组和第二资源块组都是包括在第三资源块组中的,第三资源块组是用于承载网络设备向终端设备发送的下行信号的资源块组。
关于网络设备确定第一资源块组和第二资源块组。第一资源块组可以为第三资源块组中强干扰DMRS端口数量大于或等于第四预设值的资源块组。第二资源块组可以为第三资源块组中强干扰DMRS端口数量小于或等于第五预设值的资源块组。
作为一个示例,如图4所示,对于每一个资源块组而言,当其对应的强干扰DMRS端口的数量大于或等于第四预设值时,该资源块组为第一资源块组;当其对应的强干扰DMRS端口的数量小于或等于第五预设值时,该资源块组为第二资源块组。其中,第四预设值大于或等于该终端设备在每个第三资源块组上平均可检测的DMRS端口数量,第五预设值小于或等于该终端设备在每个第三资源块组上平均可检测的DMRS端口数量。当某个资源块组上的强干扰DMRS端口的数量大于或等于第四预设值时,表明该资源块组对应的受到为强干扰信号配置的DMRS端口较多,或者表明该资源块组为强干扰较多的资源块组,在本实施例中将其称为第一资源块组。因此,终端设备需要增加在第一资源块组的信道估计次数,或者可以说,第一资源块组是网络设备指示终端设备增加信道估计次数的资源块组。当某个资源块组上的强干扰DMRS端口的数量小于或等于第五预设值时,表示该资源块组对应的受到为强干扰信号配置的DMRS端口较少,或者表明该资源块组为强干扰较少的资源块组,本实施例中将其称为第二资源块组。因此,终端设备需要减少在第二资源块组的信道估计次数,或者可以说,第二资源块组是网络设备指示终端设备减少信道估计次数的资源块组。
作为一个示例,该第一指示信息可以承载于第一下行控制信息DCI中。
作为一个示例,网络设备还可以向终端设备发送用于指示第三资源块组的指示信息。该用于指示第三资源块组的指示信息可以承载于第一DCI中。作为一个示例,网络设备可以通过第一DCI中的频域资源分配(frequency domain resource assignment)字段和物理资源块(physical resource block,PRB)捆绑尺寸指示(PRB bundling size indicator)字段向终端设备指示承载待发送下行信号的资源块组。具体地,网络设备向终端设备发送的DCI 中的频域资源分配字段指示了用于承载下行信号的频域资源,该频域资源包括一个或多个资源块RB。如图4所示,该频域资源包括12个RB,编号为0到11。进一步的,网络设备通过DCI中的PRB捆绑尺寸字段指示第三资源块组中每一个资源块组的大小。如图4所示,网络设备指示第三资源块组中的每一个资源块组包括2个RB。6个资源块组编号为资源块组0到5。
作为一个示例,网络设备还可以向终端设备发送用于指示第一DMRS端口的指示信息。该用于指示第一DMRS端口的指示信息可以承载于第一DCI中。该第一DMRS端口为网络设备向终端设备待发送的下行信号关联的DMRS端口。
作为一个示例,网络设备还可以向终端设备发送用于指示第一时间段的指示信息。该用于指示第一时间段的指示信息可以承载于第一DCI中。该第一时间段为终端设备接收下行信号的时间段。该第一时间段可以通过第一DCI中的时域资源分配字段确定。
作为一个示例,第一DCI还可以用于指示终端设备在第一时间段内接收承载在第三资源块组上的下行信号。该终端设备接收到第一DCI后,在第一时间段内接收承载于第三资源块组的下行信号后,并对该下行信号进行处理,而该处理可以包括检测第三资源块组上的DMRS端口。
S303,终端设备根据第一指示信息确定至少一个第一资源块组和至少一个第二资源块组。
方式一,第一指示信息用于指示至少一个第一资源块组,终端设备将第三资源块组中除该至少一个第一资源块组以外的资源块组确定为至少一个第二资源块组。
方式二,第一指示信息用于指示至少一个第二资源块组,将第三资源块组中除该至少一个第二资源块组以外的资源块组确定为至少一个第一资源块组。
方式三,第一指示信息用于指示至少一个第一资源块组和至少一个第二资源块组。终端设备将该第三资源块组中除该至少一个第一资源块组和该至少一个第二资源块组以外的资源块组确定为至少一个第四资源块组。
作为一个示例,终端设备接收来自网络设备的DCI,根据频域资源分配字段确定承载网络设备向终端设备待发送下行信号的频域资源,该频域资源包括一个或多个RB。然后终端设备根据该频域资源和PRB捆绑尺寸指示字段确定第三资源块组。具体地,如图4所示,终端设备可以确定承载待发送下行信号的频域资源包括12个RB,进一步的,该频域资源可以划分为6个资源块组,其中每个第三资源块组包括2个RB。
终端设备接收第一指示信息后,根据第一指示信息确定第三资源块组中所有的第一资源块组和所有的第二资源块组,具体地,可以根据上述三种方式进行。
S304、终端设备检测DMRS端口。
其中,在该至少一个第一资源块组中的每个第一资源块组上检测DMRS端口的次数大于或等于第一预设值,在该至少一个第二资源块组中的每个第二资源块组上检测DMRS端口的次数小于该第一预设值。
或者可以说,终端设备在第一资源块组上进行信道估计的次数大于或等于第一预设值,在第二资源块组上进行信道估计的次数小于第一预设值。终端设备在接收到第一指示信息后,会对信道估计资源进行动态分配,这里的信道估计资源可以理解为用于信道估计的计算资源。这里的动态分配具体为,减少第二资源块组对应的信道估计次数,或者也可 以是减小终端设备在第二资源块组上检测的DMRS端口的次数;增加第一资源块组的信道估计次数,或者也可以是增加在第一资源块组上检测的DMRS端口的次数。
图5示出了本申请终端设备对信道估计资源进行动态分配的示意性框图。
如图5所示,作为一个示例,网络设备为终端设备调度了第三资源块组用于传输下行信号,该第三资源块组中有6个资源块组,编号为资源块组0到5。假设终端设备在每个资源块组上可以对4个DMRS端口进行信道估计,且终端设备在每个资源块组上都对DMRS端口0、1、6、7进行信道估计。终端设备接收到第一指示信息,根据第一指示信息确定资源块组0为第一资源块组,确定第三资源块组3、5为第二资源块组,则终端设备在第一资源块组(资源块组0)上增加检测的DMRS端口数量,在每个第二资源块组(资源块组3、4、5)分别上减少检测的DMRS端口数量。例如,终端设备可以在资源块组0上检测DMRS端口0到8,终端设备可以在资源块组3、4、5上均只检测DMRS端口0、1。由上可见,终端设备在第一资源块组检测的DMRS端口的次数大于在第二资源块组上检测的DMRS端口的次数,也就是说终端设备在第一资源块组上信道估计的次数大于终端设备在第二资源块组上信道估计的次数。
本申请实施例的方案,网络设备在向终端设备指示出受到干扰较多的第一资源块组和受到干扰较少的第二资源块组。终端设备再根据各个资源块组上所受干扰的情况对信道估计资源进行动态分配。终端设备增加了第一资源块组上检测的DMRS端口的次数,也就是增加了第一资源块组上信道估计的次数,使得终端设备抑制或消除干扰的能力发挥得更加充分。减少了第二资源块组上检测的DMRS端口的次数,也就是减少了第二资源块组上信道估计的次数,减少了不必要的计算开销。
可选地,方法300还包括:
网络设备向终端设备发送第二指示信息,相应的,终端设备接收该第二指示信息。
该第二指示信息用于指示至少一个第一码分复用CDM组,该至少一个第一CDM组与该至少一个第一资源块组对应,且该至少一个第一CDM组包含与干扰信号关联的DMRS端口。
可选的,第二指示信息可以通过索引的方式指示第一CDM组。作为一个示例,若第一资源块组中的每一个资源块共有3个CDM组,编号从0到2,网络设备发送的第二指示信息指示1个第一CDM组,则共有K=(1,3)种状态,故第二指示信息可以指示K种状态中的一种。
