WO2022138115A1 - 飛行体 - Google Patents

飛行体 Download PDF

Info

Publication number
WO2022138115A1
WO2022138115A1 PCT/JP2021/044743 JP2021044743W WO2022138115A1 WO 2022138115 A1 WO2022138115 A1 WO 2022138115A1 JP 2021044743 W JP2021044743 W JP 2021044743W WO 2022138115 A1 WO2022138115 A1 WO 2022138115A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
generator
engine
fan
control device
Prior art date
Application number
PCT/JP2021/044743
Other languages
English (en)
French (fr)
Inventor
浩一 田中
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2022535632A priority Critical patent/JP7231791B2/ja
Publication of WO2022138115A1 publication Critical patent/WO2022138115A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/90Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/04Aircraft characterised by the type or position of power plants of piston type
    • B64D27/08Aircraft characterised by the type or position of power plants of piston type within, or attached to, fuselages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/16Flying platforms with five or more distinct rotor axes, e.g. octocopters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a flying object.
  • An electric multicopter (flying object) with multiple rotors is known. It is desirable that the multicopter be equipped with a power source with high energy density in order to extend the cruising range. Therefore, a multicopter in which an engine generator is mounted on an electric multicopter is known.
  • the multicopter disclosed in Patent Document 1 includes an airframe main body (airframe frame), eight rotors including a propeller and an electric motor, a battery, a generator, an engine for a generator, and a cooling fan. , Has a control unit (flying object control device).
  • the airframe frame includes a main body portion of the airframe frame on which the battery, the generator, and the engine for the generator are mounted, and eight arm portions on which the rotor is loaded.
  • the multicopter disclosed in Patent Document 1 drives the generator by the engine for the generator and charges the battery. The multicopter can realize a long flight by having the engine generator.
  • the flying object control device that measures the attitude angle, acceleration, etc. in the three axial directions of the multicopter independently controls the outputs of the electric motors of the eight rotors according to an external control signal.
  • the operator of the multicopter can easily interlock and control the eight rotors by the flying object control device. It is desirable to take measures against vibration and heat in order to fully exert the performance of the flying object control device composed of electronic parts.
  • a multicopter equipped with an engine generator it is required to suppress heat and vibration generated from the generator engine in order for the engine generator to exhibit its performance and improve the operability of the multicopter.
  • Patent Document 2 discloses a multicopter having a radiator in order to improve the cooling effect between the generator and the engine for the generator.
  • the multicopter disclosed in Patent Document 2 further includes a radiator for lowering the temperature of the generator engine and a radiator cooling fan. By mounting the radiator, the multicopter disclosed in Patent Document 2 can cool the engine generator more efficiently than the cooling of the engine generator by the cooling fan.
  • Non-Patent Document 1 discloses an engine-driven multicopter in which the propeller is rotationally driven by the driving force of the engine.
  • the multicopter described in Non-Patent Document 1 has an airframe frame, two propulsion propellers, four attitude control propellers, a propulsion engine, a radiator, and a control unit.
  • the propulsion engine is cooled by a radiator.
  • the radiator is cooled by the air flow generated by the suction action of the propulsion propeller.
  • the multicopter described in Patent Document 1 cools a generator and an engine for a generator by an air flow due to the action of a cooling fan. Therefore, in the multicopter described in Patent Document 1, the cooling effect of the generator and the engine for the generator varies depending on the surrounding environment, flight conditions, and the like. Further, in the multicopter described in Patent Document 1, the cooling fan connected to the shaft portion of the generator is located between the machine body portion and the generator. Therefore, in the multicopter described in Patent Document 1, the air required for cooling the generator and the engine for the generator is separated from the main body of the machine so that the cooling fan can suck the air. The cooling fan, the generator and the engine for the generator are located.
  • the generator and the engine for the generator are cooled by the radiator. Therefore, in the multicopter described in Patent Document 2, the cooling effect of the generator and the engine for the generator is less likely to fluctuate due to the surrounding environment, flight conditions, and the like.
