WO2022139435A1 - 부하 구동 장치 - Google Patents

부하 구동 장치 Download PDF

Info

Publication number
WO2022139435A1
WO2022139435A1 PCT/KR2021/019563 KR2021019563W WO2022139435A1 WO 2022139435 A1 WO2022139435 A1 WO 2022139435A1 KR 2021019563 W KR2021019563 W KR 2021019563W WO 2022139435 A1 WO2022139435 A1 WO 2022139435A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
voltage
driving
unit
driving unit
Prior art date
Application number
PCT/KR2021/019563
Other languages
English (en)
French (fr)
Inventor
제민규
조동희
김철
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2022139435A1 publication Critical patent/WO2022139435A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/60Circuit arrangements for operating LEDs comprising organic material, e.g. for operating organic light-emitting diodes [OLED] or polymer light-emitting diodes [PLED]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0626Monitoring, verifying, controlling systems and methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0635Radiation therapy using light characterised by the body area to be irradiated
    • A61N2005/0643Applicators, probes irradiating specific body areas in close proximity
    • A61N2005/0645Applicators worn by the patient
    • A61N2005/0647Applicators worn by the patient the applicator adapted to be worn on the head
    • A61N2005/0648Applicators worn by the patient the applicator adapted to be worn on the head the light being directed to the eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/065Light sources therefor
    • A61N2005/0651Diodes
    • A61N2005/0653Organic light emitting diodes

