WO2022140925A1 - 流体引导装置、飞行器、桨叶和控制方法 - Google Patents

流体引导装置、飞行器、桨叶和控制方法 Download PDF

Info

Publication number
WO2022140925A1
WO2022140925A1 PCT/CN2020/140204 CN2020140204W WO2022140925A1 WO 2022140925 A1 WO2022140925 A1 WO 2022140925A1 CN 2020140204 W CN2020140204 W CN 2020140204W WO 2022140925 A1 WO2022140925 A1 WO 2022140925A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
rotating
rotating body
axis
fluid guiding
Prior art date
Application number
PCT/CN2020/140204
Other languages
English (en)
French (fr)
Inventor
肖翔
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/140204 priority Critical patent/WO2022140925A1/zh
Priority to CN202080069124.9A priority patent/CN114929573A/zh
Publication of WO2022140925A1 publication Critical patent/WO2022140925A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/38Adjustment of complete wings or parts thereof
    • B64C3/42Adjusting about chordwise axes

Definitions

  • the application relates to the technical field of unmanned aerial vehicles, and in particular, to a fluid guiding device, an aircraft, a paddle and a control method.
  • helicopters form a 4-DOF aircraft system through the main rotor, rotor torque converter, and tail rotor
  • quad-rotor aircraft directly form a 4-DOF aircraft system through four rotors directly controlled by motors
  • dual rotors The aircraft consists of two rotors controlled by motors and two servos that control the direction of the rotors to form a 4-DOF aircraft system.
  • each controlled degree of freedom corresponds to an actuator, which can be a mechanical or electrical device such as an internal combustion engine, an electric motor, a steering gear, and a hydraulic rod. That is to say, the previous N-DOF aircraft generally requires at least N actuators. However, this complicates the structure of the aircraft.
  • Embodiments of the present application provide a fluid guiding device, an aircraft, a paddle, and a control method.
  • a fluid guiding device provided by an embodiment of the present application, the fluid guiding device includes:
  • a base which is connected to the rotating mechanism and rotates along the first axis under the condition of being driven by the rotating mechanism;
  • a rotating body capable of being rotatably connected to the rotating shaft
  • the rotating body is circumferentially arranged along the first axis, and when the rotating body is in a stationary state, a line formed by the center of gravity of the rotating body and the center of the rotating shaft and the first axis At an angle other than 90 degrees, the first axis and the second axis are perpendicular to each other.
  • the line connecting the center of gravity of the rotating body and the center of the rotating shaft forms an angle of not 90 degrees with the first axis.
  • the rotating body can rotate relative to the rotating shaft to change the azimuth angle of the paddle formed by the fluid guiding device, so as to realize the control of 3 degrees of freedom, thereby simplifying the structure of the fluid guiding device.
  • the aircraft includes:
  • a base which is connected to the rotating mechanism and rotates along the first axis under the condition of being driven by the rotating mechanism;
  • a rotating body capable of being rotatably connected to the rotating shaft
  • the rotating body is circumferentially arranged along the first axis, and when the rotating body is in a stationary state, a line formed by the center of gravity of the rotating body and the center of the rotating shaft and the first axis At an angle other than 90 degrees, the first axis and the second axis are perpendicular to each other.
  • the line connecting the center of gravity of the rotating body and the center of the rotating shaft forms an angle of not 90 degrees with the first axis.
  • the rotating body can rotate relative to the rotating shaft to change the azimuth angle of the paddle formed by the fluid guiding device, so as to realize the control of 3 degrees of freedom, thereby simplifying the structure of the fluid guiding device and the aircraft.
  • An embodiment of the present application provides a paddle, the paddle is used to rotatably connect to a rotating shaft, the rotating shaft is used to rotatably connect to a base along a second axis, and the base is used to rotate along a The first axis rotates;
  • the paddles are circumferentially arranged along the first axis, and when the paddles are in a stationary state, a line formed by the center of gravity of the paddles and the center of the rotating shaft and the first axis At an angle other than 90 degrees, the first axis and the second axis are perpendicular to each other.
  • the line connecting the center of gravity of the blade and the center of the rotating shaft forms an angle of not 90 degrees with the first axis.
  • the paddle can be rotated relative to the rotating shaft so that the azimuth angle of the paddle disc formed by the rotation of the paddle changes, so as to realize the control of 3 degrees of freedom.
  • An embodiment of the present application provides a control method for a fluid guiding device, wherein the fluid guiding device includes a rotating mechanism and a rotating body, the rotating mechanism is used to control the rotation of the rotating body, and the control method includes:
  • a first control is performed on the rotation mechanism for performing a first adjustment of the rotation of the rotor so that the fluid is guided
  • the device moves in a direction corresponding to the pre-shift position.
  • the connecting line between the center of gravity of the rotating body and the center of the rotating shaft forms an angle of not 90 degrees with the first axis.
  • the acceleration and deceleration of the rotating mechanism The rotating body can rotate relative to the rotating shaft to change the azimuth angle of the paddle formed by the fluid guiding device, so as to realize the control of 3 degrees of freedom, thereby simplifying the structure of the fluid guiding device.
  • An embodiment of the present application provides a control method for an aircraft, wherein the aircraft includes at least two fluid guide devices, the fluid guide devices include a rotating mechanism and a rotating body, and the control method includes:
  • the rotation speed of the rotating body is adjusted to change the rotating direction of the rotating body, so that the aircraft moves in accordance with the rotating direction of the rotating body.
  • the connecting line between the center of gravity of the rotating body and the center of the rotating shaft forms an angle of not 90 degrees with the first axis.
  • the acceleration and deceleration of the rotating mechanism The rotating body can rotate relative to the rotating shaft to change the azimuth angle of the paddle disk formed by the fluid guiding device, so as to realize the control of 3 degrees of freedom, thereby simplifying the structure of the fluid guiding device and the aircraft.
  • FIG. 1 is a schematic structural diagram of a fluid guiding device according to an embodiment of the present application.
  • FIG. 2 is a partial structural schematic diagram of a fluid guiding device according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a tilt angle control structure according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another part of the fluid guiding device according to the embodiment of the present application.
  • Fig. 5 is the schematic diagram of the first rotating body along the first direction of Fig. 4;
  • Fig. 6 is the schematic diagram of the second rotating body along the second direction of Fig. 4;
  • FIG. 7 is another schematic structural diagram of the fluid guiding device according to the embodiment of the present application.
  • FIG. 8 is a schematic diagram of the fluid guiding device of the embodiment of the present application in a folded state
  • FIG. 9 is a schematic structural diagram of an aircraft according to an embodiment of the present application.
  • FIG. 10 is another schematic structural diagram of an aircraft according to an embodiment of the present application.
  • FIG. 11 is another schematic structural diagram of an aircraft according to an embodiment of the present application.
  • FIG. 12 is a partial structural schematic diagram of an aircraft according to an embodiment of the present application.
  • FIG. 13 is a relationship diagram of an output voltage pulse and an azimuth angle according to an embodiment of the present application.
  • FIG. 14 is a schematic flowchart of a control method of a fluid guiding device according to an embodiment of the present application.
  • 15 is a schematic flowchart of a control method for an aircraft according to an embodiment of the present application.
  • 16 is another schematic structural diagram of an aircraft according to an embodiment of the present application.
  • FIG. 17 is another schematic structural diagram of an aircraft according to an embodiment of the present application.
  • Rotating mechanism 11 housing 111, motor 112, base 12, rotating shaft 13, rotating body 14, mounting end 141, first rotating body 142, second rotating body 143, paddle disc 15, inclination control structure 16, body 161, Counterweight 162, metal counterweight 1621, plastic counterweight 1622, connection end 163, connection arm 164;
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection connected, or integrally connected. It can be a mechanical connection or an electrical connection. It can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two elements or the interaction relationship between the two elements.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection connected, or integrally connected. It can be a mechanical connection or an electrical connection. It can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two elements or the interaction relationship between the two elements.
  • the fluid guiding device 100 includes a rotating mechanism 11 , a base 12 , a rotating shaft 13 and a rotating body 14 .
  • the base 12 is connected to the rotating mechanism 11 and rotates along the first axis L1 under the condition of being driven by the rotating mechanism 11 .
  • the rotating shaft 13 is rotatably connected to the base 12 along the second axis L2.
  • the rotating body 14 is rotatably connected to the rotating shaft 13 .
  • the rotating body 14 is circumferentially arranged along the first axis L1.
  • connection line L3 formed by the center of gravity g of the rotating body 14 and the center o of the rotating shaft 13 and the first axis L1 are not equal to one another.
  • first axis L1 and the second axis L2 are perpendicular to each other.
  • the line L3 connecting the center of gravity g of the rotating body 14 and the center o of the rotating shaft 13 and the first axis L1 form an angle a that is not 90 degrees.
  • the rotating body 14 can rotate relative to the rotating shaft 13 to make the azimuth angle of the paddle 15 formed by the fluid guiding device 100 change, so as to realize the control of 3 degrees of freedom, and then The structure of the fluid guiding device 100 is simplified.
  • the rotating shaft 13 can rotate on the base 12 along the second axis L2, and rotate along the first axis L1 synchronously when the base 12 rotates along the first axis L1.
  • the rotating shaft 13 can limit the rotation of the rotating body 14 by the limiting structure.
  • the fluid guiding device 100 can adjust the overall orientation of the fluid guiding device 100 by changing the rotational speed of the rotating body 14 .
  • the fluid guiding device 100 may form the paddle 15 by the rotating body 14 continuously rotating, and may have a tendency to move in the direction perpendicular to the paddle 15 .
  • the rotational speed of the rotor 14 remains unchanged, since the aerodynamic center of the rotor 14 is located behind the rotation direction of the rotor 14, the angle of attack of the rotor 14 will be stabilized spontaneously under the action of the fluid resistance, so that the fluid guides
  • the device 100 is capable of hovering relative to the surrounding fluid.
  • connection line L3 formed by the center of gravity g of the rotating body 14 and the center o of the rotating shaft 13 and the first axis L1 around which the base 12 rotates If the formed angle a is not 90 degrees, the rotating body 14 will rotate relative to the rotating shaft 13 according to the inertial force, so that the angle of attack of the rotating body 14 will change, and then the azimuth angle will change. corner to move.
  • the fluid guiding device 100 can perform three degrees of freedom through the rotating mechanism 11 . Therefore, the structure of the fluid guiding device 100 is effectively simplified.
  • the fluid guiding device 100 since the fluid guiding device 100 only needs to be provided with a rotating mechanism 11 to realize the control of 3 degrees of freedom, it is beneficial to improve the flexibility of the paddle 15 and shorten the response time, and reduce its own weight and the overall mechanical system. complexity, which improves reliability and increases battery life.
  • the first axis L1 is the axis when the base 12 rotates on the rotating mechanism 11
  • the second axis L2 is the axis when the rotating shaft 13 rotates on the base 12 .
  • the first axis L1 as the axis when the base 12 rotates on the rotating mechanism 11
  • the second axis L2 as the axis when the rotating shaft 13 rotates on the base 12 .
  • the first axis L1 and the second axis L2 may be determined according to specific conditions, and are not limited to the specific implementation of the above-mentioned embodiments.
  • the guiding object of the fluid guiding device 100 may be gas or liquid. In one embodiment, the guiding object is a gas.
  • the fluid guiding device 100 may guide the fluid by means of a propeller.
  • the rotor 14 of the fluid guiding device 100 may comprise paddles 201 .
  • the rotating mechanism 11 may comprise a drive element. In one embodiment, the drive element may be the motor 112 .
  • the number of rotating bodies 14 is at least two.
  • the shapes of the at least two rotating bodies 14 are the same, and the at least two rotating bodies 14 are symmetrically arranged at intervals around the circumference of the rotating shaft 13 . In this way, the change of the azimuth angle of the paddle 15 can be achieved by the plurality of rotors 14 .
  • the number of the rotating bodies 14 is two, the overall structure of the rotating shaft 13 is linear, and the two rotating bodies 14 are arranged on both sides of the rotating shaft 13 around the circumferential direction of the rotating shaft 13 at an interval of 180 degrees. , and are respectively connected to both ends of the rotating shaft 13 , so that the two rotating bodies 14 arranged opposite to each other can balance the force on the rotating shaft 13 , and then the two rotating bodies 14 can realize the change of the azimuth angle of the paddle disk 15 .
  • the number of the rotating body 14 is an even number.
  • the number of the rotating bodies 14 is four, the overall structure of the rotating shaft 13 is a cross shape to form four protruding structures for connecting the rotating bodies 14 , and the four rotating bodies 14 surround the circumferential direction of the rotating shaft 13 . They are arranged at an interval of 90 degrees and are respectively connected to the protruding structures of a rotating shaft 13 .
  • the number of the rotating bodies 14 may be six or more even numbers, and the specific principles thereof are the same as those of the embodiments, and are not repeated here.
  • the two rotating bodies 14 are respectively provided with mounting ends 141 .
  • the installation end 141 is connected to the rotating shaft 13 through the inclination control structure 16 .
  • the line L3 formed by the center of gravity g of the rotating body 14 and the center o of the rotating shaft 13 forms an angle a that is not 90 degrees with the first axis L1 through the center of gravity arrangement of the tilt angle control structure 16 . In this way, the effect of changing the center of gravity of the rotating body 14 can be easily achieved.
  • the tilt angle control structure 16 is disposed between the mounting end 141 and the rotating shaft 13 . It can be understood that by arranging the inclination control structure 16, when the rotating body 14 is connected to the rotating shaft 13 through the inclination control structure 16, the center of gravity g of the rotating body 14 connected to the rotating shaft 13 can be changed by changing the center of gravity of the inclination control structure 16. .
  • the rotating body 14 may be arranged in a non-uniform density structure such that the center of gravity g of the rotating body 14 is offset.
  • the inclination control structure 16 includes a main body 161 and at least two counterweight blocks 162 . At least two weights 162 are connected to the body 161 along the circumferential direction of the length of the body 161 . At least two of the weights 162 are of different masses. In this way, the center of gravity g of the rotating body 14 can be changed by setting the weight 162 .
  • the number of the counterweight blocks 162 is two.
  • two counterweight blocks 162 are respectively disposed on opposite sides of the main body 161 .
  • the other counterweight 162 is located at the rear of the rotating body 14 in the rotating direction, and the other counterweight 162 is located in front of the rotating body 14 relative to the rotating direction, so that the angle of attack of the rotating body 14 relative to the fluid changes, so that the paddle formed by the rotating body 14 can be changed. Azimuth of disk 15.