  • the radiator and the radiator cooling fan are located between the main body (airframe frame) and the generator engine.
  • the radiator cooling fan is located in a posture in which air required for cooling the radiator can be sucked from the extending direction of the arm of the main body. That is, in the multicopter described in Patent Document 2, the generator and the engine for the generator are set at intervals so that the cooling fan for the radiator can suck air from the extending direction of the arm with respect to the main body. positioned.
  • the multicopter described in Non-Patent Document 1 cools the radiator by utilizing the air flow by the propulsion propeller. Therefore, the multicopter described in Non-Patent Document 1 does not have a fan for cooling the radiator.
  • the radiator and the propulsion engine are located upstream of the propulsion propeller so that a part of the air flow by the propulsion propeller passes through the radiator. There is. At this time, the radiator is positioned along the heat dissipation surface in the air flow direction of the propulsion propeller so as not to suppress the propulsive force of the propulsion propeller.
  • the flying object control device is mounted at a position where the influence of heat and vibration by the generator engine is small, and sufficient cooling air is provided.
  • the cooling fan and the radiator are mounted in a state where they can be taken in, the body frame of the air vehicle becomes large and the weight of the air vehicle increases.
  • the weight of the aircraft increases, not only the payload is reduced but also the cruising range is shortened. Therefore, there is a demand for an airframe capable of reducing the size and weight of the airframe frame while satisfying the performance of the airframe control device and the performance of the engine generator.
  • the present inventors have studied the configuration of an air vehicle that can reduce the size and weight of the airframe while satisfying the performance of the air vehicle control device and the performance of the engine generator. As a result of diligent studies, the present inventors have come up with the following configuration.
  • the flying object includes a body frame, an electric motor, and a plurality of rotors including a propeller rotated by the electric motor to generate a lift, and a generator for supplying power to the electric motor.
  • the generator engine for driving the generator
  • the flying object control device for controlling the electric motor and the generator engine, and cooling at least one of the generator and the generator engine and the rotor. It is an air vehicle having a cooling unit having a radiator located outside the rotation region of the propeller and a fan for cooling the radiator when viewed in the direction of the rotation axis of the above.
  • the fan is located above the propeller in the vertical direction.
  • the cooling unit is configured so that the exhaust air of the fan that has passed through the radiator does not flow toward the flying object control device but flows toward the generator engine.
  • the flying object has a radiator for cooling the generator and the generator engine in order to exert the performance of the generator engine.
  • the radiator is not cooled by the air flow (downwash) generated by the rotation of the propeller of the rotor, but by the air blown from the fan that cools the radiator.
  • the fan is located above the propeller in the vertical direction.
  • a downward air flow is generated by the action of the propeller.
  • the downward air flow caused by the action of the propeller is substantially the same as the downward air flow caused by the action of the fan. Therefore, in addition to the air flow generated by the action of the fan, the cooling effect of the radiator is improved by the air flow generated by the action of the propeller. Therefore, the radiator is supported at an arbitrary position on the airframe frame. Therefore, the radiator has an improved degree of freedom in arrangement in the flying object.
  • the fan and the radiator are positioned so that the exhaust air of the fan heated through the radiator does not flow toward the flying object control device but flows toward the generator engine. Therefore, in the flying object control device, the temperature rise due to the exhaust air is suppressed. Further, the flying object can bring the flying object control device closer to the generator engine to a position where the radiant heat from the generator engine cooled by the radiator does not affect. That is, in the airframe, the airframe control device, the radiator, and the engine for the generator are compactly located in the airframe frame. Thereby, it is possible to realize an airframe capable of downsizing and weight reduction of the airframe frame while satisfying the performance of the airframe control device and the performance of the engine generator.
  • the fan is positioned so that the rotation axis of the fan extends toward the generator engine in order to allow exhaust air to flow toward the generator engine.
