WO2022139282A1 - 가공성이 우수한 고인성 고탄소 냉연강판 및 그 제조방법 - Google Patents

가공성이 우수한 고인성 고탄소 냉연강판 및 그 제조방법 Download PDF

Info

Publication number
WO2022139282A1
WO2022139282A1 PCT/KR2021/018742 KR2021018742W WO2022139282A1 WO 2022139282 A1 WO2022139282 A1 WO 2022139282A1 KR 2021018742 W KR2021018742 W KR 2021018742W WO 2022139282 A1 WO2022139282 A1 WO 2022139282A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
rolled steel
cold
comparative example
toughness
Prior art date
Application number
PCT/KR2021/018742
Other languages
English (en)
French (fr)
Inventor
장제욱
김학준
김선미
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP21911349.5A priority Critical patent/EP4265775A4/en
Priority to US18/268,549 priority patent/US20240018621A1/en
Publication of WO2022139282A1 publication Critical patent/WO2022139282A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-toughness high-carbon cold-rolled steel sheet having excellent workability and a method for manufacturing the same.
  • Hot-rolled high carbon steel is variously applied to automotive parts such as engines, transmissions, automobile doors and seats, and industrial tool parts such as saws and knives, and the thickness of the applied final product ranges from 0.15mm to 6.0mm or more depending on the use. have up to Such hot-rolled high-carbon steel is manufactured into final parts through annealing/cold-rolling processes. Compared to thick parts, thin high-carbon steel parts with a thickness of 2.0mmt or less have a slightly more complicated manufacturing method. Applied to high-quality materials. In the case of such a high-grade material, annealing/cold rolling is repeated 2-3 times, and patenting heat treatment (Austempering) is also applied, which increases the manufacturing cost.
  • annealing/cold rolling is repeated 2-3 times, and patenting heat treatment (Austempering) is also applied, which increases the manufacturing cost.
  • One aspect of the present invention is to provide a high-toughness, high-carbon cold-rolled steel sheet having excellent workability and a method for manufacturing the same.
  • One embodiment of the present invention is by weight%, C: 0.80 to 1.25%, Mn: 0.2 to 0.6%, Si: 0.01 to 0.4%, P: 0.005 to 0.02%, S: 0.01% or less, Al: 0.01 to 0.1 %, Cr: 0.01 to 1.0%, Sn: 0.05 to 0.5%, the remainder including Fe and other unavoidable impurities, the microstructure is by area%, retained austenite: 1 to 10%, martensite: 1 to 10%, Ferrite: 5% or less (including 0%), the remainder contains bainite, the average grain size of the microstructure is 3 to 20 ⁇ m, and the internal oxide layer formed directly under the surface has a thickness of 10 ⁇ m or less A tough high-carbon cold-rolled steel sheet is provided.
  • Another embodiment of the present invention is by weight, C: 0.80 to 1.25%, Mn: 0.2 to 0.6%, Si: 0.01 to 0.4%, P: 0.005 to 0.02%, S: 0.01% or less, Al: 0.01 to 0.1 %, Cr: 0.01 to 1.0%, Sn: 0.05 to 0.5%, heating the slab containing the balance Fe and other unavoidable impurities; rough rolling the heated slab to obtain a bar; finishing rolling the bar at 850 to 950° C.
  • a hot-rolled steel sheet winding the hot-rolled steel sheet after cooling to 560 to 700°C; obtaining a cold-rolled steel sheet by first cold rolling the wound hot-rolled steel sheet; spheroidizing the cold-rolled steel sheet at 650 to 740° C. for 10 to 25 hours; secondary cold rolling of the spheroidizing annealed cold rolled steel sheet; reheating the secondary cold-rolled cold-rolled steel sheet at 800 to 1000° C. for 10 to 120 seconds; And after quenching the reheated cold-rolled steel sheet to 300 ⁇ 500 °C, and then holding for 30 ⁇ 180 seconds; provides a method of manufacturing a high-toughness high-carbon cold-rolled steel sheet excellent in workability comprising a.
  • the C content is an element that affects strength, toughness and microstructure formation. If the C content is less than 0.80%, a ferrite phase is formed in the hot rolled material, so that the work hardening rate is lowered during cold rolling (Full-Hard) before annealing, which is disadvantageous in securing strength. On the other hand, when the C content exceeds 1.25%, there is a problem in that proeutectoid cementite is formed and cracks are generated during cold rolling before annealing. Therefore, the C content is preferably in the range of 0.80 to 1.25%. The lower limit of the C content is more preferably 0.82%, still more preferably 0.84%, and most preferably 0.86%. The upper limit of the C content is more preferably 1.23%, and even more preferably 1.20%.
  • Mn is added as a solid solution strengthening element to increase strength and secure hardenability.
  • the Mn content is less than 0.2%, it may be difficult to secure a strength of 1600 MPa or more when the Mn content is small.
  • the content of Mn exceeds 0.6%, it causes a decrease in toughness due to segregation/inclusion formation.
  • the Mn content is preferably in the range of 0.2 to 0.6%.
  • the lower limit of the Mn content is more preferably 0.22%, even more preferably 0.25%, and most preferably 0.3%.
  • the upper limit of the Mn content is more preferably 0.55%, even more preferably 0.53%, and most preferably 0.5%.
  • the content of Si preferably has a range of 0.01 to 0.4%.
  • the lower limit of the Si content is more preferably 0.02%, more preferably 0.04%, and most preferably 0.05%.
  • the upper limit of the Si content is more preferably 0.35%, still more preferably 0.30%, and most preferably 0.25%.
  • the phosphorus is preferably added in an amount of 0.005% or more, but when it exceeds 0.02%, there is a problem in that workability is deteriorated due to P segregation. Therefore, the content of P is preferably in the range of 0.005 to 0.02%.
  • the lower limit of the P content is more preferably 0.006%, even more preferably 0.007%, and most preferably 0.008%.
  • the upper limit of the P content is more preferably 0.018%, even more preferably 0.016%, and most preferably 0.015%.
  • the S content is controlled to 0.01% or less.
  • the content of S is lower, the risk of brittleness due to segregation/inclusion is reduced, which is advantageous for securing toughness, so the lower limit thereof is not particularly limited.
  • the content of S is more preferably 0.008% or less, even more preferably 0.006% or less, and most preferably 0.005% or less.
  • Al is not only added for deoxidation, but also added for refining the bainite or martensite structure finally obtained through austenite grain refinement through AlN formation.
  • the Al content is preferably 0.01 to 0.1%.
  • the lower limit of the Al content is more preferably 0.015%, even more preferably 0.017%, and most preferably 0.02%.
  • the upper limit of the Al content is more preferably 0.08%, even more preferably 0.06%, and most preferably 0.05%.
  • the content of Cr is preferably in the range of 0.1 to 1.0%.
  • the lower limit of the Cr content is more preferably 0.05%, more preferably 0.07%, and most preferably 0.1%.
  • the upper limit of the Cr content is more preferably 0.9%, even more preferably 0.8%, and most preferably 0.7%.
  • the Sn is segregated in the surface layer to suppress the formation of the Mn or Cr oxide layer, thereby suppressing the formation of the internal oxide layer. That is, Sn is an element for improving workability by suppressing the formation of an internal oxide layer on the surface that is generated during the manufacturing of the hot-rolled material and the subsequent heat treatment process.
  • the content of Sn exceeds 0.05%, it is difficult to sufficiently obtain the above-described effect.
  • the content of Sn exceeds 0.5%, there is a risk of poor workability due to excessive segregation. Therefore, the content of Sn is preferably in the range of 0.05 to 0.5%.
  • the lower limit of the Sn content is more preferably 0.07%, even more preferably 0.09%, and most preferably 0.1%.
  • the upper limit of the Sn content is more preferably 0.45%, even more preferably 0.43%, and most preferably 0.4%.
  • the remainder may include Fe and unavoidable impurities. Inevitable impurities may be unintentionally mixed in a typical steel manufacturing process, and this cannot be entirely excluded, and those skilled in the ordinary steel manufacturing field can easily understand the meaning.
  • the present invention does not entirely exclude the addition of compositions other than the above-mentioned steel composition.
  • the microstructure of the high-carbon cold-rolled steel sheet of the present invention is an area%, with retained austenite: 1 to 10%, martensite: 1 to 10%, ferrite: 5% or less (including 0%), and the remainder containing bainite desirable.
  • the present invention can reduce the risk of temper embrittlement while securing excellent toughness by including bainite as a matrix structure.
  • the retained austenite occurs a lot in the vicinity of the triple point in the microstructure, and exhibits the effect of improving the toughness by increasing the elongation.
  • the upper limit of the fraction of retained austenite is more preferably 9%, even more preferably 8%, and most preferably 7%.
  • the martensite is a tissue that helps to secure high strength.
  • the upper limit of the fraction of martensite is more preferably 8%, even more preferably 7%, and most preferably 5%.
  • ferrite may be unavoidably formed in the manufacturing process. Since the ferrite increases the interphase hardness difference with a hard phase such as bainite or martensite to decrease workability, it is preferable to suppress it as much as possible, and in the present invention, the upper limit of the ferrite fraction is limited to 5%.
  • the upper limit of the fraction of ferrite is more preferably 4%, even more preferably 3%, and most preferably 2%.
  • the bainite and martensite may include tempered bainite and tempered martensite, respectively.
  • the average grain size of the microstructure is preferably in the range of 3 to 20 ⁇ m in order to secure strength and bendability.
  • the lower limit of the average grain size of the microstructure is more preferably 4 ⁇ m, even more preferably 5 ⁇ m, and most preferably 6 ⁇ m.
  • the upper limit of the average grain size of the microstructure is more preferably 18 ⁇ m, more preferably 16 ⁇ m, and most preferably 15 ⁇ m.
  • the thickness of the internal oxide layer formed directly under the surface is 10 ⁇ m or less in order to secure workability.
  • the internal oxide layer means that Mn, Cr, etc. combine with oxygen to form an oxide and exist along the grain boundary of the surface tissue.
  • elements having high oxide-forming ability by combining with oxygen may form an internal oxide layer.
  • Such an internal oxide layer deteriorates the material of the surface portion and causes a decrease in workability such as cracks.
  • the thickness of the internal oxide layer exceeds 10 ⁇ m, the poor processability is exacerbated due to the occurrence of cracks in the surface portion.
  • the thickness of the internal oxide layer is more preferably 8 ⁇ m or less, even more preferably 5 ⁇ m or less, and most preferably 3 ⁇ m or less.
  • the high carbon cold-rolled steel sheet according to an embodiment of the present invention provided as described above may have a tensile strength of 1600 to 2000 MPa, a hardness of 47 to 54 HRC, and an R/t of 1.0 or less during a 90° bending test, through which, Excellent strength, hardness and workability can be secured at the same time.
  • R is the minimum bending radius (mm) at which cracks do not occur after the 90° bending test
  • t means the thickness (mm) of the steel sheet.
  • the high-carbon cold-rolled steel sheet of the present invention does not generate cracks during the 180° bending test, and thus can have excellent toughness.
  • the high carbon cold rolled steel sheet of the present invention may have a thickness of 0.4 ⁇ 2.0mm.
  • the 180 ° bending test can be made in a manner of bending the steel material 180 ° using a round bar having an R/t of 2.0.
  • the slab satisfying the above-described alloy composition is heated.
  • the heating of the steel slab may be performed at 1100 ⁇ 1300 °C. If the heating temperature of the steel slab is less than 1100 °C, it may be difficult to sufficiently secure the temperature of the slab required for the plate, and if it exceeds 1300 °C, abnormal austenite growth and surface defects due to excessive scale may occur. Therefore, the heating temperature of the slab is preferably in the range of 1100 ⁇ 1300 °C.
  • the lower limit of the heating temperature of the slab is more preferably 1140 °C, even more preferably 1170 °C, most preferably 1190 °C.
  • the upper limit of the heating temperature of the slab is more preferably 1280 °C, even more preferably 1260 °C, most preferably 1250 °C.
  • the heated slab is rough-rolled to obtain a bar.
  • the rough rolling may be performed at 1000 ⁇ 1100 °C.
  • the rough rolling temperature is preferably in the range of 1000 ⁇ 1100 °C.
  • the lower limit of the rough rolling temperature is more preferably 1020°C, even more preferably 1030°C, and most preferably 1040°C.
  • the upper limit of the rough rolling temperature is more preferably 1090°C, even more preferably 1080°C, and most preferably 1070°C.
  • the bar is finish-rolled at 850 to 950° C. to obtain a hot-rolled steel sheet.
  • the finish rolling temperature is preferably in the range of 850 ⁇ 950 °C.
  • the lower limit of the finish rolling temperature is more preferably 855°C, even more preferably 860°C, and most preferably 870°C.
  • the upper limit of the finish rolling temperature is more preferably 940°C, even more preferably 940°C, and most preferably 930°C.
  • the hot-rolled steel sheet may have a thickness of 2.0 to 4.0 mm. Most of the high-end industrial/tool products have a cold-rolled steel sheet thickness of 0.4 to 2.0 mm. It is desirable to have
  • the hot-rolled steel sheet is cooled to 560 to 700° C. and then wound up.
  • the coiling temperature is less than 560° C.
  • a uniform hot-rolled structure cannot be obtained because a bainite or martensite structure, which is a low-temperature transformation structure, appears.
  • the coiling temperature is higher than 700° C., a surface defect may be caused by forming an internal oxidation layer and a decarburization layer on the surface. Therefore, the coiling temperature is preferably in the range of 560 ⁇ 700 °C.
  • the lower limit of the coiling temperature is more preferably 570°C, still more preferably 580°C, and most preferably 590°C.
  • the upper limit of the coiling temperature is more preferably 690°C, even more preferably 680°C, and most preferably 670°C.
  • the cooling may be performed at a cooling rate of 5 to 50° C./s. If the cooling rate is less than 5 ° C / sec, the pearlite structure becomes coarse and there is a risk of cracking during cold rolling before spheroidization annealing. When the cooling rate exceeds 50 ° C / sec, Cold rolling properties may be deteriorated due to coil shape defects such as wave generation. Accordingly, the cooling rate is preferably in the range of 5 to 50° C./sec.
  • the lower limit of the cooling rate is more preferably 10°C/sec, even more preferably 13°C/sec, and most preferably 15°C/sec.
  • the upper limit of the cooling rate is more preferably 45°C/sec, still more preferably 40°C/sec, and most preferably 35°C/sec.
  • the step of pickling the wound hot-rolled steel sheet at 200° C. or less may be further included.
  • cooling to the pickling temperature may be natural cooling. It is possible to remove the scale formed on the surface of the steel sheet through the pickling.
  • the pickling temperature is preferably 200° C. or less.
  • the lower limit of the pickling temperature is not particularly limited, and may be, for example, room temperature.
  • the microstructure of the hot-rolled steel sheet obtained through the above process may be composed of 90 area% or more of pearlite and the remainder of bainite.
  • the wound hot-rolled steel sheet is first cold rolled to obtain a cold-rolled steel sheet (hereinafter, also referred to as 'unannealed cold-rolled steel sheet (Full-Hard material)').
