WO2022140904A1 - 一种无人飞行器的控制方法、无人飞行器及存储介质 - Google Patents

一种无人飞行器的控制方法、无人飞行器及存储介质 Download PDF

Info

Publication number
WO2022140904A1
WO2022140904A1 PCT/CN2020/140105 CN2020140105W WO2022140904A1 WO 2022140904 A1 WO2022140904 A1 WO 2022140904A1 CN 2020140105 W CN2020140105 W CN 2020140105W WO 2022140904 A1 WO2022140904 A1 WO 2022140904A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller
unmanned aerial
aerial vehicle
determined
biological
Prior art date
Application number
PCT/CN2020/140105
Other languages
English (en)
French (fr)
Inventor
陈鹏
陈鸿滨
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080081371.0A priority Critical patent/CN114830056A/zh
Priority to PCT/CN2020/140105 priority patent/WO2022140904A1/zh
Publication of WO2022140904A1 publication Critical patent/WO2022140904A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Definitions

  • the present application relates to the field of electronic technology, and in particular, to a control method for an unmanned aerial vehicle, an unmanned aerial vehicle and a storage medium.
  • unmanned aerial vehicles With the rapid development of science and technology, the application scenarios of unmanned aerial vehicles are becoming more and more extensive, such as the use of unmanned aerial vehicles for high-altitude photography, the use of unmanned aerial vehicles for agricultural plant protection, and the use of unmanned aerial vehicles for electric inspection and so on.
  • unmanned aerial vehicles often cause damage to biological objects (such as people, cats, dogs, etc.) in the environment; for example, when the propeller of the unmanned aerial vehicle collides with biological objects in the environment, the propeller will Serious damage to biological objects. Therefore, how to reduce the damage of unmanned aerial vehicles to biological objects has become a hot issue in current research.
  • the embodiments of the present application provide a control method for an unmanned aerial vehicle, an unmanned aerial vehicle and a storage medium, which can effectively reduce the damage of the unmanned aerial vehicle to biological objects.
  • an embodiment of the present application provides a control method for an unmanned aerial vehicle, the unmanned aerial vehicle includes a propeller that provides flight power, and the control method for the unmanned aerial vehicle includes:
  • the propeller collides with the object and the object is determined to be a biological object
  • the propeller is controlled to stop rotating.
  • the propeller when it is determined that the propeller of the unmanned aerial vehicle collides with the biological object in the environment, the propeller is immediately controlled to stop rotating, which can effectively reduce the damage of the propeller of the unmanned aerial vehicle to the biological object, and improve the protection of the biological object. grade.
  • an embodiment of the present application provides a control method for an unmanned aerial vehicle, the unmanned aerial vehicle includes a propeller that provides flight power, and the control method for the unmanned aerial vehicle includes:
  • the propeller is controlled to stop rotating.
  • the propeller of the unmanned aerial vehicle is immediately controlled to stop rotating, which can effectively reduce the damage of the unmanned aerial vehicle to the biological object and improve the safety of the biological object. Protection class.
  • an embodiment of the present application provides an unmanned aerial vehicle, the unmanned aerial vehicle includes a processor, a memory, and a propeller, and the memory and the processor are connected to each other, wherein:
  • Propellers which are used to provide flight power for unmanned aerial vehicles
  • a memory for storing a computer program, the computer program including program instructions
  • the processor when calling program instructions, is used to execute:
  • the propeller collides with the object and the object is determined to be a biological object
  • the propeller is controlled to stop rotating.
  • an embodiment of the present application provides an unmanned aerial vehicle, the unmanned aerial vehicle includes a processor, a memory, and a propeller, and the memory and the processor are connected to each other, wherein:
  • Propellers which are used to provide flight power for unmanned aerial vehicles
  • a memory for storing a computer program, the computer program including program instructions
  • the processor when calling program instructions, is used to execute:
  • the propeller is controlled to stop rotating.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the control method for an unmanned aerial vehicle described in the first aspect above is implemented .
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the control method for an unmanned aerial vehicle described in the second aspect above is implemented .
  • Fig. 1 is a scene schematic diagram of a control scene of an unmanned aerial vehicle provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a control scene of another unmanned aerial vehicle provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a control method for an unmanned aerial vehicle provided by an embodiment of the present application
  • FIG. 4 is a schematic flowchart of another method for controlling an unmanned aerial vehicle provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a control device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an unmanned aerial vehicle provided by an embodiment of the present application.
  • Unmanned aerial vehicle is an unmanned aerial vehicle operated by radio remote control equipment and self-provided program control device.
  • the embodiments of the present application provide a control scheme for an unmanned aerial vehicle, through which the unmanned aerial vehicle can collide with a biological object in the environment, or when the unmanned aerial vehicle is about to collide with a biological object in the environment In the event of a collision, the propeller of the unmanned aerial vehicle is immediately controlled to stop rotating, thereby effectively reducing the damage of the unmanned aerial vehicle to the biological object and improving the protection level of the biological object.
  • the propeller of the UAV when it is determined that the propeller of the UAV collides with an object in the environment, and the object is a biological object, the propeller of the UAV can be controlled to stop rotating; wherein the biological object can be a person.
  • 1 is a schematic diagram of a control scene of an unmanned aerial vehicle provided by an embodiment of the present application. As shown in FIG. 1 , the unmanned aerial vehicle 101 is performing an aerial photography mission, and the propeller 1011 of the unmanned aerial vehicle 101 collides with the person 102.
  • the propeller 1011 of the UAV 101 can be immediately controlled to stop rotating, so as to prevent the propeller 1011 from causing continuous and more serious damage to the person 102 and minimize the damage to the person 102 caused by the propeller 1011 of the UAV 101 .
  • FIG. 2 is a schematic diagram of a control scenario of another unmanned aerial vehicle provided by an embodiment of the present application. As shown in FIG.
  • the unmanned aerial vehicle 201 is performing a pasture inspection mission, and the distance between the unmanned aerial vehicle 201 and the target cow 202 is Very close, and the flying speed of the unmanned aerial vehicle 201 is relatively large, the unmanned aerial vehicle 201 is about to collide with the target cow 202, at this time, the propeller 2011 of the unmanned aerial vehicle 201 can be immediately controlled to stop rotating, effectively reducing the impact of the unmanned aerial vehicle 201 on the target cow 202 damage.
  • control scenarios of the unmanned aerial vehicle provided by the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • Personnel know that, with the emergence of new application scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 3 is a schematic flowchart of a control method of an unmanned aerial vehicle provided by an embodiment of the present application.
  • the control method of an unmanned aerial vehicle provided by an embodiment of the present application can be performed by an unmanned aerial vehicle.
  • the control method of the unmanned aerial vehicle may include the following steps S301 to S302:
  • the first is to obtain the rotational speed of the propeller during the flight of the UAV.
  • the rotational speed of the propeller is less than the preset rotational speed threshold, it is determined that the propeller collides with the object; when the rotational speed of the propeller is greater than or equal to the preset rotational speed threshold, the Make sure the propeller doesn't collide with the object.
  • the movement process of the unmanned aerial vehicle in the sky may include the take-off process, the flight process and the landing process. the rotational speed of the propeller.
  • the unmanned aerial vehicle further includes a motor for driving the propeller, and the rotational speed of the propeller can be determined according to the rotational speed of the motor; obtain the rotational speed of the propeller during the flight of the unmanned aerial vehicle, and obtain the rotational speed of the propeller during the flight of the unmanned aerial vehicle.
  • the speed of the propeller is less than the preset speed threshold and the current is greater than the preset current threshold, it is determined that the propeller collides with the object; when the speed of the propeller is less than the preset speed threshold and the current is less than or equal to the preset At the current threshold, it is determined that the propeller does not collide with the object.
  • the third method is to obtain the rotational speed of the propeller of the unmanned aerial vehicle during flight, and to obtain the horizontal attitude angle of the unmanned aerial vehicle during flight.
  • the rotational speed of the propeller is less than the preset rotational speed threshold and the horizontal attitude angle is greater than the preset angle
  • the threshold it is determined that the propeller collides with the object;
  • the rotational speed of the propeller is less than the preset rotational speed threshold and the horizontal attitude angle is less than or equal to the preset angle threshold, it is determined that the propeller does not collide with the object.
  • the horizontal attitude angle may include, but is not limited to, any one or both of a pitch attitude angle or a roll attitude angle.
  • the first method uses the rotational speed of the propeller as the condition for judging whether the propeller collides with the object in the environment. judge.
  • the second method adds the judgment condition of the current of the motor on the basis of the first method, and the motor can be used to drive the propeller, which further improves the judgment accuracy.
  • the third method adds the judgment condition of the horizontal attitude angle of the unmanned aerial vehicle on the basis of the first method.
  • the horizontal attitude angle can be used to indicate the attitude of the unmanned aerial vehicle, which further improves the judgment accuracy.
  • the unmanned aerial vehicle may further include a detection sensor, which can acquire sensing data collected by the detection sensor, and determine whether the object is a biological object according to the sensing data.
  • the sensing data collected by the detection sensor is along the flight direction of the UAV; the sensing data can be collected by the detection sensor to determine the moment when the propeller collides with the object, and the sensing data can also be determined by the propeller and the object.
  • the detection sensor may include a vision sensor (eg, a camera, a video camera, etc.), and the sensory data may include images collected by the vision sensor.
  • the manner of determining whether the object is a biological object according to the sensing data may include: performing recognition processing on an image to determine whether the object is a biological object.
  • an image recognition model can be used to recognize and process the image to obtain a recognition result of the image; if the recognition result indicates that the image contains a biological object, it is determined that the object colliding with the propeller is a biological object; if the recognition result indicates that the image does not contain a biological object biological object, it is determined that the object colliding with the propeller is not a biological object. In this way, it can be determined whether the object is a biological object according to the image collected by the vision sensor.
  • the detection sensor may include a temperature sensor
  • the sensing data may include temperature data collected by the temperature sensor.
  • the method of determining whether the object is a biological object according to the sensing data may include: judging whether there is target temperature data within a preset temperature range in the temperature data; when there is target temperature data within the preset temperature range in the temperature data, determining The object is a biological object; when there is no target temperature data within a preset temperature range in the temperature data, it is determined that the object is not a biological object.
  • the preset temperature range may refer to the temperature range of a preset type of biological object; for example, for humans, the preset temperature range (unit is Celsius) is [36.2, 37.2]; for dogs, the preset temperature range (unit is Celsius) is [38, 39]. In this way, it can be determined whether the object is a biological object according to the temperature data collected by the temperature sensor.