可选地,在上述至少一个第一资源块组中的一个第一资源块组中,只要其中的一个资源块上存在一个CDM组包含干扰信号对应DMRS端口,那么网络设备会在第二指示信息中指示所有第一资源块组上的该CDM组为第一CDM组。例如,第三资源块组分为资源块组0至5,每个资源块组有2个RB组成。每个资源块上有12个DMRS端口,编号为DMRS端口0到11。这12个DMRS端口分为3个CDM组,编号为CDM组0到2。假设第一指示信息指示资源块组0和3为第一资源块组。而且,终端设备获知,在资源块组0上,CDM组0和1为第一CDM组,在资源块组3上,CDM组1和2为第一CDM组。那么,第二指示信息指示第一资源块组对应的第一CDM组时,则具体指示资源块组0和3上的第一CDM组为CDM组1、2、3。
作为一个示例,终端设备接收上述干扰信号的功率或者强度大于第二预设值,或者, 上述干扰信号关联的DMRS端口与该第一DMRS端口的相关性大于第三预设值。在本实施例中,也将满足前述条件的干扰信号称为强干扰信号,将满足前述条件的干扰信号关联的DMRS端口称为强干扰DMRS端口。
作为一个示例,该第二指示信息可以承载于DCI中。进一步地,该第二指示信息和第一指示信息可以承载于同一个DCI中。即第二指示信息和第一指示信息可以承载于第一DCI中。
从而,终端设备在检测DMRS端口时还可以包括以下方案。
终端设备根据第二指示信息,在上述至少一个第一资源块组上检测DMRS端口包括以下三种可能的情况:
可能的情况一,检测上述至少一个第一CDM组中的至少一个DMRS端口和至少一个第一DMRS端口。
针对第一资源块组,终端设备根据自身在第一资源块组上能够检测的DMRS端口的次数,优先检测第一CDM组中的一个或多个与上述干扰信号关联的DMRS端口和承载网络设备向终端设备发送的下行信号关联的上述至少一个第一DMRS端口。
应理解,该第一DMRS端口可能在该第一CDM组中,也可能不在该第一CDM组中。
可能的情况二,检测该至少一个第一CDM组中的所有DMRS端口和至少一个第一DMRS端口。
针对第一资源块组,终端设备根据自身在第一资源块组上能够检测的DMRS端口的次数,优先检测第一CDM组中的所有DMRS端口和第一DMRS端口。
应理解,检测的第一CDM组中的所有DMRS端口中,包括与上述干扰信号关联的DMRS端口,也可能包括第一DMRS端口。
可能的情况三,检测该至少一个第一CDM组中的所有DMRS端口,至少一个第一DMRS端口,以及至少一个第二DMRS端口。
针对第一资源块组,终端设备根据自身在第一资源块组上能够检测的DMRS端口的次数,除了检测第一CDM组中的所有DMRS端口和第一DMRS端口外,还可以检测一个或多个第二DMRS端口。
需要说明的是,该至少一个第一DMRS端口为该网络设备向终端设备待发送的下行信号关联的DMRS端口,该至少一个第二DMRS端口为该至少一个第一资源块组对应的DMRS端口中,除该第一CDM组中的所有DMRS端口和该至少一个第一DMRS端口中的所有端口以外的DMRS端口中的一个或者多个。
可选地,该干扰信号为上述强干扰信号。即终端设备接收上述干扰信号的功率或者强度大于第二预设值,或者,上述干扰信号关联的DMRS端口与上述第一DMRS端口的相关性大于第三预设值。
进一步的,终端设备可以根据在第一资源块组上检测的承载干扰信号的DMRS端口的信道系数和在第一资源块组上承载网络设备向终端设备发送的下行信号关联的第一DMRS端口的信道系数,对终端设备在第一资源块组上的接收到的下行信号进行处理,如干扰抑制和解调等处理。
本申请实施例的方案,基于终端设备在第一资源块组上检测的DMRS端口的次数大于或等于第一预设值,网络设备针对第一资源块组进一步指示出包含干扰信号关联的 DMRS端口的第一CDM组,终端设备优先检测第一资源块组上的第一CDM组中的DMRS端口。针对受到干扰较多的资源块组,减少了因随机选择若干个DMRS端口进行检测而造成不足以检测所有的与干扰信号关联的DMRS端口的问题,使得终端设备抑制干扰的能力发挥得更加充分。此外,由于第一资源块中与干扰信号关联的DMRS端口较多,该方案相对于进一步穷举第一资源块上所有的与干扰信号关联的DMRS端口而言,有效减少了信令开销。
可选地,方法300还包括:
网络设备向终端设备发送第三指示信息,该第三指示信息用于指示至少一个第三DMRS端口,该至少一个第三DMRS端口为与上述至少一个第二资源块组对应,且与干扰信号关联的DMRS端口,
第三指示信息可以通过索引的方式指示至少一个第一DMRS端口。例如,若终端设备共有12个DMRS端口,编号从0到11,网络设备发送的第三指示信息指示1个第三DMRS端口,则共有K=(1,12)种状态,故第三指示信息可以指示K种状态中的一种。
作为一个示例,第一资源块组中的每一个资源块上都有12个DMRS端口,编号为DMRS端口0到11。这12个DMRS端口分为3个CDM组,编号为CDM组0到2。其中,CDM组0包含DMRS端口0、1、6、7,CDM组1包含DMRS端口2、3、8、9,CDM组2包含DMRS端口4、5、10、11。其中,网络设备向终端设备发送的下行信号关联的DMRS端口为DMRS端口0,强干扰DMRS端口为DMRS端口1、2、6,由于CDM组0包括强干扰DMRS端口1、6,CDM组1包括强干扰DMRS端口2,则网络设备会在第二指示信息中向终端设备指示CDM组0和1。
需要说明的是,上述“至少一个第三DMRS端口”可以是与第二资源块组,且与干扰信号对应的所有DMRS端口中的全部或部分DMRS端口。
另外,第三指示信息针对所有第二资源块组指示其对应的至少一个第三DMRS端口,也可以针对每一个第二资源块组指示其对应的至少一个第三DMRS端口。下面分别对这两种方式进行举例说明。
作为一个示例,第三资源块组包括12个RB,分为6个资源块组,编号为资源块组0到5,其中,资源块组3、4为第二资源块组。每个RB上最多有8个DMRS端口,编号为DMRS端口1到8。资源块组3中一个RB上的DMRS端口0和另一个RB上的DMRS端口3是与干扰信号关联的DMRS端口。资源块组4中一个RB上的DMRS端口2和另一个RB上的DMRS端口3是是与干扰信号关联的DMRS端口。
按照前一种方式,则第三指示信息指示资源块组3、4对应的DMRS端口0、2、3为第三DMRS端口,或者第三指示信息可以指示资源块组3、4对应的DMRS端口0、2、3中的部分DMRS端口为第三DMRS端口。
按照后一种方式,则第三指示信息指示资源块组3对应的DMRS端口0、3为第三DMRS端口,指示资源块4对应的DMRS端口为2、3为第一DMRS端口,或者第三指示信息可以指示资源块组3对应的DMRS端口0、3中的部分DMRS端口以及指示资源块组4对应的DMRS端口2、3中的部分DMRS端口为第三DMRS端口。
可选地,终端设备接收上述干扰信号的功率或者强度大于第二预设值,或者,上述干扰信号关联的DMRS端口与该第一DMRS端口的相关性大于第三预设值。在本实施例中, 也将满足前述条件的干扰信号称为强干扰信号,将满足前述条件的干扰信号关联的DMRS端口称为强干扰DMRS端口。
作为一个示例,该第三指示信息可以承载于DCI中。进一步地,该第三指示信息和第一指示信息可以承载于同一个DCI中。即第三指示信息和第一指示信息可以承载于第一DCI中。
从而,终端设备在检测DMRS端口时还可以包括以下方案。
终端设备根据第三指示信息,在上述至少一个第二资源块组上检测DMRS端口包括以下两种可能的情况:
可能的情况一,检测上述至少一个第三DMRS端口中的至少一个DMRS端口和至少一个第一DMRS端口。
针对第二资源块组,终端设备根据自身在第二资源块组上能够检测的DMRS端口的次数,优先检测网络设备指示的第三DMRS端口,以及承载网络设备向终端设备待发送下行信号的第一DMRS端口。
可能的情况二,检测上述至少一个第三DMRS端口中的全部DMRS端口、至少一个第一DMRS端口和至少一个第四DMRS端口。