  • a cold-rolled steel sheet hereinafter, also referred to as 'unannealed cold-rolled steel sheet (Full-Hard material)'.
  • the reduction ratio during the first cold rolling may be 30 to 60%. If the reduction ratio during the first cold rolling is less than 30%, material deviation in the longitudinal/width direction may be caused, and if it exceeds 60%, there is a risk of deterioration in cold ductility and cracks in the width edge part due to excessive strength increase. .
  • the thickness of the cold-rolled steel sheet obtained through the first cold rolling may be 0.8 to 2.0 mm.
  • the cold-rolled steel sheet is spheroidized and annealed at 650 to 740° C. for 10 to 25 hours.
  • the spheroidizing annealing is a process for softening a steel sheet for secondary cold rolling and forming fine spherical carbides. If the spheroidization annealing temperature is less than 650 ° C., spheroidization of carbides hardly occurs, and when it exceeds 740 ° C., austenite reverse transformation of some structures occurs, pearlite recrystallization occurs, and a spheroidization structure is not formed. Therefore, the spheroidizing annealing temperature preferably has a range of 650 ⁇ 740 °C.
  • the lower limit of the spheroidizing annealing temperature is more preferably 660°C, even more preferably 670°C, and most preferably 680°C.
  • the upper limit of the spheroidizing annealing temperature is more preferably 735°C, even more preferably 730°C, and most preferably 725°C. If the spheroidization annealing time is less than 10 hours, spheroidization hardly occurs, and when it exceeds 25 hours, the formed spheroidal carbide grows and becomes coarse, and there is a problem in causing deterioration of heat treatment properties of austempering, which is a post process.
  • the spheroidizing annealing time is preferably in the range of 10 to 25 hours.
  • the lower limit of the spheroidizing annealing time is more preferably 11 hours, still more preferably 12 hours, and most preferably 14 hours.
  • the upper limit of the spheroidizing annealing time is more preferably 24 hours, still more preferably 23 hours, and most preferably 22 hours.
  • the spheroidizing annealed cold rolled steel sheet is subjected to secondary cold rolling.
  • the secondary cold rolling is to secure a target final thickness, as well as to refine the pearlite structure.
  • the reduction ratio during the secondary cold rolling may be 30-50% when considering the thickness of the final product.
  • the austempering heat treatment is to form bainite as a main structure to secure target physical properties.
  • Austempering heat treatment in the present invention is a process of cooling to a bainite formation temperature section after reheating to the austenizing temperature, maintaining the temperature at the temperature for a certain period of time to sufficiently form bainite, and then cooling to room temperature. More specifically, the austempering heat treatment process includes the steps of reheating the secondary cold-rolled cold-rolled steel sheet at 800-1000° C. for 10-120 seconds; And after quenching the reheated cold-rolled steel sheet to 300 ⁇ 500 °C, and then holding for 30 ⁇ 180 seconds; includes.
  • the reheating temperature is preferably in the range of 800 ⁇ 1000 °C.
  • the lower limit of the reheating temperature is more preferably 820°C, even more preferably 840°C, and most preferably 850°C.
  • the upper limit of the reheating temperature is more preferably 970°C, even more preferably 950°C, and most preferably 930°C.
  • the reheating time is preferably in the range of 10 to 120 seconds.
  • the lower limit of the reheating time is more preferably 15 seconds, still more preferably 18 seconds, and most preferably 20 seconds.
  • the upper limit of the reheating time is more preferably 110 seconds, still more preferably 100 seconds, and most preferably 90 seconds.
  • the reheating method is not particularly limited, and for example, high frequency induction heating or a BOX type heating furnace may be used.
  • the quenching end temperature is preferably in the range of 300 ⁇ 500 °C.
  • the lower limit of the quenching end temperature is more preferably 330°C, even more preferably 350°C, and most preferably 370°C.
  • the upper limit of the quenching end temperature is more preferably 480°C, even more preferably 460°C, and most preferably 450°C. If the holding time is less than 30 seconds, it may be difficult to secure a sufficient bainite fraction, and if it exceeds 180 seconds, the retained austenite fraction increases and it may be difficult to obtain the properties desired by the present invention.
  • the holding time is preferably in the range of 30 to 180 seconds.
  • the lower limit of the holding time is more preferably 33 seconds, still more preferably 35 seconds, and most preferably 40 seconds.
  • the upper limit of the holding time is more preferably 170 seconds, even more preferably 165 seconds, and most preferably 160 seconds.
  • the cooling rate during the quenching may be 10 ⁇ 50 °C / s.
  • the lower limit of the cooling rate during quenching is more preferably 13°C/s, even more preferably 15°C/s, and most preferably 20°C/s.
  • the upper limit of the cooling rate during quenching is more preferably 45°C/s, still more preferably 40°C/s, and most preferably 35°C/s.
  • the quenching method is not particularly limited, and for example, oil at 100°C or lower or water at 50°C or lower may be used.
  • the type and fraction of the microstructure and the average grain size were measured using an electron microscope EBSD technique at ⁇ 2000 magnification.
  • the thickness of the internal oxide layer was determined as the internal oxide layer from the surface layer to the point where the pickled grain boundaries were seen using an electron microscope photograph at a magnification of ⁇ 2000 after nital etching the surface part of the cold-rolled steel sheet, and the thickness was measured.
  • Tensile strength was measured through a tensile test after taking a JIS-5 standard specimen from a cold-rolled steel sheet.
  • HRC value was measured with a 150 kg load on the Rockwell hardness C scale.
  • Bending properties were determined by dividing the minimum bending radius R where cracks do not occur after a 90° bending test on the cold-rolled steel sheet by the thickness t of the cold-rolled steel sheet.
  • Example 1 Invention lecture 1 40 0.90 890 50 410 90 Invention example 2 Invention lecture 1 40 0.75 910 60 420 80 Invention example 3 Invention lecture 1 40 0.66 890 50 410 90 Invention Example 4 Invention lecture 1 45 0.61 910 60 420 80 Comparative Example 1 Invention lecture 1 Cracks during the 1st cold rolling Comparative Example 2 Invention lecture 1 40 0.90 890 50 410 90 Comparative Example 3 Invention lecture 1 40 0.75 890 50 410 90 Comparative Example 4 Invention lecture 1 40 0.75 890 50 410 90 Comparative Example 5 Invention lecture 1 40 0.75 890 50 410 90 Comparative Example 6 Invention lecture 1 40 0.75 890 50 410 90 Comparative Example 7 Invention lecture 1 40 0.66 750 60 .
  • Inventive Examples 1 to 4 satisfies both the alloy composition and manufacturing conditions proposed by the present invention, and satisfies the microstructure and internal oxide layer thickness proposed by the present invention, thereby satisfying 1600 to 2000 MPa. It can be seen that it has a tensile strength of , a hardness of 47 to 54 HRC, and an R/t of 1.0 or less during a 90° bending test.
  • Comparative Example 1 satisfies the alloy composition of the present invention, but the hot rolling coiling temperature is 500 ° C., which is out of 560 to 700 ° C, which is the condition of the present invention. It can be seen that the longitudinal microstructure is non-uniform, resulting in crack defects during the first cold rolling.
  • Comparative Example 2 satisfies the alloy composition of the present invention, but the hot rolling coiling temperature is 740 ° C., which is out of 560 to 700 ° C., which is the condition of the present invention. It can be seen that the tensile strength of 1522 MPa and R/t is 1.7 due to the solid solution carbide and the coarse structure, and the tensile strength of 1600 to 2000 MPa, R/t, which is the target of the present invention, is out of 1.0 or less.
  • Comparative Example 3 satisfies the alloy composition of the present invention, but the spheroidizing annealing temperature is 610 ° C., which is out of 650 to 740 ° C., which is the condition of the present invention. It can be seen that the carbon content of the tissue is lowered and the tensile strength is 1531 MPa, which is out of the target of 1600 to 2000 MPa of the present invention.
  • Comparative Example 4 satisfies the alloy composition of the present invention, but the spheroidizing annealing temperature is 760 ° C., which is out of 650 to 740 ° C., which is the condition of the present invention. After heat treatment, it can be seen that the tensile strength is 1543 MPa due to the decrease in the strength of the bainite structure, which is out of the target of 1600 to 2000 MPa of the present invention.
  • Comparative Example 5 satisfies the alloy composition of the present invention, but the spheroidizing annealing time is 6 hours, which is out of the condition of 10 to 25 hours of the present invention. It can be seen that the carbon content of the tissue is lowered and the tensile strength is 1558 MPa, which is out of the target of 1600 to 2000 MPa of the present invention.
  • Comparative Example 6 satisfies the alloy composition of the present invention, but the spheroidizing annealing time is 32 hours, which is out of the condition of 10 to 25 hours of the present invention.
  • the presence of undissolved carbides and a decrease in the matrix structure carbon content causes a decrease in strength and a decrease in bendability. Accordingly, it can be seen that the tensile strength of 1549 MPa and R/t is 2.7, which is out of the target of 1600 to 2000 MPa and 1.0 or less of the present invention.
  • Comparative Example 7 satisfies the alloy composition of the present invention, but the austempering reheating temperature is 750 ° C., which is out of 800 to 1000 ° C., which is the condition of the present invention. It can be seen that it is out of the range of 1600 to 2000 MPa of the present invention.
  • Comparative Example 8 satisfies the alloy composition of the present invention, but the austempering reheating temperature is 1120 ° C., which is out of 800 to 1000 ° C., which is the condition of the present invention. It can be seen that it is out of 3-20 ⁇ m, and the bendability R/t is 3.0, which is out of 1.0 or less, which is the range of the present invention.
  • Comparative Example 9 satisfies the alloy composition of the present invention, but the austempering reheating time is 5 seconds, which is outside the condition of 10 to 120 seconds of the present invention. It can be seen that it is out of the range of 1600 to 2000 MPa of the present invention.
  • Comparative Example 10 satisfies the alloy composition of the present invention, but the austempering reheating time is 160 seconds, which is out of the 10 to 120 seconds condition of the present invention. It can be seen that it is out of ⁇ 20 ⁇ m, and the bendability R/t is 3.0, which is out of 1.0 or less, which is the range of the present invention.
  • Comparative Example 11 satisfies the alloy composition of the present invention, but the austempering heat treatment temperature is 240 ° C., which is out of 300 to 500 ° C., which is the condition of the present invention. It can be seen that it is out of the range of 1600 to 2000 MPa.
  • Comparative Example 12 satisfies the alloy composition of the present invention, but the austempering heat treatment temperature is 570 ° C., which is out of 300 to 500 ° C., which is the condition of the present invention. It can be seen that it is out of the range of 1600 to 2000 MPa.
  • Comparative Example 13 satisfies the alloy composition of the present invention, but the austempering heat treatment time is 18 seconds, which is out of 30 to 180 seconds, which is the condition of the present invention. It can be seen that it is out of the range of 1600 to 2000 MPa of the present invention.
  • Comparative Example 14 satisfies the alloy composition of the present invention, but the austempering heat treatment time is 240 seconds, which is out of 30 to 180 seconds, which is the condition of the present invention. It can be seen that 2.3 is out of 1.0 or less, which is the range of the present invention.
  • Comparative Example 15 satisfies the manufacturing conditions of the present invention, but the C content is 0.55%, which is outside the range of 0.8 to 1.25% of the present invention. can be seen to depart from
  • Comparative Example 16 satisfies the manufacturing conditions of the present invention, but the C content is 1.30%, which is outside the range of 0.8 to 1.25% of the present invention. It can be seen that it is out of the range of 1600 ⁇ 2000MPa and less than 1.0.
  • Comparative Example 17 satisfies the manufacturing conditions of the present invention, but the Mn content is 0.11%, which is out of the range of 0.2 to 0.6% of the present invention. can be seen to depart from
  • Comparative Example 18 satisfies the manufacturing conditions of the present invention, but the Mn content is 0.86%, which is out of the range of 0.2 to 0.6% of the present invention. , and it can be seen that the bendability is also inferior.
  • Comparative Example 19 satisfies the manufacturing conditions of the present invention, but the Cr content is 0.004%, which is outside the range of 0.1 to 1.0% of the present invention. It can be seen that it is outside the scope of the invention of 1600 to 2000 MPa.
  • Comparative Example 20 satisfies the manufacturing conditions of the present invention, but the Cr content is 1.12%, which is outside the range of 0.1 to 1.0% of the present invention. , and it can be seen that the bendability is also inferior.
  • Comparative Example 21 satisfies the manufacturing conditions of the present invention, but the Si content is 0.006%, which is outside the range of 0.01 to 0.4% of the present invention, and the Si content tensile strength is 1569 MPa, which is out of the range of 1600 to 2000 MPa can be known
  • Comparative Example 22 satisfies the manufacturing conditions of the present invention, but the Si content is 0.57%, which is outside the range of 0.01 to 0.4% of the present invention. , and it can be seen that the bendability is also inferior.
  • Comparative Example 23 satisfies the manufacturing conditions of the present invention, but the Al content is 0.007%, which is outside the range of 0.01 to 0.1% of the present invention. It can be seen that /t is 2.2, which is out of 1.0 or less, which is the range of the present invention.
  • Comparative Example 24 satisfies the manufacturing conditions of the present invention, but the Al content is 0.18%, which is outside the range of 0.01 to 0.1% of the present invention. , and it can be seen that the bendability is also inferior.
  • Comparative Example 25 satisfies the manufacturing conditions of the present invention, but the Sn content is 0.02%, which is outside the range of 0.05 to 0.5% of the present invention. It can be seen that the 90° bendability and 180° bendability are inferior.
  • Comparative Example 26 satisfies the manufacturing conditions of the present invention, but the Sn content is 0.65%, which is outside the range of 0.05 to 0.5% of the present invention. It can be seen that the bendability and 180° bendability are inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명의 일 실시형태는 중량%로, C: 0.80∼1.25%, Mn: 0.2∼0.6%, Si: 0.01~0.4%, P: 0.005∼0.02%, S: 0.01% 이하, Al: 0.01~0.1%, Cr: 0.01~1.0%, Sn: 0.05~0.5%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 미세조직은 면적%로, 잔류 오스테나이트: 1~10%, 마르텐사이트: 1~10%, 페라이트: 5% 이하(0%를 포함), 잔부 베이나이트를 포함하며, 상기 미세조직의 평균 결정립 크기가 3~20㎛이고, 표면 직하에 형성되는 내부산화층의 두께가 10㎛ 이하인 가공성이 우수한 고인성 고탄소 냉연강판 및 그 제조방법을 제공한다.

