WO2022141290A1 - 一种参数确定方法、参数确定装置及存储介质 - Google Patents

一种参数确定方法、参数确定装置及存储介质 Download PDF

Info

Publication number
WO2022141290A1
WO2022141290A1 PCT/CN2020/141778 CN2020141778W WO2022141290A1 WO 2022141290 A1 WO2022141290 A1 WO 2022141290A1 CN 2020141778 W CN2020141778 W CN 2020141778W WO 2022141290 A1 WO2022141290 A1 WO 2022141290A1
Authority
WO
WIPO (PCT)
Prior art keywords
search space
parameter determination
aggregation degree
determination method
time domain
Prior art date
Application number
PCT/CN2020/141778
Other languages
English (en)
French (fr)
Inventor
牟勤
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US18/270,385 priority Critical patent/US20240064789A1/en
Priority to CN202080004386.7A priority patent/CN114982158B/zh
Priority to EP20967630.3A priority patent/EP4274125A4/en
Priority to PCT/CN2020/141778 priority patent/WO2022141290A1/zh
Priority to CN202311459024.9A priority patent/CN117353870A/zh
Publication of WO2022141290A1 publication Critical patent/WO2022141290A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular, to a parameter determination method, a parameter determination device, and a storage medium.
  • MTC machine type communication technology
  • NB-IoT Narrow Band Internet of Things
  • the present disclosure provides a parameter determination method, a parameter determination device and a storage medium.
  • a parameter determination method comprising:
  • a first search space is determined, and the maximum control channel element CCE aggregation degree included in the first search space is greater than a first aggregation degree threshold.
  • the first search space corresponds to a first type of terminal
  • the first aggregation degree threshold is determined based on the maximum CCE aggregation degree included in the second search space
  • the second search space corresponds to a second type of terminal. ; wherein the receiving capability of the first type terminal is smaller than the receiving capability of the second type terminal.
  • each CCE aggregation degree in the first search space corresponds to the number of candidate transmission positions, and the sum of the number of candidate transmission positions is the same as the sum of the number of candidate transmission positions in the second search space.
  • the number of corresponding candidate transmission positions in the first search space is less than the second aggregation degree threshold.
  • the second aggregation degree threshold is determined based on the number of candidate transmission positions corresponding to the most in the second search space.
  • the first search space corresponds to a first control resource set
  • the second search space corresponds to a second control resource set
  • the first control resource set is configured based on preset parameters in the first table
  • the second control resource set is configured based on the preset parameters in the second table; wherein the preset parameters included in the first table are different from the preset parameters included in the second table.
  • the preset parameters in the first table include first time domain parameters, and the first time domain parameters include the number of time domain symbols occupied by the first control resource set;
  • the preset parameters include second time-domain parameters, and the second time-domain parameters include the number of time-domain symbols occupied by the second control resource set; wherein, the first time-domain parameters include at least one time-domain symbol whose number is greater than the number of time-domain symbols occupied by the second control resource set. 2 The maximum number of time domain symbols contained in the time domain parameter.
  • the preset parameters in the first table and the preset parameters in the second table further include a frequency domain resource quantity parameter; the method further includes:
  • the preset parameters in the first table include the first combination configuration of the number of time-domain symbols and the number of frequency-domain resources
  • the preset parameters in the second table include the second parameter of the number of time-domain symbols and the number of frequency-domain resources.
  • a combined configuration wherein the first combined configuration is different from the second combined configuration.
  • different first combination configurations correspond to different first control resource set capacities; when the first control resource set capacity is less than a third aggregation degree threshold, the number of first combination configurations is less than the The second combination configuration number.
  • the first search space is a type 0 public search space type 0 CSS.
  • an apparatus for determining parameters comprising:
  • a determination module configured to determine a first search space, where the maximum control channel element CCE aggregation degree included in the first search space is greater than a first aggregation degree threshold.
  • the first search space corresponds to a first type of terminal
  • the first aggregation degree threshold is determined based on the maximum CCE aggregation degree included in the second search space
  • the second search space corresponds to a second type of terminal.
  • the receiving capability of the terminal of the first type is smaller than that of the terminal of the second type.
  • each CCE aggregation degree in the first search space corresponds to the number of candidate transmission positions, and the sum of the number of candidate transmission positions is the same as the sum of the number of candidate transmission positions in the second search space.
  • the number of corresponding candidate transmission positions in the first search space is less than the second aggregation degree threshold.
  • the second aggregation degree threshold is determined based on the number of candidate transmission positions corresponding to the most in the second search space.
  • the first search space corresponds to a first control resource set
  • the second search space corresponds to a second control resource set
  • the first control resource set is configured based on preset parameters in the first table
  • the second control resource set is configured based on the preset parameters in the second table; wherein the preset parameters included in the first table are different from the preset parameters included in the second table.
  • the preset parameters in the first table include first time domain parameters, and the first time domain parameters include the number of time domain symbols occupied by the first control resource set;
  • the preset parameters include second time-domain parameters, and the second time-domain parameters include the number of time-domain symbols occupied by the second control resource set; wherein, the first time-domain parameters include at least one time-domain symbol whose number is greater than the number of time-domain symbols occupied by the second control resource set. 2 The maximum number of time domain symbols contained in the time domain parameter.
  • the preset parameters in the first table and the preset parameters in the second table further include a frequency domain resource quantity parameter; the apparatus further includes:
  • the preset parameters in the first table include the first combination configuration of the number of time-domain symbols and the number of frequency-domain resources
  • the preset parameters in the second table include the second parameter of the number of time-domain symbols and the number of frequency-domain resources.
  • a combined configuration wherein the first combined configuration is different from the second combined configuration.
  • different first combination configurations correspond to different first control resource set capacities; when the first control resource set capacity is less than a third aggregation degree threshold, the number of first combination configurations is less than the The second combination configuration number.
  • the first search space is a type 0 public search space type 0 CSS.
  • a parameter determination apparatus including:
  • processor configured to: execute the parameter determination method described in the first aspect or any one of the embodiments of the first aspect.
  • a non-transitory computer-readable storage medium which enables the mobile terminal to execute the first aspect or the first aspect when instructions in the storage medium are executed by a processor of a mobile terminal. Aspect the parameter determination method described in any one of the embodiments.
  • the technical solutions provided by the embodiments of the present disclosure may include the following beneficial effects: through the expansion and enhancement of the first search space in the present disclosure, a higher degree of CCE aggregation can be determined, and a better coverage enhancement effect of broadcast PDCCH has been achieved.
  • FIG. 1 is an architectural diagram of a communication system between a network device and a terminal according to an exemplary embodiment.
  • Fig. 2 is a flow chart of a method for determining parameters according to an exemplary embodiment.
  • Fig. 3 is a block diagram of a parameter determination apparatus according to an exemplary embodiment.
  • Fig. 4 is a block diagram of an apparatus for parameter determination according to an exemplary embodiment.
  • Fig. 5 is a block diagram of an apparatus for parameter determination according to an exemplary embodiment.
  • FIG. 1 is an architectural diagram of a communication system between a network device and a terminal according to an exemplary embodiment.
  • the communication method provided by the present disclosure can be applied to the communication system architecture diagram shown in FIG. 1 .
  • the network side device may send signaling based on the architecture shown in FIG. 1 .
  • the communication system between the network device and the terminal shown in FIG. 1 is only a schematic illustration, and the wireless communication system may also include other network devices, such as core network devices, wireless relay devices, and wireless backhaul devices. Transmission equipment, etc., are not shown in Figure 1.
  • the embodiments of the present disclosure do not limit the number of network devices and the number of terminals included in the wireless communication system.
  • the wireless communication system is a network that provides a wireless communication function.
  • Wireless communication systems can use different communication technologies, such as code division multiple access (CDMA), wideband code division multiple access (WCDMA), time division multiple access (TDMA) , frequency division multiple access (frequency division multiple access, FDMA), orthogonal frequency division multiple access (orthogonal frequency-division multiple access, OFDMA), single carrier frequency division multiple access (single Carrier FDMA, SC-FDMA), carrier sense Carrier Sense Multiple Access with Collision Avoidance.
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • single carrier frequency division multiple access single Carrier FDMA, SC-FDMA
  • carrier sense Carrier Sense Multiple Access with Collision Avoidance CDMA
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal
  • the network can be divided into 2G (English: generation) network, 3G network, 4G network or future evolution network, such as 5G network, 5G network can also be called a new wireless network ( New Radio, NR).
  • 2G International: generation
  • 3G network 4G network or future evolution network, such as 5G network
  • 5G network can also be called a new wireless network ( New Radio, NR).
  • New Radio New Radio
  • the present disclosure will sometimes refer to a wireless communication network simply as a network.
  • the wireless access network equipment may be: a base station, an evolved node B (base station), a home base station, an access point (AP) in a wireless fidelity (WIFI) system, a wireless relay A node, a wireless backhaul node, a transmission point (TP) or a transmission and reception point (TRP), etc., can also be a gNB in an NR system, or can also be a component or part of a device that constitutes a base station Wait.