针对第二资源块组,终端设备根据自身在第二资源块组上能够检测的DMRS端口的次数,除了检测网络设备指示的第三DMRS端口,以及承载网络设备向终端设备待发送下行信号的第一DMRS端口之外,还可以检测第四DMRS端口。该至少一个第四DMRS端口为该至少一个第二资源块组对应的DMRS端口中,除该至少一个第三DMRS端口以外的DMRS端口中的一个或者多个。
进一步的,终端设备可以根据第三DMRS端口的信道系数和承载在第二资源块组上的网络设备向终端设备发送的下行信号关联的DMRS端口的信道系数,对终端设备在第二资源块组上的接收到的下行信号进行处理,如干扰抑制、解调、解码等处理。
本申请实施例的方案,基于终端设备在第二资源块组上检测的DMRS端口的次数小于第一预设值,网络设备针对第二资源块组进一步指示出第三DMRS端口,终端设备优先检测第三DMRS端口。针对受到干扰较少的资源块组,减少了终端设备对无干扰的DMRS端口进行信道估计的情况,有效节省了用于检测DMRS端口或者对DMRS端口进行信道估计的计算开销。
图6示出了本申请的终端设备对信道估计资源进行动态分配的再一例的示意性框图。
如图6所示,作为一个示例,终端设备在第三资源块组0到5上接收下行信号,该下行信号关联的DMRS端口为DMRS端口0。网络设备为终端设备配置有12个DMRS端口,编号为DMRS端口0到11,分为3个CDM组,编号为CDM组0到2,CDM组0包含DMRS端口0、1、6、7,CDM组1包含DMRS端口2、3、8、9,CDM组2包含DMRS端口4、5、10、11。第一指示信息指示第一资源块组为资源块组0,第二资源块组为资源块组3、4、5。第二指示信息指示第一资源块组上的CDM组0、1,则终端设备优先对CDM组0、1包含的DMRS端口进行检测,即DMRS端口0到3和DMRS端口6到9。除此之外,假设终端设备所确定的在第一资源块组上的检测次数大于检测CDM组0、1中包含的DMRS端口的次数,则终端设备可以在第一资源块组上检测其他DMRS端口,例如DMRS端口4,或者也可以是其他端口。另外,终端设备还需要对其下行信号关 联的DMRS端口进行检测,由于CDM组0中已经包含了DMRS端口0,所以可以确定DMRS端口0的信道系数。第三指示信息指示了DMRS端口5,则终端设备在第二资源块组上对DMRS端口5进行检测。另外,终端设备还需要对其下行信号关联的DMRS端口进行检测,即对DMRS端口0进行检测。
应理解,网络设备可以仅发送第一指示信息,或者网络设备可以发送第一指示信息和第二指示信息,或者网络设备可以发送第一指示信息和第三指示信息,或者网络设备可以发送第一指示信息、第二指示信息和第三指示信息。相应的,终端设备根据接收到的指示信息进行相应的处理。换句话说,本申请实施例的方案包括第一指示信息、第二指示信息和第三指示信息仅作为示例,本申请对此不做限定。
可选地,方法300还包括:
与步骤S303中的方式三对应,
上述终端设备检测DMRS端口还可以包括:终端设备在第四资源块组上检测DMRS端口。
具体的,终端设备在该至少一个第四资源块组中的每个第四资源块组上检测的DMRS端口的次数小于或等于在该至少一个第一资源块组中的每个该第一资源块组上检测的DMRS端口的次数,且大于在该至少一个第二资源块组中的每个该第二资源块组上检测的DMRS端口的次数。
作为一个示例,如图5所示,终端设备接收到第一指示信息后,终端设备确定第四资源块组为资源块组1、2,终端设备可以保持在第四资源块组上检测的DMRS端口的次数不发生变化,也就是说保持在第四资源块组上信道估计次数不变,如图5所示,终端可以在第四资源块组(资源块组1、2)检测DMRS端口0、1、6、7。终端设备也可以减少或者增加在第四资源块组上检测的DMRS端口的次数,即减少或增加在第四资源块组上信道估计次数,只要减少或增加后的检测DMRS端口的次数或信道估计的次数满足上述条件即可。进一步地,终端设备还可以确定检测的第四资源块组的DMRS端口的信道系数。即终端设备对检测的第四资源块DMRS端口进行信道估计,获得信道系数。进一步的,终端设备可以根据该信道系数和承载在第四资源块组上的网络设备向终端设备发送的下行信号关联的DMRS端口的信道系数,对终端设备在第四资源块组上的接收到的下行信号进行处理,如干扰抑制和解调等处理。
可选地,方法300还可以包括以下几个步骤。
步骤一,终端设备向网络设备发送第四指示信息,该第四指示信息用于指示终端设备在一个或多个资源块上检测DMRS端口的最大次数。
该第四指示信息用于指示终端设备在一个或多个资源块上检测DMRS端口的最大次数。
应理解,一个资源块组由一个或多个资源块组成,因此,步骤一也可以理解为,终端设备向网络设备发送终端设备在一个或多个资源块组上检测DMRS端口的最大次数。
可选的,终端设备确定检测DMRS端口的最大次数N。应理解,该最大次数受终端设备分配给用于检测DMRS端口的硬件、芯片等资源的限制,可以为一个终端设备预先确定的固定值,也可以为一个动态值。该动态值随着终端设备分配给用于检测DMRS端口的资源变化而动态变化。
终端设备可以通过多种方式向网络设备上报自身检测DMRS端口的能力。也就是说终端设备可以通过多种方式向网络设备上报其检测DMRS端口的最大次数。
方式一,终端设备向网络设备发送终端设备在多个资源块或多个资源块组上检测DMRS端口的最大次数。
作为一个示例,终端设备向网络设备发送第四指示信息,该第四指示信息包括一个或多个字段,该一个或多个字段用于指示该终端设备的检测DMRS端口的最大次数。例如,第四指示信息包括一个字段,该一个字段用于指示该终端设备检测DMRS端口的最大次数N。或者,第四指示信息包括3个字段,第一字段、第二字段和第三字段。该3个字段用于指示该终端设备的检测DMRS端口的最大次数N。N=N1·N2·N3,其中,第一字段用于指示该终端设备在每个资源块上可检测的DMRS端口数量N1,第二字段用于指示资源块或资源块组的数量N2,第三字段用于指示该终端设备的接收天线数量N3。
方式二,终端设备向网络设备发送终端设备在一个资源块或一个资源块组上检测DMRS端口的最大次数。作为一个示例,终端设备向网络设备发送第四指示信息,该第四指示信息包括一个或多个字段,该一个或多个字段用于指示该终端设备在每一个资源块或资源块组上的检测DMRS端口的最大次数。例如,第四指示信息包括一个字段,该一个字段可以指示该终端设备在每一个资源块上的检测DMRS端口的最大次数N RB,N RB=N/N4,N4为预先确定的用于指示资源块数量的预设值,具体地,N4可以为初始带宽或部分带宽(bandwidth part,BWP)包含资源块或资源块组的数量。
应理解,由于网络设备可以预先确定N4,因此终端设备可以通过方式二中的第二指示信息,指示其检测DMRS端口的最大次数。也就是说网络设备可以通过N=N RB·N4确定终端设备的检测DMRS端口的最大次数。
应理解,除上述方式一和方式二外,终端设备还可以通过其他方式向网络设备上报其检测DMRS端口的能力。
步骤二,网络设备根据该第四指示信息确定该第一预设值。
可能的情况一,在第三资源块组中,当网络设备确定有一个或多个资源块组上的强干扰DMRS端口的数量大于终端设备平均在第三资源块组中的每一个资源块组上可检测DMRS端口的数量,则网络设备将终端设备平均在第三资源块组中的每一个资源块组上可检测DMRS端口的数量确定为第一预设值。随后,网络设备可以不向终端设备发送第一预设值,也可以向终端设备发送第一预设值。
可能的情况二,当网络设备确定第三资源块组中的所有资源块组上的强干扰DMRS端口的数量都小于或等于终端设备平均在第三资源块组中的每一个资源块组上可检测的DMRS端口的数量时,则网络设备会重新确定一个阈值,将该阈值确定为第一预设值。该阈值小于终端设备平均在第三资源块组中的每一个资源块组上可检测DMRS端口的数量,大于网络设备向终端设备待发送的下行信号关联的DMRS端口的数量。