Description

가공성이 우수한 고인성 고탄소 냉연강판 및 그 제조방법
본 발명은 가공성이 우수한 고인성 고탄소 냉연강판 및 그 제조방법에 관한 것이다.
열연 고탄소강은 엔진, 미션, 자동차 door, seat 등의 자동차용 부품 및 Saw, Knife 등의 산업공구용 부품으로 다양하게 적용되고 있고, 적용되는 최종 제품의 두께는 용도에 따라 0.15mm에서 6.0mm 이상까지 가진다. 이와 같은 열연 고탄소강은 소둔/냉연 공정을 거처 최종 부품으로 제작되는데, 후물 부품에 비해 2.0mmt 이하 두께의 박물 고탄소강 부품의 경우는 제조방법이 조금 더 복잡하며, 주로 high-end급 제품과 같은 고급 소재에 적용된다. 이러한 고급재의 경우 소둔/냉연을 2~3회 반복하고, Patenting 열처리(Austempering)까지 적용하게 됨에 따라 제조비용이 높아지는 문제가 있다.
한편, 고탄소강은 최종제품의 제조를 위하여, QT(Quenching&Tempering) 열처리 공정이 적용되나, 이 경우 템퍼취성 문제가 발생될 수 있고, 이때, 2.0mm 이하의 두께를 갖는 박물재의 경우에는 상기 템퍼취성 문제가 발생할 위험이 더욱 크다는 단점이 있다.
본 발명의 일측면은 가공성이 우수한 고인성 고탄소 냉연강판 및 그 제조방법을 제공하고자 하는 것이다.
본 발명의 일 실시형태는 중량%로, C: 0.80∼1.25%, Mn: 0.2∼0.6%, Si: 0.01~0.4%, P: 0.005∼0.02%, S: 0.01% 이하, Al: 0.01~0.1%, Cr: 0.01~1.0%, Sn: 0.05~0.5%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 미세조직은 면적%로, 잔류 오스테나이트: 1~10%, 마르텐사이트: 1~10%, 페라이트: 5% 이하(0%를 포함), 잔부 베이나이트를 포함하며, 상기 미세조직의 평균 결정립 크기가 3~20㎛이고, 표면 직하에 형성되는 내부산화층의 두께가 10㎛ 이하인 가공성이 우수한 고인성 고탄소 냉연강판을 제공한다.
본 발명의 다른 실시형태는 중량%로, C: 0.80∼1.25%, Mn: 0.2∼0.6%, Si: 0.01~0.4%, P: 0.005∼0.02%, S: 0.01% 이하, Al: 0.01~0.1%, Cr: 0.01~1.0%, Sn: 0.05~0.5%, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 슬라브를 가열하는 단계; 상기 가열된 슬라브를 조압연하여 바를 얻는 단계; 상기 바를 850~950℃에서 마무리 압연하여 열연강판을 얻는 단계; 상기 열연강판을 560~700℃까지 냉각한 후 권취하는 단계; 상기 권취된 열연강판을 1차 냉간압연하여 냉연강판을 얻는 단계; 상기 냉연강판을 650~740℃에서 10~25시간 동안 구상화 소둔하는 단계; 상기 구상화 소둔된 냉연강판을 2차 냉간압연하는 단계; 상기 2차 냉간압연된 냉연강판을 800~1000℃에서 10~120초 동안 재가열하는 단계; 및 상기 재가열된 냉연강판을 300~500℃까지 켄칭한 뒤, 30~180초 동안 유지하는 단계;를 포함하는 가공성이 우수한 고인성 고탄소 냉연강판의 제조방법을 제공한다.
본 발명의 일측면에 따르면, 가공성이 우수한 고인성 고탄소 냉연강판 및 그 제조방법을 제공할 수 있다.
이하, 본 발명의 일 실시형태에 따른 가공성이 우수한 고인성 고탄소 냉연강판에 대하여 설명한다. 먼저, 본 발명 고탄소 냉연강판의 합금조성에 대하여 설명한다. 하기 설명되는 합금조성의 함량은 특별한 언급이 없는 한, 중량%를 의미한다.
C: 0.80∼1.25%
C는 강도, 인성 및 미세조직 형성에 영향을 미치는 원소이다. 상기 C 함량이 0.80% 미만이면 열연재에서 페라이트상이 형성되어 소둔 전 냉연(Full-Hard)시 가공경화율이 낮아져 강도확보에 불리하다. 반면, 상기 C 함량이 1.25%를 초과하는 경우에는 초석 세멘타이트가 형성되어 소둔 전 냉연시 크랙이 발생되는 문제점이 있다. 따라서, 상기 C 함량은 0.80~1.25%의 범위를 갖는 것이 바람직하다. 상기 C 함량의 하한은 0.82%인 것이 보다 바람직하고, 0.84%인 것이 보다 더 바람직하며, 0.86%인 것이 가장 바람직하다. 상기 C 함량의 상한은 1.23%인 것이 보다 바람직하고, 1.20%인 것이 보다 더 바람직하다.
Mn: 0.2∼0.6%
Mn은 고용강화 원소로써 강도 증가와 경화능 확보를 위해 첨가된다. 상기 Mn의 함량이 0.2% 미만인 경우에는 Mn이 적을 경우 1600MPa 이상의 강도확보가 어려울 수 있다. 반면, 상기 Mn의 함량이 0.6%를 초과하는 경우에는 편석/개재물 형성으로 인해 인성 저하를 유발한다. 따라서, 상기 Mn의 함량은 0.2~0.6%의 범위를 갖는 것이 바람직하다. 상기 Mn 함량의 하한은 0.22%인 것이 보다 바람직하고, 0.25%인 것이 보다 더 바람직하며, 0.3%인 것이 가장 바람직하다. 상기 Mn 함량의 상한은 0.55%인 것이 보다 바람직하고, 0.53%인 것이 보다 더 바람직하며, 0.5%인 것이 가장 바람직하다.
Si: 0.01~0.4%
Si은 고용강화 및 열간압연시 스케일 결함 억제를 위해 첨가한다. 상기 Si의 함량이 0.01% 미만인 경우에는 상술한 효과를 충분히 얻기 곤란할 수 있다. 반면, 상기 Si의 함량이 0.4%를 초과하는 경우에는 1차 스케일을 과도하게 형성하여 적스케일 결함을 유발해 열처리 및 가공성을 저해시킬 수 있다. 따라서, 상기 Si의 함량은 0.01~0.4%의 범위를 갖는 것이 바람직하다. 상기 Si 함량의 하한은 0.02%인 것이 보다 바람직하고, 0.04%인 것이 보다 더 바람직하며, 0.05%인 것이 가장 바람직하다. 상기 Si 함량의 상한은 0.35%인 것이 보다 바람직하고, 0.30%인 것이 보다 더 바람직하며, 0.25%인 것이 가장 바람직하다.
P: 0.005∼0.02%
P은 고용강화 효과가 큰 원소이다. 강도 확보를 위하여, 상기 인은 0.005% 이상 첨가되는 것이 바람직하나, 0.02%를 초과하는 경우에는 P 편석에 의해 가공성이 열위해지는 문제점이 있다. 따라서, 상기 P의 함량은 0.005~0.02%의 범위를 갖는 것이 바람직하다. 상기 P 함량의 하한은 0.006%인 것이 보다 바람직하고, 0.007%인 것이 보다 더 바람직하며, 0.008%인 것이 가장 바람직하다. 상기 P 함량의 상한은 0.018%인 것이 보다 바람직하고, 0.016%인 것이 보다 더 바람직하며, 0.015%인 것이 가장 바람직하다.
S: 0.01% 이하
황은 비금속 개재물을 형성하기 쉬운 원소로서 석출물의 양을 증가시키는 불순물이므로, 가능한 낮게 관리하는 것이 필요하다. 본 발명에서는 상기 S의 함량을 0.01%이하로 제어한다. 한편, 본 발명에서는 상기 S의 함량이 낮을수록 편석/개재물에 의한 취성 위험이 감소하여 인성 확보에 유리하므로 그 하한을 특별히 제한하지 않는다. 상기 S의 함량은 0.008%이하인 것이 보다 바람직하고, 0.006%이하인 것이 보다 더 바람직하며, 0.005%이하인 것이 가장 바람직하다.
Al: 0.01~0.1%
Al은 탈산을 위해 첨가될 뿐만 아니라, AlN 형성을 통한 오스테나이트 결정립 미세화를 통해 최종적으로 얻어지는 베이나이트나 마르텐사이트 조직의 미세화를 위해 첨가된다. 상기 Al함량이 0.01% 미만인 경우에는 상기 효과를 충분히 얻기 어렵고, 0.1%를 초과하는 경우에는 과도한 강도 증가와 연주 시 슬라브 결함 문제가 발생할 수 있다. 따라서, 상기 Al의 함량은 0.01~0.1%인 것이 바람직하다. 상기 Al 함량의 하한은 0.015%인 것이 보다 바람직하고, 0.017%인 것이 보다 더 바람직하며, 0.02%인 것이 가장 바람직하다. 상기 Al 함량의 상한은 0.08%인 것이 보다 바람직하고, 0.06%인 것이 보다 더 바람직하며, 0.05%인 것이 가장 바람직하다.
Cr: 0.01~1.0%
Cr은 고용강화 및 경화능 확보를 위해 0.1% 이상 첨가되는 것이 바람직하다. 반면, 1.0%를 초과하는 경우에는 편석 및 과도한 탄화물 형성으로 인해 인성이 저하될 우려가 있고, 미고용 탄화물을 잔존시키는 문제점이 있다. 따라서, 상기 Cr의 함량은 0.1~1.0%의 범위를 갖는 것이 바람직하다. 상기 Cr 함량의 하한은 0.05%인 것이 보다 바람직하고, 0.07%인 것이 보다 더 바람직하며, 0.1%인 것이 가장 바람직하다. 상기 Cr 함량의 상한은 0.9%인 것이 보다 바람직하고, 0.8%인 것이 보다 더 바람직하며, 0.7%인 것이 가장 바람직하다.
Sn: 0.05~0.5%
상기 Sn은 표층부에 편석되어 Mn이나 Cr산화층 형성을 억제함으로써 내부산화층의 형성을 억제한다. 즉, 상기 Sn은 열연재 제조 및 그 이후 열처리 공정시 발생되는 표층부 내부산화층의 형성을 억제함으로써 가공성 불량을 개선하는 원소이다. 상기 Sn의 함량이 0.05%를 초과하는 경우에는 상술한 효과를 충분히 얻기 곤란하다. 반면, 상기 Sn의 함량이 0.5%를 초과하는 경우에는 과도한 편석으로 인해 가공성 불량의 위험이 있다. 따라서, 상기 Sn의 함량은 0.05~0.5%의 범위를 갖는 것이 바람직하다. 상기 Sn 함량의 하한은 0.07%인 것이 보다 바람직하고, 0.09%인 것이 보다 더 바람직하며, 0.1%인 것이 가장 바람직하다. 상기 Sn 함량의 상한은 0.45%인 것이 보다 바람직하고, 0.43%인 것이 보다 더 바람직하며, 0.4%인 것이 가장 바람직하다.
상술한 강 조성 이외에 나머지는 Fe 및 불가피한 불순물을 포함할 수 있다. 불가피한 불순물은 통상의 철강 제조공정에서 의도되지 않게 혼입될 수 있는 것으로, 이를 전면 배제할 수는 없으며, 통상의 철강제조 분야의 기술자라면 그 의미를 쉽게 이해할 수 있다. 또한, 본 발명은, 앞서 언급한 강 조성 이외의 다른 조성의 첨가를 전면적으로 배제하는 것은 아니다.
이하, 본 발명 고탄소 냉연강판의 미세조직에 대하여 설명한다.
본 발명 고탄소 냉연강판의 미세조직은 면적%로, 잔류 오스테나이트: 1~10%, 마르텐사이트: 1~10%, 페라이트: 5% 이하(0%를 포함), 잔부 베이나이트를 포함하는 것이 바람직하다. 본 발명은 기지조직으로서 베이나이트를 포함함으로써 우수한 인성을 확보함과 동시에 템퍼 취성의 위험을 낮출 수 있다. 상기 잔류 오스테나이트는 미세조직상 삼중점 부근에서 많이 생기며, 연신율을 높여 인성을 향상시키는 효과를 발현한다. 상기 잔류 오스테나이트의 분율이 1% 미만인 경우에는 상기와 같은 효과를 충분히 얻기 곤란하고, 10%를 초과하는 경우에는 침상형 잔류 오스테나이트 형성으로 인해 가공 후 TRIP 현상에 의해 마르텐사이트 상으로 변태하여 크랙을 유발할 수 있는 단점이 있다. 상기 잔류 오스테나이트의 분율 상한은 9%인 것이 보다 바람직하며, 8%인 것이 보다 더 바람직하며, 7%인 것이 가장 바람직하다. 상기 마르텐사이트는 높은 강도를 확보하는데 도움을 주는 조직이다. 상기 마르텐사이트의 분율이 1% 미만인 경우에는 상기와 같은 효과를 충분히 얻기 곤란하고, 10%를 초과하는 경우에는 베이나이트 조직과의 상간경도차를 증가시켜 가공성이 저하될 수 있다. 상기 마르텐사이트의 분율 상한은 8%인 것이 보다 바람직하며, 7%인 것이 보다 더 바람직하며, 5%인 것이 가장 바람직하다. 한편, 본 발명에서는 제조공정상 불가피하게 페라이트가 형성될 수 있다. 상기 페라이트는 베이나이트나 마르텐사이트와 같은 경질상과의 상간경도차를 증가시켜 가공성을 저하시키므로 가능한 억제하는 것이 바람직하며, 본 발명에서는 상기 페라이트 분율의 상한을 5%로 제한한다. 상기 페라이트의 분율 상한은 4%인 것이 보다 바람직하며, 3%인 것이 보다 더 바람직하며, 2%인 것이 가장 바람직하다. 한편, 상기 베이나이트 및 마르텐사이트는 각각 템퍼드 베이나이트 및 템퍼드 마르텐사이트를 포함할 수 있다.