  • more than two counterweight blocks 162 may be provided according to specific conditions.
  • the number of counterweight blocks 162 is three, one counterweight block 162 is connected to one side of the main body 161 along the circumferential direction of the length direction of the main body 161 , and two counterweight blocks 162 are connected to one side of the main body 161 along the circumferential direction of the length direction of the main body 161 . connected to the opposite side of the body 161 .
  • the number of the counterweight blocks 162 may be three or more, and the specific principle thereof is the same as that of the above-mentioned embodiment, which is not specifically limited herein.
  • At least two of the weights 162 meet one of the following conditions: each of the weights 162 has the same shape and size and different densities; each of the weights 162 has a different shape and size and the same density; each The weights 162 have different shapes and sizes and different densities. In this way, the mass of the two counterweight blocks 162 can be easily adjusted.
  • the weight block 162 is spherical.
  • one or more weights 162 are metal weights 1621 and one or more weights 162 are plastic weights 1622.
  • the rotating body 14 includes a first rotating body 142 and a second rotating body 143 .
  • the number of the weights 162 is two.
  • One counterweight 162 is a metal counterweight 1621
  • the other counterweight 162 is a plastic counterweight 1622 .
  • the metal weight block 1621 connected to the first rotating body 142 is located above the main body 161
  • the plastic weight block 1622 connected to the first rotating body 142 is located below the main body 161 .
  • the metal weight 1621 connected to the second rotating body 143 is located below the main body 161
  • the plastic weight 1622 connected to the first rotating body 142 is located above the main body 161 . In this way, the center of gravity g of the rotating body 14 can be adjusted by arranging the weights 162 of different materials.
  • FIG. 5 is a schematic view of the first rotating body 142 in FIG. 4 along a first direction
  • FIG. 6 is a schematic view of the second rotating body 143 in FIG. 4 along a second direction.
  • the fluid guide device 100 will ascend or descend a certain distance along the vertical direction of the rotating direction of the rotating body 14 (ie, the pitch of the rotating body 14 ) when the rotating body 14 rotates once in the rotating direction.
  • the metal counterweight 1621 located above the first rotating body 142 will be opposed to each other under the action of inertia.
  • the first rotating body 142 is offset to the rear of the rotation direction, thereby driving the first rotating body 142 to rotate relative to the rotating shaft 13 , so that the attack angle of the first rotating body 142 to the fluid increases.
  • the metal counterweight 1621 located under the second rotating body 143 will be relatively opposite to the second rotating body 143 under the action of inertia. Offset to the rear of the rotation direction, thereby driving the second rotating body 143 to rotate relative to the rotating shaft 13, so that the angle of attack of the second rotating body 143 to the fluid is reduced.
  • the first rotating body 142 increases in pitch due to the increase in the pitch. It has a larger lift force, and the pitch of the second rotor 143 is reduced to have a smaller lift force, so that the paddle 15 formed by the first rotor 142 and the second rotor 143 is inclined.
  • the direction of the lift force ie, the direction of the vertical paddle 15 ) changes immediately, so that the fluid guiding device 100 is finally moved along the force direction.
  • one counterweight block 162 may be a metal counterweight block 1621
  • the other counterweight blocks 162 may be plastic counterweight blocks 1622
  • one of the counterweight blocks 162 may be plastic counterweight blocks 1622
  • the other counterweight blocks 162 may be metal counterweight blocks 1621 .
  • the number of the metal weights 1621 and the plastic weights 1622 can be selected according to specific conditions.
  • the body 161 includes a connecting end 163 .
  • the connecting end 163 includes two connecting arms 164 that are spaced and opposed to each other.
  • the mounting end 141 is located between the two connecting arms 164 and is rotatably connected with the two connecting arms 164 . In this way, the structural strength of the tilt angle control structure 16 can be improved.
  • At least two counterweight blocks 162 are axially disposed along the rotating shaft 13 between the mounting end 141 and the connecting arm 164 .
  • the number of counterweight blocks 162 is two, and one counterweight block 162 is axially disposed on one side of one connecting arm 164 along the rotating shaft 13 between the mounting end 141 and the connecting arm 164 , the other counterweight 162 is axially disposed on one side of the other connecting arm 164 along the axis of rotation 13 between the mounting end 141 and the connecting arm 164 .
  • a part of the counterweight blocks 162 may be axially arranged on one connecting arm 164 along the rotating shaft 13 between the mounting end 141 and the connecting arm 164 .
  • another part of the counterweight 162 is axially disposed on one side of the other connecting arm 164 along the rotating shaft 13 between the mounting end 141 and the connecting arm 164 .
  • the fluid directing device 100 includes a damping member (not shown).
  • the damping member connects the base 12 and the tilt control structure. It can be understood that, by providing the damping member, the rotational stability of the rotating body 14 can be achieved. In this way, the angular acceleration of the rotating body 14 can be prevented from being too large to cause a collision.
  • the damping member includes a spring or damper.
  • the rotating mechanism 11 includes a housing 111 and a motor 112 , the base 12 is connected to the housing 111 , and the housing 111 is connected to a rotor (not shown) of the motor 112 , so that the base can be 12 The rotor is driven to rotate.
  • the housing 111 is connected to the stator (not shown) of the motor 112 .
  • the motor 112 is a brushless DC motor.
  • the base 12 is installed on the top surface of the housing 111 , so that the rotating body 14 has a larger rotation space.
  • the base 12 is attached to the circumferential side surface of the housing 111 .
  • the rotating body 14 is rotated and connected to the rotating shaft 13 along the direction perpendicular to the rotating shaft 13 , so that the rotating body 14 is folded relative to the rotating shaft 13 . In this way, the fluid guide device 100 can be easily accommodated.
  • the fluid guiding device 100 is used in the aircraft 200 , and the number of the fluid guiding device 100 is two.
  • the rotating body 14 can rotate relative to the rotating shaft 13 along the first axis L1, so that the length direction of the rotating body 14 is parallel to the first axis L1, so that the space occupied by the fluid guiding device 100 can be reduced.
  • the direction perpendicular to the rotating shaft 13 refers to the direction perpendicular to the length direction of the rotating shaft 13 .
  • the aircraft 200 includes a fuselage 21 and a fluid guiding device 100 .
  • the fluid guiding device 100 is connected to the fuselage 21 .
  • the fluid guide device 100 includes a rotating mechanism 11 , a base 12 , a rotating shaft 13 and a rotating body 14 .
  • the base 12 is connected to the rotating mechanism 11 and rotates along the first axis L1 under the condition of being driven by the rotating mechanism 11 .
  • the rotating shaft 13 is rotatably connected to the base 12 along the second axis L2.
  • the rotating body 14 is rotatably connected to the rotating shaft 13, and the angle a formed by the center of gravity of the axis g of the rotating body 14 rotating on the rotating shaft 13 to the vertical line of the rotating shaft 13 and the first axis L1 is not 90 degrees.
  • the rotating body 14 is circumferentially arranged along the first axis L1.
  • the connection line L3 formed by the center of gravity g of the rotating body 14 and the center o of the rotating shaft 13 and the first axis L1 are not equal to one another.
  • the first axis L1 and the second axis L2 are perpendicular to each other.
  • the line L3 connecting the center of gravity g of the rotor 14 and the center o of the rotating shaft 13 and the first axis L1 form an angle a that is not 90 degrees.
  • the rotating body 14 can rotate relative to the rotating shaft 13 to change the azimuth angle of the paddle 15 formed by the fluid guiding device 100, so as to realize the control of three degrees of freedom, thereby simplifying the Structure of fluid directing device 100 and aircraft 200 .
  • the aircraft 200 includes an arm 22 .
  • One end of the arm 22 is connected to the fuselage 21 , and the other end is installed with the fluid guiding device 100 .
  • the aircraft 200 includes at least two fluid guiding devices 100 and at least two arms 22 . At least two arms 22 are attached to the circumferential sides of the top of the fuselage 21 at intervals, each arm 22 having a fluid guiding device 100 mounted thereon. In this way, the control of the degrees of freedom of the aircraft 200 may be improved.
  • the number of fluid directing devices 100 and arms 22 may be selected on a case-by-case basis.
  • the degree of freedom of the aircraft 200 is five.
  • the fuselage 21 includes a first portion 211 and a second portion 212 .
  • the second part 212 is detachably connected to the first part 211 .
  • the arm 22 is connected to the first part 211 . In this way, the storage of the aircraft 200 can be facilitated.
  • the arm 22 is rotatably connected to the first part 211 .
  • the fuselage 21 is elongated.
  • the aircraft 200 includes at least two fluid directing devices 100 .
  • the paddles 15 formed by the rotation of the at least two fluid guiding devices 100 are perpendicular, or inclined, with respect to the first axis L1 .
  • the paddle disc 15 is perpendicular to the first axis L1
  • the paddle disc 15 will be relative to the first axis L1.
  • the axis L1 is inclined in the corresponding direction, so that the fluid guiding device 100 can be moved in the inclined direction.
  • the first axes L1 of the two fluid guide devices 100 are coincident, so that the rotating bodies 14 of the two fluid guide devices 100 can rotate coaxially without mutual rotation during rotation
  • the interference is favorable for setting the rotating body 14 with a larger rotating diameter, so as to obtain greater aerodynamic efficiency and improve the endurance time of the aircraft 200 .
  • the paddles 15 formed by the rotation of at least two fluid guiding devices 100 are located in the same plane or different planes.
  • the number of the fluid guiding devices 100 is two, and the two fluid guiding devices 100 may rotate in the same rotation direction, so that the paddles formed by the two fluid guiding devices 100
  • the planes on which the disks 15 lie are parallel or coincident.
  • the two fluid guiding devices 100 may also rotate in opposite rotational directions, so that the angle formed between the planes where the paddle discs 15 formed by the two fluid guiding devices 100 are located is not zero.
  • the aircraft 200 includes at least two fluid directing devices 100 . At least two fluid guiding devices 100 are stacked on top of the fuselage 21 . Specifically, in the illustrated embodiment, the number of fluid guiding devices 100 is two. In the top direction, one fluid guide device 100 is connected to the top of the fuselage 21 , and the other fluid guide device 100 is connected to the top of the aforementioned fluid guide device 100 . In other embodiments, when the number of the fluid guiding devices 100 is two or more, all the fluid guiding devices 100 may be disposed on the top of the fuselage 21 in sequence along the top direction.
  • aircraft 200 includes payload 23 .
  • the load 23 is attached to one end of the fuselage 21
  • the fluid guiding device 100 is attached to the other end of the fuselage 21 .
  • the load 23 is connected to the bottom of the fuselage 21
  • the fluid guide device 100 is connected to the top of the fuselage 21, so that the rotation of the fluid guide device 100 is possible.
  • the body 14 does not collide with the load 23 when it rotates.
  • the load 23 may be disposed on the side of the fuselage 21 along the length direction of the fuselage 21 .
  • the payload 23 includes a gimbal and a camera mounted on the gimbal.
  • aircraft 200 includes processor 24 .
  • the processor 24 is located within the body 21 and is electrically connected to the fluid guiding device 100 .
  • the processor 24 is used to control the rotational speed of the rotating mechanism 11 , thereby controlling the flying state of the aircraft 200 .
  • the processor 24 is configured to control the rotation speed of the rotating mechanism 11 to increase or decrease according to the time point set in the rotation period of the rotating body 14 . It can be understood that, by setting the rotation period for the rotating body 14, in the case of determining the time point within the rotating period, the corresponding azimuth angle of the rotating body 14 can be determined. Controlling the rotating mechanism 11 to accelerate or decelerate at the corresponding time point can make the paddle 15 formed by the rotating body 14 tilt to the corresponding azimuth angle, thereby generating the horizontal component of the lift in the direction corresponding to the azimuth angle, and driving the aircraft 200 A corresponding movement is made along this horizontal component.
  • the flying state of the aircraft 200 includes the aircraft 200 flying in a specific direction.
  • the processor 24 is configured to output voltage pulses to control the rotational speed of the rotating mechanism 11 to increase or decrease. In this way, the acceleration and deceleration of the rotating body 14 can be realized in a short time.
  • the processor 24 outputs a positive voltage pulse when the azimuth angle is 360 degrees, and outputs a negative voltage pulse within a predetermined time, so that the paddle 15
  • the azimuth angle is 360 degrees, it first tilts in the direction of the azimuth angle of 0 degrees, and then tilts in the direction of the azimuth angle of 180 degrees, so that the aircraft 200 moves in the direction of 0 degrees, and then decelerates in the direction of 180 degrees. And finally hover in a balanced state.
  • the processor 24 outputting corresponding voltage pulses at a specific time point, the effect of controlling the aircraft 200 to move along the corresponding azimuth direction can be achieved.
  • the predetermined time is 0.1 seconds. In other embodiments, the predetermined time may be adjusted according to specific conditions.
  • the aircraft 200 includes a braking mechanism 25 .
  • the brake mechanism 25 is connected to the processor 24 .
  • the braking mechanism 25 is used for braking the rotating mechanism 11 according to the control instruction of the processor 24 to reduce the rotation speed of the rotating mechanism 11 .
  • the braking mechanism 25 can decelerate the rotating mechanism 11 by means of mechanical friction, magnetic force, hydraulic pressure, air pressure, and viscosity.
  • an embodiment of the present application provides a paddle 201 .
  • the paddle 201 is used to rotate and connect to the rotating shaft 13
  • the rotating shaft 13 is used to rotate and connect to the base 12 along the second axis L2
  • the machine base is used to be In the case of driving, it rotates along the first axis L1.
  • the paddles 201 are circumferentially arranged along the first axis L1.
  • the connection line L3 formed by the center of gravity of the paddle 201 and the center o of the rotating shaft 13 and the first axis L1 are not equal to 90
  • the first axis L1 and the second axis L2 are perpendicular to each other.
  • the connecting line L3 between the center of gravity of the blade 201 and the center o of the rotating shaft 13 and the first axis L1 form an angle a that is not 90 degrees.
  • the paddle 201 can rotate relative to the rotating shaft 13 to change the azimuth angle of the paddle 15 formed by the rotation of the paddle 201 , so as to achieve three degrees of freedom control.
  • an embodiment of the present application provides a control method of a fluid guiding device 100 .
  • the fluid guiding device 100 includes a rotating mechanism 11 and a rotating body 14 , and the rotating mechanism 11 is used to control the rotating body 14 to rotate.
  • Control methods include:
  • Step S110 determine the pre-shift position of the rotating body 14
  • Step S120 When the rotating body 14 reaches the pre-shifting position, perform a first control on the rotating mechanism 11, and the first control is used to perform a first adjustment on the rotation of the rotating body 14, so that the fluid guiding device 100 moves toward the corresponding pre-shifting position. move in the direction of the location.
  • the control method of the embodiment of the present application can be realized by the fluid guide device 100 of the embodiment of the present application.
  • the fluid guiding device 100 is used to determine the pre-shift position of the rotating body 14 , and is used to perform a first control on the rotating mechanism 11 when the rotating body 14 reaches the pre-shift position, and the first control is used for The rotation of the rotor 14 performs the first adjustment so that the fluid guiding device 100 is moved in the direction corresponding to the pre-shift position.