  • the detection sensor may include a lidar
  • the sensing data may include point cloud data collected by the lidar.
  • the method of determining whether the object is a biological object according to the sensing data may include: judging whether there is target point cloud data with a preset point cloud shape in the point cloud data; when there is target point cloud data with a preset point cloud shape in the point cloud data , it is determined that the object is a biological object; when the target point cloud data of the preset point cloud shape does not exist in the point cloud data, it is determined that the object is not a biological object.
  • the preset point cloud shape may refer to the point cloud shape of a preset type of biological object, and different biological objects correspond to different point cloud shapes, for example, the point cloud shape of a dog is different from that of a person. In this way, whether the object is a biological object can be determined according to the point cloud data collected by the lidar.
  • the unmanned aerial vehicle may further include a plurality of propellers, and a propeller that collides with the object may be included in the plurality of propellers.
  • the method of determining whether the object is a biological object according to the sensing data may further include: determining target sensing data from the sensing data according to the installation position of the propeller that generates the collision on the unmanned aerial vehicle, and determining whether the object is a biological object according to the target sensing data biological object.
  • the unmanned aerial vehicle may include a plurality of detection sensors, and the target detection sensor may be determined from the plurality of detection sensors according to the installation position of the collision propeller on the unmanned aerial vehicle, and the target sensing data may be determined by the target Collected by the detection sensor; wherein, the installation position of the target detection sensor corresponds to the installation position of the propeller that produces the collision, and the installation position of the target detection sensor corresponds to the installation position of the propeller that produces the collision. It may refer to the target detection sensor and the propeller that produces the collision The orientation is close.
  • the sensing data can be divided into multiple sensing sub-data, each sensing sub-data corresponds to a position range, and the target sensing data refers to the position range including the installation position of the propeller that caused the collision sensor data.
  • the target sensing data may include target sensing images, target sensing temperature data, target sensing point cloud data, etc.
  • the rotational power may continue to be applied to the propeller.
  • the first propeller rotational speed control value may continue to apply rotational power to the propeller; wherein the first propeller rotational speed control value is greater than the second propeller rotational speed control value, and the second propeller rotational speed control value is the propeller of the unmanned aerial vehicle before the propeller collides with the object The propeller speed control value that applies rotational power.
  • the propeller in the process of continuing to apply rotational power to the propeller, it can be determined whether the collision time between the propeller and the object is greater than the preset time threshold; when the collision time between the propeller and the object is greater than the preset time threshold, the propeller can be controlled to stop rotating; when When the collision time between the propeller and the object is less than or equal to the preset time threshold, you can continue to apply rotational power to the propeller.
  • the propeller when the object colliding with the propeller is a non-biological object, it can continue to apply rotational power to the propeller to ensure the normal operation of the UAV; when the object colliding with the propeller is a non-biological object, and the UAV and the non-biological object
  • the propeller can be controlled to stop rotating, which can protect non-biological objects to a certain extent.
  • the biological object can be a biological object of a preset type.
  • the propeller can be controlled to stop rotating; when it is determined that the propeller collides with the object and the object is determined not to be preset
  • the type of biological object is detected, it can continue to apply rotational power to the propeller; in this way, the protection object is more targeted.
  • the propeller is controlled to stop rotating, which can effectively reduce the number of propellers. Damage to biological objects of a preset type.
  • the biological object may be a human, that is, when it is determined that the propeller collides with the object and the object is determined to be human, the propeller can be controlled to stop rotating; when it is determined that the propeller collides with the object and the object is determined not to be human, it can continue to be the propeller. Apply rotational power; in this way, when it is determined that there is no collision between the propeller and the person, the propeller is controlled to stop rotating, which can effectively reduce the damage of the propeller to the person.
  • the propeller when it is determined that the propeller of the unmanned aerial vehicle collides with the biological object in the environment, the propeller is immediately controlled to stop rotating, which can effectively reduce the damage of the propeller of the unmanned aerial vehicle to the biological object, and improve the protection of the biological object. grade.
  • the embodiments of the present application provide a variety of ways that can be used to determine whether the propeller collides with an object in the environment (for example, according to the rotation speed of the propeller, or according to the rotation speed of the propeller and the current of the motor, or according to the rotation speed of the propeller and The horizontal attitude angle of the UAV is determined), which effectively improves the accuracy of the determination results.
  • the present application also provides a variety of ways to determine whether an object is a biological object (for example, according to the image collected by the vision sensor, or according to the temperature data collected by the temperature sensor, or according to the point cloud data collected by the lidar. ), which effectively improves the accuracy of the determination results.
  • the biological object may be a human being.
  • the propeller is controlled to stop rotating, which can effectively reduce the damage of the propeller to the human.
  • FIG. 4 is a schematic flowchart of another method for controlling an unmanned aerial vehicle provided by an embodiment of the present application.
  • the control method for an unmanned aerial vehicle provided by an embodiment of the present application can be performed by an unmanned aerial vehicle.
  • the control method of the unmanned aerial vehicle may include the following steps S401 to S402:
  • S401 during the flight of the unmanned aerial vehicle, determine whether the unmanned aerial vehicle is about to collide with an object in the environment.
  • the movement process of the unmanned aerial vehicle in the sky may include a take-off process, a flight process and a landing process, and the object is an object that the unmanned aerial vehicle gradually approaches during the flight.
  • the distance between the UAV and the object can be obtained, and whether the UAV is about to collide with the object can be determined according to the distance, which may include but not limited to the following two situations:
  • the first is to obtain the distance between the UAV and the object. If the distance is less than the preset distance threshold, it is determined that the UAV is about to collide with the object. If the distance is greater than or equal to the preset distance threshold, it is determined that the UAV is close to the object. Objects do not collide.
  • the preset distance threshold may be determined based on empirical values, for example, multiple collision detections are performed on the unmanned aerial vehicle, and when the distance between the unmanned aerial vehicle and the object is the preset distance threshold, the collision between the unmanned aerial vehicle and the object the most times.
  • the second is to obtain the speed of the unmanned aerial vehicle, and determine whether the unmanned aerial vehicle can stop before colliding with the object according to the distance and speed; if it cannot stop, it is determined that the unmanned aerial vehicle is about to collide with the object; Make sure the UAV does not collide with objects.
  • determining whether the unmanned aerial vehicle can stop before colliding with the object according to the distance and speed may specifically refer to: after determining the speed of the unmanned aerial vehicle, braking at the maximum acceleration of the unmanned aerial vehicle, so as to determine whether the unmanned aerial vehicle can stop before the collision object. No brake.
  • the unmanned aerial vehicle may further include a detection sensor, which can acquire sensing data collected by the detection sensor, and determine whether the object is a biological object according to the sensing data.
  • the sensing data collected by the detection sensor is along the flight direction of the unmanned aerial vehicle; the sensing data can be collected by the detection sensor to determine the moment when the unmanned aerial vehicle is about to collide with the object, and the sensing data can also be determined by the unmanned aerial vehicle.
  • the fourth moment of the preset time period before the third moment when the human aircraft and the object are about to collide is collected by the detection sensor, and the fourth moment is earlier than the third moment, which is not limited in this embodiment of the present application;
  • the detection sensor may include but Not limited to: vision sensors, temperature sensors, lidar, TOF (Time of Flight, time of flight) devices, etc.
  • the detection sensor may include a vision sensor (eg, a camera, a video camera, etc.), and the sensory data may include images collected by the vision sensor.
  • the manner of determining whether the object is a biological object according to the sensing data may include: performing recognition processing on an image to determine whether the object is a biological object.
  • an image recognition model can be used to recognize and process the image to obtain a recognition result of the image; if the recognition result indicates that the image contains a biological object, it is determined that the object is a biological object, and the unmanned aerial vehicle is about to collide with the biological object; Indicating that the image does not contain a biological object, it is determined that the object is not a biological object. In this way, it can be determined whether the object is a biological object according to the image collected by the vision sensor.
  • the detection sensor may include a temperature sensor
  • the sensing data may include temperature data collected by the temperature sensor.
  • the method of determining whether the object is a biological object according to the sensing data may include: judging whether there is target temperature data within a preset temperature range in the temperature data; when there is target temperature data within the preset temperature range in the temperature data, determining The object is a biological object; when there is no target temperature data within a preset temperature range in the temperature data, it is determined that the object is not a biological object.
  • the preset temperature range may refer to the temperature range of a preset type of biological object; for example, for humans, the preset temperature range (unit is Celsius) is [36.2, 37.2]; for dogs, the preset temperature range (unit is Celsius) is [38, 39]. In this way, it can be determined whether the object is a biological object according to the temperature data collected by the temperature sensor.
  • the detection sensor may include a lidar
  • the sensing data may include point cloud data collected by the lidar.
  • the method of determining whether the object is a biological object according to the sensing data may include: judging whether there is target point cloud data with a preset point cloud shape in the point cloud data; when there is target point cloud data with a preset point cloud shape in the point cloud data , it is determined that the object is a biological object; when the target point cloud data of the preset point cloud shape does not exist in the point cloud data, it is determined that the object is not a biological object.
  • the preset point cloud shape may refer to the point cloud shape of a preset type of biological object, and different biological objects correspond to different point cloud shapes, for example, the point cloud shape of a dog is different from that of a person. In this way, whether the object is a biological object can be determined according to the point cloud data collected by the lidar.
  • the biological object can be a biological object of a preset type.