상기 미세조직의 평균 결정립 크기는 강도와 굽힘성 확보를 위해 3~20㎛의 범위를 갖는 것이 바람직하다. 상기 미세조직의 평균 결정립 크기가 3㎛ 미만인 경우에는 삼중점에서 잔류 오스테나이트 상이 과다하게 형성되어 굽힘성이 열위해지는 위험이 있고, 20㎛를 초과하는 경우에는 강도 저하의 위험이 있다. 상기 미세조직의 평균 결정립 크기의 하한은 4㎛가 보다 바람직하며, 5㎛가 보다 더 바람직하며, 6㎛가 가장 바람직하다. 상기 미세조직의 평균 결정립 크기의 상한은 18㎛가 보다 바람직하며, 16㎛가 보다 더 바람직하며, 15㎛가 가장 바람직하다.
본 발명 고탄소 냉연강판은 가공성 확보를 위해 표면 직하에 형성되는 내부산화층의 두께가 10㎛ 이하인 것이 바람직하다. 내부산화층이란 Mn, Cr 등이 산소와 결합하여 산화물을 형성하여 표면부 조직의 결정립계를 따라 존재하는 것을 의미한다. Mn, Cr 외에도 산소와 결합하여 산화물 형성능이 높은 원소들은 내부산화층을 형성시킬 수 있다. 이러한 내부산화층은 표면부 재질을 저하시켜 크랙을 유발하는 등 가공성 저하를 초래한다. 특히, 상기 내부산화층의 두께가 10㎛를 초과하는 경우에는 표면부 크랙 발생으로 가공성 불량이 심화된다. 상기 내부산화층의 두께는 8㎛이하인 것이 보다 바람직하고, 5㎛ 이하인 것이 보다 더 바람직하며, 3㎛이하인 것이 가장 바람직하다.
상기와 같이 제공되는 본 발명의 일 실시형태에 따른 고탄소 냉연강판은 1600~2000MPa의 인장강도, 47~54HRC의 경도 및 90° 굽힘시험시 1.0 이하의 R/t를 가질 수 있으며, 이를 통해, 우수한 강도, 경도 및 가공성을 동시에 확보할 수 있다. 여기서, R은 90° 굽힘 시험 후 크랙이 발생하지 않는 최소 굽힘반경(㎜)이고, t는 강판의 두께(㎜)를 의미한다. 아울러, 본 발명의 고탄소 냉연강판은 180°굽힘시험시 크랙이 발생하지 않으며, 이에 따라, 우수한 인성을 가질 수 있다. 또한, 본 발명의 고탄소 냉연강판은 0.4~2.0mm의 두께를 가질 수 있다. 한편, 상기 180°굽힘시험은 R/t가 2.0인 환봉을 이용해 강재를 180°굽히는 방식으로 이루어질 수 있다.
이하, 본 발명 고탄소 냉연강판의 제조방법에 대하여 설명한다.
우선, 전술한 합금조성을 만족하는 슬라브를 가열한다. 상기 강 슬라브의 가열은 1100~1300℃에서 행하여질 수 있다. 상기 강 슬라브 가열온도가 1100℃ 미만인 경우에는 통판에 필요한 슬라브의 온도를 충분히 확보하기 어려울 수 있고, 1300℃를 초과하는 경우에는 비정상적인 오스테나이트 성장 및 과도한 스케일에 의한 표면 결함이 생길 수 있다. 따라서, 상기 슬라브의 가열 온도는 1100~1300℃의 범위를 갖는 것이 바람직하다. 상기 슬라브의 가열 온도의 하한은 1140℃인 것이 보다 바람직하고, 1170℃인 것이 보다 더 바람직하며, 1190℃인 것이 가장 바람직하다. 상기 슬라브의 가열 온도의 상한은 1280℃인 것이 보다 바람직하고, 1260℃인 것이 보다 더 바람직하며, 1250℃인 것이 가장 바람직하다.
이후, 상기 가열된 슬라브를 조압연하여 바를 얻는다. 상기 조압연은 1000~1100℃에서 행하여질 수 있다. 상기 조압연 온도가 1000℃ 미만인 경우에는 압연부하가 증대되어 통판성이 열위되는 단점이 있을 수 있고, 1100℃를 초과하는 경우에는 스케일이 과다하게 형성되어 표면 품질이 매우 열위해지는 단점이 발생할 수 있다. 따라서, 상기 조압연 온도는 1000~1100℃의 범위를 갖는 것이 바람직하다. 상기 조압연 온도의 하한은 1020℃인 것이 보다 바람직하고, 1030℃인 것이 보다 더 바람직하며, 1040℃인 것이 가장 바람직하다. 상기 조압연 온도의 상한은 1090℃인 것이 보다 바람직하고, 1080℃인 것이 보다 더 바람직하며, 1070℃인 것이 가장 바람직하다.
이후, 상기 바를 850~950℃에서 마무리 압연하여 열연강판을 얻는다. 상기 마무리 압연 온도가 850℃미만일 경우에는 과도한 압연부하로 열간압연성이 크게 저하되고, 950℃를 초과하는 경우에는 오스테나이트 결정립 크기가 매우 조대해져 취성의 위험이 있다. 따라서, 상기 마무리 압연 온도는 850~950℃의 범위를 갖는 것이 바람직하다. 상기 마무리 압연 온도의 하한은 855℃인 것이 보다 바람직하고, 860℃인 것이 보다 더 바람직하며, 870℃인 것이 가장 바람직하다. 상기 마무리 압연 온도의 상한은 940℃인 것이 보다 바람직하고, 940℃인 것이 보다 더 바람직하며, 930℃인 것이 가장 바람직하다. 한편, 상기 열연강판은 2.0~4.0mm의 두께를 가질 수 있다. 고급 산업/공구용 제품은 대부분 냉연강판의 두께가 0.4~2.0mm인데, 60%이하의 냉간압하율로 상기 냉연강판의 두께를 충족시키기 위해서는, 상기 열연강판의 두께가 2.0~4.0mm의 범위를 갖는 것이 바람직하다.
이후, 상기 열연강판을 560~700℃까지 냉각한 후 권취한다. 상기 권취온도가 560℃ 미만인 경우에는 저온 변태 조직인 베이나이트 또는 마르텐사이트 조직이 나오기 때문에 균일한 열연 조직을 얻을 수 없다. 상기 권취온도가 700℃ 초과일 경우에는 표면부 내부산화층과 탈탄층을 형성해 표면결함을 유발할 수 있다. 따라서, 상기 권취온도는 560~700℃의 범위를 갖는 것이 바람직하다. 상기 권취온도의 하한은 570℃인 것이 보다 바람직하고, 580℃인 것이 보다 더 바람직하며, 590℃인 것이 가장 바람직하다. 상기 권취 온도의 상한은 690℃인 것이 보다 바람직하고, 680℃인 것이 보다 더 바람직하며, 670℃인 것이 가장 바람직하다. 상기 냉각은 5~50℃/s의 냉각속도로 행하여질 수 있다. 상기 냉각속도가 5℃/초 미만인 경우에는 펄라이트 조직이 조대해져 구상화 소둔 전 냉연시 크랙 발생의 위험이 있고, 냉각속도가 50℃/초를 초과하는 경우에는 폭방향 에지(edge)부의 과냉에 따른 웨이브 발생 등의 코일 형상 불량으로 인해 냉간 압연성이 저하될 수 있다. 따라서, 상기 냉각속도는 5~50℃/초의 범위를 갖는 것이 바람직하다. 상기 냉각속도의 하한은 10℃/초인 것이 보다 바람직하고, 13℃/초인 것이 보다 더 바람직하며, 15℃/초인 것이 가장 바람직하다. 상기 냉각속도의 상한은 45℃/초인 것이 보다 바람직하고, 40℃/초인 것이 보다 더 바람직하며, 35℃/초인 것이 가장 바람직하다.
상기 권취 후에는 상기 권취된 열연강판을 200℃이하에서 산세하는 단계를 추가로 포함할 수 있다. 일례로, 상기 산세온도까지의 냉각은 자연 냉각일 수 있다. 상기 산세를 통해 강판의 표면에 형성된 스케일을 제거할 수 있다. 상기 산세온도가 200℃를 초과하면 열연강판의 표층부가 과산세되어 표층부 조도가 나빠질 수 있으므로, 상기 산세온도는 200℃이하인 것이 바람직하다. 본 발명에서는 상기 산세온도의 하한에 대해 특별히 한정하지 않으며, 예를 들면, 상온일 수 있다.
한편, 상기와 같은 공정을 통해 얻어지는 열연강판의 미세조직은 90면적% 이상의 펄라이트와 잔부 베이나이트로 구성될 수 있다.
이후, 상기 권취된 열연강판을 1차 냉간압연하여 냉연강판(이하, '미소둔 냉연강판(Full-Hard재)'라고도 함)을 얻는다. 상기 1차 냉간압연을 통해 펄라이트 블록(block)의 크기 및 탄화물층간의 층간 간격을 더욱 미세화시킬 수 있다. 상기 1차 냉간압연시 압하율은 30~60%일 수 있다. 상기 1차 냉간압연시 압하율이 30% 미만인 경우에는 길이방향/폭 방향 재질편차를 유발할 수 있고, 60%를 초과하는 경우에는 과도한 강도 증가로 인한 냉연성 저하 및 폭edge부 크랙 발생 위험이 있다. 한편, 상기 냉간압연시 개별 패스당 압하율과 속도 등의 상세한 압연 패스 스케쥴은 설비와 용도에 따라 달라지므로, 본 발명에서는 상기 조건에 대해서 특별히 한정하지 않는다. 상기 1차 냉간압연을 통해 얻어지는 냉연강판의 두께는 0.8~2.0mm일 수 있다.
이후, 상기 냉연강판을 650~740℃에서 10~25시간 동안 구상화 소둔한다. 상기 구상화 소둔은 2차 냉간압연을 위해 강판을 연화시키고, 미세한 구상 탄화물을 형성하기 위한 공정이다. 상기 구상화 소둔 온도가 650℃ 미만이면 탄화물의 구상화가 거의 일어나지 않으며, 740℃를 초과하는 경우에는 일부 조직의 오스테나이트 역변태가 일어나 펄라이트 재결정이 발생하여 구상화 조직이 형성되지 않는다. 따라서, 상기 구상화 소둔 온도는 650~740℃의 범위를 갖는 것이 바람직하다. 상기 구상화 소둔 온도의 하한은 660℃인 것이 보다 바람직하고, 670℃인 것이 보다 더 바람직하며, 680℃인 것이 가장 바람직하다. 상기 구상화 소둔 온도의 상한은 735℃인 것이 보다 바람직하고, 730℃인 것이 보다 더 바람직하며, 725℃인 것이 가장 바람직하다. 상기 구상화 소둔 시간이 10시간 미만이면 구상화가 거의 일어나지 않고, 25시간을 초과하는 경우에는 형성된 구상 탄화물이 성장함으로써 조대하게 되어 후공정인 오스템퍼링의 열처리성 저하를 유발하는 문제점이 있다. 따라서, 상기 구상화 소둔 시간은 10~25시간의 범위를 갖는 것이 바람직하다. 상기 구상화 소둔 시간의 하한은 11시간인 것이 보다 바람직하고, 12시간인 것이 보다 더 바람직하며, 14시간인 것이 가장 바람직하다. 상기 구상화 소둔 시간의 상한은 24시간인 것이 보다 바람직하고, 23시간인 것이 보다 더 바람직하며, 22시간인 것이 가장 바람직하다.
이후, 상기 구상화 소둔된 냉연강판을 2차 냉간압연한다. 상기 2차 냉간압연은 목표로 하는 최종 두께를 확보함은 물론, 펄라이트 조직의 미세화를 위한 것이다. 상기 2차 냉간압연시 압하율은 최종제품의 두께를 고려할 때, 30~50%일 수 있다.
이후, 상기 2차 냉간압연된 냉연강판을 오스템퍼링(Austempering) 열처리한다. 상기 오스템퍼링 열처리는 베이나이트를 주조직으로 형성하여, 목표로 하는 물성을 확보하고자 하기 위함이다. 본 발명에서의 오스템퍼링 열처리는 오스테나이징 온도로 재가열 후 베이나이트 형성 온도 구간까지 냉각하고, 해당 온도에서 일정 시간 유지하여 베이나이트를 충분히 형성시킨 뒤, 상온까지 냉각하는 공정이다. 보다 구체적으로는, 상기 오스템퍼링 열처리 공정은 상기 2차 냉간압연된 냉연강판을 800~1000℃에서 10~120초 동안 재가열하는 단계; 및 상기 재가열된 냉연강판을 300~500℃까지 켄칭한 뒤, 30~180초 동안 유지하는 단계;를 포함한다.