  • the network device may also be an in-vehicle device. It should be understood that, in the embodiments of the present disclosure, the specific technology and specific device form adopted by the network device are not limited.
  • the terminal involved in the present disclosure may also be referred to as terminal equipment, user equipment (User Equipment, UE), mobile station (Mobile Station, MS), mobile terminal (Mobile Terminal, MT), etc.
  • a device that provides voice and/or data connectivity for example, a terminal may be a handheld device with wireless connectivity, a vehicle-mounted device, or the like.
  • some examples of terminals are: Smartphone (Mobile Phone), Pocket Personal Computer (PPC), PDA, Personal Digital Assistant (PDA), notebook computer, tablet computer, wearable device, or Vehicle equipment, etc.
  • the terminal device may also be an in-vehicle device. It should be understood that the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the terminal.
  • Reduced capability UE proposes MTC (Machine Type Communication, machine type communication), NB-IoT in order to support IoT services in communication systems such as LTE (Long Term Evolution) 4G (fourth generation mobile communication technology) systems.
  • MTC Machine Type Communication
  • NB-IoT Machine Type Communication
  • LTE Long Term Evolution
  • 4G fourth generation mobile communication technology
  • Narrow Band Internet of Thing Narrow Band Internet of Things
  • the maximum transmission rate currently supported by NB-IoT technology is several hundred kbps (kilobits per second), while the maximum transmission rate currently supported by MTC technology is several Mbps (million bits per second).
  • IoT services such as the popularization of services such as video surveillance, smart home, wearable devices, and industrial sensor monitoring
  • these services usually require a transmission rate of tens of Mbps to 100 Mbps. It also has relatively high requirements, so it is difficult for the MTC technology and NB-IoT technology in LTE to meet the requirements of the above services.
  • the requirement to design a new user equipment in 5G NR to cover this mid-range IoT device has been proposed.
  • this new terminal type is called Reduced capability UE. Due to the reduction of the capability or coverage capability of the Redcap terminal, coverage loss will occur, so coverage enhancement is required.
  • the simulation evaluation is under 4GHz, and the broadcast (broadcast) physical downlink control channel (PDCCH) needs to be enhanced.
  • the coverage enhancement for broadcast PDCCH may be repetition in time domain.
  • the CCE aggregation degree included in the standard definition of type 0 Common Search Space is relatively low. If the repetition in the time domain is performed, the search space needs to be expanded and enhanced.
  • each element in Table 1 exists independently, and these elements are exemplarily listed in the same table, but it does not mean that all elements in the table must exist simultaneously as shown in the table.
  • the value of each element is independent of any other element value in Table 1. Therefore, those skilled in the art can understand that the value of each element in Table 1 is an independent embodiment.
  • an embodiment of the present disclosure provides a parameter determination method, which expands the configuration of the control resource set (CORESET#0) and introduces a higher degree of CCE aggregation, so that a higher degree of CCE aggregation is supported under certain configurations, for example, 32 PDCCH capacity of each CCE. Further, the probability that the redcap terminal uses a higher degree of CCE aggregation can also be improved.
  • Fig. 2 is a flow chart of a method for determining parameters according to an exemplary embodiment. As shown in Figure 2, the following steps are included.
  • step S11 a first search space is determined.
  • the maximum CCE aggregation degree included in the first search space is greater than the first aggregation degree threshold.
  • the first search space corresponds to the first type of terminal
  • the first aggregation degree threshold is determined based on the maximum CCE aggregation degree included in the second search space
  • the second search space corresponds to the second type of terminal.
  • the receiving capability of the terminal of the first type is smaller than that of the terminal of the second type.
  • the redcap terminal includes one or two antennas, and the receiving capability is relatively weak.
  • the second type of terminal is a general high-end terminal with relatively high receiving capacity.
  • the maximum CCE aggregation level included in the second search space corresponding to the second type terminal may be 16, that is, the maximum CCE aggregation level may include 16 CCEs, so the first aggregation level threshold may be 16.
  • the embodiments of the present disclosure are merely illustrative, and do not specifically limit the present disclosure. It should be noted that the parameter determination method provided by the present disclosure can also be used for network equipment, and the network equipment performs the method similar to or the same as the terminal equipment, and details are not repeated here.
  • the first search space may further include candidate transmission positions corresponding to each CCE aggregation degree in the first search space.
  • the number of candidate transmission positions corresponding to each CCE aggregation degree may be different or the same, or the number of candidate transmission positions corresponding to some CCE aggregation degrees may be the same.
  • the total number of candidate transmission positions corresponding to each CCE aggregation level is determined based on the number of blind detections of the PDCCH. In other words, in response to determining the number of blind detections of the PDCCH, the total number of candidate transmission locations is determined.
  • the total number of candidate transmission positions included in the first search space is the same as the total number of candidate transmission positions included in the second search space.
  • the number of corresponding candidate transmission positions in the first search space is less than the second aggregation degree threshold. Further, each CCE aggregation degree in the first search space corresponds to a maximum number of candidate transmission positions that is smaller than the second aggregation degree threshold.
  • the second aggregation degree threshold may be determined based on the number of candidate transmission positions corresponding to the most in the second search space.
  • the maximum number of candidate transmission positions corresponding to the degree of CCE aggregation in the second search space corresponding to the second type of terminal includes 4 candidate transmission positions, then each time in the first search space corresponding to the first type of terminal
  • the maximum value of the number of candidate transmission positions corresponding to a CCE aggregation degree is less than 4, for example, the maximum number of candidate transmission positions included in the first search space may be 2 candidate transmission positions.
  • the number of candidate transmission positions corresponding to each CCE aggregation degree in the first search space please refer to Table 1. As shown in Table 1, in the first search space, the CCE aggregation degree includes 4 CCE aggregation degrees corresponding to 2
  • the CCE aggregation level includes 8 CCEs.
  • the CCE aggregation level corresponds to 2 candidate transmission positions.
  • the CCE aggregation level includes 16 CCEs.
  • the CCE aggregation level corresponds to 2 candidate transmission positions.
  • the CCE aggregation level includes 32 CCEs.
  • the degree of aggregation corresponds to 1 candidate transmission position.
  • each element in Table 2 exists independently, and these elements are exemplarily listed in the same table, but it does not mean that all elements in the table must exist simultaneously as shown in the table.
  • the value of each element is independent of any other element value in Table 2. Therefore, those skilled in the art can understand that the value of each element in Table 2 is an independent embodiment.
  • the tables provided in the embodiments of the present disclosure are merely examples for the present disclosure, and do not specifically limit the present disclosure.
  • the first search space corresponds to the first control resource set
  • the second search space corresponds to the second control resource set
  • the first control resource set is configured based on preset parameters in the first table
  • the second control resource set is configured based on the preset parameters in the second table.
  • the preset parameters included in the first table are different from the preset parameters included in the second table.
  • the preset parameters in the first table include first time domain parameters, and the first time domain parameters include the number of time domain symbols occupied by the first control resource set.
  • the preset parameters in the second table include second time domain parameters, and the second time domain parameters include the number of time domain symbols occupied by the second control resource set.
  • the first time domain parameter includes at least one time domain symbol whose number is greater than the maximum time domain symbol number included in the second time domain parameter.
  • the number of time domain symbols occupied by the second control resource set corresponding to the time domain position of the second search space corresponding to the second type of terminal is at most 3 OFDM symbols, then the first search corresponding to the first type of terminal
  • the number of time-domain symbols occupied by the time-domain position corresponding to the first control resource set includes at least one time-domain symbol and the number of time-domain symbols is greater than 3 OFDM symbols.
  • the number of time-domain symbols occupied by at least one of the first control resource set may be 4 OFDM symbols, or the number of time-domain symbols occupied by the first control resource set may be 6 OFDM symbols, etc., which are not specifically limited here.
  • the preset parameters in the first table and the preset parameters in the second table further include a frequency domain resource quantity parameter.
  • the preset parameters in the first table include a first combined configuration of the number of time-domain symbols and the number of frequency-domain resources
  • the preset parameters in the second table include a second combined configuration of the number of time-domain symbols and the number of frequency-domain resources.
  • the first combined configuration is different from the second combined configuration.
  • the multiplexing mode of the synchronization signal block (Synchronization Signal and PBCH block, SSB) and the first control resource set, and the multiplexing mode with the SSB reference point are also included. Offset.
  • the same number of frequency-domain resources may correspond to different numbers of time-domain symbols, resulting in different first combination configurations and different second combination configurations, and different first combination configurations correspond to different first control resource set capacities, different The second combination configuration of corresponds to a different second control resource set capacity. And when the capacity of the first control resource set is smaller than the third aggregation degree threshold, the number of the first combination configuration is less than the second combination configuration number.
  • each element in Table 3 exists independently, and these elements are exemplarily listed in the same table, but it does not mean that all elements in the table must exist simultaneously as shown in the table.
  • the value of each element is independent of any other element value in Table 3. Therefore, those skilled in the art can understand that the value of each element in Table 3 is an independent embodiment.