  • the fan is located closer to the generator engine than when the rotation axis extends toward a direction other than the generator engine. Therefore, the degree of freedom in arranging the fan with respect to the airframe frame is improved.
  • the fan can be brought close to the generator engine to a position where it does not interfere with the generator engine. Thereby, it is possible to realize an airframe capable of downsizing and weight reduction of the airframe frame while satisfying the performance of the airframe control device and the performance of the engine generator.
  • the flying object of the present invention includes the following configurations.
  • the radiator is supported by the airframe frame.
  • the radiator can be freely arranged with respect to the airframe frame without being affected by the position of the generator engine. Therefore, the degree of freedom in arranging the radiator with respect to the airframe frame can be improved. Thereby, the radiator can be positioned close to the generator engine until the position where the fan and the generator engine do not interfere with each other. That is, in the airframe, the airframe control device, the radiator, and the engine for the generator are compactly located in the airframe frame. Therefore, it is possible to realize an airframe capable of downsizing and weight reduction of the airframe frame while satisfying the performance of the airframe control device and the performance of the engine generator.
  • the flying object of the present invention includes the following configurations. At least one of the generator engine, the radiator, and the airframe control device is supported by the airframe frame via a vibration suppressing member that suppresses vibration transmitted from the airframe frame and vibration transmitted to the airframe frame.
  • the vibration suppressing member suppresses the transmission of vibration from the generator engine to the radiator and the flying object control device. Therefore, the radiator and the airframe control device can be freely positioned with respect to the airframe frame without being affected by the vibration generated by the generator engine. Therefore, the degree of freedom in arranging the radiator and the flying object control device with respect to the airframe frame can be improved. Thereby, the radiator can be positioned close to the generator engine until the position where the fan and the generator engine do not interfere with each other. Therefore, it is possible to realize an airframe capable of downsizing and weight reduction of the airframe frame while satisfying the performance of the airframe control device and the performance of the engine generator.
  • the flying object of the present invention includes the following configurations. It has a wall component constituting an exhaust passage for guiding the exhaust air of the fan that has passed through the radiator to the engine for the generator.
  • the exhaust air of the fan is guided to the engine for the generator by the exhaust passage. That is, the exhaust air of the fan does not flow toward the flight object control device by the exhaust passage even if the fan is not positioned so that the rotation axis of the fan faces the engine for the generator. It flows toward the generator engine. Therefore, the degree of freedom in arranging the radiator and the fan with respect to the airframe frame is improved. Thereby, it is possible to realize an airframe capable of downsizing and weight reduction of the airframe frame while satisfying the performance of the airframe control device and the performance of the engine generator.
  • the flying object of the present invention includes the following configurations. At least a part of the wall component is made of resin.
  • the flying object of the present invention includes the following configurations.
  • the radiator includes at least one of a first radiator that cools the generator engine and a second radiator that cools the generator.
  • the fan includes at least one of a first fan for cooling the first radiator and a second fan for cooling the second radiator.
  • the generator engine having different calorific value and the radiator having appropriate capacities for the generator are used. Since the first radiator and the second radiator are smaller than the radiator for cooling the generator engine and the generator together, the degree of freedom in arranging the radiator with respect to the machine frame is improved. That is, in the airframe, the airframe control device, the radiator, and the engine for the generator are compactly located in the airframe frame. Thereby, it is possible to realize an airframe capable of downsizing and weight reduction of the airframe frame while satisfying the performance of the airframe control device and the performance of the engine generator.
  • the flying object of the present invention includes the following configurations.
  • the radiator is located between the flight object control device and the generator engine and above the propeller in the vertical direction.
  • the fan passes the air including the air around the flying object control device through the radiator and flows toward the generator engine without flowing toward the flying object control device. Inhale and expel. As a result, it is possible to suppress the air that has passed through the radiator from flowing toward the flying object control device.