상기 재가열 온도가 800℃ 미만이면 기존 펄라이트 조직이 잔류하여 취성을 유발하거나, 미고용 탄화물이 잔존하여 결함을 유발할 수 있고, 1000℃를 초과하는 경우에는 오스테나이트 결정립이 조대하게 되어 인성을 열위하게 한다. 따라서, 상기 재가열 온도는 800~1000℃의 범위를 갖는 것이 바람직하다. 상기 재가열 온도의 하한은 820℃인 것이 보다 바람직하고, 840℃인 것이 보다 더 바람직하며, 850℃인 것이 가장 바람직하다. 상기 재가열 온도의 상한은 970℃인 것이 보다 바람직하고, 950℃인 것이 보다 더 바람직하며, 930℃인 것이 가장 바람직하다. 상기 재가열 시간이 10초 미만인 경우에는 오스테나이징이 완전히 일어나지 않고, 120초를 초과하는 경우에는 결정립이 조대해지는 단점이 있다. 따라서, 상기 재가열 시간은 10~120초의 범위를 갖는 것이 바람직하다. 상기 재가열 시간의 하한은 15초인 것이 보다 바람직하고, 18초인 것이 보다 더 바람직하며, 20초인 것이 가장 바람직하다. 상기 재가열 시간의 상한은 110초인 것이 보다 바람직하고, 100초인 것이 보다 더 바람직하며, 90초인 것이 가장 바람직하다. 한편, 본 발명에서는 상기 재가열 방법에 대해서 특별히 한정하지 않으며, 예를 들면, 고주파 유도가열 또는 BOX type 가열로 등을 이용할 수 있다.
상기 켄칭 종료온도가 300℃ 미만인 경우에는 마르텐사이트가 과다하게 형성되어 인성을 저하시킬 수 있고, 500℃를 초과하는 경우에는 베이나이트가 충분히 변태되지 않을 뿐만 아니라, 펄라이트 상이 과도하게 형성되어 강도 확보에 어려움이 있을 수 있다. 따라서, 상기 켄칭 종료온도는 300~500℃의 범위를 갖는 것이 바람직하다. 상기 켄칭 종료온도의 하한은 330℃인 것이 보다 바람직하고, 350℃인 것이 보다 더 바람직하며, 370℃인 것이 가장 바람직하다. 상기 켄칭 종료온도의 상한은 480℃인 것이 보다 바람직하고, 460℃인 것이 보다 더 바람직하며, 450℃인 것이 가장 바람직하다. 상기 유지시간이 30초 미만이면 충분한 베이나이트 분율을 확보하기 곤란할 수 있고, 180초를 초과하는 경우에는 잔류 오스테나이트 분율이 증가하여 본 발명이 얻고자 하는 물성을 얻기 어려울 수 있다. 따라서, 상기 유지시간은 30~180초의 범위를 갖는 것이 바람직하다. 상기 유지시간의 하한은 33초인 것이 보다 바람직하고, 35초인 것이 보다 더 바람직하며, 40초인 것이 가장 바람직하다. 상기 유지시간의 상한은 170초인 것이 보다 바람직하고, 165초인 것이 보다 더 바람직하며, 160초인 것이 가장 바람직하다.
한편, 상기 켄칭시 냉각속도는 10~50℃/s일 수 있다. 상기 켄칭시 냉각속도가 상기 냉각속도가 10℃/s 미만인 경우에는 베이나이트의 형성이 충분히 이루어지지 않을 수 있다. 반면, 상기 켄칭시 냉각속도가 50℃/s를 초과하는 경우에는 켄칭 크랙이 발생할 위험이 있다. 상기 켄칭시 냉각속도 하한은 13℃/s인 것이 보다 바람직하고, 15℃/s인 것이 보다 더 바람직하며, 20℃/s인 것이 가장 바람직하다. 상기 켄칭시 냉각속도 상한은 45℃/s인 것이 보다 바람직하고, 40℃/s인 것이 보다 더 바람직하며, 35℃/s인 것이 가장 바람직하다. 한편, 본 발명에서는 상기 켄칭 방법에 대해서 특별히 한정하지 않으며, 예를 들면, 100℃ 이하의 오일이나 50℃ 이하의 물을 이용할 수 있다.
이하, 실시예를 통해 본 발명을 보다 상세히 설명한다. 다만, 하기 실시예는 본 발명을 보다 상세하게 설명하기 위한 예시일 뿐, 본 발명의 권리범위를 한정하지 않는다.
(실시예)
하기 표 1에 기재된 합금조성을 갖는 슬라브를 1200℃에서 2시간 가열한 뒤, 하기 표 2에 기재된 조건으로 열연강판을 제조하였다. 이 때, 조압연 온도는 1050℃, 열연 후 권취까지의 냉각속도는 25℃/s였다. 이후, 산세 공정을 실시한 뒤, 하기 표 2 및 3에 기재된 조건으로 냉연강판을 제조하였다. 이와 같이 제조된 냉연강판에 대하여 미세조직, 평균 결정립 크기, 내부산화층 두께 및 기계적 물성을 측정한 뒤, 그 결과를 하기 표 4에 나타내었다.
미세조직의 종류 및 분율과 평균 결정립 크기는 전자현미경 EBSD 기법으로 ×2000 배율을 이용해 측정하였다.
내부산화층 두께는 냉연강판의 표면부를 나이탈 에칭한 후, ×2000배율의 전자현미경 사진을 이용해 표층부로부터 산세된 결정립계가 보이는 지점까지를 내부산화층으로 판단하여, 그 두께를 측정하였다.
인장강도는 냉연강판으로부터 JIS-5호 규격의 시편을 채취한 뒤, 인장시험을 통해 측정하였다.
경도는 로크웰경도 C 스케일로 150kg 하중으로 HRC 값을 측정하였다.
굽힘특성은 냉연강판을 90°굽힘시험한 후 크랙이 발생하지 않는 최소 굽힘반경 R을 냉연강판의 두께 t로 나눈 값으로 결정하였다.
180° 굽힘특성은 R/t=2.0인 환봉을 이용하여 냉연강판을 180° 굽힘시험한 후 크랙의 발생 유무로 평가하였다. 이 때, 크랙이 일어나지 않은 경우에는 ○, 크랙이 일어난 경우에는 ×로 기재하였다.
강종No. 합금조성 (중량%)
C Mn Cr Si Al P S Sn
발명강1 1.02 0.41 0.35 0.22 0.03 0.011 0.003 0.22
비교강1 0.55 0.36 0.39 0.21 0.04 0.010 0.002 0.21
비교강2 1.30 0.43 0.28 0.19 0.03 0.009 0.002 0.29
비교강3 0.98 0.11 0.23 0.23 0.03 0.011 0.002 0.35
비교강4 1.05 0.86 0.42 0.25 0.04 0.012 0.003 0.25
비교강5 0.95 0.38 0.004 0.18 0.04 0.011 0.003 0.24
비교강6 0.97 0.39 1.12 0.22 0.03 0.009 0.002 0.26
비교강7 1.12 0.45 0.55 0.006 0.03 0.012 0.002 0.22
비교강8 1.06 0.41 0.53 0.57 0.04 0.011 0.003 0.31
비교강9 1.04 0.40 0.48 0.31 0.007 0.011 0.002 0.28
비교강10 0.99 0.42 0.34 0.28 0.18 0.010 0.002 0.23
비교강11 1.01 0.39 0.33 0.21 0.04 0.009 0.002 0.02
비교강12 0.97 0.41 0.32 0.20 0.04 0.01 0.002 0.65
구분 강종No. 마무리
압연온도
(℃)
권취
온도
(℃)
열연강판
두께
(mm)
1차 냉간
압연 압하율
(%)
구상화
소둔온도
(℃)
구상화
소둔시간
(시간)
발명예1 발명강1 890 640 3.0 50 700 20
발명예2 발명강1 870 640 2.5 50 710 18
발명예3 발명강1 890 640 2.0 45 700 20
발명예4 발명강1 870 630 2.2 50 710 18
비교예1 발명강1 890 500 3.0 50 1차 냉연시 크랙 발생
비교예2 발명강1 890 740 3.0 50 700 20
비교예3 발명강1 890 640 2.5 50 610 20
비교예4 발명강1 890 640 2.5 50 760 20
비교예5 발명강1 890 640 2.5 50 700 6
비교예6 발명강1 890 640 2.5 50 700 32
비교예7 발명강1 890 640 2.0 45 700 20
비교예8 발명강1 890 640 2.0 45 700 20
비교예9 발명강1 890 640 2.0 45 700 20
비교예10 발명강1 890 640 2.0 45 700 20
비교예11 발명강1 890 640 2.0 45 700 20
비교예12 발명강1 890 640 2.0 45 700 20
비교예13 발명강1 890 640 2.0 45 700 20
비교예14 발명강1 890 640 2.0 45 700 20
비교예15 비교강1 890 640 3.0 50 700 20
비교예16 비교강2 890 640 3.0 50 700 20
비교예17 비교강3 890 640 3.0 50 700 20
비교예18 비교강4 890 640 3.0 50 700 20
비교예19 비교강5 890 640 3.0 50 700 20
비교예20 비교강6 890 640 3.0 50 700 20
비교예21 비교강7 890 640 3.0 50 700 20
비교예22 비교강8 890 640 3.0 50 700 20
비교예23 비교강9 890 640 3.0 50 700 20
비교예24 비교강10 890 640 3.0 50 700 20
비교예25 비교강11 890 640 3.0 50 700 20
비교예26 비교강12 890 640 3.0 50 700 20
구분 강종No. 2차 냉간
압연 압하율
(%)
최종냉연
강판두께
(mm)
오스템퍼링
재가열
온도
(℃)
오스템퍼링
재가열
시간
(초)
오스템퍼링
열처리
온도
℃(℃)
오스템퍼링
열처리
시간
(초)
발명예1 발명강1 40 0.90 890 50 410 90
발명예2 발명강1 40 0.75 910 60 420 80
발명예3 발명강1 40 0.66 890 50 410 90
발명예4 발명강1 45 0.61 910 60 420 80
비교예1 발명강1 1차 냉연시 크랙 발생
비교예2 발명강1 40 0.90 890 50 410 90
비교예3 발명강1 40 0.75 890 50 410 90
비교예4 발명강1 40 0.75 890 50 410 90
비교예5 발명강1 40 0.75 890 50 410 90
비교예6 발명강1 40 0.75 890 50 410 90
비교예7 발명강1 40 0.66 750 60 410 90
비교예8 발명강1 40 0.66 1120 60 410 90
비교예9 발명강1 40 0.66 890 5 410 90
비교예10 발명강1 40 0.66 890 160 410 90
비교예11 발명강1 40 0.66 890 60 240 90
비교예12 발명강1 40 0.66 890 60 570 90
비교예13 발명강1 40 0.66 890 60 410 18
비교예14 발명강1 40 0.66 890 60 410 240
비교예15 비교강1 40 0.90 890 50 410 90
비교예16 비교강2 40 0.90 890 50 410 90
비교예17 비교강3 40 0.90 890 50 410 90
비교예18 비교강4 40 0.90 890 50 410 90
비교예19 비교강5 40 0.90 890 50 410 90
비교예20 비교강6 40 0.90 890 50 410 90
비교예21 비교강7 40 0.90 890 50 410 90
비교예22 비교강8 40 0.90 890 50 410 90
비교예23 비교강9 40 0.90 890 50 410 90
비교예24 비교강10 40 0.90 890 50 410 90
비교에25 비교강11 40 0.90 890 50 410 90
비교예26 비교강12 40 0.90 890 50 410 90
구분 미세조직(면적%)
평균 결정립크기
(㎛)
내부산화층
두께
(㎛)
기계적 물성
B RA M F 인장강도
(MPa)
경도
(HRC)
R/t 180°
특성
발명예1 90 3 6 1 12 1 1896 51 0.6 O
발명예2 91 4 4 1 11 2 1831 49 0.7 O