  • the tables provided in the embodiments of the present disclosure are merely examples for the present disclosure, and do not specifically limit the present disclosure.
  • each element in Table 4 exists independently, and these elements are exemplarily listed in the same table, but it does not mean that all elements in the table must exist simultaneously as shown in the table.
  • the value of each element is independent of any other element value in Table 4. Therefore, those skilled in the art can understand that the value of each element in Table 4 is an independent embodiment.
  • the first search space may be a time domain extension for the structure of the type 0 common search space type 0 CSS.
  • a new CCE aggregation degree is added to the existing type 0 CSS, and the new CCE aggregation degree is greater than or equal to 16.
  • the first configuration parameter set proposed in some embodiments of the present disclosure compared with the parameter set shown in Table 1 in the related art, adds a new CCE aggregation degree ⁇ 16 , but the total sum of the total PDCCH blind detection times is the same as the sum of the PDCCH blind detection times in the related art.
  • the number of candidate transmission positions corresponding to PDCCHs with a low degree of CCE aggregation is compared with the existing parameter sets.
  • the number of type 0 CSS should be less.
  • the duration of CORESET#0 is increased for time domain extension; CORESET#0 is allowed to last longer than 3 OFDM symbols in the time domain . Since the configuration of CORESET#0 by the SSB in the related art does not support the configuration of more than 3 OFDM symbols, the indication of the SSB needs to be enhanced. That is, the configuration of CORESET#0 in the related art is based on a preset table, which includes the multiplexing pattern of SSB and CORESET#0, the number of RBs corresponding to CORESET#0, and the number of RBs corresponding to CORESET#0.
  • the value range of CORESET#0 in the related art is 1-3.
  • some configurations are removed from the configuration table of the related art, and then some configurations including more than 3 OFDM symbols are added. For details, please refer to Table 4 as an example.
  • Any embodiment of the present disclosure may be applied to a terminal, a base station, or a network side device; the embodiment of the present disclosure does not limit this.
  • Table 2, Table 3, and Table 4 in the embodiments of the present disclosure are different implementations that can be used respectively, which are not limited in the embodiments of the present disclosure.
  • an embodiment of the present disclosure also provides a parameter determination apparatus.
  • the parameter determination apparatus of the present disclosure may be applied to a terminal, a base station, or a network side device; the embodiment of the present disclosure does not limit this.
  • the parameter determination apparatus includes corresponding hardware structures and/or software modules for executing each function.
  • the embodiments of the present disclosure can be implemented in hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be considered beyond the scope of the technical solutions of the embodiments of the present disclosure.
  • Fig. 3 is a block diagram of a parameter determination apparatus according to an exemplary embodiment.
  • the parameter determination apparatus 100 includes a determination module 101 .
  • the determining module 101 is configured to determine a first search space, where the maximum control channel element CCE aggregation degree included in the first search space is greater than a first aggregation degree threshold.
  • the first search space corresponds to the first type of terminals
  • the first aggregation degree threshold is determined based on the maximum CCE aggregation degree included in the second search space
  • the second search space corresponds to the second type of terminals.
  • the receiving capability of the terminal of the first type is smaller than that of the terminal of the second type.
  • each CCE aggregation degree in the first search space corresponds to the number of candidate transmission positions, and the sum of the number of candidate transmission positions is the same as the sum of the number of candidate transmission positions in the second search space.
  • the number of corresponding candidate transmission positions in the first search space is less than the second aggregation degree threshold.
  • the second aggregation degree threshold is determined based on the number of candidate transmission positions corresponding to the most in the second search space.
  • the first search space corresponds to the first control resource set
  • the second search space corresponds to the second control resource set
  • the first control resource set is configured based on preset parameters in the first table
  • the second control resource set is configured based on the preset parameters in the second table.
  • the preset parameters included in the first table are different from the preset parameters included in the second table.
  • the preset parameters in the first table include first time domain parameters, and the first time domain parameters include the number of time domain symbols occupied by the first control resource set.
  • the preset parameters in the second table include second time domain parameters, and the second time domain parameters include the number of time domain symbols occupied by the second control resource set.
  • the first time domain parameter includes at least one time domain symbol whose number is greater than the maximum time domain symbol number included in the second time domain parameter.
  • the preset parameters in the first table and the preset parameters in the second table further include a frequency domain resource quantity parameter.
  • the device also includes:
  • the preset parameters in the first table include a first combined configuration of the number of time-domain symbols and the number of frequency-domain resources
  • the preset parameters in the second table include a second combined configuration of the number of time-domain symbols and the number of frequency-domain resources.
  • the first combined configuration is different from the second combined configuration.
  • different first combination configurations correspond to different first control resource set capacities.
  • the capacity of the first control resource set is less than the third aggregation degree threshold
  • the number of the first combination configuration is less than the number of the second combination configuration.
  • the first search space is a type 0 public search space type 0 CSS.
  • FIG. 4 is a block diagram of an apparatus 200 for parameter determination according to an exemplary embodiment.
  • apparatus 200 may be a mobile phone, computer, digital broadcast terminal, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
  • apparatus 200 may include one or more of the following components: processing component 202, memory 204, power component 206, multimedia component 208, audio component 210, input/output (I/O) interface 212, sensor component 214, and Communication component 216 .
  • the processing component 202 generally controls the overall operation of the device 200, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 202 may include one or more processors 220 to execute instructions to perform all or some of the steps of the methods described above.
  • processing component 202 may include one or more modules that facilitate interaction between processing component 202 and other components.
  • processing component 202 may include a multimedia module to facilitate interaction between multimedia component 208 and processing component 202.
  • Memory 204 is configured to store various types of data to support operation at device 200 . Examples of such data include instructions for any application or method operating on the device 200, contact data, phonebook data, messages, pictures, videos, and the like. Memory 204 may be implemented by any type of volatile or non-volatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power components 206 provide power to various components of device 200 .
  • Power components 206 may include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power to device 200 .
  • the multimedia component 208 includes a screen that provides an output interface between the device 200 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundaries of a touch or swipe action, but also detect the duration and pressure associated with the touch or swipe action.
  • the multimedia component 208 includes a front-facing camera and/or a rear-facing camera. When the apparatus 200 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 210 is configured to output and/or input audio signals.
  • audio component 210 includes a microphone (MIC) that is configured to receive external audio signals when device 200 is in operating modes, such as call mode, recording mode, and voice recognition mode.
  • the received audio signal may be further stored in memory 204 or transmitted via communication component 216 .
  • the audio component 210 also includes a speaker for outputting audio signals.
  • the I/O interface 212 provides an interface between the processing component 202 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 214 includes one or more sensors for providing status assessments of various aspects of device 200 .
  • the sensor assembly 214 can detect the open/closed state of the device 200, the relative positioning of components, such as the display and keypad of the device 200, and the sensor assembly 214 can also detect a change in the position of the device 200 or a component of the device 200 , the presence or absence of user contact with the device 200 , the orientation or acceleration/deceleration of the device 200 and the temperature change of the device 200 .
  • Sensor assembly 214 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 214 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 214 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 216 is configured to facilitate wired or wireless communication between apparatus 200 and other devices.
  • Device 200 may access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 216 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 216 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 200 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 204 including instructions, executable by the processor 220 of the apparatus 200 to perform the method described above.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • FIG. 5 is a block diagram of an apparatus 300 for parameter determination according to an exemplary embodiment.
  • the apparatus 300 may be provided as a server.
  • apparatus 300 includes a processing component 322, which further includes one or more processors, and a memory resource, represented by memory 332, for storing instructions executable by processing component 322, such as an application program.
  • An application program stored in memory 332 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 322 is configured to execute instructions to perform the parameter determination method described above.
  • Device 300 may also include a power supply assembly 326 configured to perform power management of device 300 , a wired or wireless network interface 350 configured to connect device 300 to a network, and an input output (I/O) interface 358 .
  • Device 300 may operate based on an operating system stored in memory 332, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • first, second, etc. are used to describe various information, but the information should not be limited to these terms. These terms are only used to distinguish the same type of information from one another, and do not imply a particular order or level of importance. In fact, the expressions “first”, “second” etc. are used completely interchangeably.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information, without departing from the scope of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种参数确定方法、参数确定装置及存储介质被公开。其中,参数确定方法,包括:确定第一搜索空间,所述第一搜索空间中包括的最大控制信道单元CCE聚合程度大于第一聚合程度阈值。通过上述方法可以确定更高的CCE聚合程度,以达到更好的广播PDCCH的覆盖增强效果。