网络设备在确定第一预设值之前,需要根据终端设备上报的检测DMRS端口的能力信息,确定终端设备平均在每一个资源块组上可检测DMRS端口的次数,即确定终端设备检测DMRS端口时,平均在每一个资源块组上可检测的次数。
作为一个示例,网络设备根据第四指示信息确定终端设备在检测第三资源块组上的DMRS端口时,平均在每一个资源块组上可检测DMRS端口的次数N RBG。网络设备可以 根据终端设备检测DMRS端口的最大次数和第三资源块组中的资源块组的数量N2’,确定终端设备平均在第三资源块组中的每一个资源块组上的可检测DMRS端口的次数N RBG。即N RBG=N/N2’。
需要说明的是,第三资源块组为承载网络设备向终端设备待发送下行信号的资源块组。
在步骤二中,网络设备在确定第一预设值时,可以先根据N RBG,确定该终端设备在第三资源块组中,平均每个资源块组上可检测的DMRS端口数量
Figure PCTCN2020141827-appb-000002
作为一个示例,网络设备可以根据预先确定的接收天线的数量N3’和N RBG确定该终端设备在检测第三资源块组上的DMRS端口时,平均在每个资源块组上可检测的DMRS端口数量
Figure PCTCN2020141827-appb-000003
Figure PCTCN2020141827-appb-000004
在步骤二中,在确定
Figure PCTCN2020141827-appb-000005
后,网络设备可以再根据第三资源块组中的每个资源块组上的强干扰DMRS端口的数量和
Figure PCTCN2020141827-appb-000006
的大小关系,确定第一预设值。
作为一个示例,当网络设备确定在第三资源块组中,存在一个或多个资源块组上的强干扰DMRS端口的数量大于
Figure PCTCN2020141827-appb-000007
时,则可以将N RBG确定为第一预设值。
作为一个示例,当网络设备确定在第三资源块组中所有资源块组上的强干扰DMRS端口的数量都小于或等于
Figure PCTCN2020141827-appb-000008
时,换句话说,当网络设备确定任意一个资源块组上的强干扰DMRS端口的数量都小于或等于
Figure PCTCN2020141827-appb-000009
时,则将第一阈值确定为第一预设值。其中,该第一阈值小于N RBG,大于该终端设备在一个资源块组上检测所有第一DMRS端口所需的检测次数,其中,该第一DMRS端口为网络设备向终端设备待发送的下行信号关联的DMRS端口。
应理解,网络设备可以预先确定终端设备接收天线的数量。
需要说明的是,强干扰DMRS端口为与强干扰信号关联的DMRS端口,强干扰信号为终端设备接收的功率或强度大于第二预设值的干扰信号。或者,强干扰DMRS端口与第一DMRS端口的相关性大于第三预设值,第一DMRS端口为该网络设备向该终端设备待发送的下行信号关联的DMRS端口。这里的第二预设值可以根据网络设备的发送功率所确定,或者是为网络设备预先确定的某一数值。这里的第三预设值可以是为网络设备预先确定的某一数值。或者,第二预设值和第三预设值还可以有其他确定方式,本申请对此不做限定。
步骤三,终端设备确定第一预设值,该第一预设值可以是预定义的,也可以是网络设备指示的。
与上述步骤二中可能的情况一相对应,当终端设备没有收到网络设备发送的指示第一预设值的指示信息时,第一预设值可以是终端设备根据预先配置的自身在一个或多个资源块上检测DMRS端口的最大次数和第三资源块组中包含的资源块组的数量所确定的,即该第一预设值可以是预定义的;当终端设备收到网络设备指示的第一预设值时,则终端设备根据网络设备的指示确定第一预设值。
与上述步骤二中可能的情况二相对应,终端设备根据网络设备的指示确定第一预设值。
应理解,在检测DMRS端口之前,可以不进行上述步骤一至步骤三。
作为一个示例,终端设备在连接到网络设备之后,通过上述步骤一到步骤三确定第一 预设值之后,在一个或多个时隙内接收并处理信号时,都可以根据该第一预设值检测承载该下行信号的第三资源块组上的DMRS端口,而不需要在每次检测DMRS端口之前都确定第一预设值。
以上,结合图3至图6详细说明了本申请实施例提供的方法。以下,结合图7至图10详细说明本申请实施例提供的通信装置。
图7是本申请实施例提供的用于处理下行信号的通信装置的示意性框图。如图所示,该通信装置10可以包括收发模块11和处理模块12。
在一种可能的设计中,该通信装置10可对应于上文方法实施例中的终端设备。例如,可以为用户设备,或者配置于用户设备中的芯片。
具体地,该通信装置10可对应于根据本申请实施例的方法300中的终端设备,该通信装置10可以包括用于执行图3中的方法300中的终端设备执行的方法的模块。并且,该通信装置10中的各单元和上述其他操作和/或功能分别为了实现图3中的方法300的相应流程。
其中,当该通信装置10用于执行图3中的方法300时,收发模块11可用于执行方法300中的步骤S302,处理模块12可用于执行方法300中的步骤S303、S304。
具体地,收发模块11,用于接收来自网络设备的第一指示信息;处理模块12,用于根据该第一指示信息确定至少一个第一资源块组和至少一个第二资源块组,该第一指示信息用于指示该至少一个第一资源块组和/或该至少一个第二资源块组;处理模块12,还用于检测DMRS端口,其中,在该至少一个第一资源块组中的每个第一资源块组上检测DMRS端口的次数大于或等于第一预设值,在该至少一个第二资源块组中的每个第二资源块组上检测DMRS端口的次数小于该第一预设值。
该收发模块11,还用于接收来自网络设备的第二指示信息,该第二指示信息用于指示至少一个第一码分复用CDM组,所述至少一个第一CDM组与所述至少一个第一资源块组对应,且所述至少一个第一CDM组包含与干扰信号关联的DMRS端口;该处理模块12具体还用于:在该至少一个第一资源块组上检测该至少一个第一CDM组中的至少一个DMRS端口和至少一个第一DMRS端口;或者,在该至少一个第一资源块组上检测该至少一个第一CDM组中的所有DMRS端口和至少一个第一DMRS端口;或者,在该至少一个第一资源块组上检测该至少一个第一CDM组中的所有DMRS端口,至少一个第一DMRS端口,以及至少一个第二DMRS端口;其中,该至少一个第一DMRS端口为该网络设备向终端设备待发送的下行信号关联的DMRS端口,该至少一个第二DMRS端口为该至少一个第一资源块组对应的DMRS端口中,除该第一CDM组中的所有DMRS端口和该至少一个第一DMRS端口中的所有端口以外的DMRS端口中的一个或者多个。
该收发模块11,还用于接收来自网络设备的第三指示信息,该第三指示信息用于指示至少一个第三DMRS端口,该至少一个第三DMRS端口为与该至少一个第二资源块组对应,且与干扰信号关联的DMRS端口;该处理模块12具体还用于:在该至少一个第二资源块组上检测该至少一个第三DMRS端口中的至少一个DMRS端口和至少一个第一DMRS端口;或者,在该至少一个第二资源块组上检测该至少一个第三DMRS端口中的全部DMRS端口、至少一个第一DMRS端口和至少一个第四DMRS端口;其中,该至少一个第一DMRS端口为该网络设备向该终端设备待发送的下行信号关联的DMRS端口, 该至少一个第四DMRS端口为该至少一个第二资源块组对应的DMRS端口中,除该至少一个第三DMRS端口以外的DMRS端口中的一个或者多个。
可选地,该终端设备接收该干扰信号的功率或者强度大于第二预设值,或者,该干扰信号关联的DMRS端口与该第一DMRS端口的相关性大于第三预设值。
该处理模块12还用于:确定该第一预设值,该第一预设值为预定义的,或者,该第一预设值由该网络设备指示。
该收发模块11还用于:向该网络设备发送第四指示信息,该第四指示信息用于指示该终端设备在一个或多个资源块上检测DMRS端口的最大次数。