발명예3 88 4 6 2 8 2 1924 51 0.8 O
발명예4 90 3 5 2 9 3 1855 50 0.8 O
비교예1 - - - - - - - - - -
비교예2 80 5 7 8 16 2 1522 45 1.7 O
비교예3 79 6 6 9 18 2 1531 46 2.0 O
비교예4 82 5 5 8 21 1 1543 45 2.0 O
비교예5 82 6 5 7 19 2 1558 46 2.0 O
비교예6 84 4 4 8 22 2 1549 46 2.7 O
비교예7 81 5 5 9 16 3 1516 45 2.3 O
비교예8 90 4 3 3 31 2 1880 50 3.0 X
비교예9 80 5 6 9 17 2 1522 46 2.3 O
비교예10 90 3 4 3 32 1 1896 50 3.0 X
비교예11 83 2 11 4 17 3 2075 55 1.5 O
비교예12 85 3 3 9 18 4 1467 43 1.5 O
비교예13 82 3 3 12 15 2 1488 44 1.5 O
비교예14 84 11 3 2 13 2 1866 49 2.3 O
비교예15 81 7 6 6 18 5 1369 19 0.6 O
비교예16 79 6 8 7 17 2 2153 56 2.2 O
비교예17 84 6 5 5 16 2 1521 45 0.6 O
비교예18 82 5 7 6 12 3 2061 54 1.7 O
비교예19 85 7 5 3 22 2 1543 46 0.6 O
비교예20 84 4 6 6 13 2 2107 55 1.7 O
비교예21 79 12 5 4 21 1 1569 46 1.7 O
비교예22 83 1 12 4 15 2 2071 55 2.2 O
비교예23 86 4 6 4 29 2 1872 49 2.2 O
비교예24 82 5 6 7 12 3 2045 55 2.2 O
비교예25 90 4 5 1 12 19 1888 50 3.0 X
비교예26 89 3 6 2 13 1 1531 49 3.5 X
B: 베이나이트, RA: 잔류 오스테나이트, M: 마르텐사이트, F:페라이트
상기 표 1 내지 4에 나타난 바와 같이, 발명예 1 내지 4는 본 발명이 제안하는 합금조성과 제조조건을 모두 만족하는 경우로서, 본 발명이 제안하는 미세조직과 내부산화층 두께를 만족함으로써 1600~2000MPa의 인장강도, 47~54HRC의 경도 및 90° 굽힘시험시 1.0 이하의 R/t를 가짐을 알 수 있다.
비교예 1은 본 발명의 합금조성을 만족하나, 열연 권취온도가 500℃로 본 발명의 조건인 560~700℃를 벗어난 경우로서, 권취온도가 낮아 베이나이트 등의 저온 조직이 형성되어 열연 폭방향, 길이 방향 미세조직이 불균일하여, 1차 냉간압연시 크랙 불량이 발생함을 알 수 있다.
비교예 2는 본 발명의 합금조성을 만족하나, 열연 권취온도가 740℃로 본 발명의 조건인 560~700℃를 벗어난 경우로서, 권취온도가 높아 조대한 펄라이트 및 탄화물층이 형성되어 Austempering 열처리 후에도 미고용 탄화물 및 조대 조직으로 인해 인장강도가 1522MPa, R/t는 1.7로 본 발명의 목표인 인장강도 1600~2000MPa, R/t는 1.0이하를 벗어남을 알 수 있다.
비교예 3는 본 발명의 합금조성을 만족하나, 구상화 소둔 온도가 610℃로 본 발명의 조건인 650~740℃를 벗어난 경우로서, 구상화 소둔 온도가 너무 낮아 펄라이트 조직이 잔존하여, austempering 열처리 후에도, 기지 조직의 탄소 함량이 낮아져 인장강도가 1531MPa로 본 발명의 목표인 1600~2000MPa를 벗어남을 알 수 있다.
비교예 4는 본 발명의 합금조성을 만족하나, 구상화 소둔 온도가 760℃로 본 발명의 조건인 650~740℃를 벗어난 경우로서, 구상화 소둔 온도가 너무 높아 일부 재결정 후 재생펄라이트 조직이 형성되어, austempering 열처리 후, 베이나이트 조직의 강도 저하로 인해 인장강도가 1543MPa로 본 발명의 목표인 1600~2000MPa를 벗어남을 알 수 있다.
비교예 5는 본 발명의 합금조성을 만족하나, 구상화 소둔 시간이 6 간으로 본 발명의 조건인 10~25시간을 벗어난 경우로서, 구상화 소둔 시간이 너무 짧아 펄라이트 조직이 잔존하여, austempering 열처리 후에도, 기지 조직의 탄소 함량이 낮아져 인장강도가 1558MPa로 본 발명의 목표인 1600~2000MPa를 벗어남을 알 수 있다.
비교예 6는 본 발명의 합금조성을 만족하나, 구상화 소둔 시간이 32시간으로 본 발명의 조건인 10~25시간을 벗어난 경우로서, 구상화 소둔 시간이 너무 길어 형성된 구상 탄화물이 매우 조대해져, austempering 열처리시 미고용 탄화물 존재 및 기지 조직 탄소 함량 저하로 강도 저하와 굽힘성 저하를 유발한다. 따라서 인장강도 1549MPa, R/t는 2.7로 본 발명의 목표인 1600~2000MPa과 1.0이하를 벗어남을 알 수 있다.
비교예 7는 본 발명의 합금조성을 만족하나, austempering 재가열 온도가 750℃로 본 발명의 조건인 800~1000℃를 벗어나는 경우로서, 재가열시 충분히 오스테나이징 되지 못하여, 강도 저하를 유발로 인장강도 1516MPa로 본 발명의 범위인 1600~2000MPa를 벗어남을 알 수 있다.
비교예 8는 본 발명의 합금조성을 만족하나, austempering 재가열 온도가 1120℃로 본 발명의 조건인 800~1000℃를 벗어나는 경우로서, 오스테나이징시 31㎛의 조대한 결정립 형성으로 본 발명의 범위인 3~20㎛를 벗어나고, 굽힘성도 R/t가 3.0으로 본 발명의 범위인 1.0이하를 벗어남을 알 수 있다.
비교예 9는 본 발명의 합금조성을 만족하나, austempering 재가열 시간이 5초로 본 발명의 조건인 10~120초를 벗어나는 경우로서, 재가열시 충분히 오스테나이징 되지 못하여, 강도 저하를 유발로 인장강도 1522MPa로 본 발명의 범위인 1600~2000MPa를 벗어남을 알 수 있다.
비교예 10은 본 발명의 합금조성을 만족하나, austempering 재가열 시간이 160초로 본 발명의 조건인 10~120초를 벗어나는 경우로서, 오스테나이징시 32㎛의 조대한 결정립 형성으로 본 발명의 범위인 3~20㎛를 벗어나고, 굽힘성 R/t가 3.0으로 본 발명의 범위인 1.0이하를 벗어남을 알 수 있다.
비교예 11은 본 발명의 합금조성을 만족하나, austempering 열처리 온도가 240℃로 본 발명의 조건인 300~500℃를 벗어나는 경우로서, 열처리시 과도한 마르텐사이트 조직이 형성되어 인장강도가 2075MPa로 본 발명의 범위인 1600~2000MPa를 벗어남을 알 수 있다.
비교예 12는 본 발명의 합금조성을 만족하나, austempering 열처리 온도가 570℃로 본 발명의 조건인 300~500℃를 벗어나는 경우로서, 열처리시 충분히 베이나이트가 형성되지 못하여 인장강도가 1467MPa로 본 발명의 범위인 1600~2000MPa를 벗어남을 알 수 있다.
비교예 13은 본 발명의 합금조성을 만족하나, austempering 열처리 시간이 18초로 본 발명의 조건인 30~180초를 벗어나는 경우로서, 열처리시 충분히 베이나이트가 형성되지 못하고 페라이트가 형성되어 인장강도가 1488MPa로 본 발명의 범위인 1600~2000MPa를 벗어남을 알 수 있다.
비교예 14는 본 발명의 합금조성을 만족하나, austempering 열처리 시간이 240초로 본 발명의 조건인 30~180초를 벗어나는 경우로서, 과도한 잔류 오스테나이트 형성에 따른 상간 경도차 유발로 인해 굽힘성 R/t가 2.3으로 본 발명의 범위인 1.0이하를 벗어남을 알 수 있다.
비교예 15는 본 발명의 제조조건을 만족하나, C 함량이 0.55%로 본 발명의 범위인 0.8~1.25%를 벗어나는 경우로서, C 함량 미달로 인장강도가 1369MPa로 본 발명의 범위인 1600~2000MPa를 벗어남을 알 수 있다.
비교예 16은 본 발명의 제조조건을 만족하나, C 함량이 1.30%로 본 발명의 범위인 0.8~1.25%를 벗어나는 경우로서, C 함량이 과도하여 인장강도 1369MPa, R/t는 2.2로 본 발명의 범위인 1600~2000MPa와 1.0이하를 벗어남을 알 수 있다.
비교예 17은 본 발명의 제조조건을 만족하나, Mn 함량이 0.11%로 본 발명의 범위인 0.2~0.6%를 벗어나는 경우로서, Mn 함량 미달로 인장강도가 1521MPa로 본 발명의 범위인 1600~2000MPa를 벗어남을 알 수 있다.
비교예 18은 본 발명의 제조조건을 만족하나, Mn 함량이 0.86%로 본 발명의 범위인 0.2~0.6%를 벗어나는 경우로서, Mn 함량 과다로 인장강도가 2061MPa로 본 발명의 범위인 1600~2000MPa를 벗어나고, 굽힘성도 열위함을 알 수 있다.
비교예 19는 본 발명의 제조조건을 만족하나, Cr 함량이 0.004%로 본 발명의 범위인 0.1~1.0%를 벗어나는 경우로서, Cr 함량 미달로 고용 강화 및 경화능 부족으로 인장강도가 1543MPa로 본 발명의 범위인 1600~2000MPa를 벗어남을 알 수 있다.
비교예 20은 본 발명의 제조조건을 만족하나, Cr 함량이 1.12%로 본 발명의 범위인 0.1~1.0%를 벗어나는 경우로서, Cr 함량 과다로 인장강도가 2107MPa로 본 발명의 범위인 1600~2000MPa를 벗어나고, 굽힘성도 열위함을 알 수 있다.
비교예 21은 본 발명의 제조조건을 만족하나, Si 함량이 0.006%로 본 발명의 범위인 0.01~0.4%를 벗어나는 경우로서, Si 함량 인장강도가 1569MPa로 본 발명의 범위인 1600~2000MPa를 벗어남을 알 수 있다.
비교예 22는 본 발명의 제조조건을 만족하나, Si 함량이 0.57%로 본 발명의 범위인 0.01~0.4%를 벗어나는 경우로서, Si 함량 과다로 인장강도가 2071MPa로 본 발명의 범위인 1600~2000MPa를 벗어나고, 굽힘성도 열위함을 알 수 있다.
비교예 23은 본 발명의 제조조건을 만족하나, Al 함량이 0.007%로 본 발명의 범위인 0.01~0.1%를 벗어나는 경우로서, Al 함량 미달로 austempering 열처리시 시 미세조직 조대화로 인해 굽힘성 R/t가 2.2로 본 발명의 범위인 1.0이하를 벗어남을 알 수 있다.
비교예 24는 본 발명의 제조조건을 만족하나, Al 함량이 0.18%로 본 발명의 범위인 0.01~0.1%를 벗어나는 경우로서, Al 함량 과다로 인장강도가 2045MPa로 본 발명의 범위인 1600~2000MPa를 벗어나고, 굽힘성도 열위함을 알 수 있다.
비교예 25는 본 발명의 제조조건을 만족하나, Sn 함량이 0.02%로 본 발명의 범위인 0.05~0.5%를 벗어나는 경우로서, Sn 함량 미달로 내부산화층이 19㎛ 형성되어 본 발명의 범위인 15um 이하를 벗어나고, 이로 인해 90° 굽힘성 및 180° 굽힘성이 열위함을 알 수 있다.
비교예 26은 본 발명의 제조조건을 만족하나, Sn 함량이 0.65%로 본 발명의 범위인 0.05~0.5%를 벗어나는 경우로서, Sn 함량 과다로 편석 과대로 인해 강도 및 인성이 저하되어, 90° 굽힘 및 180° 굽힘성이 열위함을 알 수 있다.