Description

一种参数确定方法、参数确定装置及存储介质 技术领域
本公开涉及无线通信技术领域,尤其涉及一种参数确定方法、参数确定装置及存储介质。
背景技术
在无线通信系统中,针对物联网业务的低速率、高时延等场景,提出了机器类通信技术(Machine Type Communication,MTC)和窄带物联网(Narrow Band Internet of Things,NB-IoT)技术。
由于物联网业务的发展,MTC和NB-IoT技术已经不能满足当前的物联网业务对速率和时延的需求。因此设计一种新的终端Reduced capability(Redcap)UE,或者简称为NR-lite,以覆盖物联网的业务要求。由于Redcap终端低造价、低复杂度的要求,以及天线数以及带宽的降低,导致终端的覆盖能力降低,需要进行覆盖增强。而相关技术中控制信道单元(Control Channel Element,CCE)聚合程度不能满足覆盖增强的要求。
发明内容
为克服相关技术中存在的问题,本公开提供一种参数确定方法、参数确定装置及存储介质。
根据本公开实施例的第一方面,提供一种参数确定方法,所述方法包括:
确定第一搜索空间,所述第一搜索空间中包括的最大控制信道单元CCE聚合程度大于第一聚合程度阈值。
一种实施方式中,所述第一搜索空间对应第一类型终端,所述第一聚合程度阈值基于第二搜索空间中包括的最大CCE聚合程度确定,所述第二搜索空间对应第二类型终端;其中,所述第一类型终端的接收能力小于第二类型终端的接收能力。
一种实施方式中,所述第一搜索空间中每一CCE聚合程度对应有候选传输位置个数,所述候选传输位置个数的总和与第二搜索空间内的候选传输位置个数总和相同。
一种实施方式中,所述第一搜索空间中对应的候选传输位置数量小于第二聚合程度阈值。
一种实施方式中,所述第二聚合程度阈值基于第二搜索空间中对应最多的候选传输位置个数确定。
一种实施方式中,所述第一搜索空间对应第一控制资源集合,第二搜索空间对应第二控制资源集合,所述第一控制资源集合基于第一表格中的预设参数进行配置;所述第二控 制资源集合基于第二表格中的预设参数进行配置;其中,所述第一表格中所包含的预设参数与所述第二表格中所包含的预设参数不同。
一种实施方式中,所述第一表格中的预设参数包括第一时域参数,所述第一时域参数包括第一控制资源集所占的时域符号数量;所述第二表格中的预设参数包括第二时域参数,所述第二时域参数包括第二控制资源集合所占的时域符号数量;其中,所述第一时域参数至少包含一个时域符号数量大于第二时域参数包含的最大时域符号数量。
一种实施方式中,所述第一表格中的预设参数和所述第二表格中的预设参数还包括频域资源数量参数;所述方法还包括:
所述第一表格中的预设参数包括时域符号数量和频域资源数量参数的第一组合配置,所述第二表格中的预设参数包括时域符号数量与频域资源数量的第二组合配置;其中,所述第一组合配置与第二组合配置不同。
一种实施方式中,不同的所述第一组合配置对应不同的第一控制资源集合容量;所述第一控制资源集合容量小于第三聚合程度阈值时所述第一组合配置个数小于所述第二组合配置个数。
一种实施方式中,所述第一搜索空间为类型0公共搜索空间type 0 CSS。
根据本公开实施例的第二方面,提供一种参数确定装置,所述装置包括:
确定模块,用于确定第一搜索空间,所述第一搜索空间中包括的最大控制信道单元CCE聚合程度大于第一聚合程度阈值。
一种实施方式中,所述第一搜索空间对应第一类型终端,所述第一聚合程度阈值基于第二搜索空间中包括的最大CCE聚合程度确定,所述第二搜索空间对应第二类型终端;
其中,所述第一类型终端的接收能力小于第二类型终端的接收能力。
一种实施方式中,所述第一搜索空间中每一CCE聚合程度对应有候选传输位置个数,所述候选传输位置个数的总和与第二搜索空间内的候选传输位置个数总和相同。
一种实施方式中,所述第一搜索空间中对应的候选传输位置数量小于第二聚合程度阈值。
一种实施方式中,所述第二聚合程度阈值基于第二搜索空间中对应最多的候选传输位置个数确定。
一种实施方式中,所述第一搜索空间对应第一控制资源集合,第二搜索空间对应第二控制资源集合,所述第一控制资源集合基于第一表格中的预设参数进行配置;所述第二控制资源集合基于第二表格中的预设参数进行配置;其中,所述第一表格中所包含的预设参数与所述第二表格中所包含的预设参数不同。
一种实施方式中,所述第一表格中的预设参数包括第一时域参数,所述第一时域参数包括第一控制资源集所占的时域符号数量;所述第二表格中的预设参数包括第二时域参数,所述第二时域参数包括第二控制资源集合所占的时域符号数量;其中,所述第一时域参数至少包含一个时域符号数量大于第二时域参数包含的最大时域符号数量。
一种实施方式中,所述第一表格中的预设参数和所述第二表格中的预设参数还包括频域资源数量参数;所述装置还包括:
所述第一表格中的预设参数包括时域符号数量和频域资源数量参数的第一组合配置,所述第二表格中的预设参数包括时域符号数量与频域资源数量的第二组合配置;其中,所述第一组合配置与第二组合配置不同。
一种实施方式中,不同的所述第一组合配置对应不同的第一控制资源集合容量;所述第一控制资源集合容量小于第三聚合程度阈值时所述第一组合配置个数小于所述第二组合配置个数。
一种实施方式中,所述第一搜索空间为类型0公共搜索空间type 0 CSS。
根据本公开实施例的第三方面,提供一种参数确定装置,包括:
处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为:执行第一方面或第一方面任意一种实施方式中所述的参数确定方法。
根据本公开实施例的第四方面,提供一种非临时性计算机可读存储介质,当所述存储介质中的指令由移动终端的处理器执行时,使得移动终端能够执行第一方面或第一方面任意一种实施方式中所述的参数确定方法。
本公开的实施例提供的技术方案可以包括以下有益效果:通过本公开对第一搜索空间的扩展和增强,可以确定更高的CCE聚合程度,已达到更好的广播PDCCH的覆盖增强效果。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种网络设备与终端的通信系统架构图。
图2是根据一示例性实施例示出的一种参数确定方法的流程图。
图3是根据一示例性实施例示出的一种参数确定装置框图。
图4是根据一示例性实施例示出的一种用于参数确定装置的框图。
图5是根据一示例性实施例示出的一种用于参数确定装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
图1是根据一示例性实施例示出的一种网络设备与终端的通信系统架构图。本公开提供的通信方法可以应用于图1所示的通信系统架构图中。如图1所示,网络侧设备可以基于图1所示的架构发送信令。
可以理解的是,图1所示的网络设备与终端的通信系统仅是进行示意性说明,无线通信系统中还可包括其它网络设备,例如还可以包括核心网设备、无线中继设备和无线回传设备等,在图1中未画出。本公开实施例对该无线通信系统中包括的网络设备数量和终端数量不做限定。
进一步可以理解的是,本公开实施例的无线通信系统,是一种提供无线通信功能的网络。无线通信系统可以采用不同的通信技术,例如码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single Carrier FDMA,SC-FDMA)、载波侦听多路访问/冲突避免(Carrier Sense Multiple Access with Collision Avoidance)。根据不同网络的容量、速率、时延等因素可以将网络分为2G(英文:generation)网络、3G网络、4G网络或者未来演进网络,如5G网络,5G网络也可称为是新无线网络(New Radio,NR)。为了方便描述,本公开有时会将无线通信网络简称为网络。
进一步的,本公开中涉及的网络设备也可以称为无线接入网设备。该无线接入网设备可以是:基站、演进型基站(evolved node B,基站)、家庭基站、无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为NR系统中的gNB,或者,还可以是构成基站的组件或一部分设备等。当为车联网(V2X)通信系统时,网络设备还可以是车载设备。应理解,本公开的实施例中,对网络设备所采用的具体技术和具体设备形态不做限定。
进一步的,本公开中涉及的终端,也可以称为终端设备、用户设备(User Equipment, UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,终端可以是具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:智能手机(Mobile Phone)、口袋计算机(Pocket Personal Computer,PPC)、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、笔记本电脑、平板电脑、可穿戴设备、或者车载设备等。此外,当为车联网(V2X)通信系统时,终端设备还可以是车载设备。应理解,本公开实施例对终端所采用的具体技术和具体设备形态不做限定。