Definitions

  • the present technology relates to a load drive device.
  • the light treatment method is a non-surgical treatment method using light, it is safe, has no side effects, and the treatment range is also wide, so the marketability is increasing every year.
  • light in the near-infrared band or the red band stimulates the mitochondria in the cell, thereby increasing the concentration of the CCO (cytochrome C oxidase) enzyme in the mitochondria.
  • Increased CCO enzymes increase cellular respiration, resulting in increased production of ATP, ROS, and NO.
  • ATP is energy used by cells and increases cell activity, and ROS and NO help increase blood flow and relax and contract blood vessels, thereby increasing blood circulation and reducing inflammation.
  • an organic light emitting diode in the case of a light source used in a phototherapy method, an organic light emitting diode (OLED, organic light emitting diode) in the form of a surface light source has excellent efficiency and therapeutic effect, so many studies are being conducted.
  • OLED organic light emitting diode
  • the load driving device of this embodiment includes: an inductor and a first ply capacitor, wherein the inductor and the first ply capacitor are connected in parallel in a first phase to charge energy provided by a power supply, and in a second phase, the inductor and the first ply capacitor
  • a step-up converter including a second driving unit to boost the voltage provided by the power supply and provide it to the load unit, and a current controller configured to detect a current flowing in the load unit and control the step-up converter to control the current supplied to the load unit includes
  • the first driving unit and the second driving unit provide a voltage to the load unit, wherein the voltage provided by the first driving unit to the load unit and the second driving unit are provided to the load unit.
  • the voltage provided is the voltage of opposite polarity.
  • the first phase and the second phase are combined to form one cycle.
  • the first driving unit, one end and the other end further comprises a connection control switch connected to the inductor and the first fly capacitor, respectively, the connection control switch is cut off, the inductor and the A first fly capacitor is connected in series.
  • the first driving unit is conductive in the first phase, a ground connection switch for connecting the ground to the first driving unit and the second driving unit, and conductive in the second phase to the first It further includes a first driving unit connection switch for connecting the driving unit to provide the energy to the load unit.
  • the second driving unit may include a second driving unit ground connection switch that conducts in the second phase to connect a ground to the second driving unit, and conducts in the first phase so that the second driving unit A second driving unit connection switch connected to provide the energy to the load unit is further included.
  • the load unit is connected in series, one end is connected to the first driving unit, the other end is connected to the ground, the first load capacitor, and one end is connected to the second driving unit, , a second load capacitor having the other end connected to the ground, and a load connected in parallel with the first and second load capacitors.
  • the power source is a flexible battery
  • the load is a light emitting element
  • the inductor and the capacitor are connected in series in the second phase to output a boosted voltage to the load unit.
  • the current control unit may include a detection voltage forming unit outputting a detection voltage corresponding to an average of the current flowing in the load unit and the first and second driving unit control signals from the detection voltage. It includes a control signal forming unit to form.
  • the load driving apparatus includes: a bipolar driving unit receiving a power supply voltage from a power supply and outputting a negative driving voltage and a positive driving voltage in different phases; a current controller configured to detect a load current provided by the bipolar driver to a load and form a control signal for controlling the bipolar driver, wherein the current controller includes: a detection voltage forming unit configured to form a detection voltage corresponding to the load current; A low-pass filter that receives the detection voltage, forms and outputs a detection signal corresponding to the average of the load current, and a control signal that forms a control signal for controlling the operation of the first and second drivers from the detection signal includes wealth.
  • the bipolar driver includes a first connection transistor that provides a positive driving voltage to the load, and the detection voltage forming unit includes the first connection transistor and a gate electrode and a drain electrode, respectively. a scale transistor connected to output the scale-down current; and a detection resistor provided with the scale-down current to generate the detection voltage corresponding to the scale-down current.
  • the detection voltage forming unit includes a detection amplifier and a pass transistor, wherein the detection amplifier includes: the positive driving voltage is provided to a non-inverting input, and a source of the scale transistor to an inverting input An electrode is connected to form the positive driving voltage, an output node is connected to a gate electrode of the pass transistor, and the pass transistor provides the scale-down current to the sense resistor.
  • the current controller further includes a bootstrap circuit configured to form a bootstrap driving voltage in which the power supply voltage and the positive driving voltage are combined, and the detection amplifier includes the bootstrap driving voltage.
  • the upper driving voltage is provided, and the driving voltage is provided as a lower voltage to operate.
  • a bootstrap capacitor charged with the power supply voltage, drain electrodes are connected to one end of the bootstrap capacitor, and the power supply voltage is provided to gate electrodes, and first and second bootstrap transistors to which a first bootstrap voltage and a second bootstrap voltage are respectively provided to the source electrode.
  • the current control unit further comprises an error amplifier for amplifying a difference between the detection signal and a reference voltage
  • the control signal forming unit receives the output of the error amplifier and the periodic signal and PWM (pulse width modulation) includes a PWM modulator for forming a control signal and a gate driver for forming a control signal for controlling the bipolar driver to correspond to the PWM control signal.
  • the bipolar driving unit includes a first driving unit outputting the positive driving voltage and a second driving unit outputting the negative driving voltage, wherein the first driving unit is the positive driving voltage.
  • the second driving unit charges energy from the power source, and when the second driving unit outputs the negative driving voltage, the first driving unit charges energy from the power supply.
  • the power source is a flexible battery
  • the load is a light emitting device
  • the load is driven by a converter having high conversion efficiency and the load current is controlled by detecting the current flowing in the load, the advantage of being robust against deterioration of the load and changes in electrical characteristics is provided. Furthermore, according to the present embodiment, since the load is controlled at the same time as driving the load, an advantage of reducing power consumption is provided compared to the prior art.
  • FIG. 1 is a diagram showing an outline of a load driving apparatus according to the present embodiment.
  • FIG. 2 is a timing diagram of the load driving apparatus according to the present embodiment.
  • FIG 3 is a diagram illustrating an operation outline of the load driving device in the first phase.
  • FIG. 4 is a diagram showing an operation outline of the load driving device in the second phase.
  • Fig. 5 is a diagram showing the outline of the current control unit of the present embodiment.
  • FIG. 6 is a diagram illustrating an outline of a bootstrap voltage and a bootstrap driving voltage for explaining the operation of the bootstrap circuit 220 .
  • FIG. 7 is a diagram illustrating an operation of the current controller in the first phase.
  • FIG. 8 is a diagram for explaining the operation of the current controller in the second phase.
  • FIG. 1 is a diagram showing an outline of a load driving device 10 according to the present embodiment.
  • the inductor L and the first fly capacitor C FLY1 are connected in parallel in the first phase ⁇ 1 to charge energy provided by the power source.
  • Step-up converter 100 that boosts Vin and provides it to the load unit 300 and detects the load current I LOAD flowing through the load unit 300 and controls the step-up converter 100 to control the load unit ( and a current controller 200 for controlling the current provided to 300).
  • the load unit 300 includes capacitors Cop and Con connected in series with the load LOAD, and the capacitors Cop and Con branches connected in series are connected in parallel with the load LOAD.
  • the load LOAD may be an organic light emitting diode (OLED), for example, a surface light emitting OLED.
  • the load LOAD may be a light emitting device such as an LED.
  • the power source may be a battery that provides a DC voltage or a DC current. In one embodiment, the power source may be a rechargeable battery or a flexible battery that can be bent.
  • FIG. 2 is a timing diagram of the load driving device 10 according to the present embodiment
  • FIG. 3 is a diagram showing an operation outline of the load driving device 10 in the first phase .phi.1.
  • a control signal in a logic high state is provided to the gate electrode of the first ground connection switch S1 and the first driver connection switch S3 in the first phase ⁇ 1 to conduct.
  • the inductor L and the first fly capacitor C FLY1 are connected in parallel to charge energy provided by the power supply.
  • the voltage Vy of the y node corresponds to the power supply voltage Vin.
  • the first fly capacitor C FLY1 is charged with the power voltage Vin, and the current I L flowing through the inductor L increases as time elapses.
  • both the first driving unit 110 and the second driving unit 120 are connected to the ground potential through the first ground connection switch S1 in the first phase ⁇ 1, the voltage Vx of the x node corresponds to the ground potential do.
  • the second ground connection switch S4 is shut off by providing a control signal in a logic high state to the gate electrode, but a control signal in a logic high state is provided to the gate electrode of the second driving unit connection switch S5 to conduct.
  • the second fly capacitor C FLY2 provides a negative driving voltage to the load unit 300 as shown by Vz of FIG. 2 .
  • the second fly capacitor C FLY2 provides a negative driving voltage corresponding to the difference between the positive voltage Vop provided to the load and the power voltage Vin provided by the power supply to the load unit 300 . to drive the LOAD.
  • the inductor L and the first fly capacitor C FLY1 are charged with energy through different current paths, respectively. Accordingly, according to the present embodiment, an advantage is provided that a loss due to the DC equivalent resistance of the inductor L can be reduced during energy charging.
  • FIG. 4 is a diagram showing an outline of the operation of the load driving device 10 in the second phase .phi.2. 1 to 4 , a control signal in a logic low state is provided to the gate electrode of the first ground connection switch S1 and the connection control switch S2 in the second phase ⁇ 2 and is cut off. Accordingly, the inductor L and the first fly capacitor C FLY1 that were connected in parallel in the first phase ⁇ 1 are connected in series. In addition, the first driver connection switch S3 conducts because the logic high control signal is provided to the gate electrode to connect the first driver 110 to the load unit 300 .