  • the rotating body 14 when the rotating body 14 does not rotate, the line L3 connecting the center of gravity g of the rotating body 14 and the center o of the rotating shaft 13 and the first axis L1 form an angle a that is not 90 degrees.
  • the rotating body 14 can rotate relative to the rotating shaft 13 to change the azimuth angle of the paddle 15 formed by the fluid guiding device 100, so as to realize the control of three degrees of freedom, thereby simplifying the Structure of the fluid guiding device 100 .
  • the rotating mechanism 11 is controlled by the first control, so that the rotating body 14 performs the first adjustment according to the first control, so that the paddle plate 15 formed by the rotating body 14 can be adjusted along the The azimuth angle corresponding to the pre-shift position is inclined, thereby causing the fluid guiding device 100 to move toward the direction in which the paddle disc 15 is inclined.
  • control method further includes:
  • Step S111 Determine the shifting timing of the rotating body 14 according to the pre-shifting position of the rotating body 14 .
  • the control method of the embodiment of the present application can be realized by the fluid guide device 100 of the embodiment of the present application. Please refer to FIG. 1 , the fluid guiding device 100 is used for determining the shifting timing of the rotating body 14 according to the pre-shifting position of the rotating body 14 .
  • the pre-shift position of the rotor 14 corresponds to the azimuth angle of the paddle 15 . 12 and 13, in the illustrated embodiment, the corresponding azimuth angle is determined by determining the pre-shift position of the rotating body 14, and then the shifting moment at which the rotating body 14 is shifted at the pre-shift position can be obtained.
  • the fluid guiding device 100 can be controlled to accelerate or decelerate in the pre-shift position.
  • control method further includes:
  • Step S112 when the first shifting time period has elapsed after the shifting time, the rotating mechanism 11 is controlled to drive the rotating body 14 to perform the second adjustment.
  • the control method of the embodiment of the present application can be realized by the fluid guide device 100 of the embodiment of the present application.
  • the fluid guiding device 100 is used to control the rotating mechanism 11 to drive the rotating body 14 to perform the second adjustment when the first shifting time period elapses after the shifting time.
  • the fluid directing device 100 can be returned to the equilibrium position.
  • the equilibrium position means that the fluid guiding device 100 is in a hovering state.
  • the fluid guiding device 100 moves in the direction corresponding to the pre-shift position, by controlling the rotating mechanism 11 to drive the rotating body 14 to perform the second adjustment, the fluid guiding device 100 can be moved in the opposite direction, so that the fluid guiding device can be moved in the opposite direction. 100 decelerates, eventually allowing the fluid directing device 100 to return to an equilibrium position.
  • the first shift duration can be adjusted according to specific conditions. In one embodiment, the first shift duration is 0.1 seconds.
  • step S112 includes:
  • Step S113 Adjust the rotational speed of the rotor 14 at the pre-shift position.
  • the control method of the embodiment of the present application can be realized by the fluid guide device 100 of the embodiment of the present application.
  • the fluid guiding device 100 is used to adjust the rotational speed of the rotor 14 at the pre-shift position.
  • the fluid guiding device 100 can be restored to the equilibrium position by changing the rotational speed of the rotor 14 .
  • the second adjustment may include actively changing the inclination of the paddle 15 .
  • the way of actively changing the inclination of the paddle 15 may include mechanical contact and electromagnetic adsorption.
  • step S112 includes:
  • Step S114 Make the rotational speed of the rotating body 14 after the second adjustment equal to the rotational speed of the rotating body 14 before the first adjustment.
  • the control method of the embodiment of the present application can be realized by the fluid guide device 100 of the embodiment of the present application. Please refer to FIG. 9 , the fluid guiding device 100 is used to make the rotational speed of the rotating body 14 after the second adjustment equal to the rotational speed of the rotating body 14 before the first adjustment.
  • the fluid guiding device 100 can be at the same height both before the first adjustment and after the second adjustment.
  • the angle of attack of the rotating body 14 relative to the fluid increases, so that the lift force on the rotating body 14 increases, and the fluid guiding device 100 will increase
  • the angle of attack of the rotating body 14 relative to the fluid will be reduced, so that the lift received by the rotating body 14 will be reduced, and the fluid guiding device 100 will be due to the reduced lift force. and decline.
  • the rotational speed of the rotating body 14 after the second adjustment is equal to the rotational speed of the rotating body 14 before the first adjustment, the lift force received by the rotating body 14 can be made the same, so that the fluid guiding device 100 is at the same height due to the same lift force. balance position.
  • step S120 includes:
  • Step S121 Adjust the rotational speed of the rotor 14 at the pre-shift position.
  • the control method of the embodiment of the present application can be realized by the fluid guide device 100 of the embodiment of the present application.
  • the fluid guiding device 100 is used to adjust the rotational speed of the rotor 14 at the pre-shift position.
  • the first adjustment may include control to actively change the pitch of the paddle 15 .
  • the way of actively changing the inclination of the paddle 15 may include mechanical contact and electromagnetic adsorption.
  • step S120 includes:
  • Step S122 The voltage signal received by the rotating mechanism 11 is changed.
  • the control method of the embodiment of the present application can be realized by the fluid guide device 100 of the embodiment of the present application. Please refer to FIG. 9 , the fluid guiding device 100 is used to change the voltage signal received by the rotating mechanism 11 .
  • the output power of the rotating mechanism 11 when the voltage value corresponding to the voltage signal received by the rotating mechanism 11 increases, the output power of the rotating mechanism 11 can be increased, thereby accelerating the rotating body 14; in the rotating mechanism When the voltage value corresponding to the voltage signal received by 11 decreases, the output power of the rotating mechanism 11 can be reduced, thereby decelerating the rotating body 14 .
  • step S122 includes:
  • Step S123 On the basis of the DC driving voltage, superimpose a voltage pulse signal.
  • the control method of the embodiment of the present application can be realized by the fluid guide device 100 of the embodiment of the present application. Please refer to FIG. 9 , the fluid guiding device 100 is used to superimpose the voltage pulse signal on the basis of the DC driving voltage.
  • the rotating body 14 can be accelerated by superimposing a positive voltage pulse signal on the DC driving voltage, and the rotating body 14 can be accelerated by superimposing a negative voltage pulse signal on the DC driving voltage.
  • the rotational speed of the rotating body 14 that needs to be increased or decreased can be further changed.
  • step S120 includes:
  • Step S124 Adjust the inclination angle of the rotating body 14 at the pre-shifting position.
  • the control method of the embodiment of the present application can be realized by the fluid guide device 100 of the embodiment of the present application. Please refer to FIG. 9 , the fluid guiding device 100 is used to adjust the inclination angle of the rotating body 14 at the pre-shifting position.
  • the fluid guiding device 100 can be controlled to move in a direction corresponding to the inclination angle.
  • step S120 includes:
  • Step S125 Turn on the tilt angle changing element.
  • the control method of the embodiment of the present application can be realized by the fluid guide device 100 of the embodiment of the present application. Please refer to FIG. 9 , the fluid guiding device 100 is used for turning on the inclination angle changing element.
  • the tilt angle changing element may include a mechanical pull rod, a hydraulic cylinder, and an electromagnetic device.
  • the fluid directing device 100 includes at least two rotors 14 .
  • at least two rotating bodies 14 rotate coaxially at the same rotational speed, so that all the rotating bodies 14 can simultaneously provide lift for controlling the flight of the aircraft 200 .
  • the number of rotating bodies 14 can be selected according to specific conditions.
  • Step S110 includes:
  • Step S115 Determine the shifting time in the rotation cycle, and the shifting time corresponds to the pre-shifting position of the rotating body 14 .
  • the control method of the embodiment of the present application can be realized by the fluid guide device 100 of the embodiment of the present application.
  • the fluid guiding device 100 is used to determine the shifting timing in the rotation cycle, and the shifting timing corresponds to the pre-shifting position of the rotating body 14 .
  • the rotating body 14 can be controlled to be accelerated or decelerated periodically.
  • the rotating body 14 continuously rotates to form a rotating cycle, and when the speed change time in the rotation cycle is determined, the rotating mechanism 11 can be controlled to adjust the output power of the rotating mechanism 11 when the current time is the speed change time, thereby The rotatable body 14 is controlled to periodically accelerate or decelerate at the pre-shift position.
  • the shifting timing may correspond to the rotation period formed by the rotation of the rotor 14 , or may correspond to the working time of the fluid guiding device 100 after starting to work.
  • the aircraft 200 includes at least two fluid guiding devices 100 .
  • the fluid guide device 100 includes a rotating mechanism 11 and a rotating body 14 .
  • Control methods include:
  • Step S310 controlling the rotation of the rotor 14 to form the paddle disc 15, so that the aircraft 200 has a tendency to fly in a direction perpendicular to the paddle disc 15;
  • Step S320 Adjust the rotational speed of the rotating body 14 so that the paddle disk 15 is tilted, so that the aircraft 200 is moved corresponding to the orientation of the tilt direction of the paddle disk 15 .
  • the control method of the embodiment of the present application may be implemented by the aircraft 200 of the embodiment of the present application.
  • the aircraft 200 is used to control the rotation of the rotor 14 to form the paddle 15 , so that the aircraft 200 has a tendency to fly in a direction perpendicular to the paddle 15 , and is used to adjust the rotational speed of the rotor 14 to make the paddle 15 .
  • 15 is tilted, so that the aircraft 200 moves according to the direction of the tilting direction of the paddle 15 .
  • the rotating body 14 when the rotating body 14 does not rotate, the line L3 connecting the center of gravity g of the rotating body 14 and the center o of the rotating shaft 13 and the first axis L1 form an angle a that is not 90 degrees.
  • the rotating body 14 can rotate relative to the rotating shaft 13 to change the azimuth angle of the paddle 15 formed by the fluid guiding device 100, so as to realize the control of three degrees of freedom, thereby simplifying the Structure of fluid directing device 100 and aircraft 200 .
  • the aircraft 200 can have a multi-rotor structure. According to the number of the fluid guiding devices 100, the degree of freedom of the aircraft 200 can be correspondingly increased, which can help to improve the stability of the control of the aircraft 200, and at the same time, the overall size of the rotating body 14 can be increased, so as to improve the aerodynamic efficiency and increase the The endurance time of the aircraft 200.
  • the rotating body 14 is rotated to form the paddle disc 15, and the direction perpendicular to the rotation direction of the rotating body 14 is the direction perpendicular to the plane where the paddle disc 15 is located.
  • the rotating body 14 generates an opposite force for the lift force of the fluid guiding device 100, and the direction of the lifting force is perpendicular to the direction of the plane where the paddle disc 15 is located, so that the fluid guiding device 100 has a tendency to move in the direction of the lift force under the action of the lift force .
  • the aircraft 200 has a tendency to fly in an orientation perpendicular to the rotation direction of the rotor 14 , which may be an orientation perpendicular to the rotation direction of the rotor 14 , or a horizontal direction corresponding to the orientation.
  • the paddle 15 When the rotating body 14 accelerates or decelerates, the paddle 15 may be inclined, so that the direction of the lift force received by the rotating body 14 may be offset, so that the fluid guiding device 100 may move according to the offset direction of the lift force.
  • the number of the fluid guide devices 100 is two. In other embodiments, the number of fluid guiding devices 100 may be three or more. The number of fluid directing devices 100 may be selected on a case-by-case basis.
  • step S320 includes:
  • Step S321 Control the rotating bodies 14 of the at least two fluid guiding devices 100 to rotate at the same rotational speed along the tilting direction, so that the aircraft 200 flies in translation along the tilting direction.
  • the straight direction forms an angle a which is not 90 degrees.
  • the control method of the embodiment of the present application may be implemented by the aircraft 200 of the embodiment of the present application.
  • the aircraft 200 is used to control the rotating bodies 14 of at least two fluid guiding devices 100 to rotate at the same rotational speed along the tilting direction, so that the aircraft 200 flies in translation along the tilting direction, and the tilting direction is perpendicular to the rotating bodies
  • the rotation direction of 14, the inclined direction and the vertical direction form an angle a that is not 90 degrees.
  • the aircraft 200 can be controlled to perform translational flight in a specific direction.
  • the paddles 15 of all the fluid guiding devices 100 can be kept inclined in the same direction, because the rotating shafts 13 of the fluid guiding devices 100 The relative base 12 is rotated, so that the fuselage 21 of the aircraft 200 can perform translational flight relative to the paddle 15 .
  • step S310 includes:
  • Step S311 Control the rotating bodies 14 of the at least two fluid guiding devices 100 to synchronously accelerate or decelerate along the vertical direction with the same initial rotational speed, so that the aircraft 200 ascends or descends in the vertical direction.
  • the control method of the embodiment of the present application may be implemented by the aircraft 200 of the embodiment of the present application.
  • the aircraft 200 is used to control the rotating bodies 14 of at least two fluid guiding devices 100 to synchronously accelerate or decelerate along the vertical direction at the same initial rotation speed, so that the aircraft 200 ascends or descends in the vertical direction.
  • step S320 includes:
  • Step S322 Control the rotating bodies 14 of the at least two fluid guiding devices 100 to rotate at the same rotational speed in at least two opposite inclined directions, so that the aircraft 200 rotates and flies in the vertical direction, and the horizontal at least two opposite inclined directions
  • the components are centrosymmetric along the vertical direction.
  • the control method of the embodiment of the present application may be implemented by the aircraft 200 of the embodiment of the present application.
  • the aircraft 200 is used to control the rotating bodies 14 of at least two fluid guiding devices 100 to rotate at the same rotational speed in at least two opposite inclined directions, so that the aircraft 200 rotates and flies in the vertical direction, and at least two The horizontal components of the opposite oblique directions are centrosymmetric along the vertical direction.
  • the number of the fluid guide devices 100 is two, one of the fluid guide devices 100 rotates along the first inclination direction, and the other fluid guide device 100 rotates along the first inclined direction.
  • the rotating body 14 rotates along the second inclination direction, and the first inclination direction and the second inclination direction are mirror-symmetrical with respect to the vertical direction.
  • the lift force along the first tilt direction and the lift force along the second tilt direction have the same magnitude, that is, the lift force in the first tilt direction
  • the horizontal component of the lift force and the second tilt direction will generate a torque in the same direction on the aircraft 200, so that the aircraft 200 rotates around the fuselage 21; the lift force in the first tilt direction and the second tilt direction
  • the vertical component of the lift force causes the aircraft 200 to move in the vertical direction, so that the aircraft 200 can autorotate up or down in the vertical direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Toys (AREA)