  • the propeller can be controlled to stop rotating; when it is determined that the unmanned aerial vehicle is about to collide with the object and When it is determined that the object is not a biological object of a preset type, it can continue to apply rotational power to the propeller; in this way, the protection object is more targeted.
  • Controlling the propeller to stop rotating can effectively reduce the damage of the UAV to the preset type of biological objects during collision.
  • the biological object may be a person, that is, when it is determined that the unmanned aerial vehicle is about to collide with the object and the object is determined to be a person, the propeller can be controlled to stop rotating; when it is determined that the unmanned aerial vehicle is about to collide with the object and the object is determined not to be a person When it is determined that the unmanned aerial vehicle is about to collide with a person, the propeller can be controlled to stop rotating, which can effectively reduce the damage of the unmanned aerial vehicle to people.
  • the propeller of the unmanned aerial vehicle is immediately controlled to stop rotating, which can effectively reduce the damage of the unmanned aerial vehicle to the biological object during the collision, and improve the damage to the biological object.
  • the protection level of the object In addition, the embodiments of the present application provide a variety of ways that can be used to determine whether the UAV is about to collide with an object in the environment (for example, according to the distance between the UAV and the object and a preset distance threshold, or according to no The distance between the human aircraft and the object and the speed of the unmanned aircraft are determined), which effectively improves the accuracy of the determination results.
  • the present application also provides a variety of ways to determine whether an object is a biological object (for example, according to the image collected by the vision sensor, or according to the temperature data collected by the temperature sensor, or according to the point cloud data collected by the lidar. ), which effectively improves the accuracy of the determination results.
  • the biological object may be a person.
  • the propeller is controlled to stop rotating, which can effectively reduce the damage of the unmanned aerial vehicle to the human during the collision.
  • FIG. 5 is a schematic structural diagram of a control device provided by an embodiment of the present application.
  • the control device 50 provided by the embodiment of the present application may be deployed in an unmanned aerial vehicle, and the unmanned aerial vehicle may include a propeller that provides flight power.
  • control device 50 may include:
  • a determination module 501 configured to determine whether the propeller collides with an object in the environment
  • the control module 502 is configured to control the propeller to stop rotating when it is determined that the propeller collides with the object and the object is determined to be a biological object.
  • control device 50 further includes an acquisition module 503; the acquisition module 503 is specifically used for:
  • the unmanned aerial vehicle further includes a motor for driving the propeller; the acquisition module 503 is further used for:
  • the determining module 501 is specifically used for:
  • the obtaining module 503 is further configured to:
  • the determining module 501 is specifically used for:
  • the obtaining module 503 is further configured to:
  • the determining module 501 is specifically used for:
  • Whether the object is a biological object is determined based on the sensory data.
  • the detection sensor includes a vision sensor or a temperature sensor.
  • the obtaining module 503 is specifically used for:
  • Sensing data along the flight direction of the UAV collected by the detection sensor is acquired.
  • the unmanned aerial vehicle further includes a plurality of propellers, and the plurality of propellers includes a propeller that collides with the object;
  • the determining module 501 is specifically used for:
  • Whether the object is a biological object is determined according to the target sensing data.
  • the detection sensor includes a vision sensor, and the sensing data includes an image collected by the vision sensor; the determining module 501 is specifically used for:
  • Image recognition processing is performed to determine whether the object is a biological object.
  • the detection sensor includes a temperature sensor, and the sensing data includes temperature data collected by the temperature sensor; the determining module 501 is specifically used for:
  • control module 502 is further configured to:
  • control module 502 is specifically configured to:
  • the determining module 501 is further configured to:
  • the control module 502 is further configured to:
  • the propeller is controlled to stop rotating.
  • control module 502 is specifically configured to:
  • the propeller collides with the object and the object is determined to be a biological object of a preset type, the propeller is controlled to stop rotating.
  • the biological subject is a human.
  • the control module 502 of the control device 50 immediately controls the propeller to stop rotating, which can effectively reduce the size of the unmanned aerial vehicle.
  • the damage of the propeller to biological objects increases the protection level of biological objects.
  • control device 50 may include:
  • a determination module 501 configured to determine whether the unmanned aerial vehicle is about to collide with an object in the environment during the flight of the unmanned aerial vehicle;
  • the control module 502 is configured to control the propeller to stop rotating when it is determined that the unmanned aerial vehicle is about to collide with the object and the object is determined to be a biological object.
  • the determining module 501 is specifically configured to:
  • the determining module 501 is specifically configured to:
  • the UAV is about to collide with the object.
  • control device 50 further includes an acquisition module 503; the acquisition module 503 is specifically used for:
  • the determining module 501 is specifically used for:
  • the obtaining module 503 is further configured to:
  • the determining module 501 is specifically used for:
  • Whether the object is a biological object is determined based on the sensory data.
  • the detection sensor includes a vision sensor or a temperature sensor.
  • the obtaining module 503 is specifically used for:
  • Sensing data along the flight direction of the UAV collected by the detection sensor is acquired.
  • the detection sensor includes a vision sensor, and the sensing data includes an image collected by the vision sensor; the determining module 501 is specifically used for:
  • Image recognition processing is performed to determine whether the object is a biological object.
  • the detection sensor includes a temperature sensor, and the sensing data includes temperature data collected by the temperature sensor; the determining module 501 is specifically used for:
  • control module 502 is specifically configured to:
  • the propeller is controlled to stop rotating.
  • the biological subject is a human.
  • the control module 502 of the control device 50 immediately controls the propeller of the unmanned aerial vehicle to stop rotating, which can effectively reduce the The damage of unmanned aerial vehicles to biological objects increases the protection level of biological objects.
  • FIG. 6 is a schematic structural diagram of an unmanned aerial vehicle provided by an embodiment of the present application.
  • the UAV 60 described in the embodiments of the present application includes: a processor 601 , a memory 602 , a propeller 603 , a motor 604 and a detection sensor 605 .
  • the above-mentioned processor 601, memory 602, propeller 603, motor 604 and detection sensor 605 are connected through a bus.
  • the above-mentioned processor 601 can be a central processing unit (Central Processing Unit, CPU), and the processor 601 can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the above-mentioned memory 602 may include read-only memory and random access memory, and provides program instructions and data to the processor 601 .
  • a portion of memory 602 may also include non-volatile random access memory.
  • the above-mentioned propeller 603 is used to provide the flying power of the unmanned aerial vehicle 60 .
  • the above-mentioned motor 604 is used to drive the propeller 603 .
  • the above-mentioned detection sensor 605 is used to collect sensing data.
  • processor 601 invokes program instructions to execute:
  • the propeller collides with the object and the object is determined to be a biological object
  • the propeller is controlled to stop rotating.
  • the processor 601 is specifically configured to:
  • the processor 601 is further configured to:
  • the processor 601 is specifically used for:
  • the processor 601 is further configured to:
  • the processor 601 is specifically used for:
  • the processor 601 is specifically configured to:
  • Whether the object is a biological object is determined based on the sensory data.
  • the detection sensor includes a vision sensor or a temperature sensor.
  • the processor 601 is specifically configured to:
  • Sensing data along the flight direction of the UAV collected by the detection sensor is acquired.
  • the processor 601 is specifically configured to:
  • Whether the object is a biological object is determined according to the target sensing data.
  • the detection sensor includes a vision sensor, and the sensing data includes images collected by the vision sensor; the processor 601 is specifically configured to:
  • Image recognition processing is performed to determine whether the object is a biological object.
  • the detection sensor includes a temperature sensor, and the sensing data includes temperature data collected by the temperature sensor; the processor 601 is specifically configured to:
  • the processor 601 is further configured to:
  • the processor 601 is specifically configured to:
  • the processor 601 is further configured to:
  • the propeller is controlled to stop rotating.
  • the processor 601 is specifically configured to:
  • the propeller collides with the object and the object is determined to be a biological object of a preset type, the propeller is controlled to stop rotating.
  • the biological subject is a human.
  • the processor 601 of the unmanned aerial vehicle 60 determines that the propeller of the unmanned aerial vehicle collides with a biological object in the environment, the processor 601 of the unmanned aerial vehicle 60 immediately controls the propeller to stop rotating, which can effectively reduce the unmanned aerial vehicle.
  • the damage of the propeller of the human aircraft to the biological object increases the protection level of the biological object.
  • processor 601 invokes program instructions to execute:
  • the propeller is controlled to stop rotating.
  • the processor 601 is specifically configured to:
  • the processor 601 is specifically configured to:
  • the UAV is about to collide with the object.
  • the processor 601 is further configured to:
  • the processor 601 is specifically used for:
  • the processor 601 is specifically configured to:
  • Whether the object is a biological object is determined based on the sensory data.
  • the detection sensor includes a vision sensor or a temperature sensor.
  • the processor 601 is specifically configured to:
  • Sensing data along the flight direction of the UAV collected by the detection sensor is acquired.
  • the detection sensor includes a vision sensor, and the sensing data includes images collected by the vision sensor; the processor 601 is specifically configured to:
  • Image recognition processing is performed to determine whether the object is a biological object.
  • the detection sensor includes a temperature sensor, and the sensing data includes temperature data collected by the temperature sensor; the processor 601 is specifically configured to:
  • the processor 601 is specifically configured to:
  • the propeller is controlled to stop rotating.
  • the biological subject is a human.
  • the processor 601 of the UAV 60 determines that the UAV is about to collide with a biological object in the environment, the processor 601 of the UAV 60 immediately controls the propeller of the UAV to stop rotating, which can effectively Reduce the damage of unmanned aerial vehicles to biological objects and improve the protection level of biological objects.
  • Embodiments of the present application further provide a computer-readable storage medium, where program instructions are stored in the computer-readable storage medium, and when the program instructions are executed, the program instructions may include the part executed by the unmanned aerial vehicle in the corresponding embodiment of FIG. 3 . or all steps.
  • Embodiments of the present application further provide a computer-readable storage medium, where program instructions are stored in the computer-readable storage medium, and when the program instructions are executed, the program instructions may include the part executed by the unmanned aerial vehicle in the corresponding embodiment of FIG. 4 . or all steps.
  • the computer-readable storage medium may include: a flash disk, a read-only memory (Read-Only Memory, ROM), a random access device (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种无人飞行器的控制方法、无人飞行器及存储介质,其中,无人飞行器包括用于提供飞行动力的螺旋桨,无人飞行器的控制方法包括:确定螺旋桨是否与环境中的对象产生碰撞(S301);当确定螺旋桨与对象产生碰撞且确定对象为生物对象时,控制螺旋桨停止转动(S302)。本申请能够有效减少无人飞行器对生物对象的伤害。