  • the positive driving voltage Vop provided by the first driving unit 110 to the load unit 300 is the voltage charged in the inductor connected in series with the power voltage Vin and the power charged in the capacitor. It corresponds to the sum of the voltages Vin. That is, as shown in FIG. 2 , the voltage of the y node in the first phase ⁇ 1 corresponds to the supply voltage Vin, but in the second phase ⁇ 2, Vy is the supply voltage Vin and the inductor L. The voltage is boosted to correspond to the sum of the charged voltage and the power voltage Vin charged in the capacitor and provided to the load unit 300 as a positive driving voltage Vop.
  • the first ground connection switch S1 conducts in the first phase ⁇ 1, the voltage Vx of the x node is equal to the ground voltage.
  • the first ground connection switch (S1) is cut off, and the inductor (L) and the first fly capacitor (C FLY1 ) are connected in series, so Vx is a positive driving voltage (Vop) and Corresponds to the difference in the power supply voltage (Vin) charged in the first fly capacitor (C FLY1 ).
  • the second fly capacitor (C FLY2 ) is charged with energy provided from the power source.
  • the second fly capacitor (C FLY2 ) is connected to the second ground connection switch (S4) conducting the x node. Accordingly, the second fly capacitor C FLY2 is charged with a voltage corresponding to the difference between the positive voltage Vop, which is a voltage corresponding to Vx, and the power supply voltage Vin provided by the power source.
  • the second fly capacitor C FLY2 provides the voltage charged in the subsequent first phase ⁇ 1 to the load unit 300 as a negative driving voltage Von.
  • the conversion efficiency ( ⁇ conv ) of the step-up converter according to the prior art may be expressed as Equation 1 in Equation 1.
  • the conversion efficiency ⁇ according to the present embodiment can be calculated by the expression 2 of Equation 1, and from this, assuming the same duty ratio (D), 200% to 250% in a typical case compared to the prior art % or more can be achieved.
  • the load current I LOAD flows through the first driving unit connection switch S3 and the second driving unit connection switch S5 during a period including the first phase ⁇ 1 and the second phase ⁇ 2 .
  • the connection control switch S2 and the second ground connection switch S4 also load current I during one cycle. LOAD ) flows.
  • the current provided by the power supply is equal to the sum of the current flowing through the inductor (I L ) and the load current flowing through the load (I LOAD ).
  • the current provided by the power supply in the load driving circuit according to the present embodiment is the load current (I LOAD ) compared to the prior art as small as Therefore, in the present embodiment, as the current (I LOAD ) flowing through the load increases, the inductor current further decreases and the loss decreases.
  • the load LOAD is driven by dividing the phases and providing a bipolar driving voltage of a positive driving voltage Vop and a negative driving voltage Von for each phase.
  • the voltage value formed between the drain electrode and the source electrode of the semiconductor switches included in the first driver 110 and the second driver 120 is reduced to a difference (Vop-Vin) between the positive driving voltage and the power supply voltage.
  • This voltage difference is lower than 1/2 of the voltage difference between the drain and the source of the step-up converter according to the prior art. Accordingly, electrical stress applied to the semiconductor switches included in the step-up converter 100 may be reduced.
  • FIG. 5 is a diagram showing an outline of the current control unit 200 of the present embodiment.
  • the current controller 200 generates a scale-down current Isen formed by scaling down the load current I LOAD , and a detection voltage Vsen corresponding to the load current Isen.
  • a low-pass filter ( LPF ) receiving the detection voltage forming unit 210 forming and a control signal forming unit 230 for controlling operations of the first and second drivers based on the detection signal Vavg.
  • FIG. 6 is a diagram illustrating an outline of the bootstrap voltages Vboot1 and Vboot2 and the bootstrap driving voltage VDDb for explaining the operation of the bootstrap circuit 220
  • FIG. 7 is a current control unit ( 200) is a diagram illustrating the operation. 5 to 7 , in the first phase ⁇ 1 , the power supply voltage Vin is applied to the gate electrode of the second bootstrap transistor Mb2, and the second bootstrap signal Vboot2 is applied to the source electrode. Since the ground voltage is provided, the second bootstrap transistor Mb2 conducts.
  • the power supply voltage Vin is charged to the bootstrap capacitor Cboot through the turned on reverse flow prevention diode and the second bootstrap transistor Mb2. Both the upper driving voltage and the lower driving voltage of the detection amplifier A do not operate because the power supply voltage Vin is provided. Accordingly, the pass transistor Mpass is cut off, and both the detection voltage Vsen and the average detection signal Vavg output from the low-pass filter LPF provided with the detection voltage Vsen correspond to the ground voltage.
  • the error amplifier EA amplifies the difference between the reference voltage Vref and the average detection signal Vavg and provides it to the control signal forming unit 230 .
  • the PWM modulator 232 receives the signal output by the error amplifier EA. In addition, the PWM modulator 232 receives periodic signals such as triangle waves and sawtooth waves from an oscillator (not shown), and compares the signals output by the error amplifier EA with the periodic signals to form a PWM control signal.
  • periodic signals such as triangle waves and sawtooth waves from an oscillator (not shown)
  • the gate driver 234 may increase the level of the PWM control signal output by the PWM modulator 232 to form and output a control signal provided to the gates of the switches included in the first and second drivers 110 and 120 . have.
  • FIG. 8 is a view for explaining the operation of the current control unit 200 in the second phase ( ⁇ 2). 5 to 8 , in the second phase ⁇ 2, the power supply voltage Vin is provided to both the source electrode and the gate electrode of the second bootstrap transistor Mb2, so that the second bootstrap transistor Mb2 is is blocked However, since the positive driving voltage Vop is provided to the source electrode of the first bootstrap transistor Mb1 and the power voltage Vin is provided to the gate electrode, the voltage difference between the gate electrode and the source electrode is lower than the threshold voltage.
  • the first bootstrap transistor Mb1 is conductive.
  • the detection amplifier A operates by providing a voltage obtained by combining the power supply voltage Vin and the positive driving voltage Vop as an upper driving voltage and providing the power supply voltage Vin as a lower driving voltage.
  • the detection voltage forming unit 210 includes a scale transistor Ms that scales and outputs the load current I LOAD .
  • the first driver connection switch S3 and the drain electrode and the gate electrode are connected to each other to form the same voltage.
  • the first driver connection switch S3 is not destroyed even by a high voltage and a high current, and has a large channel width/length ratio (W/L ratio) to secure current drivability.
  • the scale transistor MS has a smaller channel width/length ratio than the channel width/length ratio of the first driver connection switch S3 .
  • the channel width/length ratio of the scale transistor MS may correspond to 1% to 10% of the channel width/length ratio of the first driver connection transistor.
  • One electrode of the first driver connection switch S3 is connected to the non-inverting input of the detection amplifier A, and the source electrode of the scale transistor Ms is connected to the inverting input.
  • the positive driving voltage Vop is provided as a non-inverting input through the first driving unit connection switch S3 .
  • the inverting input of the detection amplifier A is connected to the source of the scale transistor Ms, the voltage of the source electrode of the scale transistor Ms is also a positive driving voltage Vop provided as the non-inverting input of the detection amplifier A ) is formed in the same way as
  • the detection amplifier A controls the pass transistor Mpass to output the scale current Isen.
  • the voltages of the drain electrode, the gate electrode, and the source electrode of the first driver connection switch S3 are all the same, but only the channel width/length ratio thereof is scaled. Accordingly, the scale current Isen output from the scale transistor Ms corresponds to the scaled value of the load current I LOAD .
  • the low-pass filter LPF receives the detection voltage Vsen, forms and outputs an average detection signal Vavg corresponding to the average of the detection voltage Vsen.
  • the low-pass filter is exemplified as a first-order RC filter, but this is only an embodiment, and may be implemented as various types of low-pass filters such as a second-order filter.
  • the scale current Isen is a scale of the load current I LOAD by a predetermined scale ratio, and corresponds to the load current I LOAD .
  • the detection voltage Vsen is formed when the scale current Isen flows through the detection resistor Rsen, and the average detection signal Vavg corresponds to the average of the detection voltages Vsen. Accordingly, the value of the average detection signal Vavg corresponds to the average value of the load current I LOAD . That is, the average detection signal may be expressed as in Equation 2 below.
  • K is a proportional constant, and may be controlled by adjusting the resistance value of the detection resistor Rsen and the scale ratio of the scale transistor.
  • the error amplifier EA receives the average detection signal Vavg and the reference signal Vref, amplifies the difference, and outputs the amplified difference.
  • the reference signal Vref provided to the error amplifier EA is a controllable signal.
  • the duty ratio of the control signals S1 , S2 , ... S5 of the switches output by the current controller 200 may be adjusted by adjusting the reference signal Vref.
  • the PWM modulator 230 receives the signal output by the error amplifier EA. In addition, the PWM modulator 230 further receives periodic signals such as a triangular wave and a sawtooth wave input from an oscillator (not shown), and compares the signal output by the error amplifier with the periodic signal to form a PWM control signal.
  • periodic signals such as a triangular wave and a sawtooth wave input from an oscillator (not shown)
  • the gate driver may increase the level of the PWM control signal output by the PWM modulator 230 to form and output the control signal provided to the gates of the switches included in the first and second drivers.
  • FIG. 9 is a result of performing a simulation experiment of the load driving device of the present embodiment at a switching frequency of 0.89 MHz. As shown in FIG. 9 , it can be seen that the voltages Vx, Vy, and Vz of the x node, y mode, and z node are formed as desired waveforms, and the voltage stress formed between the drain-source of the switches is Vop-Vin. can be seen to decrease.
  • the current controller detects the load current I LOAD in the second phase to form a corresponding detection voltage Vsense, it can be confirmed that the detection voltage Vsense is formed according to the inductor current value in the second phase ⁇ 2. .
  • the detection amplifier of the current controller according to the present embodiment operates using a voltage formed by bootstrap, and operates only in the second phase of the driving device. Accordingly, an advantage is provided that power consumed for driving can be reduced.
  • the current is detected and the current supplied to the load unit is controlled through the operation of the first driving unit and the second driving unit. Accordingly, by controlling the current provided to the load, there is provided an advantage in that it is possible to minimize variations in the electrical characteristics of the load over time. Since the present embodiment has a high conversion gain, a light emitting device having a high threshold voltage can be smoothly used as a load. Furthermore, since the present embodiment controls the current, the advantage of being relatively free from deterioration due to changes in electrical characteristics due to heat is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dc-Dc Converters (AREA)