  • the fan and the radiator are located above the propeller in the vertical direction. In the space above the propeller, a downward air flow is generated by the action of the propeller. Therefore, the cooling effect of the radiator is improved by the air flow generated by the action of the propeller and the action of the fan.
  • the radiator between the flying object control device and the generator engine, the influence of the radiant heat from the generator engine cooled by the radiator is exerted on the flying object control device. It is possible to approach the generator engine to a position that does not reach it. Thereby, it is possible to realize an airframe capable of downsizing and weight reduction of the airframe frame while satisfying the performance of the airframe control device and the performance of the engine generator.
  • the flying object of the present invention includes the following configurations.
  • the radiator looks at the flying object in a direction orthogonal to the direction in which the flying object control device and the generator engine are lined up, and the generator engine moves from the flying object control device toward the generator engine. It is tilted away from the engine.
  • the range in which the radiator can be supported in the airframe frame is expanded. Therefore, the degree of freedom in arranging the radiator with respect to the airframe frame is improved. That is, the radiator is compactly located in the flying object. Thereby, the airframe can reduce the size and weight of the airframe frame while satisfying the performance of the airframe control device and the performance of the engine generator.
  • attachments are used in a broad sense and are “direct and indirect” attachments. Includes both connections and bonds. Further, “connected” and “bonded” are not limited to physical or mechanical connections or bonds, but can include direct or indirect electrical connections or bonds.
  • This specification describes an embodiment of the flying object according to the present invention.
  • an air vehicle means a multicopter having a plurality of rotors.
  • the rotation axes of the plurality of rotors are oriented in a substantially vertical direction.
  • the plurality of rotors are driven by an electric motor.
  • the flying object is equipped with at least an engine and a generator, and is configured to be able to supply the electric power generated by the generator to the electric motor.
  • the engine generator unit is a device that drives a dynamo to generate electricity by an engine for a generator, which is various reciprocal engines such as a diesel engine and a gasoline engine.
  • the engine generator unit controls the rotation speed and output of the engine for a generator to generate power in response to an external power generation request.
  • the engine generator unit does not supply the driving force of the generator engine to other than the generator. For example, the engine generator unit does not output power for rotating the propeller of the multicopter.
  • the flying object control device is a device that controls the position, speed, attitude, moving direction, etc. of the flying object.
  • the flying object control device is, for example, a computer.
  • the control device includes an inertial measurement unit (IMU) used for controlling the attitude and the like of the flying object.
  • IMU inertial measurement unit
  • the inertial measurement unit detects, for example, angular velocity and acceleration.
  • the vibration suppressing member attenuates the kinetic energy (vibration) transmitted from the airframe frame to the flying object control device.
  • the kinetic energy (vibration) transmitted from the generator engine to the airframe frame is attenuated.
  • the cooling unit refers to a heat exchanger that cools at least one of the generator, the engine for the generator, and the flying object control device, and the aircraft that has passed through the heat exchanger in a predetermined direction. Includes a guide vent.
  • the heat exchanger is, for example, a radiator.
  • the exhaust passage is, for example, a duct.
  • the side-by-side direction means a direction in which the two objects appear to overlap when the two objects are located side by side.
  • an air vehicle capable of downsizing and weight reduction of the airframe while satisfying the performance of the air vehicle control device and the performance of the engine generator.
  • FIG. 1 shows a plan view of an air vehicle according to the first embodiment of the present invention.
  • FIG. 2 shows a side view of the flying object according to the first embodiment of the present invention.
  • FIG. 3 shows a partial side view of the flying object according to the first embodiment of the present invention.
  • FIG. 4 shows a partial plan view of the flying object according to the first embodiment of the present invention.
  • FIG. 5 shows a partial side view showing the flow of air passing through the radiator in the flying object according to the first embodiment of the present invention.