Reduced capability UE在LTE(Long Term Evolution,长期演进)4G(第四代移动通信技术)系统等通信系统中,为了支持物联网业务而提出了MTC(Machine Type Communication,机器类通信)、NB-IoT(Narrow Band Internet of Thing,窄带物联网)两大技术,这两大技术主要针对的是低速率、高时延等场景,比如抄表、环境监测等场景。其中,NB-IoT技术目前支持的最大传输速率为几百kbps(千位每秒),而MTC技术目前支持的最大传输速率为几Mbps(百万位每秒)。然而,随着物联网业务的不断发展,比如视频监控、智能家居、可穿戴设备和工业传感监测等业务的普及,这些业务通常要求的传输速率为几十Mbps到100Mbps,同时上述业务对时延也具有相对高的要求,因此LTE中的MTC技术和NB-IoT技术很难满足上述业务的要求。基于这种情况,开始提出了在5G NR中再设计一种新的用户设备,用以来覆盖这种中端物联网设备的要求。在目前的3GPP(3rd Generation Partnership Project,第三代合作伙伴项目)标准化中,这种新的终端类型叫做Reduced capability UE。由于Redcap终端的能力或覆盖能力的降低,会带来覆盖损失,因此需要进行覆盖增强。例如在Redcap终端中,仿真评估在4GHz下,广播(broadcast)物理下行控制信道(physical downlink control channel,PDCCH)需要做增强。其中,针对broadcast PDCCH的覆盖增强可以是做时域的重复(repetition)。
但是在相关技术中,类型0公共搜索空间(type 0 Common Search Space,type 0 CSS)的标准定义中包括的CCE聚合程度相对较低,如果做时域的重复,则需要对搜索空间进行扩展和增强。
其中相关技术中关于type 0 CSS搜索空间包括的CCE聚合程度,以及与每一CCE聚合程度包括的候选传输位置的个数,可参见表1。
表1
Figure PCTCN2020141778-appb-000001
可以理解的是,表1中的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。其中每一个元素的值,是不依赖于表1中任何其他元素值。因此本领域内技术人员可以理解,该表1中的每一个元素的取值都是一个独立的实施例。
基于此本公开实施例提供一种参数确定方法,扩展控制资源集(CORESET#0)的配置,引入更高的CCE聚合程度,使得在某些配置下支持更高的CCE聚合程度,例如支持32个CCE的PDCCH容量。进一步,还可以提高redcap终端使用更高CCE聚合程度的概率。
图2是根据一示例性实施例示出的一种参数确定方法的流程图。如图2所示,包括以下步骤。
在步骤S11中,确定第一搜索空间。
在本公开实施例中,第一搜索空间中包括的最大CCE聚合程度大于第一聚合程度阈值。第一搜索空间对应第一类型终端,第一聚合程度阈值基于第二搜索空间中包括的最大CCE聚合程度确定,第二搜索空间对应第二类型终端。其中,第一类型终端的接收能力小于第二类型终端的接收能力。
在本公开一些实施例中,以第一类型终端为redcap终端为例,redcap终端包括一根或两根天线,接收能力相对较弱。第二类型终端则为一般的高端终端,具有相对较高的接收能力。示例性的,第二类型终端对应的第二搜索空间中包括的最大CCE聚合程度可以是16,即最大的CCE聚合等级可以包括16个CCE,因此第一聚合程度阈值可以是16。当然本公开实施例仅仅是举例说明,并不是对本公开的具体限定。需要说明的是,本公开提供的参数确定方法还可以用于网络设备,网络设备执行该方法与终端设备相似或相同,在此不再赘述。
在本公开实施例提供的参数确定方法中,为增强部分终端使用更高CCE聚合程度的概率,确定引入更高的CCE聚合程度,使得在一些配置下支持更高的CCE聚合程度,更有效的进行广播PDCCH的覆盖增强。
在本公开实施例中,第一搜索空间中还可以包括与第一搜索空间中每一CCE聚合程度对应的候选传输位置。其中每一CCE聚合程度对应的候选传输位置个数可以不同,也可以相同,或者部分CCE聚合程度对应的候选传输位置个数相同。且,每一CCE聚合程度对应的候选传输位置个数的总数基于PDCCH的盲检次数确定。换言之,响应于确定PDCCH的盲检次数,则确定候选传输位置个数的总数。其中第一搜索空间包括的候选传输位置个数的总数与第二搜索空间对应包括的候选传输位置个数的总相同。
在本公开实施例中,第一搜索空间中对应的候选传输位置数量小于第二聚合程度阈值。进一步的,第一搜索空间中每一CCE聚合程度对应有候选传输位置个数的最大值小于第二聚合程度阈值。
在本公开一些实施例中,第二聚合程度阈值可以是基于第二搜索空间中对应最多的候选传输位置个数确定。
示例性的,与第二类型终端对应的第二搜索空间中与CCE聚合程度对应的最多的候选传输位置个数包括4个候选传输位置,则与第一类型终端对应的第一搜索空间中每一CCE聚合程度对应的候选传输位置个数的最大值小于4,例如第一搜索空间中包括的最多的候选传输位置个数可以是2个候选传输位置。进一步,第一搜索空间中每一CCE聚合程度对应的候选传输位置个数,可参考表1,如表1所示,第一搜索空间中,CCE聚合程度包括4个CCE的CCE聚合程度对应2个候选传输位置,CCE聚合程度包括8个CCE的CCE聚合程度对应2个候选传输位置,CCE聚合程度包括16个CCE的CCE聚合程度对应2个候选传输位置,CCE聚合程度包括32个CCE的CCE聚合程度对应1个候选传输位置。
表2
Figure PCTCN2020141778-appb-000002
可以理解的是,表2中的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。其中每一个元素的值,是不依赖于表2中任何其他元素值。因此本领域内技术人员可以理解,该表2中的每一个元素的取值都是一个独立的实施例。当然,本公开实施例提供的表格仅仅是对本公开的举例说明,并不是对本公开的具体限定。
在本公开实施例中,第一搜索空间对应第一控制资源集合,第二搜索空间对应第二控制资源集合,第一控制资源集合基于第一表格中的预设参数进行配置。第二控制资源集合基于第二表格中的预设参数进行配置。其中,第一表格中所包含的预设参数与第二表格中所包含的预设参数不同。
在本公开实施例中,第一表格中的预设参数包括第一时域参数,第一时域参数包括第一控制资源集所占的时域符号数量。第二表格中的预设参数包括第二时域参数,第二时域参数包括第二控制资源集合所占的时域符号数量。其中,第一时域参数至少包含一个时域符号数量大于第二时域参数包含的最大时域符号数量。
示例性的,第二类型终端对应的第二搜索空间所在时域位置对应第二控制资源集合所占的时域符号数量的最多为3个OFDM符号,则与第一类型终端对应的第一搜索空间所在时域位置对应第一控制资源集合所占的时域符号数量至少包含一个时域符号数量大于3个OFDM符号,例如,第一控制资源集合至少包含一个所占的时域符号数量可以是4个OFDM符号,或者第一控制资源集合所占的时域符号数量可以是6个OFDM符号等,在此不做具体限定。
在本公开一些实施例中,第一表格中的预设参数和所述第二表格中的预设参数还包括频域资源数量参数。第一表格中的预设参数包括时域符号数量和频域资源数量参数的第一组合配置,第二表格中的预设参数包括时域符号数量与频域资源数量的第二组合配置。其中,第一组合配置与第二组合配置不同。可参见表3和表4,其中,表3对应第一表格,表4对应第二表格。如表3和表4所示,在表3和表4中,还包括同步信号块(Synchronization Signal and PBCH block,SSB)与第一控制资源集合的复用方式,以及与SSB参考点之间的偏移量。其中,相同的频域资源数量可以对应不同的时域符号数量,得到不同的第一组合配置和不同的第二组合配置,以及不同的第一组合配置对应不同的第一控制资源集合容量,不同的第二组合配置对应不同的第二控制资源集合容量。且第一控制资源集合容量小于第三聚合程度阈值时第一组合配置个数小于所述第二组合配置个数。
表3
Figure PCTCN2020141778-appb-000003
可以理解的是,表3中的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。其中每一个元素的值,是不依赖于表3中任何其他元素值。因此本领域内技术人员可以理解,该表3中的每一个元素的取值都是一个独立的实施例。当然,本公开实施例提供的表格仅仅是对本公开的举例说明,并不是对本公开的具体限定。
表4
Figure PCTCN2020141778-appb-000004
可以理解的是,表4中的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。其中每一个元素的值,是不依赖于表4中任何其他元素值。因此本领域内技术人员可以理解,该表4中的每一个元素的取值都是一个独立的实施例。
在本公开实施例中,第一搜索空间可以是针对类型0公共搜索空间type 0 CSS的结构进行时域的扩展。
如表2、表3、表4为例,本公开的一些实施例中,将现有的type 0 CSS增加一个新的CCE聚合程度,新的CCE聚合程度≥16。还是表2、表3、表4为例,本公开的一些实施例中提出的第一配置参数集,相比较相关技术中如表1所示的参数集,增加了新的CCE聚合程度≥16,但是总的PDCCH盲检次数的总和与相关技术中的PDCCH盲检次数的总 和相同。还是表2、表3、表4为例,本公开的一些实施例中提出的第一配置参数集,CCE聚合程度较低的PDCCH所对应的候选传输位置个数,相比较已有的参数集type 0 CSS内的个数要少。