该处理模块12具体还用于:该第一指示信息用于指示该至少一个第一资源块组,将第三资源块组中除该至少一个第一资源块组以外的资源块组确定为该至少一个第二资源块组;或者,该第一指示信息用于指示该至少一个第二资源块组,将该第三资源块组中除该至少一个第二资源块组以外的资源块组确定为该至少一个第一资源块组;其中,该第三资源块组为承载该网络设备向终端设备待发送下行信号的资源块组。
该处理模块12具体还用于:将该第三资源块组中除该至少一个第一资源块组和该至少一个第二资源块组以外的资源块组确定为至少一个第四资源块组。该处理模块12具体还用于:在该至少一个第四资源块组中的每个第四资源块组上检测的DMRS端口的次数小于或等于在该至少一个第一资源块组中的每个该第一资源块组上检测的DMRS端口的次数,且大于在该至少一个第二资源块组中的每个该第二资源块组上检测的DMRS端口的次数。
图8是本申请实施例提供的用于处理下行信号的通信装置的示意性框图。如图所示,该通信装置20可以包括收发模块21和处理模块22。
在一种可能的设计中,该通信装置20可对应于上文方法实施例中的网络设备。例如,可以为RAN,或者配置于RAN中的芯片。
具体地,该通信装置20可对应于根据本申请实施例的方法300中的网络设备,该通信装置20可以包括用于执行图3中的方法300中的网络设备执行的方法的模块。并且,该通信装置20中的各单元和上述其他操作和/或功能分别为了实现图3中的方法300的相应流程。
其中,当该通信装置20用于执行图3中的方法300时,收发模块21可用于执行方法300中的步骤S302,处理模块22可用于执行方法300中的步骤S301。
具体地,处理模块22,用于生成第一指示信息;收发模块21,用于向终端设备发送该第一指示信息,该第一指示信息用于指示至少一个第一资源块组和/或至少一个第二资源块组,该第一指示信息用于指示终端设备在每个该第一资源块组上检测DMRS端口的次数大于或等于该第一预设值,在每个该第二资源块组上检测DMRS端口的次数小于该第一预设值。
该收发模块21还用于:向该终端设备发送第二指示信息,该第二指示信息用于指示至少一个第一码分复用CDM组,该至少一个第一CDM组与该至少一个第一资源块组对应,且该至少一个第一CDM组包含与干扰信号关联的DMRS端口。
该收发模块21还用于:向该终端设备发送第三指示信息,该第三指示信息用于指示至少一个第三DMRS端口,该至少一个第三DMRS端口为与该至少一个第二资源块组对 应,且与干扰信号关联的DMRS端口。
该收发模块21还用于,接收来自该终端设备的第四指示信息,该第四指示信息用于指示该终端设备在一个或多个资源块上检测DMRS端口的最大次数;该处理模块22还用于,根据该第四指示信息确定该第一预设值。
该收发模块21还用于:向该终端设备发送该第一预设值。
图9为本申请实施例提供的用于处理下行信号的通信装置30的示意图,如图9所示,该装置30可以为终端设备,包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的终端,移动台,终端,用户设备,软终端等等,也可以为位于终端设备上的芯片或芯片系统等。
该装置30可以包括处理器31(即,处理模块的一例)和存储器32。该存储器32用于存储指令,该处理器31用于执行该存储器32存储的指令,以使该装置30实现如图3中对应的方法中终端设备执行的步骤。
进一步地,该装置30还可以包括输入口33(即,收发模块的一例)和输出口34(即,收发模块的另一例)。进一步地,该处理器31、存储器32、输入口33和输出口34可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器32用于存储计算机程序,该处理器31可以用于从该存储器32中调用并运行该计算机程序,以控制输入口33接收信号,控制输出口34发送信号,完成上述方法中终端设备的步骤。该存储器32可以集成在处理器31中,也可以与处理器31分开设置。
可选地,若该通信装置30为通信设备,该输入口33为接收器,该输出口34为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该通信装置30为芯片或电路,该输入口33为输入接口,该输出口34为输出接口。
作为一种实现方式,输入口33和输出口34的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器31可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的通信设备。即将实现处理器31、输入口33和输出口34功能的程序代码存储在存储器32中,通用处理器通过执行存储器32中的代码来实现处理器31、输入口33和输出口34的功能。
其中,通信装置30中各模块或单元可以用于执行上述方法中进行处理下行信号的设备(例如,终端设备)所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置30所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图10为本申请实施例提供的用于处理下行信号的通信装置40的示意图,如图10所示,该通信装置40可以为网络设备,包括具有为终端设备提供接入功能的网元,如RAN等。
该通信装置40可以包括处理器41(即,处理模块的一例)和存储器42。该存储器42用于存储指令,该处理器41用于执行该存储器42存储的指令,以使该装置40实现如 图3中对应的方法中网络设备执行的步骤。
进一步地,该通信装置40还可以包括输入口43(即,收发模块的一例)和输出口44(即,收发模块的另一例)。进一步地,该处理器41、存储器42、输入口43和输出口44可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器42用于存储计算机程序,该处理器41可以用于从该存储器42中调用并运行该计算机程序,以控制输入口43接收信号,控制输出口44发送信号,完成上述方法中网络设备的步骤。该存储器42可以集成在处理器41中,也可以与处理器41分开设置。
可选地,若该通信装置40为通信设备,该输入口43为接收器,该输出口44为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该通信装置40为芯片或电路,该输入口43为输入接口,该输出口44为输出接口。
作为一种实现方式,输入口43和输出口44的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器41可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的通信设备。即将实现处理器41、输入口43和输出口44功能的程序代码存储在存储器42中,通用处理器通过执行存储器42中的代码来实现处理器41、输入口43和输出口44的功能。
其中,通信装置40中各模块或单元可以用于执行上述方法中发送下行信号的设备(即,网络设备)所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该通信装置40所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
应理解,本申请实施例中,该处理器可以为中央处理单元(CPU,central processing unit),该处理器还可以是其他通用处理器、数字信号处理器(DSP,digital signal processor)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。 另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (31)