  • FIG. 6 shows a schematic diagram showing an air flow due to the action of a propeller and a fan in the flying object according to the first embodiment of the present invention.
  • FIG. 7 shows a partial side view showing the flow of air passing through the radiator in the flying object according to the second embodiment of the present invention.
  • the axial direction of the main body of the flying object 1 will be referred to as the "vertical direction”. Further, it is assumed that the axis of the main body extends in the vertical direction.
  • the direction orthogonal to the axis of the main body of the flying object 1 is defined as the "diameter direction”.
  • FIG. 1 is a plan view of the flying object 1.
  • FIG. 2 is a side view of the flying object 1.
  • FIG. 3 is a partial side view showing the main body of the flying object 1.
  • FIG. 4 is a partial plan view showing the main body of the flying object 1.
  • the flying object 1 is a multicopter flying by a plurality of rotors 22.
  • the flying object 1 is configured to be capable of remote control by radio and independent flight by various sensors.
  • the flight body 1 includes a body frame 2, an engine generator unit 9, a battery 21, six rotors 22, and a flight body control device 25.
  • the body frame 2 supports the engine generator unit 9, the battery 21, the rotor 22, and the flight body control device 25 constituting the flight body 1.
  • the airframe frame 2 includes a main body 3, a flight body control device support 4, and an arm 7.
  • the airframe frame 2 is made of, for example, a pipe material made of an aluminum alloy.
  • the main body portion 3 is a portion that supports the arm portion 7, the engine generator unit 9, the battery 21, and the flying object control device 25.
  • the main body 3 is a frame in which the vertices of two hexagonal annular members are connected to each other by a rod-shaped member. That is, the main body 3 is a columnar frame extending in the axis P direction with the center line passing through the center of the two hexagonal annular members as the axis P when the flying object 1 is viewed in the vertical direction.
  • a flying object control device support portion 4 and an arm portion 7 are fixed to the main body portion 3.
  • the flying object control device support portion 4 is located on the annular member located above the two annular members with the direction in which the axis P of the main body portion 3 extends in the vertical direction.
  • An arm portion 7 is connected to each apex of one annular member of the main body portion 3 and the other annular member.
  • the flying object control device support unit 4 supports the flying object control device 25.
  • the flying object control device support portion 4 is attached to an annular member located above the two annular members of the main body portion 3.
  • the flying object control device support portion 4 has a mounting plate 5 for mounting the flying object control device 25, and a plurality of support legs 6 for supporting the mounting plate 5.
  • the mounting plate 5 is supported by a plurality of support legs 6 with respect to the main body portion 3.
  • the mounting plate 5 is located above the main body 3 at a position intersecting the axis P. That is, the mounting plate 5 is supported by a plurality of support legs 6 extending radially and downward about the axis P of the main body 3.
  • the mounting plate 5 is made of, for example, a heat insulating material.
  • the arm portion 7 supports the rotor 22.
  • the arm portion 7 is composed of a rod-shaped member.
  • the arm portion 7 is provided so as to extend in the radial direction with respect to each apex of the annular member in the main body portion 3. That is, the plurality of arm portions 7 extend radially around the axis P.
  • the arm portion 7 has a rotor 22 located at the center portion in the radial direction.
  • the engine generator unit 9 is a power generation device powered by an engine.
  • the engine generator unit 9 includes a generator 10, a generator control device (not shown), a generator engine 12, a cooling unit 8, a first fan 19, a second fan 20, a silencer (not shown), and a fuel tank (not shown). It has a control device (not shown) and a control device (not shown).
  • the generator 10, the generator engine 12, and the fuel tank are supported by the main body 3.
  • the silencer is supported by the generator engine 12.
  • the generator 10 generates electricity by power from the outside.
  • the generator 10 is, for example, an alternator.
  • the generator 10 is connected to the crank shaft of the generator engine 12.
  • the generator 10 generates electricity using the generator engine 12 as a power source.