Claims (12)

  1. 중량%로, C: 0.80∼1.25%, Mn: 0.2∼0.6%, Si: 0.01~0.4%, P: 0.005∼0.02%, S: 0.01% 이하, Al: 0.01~0.1%, Cr: 0.01~1.0%, Sn: 0.05~0.5%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고,
    미세조직은 면적%로, 잔류 오스테나이트: 1~10%, 마르텐사이트: 1~10%, 페라이트: 5% 이하(0%를 포함), 잔부 베이나이트를 포함하며,
    상기 미세조직의 평균 결정립 크기가 3~20㎛이고,
    표면 직하에 형성되는 내부산화층의 두께가 10㎛ 이하인 가공성이 우수한 고인성 고탄소 냉연강판.
  2. 청구항 1에 있어서,
    상기 냉연강판은 0.4~2.0mm의 두께를 갖는 가공성이 우수한 고인성 고탄소 냉연강판.
  3. 청구항 1에 있어서,
    상기 냉연강판은 1600~2000MPa의 인장강도, 47~54HRC의 경도 및 90° 굽힘시험시 1.0 이하의 R/t를 갖는 가공성이 우수한 고인성 고탄소 냉연강판.
  4. 중량%로, C: 0.80∼1.25%, Mn: 0.2∼0.6%, Si: 0.01~0.4%, P: 0.005∼0.02%, S: 0.01% 이하, Al: 0.01~0.1%, Cr: 0.01~1.0%, Sn: 0.05~0.5%, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 슬라브를 가열하는 단계;
    상기 가열된 슬라브를 조압연하여 바를 얻는 단계;
    상기 바를 850~950℃에서 마무리 압연하여 열연강판을 얻는 단계;
    상기 열연강판을 560~700℃까지 냉각한 후 권취하는 단계;
    상기 권취된 열연강판을 1차 냉간압연하여 냉연강판을 얻는 단계;
    상기 냉연강판을 650~740℃에서 10~25시간 동안 구상화 소둔하는 단계;
    상기 구상화 소둔된 냉연강판을 2차 냉간압연하는 단계;
    상기 2차 냉간압연된 냉연강판을 800~1000℃에서 10~120초 동안 재가열하는 단계; 및
    상기 재가열된 냉연강판을 300~500℃까지 켄칭한 뒤, 30~180초 동안 유지하는 단계;를 포함하는 가공성이 우수한 고인성 고탄소 냉연강판의 제조방법.
  5. 청구항 4에 있어서,
    상기 슬라브의 가열은 1100~1300℃에서 행하여지는 가공성이 우수한 고인성 고탄소 냉연강판의 제조방법.
  6. 청구항 4에 있어서,
    상기 조압연은 1000~1100℃에서 행하여지는 가공성이 우수한 고인성 고탄소 냉연강판의 제조방법.
  7. 청구항 4에 있어서,
    상기 열연강판은 2.0~4.0mm의 두께를 갖는 가공성이 우수한 고인성 고탄소 냉연강판의 제조방법.
  8. 청구항 4에 있어서,
    상기 냉각은 5~50℃/s의 냉각속도로 행하여지는 가공성이 우수한 고인성 고탄소 냉연강판의 제조방법.
  9. 청구항 4에 있어서,
    상기 권취 후, 상기 권취된 열연강판을 200℃ 이하에서 산세하는 단계를 추가로 포함하는 가공성이 우수한 고인성 고탄소 냉연강판의 제조방법.
  10. 청구항 4에 있어서,
    상기 1차 냉간압연시 압하율은 30~60%인 가공성이 우수한 고인성 고탄소 냉연강판의 제조방법.
  11. 청구항 4에 있어서,
    상기 2차 냉간압연시 압하율은 30~50%인 가공성이 우수한 고인성 고탄소 냉연강판의 제조방법.
  12. 청구항 4에 있어서,
    상기 켄칭시 냉각속도는 10~50℃/s인 가공성이 우수한 고인성 고탄소 냉연강판의 제조방법.
PCT/KR2021/018742 2020-12-21 2021-12-10 가공성이 우수한 고인성 고탄소 냉연강판 및 그 제조방법 WO2022139282A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21911349.5A EP4265775A4 (en) 2020-12-21 2021-12-10 HIGH CARBON AND HIGH TOUGHNESS COLD-ROLLED STEEL SHEET HAVING EXCELLENT FORMABILITY, AND METHOD FOR MANUFACTURING SAME
US18/268,549 US20240018621A1 (en) 2020-12-21 2021-12-10 High toughness high carbon cold rolled steel sheet having excellent formability, and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200179991A KR102494553B1 (ko) 2020-12-21 2020-12-21 가공성이 우수한 고인성 고탄소 냉연강판 및 그 제조방법
KR10-2020-0179991 2020-12-21