Description

一种无人飞行器的控制方法、无人飞行器及存储介质 技术领域
本申请涉及电子技术领域,尤其涉及一种无人飞行器的控制方法、无人飞行器及存储介质。
背景技术
随着科学技术的飞速发展,无人飞行器的应用场景越来越广泛,例如利用无人飞行器进行高空拍摄、利用无人飞行器进行农业植保、利用无人飞行器进行电力巡检等等。目前,往往会出现无人飞行器对环境中的生物对象(例如人、猫、狗等)产生伤害的情况;举例来说,当无人飞行器的螺旋桨与环境中的生物对象产生碰撞时,螺旋桨会对生物对象造成严重的伤害。因此,如何减少无人飞行器对生物对象的伤害成为当前研究的热点问题。
发明内容
本申请实施例提供了一种无人飞行器的控制方法、无人飞行器及存储介质,能够有效减少无人飞行器对生物对象的伤害。
第一方面,本申请实施例提供了一种无人飞行器的控制方法,无人飞行器包括提供飞行动力的螺旋桨,该无人飞行器的控制方法包括:
确定螺旋桨是否与环境中的对象产生碰撞;
当确定螺旋桨与对象产生碰撞且确定对象为生物对象时,控制螺旋桨停止转动。
本申请实施例中,当确定无人飞行器的螺旋桨与环境中的生物对象产生碰撞时,立即控制螺旋桨停止转动,能够有效减小无人飞行器的螺旋桨对生物对象的伤害,提升对生物对象的防护等级。
第二方面,本申请实施例提供了一种无人飞行器的控制方法,无人飞行器包括提供飞行动力的螺旋桨,该无人飞行器的控制方法包括:
在无人飞行器飞行的过程中,确定无人飞行器是否即将与环境中的对象产生碰撞;
当确定无人飞行器即将与对象产生碰撞且确定对象为生物对象时,控制螺旋桨停止转动。
本申请实施例中,当确定无人飞行器即将与环境中的生物对象产生碰撞时,立即控制无人飞行器的螺旋桨停止转动,能够有效减小无人飞行器对生物对象的伤害,提升对生物对象的防护等级。
第三方面,本申请实施例提供了一种无人飞行器,该无人飞行器包括处理器、存储器和螺旋桨,存储器和处理器相互连接,其中:
螺旋桨,用于提供无人飞行器的飞行动力;
存储器,用于存储计算机程序,计算机程序包括程序指令;
处理器,调用程序指令时用于执行:
确定螺旋桨是否与环境中的对象产生碰撞;
当确定螺旋桨与对象产生碰撞且确定对象为生物对象时,控制螺旋桨停止转动。
第四方面,本申请实施例提供了一种无人飞行器,该无人飞行器包括处理器、存储器和螺旋桨,存储器和处理器相互连接,其中:
螺旋桨,用于提供无人飞行器的飞行动力;
存储器,用于存储计算机程序,计算机程序包括程序指令;
处理器,调用程序指令时用于执行:
在无人飞行器飞行的过程中,确定无人飞行器是否即将与环境中的对象产生碰撞;
当确定无人飞行器即将与对象产生碰撞且确定对象为生物对象时,控制螺旋桨停止转动。
第五方面,本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,计算机程序被处理器执行时实现上述第一方面所述的无人飞行器的控制方法。
第六方面,本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,计算机程序被处理器执行时实现上述第二方面所述的无人飞行器的控制方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种无人飞行器的控制场景的场景示意图;
图2是本申请实施例提供的另一种无人飞行器的控制场景的场景示意图;
图3是本申请实施例提供的一种无人飞行器的控制方法的流程示意图;
图4是本申请实施例提供的另一种无人飞行器的控制方法的流程示意图;
图5是本申请实施例提供的一种控制装置的结构示意图;
图6是本申请实施例提供的一种无人飞行器的结构示意图。
具体实施方式
无人飞行器是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞行器。本申请实施例提供一种无人飞行器的控制方案,通过该无人飞行器的控制方案,能够在无人飞行器与环境中的生物对象产生碰撞、或者在无人飞行器即将与环境中的生物对象产生碰撞的情况下,立即控制无人飞行器的螺旋桨停止转动,从而有效减少无人飞行器对生物对象的伤害,提升对生物对象的防护等级。
为了更好地理解本申请实施例提供的一种无人飞行器的控制方法、无人飞行器及存储介质,下面首先对本申请实施例适用的应用场景进行介绍。
在一种实施方式中,当确定无人飞行器的螺旋桨与环境中的对象产生碰撞,且对象是生物对象时,可以控制无人飞行器的螺旋桨停止转动;其中,生物对象可以是人。图1是本申请实施例提供的一种无人飞行器的控制场景的场景示意图,如图1所示,无人飞行器 101正在执行航拍任务,无人飞行器101的螺旋桨1011与人102产生碰撞,此时可以立即控制无人飞行器101的螺旋桨1011停止转动,以避免螺旋桨1011对人102造成持续且更严重的伤害,将无人飞行器101的螺旋桨1011对人102的伤害降到最低。
在另一种实施方式中,当确定无人飞行器即将与环境中的对象产生碰撞,且对象是生物对象时,可以立即控制无人飞行器的螺旋桨停止转动;其中,生物对象可以为预设类型的生物对象,例如预设类型的生物对象可以是牛、羊等。图2是本申请实施例提供的另一种无人飞行器的控制场景的场景示意图,如图2所示,无人飞行器201正在执行牧场巡视任务,无人飞行器201与目标奶牛202之间的距离非常近,且无人飞行器201的飞行速度比较大,无人飞行器201即将与目标奶牛202产生碰撞,此时可以立即控制无人飞行器201的螺旋桨2011停止转动,有效减少无人飞行器201对目标奶牛202的伤害。
可以理解的是,本申请实施例提供的无人飞行器的控制场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着新应用场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
再参见图3,图3是本申请实施例提供的一种无人飞行器的控制方法的流程示意图,本申请实施例提供的无人飞行器的控制方法可以由无人飞行器执行,无人飞行器中可以包括用于提供飞行动力的螺旋桨,该无人飞行器的控制方法可以包括以下步骤S301至步骤S302:
S301,确定螺旋桨是否与环境中的对象产生碰撞。
确定螺旋桨是否与环境中的对象产生碰撞的方式可以包括但不限于以下三种:
第一种,获取无人飞行器在飞行过程中的螺旋桨的转速,当螺旋桨的转速小于预设的转速阈值时,确定螺旋桨与对象产生碰撞;当螺旋桨的转速大于或等于预设的转速阈值时,确定螺旋桨与对象未产生碰撞。需要说明的是,无人飞行器在天空中的运动过程可以包括起飞过程、飞行过程以及降落过程,用于判断螺旋桨是否与环境中的对象产生碰撞时获取的螺旋桨的转速是无人飞行器在飞行过程中的螺旋桨的转速。
第二种,无人飞行器还包括用于驱动螺旋桨的电机,螺旋桨的转速可以是根据电机的转速确定的;获取无人飞行器在飞行过程中的螺旋桨的转速,以及获取无人飞行器在飞行过程中的电机的电流,当螺旋桨的转速小于预设的转速阈值且电流大于预设的电流阈值时,确定螺旋桨与对象产生碰撞;当螺旋桨的转速小于预设的转速阈值且电流小于或等于预设的电流阈值时,确定螺旋桨与对象未产生碰撞。
第三种,获取无人飞行器在飞行过程中的螺旋桨的转速,以及获取无人飞行器在飞行过程中的水平姿态角,当螺旋桨的转速小于预设的转速阈值且水平姿态角大于预设的角度阈值时,确定螺旋桨与对象产生碰撞;当螺旋桨的转速小于预设的转速阈值且水平姿态角小于或等于预设的角度阈值时,确定螺旋桨与对象未产生碰撞。其中,水平姿态角可以包括但不限于:俯仰姿态角或横滚姿态角中的任意一种或两种。
由上述三种方式可知,第一种方式采用螺旋桨的转速作为判断螺旋桨是否与环境中的对象产生碰撞的条件,由于螺旋桨能够为无人飞行器提供飞行动力,因此,采用螺旋桨的 转速能够进行准确地判断。第二种方式在第一种方式的基础上添加了电机的电流这一判断条件,电机可以用于驱动螺旋桨,进一步提升了判断准确率。第三种方式在第一种方式的基础上添加了无人飞行器的水平姿态角这一判断条件,水平姿态角可以用于指示无人飞行器的姿态,进一步提升了判断准确率。
S302,当确定螺旋桨与对象产生碰撞且确定对象为生物对象时,控制螺旋桨停止转动。
无人飞行器还可以包括探测传感器,可以获取探测传感器采集的传感数据,并根据传感数据确定对象是否为生物对象。其中,探测传感器采集的传感数据是沿无人飞行器的飞行方向的;传感数据可以是确定螺旋桨与对象产生碰撞的时刻由探测传感器采集到的,传感数据还可以是确定螺旋桨与对象产生碰撞的第一时刻之前预设时间段的第二时刻由探测传感器采集到的,第二时刻早于第一时刻,本申请实施例对此不作限定;探测传感器可以包括但不限于:视觉传感器、温度传感器、激光雷达、TOF(Time of Flight,飞行时间法)装置等等。
在一种实施方式中,探测传感器可以包括视觉传感器(例如可以是相机、摄像机等等),传感数据可以包括视觉传感器采集到的图像。根据传感数据确定对象是否为生物对象的方式可以包括:对图像进行识别处理,以确定对象是否为生物对象。具体地,可以采用图像识别模型对图像进行识别处理,得到图像的识别结果;若识别结果指示图像中包含生物对象,则确定与螺旋桨产生碰撞的对象是生物对象;若识别结果指示图像中不包含生物对象,则确定与螺旋桨产生碰撞的对象不是生物对象。通过这种方式,可以根据视觉传感器采集到的图像判断对象是否为生物对象。
在另一种实施方式中,探测传感器可以包括温度传感器,传感数据可以包括温度传感器采集到的温度数据。根据传感数据确定对象是否为生物对象的方式可以包括:判断温度数据中是否存在处于预设温度范围内的目标温度数据;当温度数据中存在处于预设温度范围内的目标温度数据时,确定对象是生物对象;当温度数据中不存在处于预设温度范围内的目标温度数据时,确定对象不是生物对象。其中,预设温度范围可以是指预设类型的生物对象的温度范围;例如,对于人,预设温度范围(单位为摄氏度)是[36.2,37.2];对于狗,预设温度范围(单位为摄氏度)是[38,39]。通过这种方式,可以根据温度传感器采集到的温度数据判断对象是否为生物对象。
在另一种实施方式中,探测传感器可以包括激光雷达,传感数据可以包括激光雷达采集到的点云数据。根据传感数据确定对象是否为生物对象的方式可以包括:判断点云数据中是否存在预设点云形状的目标点云数据;当点云数据中存在预设点云形状的目标点云数据时,确定对象是生物对象;当点云数据中不存在预设点云形状的目标点云数据时,确定对象不是生物对象。其中,预设点云形状可以是指预设类型的生物对象的点云形状,不同的生物对象对应不同的点云形状,例如狗的点云形状与人的点云形状不相同。通过这种方式,可以根据激光雷达采集到的点云数据判断对象是否为生物对象。