  1. 一种处理下行信号的方法,其特征在于,包括:
    接收来自网络设备的第一指示信息;
    根据所述第一指示信息确定至少一个第一资源块组和至少一个第二资源块组,所述第一指示信息用于指示所述至少一个第一资源块组和/或所述至少一个第二资源块组;
    检测DMRS端口,其中,在所述至少一个第一资源块组中的每个第一资源块组上检测DMRS端口的次数大于或等于第一预设值,在所述至少一个第二资源块组中的每个第二资源块组上检测DMRS端口的次数小于所述第一预设值。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收来自网络设备的第二指示信息,所述第二指示信息用于指示至少一个第一码分复用CDM组,所述至少一个第一CDM组与所述至少一个第一资源块组对应,且所述至少一个第一CDM组包含与干扰信号关联的DMRS端口,所述检测DMRS端口包括:
    在所述至少一个第一资源块组上检测所述至少一个第一CDM组中的至少一个DMRS端口和至少一个第一DMRS端口;
    或者,在所述至少一个第一资源块组上检测所述至少一个第一CDM组中的所有DMRS端口和至少一个第一DMRS端口;
    或者,在所述至少一个第一资源块组上检测所述至少一个第一CDM组中的所有DMRS端口,至少一个第一DMRS端口,以及至少一个第二DMRS端口;
    其中,所述至少一个第一DMRS端口为所述网络设备向终端设备待发送的下行信号关联的DMRS端口,所述至少一个第二DMRS端口为所述至少一个第一资源块组对应的DMRS端口中,除所述第一CDM组中的所有DMRS端口和所述至少一个第一DMRS端口中的所有端口以外的DMRS端口中的一个或者多个。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    接收来自网络设备的第三指示信息,所述第三指示信息用于指示至少一个第三DMRS端口,至少一个第三DMRS端口与所述至少一个第二资源块组对应,且包括与干扰信号对应的DMRS端口,所述检测DMRS端口包括:
    在所述至少一个第二资源块组上检测所述至少一个第三DMRS端口中的至少一个DMRS端口和至少一个第一DMRS端口;
    或者,在所述至少一个第二资源块组上检测所述至少一个第三DMRS端口中的全部DMRS端口、至少一个第一DMRS端口和至少一个第四DMRS端口;
    其中,所述至少一个第一DMRS端口为所述网络设备向所述终端设备待发送的下行信号关联的DMRS端口,所述至少一个第四DMRS端口为所述至少一个第二资源块组对应的DMRS端口中,除所述至少一个第三DMRS端口以外的DMRS端口中的一个或者多个。
  4. 根据权利要求2或3所述的方法,其特征在于,
    所述终端设备接收所述干扰信号的功率或者强度大于第二预设值,或者,所述干扰信号关联的DMRS端口与所述第一DMRS端口的相关性大于第三预设值。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    确定所述第一预设值,所述第一预设值为预定义的,或者,所述第一预设值由所述网络设备指示。
  6. 根据权利要求5所述的方法,其特征在于,在确定所述第一预设值之前,所述方法还包括:
    向所述网络设备发送第四指示信息,所述第四指示信息用于指示所述终端设备在一个或多个资源块上检测DMRS端口的最大次数。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述根据所述第一指示信息确定至少一个第一资源块组和至少一个第二资源块组,包括:
    所述第一指示信息用于指示所述至少一个第一资源块组,将第三资源块组中除所述至少一个第一资源块组以外的资源块组确定为所述至少一个第二资源块组;
    或者,所述第一指示信息用于指示所述至少一个第二资源块组,将所述第三资源块组中除所述至少一个第二资源块组以外的资源块组确定为所述至少一个第一资源块组;
    其中,所述第三资源块组为承载所述网络设备向终端设备待发送下行信号的资源块组。
  8. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一指示信息用于指示所述至少一个第一资源块组和所述至少一个第二资源块组,所述方法还包括:
    将所述第三资源块组中除所述至少一个第一资源块组和所述至少一个第二资源块组以外的资源块组确定为至少一个第四资源块组。
  9. 根据权利要求8所述的方法,其特征在于,所述检测DMRS端口,还包括:
    在所述至少一个第四资源块组中的每个第四资源块组上检测的DMRS端口的次数小于或等于在所述至少一个第一资源块组中的每个所述第一资源块组上检测的DMRS端口的次数,且大于在所述至少一个第二资源块组中的每个所述第二资源块组上检测的DMRS端口的次数。
  10. 一种处理下行信号的方法,其特征在于,包括:
    生成第一指示信息;
    向终端设备发送所述第一指示信息,所述第一指示信息用于指示至少一个第一资源块组和/或至少一个第二资源块组,所述第一指示信息用于指示终端设备在每个所述第一资源块组上检测DMRS端口的次数大于或等于所述第一预设值,在每个所述第二资源块组上检测DMRS端口的次数小于所述第一预设值。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第二指示信息,所述第二指示信息用于指示至少一个第一码分复用CDM组,所述至少一个第一CDM组与所述至少一个第一资源块组对应,且所述至少一个第一CDM组包含与干扰信号关联的DMRS端口。
  12. 根据权利要求10或11所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第三指示信息,所述第三指示信息用于指示至少一个第三DMRS端口,所述至少一个第三DMRS端口为与所述至少一个第二资源块组对应,且与干扰信号对应的DMRS端口。
  13. 根据权利要求10所述的方法,其特征在于,在所述向终端设备发送第一指示信 息之前,所述方法还包括:
    接收来自所述终端设备的第四指示信息,所述第四指示信息用于指示所述终端设备在一个或多个资源块上检测DMRS端口的最大次数;
    根据所述第四指示信息确定所述第一预设值。
  14. 根据权利要求13所述的方法,其特征在于,在根据所述第四指示信息确定所述第一预设值之后,所述方法还包括:
    向所述终端设备发送所述第一预设值。
  15. 一种处理下行信号的装置,其特征在于,包括:
    收发模块,用于接收来自网络设备的第一指示信息;
    处理模块,用于根据所述第一指示信息确定至少一个第一资源块组和至少一个第二资源块组,所述第一指示信息用于指示所述至少一个第一资源块组和/或所述至少一个第二资源块组;
    处理模块,还用于检测DMRS端口,其中,在所述至少一个第一资源块组中的每个第一资源块组上检测DMRS端口的次数大于或等于第一预设值,在所述至少一个第二资源块组中的每个第二资源块组上检测DMRS端口的次数小于所述第一预设值。
  16. 根据权利要求15所述的装置,其特征在于,
    所述收发模块,还用于接收来自网络设备的第二指示信息,所述第二指示信息用于指示至少一个第一码分复用CDM组,所述至少一个第一CDM组与所述至少一个第一资源块组对应,且所述至少一个第一CDM组包含与干扰信号关联的DMRS端口;
    所述处理模块具体还用于:
    在所述至少一个第一资源块组上检测所述至少一个第一CDM组中的至少一个DMRS端口和至少一个第一DMRS端口;
    或者,在所述至少一个第一资源块组上检测所述至少一个第一CDM组中的所有DMRS端口和至少一个第一DMRS端口;