本公开的一些实施例中提出的第一配置参数集,相比较相关技术中的参数集,增加CORESET#0的持续时间进行时域扩展;允许CORESET#0在时域上持续大于3个OFDM符号。由于相关技术中的SSB对CORESET#0的配置中不支持大于3个OFDM符号的配置,因此需要对SSB的指示进行增强。即:相关技术中的CORESET#0的配置是基于预设的表格,表格中包含了SSB与CORESET#0的复用图谱(Multiplexing Pattern),CORESET#0对应的RB的个数以及CORESET#0所持续的符号个数,还有与SSB参考点之间的offset。但相关技术中的CORESET#0的取值范围是1~3。本公开的一些实施例中,在相关技术的配置表格中移除一部分配置,然后再增加一些包含大于3个OFDM符号的配置。具体请参考表4为例。
在本公开的任意一个实施例,可以应用于终端,也可以应用于基站,还可以应用于网络侧设备;本公开实施例并不对此做出限定。
需要说明的是,本公开实施例中的表2、表3、表4是可以分别使用的不同的实施方式,本公开实施例并不对此作出限定。
基于相同的构思,本公开实施例还提供一种参数确定装置。在本公开的参数确定装置的任意一个实施例,可以应用于终端,也可以应用于基站,还可以应用于网络侧设备;本公开实施例并不对此做出限定。
可以理解的是,本公开实施例提供的参数确定装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开实施例中所公开的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图3是根据一示例性实施例示出的一种参数确定装置框图。参照图3,该参数确定装置100包括,确定模块101。
确定模块101,用于确定第一搜索空间,第一搜索空间中包括的最大控制信道单元CCE聚合程度大于第一聚合程度阈值。
在本公开实施例中,第一搜索空间对应第一类型终端,第一聚合程度阈值基于第二搜索空间中包括的最大CCE聚合程度确定,第二搜索空间对应第二类型终端。其中,第一类型终端的接收能力小于第二类型终端的接收能力。
在本公开实施例中,第一搜索空间中每一CCE聚合程度对应有候选传输位置个数,候选传输位置个数的总和与第二搜索空间内的候选传输位置个数总和相同。
在本公开实施例中,第一搜索空间中对应的候选传输位置数量小于第二聚合程度阈值。
在本公开实施例中,第二聚合程度阈值基于第二搜索空间中对应最多的候选传输位置个数确定。
在本公开实施例中,第一搜索空间对应第一控制资源集合,第二搜索空间对应第二控制资源集合,第一控制资源集合基于第一表格中的预设参数进行配置。第二控制资源集合基于第二表格中的预设参数进行配置。其中,第一表格中所包含的预设参数与第二表格中所包含的预设参数不同。
在本公开实施例中,第一表格中的预设参数包括第一时域参数,第一时域参数包括第一控制资源集所占的时域符号数量。第二表格中的预设参数包括第二时域参数,第二时域参数包括第二控制资源集合所占的时域符号数量。其中,第一时域参数至少包含一个时域符号数量大于第二时域参数包含的最大时域符号数量。
在本公开实施例中,第一表格中的预设参数和第二表格中的预设参数还包括频域资源数量参数。装置还包括:
第一表格中的预设参数包括时域符号数量和频域资源数量参数的第一组合配置,第二表格中的预设参数包括时域符号数量与频域资源数量的第二组合配置。其中,第一组合配置与第二组合配置不同。
在本公开实施例中,不同的第一组合配置对应不同的第一控制资源集合容量。第一控制资源集合容量小于第三聚合程度阈值时第一组合配置个数小于第二组合配置个数。
在本公开实施例中,第一搜索空间为类型0公共搜索空间type 0 CSS。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图4是根据一示例性实施例示出的一种用于参数确定的装置200的框图。例如,装置200可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图4,装置200可以包括以下一个或多个组件:处理组件202,存储器204,电力 组件206,多媒体组件208,音频组件210,输入/输出(I/O)接口212,传感器组件214,以及通信组件216。
处理组件202通常控制装置200的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件202可以包括一个或多个处理器220来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件202可以包括一个或多个模块,便于处理组件202和其他组件之间的交互。例如,处理组件202可以包括多媒体模块,以方便多媒体组件208和处理组件202之间的交互。
存储器204被配置为存储各种类型的数据以支持在装置200的操作。这些数据的示例包括用于在装置200上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器204可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件206为装置200的各种组件提供电力。电力组件206可以包括电源管理系统,一个或多个电源,及其他与为装置200生成、管理和分配电力相关联的组件。
多媒体组件208包括在所述装置200和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件208包括一个前置摄像头和/或后置摄像头。当装置200处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件210被配置为输出和/或输入音频信号。例如,音频组件210包括一个麦克风(MIC),当装置200处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器204或经由通信组件216发送。在一些实施例中,音频组件210还包括一个扬声器,用于输出音频信号。
I/O接口212为处理组件202和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件214包括一个或多个传感器,用于为装置200提供各个方面的状态评估。 例如,传感器组件214可以检测到装置200的打开/关闭状态,组件的相对定位,例如所述组件为装置200的显示器和小键盘,传感器组件214还可以检测装置200或装置200一个组件的位置改变,用户与装置200接触的存在或不存在,装置200方位或加速/减速和装置200的温度变化。传感器组件214可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件214还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件214还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件216被配置为便于装置200和其他设备之间有线或无线方式的通信。装置200可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件216经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件216还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置200可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器204,上述指令可由装置200的处理器220执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图5是根据一示例性实施例示出的一种用于参数确定的装置300的框图。例如,装置300可以被提供为一服务器。参照图5,装置300包括处理组件322,其进一步包括一个或多个处理器,以及由存储器332所代表的存储器资源,用于存储可由处理组件322的执行的指令,例如应用程序。存储器332中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件322被配置为执行指令,以执行上述参数确定方法。
装置300还可以包括一个电源组件326被配置为执行装置300的电源管理,一个有线或无线网络接口350被配置为将装置300连接到网络,和一个输入输出(I/O)接口358。装置300可以操作基于存储在存储器332的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
进一步可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。 “和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
进一步可以理解的是,术语“第一”、“第二”等用于描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开,并不表示特定的顺序或者重要程度。实际上,“第一”、“第二”等表述完全可以互换使用。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (13)