无人飞行器还可以包括多个螺旋桨,多个螺旋桨中可以包括与对象产生碰撞的螺旋桨。根据传感数据确定对象是否为生物对象的方式还可以包括:根据产生碰撞的螺旋桨在无人飞行器上的安装位置从传感数据中确定目标传感数据,并根据目标传感数据确定对象是否为生物对象。在一种实施方式中,无人飞行器可以包括多个探测传感器,可以根据产生碰 撞的螺旋桨在无人飞行器上的安装位置从多个探测传感器中确定目标探测传感器,目标传感数据可以是由目标探测传感器采集到的;其中,目标探测传感器的安装位置与产生碰撞的螺旋桨的安装位置对应,目标探测传感器的安装位置与产生碰撞的螺旋桨的安装位置对应可以是指目标探测传感器与产生碰撞的螺旋桨方位相近。在另一种实施方式中,可以将传感数据拆分为多个传感子数据,每个传感子数据对应一个位置范围,目标传感数据是指位置范围包含产生碰撞的螺旋桨的安装位置的传感子数据。目标传感数据可以包括目标传感图像、目标传感温度数据、目标传感点云数据等等,根据目标传感数据确定对象是否为生物对象的具体实施方式,可参见上述根据传感数据确定对象是否为生物对象的描述,在此不再赘述。通过从传感数据中确定目标传感数据,在根据目标传感数据确定对象是否为生物对象的过程中,可以不关注其他与对象判断无关的传感数据,不仅提高了判断准确率,还降低了判断成本。
当确定螺旋桨与对象产生碰撞且确定对象不为生物对象时,可以继续为螺旋桨施加转动动力。具体地,可以以第一螺旋桨转速控制值继续为螺旋桨施加转动动力;其中,第一螺旋桨转速控制值大于第二螺旋桨转速控制值,第二螺旋桨转速控制值为螺旋桨碰撞对象之前无人飞行器为螺旋桨施加转动动力的螺旋桨转速控制值。进一步地,在继续为螺旋桨施加转动动力的过程中,可以确定螺旋桨与对象碰撞的时间是否大于预设时间阈值;当螺旋桨与对象碰撞的时间大于预设时间阈值时,可以控制螺旋桨停止转动;当螺旋桨与对象碰撞的时间小于或等于预设时间阈值时,可以继续为螺旋桨施加转动动力。通过这种方式,当与螺旋桨产生碰撞的对象是非生物对象时,可以继续为螺旋桨施加转动动力,保证无人飞行器能够正常运行;当与螺旋桨产生碰撞的对象是非生物对象,且无人飞行器与非生物对象的碰撞时间超过预设时间阈值,可以控制螺旋桨停止转动,能够在一定程度上对非生物对象进行保护。
生物对象可以是预设类型的生物对象,当确定螺旋桨与对象产生碰撞且确定对象为预设类型的生物对象时,可以控制螺旋桨停止转动;当确定螺旋桨与对象产生碰撞且确定对象不为预设类型的生物对象时,可以继续为螺旋桨施加转动动力;通过这种方式,使得保护对象更具针对性,当确定螺旋桨与预设类型的生物对象产生碰撞时,控制螺旋桨停止转动,可以有效减少螺旋桨对预设类型的生物对象的伤害。进一步的,生物对象可以是人,也就是说,当确定螺旋桨与对象产生碰撞且确定对象为人时,可以控制螺旋桨停止转动;当确定螺旋桨与对象产生碰撞且确定对象不为人时,可以继续为螺旋桨施加转动动力;通过这种方式,当确定无螺旋桨与人产生碰撞时,控制螺旋桨停止转动,可以有效减小螺旋桨对人的伤害。
本申请实施例中,当确定无人飞行器的螺旋桨与环境中的生物对象产生碰撞时,立即控制螺旋桨停止转动,能够有效减小无人飞行器的螺旋桨对生物对象的伤害,提升对生物对象的防护等级。另外,本申请实施例提供了多种可以用于确定螺旋桨是否与环境中的对象产生碰撞的方式(例如根据螺旋桨的转速确定,或者根据螺旋桨的转速以及电机的电流确定,或者根据螺旋桨的转速以及无人飞行器的水平姿态角确定),有效提高了确定结果的准确率。此外,本申请还提供了多种确定对象是否为生物对象的方式(例如根据视觉传感器采集到的图像确定,或者根据温度传感器采集到的温度数据确定,或者根据激光雷达采 集到的点云数据确定),有效提高了确定结果的准确率。此外,生物对象可以是人,当确定螺旋桨与人产生碰撞时,控制螺旋桨停止转动,能够有效减少螺旋桨对人的伤害。
请参见图4,图4是本申请实施例提供的另一种无人飞行器的控制方法的流程示意图,本申请实施例提供的无人飞行器的控制方法可以由无人飞行器执行,无人飞行器中包括用于提供飞行动力的螺旋桨,该无人飞行器的控制方法可以包括以下步骤S401至步骤S402:
S401,在无人飞行器飞行的过程中,确定无人飞行器是否即将与环境中的对象产生碰撞。
无人飞行器在天空中的运动过程可以包括起飞过程、飞行过程以及降落过程,对象是无人飞行器在飞行过程中逐渐靠近的物体。可以获取无人飞行器与对象之间的距离,并根据距离确定无人飞行器是否即将与所述对象产生碰撞,具体可以包括但不限于以下两种情况:
第一种,获取无人飞行器与对象之间的距离,若距离小于预设距离阈值时,确定无人飞行器即将与对象产生碰撞,若距离大于或等于预设距离阈值时,确定无人飞行器与对象不会产生碰撞。其中,预设距离阈值可以是根据经验值确定的,例如对无人飞行器进行多次碰撞检测,在无人飞行器与对象之间的距离为预设距离阈值时,无人飞行器与对象产生碰撞的次数最多。
第二种,获取无人飞行器的速度,根据距离和速度确定无人飞行器在碰撞对象之前能否刹停;若不能刹停,则确定无人飞行器即将与对象产生碰撞;若能刹停,则确定无人飞行器与对象不会产生碰撞。其中,根据距离和速度确定无人飞行器在碰撞对象之前能否刹停具体可以是指:确定无人飞行器的速度后,以无人飞行器的最大加速度刹车,从而确定无人飞行器在碰撞对象之前能否刹停。
S402,当确定无人飞行器即将与对象产生碰撞且确定对象为生物对象时,控制螺旋桨停止转动。
无人飞行器还可以包括探测传感器,可以获取探测传感器采集的传感数据,并根据传感数据确定对象是否为生物对象。其中,探测传感器采集的传感数据是沿无人飞行器的飞行方向的;传感数据可以是确定无人飞行器即将与对象产生碰撞的时刻由探测传感器采集到的,传感数据还可以是确定无人飞行器与对象即将产生碰撞的第三时刻之前预设时间段的第四时刻由探测传感器采集到的,第四时刻早于第三时刻,本申请实施例对此不作限定;探测传感器可以包括但不限于:视觉传感器、温度传感器、激光雷达、TOF(Time of Flight,飞行时间法)装置等等。
在一种实施方式中,探测传感器可以包括视觉传感器(例如可以是相机、摄像机等等),传感数据可以包括视觉传感器采集到的图像。根据传感数据确定对象是否为生物对象的方式可以包括:对图像进行识别处理,以确定对象是否为生物对象。具体地,可以采用图像识别模型对图像进行识别处理,得到图像的识别结果;若识别结果指示图像中包含生物对象,则确定对象是生物对象,无人飞行器即将与生物对象产生碰撞;若识别结果指示图像中不包含生物对象,则确定对象不是生物对象。通过这种方式,可以根据视觉传感器采集到的图像判断对象是否为生物对象。
在另一种实施方式中,探测传感器可以包括温度传感器,传感数据可以包括温度传感器采集到的温度数据。根据传感数据确定对象是否为生物对象的方式可以包括:判断温度数据中是否存在处于预设温度范围内的目标温度数据;当温度数据中存在处于预设温度范围内的目标温度数据时,确定对象是生物对象;当温度数据中不存在处于预设温度范围内的目标温度数据时,确定对象不是生物对象。其中,预设温度范围可以是指预设类型的生物对象的温度范围;例如,对于人,预设温度范围(单位为摄氏度)是[36.2,37.2];对于狗,预设温度范围(单位为摄氏度)是[38,39]。通过这种方式,可以根据温度传感器采集到的温度数据判断对象是否为生物对象。
在另一种实施方式中,探测传感器可以包括激光雷达,传感数据可以包括激光雷达采集到的点云数据。根据传感数据确定对象是否为生物对象的方式可以包括:判断点云数据中是否存在预设点云形状的目标点云数据;当点云数据中存在预设点云形状的目标点云数据时,确定对象是生物对象;当点云数据中不存在预设点云形状的目标点云数据时,确定对象不是生物对象。其中,预设点云形状可以是指预设类型的生物对象的点云形状,不同的生物对象对应不同的点云形状,例如狗的点云形状与人的点云形状不相同。通过这种方式,可以根据激光雷达采集到的点云数据判断对象是否为生物对象。
生物对象可以是预设类型的生物对象,当确定无人飞行器即将与对象产生碰撞且确定对象为预设类型的生物对象时,可以控制螺旋桨停止转动;当确定无人飞行器即将与对象产生碰撞且确定对象不为预设类型的生物对象时,可以继续为螺旋桨施加转动动力;通过这种方式,使得保护对象更具针对性,当确定无人飞行器即将与预设类型的生物对象产生碰撞时,控制螺旋桨停止转动,可以有效减少碰撞时无人飞行器对预设类型的生物对象的伤害。进一步的,生物对象可以是人,也就是说,当确定无人飞行器即将与对象产生碰撞且确定对象为人时,可以控制螺旋桨停止转动;当确定无人飞行器即将与对象产生碰撞且确定对象不为人时,可以继续为螺旋桨施加转动动力;通过这种方式,当确定无人飞行器即将与人产生碰撞时,控制螺旋桨停止转动,可以有效减小无人飞行器对人的伤害。
本申请实施例中,当确定无人飞行器即将与环境中的生物对象产生碰撞时,立即控制无人飞行器的螺旋桨停止转动,能够有效减小碰撞时无人飞行器对生物对象的伤害,提升对生物对象的防护等级。此外,本申请实施例提供了多种可以用于确定无人飞行器是否即将与环境中的对象产生碰撞的方式(例如根据无人飞行器与对象之间的距离以及预设距离阈值确定,或者根据无人飞行器与对象之间的距离以及无人飞行器的速度确定),有效提高了确定结果的准确率。此外,本申请还提供了多种确定对象是否为生物对象的方式(例如根据视觉传感器采集到的图像确定,或者根据温度传感器采集到的温度数据确定,或者根据激光雷达采集到的点云数据确定),有效提高了确定结果的准确率。此外,生物对象可以是人,当确定无人飞行器即将与人产生碰撞时,控制螺旋桨停止转动,可以有效减小碰撞时无人飞行器对人的伤害。
请参见图5,图5是本申请实施例提供的一种控制装置的结构示意图,本申请实施例提供的控制装置50可以部署于无人飞行器中,无人飞行器可以包括提供飞行动力的螺旋桨。
在一个实施例中,该控制装置50可以包括:
确定模块501,用于确定螺旋桨是否与环境中的对象产生碰撞;
控制模块502,用于当确定螺旋桨与对象产生碰撞且确定对象为生物对象时,控制螺旋桨停止转动。
在一种实施方式中,控制装置50还包括获取模块503;获取模块503,具体用于:
获取无人飞行器在飞行过程中的螺旋桨的转速;
当螺旋桨的转速小于预设的转速阈值时,确定螺旋桨与对象产生碰撞。
在一种实施方式中,无人飞行器还包括用于驱动螺旋桨的电机;获取模块503,还用于:
获取无人飞行器在飞行过程中的电机的电流;
确定模块501,具体用于:
当螺旋桨的转速小于预设的转速阈值且电流大于预设的电流阈值时,确定螺旋桨与对象产生碰撞。
在一种实施方式中,获取模块503,还用于:
获取无人飞行器在飞行过程中的水平姿态角;
确定模块501,具体用于:
当螺旋桨的转速小于预设的转速阈值且水平姿态角大于预设的角度阈值时,确定螺旋桨与对象产生碰撞。
在一种实施方式中,获取模块503,还用于:
获取探测传感器采集的传感数据;
确定模块501,具体用于:
根据传感数据确定对象是否为生物对象。