Abstract

一种流体引导装置(100)、飞行器(200)、桨叶(201)、流体引导装置(100)的控制方法、飞行器(200)的控制方法,流体引导装置(100)包括转动机构(11)、基座(12)、转轴(13)和转动体(14),基座(12)连接在转动机构(11)上,并在被转动机构(11)驱动的情况下沿第一轴线L1转动,转轴(13)能够沿第二轴线L2转动连接在基座(12)上,转动体(14)能够转动连接转轴(13),其中,转动体(14)沿第一轴线L1周向布置,在转动体(14)处于静止状态的情况下,转动体(14)的重心g与转轴(13)的中心o形成的连线L3与第一轴线L1成一不为90度的角度a,第一轴线L1和第二轴线L2相互垂直。

Description

流体引导装置、飞行器、桨叶和控制方法 技术领域
本申请涉及无人机技术领域,具体涉及一种流体引导装置、飞行器、桨叶和控制方法。
背景技术
目前,各类旋翼飞行器,包括单桨直升机、共轴双桨直升机、双旋翼飞行器、四旋翼飞行器及其他多旋翼飞行器,为了维持飞行器的稳定、灵活的飞行,一般需要具备3个及以上的受控的自由度,例如直升机通过主旋翼、旋翼变矩器、尾桨构成4自由度的飞行器系统;四旋翼飞行器则直接通过四个直接受电机控制的旋翼构成4自由度的飞行器系统;双旋翼飞行器通过两个受电机控制的旋翼,以及两个控制旋翼朝向的舵机,构成4自由度飞行器系统。
一般地,每个受控自由度对应着一个执行机构,这个执行机构可以是内燃机、电机、舵机、液压杆等机械或电气器件。也就是说,以往的N自由度飞行器,一般需要至少N个执行机构。然而,这样会使得飞行器的结构较为复杂。
发明内容
本申请实施方式提供一种流体引导装置、飞行器、桨叶和控制方法。
本申请实施方式提供的一种流体引导装置,所述流体引导装置包括:
转动机构;
基座,连接在所述转动机构上,并在被所述转动机构驱动的情况下沿第一轴线转动;
转轴,能够沿第二轴线转动连接在所述基座上;和
转动体,能够转动连接所述转轴;
其中,所述转动体沿所述第一轴线周向布置,在所述转动体处于静止状态的情况下,所述转动体的重心与所述转轴的中心形成的连线与所述第一轴线成一不为90度的角度,所述第一轴线和所述第二轴线相互垂直。
上述流体引导装置中,在转动体不转动的情况下,转动体的重心与转轴的中心的连线与第一轴线成一不为90度的角度,在流体引导装置工作时,通过转动机构的加减速动作,转动体能够相对转轴转动以使得流体引导装置所形成的桨盘发生方位角的改变,来实现3个自由度的控制,进而简化了流体引导装置的结构。
本申请实施方式提供的一种飞行器,所述飞行器包括:
机身,
流体引导装置,连接所述机身,所述流体引导装置包括:
转动机构;
基座,连接在所述转动机构上,并在被所述转动机构驱动的情况下沿第一轴线转动;
转轴,能够沿第二轴线转动连接在所述基座上;和
转动体,能够转动连接所述转轴;
其中,所述转动体沿所述第一轴线周向布置,在所述转动体处于静止状态的情况下,所述转动体的重心与所述转轴的中心形成的连线与所述第一轴线成一不为90度的角度,所述第一轴线和所述第二轴线相互垂直。
上述飞行器中,在转动体不转动的情况下,转动体的重心与转轴的中心的连线与第一轴线成一不为90度的角度,在流体引导装置工作时,通过转动机构的加减速动作,转动体能够相对转轴转动以使得流体引导装置所形成的桨盘发生方位角的改变,来实现3个自由度的控制,进而简化了流体引导装置和飞行器的结构。
本申请实施方式提供的一种桨叶,所述桨叶用于转动连接转轴,所述转轴用于沿第二轴线转动连接在基座上,所述机座用于在被驱动的情况下沿第一轴线转动;
其中,所述桨叶沿所述第一轴线周向布置,在所述桨叶处于静止状态的情况下,所述桨叶的重心与所述转轴的中心形成的连线与所述第一轴线成一不为90度的角度,所述第一轴线和所述第二轴线相互垂直。
上述桨叶中,在不转动的情况下,桨叶的重心与转轴的中心的连线与第一轴线成一不为90度的角度,在桨叶工作时,通过对桨叶的加减速动作,桨叶能够相对转轴转动以使得桨叶转动所形成的桨盘发生方位角的改变,来实现3个自由度的控制。
本申请实施方式提供的一种流体引导装置的控制方法,所述流体引导装置包括转动机构和转动体,所述转动机构用于控制所述转动体转动,所述控制方法包括:
确定所述转动体的预变速位置;
在所述转动体到达所述预变速位置的情况下,对所述转动机构进行第一控制,所述第一控制用于对所述转动体的转动进行第一调节,以使得所述流体引导装置朝对应所述预变速位置的方向移动。
上述控制方法中,在转动体不转动的情况下,转动体的重心与转轴的中心的连线与第一轴线成一不为90度的角度,在流体引导装置工作时,通过转动机构的加减速动作,转动体能够相对转轴转动以使得流体引导装置所形成的桨盘发生方位角的改变,来实现3个自由度 的控制,进而简化了流体引导装置的结构。
本申请实施方式提供的一种飞行器的控制方法,所述飞行器包括至少两个流体引导装置,所述流体引导装置包括转动机构和转动体,所述控制方法包括:
控制所述转动体转动,以使得所述飞行器具有沿垂直于所述转动体转动方向的朝向飞行的趋势;
调整所述转动体的转速大小以改变所述转动体的转动方向,以使得所述飞行器对应所述转动体的转动方向进行活动。
上述控制方法中,在转动体不转动的情况下,转动体的重心与转轴的中心的连线与第一轴线成一不为90度的角度,在流体引导装置工作时,通过转动机构的加减速动作,转动体能够相对转轴转动以使得流体引导装置所形成的桨盘发生方位角的改变,来实现3个自由度的控制,进而简化了流体引导装置和飞行器的结构。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请实施方式的流体引导装置的结构示意图;
图2是本申请实施方式的流体引导装置的部分结构示意图;
图3是本申请实施方式的倾角控制结构的结构示意图;
图4是本申请实施方式的流体引导装置的另一部分结构示意图;
图5是图4的沿第一方向的第一转动体的示意图;
图6是图4的沿第二方向的第二转动体的示意图;
图7是本申请实施方式的流体引导装置的再一结构示意图;
图8是本申请实施方式的流体引导装置处于折叠状态的示意图;
图9是本申请实施方式的飞行器的结构示意图;
图10是本申请实施方式的飞行器的另一结构示意图;
图11是本申请实施方式的飞行器的又一结构示意图;
图12是本申请实施方式的飞行器的部分结构示意图;
图13是本申请实施方式的输出电压脉冲和方位角的关系图;
图14是本申请实施方式的流体引导装置的控制方法的流程示意图;
图15是本申请实施方式的飞行器的控制方法的流程示意图;
图16是本申请实施方式的飞行器的再一结构示意图;
图17是本申请实施方式的飞行器的再一结构示意图。
主要附图元件说明:
流体引导装置100、飞行器200、桨叶201;
转动机构11、壳体111、电机112、基座12、转轴13、转动体14、安装端141、第一转动体142、第二转动体143、桨盘15、倾角控制结构16、本体161、配重块162、金属配重块1621、塑料配重块1622、连接端163、连接臂164;
机身21、第一部位211、第二部位212、机臂22、负载23、处理器24、制动机构25。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在申请的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。可以是机械连接,也可以是电连接。可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其 他工艺的应用和/或其他材料的使用。
请参考图1和图2,本申请实施方式提供的一种流体引导装置100,流体引导装置100包括转动机构11、基座12、转轴13和转动体14。基座12连接在转动机构11上,并在被转动机构11驱动的情况下沿第一轴线L1转动。转轴13能够沿第二轴线L2转动连接在基座12上。转动体14能够转动连接转轴13。其中,转动体14沿第一轴线L1周向布置,在转动体14处于静止状态的情况下,转动体14的重心g与转轴13的中心o形成的连线L3与第一轴线L1成一不为90度的角度a,第一轴线L1和第二轴线L2相互垂直。
上述流体引导装置100中,在转动体14不转动的情况下,转动体14的重心g与转轴13的中心o的连线L3与第一轴线L1成一不为90度的角度a,在流体引导装置100工作时,通过转动机构11的加减速动作,转动体14能够相对转轴13转动以使得流体引导装置100所形成的桨盘15发生方位角的改变,来实现3个自由度的控制,进而简化了流体引导装置100的结构。
具体地,在图示的实施方式中,转轴13可以在基座12上沿第二轴线L2转动,以及在基座12沿第一轴线L1转动时同步地沿第一轴线L1转动。转轴13可通过限定结构来限定转动体14进行转动。
可以理解,流体引导装置100可通过改变转动体14的转动速度来调整流体引导装置100整体的方位朝向。具体地,流体引导装置100可通过持续转动的转动体14形成桨盘15,并可具有沿垂直桨盘15的方向进行移动的趋势。在转动体14的转速保持不变的情况下,由于转动体14的气动中心位于转动体14转动方向的后方,转动体14的迎角会在流体阻力的作用下而自发稳定,从而使得流体引导装置100能够相对周围的流体进行悬停。在转动体14的转速发生变化(即沿转动方向产生角加速度)的情况下,由于转动体14的重心g与转轴13的中心o形成的连线L3与基座12围绕转动的第一轴线L1形成的角度a不为90度,会使得转动体14根据惯性力相对转轴13转动,从而使得转动体14的迎角发生变化,进而使得方位角发生变化,流体引导装置100将根据变化后的方位角进行移动。
在上述基础上,由于桨盘15的方位角可以根据空间坐标系沿任一方向变化,在空间坐标系具有3个自由度的情况下,使得流体引导装置100可以通过转动机构11进行3个自由度的控制,不需要设置额外的控制结构,从而有效地简化了流体引导装置100的结构。
综上所述,由于流体引导装置100只需要设置一个转动机构11即可实现3个自由度的控制,有利于提升桨盘15的灵活性和缩短响应时间,并降低了自身重量和整体机械系统的复杂程度,从而可提高可靠性并增加了续航时间。
另外,在图1所示的实施方式中,第一轴线L1为基座12在转动机构11上进行转动时的轴线,第二轴线L2为转轴13在基座12上进行转动时的轴线。为了方便表述,下述实施方式以第一轴线L1为基座12在转动机构11上进行转动时的轴线、第二轴线L2为转轴13在基座12上进行转动时的轴线进行说明。可以理解,在其它的实施方式中,第一轴线L1和第二轴线L2可以根据具体情况进行确定,而不仅限于上述实施方式的具体实施情况。
此外,在其它的实施方式中,流体引导装置100的引导对象可以为气体、液体。在一个实施方式中,引导对象为气体。流体引导装置100可以通过螺旋桨来对流体进行引导。流体引导装置100的转动体14可以包括桨叶201。转动机构11可以包括驱动元件。在一个实施方式中,驱动元件可以为电机112。
请参考图1,在某些实施方式中,转动体14的数量为至少两个。至少两个转动体14的形状相同,至少两个转动体14围绕转轴13的周向间隔地对称布置。如此,可通过多个转动体14实现桨盘15的方位角的改变。
具体地,在图示的实施方式中,转动体14的数量为两个,转轴13的整体结构呈直线型,两个转动体14围绕转轴13的周向间隔180度布置在转轴13的两侧,并分别连接在转轴13的两端,从而可使得相对设置的两个转动体14在转轴13上进行作用力的平衡,进而可通过两个转动体14实现对桨盘15方位角的改变。另外,在其它的实施方式中,转动体14的数量为偶数个。在一个实施方式中,转动体14的数量为四个,转轴13的整体结构呈十字型以形成有四个用于连接转动体14的凸出结构,四个转动体14围绕转轴13的周向间隔90度布置,并分别连接一个转轴13的凸出结构。在其它的实施方式中,转动体14的数量可以为六个以及更多的偶数个数,其具体原理和实施方式的原理相同,在此不做过多赘述。
为了方便表述,下述实施方式以转动体14的数量为两个的情况进行说明。可以理解,转动体14的数量为一个、两个以上的实施方式可参考下述实施方式,从而能够实现相同或类似的技术效果。在此不做详细展开。
请参考图2,在某些实施方式中,两个转动体14分别设有安装端141。安装端141通过倾角控制结构16连接转轴13。通过倾角控制结构16的重心布置来使得转动体14的重心g与转轴13的中心o形成的连线L3与第一轴线L1成一不为90度的角度a。如此,可简单实现改变转动体14重心的效果。
在图示的实施方式中,倾角控制结构16设置在安装端141和转轴13之间。可以理解,通过设置倾角控制结构16,在转动体14通过倾角控制结构16连接转轴13的情况下,可通过改变在倾角控制结构16的重心来改变连接在转轴13上的转动体14的重心g。在其它的 实施方式中,转动体14可以被设置成密度不均匀的结构,以使得转动体14的重心g进行偏移。
请参考图2和图3,倾角控制结构16包括本体161和至少两个配重块162。至少两个配重块162沿本体161长度方向的周向连接在本体161上。至少两个配重块162的质量不同。如此,可通过设置配重块162来改变转动体14的重心g。