Abstract

본 실시예의 부하 구동 장치는: 인덕터와 제1 플라이 커패시터를 포함하고, 제1 페이즈에서 상기 인덕터와 상기 제1 플라이 커패시터가 병렬로 연결되어 전원이 제공하는 에너지를 충전하고 제2 페이즈에서 상기 인덕터와 상기 커패시터가 직렬로 연결되어 충전된 에너지를 방전하는 제1 구동부 및 상기 제2 페이즈에서 상기 전원이 제공하는 에너지를 충전하고, 상기 제2 페이즈에서 충전된 에너지를 방전하는 제2 플라이 커패시터를 포함하는 제2 구동부를 포함하여 상기 전원이 제공하는 전압을 승압하여 부하부에 제공하는 승압 컨버터 및 상기 부하부에 흐르는 전류를 검출하고 상기 승압 컨버터를 제어하여 상기 부하부에 제공되는 전류를 제어하는 전류 제어부를 포함한다. 나아가, 본 실시예에 의하면 부하 구동과 동시에 부하를 제어하므로, 종래 기술에 비하여 전력 소모를 낮출 수 있다는 장점이 제공된다.

Description

부하 구동 장치
본 기술은 부하 구동 장치와 관련된다.
광 치료 방법은 빛을 사용한 비 외과적인 치료방법으로 안전하고 부작용이 없으며 그 치료 범위 또한 광범위하여 매년 시장성이 증가하고 있는 추세이다. 광 치료 방법에서, 근적외선 대역 또는 적색 대역의 빛이 세포 속의 미토코드리아를 자극하여 미토코드리아 속 CCO(cytochrome C oxidase) 효소의 농도가 증가한다. 증가한 CCO 효소는 세포 호흡을 증가시켜 결과적으로 ATP, ROS, NO의 발생을 증가시킨다. ATP는 세포가 사용하는 에너지로 세포의 활동성을 증가시키고 ROS와 NO는 혈류량의 증가와 혈관의 이완과 수축에 도움을 주어 혈액순환을 증가시키고 염증을 감소시킨다.
한편, 광 치료 방법에 사용되는 광원의 경우, 면 광원 형태의 유기 발광 다이오드(OLED, organic light emitting diode)가 우수한 효율 및 치료 효과를 가져 많은 연구가 진행되고 있다.
유기물을 사용하는 OLED의 특성상 장시간 사용으로 인한 재료의 열화, 전기적 특성 변화에 취약하다. 이를 해결하기 위하여 많은 회로에서 전력 공급 단계 및 전류 제어 단계를 포함하는 두 단계로 나누어 구동이 이루어지고 있다. 그러나 종래 기술에 의하면 두 단계로 부하를 구동하여 전력 소모가 크다는 난점이 있다. 배터리의 경우, 배터리의 크기가 줄어들면서 배터리의 출력 전압과 수명이 같이 감소한다. 안정적인 빛 치료 시스템을 위해서는 배터리 및 발광 소자의 열화 및 전기적 특성 변화에 대한 보상이 가능한 고효율의 구동 장치가 요구된다.
본 실시예의 부하 구동 장치는: 인덕터와 제1 플라이 커패시터를 포함하고, 제1 페이즈에서 상기 인덕터와 상기 제1 플라이 커패시터가 병렬로 연결되어 전원이 제공하는 에너지를 충전하고 제2 페이즈에서 상기 인덕터와 상기 커패시터가 직렬로 연결되어 충전된 에너지를 방전하는 제1 구동부 및 상기 제2 페이즈에서 상기 전원이 제공하는 에너지를 충전하고, 상기 제2 페이즈에서 충전된 에너지를 방전하는 제2 플라이 커패시터를 포함하는 제2 구동부를 포함하여 상기 전원이 제공하는 전압을 승압하여 부하부에 제공하는 승압 컨버터 및 상기 부하부에 흐르는 전류를 검출하고 상기 승압 컨버터를 제어하여 상기 부하부에 제공되는 전류를 제어하는 전류 제어부를 포함한다.
본 실시예의 어느 한 측면에 의하면, 상기 제1 구동부와 상기 제2 구동부는 상기 부하부에 전압을 제공하되, 상기 제1 구동부가 상기 부하부에 제공하는 전압과 상기 제2 구동부가 상기 부하부에 제공하는 전압은 반대 극성의 전압이다.
본 실시예의 어느 한 측면에 의하면, 상기 제1 페이즈와 상기 제2 페이즈가 도합되어 하나의 주기를 형성한다.
본 실시예의 어느 한 측면에 의하면, 상기 제1 구동부는, 일 단과 타 단이 각각 상기 인덕터와 상기 제1 플라이 커패시터에 연결된 연결 제어 스위치를 더 포함하며, 상기 연결 제어 스위치가 차단되어 상기 인덕터와 상기 제1 플라이 커패시터가 직렬로 연결된다.
본 실시예의 어느 한 측면에 의하면, 상기 제1 구동부는, 상기 제1 페이즈에서 도통되어 상기 제1 구동부 및 상기 제2 구동부에 접지를 연결하는 접지 연결 스위치 및 상기 제2 페이즈에서 도통되어 상기 제1 구동부가 상기 부하부에 상기 에너지를 제공하도록 연결하는 제1 구동부 연결 스위치를 더 포함한다.
본 실시예의 어느 한 측면에 의하면, 상기 제2 구동부는, 상기 제2 페이즈에서 도통되어 상기 제2 구동부에 접지를 연결하는 제2 구동부 접지 연결 스위치 및 상기 제1 페이즈에서 도통되어 상기 제2 구동부가 상기 부하부에 상기 에너지를 제공하도록 연결하는 제2 구동부 연결 스위치를 더 포함한다.
본 실시예의 어느 한 측면에 의하면, 상기 부하부는, 직렬로 연결되어 일 단이 상기 제1 구동부와 연결되고, 타 단이 접지에 연결된 제1 부하 커패시터와, 일 단이 상기 제2 구동부와 연결되고, 타 단이 상기 접지에 연결된 제2 부하 커패시터 및 상기 제1 및 제2 부하 커패시터와 병렬로 연결된 부하를 더 포함한다.
본 실시예의 어느 한 측면에 의하면, 상기 전원은 플렉시블 배터리이며, 상기 부하는, 발광 소자이다.
본 실시예의 어느 한 측면에 의하면, 상기 승압 컨버터는, 상기 제2 페이즈에서 상기 인덕터와 상기 커패시터가 직렬로 연결되어 승압된 전압을 상기 부하부에 출력한다.
본 실시예의 어느 한 측면에 의하면, 상기 전류 제어부는, 상기 부하부에 흐르는 전류의 평균에 상응하는 검출 전압을 출력하는 검출 전압 형성부 및 상기 검출 전압으로부터 상기 제1 및 상기 제2 구동부 제어 신호를 형성하는 제어 신호 형성부를 포함한다.
본 실시예의 부하 구동 장치는 전원으로부터 전원 전압을 제공받고, 음의 구동 전압과 양의 구동 전압을 서로 다른 페이즈에서 출력하는 바이폴라 구동부; 상기 바이폴라 구동부가 부하에 제공하는 부하 전류를 검출하여 상기 바이폴라 구동부를 제어하는 제어 신호를 형성하는 전류 제어부로, 상기 전류 제어부는: 상기 부하 전류가 스케일 다운(scale down)되어 형성된 스케일 다운 전류로부터 상기 부하 전류에 상응하는 검출 전압을 형성하는 검출 전압 형성부; 상기 검출 전압을 제공받고, 상기 부하 전류의 평균에 상응하는 검출 신호를 형성하여 출력하는 저역 통과 필터 및 상기 검출 신호로부터 상기 제1 및 제2 구동부의 동작을 제어하는 제어 신호를 형성하는 제어 신호 형성부를 포함한다.
본 실시예의 어느 한 측면에 의하면, 상기 바이폴라 구동부는 양의 구동 전압을 상기 부하에 제공하는 제1 연결 트랜지스터를 포함하고, 상기 검출 전압 형성부는, 상기 제1 연결 트랜지스터와 각각 게이트 전극과 드레인 전극이 연결되어 상기 스케일 다운 전류를 출력하는 스케일 트랜지스터와, 상기 스케일 다운 전류가 제공되어 상기 스케일 다운 전류에 상응하는 상기 검출 전압을 생성하는 검출 저항을 포함한다.
본 실시예의 어느 한 측면에 의하면, 상기 검출 전압 형성부는, 검출 증폭기와 패스 트랜지스터를 포함하며, 상기 검출 증폭기는, 상기 양의 구동 전압이 비반전 입력에 제공되고, 반전 입력에 상기 스케일 트랜지스터의 소스 전극이 연결되어 상기 양의 구동 전압이 형성되며, 출력 노드가 상기 패스 트랜지스터의 게이트 전극에 연결되고, 상기 패스 트랜지스터는 상기 스케일 다운 전류를 상기 검출 저항에 제공한다.
본 실시예의 어느 한 측면에 의하면, 상기 전류 제어부는, 상기 전원 전압과 상기 양의 구동 전압이 도합된 부트스트랩 구동 전압을 형성하는 부트스트랩 회로를 더 포함하고, 상기 검출 증폭기는 상기 부트스트랩 구동 전압이 상위 구동 전압으로 제공되고, 상기 구동 전압이 하위 전압으로 제공되어 동작한다.
본 실시예의 어느 한 측면에 의하면, 상기 부트스트랩 회로는, 상기 전원 전압으로 충전되는 부트스트랩 커패시터와, 드레인 전극들이 상기 부트스트랩 커패시터의 일단과 연결되고, 게이트 전극들에 상기 전원 전압이 제공되며, 소스 전극에 각각 제1 부트스트랩 전압과 제2 부트스트랩 전압이 제공되는 제1 및 제2 부트스트랩 트랜지스터를 포함한다.
본 실시예의 어느 한 측면에 의하면, 상기 전류 제어부는, 상기 검출 신호와 기준 전압의 차이를 증폭하는 오차 증폭기를 더 포함하고, 상기 제어 신호 형성부는, 상기 오차 증폭기의 출력과 주기 신호를 입력받고 PWM(pulse width modulation) 제어 신호를 형성하는 PWM 변조기 및 상기 PWM 제어 신호에 상응하도록 상기 바이폴라 구동부를 제어하는 제어 신호를 형성하는 게이트 드라이버를 포함한다.
본 실시예의 어느 한 측면에 의하면, 상기 바이폴라 구동부는, 상기 양의 구동 전압을 출력하는 제1 구동부와, 상기 음의 구동 전압을 출력하는 제2 구동부를 포함하며, 상기 제1 구동부가 상기 양의 구동 전압을 출력할 때 상기 제2 구동부는 상기 전원으로부터 에너지를 충전하고, 상기 제2 구동부가 상기 음의 구동 전압을 출력할 때 상기 제1 구동부는 상기 전원으로부터 에너지를 충전한다.
본 실시예의 어느 한 측면에 의하면, 상기 전원은 플렉시블 배터리이며, 상기 부하는 발광 소자이다.
본 실시예에 의하면 높은 변환 효율을 가지는 컨버터로 부하를 구동하고, 부하에 흐르는 전류를 검출하여 부하 전류를 제어하므로, 부하의 열화 및 전기적 특성 변화에 강인하다는 장점이 제공된다. 나아가, 본 실시예에 의하면 부하 구동과 동시에 부하를 제어하므로, 종래 기술에 비하여 전력 소모를 낮출 수 있다는 장점이 제공된다.