在一种实施方式中,探测传感器包括视觉传感器或温度传感器。
在一种实施方式中,获取模块503,具体用于:
获取探测传感器采集的沿无人飞行器的飞行方向的传感数据。
在一种实施方式中,无人飞行器还包括多个螺旋桨,多个螺旋桨包括与对象产生碰撞的螺旋桨;确定模块501,具体用于:
确定多个螺旋桨中与对象产生碰撞的螺旋桨;
根据产生碰撞的螺旋桨在无人飞行器上的安装位置从传感数据中确定目标传感数据;
根据目标传感数据确定对象是否为生物对象。
在一种实施方式中,探测传感器包括视觉传感器,传感数据包括视觉传感器采集到的图像;确定模块501,具体用于:
对图像进行识别处理,以确定对象是否为生物对象。
在一种实施方式中,探测传感器包括温度传感器,传感数据包括温度传感器采集到的温度数据;确定模块501,具体用于:
当温度数据中存在处于预设的温度范围内的目标温度数据时,确定对象是所述生物对象。
在一种实施方式中,控制模块502,还用于:
当确定螺旋桨与对象产生碰撞且确定对象不为生物对象时,继续为螺旋桨施加转动动 力。
在一种实施方式中,控制模块502,具体用于:
以第一螺旋桨转速控制值继续为螺旋桨施加转动动力;其中,第一螺旋桨转速控制值大于第二螺旋桨转速控制值,第二螺旋桨转速控制值为螺旋桨碰撞对象之前无人飞行器为螺旋桨施加转动动力的螺旋桨转速控制值。
在一种实施方式中,确定模块501,还用于:
在继续为螺旋桨施加转动动力的过程中,确定螺旋桨与对象碰撞的时间是否大于预设时间阈值;
控制模块502,还用于:
当螺旋桨与对象碰撞的时间大于预设时间阈值时,控制螺旋桨停止转动。
在一种实施方式中,控制模块502,具体用于:
当确定螺旋桨与对象产生碰撞且确定对象为预设类型的生物对象时,控制螺旋桨停止转动。
在一种实施方式中,生物对象为人。
在该实施例中,当控制装置50的确定模块501确定无人飞行器的螺旋桨与环境中的生物对象产生碰撞时,控制装置50的控制模块502立即控制螺旋桨停止转动,能够有效减小无人飞行器的螺旋桨对生物对象的伤害,提升对生物对象的防护等级。
在另一个实施例中,该控制装置50可以包括:
确定模块501,用于在无人飞行器飞行的过程中,确定所述无人飞行器是否即将与环境中的对象产生碰撞;
控制模块502,用于当确定无人飞行器即将与对象产生碰撞且确定对象为生物对象时,控制螺旋桨停止转动。
在一种实施方式中,确定模块501,具体用于:
获取无人飞行器与对象之间的距离;
根据距离确定无人飞行器是否即将与对象产生碰撞。
在一种实施方式中,确定模块501,具体用于:
若距离小于或等于预设距离阈值时,确定无人飞行器即将与对象产生碰撞。
在一种实施方式中,控制装置50还包括获取模块503;获取模块503,具体用于:
获取无人飞行器的速度;
确定模块501,具体用于:
根据距离和速度确定无人飞行器在碰撞对象之前能否刹停;
若否,则确定无人飞行器即将与对象产生碰撞。
在一种实施方式中,获取模块503,还用于:
获取探测传感器采集的传感数据;
确定模块501,具体用于:
根据传感数据确定对象是否为生物对象。
在一种实施方式中,探测传感器包括视觉传感器或温度传感器。
在一种实施方式中,获取模块503,具体用于:
获取探测传感器采集的沿无人飞行器的飞行方向的传感数据。
在一种实施方式中,探测传感器包括视觉传感器,传感数据包括视觉传感器采集到的图像;确定模块501,具体用于:
对图像进行识别处理,以确定对象是否为生物对象。
在一种实施方式中,探测传感器包括温度传感器,传感数据包括温度传感器采集到的温度数据;确定模块501,具体用于:
当温度数据中存在处于预设的温度范围内的目标温度数据时,确定对象是所述生物对象。
在一种实施方式中,控制模块502,具体用于:
若确定无人飞行器即将与对象产生碰撞且确定对象为预设类型的生物对象时,控制螺旋桨停止转动。
在一种实施方式中,生物对象为人。
在该实施例中,当控制装置50的确定模块501确定无人飞行器即将与环境中的生物对象产生碰撞时,控制装置50的控制模块502立即控制无人飞行器的螺旋桨停止转动,能够有效减小无人飞行器对生物对象的伤害,提升对生物对象的防护等级。
请参见图6,图6是本申请实施例提供的一种无人飞行器的结构示意图。本申请实施例中所描述的无人飞行器60,包括:处理器601、存储器602、螺旋桨603、电机604和探测传感器605。上述处理器601、存储器602、螺旋桨603、电机604和探测传感器605通过总线连接。
上述处理器601可以是中央处理单元(Central Processing Unit,CPU),该处理器601还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
上述存储器602可以包括只读存储器和随机存取存储器,并向处理器601提供程序指令和数据。存储器602的一部分还可以包括非易失性随机存取存储器。
上述螺旋桨603,用于提供无人飞行器60的飞行动力。
上述电机604,用于驱动螺旋桨603。
上述探测传感器605,用于采集传感数据。
在一个实施例中,处理器601调用程序指令时用于执行:
确定螺旋桨是否与环境中的对象产生碰撞;
当确定螺旋桨与对象产生碰撞且确定对象为生物对象时,控制螺旋桨停止转动。
在一种实施方式中,处理器601,具体用于:
获取无人飞行器在飞行过程中的螺旋桨的转速;
当螺旋桨的转速小于预设的转速阈值时,确定螺旋桨与对象产生碰撞。
在一种实施方式中,处理器601,还用于:
获取无人飞行器在飞行过程中的电机的电流;
处理器601,具体用于:
当螺旋桨的转速小于预设的转速阈值且电流大于预设的电流阈值时,确定螺旋桨与对象产生碰撞。
在一种实施方式中,处理器601,还用于:
获取无人飞行器在飞行过程中的水平姿态角;
处理器601,具体用于:
当螺旋桨的转速小于预设的转速阈值且水平姿态角大于预设的角度阈值时,确定螺旋桨与对象产生碰撞。
在一种实施方式中,处理器601,具体用于:
获取探测传感器采集的传感数据;
根据传感数据确定对象是否为生物对象。
在一种实施方式中,探测传感器包括视觉传感器或温度传感器。
在一种实施方式中,处理器601,具体用于:
获取探测传感器采集的沿无人飞行器的飞行方向的传感数据。
在一种实施方式中,处理器601,具体用于:
确定多个螺旋桨中与对象产生碰撞的螺旋桨;
根据产生碰撞的螺旋桨在无人飞行器上的安装位置从传感数据中确定目标传感数据;
根据目标传感数据确定对象是否为生物对象。
在一种实施方式中,探测传感器包括视觉传感器,传感数据包括视觉传感器采集到的图像;处理器601,具体用于:
对图像进行识别处理,以确定对象是否为生物对象。
在一种实施方式中,探测传感器包括温度传感器,传感数据包括温度传感器采集到的温度数据;处理器601,具体用于:
当温度数据中存在处于预设的温度范围内的目标温度数据时,确定对象是所述生物对象。
在一种实施方式中,处理器601,还用于:
当确定螺旋桨与对象产生碰撞且确定对象不为生物对象时,继续为螺旋桨施加转动动力。
在一种实施方式中,处理器601,具体用于:
以第一螺旋桨转速控制值继续为螺旋桨施加转动动力;其中,第一螺旋桨转速控制值大于第二螺旋桨转速控制值,第二螺旋桨转速控制值为螺旋桨碰撞对象之前无人飞行器为螺旋桨施加转动动力的螺旋桨转速控制值。
在一种实施方式中,处理器601,还用于:
在继续为螺旋桨施加转动动力的过程中,确定螺旋桨与对象碰撞的时间是否大于预设时间阈值;
当螺旋桨与对象碰撞的时间大于预设时间阈值时,控制螺旋桨停止转动。
在一种实施方式中,处理器601,具体用于:
当确定螺旋桨与对象产生碰撞且确定对象为预设类型的生物对象时,控制螺旋桨停止 转动。
在一种实施方式中,生物对象为人。
在该实施例中,当无人飞行器60的处理器601确定无人飞行器的螺旋桨与环境中的生物对象产生碰撞时,无人飞行器60的处理器601立即控制螺旋桨停止转动,能够有效减小无人飞行器的螺旋桨对生物对象的伤害,提升对生物对象的防护等级。
在另一个实施例中,处理器601调用程序指令时用于执行:
在无人飞行器飞行的过程中,确定所述无人飞行器是否即将与环境中的对象产生碰撞;
当确定无人飞行器即将与对象产生碰撞且确定对象为生物对象时,控制螺旋桨停止转动。
在一种实施方式中,处理器601,具体用于:
获取无人飞行器与对象之间的距离;
根据距离确定无人飞行器是否即将与对象产生碰撞。
在一种实施方式中,处理器601,具体用于:
若距离小于或等于预设距离阈值时,确定无人飞行器即将与对象产生碰撞。
在一种实施方式中,处理器601,还用于:
获取无人飞行器的速度;
处理器601,具体用于:
根据距离和速度确定无人飞行器在碰撞对象之前能否刹停;
若否,则确定无人飞行器即将与对象产生碰撞。
在一种实施方式中,处理器601,具体用于:
获取探测传感器采集的传感数据;
根据传感数据确定对象是否为生物对象。
在一种实施方式中,探测传感器包括视觉传感器或温度传感器。
在一种实施方式中,处理器601,具体用于:
获取探测传感器采集的沿无人飞行器的飞行方向的传感数据。
在一种实施方式中,探测传感器包括视觉传感器,传感数据包括视觉传感器采集到的图像;处理器601,具体用于:
对图像进行识别处理,以确定对象是否为生物对象。
在一种实施方式中,探测传感器包括温度传感器,传感数据包括温度传感器采集到的温度数据;处理器601,具体用于:
当温度数据中存在处于预设的温度范围内的目标温度数据时,确定对象是所述生物对象。
在一种实施方式中,处理器601,具体用于:
若确定无人飞行器即将与对象产生碰撞且确定对象为预设类型的生物对象时,控制螺旋桨停止转动。
在一种实施方式中,生物对象为人。
在该实施例中,当无人飞行器60的处理器601确定无人飞行器即将与环境中的生物对象产生碰撞时,无人飞行器60的处理器601立即控制无人飞行器的螺旋桨停止转动,能够有效 减小无人飞行器对生物对象的伤害,提升对生物对象的防护等级。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有程序指令,该程序指令被执行时可包括如图3对应实施例中的无人飞行器所执行的部分或全部步骤。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有程序指令,该程序指令被执行时可包括如图4对应实施例中的无人飞行器所执行的部分或全部步骤。
其中,计算机可读存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例为本申请的部分实施例,所涉及的动作和模块并不一定是本申请所必须的。
以上对本申请实施例所提供的一种无人飞行器的控制方法、无人飞行器及存储介质进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (54)