具体地,在图3所示的实施方式中,配重块162的数量为两个。沿本体161长度方向的周向,两个配重块162分别设置在本体161相对的两侧。通过将两个配重块162配置为具有不同的质量,在转动体14沿转动方向具有角加速度的情况下,由于质量越大的物体具有越大的惯性,会使得其中一个配重块162相对于转动方向位于转动体14的后方、另一个配重块162相对于转动方向位于转动体14的前方,进而使得转动体14相对于流体的迎角发生变化,从而可改变转动体14形成的桨盘15的方位角。
另外,在其它的实施方式中,可根据具体情况设置两个以上的配重块162。在一个实施方式中,配重块162的数量为三个,一个配重块162沿本体161长度方向的周向连接在本体161的一侧,两个配重块162沿本体161长度方向的周向连接在本体161的相对的另一侧。配重块162的数量可以为三个以上,其具体原理和上述实施方式的原理相同,在此不做具体限定。
在某些实施方式中,至少两个配重块162满足以下其中一个条件:每个配重块162的形状大小相同,密度不同;每个配重块162的形状大小不同,密度相同;每个配重块162的形状大小不同,密度不同。如此,可方便对两个配重块162的质量进行调整。
请参考图3,在某些实施方式中,配重块162呈球状。
在某些实施方式中,在配重块162的数量为至少两个的情况下,一个或多个配重块162是金属配重块1621,一个或多个配重块162是塑料配重块1622。
具体地,请参考图4-图6,在某些实施方式中,转动体14包括第一转动体142和第二转动体143。配重块162的数量为两个。一个配重块162为金属配重块1621,另一个配重块162为塑料配重块1622。第一转动体142连接的金属配重块1621位于本体161的上方,第一转动体142连接的塑料配重块1622位于本体161的下方。第二转动体143连接的金属配重块1621位于本体161的下方,第一转动体142连接的塑料配重块1622位于本体161的上方。如此,可通过配置不同材料的配重块162来实现对转动体14的重心g的调整。
更具体地,图5为图4中的第一转动体142沿第一方向的示意图,图6为图4中的第二转动体143沿第二方向的示意图。可以理解,在转动体14沿转动方向转动一周的情况下, 流体引导装置100会沿转动体14转动方向的垂直方向进行上升或下降一段距离(即转动体14的桨距)。请结合图4,在图5所示的实施方式中,在转动体14具有沿转动方向的角加速度的情况下,位于第一转动体142上方的金属配重块1621会受惯性的作用而相对第一转动体142向转动方向的后方偏移,进而带动第一转动体142相对转轴13转动,使得第一转动体142对流体的迎角增大。在图6所示的实施方式中,在转动体14具有沿转动方向的角加速度的情况下,位于第二转动体143下方的金属配重块1621会受惯性的作用而相对第二转动体143向转动方向的后方偏移,进而带动第二转动体143相对转轴13转动,使得第二转动体143对流体的迎角减小。
在上述基础上,请结合图7,由于第一转动体142对流体的迎角增大,以及第二转动体143对流体的迎角减小,使得第一转动体142由于桨距增大而具有更大的升力,以及第二转动体143的桨距减小而具有更小的升力,进而使得第一转动体142和第二转动体143形成的桨盘15发生倾斜,流体引导装置100的升力方向(即垂直桨盘15的方向)随即发生变化,从而最终实现流体引导装置100沿受力方向进行移动。
另外,在其它的实施方式中,在配重块162的数量为三个及以上的情况下,可以为一个配重块162为金属配重块1621、其余配重块162为塑料配重块1622,可以为一个配重块162为塑料配重块1622、其余配重块162为金属配重块1621。金属配重块1621和塑料配重块1622的数量可根据具体情况进行选择。
请参考图3和图4,在某些实施方式中,本体161包括连接端163。连接端163包括间隔相对的两个连接臂164。安装端141位于两个连接臂164之间且和两个连接臂164转动连接。如此,可提升倾角控制结构16的结构强度。
请参考图3和图4,在某些实施方式中,至少两个配重块162沿安装端141与连接臂164之间的转轴13轴向设置。具体地,在图示的实施方式中,配重块162的数量为两个,一个配重块162沿安装端141与连接臂164之间的转轴13轴向设置在一个连接臂164的一侧,另一个配重块162沿安装端141与连接臂164之间的转轴13轴向设置在另一个连接臂164的一侧。在其它的实施方式中,在配重块162的数量为两个以上的情况下,可以为一部分配重块162沿安装端141与连接臂164之间的转轴13轴向设置在一个连接臂164的一侧,另一部分配重块162沿安装端141与连接臂164之间的转轴13轴向设置在另一个连接臂164的一侧。
在某些实施方式中,流体引导装置100包括阻尼件(图未示)。阻尼件连接基座12和倾斜控制结构。可以理解,通过设置阻尼件,可实现转动体14的转动稳定。如此,可避免转 动体14的角加速度过大而发生碰撞。在某些实施方式中,阻尼件包括弹簧或阻尼器。
请参考图2,在某些实施方式中,转动机构11包括壳体111和电机112,基座12连接壳体111,壳体111连接电机112的转子(图未示),从而可使得基座12转子带动地转动。另外,在其它的实施方式中,壳体111连接电机112的定子(图未示)。在某些实施方式中,电机112为无刷直流电机。
请参考图2,在某些实施方式中,基座12安装在壳体111的顶面,从而可使得转动体14具有较大的转动空间。另外,在其它的实施方式中,基座12安装在壳体111的周向侧面。
请参考图1和图8,在某些实施方式中,转动体14沿垂直转轴13的方向转动连接转轴13以使得转动体14相对转轴13进行折叠。如此,可便于对流体引导装置100进行收纳。
具体地,在图8所示的实施方式中,流体引导装置100用于飞行器200,流体引导装置100的数量为两个。转动体14可以沿第一轴线L1相对于转轴13进行转动,使得转动体14的长度方向平行于第一轴线L1,从而可减少流体引导装置100占用的空间。垂直转轴13的方向指的是垂直于转轴13长度方向的方向。
请参考图1和图9,本申请实施方式提供的一种飞行器200,飞行器200包括机身21、流体引导装置100。流体引导装置100连接机身21。流体引导装置100包括转动机构11、基座12、转轴13和转动体14。基座12连接在转动机构11上,并在被转动机构11驱动的情况下沿第一轴线L1转动。转轴13能够沿第二轴线L2转动连接在基座12上。转动体14能够转动连接转轴13,转动体14的重心g在转轴13上转动形成的轴线的重心到转轴13的垂线与第一轴线L1形成的角度a不为90度。其中,转动体14沿第一轴线L1周向布置,在转动体14处于静止状态的情况下,转动体14的重心g与转轴13的中心o形成的连线L3与第一轴线L1成一不为90度的角度a,第一轴线L1和第二轴线L2相互垂直。
上述飞行器200中,在转动体14不转动的情况下,转动体14的重心g与转轴13的中心o的连线L3与第一轴线L1成一不为90度的角度a,在流体引导装置100工作时,通过转动机构11的加减速动作,转动体14能够相对转轴13转动以使得流体引导装置100所形成的桨盘15发生方位角的改变,来实现3个自由度的控制,进而简化了流体引导装置100和飞行器200的结构。
请参考图9,在某些实施方式中,飞行器200包括机臂22。机臂22一端连接机身21,另一端安装有流体引导装置100。
请参考图10,在某些实施方式中,飞行器200包括至少两个流体引导装置100和至少两个机臂22。至少两个机臂22间隔地连接在机身21顶部的周向侧面,每个机臂22上安装 有一个流体引导装置100。如此,可提升飞行器200对自由度的控制。流体引导装置100和机臂22的数量可根据具体情况进行选择。另外,在图10所示的实施方式中,飞行器200的自由度为5个。
请参考图10,在某些实施方式中,机身21包括第一部位211和第二部位212。第二部位212可拆卸地连接第一部位211。机臂22连接第一部位211。如此,可方便飞行器200的收纳。在某些实施方式中,机臂22转动连接第一部位211。在某些实施方式中,机身21呈长条状。
请参考图1和图11,在某些实施方式中,飞行器200包括至少两个流体引导装置100。至少两个流体引导装置100旋转所形成的桨盘15相对于第一轴线L1垂直,或倾斜。具体地,在流体引导装置100的转速保持不变的情况下,桨盘15相对于第一轴线L1垂直,在流体引导装置100进行加速或减速旋转的情况下,桨盘15会相对于第一轴线L1沿相应的方向倾斜,从而可使得流体引导装置100沿倾斜方向进行运动。
另外,在图11所示的实施方式中,两个流体引导装置100的第一轴线L1为重合的,从而使得两个流体引导装置100的转动体14能够同轴转动而不会在转动时相互干涉,有利于设置具有更大转动直径的转动体14,从而可获得更大的气动效率,并提升飞行器200的续航时间。
请参考图1、图10和图11,在某些实施方式中,至少两个流体引导装置100旋转所形成的桨盘15位于同一平面或不同平面。具体地,在图11所示的实施方式中,流体引导装置100的数量为两个,两个流体引导装置100可以为沿相同的转动方向进行转动,从而使得两个流体引导装置100形成的桨盘15所在的平面平行或重合。两个流体引导装置100也可以为沿相反的转动方向进行转动,从而使得两个流体引导装置100形成的桨盘15所在的平面之间形成的角度不为0。
请参考图11,在某些实施方式中,飞行器200包括至少两个流体引导装置100。至少两个流体引导装置100叠置在机身21的顶部。具体地,在图示的实施方式中,流体引导装置100的数量为两个。沿顶部方向,一个流体引导装置100连接在机身21的顶部,另一个流体引导装置100连接在前述的流体引导装置100的顶部。在其它的实施方式中,在流体引导装置100的数量为两个以上的情况下,所有的流体引导装置100可以沿顶部方向依次叠加地设置在机身21的顶部。
请参考图9,在某些实施方式中,飞行器200包括负载23。负载23连接在机身21的一端,流体引导装置100连接在机身21的另一端。具体地,在图示的实施方式中,沿机身21 的长度方向,负载23连接在机身21的底部,流体引导装置100连接在机身21的顶部,从而可使得流体引导装置100的转动体14在进行转动时不会和负载23发生碰撞。在其它的实施方式中,负载23可以沿机身21的长度方向设置在机身21的侧面。在某些实施方式中,负载23包括云台和安装在云台的拍摄装置。
请参考图9,在某些实施方式中,飞行器200包括处理器24。处理器24位于机身21内且电连接流体引导装置100。处理器24用于控制转动机构11的转速,进而控制飞行器200的飞行状态。
请参考图9和图12,在某些实施方式中,处理器24用于根据在转动体14的转动周期设定的时间点控制转动机构11的转速增大或减少。可以理解,通过对转动体14设置转动周期,在确定转动周期内的时间点的情况下,可确定对应的转动体14的方位角。在该对应的时间点控制转动机构11进行加速或减速,可使得转动体14形成的桨盘15向相应的方位角倾斜,从而产生对应该方位角的方向的升力的水平分量,并驱使飞行器200沿该水平分量进行相应的运动。飞行器200的飞行状态包括飞行器200沿一特定方向进行飞行。
请参考图12和图13,在某些实施方式中,处理器24用于输出电压脉冲来控制转动机构11的转速增大或减少。如此,可实现转动体14在短时间内进行加速和减速。
具体地,请结合图12,在图13所示的实施方式中,处理器24在方位角为360度时输出有电压正脉冲,并在预定时间内输出有一个电压负脉冲,使得桨盘15在方位角为360度时,先沿方位角为0度的方向倾斜,再沿方位角沿180度的方向倾斜,进而使得飞行器200沿0度的方向进行运动,再沿180度的方向进行减速而最终以平衡状态进行悬停。通过处理器24在特定的时间点输出相应的电压脉冲,可达到控制飞行器200沿对应的方位角方向进行运动的效果。在一个实施方式中,预定时间为0.1秒。在其它的实施方式中,预定时间可以根据具体情况进行调整。
请参考图8,在某些实施方式中,飞行器200包括制动机构25。制动机构25连接处理器24。制动机构25用于根据处理器24的控制指令制动转动机构11以减少转动机构11的转速。制动机构25可以通过机械摩擦、磁力、液压、气压、粘滞的方式对转动机构11进行减速。
请参考图1,本申请实施方式提供的一种桨叶201,桨叶201用于转动连接转轴13,转轴13用于沿第二轴线L2转动连接在基座12上,机座用于在被驱动的情况下沿第一轴线L1转动。其中,桨叶201沿第一轴线L1周向布置,在桨叶201处于静止状态的情况下,桨叶201的重心与转轴13的中心o形成的连线L3与第一轴线L1成一不为90度的角度a,第一 轴线L1和第二轴线L2相互垂直。
上述桨叶201中,在不转动的情况下,桨叶201的重心与转轴13的中心o的连线L3与第一轴线L1成一不为90度的角度a,在桨叶201工作时,通过对桨叶201的加减速动作,桨叶201能够相对转轴13转动以使得桨叶201转动所形成的桨盘15发生方位角的改变,来实现3个自由度的控制。
请参考图1和图14,本申请实施方式提供的一种流体引导装置100的控制方法,流体引导装置100包括转动机构11和转动体14,转动机构11用于控制转动体14转动。控制方法包括:
步骤S110:确定转动体14的预变速位置;
步骤S120:在转动体14到达预变速位置的情况下,对转动机构11进行第一控制,第一控制用于对转动体14的转动进行第一调节,以使得流体引导装置100朝对应预变速位置的方向移动。