도 1은 본 실시예에 의한 부하 구동 장치의 개요를 도시한 도면이다.
도 2는 본 실시예에 의한 부하 구동 장치의 타이밍 도이다.
도 3은 제1 페이즈에서의 부하 구동 장치의 동작 개요를 도시한 도면이다.
도 4는 제2 페이즈에서의 부하 구동 장치의 동작 개요를 도시한 도면이다.
도 5는 본 실시예의 전류 제어부의 개요를 도시한 도면이다.
도 6은 부트스트랩 회로(220)의 동작을 설명하기 위한 부트스트랩 전압, 부트스트랩 구동 전압의 개요를 도시한 도면이다.
도 7은 제1 페이즈에서의 전류 제어부의 동작을 예시한 도면이다.
도 8은 제2 페이즈에서의 전류 제어부의 동작을 설명하기 위한 도면이다.
도 9는 0.89MHz의 스위칭 주파수에서 본 실시예의 부하 구동 장치의 모의 실험을 수행한 결과이다.
도 10은 전류 제어부에서의 출력 파형이다.
이하에서는 첨부된 도면들을 참조하여 본 실시예를 설명한다. 도 1은 본 실시예에 의한 부하 구동 장치(10)의 개요를 도시한 도면이다. 도 1을 참조하면, 본 실시예에 의한 부하 구동 장치(10)는 제1 페이즈(Φ1)에서 인덕터(L)와 제1 플라이 커패시터(CFLY1)가 병렬로 연결되어 전원이 제공하는 에너지를 충전하고 제2 페이즈(Φ2)에서 상기 인덕터(L)와 상기 제1 플라이 커패시터(CFLY1)가 직렬로 연결되어 충전된 에너지를 방전하는 제1 구동부(110) 및 상기 제2 페이즈(Φ2)에서 상기 전원이 제공하는 에너지를 충전하고, 상기 제1 페이즈(Φ1)에서 충전된 에너지를 방전하는 제2 플라이 커패시터(CFLY2)를 포함하는 제2 구동부(120)를 포함하여 상기 전원이 제공하는 전원 전압(Vin)을 승압하여 부하부(300)에 제공하는 승압 컨버터(100)와 상기 부하부(300)에 흐르는 부하 전류(ILOAD)를 검출하고 상기 승압 컨버터(100)를 제어하여 상기 부하부(300)에 제공되는 전류를 제어하는 전류 제어부(200)를 포함한다.
부하부(300)는 부하(LOAD)와 직렬로 연결된 커패시터 Cop, Con를 포함하며, 직렬로 연결된 커패시터 Cop, Con 브랜치는 부하(LOAD)와 병렬로 연결된다. 일 실시예로, 부하(LOAD)는 OLED(organic light emitting diode)일 수있으며, 일 예로, 면 발광 OLED일 수 있다. 다른 실시예로 부하(LOAD)는 LED 등의 발광 소자일 수 있다. 전원은 직류 전압, 직류 전류를 제공하는 배터리일 수 있다. 일 실시예로, 전원은 충전 가능한 배터리일 수 있으며, 굽힐 수 있는 플렉서블 배터리(flexible battery)일 수 있다.
도 2는 본 실시예에 의한 부하 구동 장치(10)의 타이밍 도이고, 도 3은 제1 페이즈(Φ1)에서의 부하 구동 장치(10)의 동작 개요를 도시한 도면이다. 도 1 내지 도 3을 참조하면, 제1 페이즈(Φ1)에서 제1 접지 연결 스위치(S1), 제1 구동부 연결 스위치(S3)의 게이트 전극에는 논리 하이 상태의 제어 신호가 제공되어 도통된다. 따라서 인덕터(L)와 제1 플라이 커패시터(CFLY1)는 병렬로 연결되어 전원이 제공하는 에너지를 충전한다. 제1 페이즈(Φ1)에서 y 노드의 전압 Vy는 전원 전압 Vin에 상응한다. 일 실시예로, 제1 페이즈(Φ1)에서 제1 플라이 커패시터(CFLY1)에는 전원 전압(Vin)이 충전되며, 인덕터(L)를 흐르는 전류(IL)은 시간이 경과함에 따라 증가한다.
또한, 제1 페이즈(Φ1)에서 제1 구동부(110)와 제2 구동부(120)는 모두 제1 접지 연결 스위치(S1)를 통하여 접지 전위와 연결되므로, x 노드의 전압 Vx는 접지 전위와 상응한다.
제2 접지 연결 스위치(S4)는 게이트 전극에 논리 하이 상태의 제어 신호가 제공되어 차단되나, 제2 구동부 연결 스위치(S5)의 게이트 전극에는 논리 하이 상태의 제어 신호가 제공되어 도통된다. 따라서, 제2 플라이 커패시터(CFLY2)는 도 2의 Vz로 도시된 것과 같이 부하부(300)에 음의 구동 전압을 제공한다. 후술할 바와 같이 제2 플라이 커패시터(CFLY2)는 부하에 제공되는 양의 전압(Vop)과 전원이 제공하는 전원 전압(Vin)의 차이에 상응하는 음의 구동 전압을 부하부(300)에 제공하여 부하(LOAD)를 구동한다.
도 3으로 예시된 바와 같이 제1 페이즈(Φ1)에서 인덕터(L)와 제1 플라이 커패시터(CFLY1)는 각각 서로 다른 전류 경로를 통하여 에너지가 충전된다. 따라서, 본 실시예에 의하면, 에너지 충전시 인덕터(L)의 직류 등가 저항에 의한 손실을 감소시킬 수 있다는 장점이 제공된다.
도 4는 제2 페이즈(Φ2)에서의 부하 구동 장치(10)의 동작 개요를 도시한 도면이다. 도 1 내지 도 4를 참조하면, 제2 페이즈(Φ2)에서 제1 접지 연결 스위치(S1)와 연결 제어 스위치(S2)의 게이트 전극에는 논리 로우 상태의 제어 신호가 제공되어 차단된다. 따라서 제1 페이즈(Φ1)에서 병렬로 연결되었던 인덕터(L)와 제1 플라이 커패시터(CFLY1)는 직렬로 연결된다. 또한 제1 구동부 연결 스위치(S3)는 논리 하이 제어 신호가 게이트 전극에 제공되므로 도통되어 제1 구동부(110)를 부하부(300)에 연결한다.
제2 페이즈(Φ2)에서 제1 구동부(110)가 부하부(300)에 제공하는 양의 구동 전압(Vop)은 전원 전압(Vin)과 직렬로 연결된 인덕터에 충전된 전압 및 커패시터에 충전된 전원 전압(Vin)의 합에 상응한다. 즉, 도 2에서 도시된 것과 같이 제1 페이즈(Φ1)에서 y 노드의 전압은 전원 전압(Vin)에 상응하나, 제2 페이즈(Φ2)에서 Vy는 전원 전압(Vin), 인덕터(L)에 충전된 전압 및 커패시터에 충전된 전원 전압(Vin)의 합에 상응하도록 승압되어 양의 구동 전압(Vop)으로 부하부(300)에 제공된다.
또한, 제1 페이즈(Φ1)에서 제1 접지 연결 스위치(S1)가 도통되므로 x 노드의 전압 Vx는 접지 전압과 같다. 그러나, 제2 페이즈(Φ2)에서 제1 접지 연결 스위치(S1)가 차단되고, 인덕터(L)과 제1 플라이 커패시터(CFLY1)가 직렬로 연결되므로, Vx는 양의 구동 전압(Vop)과 제1 플라이 커패시터(CFLY1)에 충전된 전원 전압(Vin)의 차이에 상응한다.
제2 페이즈(Φ2)에서 제2 플라이 커패시터(CFLY2)에는 전원으로부터 에너지가 제공되어 충전된다. 제2 페이즈(Φ2)에서 제2 플라이 커패시터(CFLY2)는 x 노드와 도통된 제2 접지 연결 스위치(S4)와 연결된다. 따라서, 제2 플라이 커패시터(CFLY2)에는 Vx에 상응하는 전압인 양의 전압(Vop)과 전원이 제공하는 전원 전압(Vin)의 차이에 상응하는 전압이 충전된다. 제2 플라이 커패시터(CFLY2)는 이어지는 제1 페이즈(Φ1)에서 충전된 전압을 음의 구동 전압(Von)으로 부하부(300)에 제공한다.
Figure PCTKR2021019563-appb-img-000001
종래 기술에 의한 승압 컨버터의 변환 효율(ηconv)은 수학식 1의 ① 식과 같이 표시될 수 있다. 그러나, 본 실시예에 의한 변환 효율(η)은 수학식 1의 ② 식으로 연산될 수 있으며, 이로부터 동일한 듀티비(D, duty ratio)를 가정하면 종래 기술에 비하여 통상적인 경우 200% ~ 250% 혹은 그 이상의 효율 상승을 얻을 수 있다.
커패시터 Cop, Con에는 초기 구동시 양의 구동 전압(Vop)과 음의 구동 전압(Von)이 제공됨에 따라 전류가 흘러 전하가 충전되나, 정상 상태(steady state)에 도달하는 전류가 흐르지 않는다. 따라서, 제1 페이즈(Φ1)와 제2 페이즈(Φ2)를 포함하는 주기 동안 제1 구동부 연결 스위치(S3)와 제2 구동부 연결 스위치(S5) 스위치에는 부하 전류(ILOAD)가 흐른다. 마찬가지로 제1 플라이 커패시터(CFLY1)와 제2 플라이 커패시터(CFLY2)의 전하 균형(charge balancing)으로 인하여 연결 제어 스위치(S2) 와 제2 접지 연결 스위치(S4)도 한 주기 동안 부하 전류(ILOAD)가 흐른다.
이로부터, 본 실시예에서 전원이 제공하는 전류는 인덕터를 흐르는 전류(IL)과 부하에 흐르는 부하 전류(ILOAD)의 합과 같다. 종래 기술과 본 실시예에 의한 부하 구동 회로가 부하에 동일한 전력을 전달하는 경우를 가정하면, 본 실시예에 의한 부하 구동 회로에 있어서 전원이 제공하는 전류는 종래 기술에 비하여 부하 전류(ILOAD) 만큼 더 작다. 따라서 본 실시예에서, 부하에 흐르는 전류(ILOAD)가 증가할 수록 인덕터 전류가 더 감소하고 손실이 감소한다.
본 실시예는 페이즈를 나누어 각 페이즈 별로 양의 구동 전압(Vop)와 음의 구동 전압(Von)의 바이폴라(bipolar) 구동 전압을 제공하여 부하(LOAD)를 구동한다. 이러한 구성으로부터 제1 구동부(110)와 제2 구동부(120)에 포함된 반도체 스위치들의 드레인 전극과 소스 전극 사이에 형성되는 전압치를 양의 구동 전압과 전원 전압의 차이(Vop-Vin)로 감소시킬 수 있다. 이러한 전압 차이는 종래 기술에 의한 승압 컨버터의 드레인과 소스 사이의 전압 차이의 1/2 보다 낮은 수준이다. 따라서, 승압 컨버터(100)에 포함되는 반도체 스위치들에 인가되는 전기적 스트레스를 감소시킬 수 있다.