    或者,在所述至少一个第一资源块组上检测所述至少一个第一CDM组中的所有DMRS端口,至少一个第一DMRS端口,以及至少一个第二DMRS端口;
    其中,所述至少一个第一DMRS端口为所述网络设备向终端设备待发送的下行信号关联的DMRS端口,所述至少一个第二DMRS端口为所述至少一个第一资源块组对应的DMRS端口中,除所述第一CDM组中的所有DMRS端口和所述至少一个第一DMRS端口中的所有端口以外的DMRS端口中的一个或者多个。
  17. 根据权利要求15或16所述的装置,其特征在于,
    所述收发模块,还用于接收来自网络设备的第三指示信息,所述第三指示信息用于指示至少一个第三DMRS端口,所述至少一个第三DMRS端口为与所述至少一个第二资源块组对应,且与干扰信号关联的DMRS端口;
    所述处理模块具体还用于:
    在所述至少一个第二资源块组上检测所述至少一个第三DMRS端口中的至少一个DMRS端口和至少一个第一DMRS端口;
    或者,在所述至少一个第二资源块组上检测所述至少一个第三DMRS端口中的全部DMRS端口、至少一个第一DMRS端口和至少一个第四DMRS端口;
    其中,所述至少一个第一DMRS端口为所述网络设备向所述终端设备待发送的下行信号关联的DMRS端口,所述至少一个第四DMRS端口为所述至少一个第二资源块组对应的DMRS端口中,除所述至少一个第三DMRS端口以外的DMRS端口中的一个或者多个。
  18. 根据权利要求16或17所述的装置,其特征在于,
    所述终端设备接收所述干扰信号的功率或者强度大于第二预设值,或者,所述干扰信号关联的DMRS端口与所述第一DMRS端口的相关性大于第三预设值。
  19. 根据权利要求15至18中任一项所述的装置,其特征在于,所述处理模块还用于:
    确定所述第一预设值,所述第一预设值为预定义的,或者,所述第一预设值由所述网络设备指示。
  20. 根据权利要求19所述的装置,其特征在于,所述收发模块还用于:
    向所述网络设备发送第四指示信息,所述第四指示信息用于指示所述终端设备在一个或多个资源块上检测DMRS端口的最大次数。
  21. 根据权利要求15至20中任一项所述的装置,其特征在于,所述处理模块具体还用于:
    所述第一指示信息用于指示所述至少一个第一资源块组,将第三资源块组中除所述至少一个第一资源块组以外的资源块组确定为所述至少一个第二资源块组;
    或者,所述第一指示信息用于指示所述至少一个第二资源块组,将所述第三资源块组中除所述至少一个第二资源块组以外的资源块组确定为所述至少一个第一资源块组;
    其中,所述第三资源块组为承载所述网络设备向终端设备待发送下行信号的资源块组。
  22. 根据权利要求15至20中任一项所述的装置,其特征在于,所述处理模块具体还用于:
    将所述第三资源块组中除所述至少一个第一资源块组和所述至少一个第二资源块组以外的资源块组确定为至少一个第四资源块组。
  23. 根据权利要求22所述的装置,其特征在于,所述处理模块具体还用于:
    在所述至少一个第四资源块组中的每个第四资源块组上检测的DMRS端口的次数小于或等于在所述至少一个第一资源块组中的每个所述第一资源块组上检测的DMRS端口的次数,且大于在所述至少一个第二资源块组中的每个所述第二资源块组上检测的DMRS端口的次数。
  24. 一种处理下行信号的装置,其特征在于,包括:
    处理模块,用于生成第一指示信息;
    收发模块,用于向终端设备发送所述第一指示信息,所述第一指示信息用于指示至少一个第一资源块组和/或至少一个第二资源块组,所述第一指示信息用于指示终端设备在每个所述第一资源块组上检测DMRS端口的次数大于或等于所述第一预设值,在每个所述第二资源块组上检测DMRS端口的次数小于所述第一预设值。
  25. 根据权利要求24所述的装置,其特征在于,所述收发模块还用于:
    向所述终端设备发送第二指示信息,所述第二指示信息用于指示至少一个第一码分复用CDM组,所述至少一个第一CDM组与所述至少一个第一资源块组对应,且所述至少 一个第一CDM组包含与干扰信号关联的DMRS端口。
  26. 根据权利要求24或25所述的装置,其特征在于,所述收发模块还用于:
    向所述终端设备发送第三指示信息,所述第三指示信息用于指示至少一个第三DMRS端口,所述至少一个第三DMRS端口为与所述至少一个第二资源块组对应,且与干扰信号关联的DMRS端口。
  27. 根据权利要求24所述的装置,其特征在于,
    所述收发模块还用于,接收来自所述终端设备的第四指示信息,所述第四指示信息用于指示所述终端设备在一个或多个资源块上检测DMRS端口的最大次数;
    所述处理模块还用于,根据所述第四指示信息确定所述第一预设值。
  28. 根据权利要求27所述的装置,其特征在于,所述收发模块还用于:
    向所述终端设备发送所述第一预设值。
  29. 一种通信装置,其特征在于,包括:
    处理器和存储器;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述通信装置执行权利要求1至9中任一项所述的通信方法,或执行权利要求10至14中任一项所述的通信方法。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至9中任一项所述通信方法,或执行如权利要求10至14中任一项所述的通信方法。
  31. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片系统地通信设备执行如权利要求1至9中任一项所述的通信方法,或执行如权利要求10至14中任一项所述的通信方法。
PCT/CN2020/141827 2020-12-30 2020-12-30 处理下行信号的方法及装置 WO2022141305A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/141827 WO2022141305A1 (zh) 2020-12-30 2020-12-30 处理下行信号的方法及装置
EP20967644.4A EP4266797A4 (en) 2020-12-30 2020-12-30 METHOD AND DEVICE FOR PROCESSING A DOWNLINK SIGNAL
CN202080107476.9A CN116530133A (zh) 2020-12-30 2020-12-30 处理下行信号的方法及装置
US18/343,811 US20230345284A1 (en) 2020-12-30 2023-06-29 Downlink signal processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/141827 WO2022141305A1 (zh) 2020-12-30 2020-12-30 处理下行信号的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/343,811 Continuation US20230345284A1 (en) 2020-12-30 2023-06-29 Downlink signal processing method and apparatus

Publications (1)

Publication Number Publication Date
WO2022141305A1 true WO2022141305A1 (zh) 2022-07-07

Family

ID=82260057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141827 WO2022141305A1 (zh) 2020-12-30 2020-12-30 处理下行信号的方法及装置