  1. 一种无人飞行器的控制方法,其特征在于,所述无人飞行器包括提供飞行动力的螺旋桨,所述方法包括:
    确定所述螺旋桨是否与环境中的对象产生碰撞;
    当确定所述螺旋桨与所述对象产生碰撞且确定所述对象为生物对象时,控制所述螺旋桨停止转动。
  2. 根据权利要求1所述的方法,其特征在于,所述确定所述螺旋桨是否与环境中的对象产生碰撞,包括:
    获取所述无人飞行器在飞行过程中的所述螺旋桨的转速;
    当所述螺旋桨的转速小于预设的转速阈值时,确定所述螺旋桨与所述对象产生碰撞。
  3. 根据权利要求2所述的方法,其特征在于,所述无人飞行器还包括用于驱动所述螺旋桨的电机,所述确定所述螺旋桨是否与环境中的对象产生碰撞,还包括:
    获取所述无人飞行器在飞行过程中的所述电机的电流;
    所述当所述螺旋桨的转速小于预设的转速阈值时,确定所述螺旋桨与所述对象产生碰撞,包括:
    当所述螺旋桨的转速小于所述预设的转速阈值且所述电流大于预设的电流阈值时,确定所述螺旋桨与所述对象产生碰撞。
  4. 根据权利要求2所述的方法,其特征在于,所述确定所述螺旋桨是否与环境中的对象产生碰撞,还包括:
    获取所述无人飞行器在飞行过程中的水平姿态角;
    所述当所述螺旋桨的转速小于预设的转速阈值时,确定所述螺旋桨与所述对象产生碰撞,包括:
    当所述螺旋桨的转速小于所述预设的转速阈值且所述水平姿态角大于预设的角度阈值时,确定所述螺旋桨与所述对象产生碰撞。
  5. 根据权利要求1所述的方法,其特征在于,所述无人飞行器还包括探测传感器,还包括:
    获取所述探测传感器采集的传感数据;
    根据所述传感数据确定所述对象是否为所述生物对象。
  6. 根据权利要求5所述的方法,其特征在于,所述探测传感器包括视觉传感器或温度传感器。
  7. 根据权利要求5所述的方法,其特征在于,所述获取所述探测传感器采集的传感数 据,包括:
    获取所述探测传感器采集的沿所述无人飞行器的飞行方向的传感数据。
  8. 根据权利要求5所述的方法,其特征在于,所述无人飞行器还包括多个螺旋桨,所述多个螺旋桨包括与所述对象产生碰撞的螺旋桨,还包括:
    确定所述多个螺旋桨中与所述对象产生碰撞的螺旋桨;
    所述根据所述传感数据确定所述对象是否为所述生物对象,包括:
    根据所述产生碰撞的螺旋桨在所述无人飞行器上的安装位置从所述传感数据中确定目标传感数据;
    根据所述目标传感数据确定所述对象是否为所述生物对象。
  9. 根据权利要求5所述的方法,其特征在于,所述探测传感器包括视觉传感器,所述传感数据包括所述视觉传感器采集到的图像;所述根据所述传感数据确定所述对象是否为所述生物对象,包括:
    对所述图像进行识别处理,以确定所述对象是否为所述生物对象。
  10. 根据权利要求5所述的方法,其特征在于,所述探测传感器包括温度传感器,所述传感数据包括所述温度传感器采集到的温度数据;所述根据所述传感数据确定所述对象是否为所述生物对象,包括:
    当所述温度数据中存在处于预设的温度范围内的目标温度数据时,确定所述对象是所述生物对象。
  11. 根据权利要求1所述的方法,其特征在于,还包括:
    当确定所述螺旋桨与所述对象产生碰撞且确定所述对象不为所述生物对象时,继续为所述螺旋桨施加转动动力。
  12. 根据权利要求11所述的方法,其特征在于,所述继续为所述螺旋桨施加转动动力,包括:
    以第一螺旋桨转速控制值继续为所述螺旋桨施加转动动力;其中,所述第一螺旋桨转速控制值大于第二螺旋桨转速控制值,所述第二螺旋桨转速控制值为所述螺旋桨碰撞所述对象之前所述无人飞行器为所述螺旋桨施加转动动力的螺旋桨转速控制值。
  13. 根据权利要求11所述的方法,其特征在于,还包括:
    在继续为所述螺旋桨施加转动动力的过程中,确定所述螺旋桨与所述对象碰撞的时间是否大于预设时间阈值;
    当所述螺旋桨与所述对象碰撞的时间大于所述预设时间阈值时,控制所述螺旋桨停止转动。
  14. 根据权利要求1所述的方法,其特征在于,所述当确定所述螺旋桨与所述对象产生碰撞且确定所述对象为生物对象时,控制所述螺旋桨停止转动,包括:
    当确定所述螺旋桨与所述对象产生碰撞且确定所述对象为预设类型的生物对象时,控制所述螺旋桨停止转动。
  15. 根据权利要求1至14任一项所述的方法,其特征在于,所述生物对象为人。
  16. 一种无人飞行器的控制方法,其特征在于,所述无人飞行器包括提供飞行动力的螺旋桨,所述方法包括:
    在所述无人飞行器飞行的过程中,确定所述无人飞行器是否即将与环境中的对象产生碰撞;
    当确定所述无人飞行器即将与所述对象产生碰撞且确定所述对象为生物对象时,控制所述螺旋桨停止转动。
  17. 根据权利要求16所述的方法,其特征在于,所述确定所述无人飞行器是否即将与环境中的对象碰撞,包括:
    获取所述无人飞行器与所述对象之间的距离;
    根据所述距离确定所述无人飞行器是否即将与所述对象产生碰撞。
  18. 根据权利要求17所述的方法,其特征在于,所述根据所述距离确定所述无人飞行器是否即将与所述对象产生碰撞,包括:
    若所述距离小于或等于预设距离阈值时,确定所述无人飞行器即将与所述对象产生碰撞。
  19. 根据权利要求17所述的方法,其特征在于,所述确定所述无人飞行器是否即将与环境中的对象产生碰撞,还包括:
    获取所述无人飞行器的速度;
    所述根据所述距离确定所述无人飞行器是否即将与所述对象产生碰撞,包括:
    根据所述距离和所述速度确定所述无人飞行器在碰撞所述对象之前能否刹停;
    若否,则确定所述无人飞行器即将与所述对象产生碰撞。
  20. 根据权利要求16所述的方法,其特征在于,所述无人飞行器还包括探测传感器,还包括:
    获取所述探测传感器采集的传感数据;
    根据所述传感数据确定所述对象是否为所述生物对象。
  21. 根据权利要求20所述的方法,其特征在于,所述探测传感器包括视觉传感器或温度传感器。
  22. 根据权利要求20所述的方法,其特征在于,所述获取所述探测传感器采集的传感数据,包括:
    获取所述探测传感器采集的沿所述无人飞行器的飞行方向的传感数据。
  23. 根据权利要求20所述的方法,其特征在于,所述探测传感器包括视觉传感器,所述传感数据包括所述视觉传感器采集到的图像;所述根据所述传感数据确定所述对象是否为所述生物对象,包括:
    对所述图像进行识别处理,以确定所述对象是否为所述生物对象。
  24. 根据权利要求20所述的方法,其特征在于,所述探测传感器包括温度传感器,所述传感数据包括所述温度传感器采集到的温度数据;所述根据所述传感数据确定所述对象是否为所述生物对象,包括:
    当所述温度数据中存在处于预设的温度范围内的目标温度数据时,确定所述对象是所述生物对象。
  25. 根据权利要求16所述的方法,其特征在于,所述当确定所述无人飞行器即将与所述对象产生碰撞且确定所述对象为生物对象时,控制所述螺旋桨停止转动,包括:
    若确定所述无人飞行器即将与所述对象产生碰撞且确定所述对象为预设类型的生物对象时,控制所述螺旋桨停止转动。
  26. 根据权利要求16至25任一项所述的方法,其特征在于,所述生物对象为人。
  27. 一种无人飞行器,其特征在于,所述无人飞行器包括:处理器、存储器和螺旋桨,其中:
    所述螺旋桨,用于提供所述无人飞行器的飞行动力;
    所述存储器,用于存储计算机程序,所述计算机程序包括程序指令;
    所述处理器调用所述程序指令时,用于执行:
    确定所述螺旋桨是否与环境中的对象产生碰撞;
    当确定所述螺旋桨与所述对象产生碰撞且确定所述对象为生物对象时,控制所述螺旋桨停止转动。
  28. 根据权利要求27所述的无人飞行器,其特征在于,所述处理器在确定所述螺旋桨是否与环境中的对象产生碰撞时,具体用于执行如下步骤:
    获取所述无人飞行器在飞行过程中的所述螺旋桨的转速;
    当所述螺旋桨的转速小于预设的转速阈值时,确定所述螺旋桨与所述对象产生碰撞。
  29. 根据权利要求28所述的无人飞行器,其特征在于,所述无人飞行器还包括电机, 所述电机用于驱动所述螺旋桨;所述处理器在确定所述螺旋桨是否与环境中的对象产生碰撞时,还用于执行如下步骤:
    获取所述无人飞行器在飞行过程中的所述电机的电流;
    所述处理器在当所述螺旋桨的转速小于预设的转速阈值时,确定所述螺旋桨与所述对象产生碰撞时,具体用于执行如下步骤:
    当所述螺旋桨的转速小于所述预设的转速阈值且所述电流大于预设的电流阈值时,确定所述螺旋桨与所述对象产生碰撞。
  30. 根据权利要求28所述的无人飞行器,其特征在于,所述处理器在确定所述螺旋桨是否与环境中的对象产生碰撞时,还用于执行如下步骤:
    获取所述无人飞行器在飞行过程中的水平姿态角;
    所述处理器在当所述螺旋桨的转速小于预设的转速阈值时,确定所述螺旋桨与所述对象产生碰撞时,具体用于执行如下步骤:
    当所述螺旋桨的转速小于所述预设的转速阈值且所述水平姿态角大于预设的角度阈值时,确定所述螺旋桨与所述对象产生碰撞。
  31. 根据权利要求27所述的无人飞行器,其特征在于,所述无人飞行器还包括探测传感器,所述探测传感器用于采集传感数据;所述处理器还用于执行如下步骤:
    获取所述探测传感器采集的传感数据;
    根据所述传感数据确定所述对象是否为所述生物对象。
  32. 根据权利要求31所述的无人飞行器,其特征在于,所述探测传感器包括视觉传感器或温度传感器。
  33. 根据权利要求31所述的无人飞行器,其特征在于,所述处理器在获取所述探测传感器采集的传感数据时,具体用于执行如下步骤:
    获取所述探测传感器采集的沿所述无人飞行器的飞行方向的传感数据。
  34. 根据权利要求31所述的无人飞行器,其特征在于,所述无人飞行器还包括多个螺旋桨,所述多个螺旋桨包括与所述对象产生碰撞的螺旋桨;所述处理器还用于执行如下步骤:
    确定所述多个螺旋桨中与所述对象产生碰撞的螺旋桨;
    所述处理器在根据所述传感数据确定所述对象是否为所述生物对象时,具体用于执行如下步骤:
    根据所述产生碰撞的螺旋桨在所述无人飞行器上的安装位置从所述传感数据中确定目标传感数据;
    根据所述目标传感数据确定所述对象是否为所述生物对象。
  35. 根据权利要求31所述的无人飞行器,其特征在于,所述探测传感器包括视觉传感器,所述传感数据包括所述视觉传感器采集到的图像;所述处理器在根据所述传感数据确定所述对象是否为所述生物对象时,具体用于执行如下步骤:
    对所述图像进行识别处理,以确定所述对象是否为所述生物对象。
  36. 根据权利要求31所述的无人飞行器,其特征在于,所述探测传感器包括温度传感器,所述传感数据包括所述温度传感器采集到的温度数据;所述处理器在根据所述传感数据确定所述对象是否为所述生物对象时,具体用于执行如下步骤:
    当所述温度数据中存在处于预设的温度范围内的目标温度数据时,确定所述对象是所述生物对象。
  37. 根据权利要求27所述的无人飞行器,其特征在于,所述处理器还用于执行如下步骤:
    当确定所述螺旋桨与所述对象产生碰撞且确定所述对象不为所述生物对象时,继续为所述螺旋桨施加转动动力。
  38. 根据权利要求37所述的无人飞行器,其特征在于,所述处理器在继续为所述螺旋桨施加转动动力时,具体用于执行如下步骤:
    以第一螺旋桨转速控制值继续为所述螺旋桨施加转动动力;其中,所述第一螺旋桨转速控制值大于第二螺旋桨转速控制值,所述第二螺旋桨转速控制值为所述螺旋桨碰撞所述对象之前所述无人飞行器为所述螺旋桨施加转动动力的螺旋桨转速控制值。
  39. 根据权利要求37所述的无人飞行器,其特征在于,所述处理器还用于执行如下步骤:
    在继续为所述螺旋桨施加转动动力的过程中,确定所述螺旋桨与所述对象碰撞的时间是否大于预设时间阈值;
    当所述螺旋桨与所述对象碰撞的时间大于所述预设时间阈值时,控制所述螺旋桨停止转动。
  40. 根据权利要求27所述的无人飞行器,其特征在于,所述处理器在当确定所述螺旋桨与所述对象产生碰撞且确定所述对象为生物对象时,控制所述螺旋桨停止转动时,具体用于执行如下步骤:
    当确定所述螺旋桨与所述对象产生碰撞且确定所述对象为预设类型的生物对象时,控制所述螺旋桨停止转动。
  41. 根据权利要求27至40任一项所述的无人飞行器,其特征在于,所述生物对象为人。
  42. 一种无人飞行器,其特征在于,所述无人飞行器包括:处理器、存储器和螺旋桨, 其中:
    所述螺旋桨,用于提供所述无人飞行器的飞行动力;
    所述存储器,用于存储计算机程序,所述计算机程序包括程序指令;
    所述处理器调用所述程序指令时,用于执行:
    在所述无人飞行器飞行的过程中,确定所述无人飞行器是否即将与环境中的对象产生碰撞;
    当确定所述无人飞行器即将与所述对象产生碰撞且确定所述对象为生物对象时,控制所述螺旋桨停止转动。
  43. 根据权利要求42所述的无人飞行器,其特征在于,所述处理器在确定所述无人飞行器是否即将与环境中的对象碰撞时,具体用于执行如下步骤:
    获取所述无人飞行器与所述对象之间的距离;
    根据所述距离确定所述无人飞行器是否即将与所述对象产生碰撞。
  44. 根据权利要求43所述的无人飞行器,其特征在于,所述处理器在根据所述距离确定所述无人飞行器是否即将与所述对象产生碰撞时,具体用于执行如下步骤:
    若所述距离小于或等于预设距离阈值时,确定所述无人飞行器即将与所述对象产生碰撞。
  45. 根据权利要求43所述的无人飞行器,其特征在于,所述处理器在确定所述无人飞行器是否即将与环境中的对象产生碰撞时,还用于执行如下步骤:
    获取无人飞行器的速度;
    所述处理器在根据所述距离确定所述无人飞行器是否即将与所述对象产生碰撞时,具体用于执行如下步骤:
    根据所述距离和所述速度确定所述无人飞行器在碰撞所述对象之前能否刹停;
    若否,则确定所述无人飞行器即将与所述对象产生碰撞。
  46. 根据权利要求42所述的无人飞行器,其特征在于,所述无人飞行器还包括探测传感器,所述探测传感器用于采集传感数据;所述处理器还用于执行如下步骤:
    获取所述探测传感器采集的传感数据;
    根据所述传感数据确定所述对象是否为所述生物对象。
  47. 根据权利要求46所述的无人飞行器,其特征在于,所述探测传感器包括视觉传感器或温度传感器。
  48. 根据权利要求46所述的无人飞行器,其特征在于,所述处理器在获取所述探测传感器采集的传感数据时,具体用于执行如下步骤:
    获取所述探测传感器采集的沿所述无人飞行器的飞行方向的传感数据。
  49. 根据权利要求46所述的无人飞行器,其特征在于,所述探测传感器包括视觉传感器,所述传感数据包括所述视觉传感器采集到的图像;所述处理器在根据所述传感数据确定所述对象是否为所述生物对象时,具体用于执行如下步骤:
    对所述图像进行识别处理,以确定所述对象是否为所述生物对象。
  50. 根据权利要求46所述的无人飞行器,其特征在于,所述探测传感器包括温度传感器,所述传感数据包括所述温度传感器采集到的温度数据;所述处理器在根据所述传感数据确定所述对象是否为所述生物对象时,具体用于执行如下步骤:
    当所述温度数据中存在处于预设的温度范围内的目标温度数据时,确定所述对象是所述生物对象。
  51. 根据权利要求42所述的无人飞行器,其特征在于,所述处理器在当确定所述无人飞行器即将与所述对象产生碰撞且确定所述对象为生物对象时,控制所述螺旋桨停止转动时,具体用于执行如下步骤:
    当确定所述无人飞行器即将与所述对象产生碰撞且确定所述对象为预设类型的生物对象时,控制所述螺旋桨停止转动。
  52. 根据权利要求42至51任一项所述的无人飞行器,其特征在于,所述生物对象为人。
  53. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序在被执行时,实现如权利要求1至15任一项所述的无人飞行器的控制方法。
  54. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序在被执行时,实现如权利要求16至26任一项所述的无人飞行器的控制方法。
PCT/CN2020/140105 2020-12-28 2020-12-28 一种无人飞行器的控制方法、无人飞行器及存储介质 WO2022140904A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080081371.0A CN114830056A (zh) 2020-12-28 2020-12-28 一种无人飞行器的控制方法、无人飞行器及存储介质
PCT/CN2020/140105 WO2022140904A1 (zh) 2020-12-28 2020-12-28 一种无人飞行器的控制方法、无人飞行器及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/140105 WO2022140904A1 (zh) 2020-12-28 2020-12-28 一种无人飞行器的控制方法、无人飞行器及存储介质