Publications (1)

Publication Number Publication Date
WO2022139282A1 true WO2022139282A1 (ko) 2022-06-30

Family

ID=82159606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/018742 WO2022139282A1 (ko) 2020-12-21 2021-12-10 가공성이 우수한 고인성 고탄소 냉연강판 및 그 제조방법

Country Status (4)

Country Link
US (1) US20240018621A1 (ko)
EP (1) EP4265775A4 (ko)
KR (1) KR102494553B1 (ko)
WO (1) WO2022139282A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07179936A (ja) * 1993-12-24 1995-07-18 Aichi Steel Works Ltd 熱へたり性に優れた薄板ばね用鋼
KR100847045B1 (ko) * 2006-12-27 2008-07-17 주식회사 포스코 항복강도 및 냉간압연성이 우수한 고탄소 강판 및 그 제조방법
KR20140044925A (ko) * 2011-09-09 2014-04-15 신닛테츠스미킨 카부시키카이샤 중탄소 강판, 켄칭 부재 및 그들의 제조 방법
KR20160071462A (ko) * 2013-11-19 2016-06-21 신닛테츠스미킨 카부시키카이샤 봉강
JP2018048374A (ja) * 2016-09-21 2018-03-29 株式会社神戸製鋼所 高炭素鋼板部材およびその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101799712B1 (ko) * 2013-11-22 2017-11-20 신닛테츠스미킨 카부시키카이샤 고탄소 강판 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07179936A (ja) * 1993-12-24 1995-07-18 Aichi Steel Works Ltd 熱へたり性に優れた薄板ばね用鋼
KR100847045B1 (ko) * 2006-12-27 2008-07-17 주식회사 포스코 항복강도 및 냉간압연성이 우수한 고탄소 강판 및 그 제조방법
KR20140044925A (ko) * 2011-09-09 2014-04-15 신닛테츠스미킨 카부시키카이샤 중탄소 강판, 켄칭 부재 및 그들의 제조 방법
KR20160071462A (ko) * 2013-11-19 2016-06-21 신닛테츠스미킨 카부시키카이샤 봉강
JP2018048374A (ja) * 2016-09-21 2018-03-29 株式会社神戸製鋼所 高炭素鋼板部材およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4265775A4 *

Also Published As

Publication number Publication date
EP4265775A1 (en) 2023-10-25
KR102494553B1 (ko) 2023-02-06
EP4265775A4 (en) 2024-05-01
US20240018621A1 (en) 2024-01-18
KR20220089396A (ko) 2022-06-28

Similar Documents

Publication Publication Date Title
WO2020067752A1 (ko) 구멍확장성이 높은 고강도 냉연강판, 고강도 용융아연도금강판 및 이들의 제조방법
WO2017111524A1 (ko) 구멍확장성이 우수한 초고강도 강판 및 그 제조방법
WO2017222159A1 (ko) 가공성이 우수한 고강도 냉연강판 및 그 제조 방법
WO2020111856A2 (ko) 연성 및 저온 인성이 우수한 고강도 강재 및 이의 제조방법
WO2021112488A1 (ko) 내구성이 우수한 후물 복합조직강 및 그 제조방법
WO2019124781A1 (ko) 상온내시효성 및 소부경화성이 우수한 아연계 도금강판 및 그 제조방법
WO2021117989A1 (ko) 초고강도 냉연강판 및 이의 제조방법
WO2020226301A1 (ko) 전단가공성이 우수한 초고강도 강판 및 그 제조방법
WO2018110906A1 (ko) 표면품질이 우수한 고탄소 열연강판 및 이의 제조방법
WO2013154254A1 (ko) 재질 균일성이 우수한 고탄소 열연강판 및 이의 제조방법
WO2020111857A1 (ko) 크리프 강도가 우수한 크롬-몰리브덴 강판 및 그 제조방법
WO2022139214A1 (ko) 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강 및 이의 제조 방법
WO2019088552A1 (ko) 냉간압연성이 우수한 초고강도 냉연강판 및 이의 제조방법
WO2017111303A1 (ko) 굽힘 가공성이 우수한 고강도 열연 강판 및 그 제조 방법
WO2021261884A1 (ko) 생산성 및 원가 절감 효과가 우수한 고강도 오스테나이트계 스테인리스강 및 이의 제조방법
WO2022139282A1 (ko) 가공성이 우수한 고인성 고탄소 냉연강판 및 그 제조방법
WO2020130614A2 (ko) 구멍확장성이 우수한 고강도 열연강판 및 그 제조방법
WO2024136317A1 (ko) 냉연강판 및 그 제조방법
WO2024144040A1 (ko) 초고장력 냉연강판 및 그 제조방법
WO2024080657A1 (ko) 강판 및 이의 제조방법
WO2023234508A1 (ko) 핫 스탬핑 부품 및 이의 제조 방법
WO2023018270A1 (ko) 고강도 고인성 강판 및 그 제조방법
WO2023234509A1 (ko) 핫 스탬핑 부품 및 이의 제조 방법
WO2024072023A1 (ko) 냉연강판 및 그 제조방법
WO2023048450A1 (ko) 표면 품질이 우수하고 재질 편차가 적은 고강도 냉연강판 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911349

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18268549

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021911349

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021911349

Country of ref document: EP

Effective date: 20230721