  1. 一种参数确定方法,其特征在于,所述方法包括:
    确定第一搜索空间,所述第一搜索空间中包括的最大控制信道单元CCE聚合程度大于第一聚合程度阈值。
  2. 根据权利要求1所述的参数确定方法,其特征在于,所述第一搜索空间对应第一类型终端,所述第一聚合程度阈值基于第二搜索空间中包括的最大CCE聚合程度确定,所述第二搜索空间对应第二类型终端;
    其中,所述第一类型终端的接收能力小于第二类型终端的接收能力。
  3. 根据权利要求1或2所述的参数确定方法,其特征在于,所述第一搜索空间中每一CCE聚合程度对应有候选传输位置个数,所述候选传输位置个数的总和与第二搜索空间内的候选传输位置个数总和相同。
  4. 根据权利要求3所述的参数确定方法,其特征在于,所述第一搜索空间中对应的候选传输位置数量小于第二聚合程度阈值。
  5. 根据权利要求4所述的参数确定方法,其特征在于,所述第二聚合程度阈值基于第二搜索空间中对应最多的候选传输位置个数确定。
  6. 根据权利要求1所述的参数确定方法,其特征在于,所述第一搜索空间对应第一控制资源集合,第二搜索空间对应第二控制资源集合,所述第一控制资源集合基于第一表格中的预设参数进行配置;所述第二控制资源集合基于第二表格中的预设参数进行配置;
    其中,所述第一表格中所包含的预设参数与所述第二表格中所包含的预设参数不同。
  7. 根据权利要求6所述的参数确定方法,其特征在于,所述第一表格中的预设参数包括第一时域参数,所述第一时域参数包括第一控制资源集所占的时域符号数量;所述第二表格中的预设参数包括第二时域参数,所述第二时域参数包括第二控制资源集合所占的时域符号数量;
    其中,所述第一时域参数至少包含一个时域符号数量大于第二时域参数包含的最大时域符号数量。
  8. 根据权利要求7所述的参数确定方法,其特征在于,所述第一表格中的预设参数和所述第二表格中的预设参数还包括频域资源数量参数;所述方法还包括:
    所述第一表格中的预设参数包括时域符号数量和频域资源数量参数的第一组合配置,所述第二表格中的预设参数包括时域符号数量与频域资源数量的第二组合配置;
    其中,所述第一组合配置与第二组合配置不同。
  9. 根据权利要求8所述的参数确定方法,其特征在于,不同的所述第一组合配置对应不同的第一控制资源集合容量;所述第一控制资源集合容量小于第三聚合程度阈值时所述第一组合配置个数小于所述第二组合配置个数。
  10. 根据权利要求1-9任一项所述的参数确定方法,其特征在于,所述第一搜索空间为类型0公共搜索空间type 0 CSS。
  11. 一种参数确定装置,其特征在于,所述装置包括:
    确定模块,用于确定第一搜索空间,所述第一搜索空间中包括的最大控制信道单元CCE聚合程度大于第一聚合程度阈值。
  12. 一种参数确定装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求1-10中任意一项所述的参数确定方法。
  13. 一种非临时性计算机可读存储介质,当所述存储介质中的指令由移动终端的处理器执行时,使得移动终端能够执行权利要求1-10中任意一项所述的参数确定方法。
PCT/CN2020/141778 2020-12-30 2020-12-30 一种参数确定方法、参数确定装置及存储介质 WO2022141290A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/270,385 US20240064789A1 (en) 2020-12-30 2020-12-30 Parameter determination method, parameter determination apparatus and storage medium
CN202080004386.7A CN114982158B (zh) 2020-12-30 2020-12-30 一种参数确定方法、参数确定装置及存储介质
EP20967630.3A EP4274125A4 (en) 2020-12-30 2020-12-30 PARAMETER DETERMINATION METHOD, PARAMETER DETERMINATION APPARATUS AND STORAGE MEDIUM
PCT/CN2020/141778 WO2022141290A1 (zh) 2020-12-30 2020-12-30 一种参数确定方法、参数确定装置及存储介质
CN202311459024.9A CN117353870A (zh) 2020-12-30 2020-12-30 一种参数确定方法、参数确定装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/141778 WO2022141290A1 (zh) 2020-12-30 2020-12-30 一种参数确定方法、参数确定装置及存储介质