이하는 도 5 내지 도 8을 참조하여 전류 제어부(200)의 동작을 살펴본다. 도 5는 본 실시예의 전류 제어부(200)의 개요를 도시한 도면이다. 도 5를 참조하면, 전류 제어부(200)는 부하전류(ILOAD)가 스케일 다운(scale down)되어 형성된 스케일 다운 전류(Isen)를 생성하여 상기 부하 전류(Isen)에 상응하는 검출 전압(Vsen)을 형성하는 검출 전압 형성부(210)와, 검출 전압(Vsen)을 제공받고, 상기 부하전류(ILOAD)의 평균에 상응하는 평균 검출 신호(Vavg)를 형성하여 출력하는 저역 통과 필터(LPF) 및 검출 신호(Vavg)로부터 상기 제1 및 제2 구동부의 동작을 제어하는 제어 신호 형성부(230)를 포함한다.
도 6은 부트스트랩 회로(220)의 동작을 설명하기 위한 부트스트랩 전압(Vboot1, Vboot2), 부트스트랩 구동 전압(VDDb)의 개요를 도시한 도면이고, 도 7은 본 실시예에 의한 전류 제어부(200)의 동작을 예시한 도면이다. 도 5 내지 도 7을 참조하면, 제1 페이즈(Φ1)에서 제2 부트스트랩 트랜지스터(Mb2)의 게이트 전극에는 전원 전압(Vin)에 제공되고, 소스 전극에는 제2 부트스트랩 신호(Vboot2)에 의하여 접지 전압이 제공되므로, 제2 부트스트랩 트랜지스터(Mb2)는 도통된다.
부트스트랩 커패시터(Cboot)에는 도통된 역류 방지 다이오드와 제2 부트스트랩 트랜지스터(Mb2)를 통해 전원 전압(Vin)이 충전된다. 검출 증폭기(A)의 상위 구동 전압과 하위 구동 전압으로는 모두 전원 전압(Vin)이 제공되므로 동작하지 않는다. 따라서, 패스 트랜지스터(Mpass)는 차단되고, 검출 전압(Vsen) 및 검출 전압(Vsen)이 제공된 저역 통과 필터(LPF)가 출력한 평균 검출 신호(Vavg)는 모두 접지 전압에 상응한다. 오차 증폭기(EA)는 기준 전압(Vref)와 평균 검출 신호(Vavg)의 차이를 증폭하여 제어 신호 형성부(230)에 제공한다.
PWM 변조기(232)는 오차 증폭기(EA)가 출력한 신호를 입력받는다. 또한, PWM 변조기(232)는 발진기(미도시)로부터 삼각파, 톱니파 등의 주기 신호를 입력받고, 오차 증폭기(EA)가 출력한 신호와 주기 신호를 비교하여 PWM 제어 신호를 형성한다.
게이트 드라이버(234)는 PWM 변조기(232)가 출력한 PWM 제어 신호의 레벨을 증가시켜 제1 및 제2 구동부(110, 120)에 포함된 스위치의 게이트에 제공되는 제어 신호를 형성하여 출력할 수 있다.
도 8은 제2 페이즈(Φ2)에서의 전류 제어부(200)의 동작을 설명하기 위한 도면이다. 도 5 내지 도 8을 참조하면, 제2 페이즈(Φ2)에서, 제2 부트스트랩 트랜지스터(Mb2)의 소스 전극과 게이트 전극에는 모두 전원 전압(Vin)이 제공되므로 제2 부트스트랩 트랜지스터(Mb2)는 차단된다. 그러나, 제1 부트스트랩 트랜지스터(Mb1)의 소스 전극에는 양의 구동 전압(Vop)이 제공되고, 게이트 전극으로는 전원 전압(Vin)이 제공되므로 게이트 전극과 소스 전극의 전압차가 문턱 전압에 비하여 낮아 제1 부트스트랩 트랜지스터(Mb1)는 도통된다.
또한, 상술한 바와 같이 도통된 제1 부트스트랩 트랜지스터(Mb1)의 소스 전극에는 양의 구동 전압(Vop)이 제공되므로, 부트스트랩 커패시터(Cboot)에 충전된 전원 전압(Vin)과 도합된 전압인 Vop + Vin이 검출 증폭기(A)의 상위 구동 전압으로 제공된다. 따라서, 검출 증폭기(A)는 상위 구동 전압으로 전원 전압(Vin)과 양의 구동 전압(Vop)이 도합된 전압이 제공되고, 하위 구동 전압으로 전원 전압(Vin)이 제공되어 동작한다.
검출 전압 형성부(210)는 부하전류(ILOAD)를 스케일 하여 출력하는 스케일 트랜지스터(Ms)를 포함한다. 스케일 트랜지스터(Ms)는 제1 구동부 연결 스위치(S3)와 드레인 전극 및 게이트 전극이 서로 연결되어 동일한 전압이 형성된다. 다만, 제1 구동부 연결 스위치(S3)는 높은 전압 및 높은 전류에도 파괴되지 않고, 전류 구동성을 확보하기 위하여 큰 채널 폭/길이비(W/L ratio)를 가진다. 그러나, 스케일 트랜지스터(MS)는 제1 구동부 연결 스위치(S3)의 채널 폭/길이비에 비하여 작은 채널 폭/길이비를 가진다. 일 예로, 스케일 트랜지스터(MS)의 채널 폭/길이비는 제1 구동부 연결 트랜지스터의 채널 폭/길이비의 1% 내지 10%에 상응할 수 있다.
검출 증폭기(A)의 비반전 입력에는 제1 구동부 연결 스위치(S3)의 일 전극이 연결되고, 스케일 트랜지스터(Ms)의 소스 전극이 반전 입력에 연결된다. 제2 페이즈(Φ2)에서 제1 구동부 연결 스위치(S3)가 도통되었을 때 제1 구동부 연결 스위치(S3)를 통해 양의 구동 전압(Vop)이 비반전 입력으로 제공된다. 또한, 검출 증폭기(A)의 반전 입력은 스케일 트랜지스터(Ms)의 소스에 연결되므로, 스케일 트랜지스터(Ms)의 소스 전극의 전압도 검출 증폭기(A)의 비반전 입력으로 제공된 양의 구동 전압(Vop)와 동일하게 형성된다.
검출 증폭기(A)는 스케일 전류(Isen)를 출력하도록 패스 트랜지스터(Mpass)를 제어한다. 스케일 트랜지스터(Ms)는 제1 구동부 연결 스위치(S3)의 드레인 전극, 게이트 전극 및 소스 전극의 전압이 모두 동일하나, 그 채널 폭/길이비만 스케일된다. 따라서, 스케일 트랜지스터(Ms)가 출력하는 스케일 전류(Isen)는 부하 전류(ILOAD)가 스케일된 값에 상응한다.
패스 트랜지스터(Mpass)가 도통됨에 따라서, 스케일 전류(Isen)이 검출 저항(Rsen)을 흘러 검출 전압(Vsen)을 형성한다. 저역 통과 필터(LPF)는 검출 전압(Vsen)을 제공받고, 검출 전압(Vsen)의 평균에 상응하는 평균 검출 신호(Vavg)를 형성하여 출력한다. 도시된 예에서, 저역 통과 필터(LPF)는 1차 RC 필터인 것을 예시하였으나, 이는 실시예일 따름이며, 2차 필터 등의 여러 형태의 저역 통과 필터로 구현될 수 있다.
일 실시예에서, 스케일 전류(Isen)는 부하 전류(ILOAD)를 미리 정해진 스케일 비로 스케일한 것으로, 부하 전류(ILOAD)에 상응한다. 검출 전압(Vsen)은 스케일 전류(Isen)가 검출 저항(Rsen)을 흘러서 형성된 것이며, 평균 검출 신호(Vavg)는 검출 전압(Vsen)의 평균에 상응한 것이다. 따라서, 평균 검출 신호(Vavg)의 값은 부하 전류(ILOAD)의 평균값에 상응한다. 즉, 평균 검출 신호는 아래의 수학식 2와 같이 표시될 수 있다.
Figure PCTKR2021019563-appb-img-000002
수학식 2에서 K는 비례 상수로, 검출 저항 Rsen 의 저항값과 스케일 트랜지스터의 스케일 비를 조절하여 제어될 수 있다.
오차 증폭기(EA)는 평균 검출 신호(Vavg)와 기준 신호(Vref)를 제공받고 차이를 증폭하여 출력한다. 오차 증폭기(EA)에 제공되는 기준 신호(Vref)는 제어 가능한 신호이다. 일 실시예로, 기준 신호(Vref)를 조절하여 전류 제어부(200)가 출력하는 스위치들의 제어 신호(S1, S2, ... S5, 도 2 참조)의 듀티비를 조절할 수 있다.
PWM 변조기(230)는 오차 증폭기(EA)가 출력한 신호를 입력받는다. 또한, PWM 변조기(230)는 발진기(미도시)로부터 입력된 삼각파, 톱니파 등의 주기 신호를 더 입력받고, 오차 증폭기가 출력한 신호와 주기 신호를 비교하여 PWM 제어 신호를 형성한다.
게이트 드라이버는 PWM 변조기(230)가 출력한 PWM 제어 신호의 레벨을 증가시켜 제1 및 제2 구동부에 포함된 스위치의 게이트에 제공되는 제어 신호를 형성하여 출력할 수 있다.
실험 및 모의실험 결과
도 9는 0.89MHz의 스위칭 주파수에서 본 실시예의 부하 구동 장치의 모의 실험을 수행한 결과이다. 도 9로 도시된 것과 같이 x 노드, y 모드 및 z 노드의 전압 Vx, Vy 및 Vz는 목적하는 파형과 같이 형성된 것을 알 수 있으며, 스위치들의 드레인- 소스 사이에 형성되는 전압 스트레스가 Vop-Vin 으로 감소하는 것을 알 수 있다.
도 10은 전류 제어부에서의 출력 파형이다. 전류 제어부는 제2 페이즈에서의 부하 전류(ILOAD)를 검출하여 상응하는 검출 전압 Vsense를 형성하므로, 검출 전압(Vsense)이 제2 페이즈(Φ2)에서 인덕터 전류값에 따라 형성되는 것을 확인할 수 있다.
본 실시예에 따른 전류 제어부의 검출 증폭기는 부트스트랩되어 형성된 전압을 이용하여 동작하며, 구동 장치의 제2 페이즈에서만 동작한다. 따라서, 구동에 소모되는 전력을 감소시킬 수 있다는 장점이 제공된다.
나아가, 본 실시예는 전류를 검출하고, 제1 구동부 및 제2 구동부의 동작을 통하여 부하부에 제공되는 전류를 제어한다. 따라서, 부하에 제공되는 전류를 제어함으로써 시간의 흐름에 따른 부하의 전기적 특성의 변동을 최소화할 수 있다는 장점이 제공된다. 본 실시예는 높은 변환 이득을 가지므로 높은 문턱 전압을 가지는 발광 소자를 부하로 원활하게 사용할 수 있다. 나아가 본 실시예는 전류를 제어하므로, 열에 의한 전기적 특성 변화에 의한 열화에서 비교적 자유롭다는 장점이 제공된다.
본 발명에 대한 이해를 돕기 위하여 도면에 도시된 실시 예를 참고로 설명되었으나, 이는 실시를 위한 실시예로, 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다.