本申请实施方式的控制方法可以通过本申请实施方式的流体引导装置100来实现。请结合图1,流体引导装置100用于确定转动体14的预变速位置,及用于在转动体14到达预变速位置的情况下,对转动机构11进行第一控制,第一控制用于对转动体14的转动进行第一调节,以使得流体引导装置100朝对应预变速位置的方向移动。
上述控制方法中,在转动体14不转动的情况下,转动体14的重心g与转轴13的中心o的连线L3与第一轴线L1成一不为90度的角度a,在流体引导装置100工作时,通过转动机构11的加减速动作,转动体14能够相对转轴13转动以使得流体引导装置100所形成的桨盘15发生方位角的改变,来实现3个自由度的控制,进而简化了流体引导装置100的结构。
可以理解,在确定转动体14的预变速位置的情况下,通过对转动机构11进行第一控制,使得转动体14根据第一控制进行第一调节,从而使得转动体14形成的桨盘15沿对应预变速位置的方位角倾斜,进而使得流体引导装置100朝向桨盘15倾斜的方向移动。
在某些实施方式中,控制方法还包括:
步骤S111:根据转动体14的预变速位置,确定转动体14的变速时刻。
本申请实施方式的控制方法可以通过本申请实施方式的流体引导装置100来实现。请结合图1,流体引导装置100用于根据转动体14的预变速位置,确定转动体14的变速时刻。
具体地,转动体14的预变速位置对应桨盘15的方位角。请结合图12和图13,在图示的实施方式中,通过确定转动体14的预变速位置来确定对应的方位角,进而可获取到使得 转动体14在预变速位置进行变速的变速时刻,从而可控制流体引导装置100在预变速位置进行加速或减速。
在某些实施方式中,控制方法还包括:
步骤S112:在变速时刻后经过第一变速时长的情况下,控制转动机构11驱动转动体14进行第二调节。
本申请实施方式的控制方法可以通过本申请实施方式的流体引导装置100来实现。请结合图9,流体引导装置100用于在变速时刻后经过第一变速时长的情况下,控制转动机构11驱动转动体14进行第二调节。
如此,可使得流体引导装置100恢复到平衡位置。
具体地,平衡位置指的是流体引导装置100处于悬停状态。在流体引导装置100朝对应预变速位置的方向移动的情况下,通过控制转动机构11驱动转动体14进行第二调节,可使得流体引导装置100沿相反的方向进行移动,从而可对流体引导装置100进行减速,最终使得流体引导装置100恢复平衡位置。第一变速时长可根据具体情况进行调整。在一个实施方式中,第一变速时长为0.1秒。
在某些实施方式中,步骤S112,包括:
步骤S113:调节转动体14在预变速位置处的转速。
本申请实施方式的控制方法可以通过本申请实施方式的流体引导装置100来实现。请结合图9,流体引导装置100用于调节转动体14在预变速位置处的转速。
如此,可通过改变转动体14转速的方式来使得流体引导装置100恢复到平衡位置。
另外,在其它的实施方式中,第二调节可以包括主动改变桨盘15的倾角。主动改变桨盘15的倾角的方式可以包括机械接触、电磁吸附。
在某些实施方式中,步骤S112,包括:
步骤S114:使第二调节后的转动体14转速与第一调节前的转动体14转速相等。
本申请实施方式的控制方法可以通过本申请实施方式的流体引导装置100来实现。请结合图9,流体引导装置100用于使第二调节后的转动体14转速与第一调节前的转动体14转速相等。
如此,可使得流体引导装置100在第一调节前和第二调节后均能够处于相同的高度。
可以理解,在一个实施方式中,在转动体14的转速增大后,会使得转动体14相对流体的迎角增大,从而使得转动体14受到的升力增大,流体引导装置100会由于增大的升力而上升;在转动体14的转速减小后,会使得转动体14相对流体的迎角减小,从而使得转动体 14受到的升力减小,流体引导装置100会由于减小的升力而下降。在第二调节后的转动体14转速与第一调节前的转动体14转速相等的情况下,可使得转动体14受到的升力相同,从而使得流体引导装置100由于相同的升力而处于相同高度的平衡位置。
在某些实施方式中,步骤S120,包括:
步骤S121:调节转动体14在预变速位置处的转速。
本申请实施方式的控制方法可以通过本申请实施方式的流体引导装置100来实现。请结合图9,流体引导装置100用于调节转动体14在预变速位置处的转速。
如此,可实现控制流体引导装置100向特定方向进行运动。
另外,在其它的实施方式中,第一调节可以包括控制主动改变桨盘15的倾角。主动改变桨盘15的倾角的方式可以包括机械接触、电磁吸附。
在某些实施方式中,步骤S120,包括:
步骤S122:转动机构11接收的电压信号产生改变。
本申请实施方式的控制方法可以通过本申请实施方式的流体引导装置100来实现。请结合图9,流体引导装置100用于使得转动机构11接收的电压信号产生改变。
如此,可实现对转动体14的转速进行改变。
具体地,在一个实施方式中,在转动机构11接收的电压信号所对应的电压值增大的情况下,可使得转动机构11的输出功率增大,从而对转动体14进行加速;在转动机构11接收的电压信号所对应的电压值减小的情况下,可使得转动机构11的输出功率减小,从而对转动体14进行减速。
在某些实施方式中,步骤S122,包括:
步骤S123:在直流驱动电压的基础上,叠加电压脉冲信号。
本申请实施方式的控制方法可以通过本申请实施方式的流体引导装置100来实现。请结合图9,流体引导装置100用于在直流驱动电压的基础上,叠加电压脉冲信号。
如此,可简单实现电压信号所对应的电压值的增大和减小。
具体地,在一个实施方式中,通过对直流驱动电压叠加电压正脉冲信号,使得转动体14能够进行加速,通过对直流驱动电压叠加电压负脉冲信号,使得转动体14能够进行加速。在其它的实施方式中,可通过改变叠加的电压脉冲信号的电压值大小,来进一步改变转动体14需要增加或减少的转速。
在某些实施方式中,步骤S120,包括:
步骤S124:调节转动体14在预变速位置处的倾角。
本申请实施方式的控制方法可以通过本申请实施方式的流体引导装置100来实现。请结合图9,流体引导装置100用于调节转动体14在预变速位置处的倾角。
如此,可控制流体引导装置100沿倾角的对应方向进行运动。
在某些实施方式中,步骤S120,包括:
步骤S125:开启倾角改变元件。
本申请实施方式的控制方法可以通过本申请实施方式的流体引导装置100来实现。请结合图9,流体引导装置100用于开启倾角改变元件。
具体地,通过设置倾角改变元件,可便于对转动体14在预变速位置处的倾角进行调整,进而可方便控制流体引导装置100沿倾角的对应方向进行运动。另外,在其它的实施方式中,倾角改变元件可以包括机械拉杆、液压缸、电磁装置。
在某些实施方式中,流体引导装置100包括至少两个转动体14。具体地,在某些实施方式中,至少两个转动体14以相同的转速进行同轴转动,从而可通过所有的转动体14同时提供用于控制飞行器200飞行的升力。在其他的实施方式,转动体14的数量可根据具体情况进行选择。
在某些实施方式中,转动体14预设有转动周期。步骤S110,包括:
步骤S115:确定转动周期内的变速时刻,变速时刻对应转动体14的预变速位置。
本申请实施方式的控制方法可以通过本申请实施方式的流体引导装置100来实现。请结合图9,流体引导装置100用于确定转动周期内的变速时刻,变速时刻对应转动体14的预变速位置。
如此,可周期性地控制转动体14进行加速或减速。
具体地,转动体14通过持续转动以形成转动周期,在确定出转动周期内的变速时刻的情况下,可在当前时刻为变速时刻的时候控制转动机构11以调整转动机构11的输出功率,从而控制可转动体14在预变速位置处进行周期性地加速或减速。
另外,在其它的实施方式中,变速时刻可以对应转动体14转动形成的转动周期,也可以对应流体引导装置100在开始工作后的工作时间。
请参考图1、图10和图15,本申请实施方式提供的一种飞行器200的控制方法,飞行器200包括至少两个流体引导装置100。流体引导装置100包括转动机构11和转动体14。控制方法包括:
步骤S310:控制转动体14转动以形成桨盘15,以使得飞行器200具有沿垂直于桨盘15的方向飞行的趋势;
步骤S320:调整转动体14的转速以使得桨盘15发生倾斜,进而使得飞行器200对应桨盘15倾斜方向的朝向进行活动。
本申请实施方式的控制方法可以通过本申请实施方式的飞行器200来实现。请结合图10,飞行器200用于控制转动体14转动以形成桨盘15,以使得飞行器200具有沿垂直于桨盘15的方向飞行的趋势,及用于调整转动体14的转速以使得桨盘15发生倾斜,进而使得飞行器200对应桨盘15倾斜方向的朝向进行活动。
上述控制方法中,在转动体14不转动的情况下,转动体14的重心g与转轴13的中心o的连线L3与第一轴线L1成一不为90度的角度a,在流体引导装置100工作时,通过转动机构11的加减速动作,转动体14能够相对转轴13转动以使得流体引导装置100所形成的桨盘15发生方位角的改变,来实现3个自由度的控制,进而简化了流体引导装置100和飞行器200的结构。
可以理解,通过设置多个流体引导装置100,可使得飞行器200具有多旋翼结构。根据流体引导装置100的数量,可对应地增加飞行器200的自由度,从而可有利于提高对飞行器200进行控制的稳定程度,同时可以增大转动体14的整体尺寸,从而可提高气动效率和增加飞行器200的续航时间。
具体地,转动体14通过转动以形成桨盘15,垂直于转动体14转动方向的朝向即为垂直于桨盘15所在平面的方向,可以理解,通过转动体14转动地引导流体,使得流体对转动体14产生相反的用于作为流体引导装置100的升力的作用力,升力的方向垂直于桨盘15所在平面的方向,使得流体引导装置100在升力的作用下,具有沿升力方向活动的趋势。飞行器200具有沿垂直于转动体14转动方向的朝向飞行的趋势,可以为飞行器200沿垂直于转动体14转动方向的朝向飞行,可以为飞行器200沿对应该朝向的水平方向飞行。
由于在转动体14进行加速或减速的情况下,可使得桨盘15发生倾斜,进而使得转动体14受到的升力方向发生偏移,从而可导致流体引导装置100根据升力的偏移方向进行活动。
另外,在图10所示的实施方式中,流体引导装置100的数量为两个。在其它的实施方式中,流体引导装置100的数量可以为三个及三个以上。流体引导装置100的数量可根据具体情况进行选择。
在某些实施方式中,步骤S320,包括:
步骤S321:控制至少两个流体引导装置100的转动体14沿倾斜方向以相同的转速转动,以使得飞行器200沿倾斜方向平动飞行,倾斜方向垂直于转动体14的转动方向,倾斜方向与竖直方向形成一不为90度的角度a。
本申请实施方式的控制方法可以通过本申请实施方式的飞行器200来实现。请结合图10和图16,飞行器200用于控制至少两个流体引导装置100的转动体14沿倾斜方向以相同的转速转动,以使得飞行器200沿倾斜方向平动飞行,倾斜方向垂直于转动体14的转动方向,倾斜方向与竖直方向形成一不为90度的角度a。
如此,可控制飞行器200沿特定方向进行平动飞行。
具体地,在所有流体引导装置100的转动体14以相同的转动方向和转动速度进行转动时,可使得所有流体引导装置100的桨盘15保持向同一方向倾斜,由于流体引导装置100的转轴13相对基座12是转动的,使得飞行器200的机身21相对于桨盘15可以进行平动飞行。
在某些实施方式中,步骤S310,包括:
步骤S311:控制至少两个流体引导装置100的转动体14沿竖直方向以相同的初始转速进行同步加速或减速,以使得飞行器200沿竖直方向上升或下降。
本申请实施方式的控制方法可以通过本申请实施方式的飞行器200来实现。请结合图9,飞行器200用于控制至少两个流体引导装置100的转动体14沿竖直方向以相同的初始转速进行同步加速或减速,以使得飞行器200沿竖直方向上升或下降。
如此,可简单实现飞行器200沿竖直方向的飞行。
在某些实施方式中,步骤S320,包括:
步骤S322:控制至少两个流体引导装置100的转动体14分别沿至少两个相对的倾斜方向以相同的转速转动,以使得飞行器200沿竖直方向自转飞行,至少两个相对的倾斜方向的水平分量沿竖直方向是中心对称的。
本申请实施方式的控制方法可以通过本申请实施方式的飞行器200来实现。请结合图17,飞行器200用于控制至少两个流体引导装置100的转动体14分别沿至少两个相对的倾斜方向以相同的转速转动,以使得飞行器200沿竖直方向自转飞行,至少两个相对的倾斜方向的水平分量沿竖直方向是中心对称的。
具体地,请结合图10,在图17所示的实施方式中,流体引导装置100的数量为两个,一个流体引导装置100的转动体14沿第一倾斜方向转动,另一个流体引导装置100的转动体14沿第二倾斜方向转动,第一倾斜方向和第二倾斜方向关于竖直方向呈镜面对称。由于两个流体引导装置100的转动体14是以相同的转速转动的,使得沿第一倾斜方向的升力和沿第二倾斜方向的升力具有相同的大小,也即:第一倾斜方向上的升力和第二倾斜方向上的升力在水平方向上的分量会在飞行器200上产生同向的转矩,使得飞行器200绕机身21进 行自转;第一倾斜方向上的升力和第二倾斜方向上的升力在竖直方向上的分量会使得飞行器200沿竖直方向进行运动,从而使得飞行器200可以沿竖直方向自转地上升或下降。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (82)