Publications (1)

Publication Number Publication Date
WO2022141290A1 true WO2022141290A1 (zh) 2022-07-07

Family

ID=82260064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141778 WO2022141290A1 (zh) 2020-12-30 2020-12-30 一种参数确定方法、参数确定装置及存储介质

Country Status (4)

Country Link
US (1) US20240064789A1 (zh)
EP (1) EP4274125A4 (zh)
CN (2) CN117353870A (zh)
WO (1) WO2022141290A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102882644A (zh) * 2012-09-21 2013-01-16 中兴通讯股份有限公司 下行控制信息的检测处理、检测方法及装置
US20170367012A1 (en) * 2015-01-15 2017-12-21 Telefonaktiebolaget Lm Ericsson (Publ) Method and System Relating to Handover
CN110149180A (zh) * 2018-02-12 2019-08-20 维沃移动通信有限公司 搜索空间信道估计数的分配方法和终端设备
CN111034292A (zh) * 2017-08-11 2020-04-17 中兴通讯股份有限公司 资源定义

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10306680B2 (en) * 2014-08-15 2019-05-28 Interdigital Patent Holdings, Inc. Supporting random access and paging procedures for reduced capability WTRUs in an LTE system
CN105471560A (zh) * 2014-09-05 2016-04-06 普天信息技术有限公司 一种pdcch cce聚合等级确定方法
KR20160089844A (ko) * 2015-01-19 2016-07-28 주식회사 케이티 Mtc 단말을 위한 하향 링크 공용 제어 채널 송수신 방법 및 장치
CN111148259B (zh) * 2018-11-02 2021-10-26 华为技术有限公司 一种通信方法及装置
US20230199738A1 (en) * 2020-04-13 2023-06-22 Beijing Xiaomi Mobile Software Co., Ltd. Method, device and storage medium for configuring a physical downlink control channel
CN111758238B (zh) * 2020-05-25 2024-05-17 北京小米移动软件有限公司 物理下行控制信道的发送及接收方法、装置及电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102882644A (zh) * 2012-09-21 2013-01-16 中兴通讯股份有限公司 下行控制信息的检测处理、检测方法及装置
US20170367012A1 (en) * 2015-01-15 2017-12-21 Telefonaktiebolaget Lm Ericsson (Publ) Method and System Relating to Handover
CN111034292A (zh) * 2017-08-11 2020-04-17 中兴通讯股份有限公司 资源定义
CN110149180A (zh) * 2018-02-12 2019-08-20 维沃移动通信有限公司 搜索空间信道估计数的分配方法和终端设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MODERATOR (APPLE INC.): "Feature lead summary #1 on reduced PDCCH monitoring", 3GPP DRAFT; R1-2007030, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 21 August 2020 (2020-08-21), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051921159 *
See also references of EP4274125A4 *

Also Published As

Publication number Publication date
EP4274125A4 (en) 2024-02-28
CN117353870A (zh) 2024-01-05
US20240064789A1 (en) 2024-02-22
CN114982158B (zh) 2023-11-28
EP4274125A1 (en) 2023-11-08
CN114982158A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2022193195A1 (zh) 一种带宽部分配置方法、带宽部分配置装置及存储介质
WO2022151488A1 (zh) 一种带宽部分确定方法、带宽部分确定装置及存储介质
WO2022126556A1 (zh) 一种接入控制方法、接入控制装置及存储介质
WO2022178734A1 (zh) 一种网络接入方法、网络接入装置及存储介质
WO2022226742A1 (zh) 一种寻呼消息监测方法、寻呼消息监测装置及存储介质
WO2022051948A1 (zh) 下行传输方法、下行传输装置及存储介质
WO2022165856A1 (zh) 一种信息上报方法、信息上报装置及存储介质
WO2022193194A1 (zh) 一种带宽部分配置方法、带宽部分配置装置及存储介质
WO2023044626A1 (zh) 一种初始部分带宽确定方法、装置及存储介质
WO2022198459A1 (zh) 一种搜索空间监测方法、搜索空间监测装置及存储介质
WO2023077271A1 (zh) 一种bwp确定方法、装置及存储介质
WO2023077446A1 (zh) 一种物理上行控制信道资源确定方法、装置及存储介质
WO2022233057A1 (zh) 信道状态信息测量方法、装置及存储介质
WO2023279262A1 (zh) 一种消息配置方法、消息配置装置及存储介质
WO2023000341A1 (zh) 一种信息配置方法、信息配置装置及存储介质
WO2022126555A1 (zh) 一种传输方法、传输装置及存储介质
WO2021179126A1 (zh) 控制信令检测方法、控制信令检测装置及存储介质
WO2022226743A1 (zh) 一种系统消息更新方法、系统消息更新装置及存储介质
WO2022141290A1 (zh) 一种参数确定方法、参数确定装置及存储介质
WO2022141289A1 (zh) 一种配置参数确定方法、配置参数确定装置及存储介质
WO2022141288A1 (zh) 一种通信方法、通信装置及存储介质
WO2022032595A1 (zh) 一种频率切换方法、频率切换装置及存储介质
WO2022188008A1 (zh) 一种传输波形参数确定方法、装置及存储介质
WO2023070564A1 (zh) 一种部分带宽确定方法、装置及存储介质
WO2023283837A1 (zh) 一种资源池配置方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967630

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18270385

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020967630

Country of ref document: EP

Effective date: 20230731