Claims (18)

  1. 인덕터와 제1 플라이 커패시터를 포함하고, 제1 페이즈에서 상기 인덕터와 상기 제1 플라이 커패시터가 병렬로 연결되어 전원이 제공하는 에너지를 충전하고 제2 페이즈에서 상기 인덕터와 상기 커패시터가 직렬로 연결되어 충전된 에너지를 방전하는 제1 구동부 및
    상기 제2 페이즈에서 상기 전원이 제공하는 에너지를 충전하고, 상기 제2 페이즈에서 충전된 에너지를 방전하는 제2 플라이 커패시터를 포함하는 제2 구동부를 포함하여 상기 전원이 제공하는 전압을 승압하여 부하부에 제공하는 승압 컨버터;
    상기 부하부에 흐르는 전류를 검출하고 상기 승압 컨버터를 제어하여 상기 부하부에 제공되는 전류를 제어하는 전류 제어부를 포함하는 부하 구동 장치.
  2. 제1항에 있어서,
    상기 제1 구동부와 상기 제2 구동부는
    상기 부하부에 전압을 제공하되,
    상기 제1 구동부가 상기 부하부에 제공하는 전압과 상기 제2 구동부가 상기 부하부에 제공하는 전압은 반대 극성의 전압인 부하 구동 장치.
  3. 제1항에 있어서,
    상기 제1 페이즈와 상기 제2 페이즈가 도합되어 하나의 주기를 형성하는 부하 구동 장치.
  4. 제1항에 있어서,
    상기 제1 구동부는,
    일 단과 타 단이 각각 상기 인덕터와 상기 제1 플라이 커패시터에 연결된 연결 제어 스위치를 더 포함하며,
    상기 연결 제어 스위치가 차단되어 상기 인덕터와 상기 제1 플라이 커패시터가 직렬로 연결되는 부하 구동 장치.
  5. 제1항에 있어서,
    상기 제1 구동부는,
    상기 제1 페이즈에서 도통되어 상기 제1 구동부 및 상기 제2 구동부에 접지를 연결하는 접지 연결 스위치 및
    상기 제2 페이즈에서 도통되어 상기 제1 구동부가 상기 부하부에 상기 에너지를 제공하도록 연결하는 제1 구동부 연결 스위치를 더 포함하는 부하 구동 장치.
  6. 제1항에 있어서,
    상기 제2 구동부는,
    상기 제2 페이즈에서 도통되어 상기 제2 구동부에 접지를 연결하는 제2 구동부 접지 연결 스위치 및
    상기 제1 페이즈에서 도통되어 상기 제2 구동부가 상기 부하부에 상기 에너지를 제공하도록 연결하는 제2 구동부 연결 스위치를 더 포함하는 부하 구동 장치.
  7. 제1항에 있어서,
    상기 부하부는,
    직렬로 연결되어 일 단이 상기 제1 구동부와 연결되고, 타 단이 접지에 연결된 제1 부하 커패시터와, 일 단이 상기 제2 구동부와 연결되고, 타 단이 상기 접지에 연결된 제2 부하 커패시터 및
    상기 제1 및 제2 부하 커패시터와 병렬로 연결된 부하를 더 포함하는 부하 구동 장치.
  8. 제1항에 있어서,
    상기 전원은
    플렉시블 배터리이며,
    상기 부하는,
    발광 소자인 부하 구동 장치.
  9. 제1항에 있어서,
    상기 승압 컨버터는,
    상기 제2 페이즈에서 상기 인덕터와 상기 커패시터가 직렬로 연결되어 승압된 전압을 상기 부하부에 출력하는 부하 구동 장치.
  10. 제1항에 있어서,
    상기 전류 제어부는,
    상기 부하부에 흐르는 전류의 평균에 상응하는 검출 전압을 출력하는 검출 전압 형성부 및
    상기 검출 전압으로부터 상기 제1 및 상기 제2 구동부 제어 신호를 형성하는 제어 신호 형성부를 포함하는 부하 구동 장치.
  11. 전원으로부터 전원 전압을 제공받고, 음의 구동 전압과 양의 구동 전압을 서로 다른 페이즈에서 출력하는 바이폴라 구동부;
    상기 바이폴라 구동부가 부하에 제공하는 부하 전류를 검출하여 상기 바이폴라 구동부를 제어하는 제어 신호를 형성하는 전류 제어부로, 상기 전류 제어부는:
    상기 부하 전류가 스케일 다운(scale down)되어 형성된 스케일 다운 전류로부터 상기 부하 전류에 상응하는 검출 전압을 형성하는 검출 전압 형성부;
    상기 검출 전압을 제공받고, 상기 부하 전류의 평균에 상응하는 검출 신호를 형성하여 출력하는 저역 통과 필터 및
    상기 검출 신호로부터 상기 제1 및 제2 구동부의 동작을 제어하는 제어 신호를 형성하는 제어 신호 형성부를 포함하는 부하 구동 장치.
  12. 제11항에 있어서,
    상기 바이폴라 구동부는 양의 구동 전압을 상기 부하에 제공하는 제1 연결 트랜지스터를 포함하고,
    상기 검출 전압 형성부는,
    상기 제1 연결 트랜지스터와 각각 게이트 전극과 드레인 전극이 연결되어 상기 스케일 다운 전류를 출력하는 스케일 트랜지스터와,
    상기 스케일 다운 전류가 제공되어 상기 스케일 다운 전류에 상응하는 상기 검출 전압을 생성하는 검출 저항을 포함하는 부하 구동 장치.
  13. 제12항에 있어서,
    상기 검출 전압 형성부는,
    검출 증폭기와 패스 트랜지스터를 포함하며,
    상기 검출 증폭기는,
    상기 양의 구동 전압이 비반전 입력에 제공되고, 반전 입력에 상기 스케일 트랜지스터의 소스 전극이 연결되어 상기 양의 구동 전압이 형성되며, 출력 노드가 상기 패스 트랜지스터의 게이트 전극에 연결되고,
    상기 패스 트랜지스터는 상기 스케일 다운 전류를 상기 검출 저항에 제공하는 부하 구동 장치.
  14. 제13항에 있어서,
    상기 전류 제어부는,
    상기 전원 전압과 상기 양의 구동 전압이 도합된 부트스트랩 구동 전압을 형성하는 부트스트랩 회로를 더 포함하고,
    상기 검출 증폭기는 상기 부트스트랩 구동 전압이 상위 구동 전압으로 제공되고, 상기 구동 전압이 하위 전압으로 제공되어 동작하는 부하 구동 장치.
  15. 제12항에 있어서,
    상기 부트스트랩 회로는,
    상기 전원 전압으로 충전되는 부트스트랩 커패시터와,
    드레인 전극들이 상기 부트스트랩 커패시터의 일단과 연결되고, 게이트 전극들에 상기 전원 전압이 제공되며, 소스 전극에 각각 제1 부트스트랩 전압과 제2 부트스트랩 전압이 제공되는 제1 및 제2 부트스트랩 트랜지스터를 포함하는 부하 구동 장치.
  16. 제11항에 있어서,
    상기 전류 제어부는,
    상기 검출 신호와 기준 전압의 차이를 증폭하는 오차 증폭기를 더 포함하고,
    상기 제어 신호 형성부는,
    상기 오차 증폭기의 출력과 주기 신호를 입력받고 PWM(pulse width modulation) 제어 신호를 형성하는 PWM 변조기 및
    상기 PWM 제어 신호에 상응하도록 상기 바이폴라 구동부를 제어하는 제어 신호를 형성하는 게이트 드라이버를 포함하는 부하 구동 장치.
  17. 제11항에 있어서,
    상기 바이폴라 구동부는,
    상기 양의 구동 전압을 출력하는 제1 구동부와,
    상기 음의 구동 전압을 출력하는 제2 구동부를 포함하며,
    상기 제1 구동부가 상기 양의 구동 전압을 출력할 때 상기 제2 구동부는 상기 전원으로부터 에너지를 충전하고,
    상기 제2 구동부가 상기 음의 구동 전압을 출력할 때 상기 제1 구동부는 상기 전원으로부터 에너지를 충전하는 부하 구동 장치.
  18. 제11항에 있어서,
    상기 전원은 플렉시블 배터리이며,
    상기 부하는 발광 소자인 부하 구동 장치.
PCT/KR2021/019563 2020-12-22 2021-12-22 부하 구동 장치 WO2022139435A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0180710 2020-12-22
KR20200180710 2020-12-22