  1. 一种流体引导装置,其特征在于,所述流体引导装置包括:
    转动机构;
    基座,连接在所述转动机构上,并在被所述转动机构驱动的情况下沿第一轴线转动;
    转轴,能够沿第二轴线转动连接在所述基座上;和
    转动体,能够转动连接所述转轴;
    其中,所述转动体沿所述第一轴线周向布置,在所述转动体处于静止状态的情况下,所述转动体的重心与所述转轴的中心形成的连线与所述第一轴线成一不为90度的角度,所述第一轴线和所述第二轴线相互垂直。
  2. 根据权利要求1所述的流体引导装置,其特征在于,所述转动体的数量为至少两个,所述至少两个转动体的形状相同,所述至少两个转动体围绕所述转轴的周向间隔地对称布置。
  3. 根据权利要求2所述的流体引导装置,其特征在于,所述至少两个转动体分别设有安装端,所述安装端通过倾角控制结构连接所述转轴,通过所述倾角控制结构的重心布置来使得所述转动体的重心与所述转轴的中心形成的连线与所述第一轴线成一不为90度的角度。
  4. 根据权利要求3所述的流体引导装置,其特征在于,所述倾角控制结构包括:
    本体,
    至少两个配重块,沿所述本体长度方向的周向连接在所述本体上,所述至少两个配重块的质量不同。
  5. 根据权利要求4所述的流体引导装置,其特征在于,所述至少两个配重块满足以下其中一个条件:
    每个所述配重块的形状大小相同,密度不同;
    每个所述配重块的形状大小不同,密度相同;
    每个所述配重块的形状大小不同,密度不同。
  6. 根据权利要求4所述的流体引导装置,其特征在于,所述配重块呈球状。
  7. 根据权利要求4所述的流体引导装置,其特征在于,一个或多个所述配重块是金属配重块,一个或多个所述配重块是塑料配重块。
  8. 根据权利要求7所述的流体引导装置,其特征在于,所述转动体包括第一转动体和第二转动体,所述第一转动体连接的金属配重块位于所述本体的上方,所述第一转动体连接的塑料配重块位于所述本体的下方,
    所述第二转动体连接的金属配重块位于所述本体的下方,所述第一转动体连接的塑料配 重块位于所述本体的上方。
  9. 根据权利要求4所述的流体引导装置,其特征在于,所述本体包括:
    连接端,包括间隔相对的两个连接臂,所述安装端位于所述两个连接臂之间且和所述两个连接臂转动连接。
  10. 根据权利要求9所述的流体引导装置,其特征在于,所述至少两个配重块沿所述安装端与所述连接臂之间的转轴轴向设置。
  11. 根据权利要求3所述的流体引导装置,其特征在于,所述流体引导装置包括:
    阻尼件,所述阻尼件连接所述基座和所述倾斜控制结构。
  12. 根据权利要求11所述的流体引导装置,其特征在于,所述阻尼件包括弹簧或阻尼器。
  13. 根据权利要求1所述的流体引导装置,其特征在于,所述转动机构包括壳体和电机,所述壳体连接所述电机的转子或定子,所述基座连接所述壳体。
  14. 根据权利要求13所述的流体引导装置,其特征在于,所述基座安装在所述壳体的顶面,或所述基座安装在所述壳体的周向侧面。
  15. 根据权利要求13所述的流体引导装置,其特征在于,所述电机为无刷直流电机。
  16. 根据权利要求1所述的流体引导装置,其特征在于,所述转动体沿垂直所述转轴的方向转动连接所述转轴以使得所述转动体相对所述转轴进行折叠。
  17. 根据权利要求1所述的流体引导装置,其特征在于,所述流体引导装置的引导对象包括气体。
  18. 根据权利要求1所述的流体引导装置,其特征在于,所述流体引导装置包括螺旋桨。
  19. 根据权利要求1所述的流体引导装置,其特征在于,所述转动体包括桨叶。
  20. 根据权利要求1所述的流体引导装置,其特征在于,所述转动机构包括驱动元件。
  21. 一种飞行器,其特征在于,包括:
    机身,
    流体引导装置,连接所述机身,所述流体引导装置包括:
    转动机构;
    基座,连接在所述转动机构上,并在被所述转动机构驱动的情况下沿第一轴线转动;
    转轴,能够沿第二轴线转动连接在所述基座上;和
    转动体,能够转动连接所述转轴;
    其中,所述转动体沿所述第一轴线周向布置,在所述转动体处于静止状态的情况下,所 述转动体的重心与所述转轴的中心形成的连线与所述第一轴线成一不为90度的角度,所述第一轴线和所述第二轴线相互垂直。
  22. 根据权利要求21所述的飞行器,其特征在于,所述转动体的数量为至少两个,所述至少两个转动体的形状相同,所述至少两个转动体沿所述第一轴线围绕所述转轴周向间隔地对称布置。
  23. 根据权利要求22所述的飞行器,其特征在于,所述转动体设有安装端,所述安装端通过一倾角控制结构连接所述转轴,通过所述倾角控制结构的重心布置来使得所述第一转动体的重心与所述第二转动体的重心的连线与所述第一轴线成一不为90度的角度。
  24. 根据权利要求23所述的飞行器,其特征在于,所述倾角控制结构包括:
    本体,
    至少两个配重块,沿所述本体长度方向的周向连接在所述本体上,所述至少两个配重块的质量不同。
  25. 根据权利要求24所述的飞行器,其特征在于,所述至少两个配重块满足以下其中一个条件:
    每个所述配重块的形状大小相同,密度不同;
    每个所述配重块的形状大小不同,密度相同;
    每个所述配重块的形状大小不同,密度不同。
  26. 根据权利要求24所述的飞行器,其特征在于,所述配重块呈球状。
  27. 根据权利要求24所述的飞行器,其特征在于,一个或多个所述配重块是金属配重块,一个或多个所述配重块是塑料配重块。
  28. 根据权利要求27所述的飞行器,其特征在于,所述转动体包括第一转动体和第二转动体,所述第一转动体连接的金属配重块位于所述第三轴线的上方,所述第一转动体连接的塑料配重块位于所述第三轴线的下方,
    所述第二转动体连接的金属配重块位于所述第三轴线的下方,所述第一转动体连接的塑料配重块位于所述第三轴线的上方。
  29. 根据权利要求24所述的飞行器,其特征在于,所述本体包括:
    连接端,包括间隔相对的两个连接臂,所述安装端位于所述两个连接臂之间且和所述两个连接臂转动连接。
  30. 根据权利要求29所述的飞行器,其特征在于,所述至少两个配重块沿所述安装端与所述连接臂之间的转轴轴向设置。
  31. 根据权利要求23所述的飞行器,其特征在于,所述流体引导装置包括:
    阻尼件,所述阻尼件连接所述基座和所述倾斜控制结构。
  32. 根据权利要求31所述的飞行器,其特征在于,所述阻尼件包括弹簧或阻尼器。
  33. 根据权利要求21所述的飞行器,其特征在于,所述转动机构包括壳体和电机,所述壳体连接所述电机的转子或定子,所述基座连接所述壳体。
  34. 根据权利要求33所述的飞行器,其特征在于,所述基座安装在所述壳体的顶面,或所述基座安装在所述壳体的周向侧面。
  35. 根据权利要求33所述的飞行器,其特征在于,所述电机为无刷直流电机。
  36. 根据权利要求21所述的飞行器,其特征在于,所述转动体沿垂直所述转轴的方向转动连接所述转轴以使得所述转动体相对所述转轴进行折叠。
  37. 根据权利要求21所述的飞行器,其特征在于,所述流体引导装置的引导对象包括气体。
  38. 根据权利要求21所述的飞行器,其特征在于,所述流体引导装置包括螺旋桨。
  39. 根据权利要求21所述的飞行器,其特征在于,所述转动体包括桨叶。
  40. 根据权利要求21所述的飞行器,其特征在于,所述转动机构包括驱动元件。
  41. 根据权利要求21所述的飞行器,其特征在于,所述飞行器包括:
    机臂,一端连接所述机身,另一端安装有所述流体引导装置。
  42. 根据权利要求41所述的飞行器,其特征在于,所述飞行器包括至少两个所述流体引导装置和至少两个所述机臂,所述至少两个机臂间隔地连接在所述机身顶部的周向侧面,每个所述机臂上安装有一个所述流体引导装置。
  43. 根据权利要求41所述的飞行器,其特征在于,所述机身包括:
    第一部位,
    第二部位,可拆卸地连接所述第一部位,所述机臂连接所述第一部位。
  44. 根据权利要求43所述的飞行器,其特征在于,所述机臂转动连接所述第一部位。
  45. 根据权利要求44所述的飞行器,其特征在于,所述飞行器包括至少两个所述流体引导装置,所述至少两个流体引导装置叠置在所述机身的顶部。
  46. 根据权利要求44所述的飞行器,其特征在于,所述飞行器包括:
    负载,连接在所述机身的一端,所述流体引导装置连接在所述机身的另一端。
  47. 根据权利要求46所述的飞行器,其特征在于,所述负载包括云台和安装在所述云台的拍摄装置。
  48. 根据权利要求44所述的飞行器,其特征在于,所述飞行器包括:
    处理器,位于所述机身内且电连接所述流体引导装置,所述处理器用于控制所述转动机构的转速,进而控制所述飞行器的飞行状态。
  49. 根据权利要求48所述的飞行器,其特征在于,所述处理器用于根据在所述转动体的转动周期设定的时间点控制所述转动机构的转速增大或减少。
  50. 根据权利要求49所述的飞行器,其特征在于,所述处理器用于输出电压脉冲来控制所述转动机构的转速增大或减少。
  51. 根据权利要求49所述的飞行器,其特征在于,所述飞行器包括:
    制动机构,连接所述处理器,所述制动机构用于根据所述处理器的控制指令制动所述转动机构以减少所述转动机构的转速。
  52. 根据权利要求44所述的飞行器,其特征在于,所述飞行器包括至少两个所述流体引导装置,所述至少两个流体引导装置旋转所形成的桨盘相对于所述第一轴线垂直,或倾斜。
  53. 根据权利要求52所述的飞行器,其特征在于,所述至少两个流体引导装置旋转所形成的桨盘位于同一平面或不同平面。
  54. 根据权利要求44所述的飞行器,其特征在于,所述机身呈长条状。
  55. 一种桨叶,其特征在于:
    所述桨叶用于转动连接转轴,所述转轴用于沿第二轴线转动连接在基座上,所述机座用于在被驱动的情况下沿第一轴线转动;
    其中,所述桨叶沿所述第一轴线周向布置,在所述桨叶处于静止状态的情况下,所述桨叶的重心与所述转轴的中心形成的连线与所述第一轴线成一不为90度的角度,所述第一轴线和所述第二轴线相互垂直。
  56. 根据权利要求55所述的桨叶,其特征在于,所述桨叶设有安装端,所述桨叶包括第一桨叶和第二桨叶,所述安装端通过一倾角控制结构连接所述转轴,通过所述倾角控制结构的重心布置来使得所述第一桨叶的重心与所述第二桨叶的重心的连线与所述第一轴线成一不为90度的角度。
  57. 根据权利要求56所述的桨叶,其特征在于,所述倾角控制结构包括:
    本体,
    至少两个配重块,沿所述本体长度方向的周向连接在所述本体上,所述至少两个配重块的质量不同。
  58. 根据权利要求57所述的桨叶,其特征在于,所述至少两个配重块满足以下其中一 个条件:
    每个所述配重块的形状大小相同,密度不同;
    每个所述配重块的形状大小不同,密度相同;
    每个所述配重块的形状大小不同,密度不同。
  59. 根据权利要求57所述的桨叶,其特征在于,所述配重块呈球状。
  60. 根据权利要求57所述的桨叶,其特征在于,一个或多个所述配重块是金属配重块,一个或多个所述配重块是塑料配重块。
  61. 根据权利要求60所述的桨叶,其特征在于,所述第一桨叶连接的金属配重块位于所述本体的上方,所述第一桨叶连接的塑料配重块位于所述本体的下方,
    所述第二桨叶连接的金属配重块位于所述本体的下方,所述第一桨叶连接的塑料配重块位于所述本体的上方。
  62. 根据权利要求57所述的桨叶,其特征在于,所述本体包括:
    连接端,包括间隔相对的两个连接臂,所述安装端位于所述两个连接臂之间且和所述两个连接臂转动连接。
  63. 根据权利要求62所述的桨叶,其特征在于,所述至少两个配重块沿所述安装端与所述连接臂之间的转轴轴向设置。
  64. 根据权利要求55所述的桨叶,其特征在于,所述桨叶沿垂直所述转轴的方向转动连接所述转轴以使得所述桨叶相对所述转轴进行折叠。
  65. 根据权利要求55所述的桨叶,其特征在于,所述桨叶用于螺旋桨。
  66. 一种流体引导装置的控制方法,其特征在于,所述流体引导装置包括转动机构和转动体,所述转动机构用于控制所述转动体转动,所述控制方法包括:
    确定所述转动体的预变速位置;
    在所述转动体到达所述预变速位置的情况下,对所述转动机构进行第一控制,所述第一控制用于对所述转动体的转动进行第一调节,以使得所述流体引导装置朝对应所述预变速位置的方向移动。
  67. 根据权利要求66所述的控制方法,其特征在于,所述控制方法还包括:
    根据所述转动体的预变速位置,确定所述转动体的变速时刻。
  68. 根据权利要求67所述的控制方法,其特征在于,所述控制方法还包括:
    在所述变速时刻后经过第一变速时长的情况下,控制所述转动机构驱动所述转动体进行第二调节。
  69. 根据权利要求68所述的控制方法,其特征在于,控制所述转动机构驱动所述转动体进行第二调节,包括:
    调节所述转动体在所述预变速位置处的转速。
  70. 根据权利要求69所述的控制方法,其特征在于,控制所述转动机构驱动所述转动体进行第二调节,包括:
    使所述第二调节后的转动体转速与所述第一调节前的转动体转速相等。
  71. 根据权利要求66所述的控制方法,其特征在于,对所述转动体的转动进行第一调节,包括:
    调节所述转动体在所述预变速位置处的转速。
  72. 根据权利要求66所述的控制方法,其特征在于,所述对所述转动机构进行第一控制,包括:
    所述转动机构接收的电压信号产生改变。
  73. 根据权利要求72所述的控制方法,其特征在于,所述所述转动机构接收的电压信号产生改变,包括:
    在直流驱动电压的基础上,叠加电压脉冲信号。
  74. 根据权利要求66所述的控制方法,其特征在于,对所述转动体的转动进行第一调节,包括:
    调节所述转动体在所述预变速位置处的倾角。
  75. 根据权利要求66所述的控制方法,其特征在于,对所述转动机构进行第一控制,包括:
    开启倾角改变元件。
  76. 根据权利要求66所述的控制方法,其特征在于,所述流体引导装置包括至少两个转动体。
  77. 根据权利要求76所述的控制方法,其特征在于,所述至少两个转动体以相同的转速进行同轴转动。
  78. 根据权利要求66所述的控制方法,其特征在于,所述转动体预设有转动周期,
    确定所述转动体的预变速位置,包括:
    确定所述转动周期内的变速时刻,所述变速时刻对应所述所述转动体的预变速位置。
  79. 一种飞行器的控制方法,其特征在于,所述飞行器包括至少两个流体引导装置,所述流体引导装置包括转动机构和转动体,所述控制方法包括:
    控制所述转动体转动以形成桨盘,以使得所述飞行器具有沿垂直于所述桨盘的方向飞行的趋势;
    调整所述转动体的转速以使得所述桨盘发生倾斜,进而使得所述飞行器对应所述桨盘倾斜方向的朝向进行活动。
  80. 根据权利要求79所述的控制方法,其特征在于,
    调整所述转动体的转速以使得所述桨盘发生倾斜,进而使得所述飞行器对应所述桨盘倾斜方向的朝向进行活动,包括:
    控制所述至少两个流体引导装置的转动体沿所述倾斜方向以相同的转速转动,以使得所述飞行器沿所述倾斜方向平动飞行,所述倾斜方向垂直于所述转动体的转动方向,所述倾斜方向与竖直方向形成一不为90度的角度。
  81. 根据权利要求79所述的控制方法,其特征在于,
    控制所述转动体转动以形成桨盘,以使得所述飞行器具有沿垂直于所述桨盘的方向飞行的趋势,包括:
    控制所述至少两个流体引导装置的转动体沿竖直方向以相同的初始转速进行同步加速或减速,以使得所述飞行器沿所述竖直方向上升或下降。
  82. 根据权利要求79所述的控制方法,其特征在于,
    调整所述转动体的转速以使得所述桨盘发生倾斜,进而使得所述飞行器对应所述桨盘倾斜方向的朝向进行活动,包括:
    控制所述至少两个流体引导装置的转动体分别沿至少两个相对的倾斜方向以相同的转速转动,以使得所述飞行器沿竖直方向自转飞行,所述至少两个相对的倾斜方向的水平分量沿竖直方向是中心对称的。
PCT/CN2020/140204 2020-12-28 2020-12-28 流体引导装置、飞行器、桨叶和控制方法 WO2022140925A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/140204 WO2022140925A1 (zh) 2020-12-28 2020-12-28 流体引导装置、飞行器、桨叶和控制方法
CN202080069124.9A CN114929573A (zh) 2020-12-28 2020-12-28 流体引导装置、飞行器、桨叶和控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/140204 WO2022140925A1 (zh) 2020-12-28 2020-12-28 流体引导装置、飞行器、桨叶和控制方法