Publications (1)

Publication Number Publication Date
WO2022140904A1 true WO2022140904A1 (zh) 2022-07-07

Family

ID=82258690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140105 WO2022140904A1 (zh) 2020-12-28 2020-12-28 一种无人飞行器的控制方法、无人飞行器及存储介质

Country Status (2)

Country Link
CN (1) CN114830056A (zh)
WO (1) WO2022140904A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118413149A (zh) * 2024-07-01 2024-07-30 杭州海康威视数字技术股份有限公司 一种无簧道闸控制系统及其控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105564634A (zh) * 2016-01-11 2016-05-11 北京中科遥数信息技术有限公司 一种锁定无人机螺旋桨的装置及其控制方法
KR20160120997A (ko) * 2015-04-09 2016-10-19 주식회사 신드론 로터부의 비상정지기능을 갖는 무인 비행체
CN107444639A (zh) * 2016-05-30 2017-12-08 松下电器(美国)知识产权公司 无人飞行器、控制方法以及非瞬时性记录介质
CN108303743A (zh) * 2017-12-27 2018-07-20 顺丰科技有限公司 一种无人机螺旋桨碰撞检测方法及检测装置
CN208630856U (zh) * 2018-07-17 2019-03-22 北京中科遥数信息技术有限公司 一种用于遥感监测的无人机
US20200115037A1 (en) * 2018-10-15 2020-04-16 Pratt & Whitney Canada Corp. System and method for slowing down aircraft
CN111542794A (zh) * 2018-01-03 2020-08-14 高通股份有限公司 基于检测到的有效载荷的存在性的、机器人式运载工具的可调整的对象避开接近度门限
CN111880570A (zh) * 2015-12-01 2020-11-03 深圳市大疆创新科技有限公司 飞行器及其闪避控制系统、方法
CN112026727A (zh) * 2015-05-12 2020-12-04 深圳市大疆创新科技有限公司 识别或检测障碍物的设备和方法
CN112124566A (zh) * 2020-09-29 2020-12-25 齐威威 一种具有紧急制动功能的无人机螺旋桨

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160120997A (ko) * 2015-04-09 2016-10-19 주식회사 신드론 로터부의 비상정지기능을 갖는 무인 비행체
CN112026727A (zh) * 2015-05-12 2020-12-04 深圳市大疆创新科技有限公司 识别或检测障碍物的设备和方法
CN111880570A (zh) * 2015-12-01 2020-11-03 深圳市大疆创新科技有限公司 飞行器及其闪避控制系统、方法
CN105564634A (zh) * 2016-01-11 2016-05-11 北京中科遥数信息技术有限公司 一种锁定无人机螺旋桨的装置及其控制方法
CN107444639A (zh) * 2016-05-30 2017-12-08 松下电器(美国)知识产权公司 无人飞行器、控制方法以及非瞬时性记录介质
CN108303743A (zh) * 2017-12-27 2018-07-20 顺丰科技有限公司 一种无人机螺旋桨碰撞检测方法及检测装置
CN111542794A (zh) * 2018-01-03 2020-08-14 高通股份有限公司 基于检测到的有效载荷的存在性的、机器人式运载工具的可调整的对象避开接近度门限
CN208630856U (zh) * 2018-07-17 2019-03-22 北京中科遥数信息技术有限公司 一种用于遥感监测的无人机
US20200115037A1 (en) * 2018-10-15 2020-04-16 Pratt & Whitney Canada Corp. System and method for slowing down aircraft
CN112124566A (zh) * 2020-09-29 2020-12-25 齐威威 一种具有紧急制动功能的无人机螺旋桨

Also Published As

Publication number Publication date
CN114830056A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
JP7456537B2 (ja) 飛行体制御装置、飛行体制御方法、及びプログラム
CN105974938B (zh) 避障方法、装置、载体及无人机
US10625735B2 (en) Vehicle control apparatus and vehicle control method
US9798937B2 (en) Vehicle control method for safety driving and device thereof
WO2017136578A1 (en) Partially occluded object detection using context and depth ordering
TWI686686B (zh) 飛行器的控制方法和裝置
WO2020143576A1 (zh) 调整机载雷达的主探测方向的方法、装置和无人机
EP3600965A1 (en) Systems and methods for calibrating vehicular sensors
US10011165B2 (en) Grill shutter operation
WO2022140904A1 (zh) 一种无人飞行器的控制方法、无人飞行器及存储介质
JP2017043173A (ja) 車両の制御装置
US11691573B2 (en) Aerodynamically enhanced sensor housing
CN106814747B (zh) 飞行器及其闪避控制系统、方法
WO2023044897A1 (zh) 无人机的控制方法、装置、无人机及存储介质
WO2019067083A1 (en) PROPELLER CONTACT AVOIDANCE IN AN AIR VEHICLE WITHOUT PILOT
US11423560B2 (en) Method for improving the interpretation of the surroundings of a vehicle
CN110832420A (zh) 无人机的控制方法、装置和无人机
CN116331207A (zh) 自动驾驶场景的智能变道方法及相关装置和介质及程序
WO2019071444A1 (zh) 一种摄像装置的转动控制方法、控制设备以及飞行器
CN113093176B (zh) 线状障碍物检测方法、装置、电子设备和存储介质
EP3217357A1 (en) Estimation of movement of a target object
CN112180962A (zh) 无人机的飞行控制方法及装置、电子设备、存储介质
CN110979316A (zh) 车速调节方法、装置、汽车控制设备及汽车
US12100226B2 (en) Electronic device for controlling driving vehicle and operation method of the electronic device
US11670092B2 (en) Electronic device for controlling driving vehicle and operation method of the electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967256

Country of ref document: EP

Kind code of ref document: A1