Publications (1)

Publication Number Publication Date
WO2022139435A1 true WO2022139435A1 (ko) 2022-06-30

Family

ID=82158499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019563 WO2022139435A1 (ko) 2020-12-22 2021-12-22 부하 구동 장치

Country Status (2)

Country Link
KR (1) KR20220090472A (ko)
WO (1) WO2022139435A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH097778A (ja) * 1995-06-15 1997-01-10 Toshiba Lighting & Technol Corp 電源装置、放電灯点灯装置及び照明装置
JP2010045966A (ja) * 2008-08-12 2010-02-25 Asahi Kasei Toko Power Device Corp 正負の出力を備えた単一インダクターバックブーストコンバータ
CN105939126A (zh) * 2016-06-30 2016-09-14 华南理工大学 一种开关电感型混合准z源逆变器
US20190068054A1 (en) * 2017-08-30 2019-02-28 Apple Inc. Systems and methods for generating a feedback current in a dc-dc converter
WO2020077427A1 (pt) * 2018-10-16 2020-04-23 M3 Health Indústria E Comércio De Produtos Médicos, Odontológicos E Correlatos S.A. Dispositivo eletrônico flexível descartável de fototerapia

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH097778A (ja) * 1995-06-15 1997-01-10 Toshiba Lighting & Technol Corp 電源装置、放電灯点灯装置及び照明装置
JP2010045966A (ja) * 2008-08-12 2010-02-25 Asahi Kasei Toko Power Device Corp 正負の出力を備えた単一インダクターバックブーストコンバータ
CN105939126A (zh) * 2016-06-30 2016-09-14 华南理工大学 一种开关电感型混合准z源逆变器
US20190068054A1 (en) * 2017-08-30 2019-02-28 Apple Inc. Systems and methods for generating a feedback current in a dc-dc converter
WO2020077427A1 (pt) * 2018-10-16 2020-04-23 M3 Health Indústria E Comércio De Produtos Médicos, Odontológicos E Correlatos S.A. Dispositivo eletrônico flexível descartável de fototerapia

Also Published As

Publication number Publication date
KR20220090472A (ko) 2022-06-29

Similar Documents

Publication Publication Date Title
CN202310187U (zh) 发光元件的驱动电路、使用它的发光装置及电子设备
CN103702486B (zh) Led驱动电路系统、控制电路及控制方法
TWI444093B (zh) 用以調節負載電流的裝置、方法以及發光系統
CN104541441B (zh) 开关式功率转换器电流感测装置和方法
US9485821B2 (en) LED lighting drive circuit
WO2014153787A1 (zh) 一种led背光驱动电路及背光模组
CN101569025A (zh) 发光二极管驱动设备
WO2013181853A1 (zh) 一种led背光系统及显示装置
WO2015006963A1 (zh) 一种led背光系统及显示装置
WO2013100733A1 (en) Backlight driving apparatus
CN106304492B (zh) 一种双路恒流电路及电源装置
WO2014148767A1 (ko) 이중 브리지 다이오드를 이용한 led 구동회로, 이를 포함하는 led 조명장치
WO2024027555A1 (zh) 供电电路、显示屏及电子设备
CN202455264U (zh) 直流/直流变换器及其控制电路、发光装置以及电子设备
WO2009040340A1 (en) Single inductor power supply system with extremely high psrr for dual supply active matrix oled displays
TWI826892B (zh) 符號功率跟蹤電源及其無線設備
WO2022139435A1 (ko) 부하 구동 장치
JP2013251537A (ja) Ledストリングのコントロールデバイス
WO2022080677A1 (ko) 슬립 타이머를 이용한 저전력 제어 장치
WO2024025236A1 (ko) Dc/dc 컨버터
CN100379134C (zh) 升压型开关调节器电路
CN219107720U (zh) Led灯智能调光电路及其智能灯具
US20140285115A1 (en) Multi-channel driver and illuminating device
WO2014104808A1 (ko) 차지 펌프 장치
WO2022203484A1 (ko) 멀티레벨 구조를 가지는 전력변환장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21911502

Country of ref document: EP

Kind code of ref document: A1