Publications (1)

Publication Number Publication Date
WO2022140925A1 true WO2022140925A1 (zh) 2022-07-07

Family

ID=82258881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140204 WO2022140925A1 (zh) 2020-12-28 2020-12-28 流体引导装置、飞行器、桨叶和控制方法

Country Status (2)

Country Link
CN (1) CN114929573A (zh)
WO (1) WO2022140925A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107264796A (zh) * 2016-04-01 2017-10-20 空客直升机德国有限公司 具有至少两个螺旋桨桨叶的螺旋桨组件
CN109305355A (zh) * 2017-07-28 2019-02-05 空中客车防务和空间有限责任公司 用于飞行器的螺旋桨装置
CN111252238A (zh) * 2020-03-17 2020-06-09 南京韬讯航空科技有限公司 一种电调控制的变距旋翼系统模块及直升机
CN111703569A (zh) * 2020-07-21 2020-09-25 北京远度互联科技有限公司 桨夹、螺旋桨组件、动力装置和无人机
US20200331585A1 (en) * 2019-03-15 2020-10-22 The Boeing Company Low latency pitch adjustable rotors
CN211918983U (zh) * 2016-08-31 2020-11-13 菲力尔无人机系统公司 用于交通工具的推力发生旋翼总成

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107264796A (zh) * 2016-04-01 2017-10-20 空客直升机德国有限公司 具有至少两个螺旋桨桨叶的螺旋桨组件
CN211918983U (zh) * 2016-08-31 2020-11-13 菲力尔无人机系统公司 用于交通工具的推力发生旋翼总成
CN109305355A (zh) * 2017-07-28 2019-02-05 空中客车防务和空间有限责任公司 用于飞行器的螺旋桨装置
US20200331585A1 (en) * 2019-03-15 2020-10-22 The Boeing Company Low latency pitch adjustable rotors
CN111252238A (zh) * 2020-03-17 2020-06-09 南京韬讯航空科技有限公司 一种电调控制的变距旋翼系统模块及直升机
CN111703569A (zh) * 2020-07-21 2020-09-25 北京远度互联科技有限公司 桨夹、螺旋桨组件、动力装置和无人机

Also Published As

Publication number Publication date
CN114929573A (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
CN211918983U (zh) 用于交通工具的推力发生旋翼总成
KR100812756B1 (ko) 요잉제어가 용이한 쿼드로콥터
CN110697035B (zh) 一种六自由度独立可控飞行器及其控制方法
US11718390B2 (en) Propulsion systems for rotorcraft
CN208828097U (zh) 拉力生成旋翼组件
EP3594117B1 (en) Canted co-axial rotors for a rotorcraft
EP3527492B1 (en) Anti-torque systems for rotorcraft
CN106477032B (zh) 多轴飞行器
US20100044499A1 (en) Six rotor helicopter
WO2019079688A1 (en) PILOT-FREE AIR VEHICLE AND PROPULSION SYSTEM FOR AN AIR VEHICLE WITHOUT PILOT
KR20170135577A (ko) 틸팅 및 가변 피치 시스템이 적용된 무인 비행체
CN200951831Y (zh) 多旋翼飞行器
US11332240B2 (en) Anti-torque systems for rotorcraft
CN109733597B (zh) 一种可遥控共轴双桨单轴飞行器
KR20170012543A (ko) 고정 로터 추력 벡터링
CN110329497A (zh) 一种桨面角度可变的多旋翼无人机及其控制方法
JP7076873B1 (ja) Focパワーシステムに基づいたティルト回転可能な6つのローター付きの水陸両用無人機
CN105059536A (zh) 变螺距旋翼装置以及多旋翼飞行器
WO2016197964A1 (zh) 旋翼控制装置及旋翼飞行器
JP2021502920A (ja) 例えば回転中にプロペラのブレードのピッチ角を変化させる、2自由度アクチュエータを形成するシステム
CN204916174U (zh) 变螺距旋翼装置以及多旋翼飞行器
CN109455295B (zh) 旋翼控制装置及旋翼飞行器
WO2022140925A1 (zh) 流体引导装置、飞行器、桨叶和控制方法
JP6618000B1 (ja) 電子部品及び当該電子部品を取り付けた飛行体
CN117485556A (zh) 全向解耦的环形矢量倾转旋翼飞行器及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967277

Country of ref document: EP

Kind code of ref document: A1