Country Status (4)

Country Link
US (1) US20230345284A1 (zh)
EP (1) EP4266797A4 (zh)
CN (1) CN116530133A (zh)
WO (1) WO2022141305A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024066946A1 (zh) * 2022-09-26 2024-04-04 华为技术有限公司 一种消除干扰的方法和相关设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104105120A (zh) * 2013-04-08 2014-10-15 中兴通讯股份有限公司 一种干扰测量方法、网络侧设备及终端设备
CN109802806A (zh) * 2017-11-17 2019-05-24 维沃移动通信有限公司 信道状态信息参考信号资源的配置方法和设备
CN110622547A (zh) * 2017-05-02 2019-12-27 高通股份有限公司 在用于新无线电(nr)的csi-rs资源中的端口组指示和端口子集
CN111756504A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 下行控制信息传输的方法、装置及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103188041B (zh) * 2011-12-31 2017-08-08 中兴通讯股份有限公司 控制信道的检测方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104105120A (zh) * 2013-04-08 2014-10-15 中兴通讯股份有限公司 一种干扰测量方法、网络侧设备及终端设备
US20160036542A1 (en) * 2013-04-08 2016-02-04 Zte Corporation Interference Measurement Method, Network-Side Device And Terminal Device
CN110622547A (zh) * 2017-05-02 2019-12-27 高通股份有限公司 在用于新无线电(nr)的csi-rs资源中的端口组指示和端口子集
CN109802806A (zh) * 2017-11-17 2019-05-24 维沃移动通信有限公司 信道状态信息参考信号资源的配置方法和设备
CN111756504A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 下行控制信息传输的方法、装置及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MODERATOR (LG ELECTRONICS): "Feature lead summary for AI 8.11.2.2 Feasibility and benefits for mode 2 enhancements", 3GPP DRAFT; R1-2009788, vol. RAN WG1, 19 November 2020 (2020-11-19), pages 1 - 79, XP051955958 *
See also references of EP4266797A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024066946A1 (zh) * 2022-09-26 2024-04-04 华为技术有限公司 一种消除干扰的方法和相关设备

Also Published As

Publication number Publication date
EP4266797A4 (en) 2024-02-28
US20230345284A1 (en) 2023-10-26
EP4266797A1 (en) 2023-10-25
CN116530133A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
CN109275191B (zh) 一种传输方法及其装置
US20230217445A1 (en) Sidelink communication method, terminal device and network device
WO2020052514A1 (zh) 一种信息发送方法,信息接收的方法和装置
WO2019136723A1 (zh) 上行数据传输方法及相关设备
WO2019062217A1 (zh) 数据传输方法、终端设备以及网络设备
CA3053919C (en) Communication method, network device, terminal device, computer readable storage medium, computer program product, processing apparatus and communication system
WO2018126872A1 (zh) 请求资源的方法和装置
WO2018192471A1 (zh) 上行参考信号的发送方法及装置
WO2020221321A1 (zh) 通信方法以及通信装置
WO2018127071A1 (zh) 一种发送参考信号的方法和通信设备
CN110999367A (zh) 数据传输方法、终端和基站
WO2020238992A1 (zh) 一种通信方法及装置
TW201830908A (zh) 通信方法及終端
KR20190056180A (ko) 무선 통신 시스템에서 상향링크 캐리어를 통해 데이터를 송수신하기 위한 방법 및 장치
US11381288B2 (en) Communication method, network device, and terminal device
US20230345284A1 (en) Downlink signal processing method and apparatus
WO2019137299A1 (zh) 通信的方法和通信设备
WO2022067749A1 (zh) 一种分集通信的方法及装置
WO2020114453A9 (zh) Srs传输的方法、接入网设备和终端设备
WO2018196555A1 (zh) 资源分配指示方法、装置、网络侧设备及用户设备
WO2022205022A1 (zh) 用于传输参考信号的方法和装置
WO2022165671A1 (zh) 一种通信方法和装置
TWI698134B (zh) 用於無線通信系統的網路節點和方法
KR20230008182A (ko) 사이드링크 물리적 계층 절차들
WO2022252954A1 (zh) 资源配置的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967644

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080107476.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2020967644

Country of ref document: EP

Effective date: 20230721

NENP Non-entry into the national phase

Ref country code: DE