  • the generator control device converts the alternating current output from the generator 10 into a direct current.
  • the generator control device is located in the vicinity of the generator 10.
  • the generator engine 12 is a power source for driving the generator 10.
  • a generator 10 is connected to the crank shaft (output shaft) of the generator engine 12.
  • the generator engine 12 drives the generator 10 by the rotational movement of the crank shaft.
  • the generator engine 12 is, for example, a water-cooled reciprocating engine.
  • the generator engine 12 includes a control device (not shown) that controls the generator engine 12.
  • the generator engine 12 is mounted on the main body 3.
  • the generator engine 12 is supported by the machine frame 2 via an engine mount member 12a, which is a vibration suppressing member that suppresses vibration transmitted to the body frame 2.
  • the engine mount member 12a is, for example, a cylindrical rubber mount member.
  • the generator engine 12 has devices necessary for the generator engine 12 to exert its functions, such as a silencer (not shown) and a fuel tank (not shown) that suppress exhaust noise.
  • the control device for the engine 12 for the generator and the control device for the generator which is the control device for the generator 10, are the generator 10 and the generator based on information such as an external power command, the amount of power generation, and the remaining amount of the battery 21.
  • the engine 12 is controlled.
  • the cooling unit 8 cools the generator 10 and the generator engine 12.
  • the cooling unit 8 has a first radiator 14, a second radiator 15, a first duct 17, and a second duct 18.
  • the first radiator 14 is a heat exchanger.
  • the first radiator 14 is supported by the flying object control device support portion 4.
  • the region through which air passes in the portion where the heat-dissipating fins that exchange heat of the first radiator 14 are concentrated (hereinafter, simply “the heat-dissipating surface of the first radiator 14") is substantially orthogonal to the axis P of the main body 3. is doing.
  • the first radiator 14 and the water jacket (not shown) of the generator engine 12 are connected by a radiator hose 13.
  • the radiator hose 13 is located along the pipe material constituting the machine body frame 2.
  • the first radiator 14 cools the cylinder block and the like of the generator engine 12 by radiating the heat of the cooling water that has passed through the water jacket of the generator engine 12 into the atmosphere. That is, the first radiator 14 cools the generator engine 12 using the cooling water of the generator engine 12 as a heat medium.
  • the second radiator 15 is a heat exchanger.
  • the second radiator 15 is supported by the flying object control device support portion 4.
  • the region through which air passes in the portion where the heat-dissipating fins that exchange heat of the second radiator 15 are concentrated (hereinafter, simply “the heat-dissipating surface of the second radiator 15") is substantially orthogonal to the axis P of the main body 3. is doing.
  • the second radiator 15, the generator 10, and the water jacket (not shown) of the generator control device are connected by a radiator hose 13.
  • the second radiator 15 cools the generator 10 and the generator control device by radiating the heat of the cooling water that has passed through the water jacket of the generator 10 and the generator control device into the atmosphere. That is, the second radiator 15 uses the cooling water of the generator 10 as a heat medium to cool the generator 10 and the controller for the generator.
  • the first radiator 14 and the second radiator 15 are supported by the airframe control device support portion 4 via a radiator mount member 16 which is a vibration suppressing member that suppresses vibration transmitted from the airframe frame 2.
  • the radiator mount member 16 is, for example, a cylindrical rubber mount member.
  • the first duct 17 is a wall component that guides the flow of air that has passed through the heat dissipation surface of the first radiator 14 in a specific direction.
  • the first duct 17 is a tubular member with both ends open.
  • the first duct 17 is supported by the first radiator 14 or the flying object control device support portion 4.
  • At least a part of the first duct 17 is provided with a wall component made of resin.
  • the first duct 17 can be formed of a resin wall component at a portion where the temperature rises only to the allowable temperature of the resin or less.
  • the first duct 17 uses one opening as an inflow port 17a, and discharges the air flowing in from the inflow port 17a from the discharge port 17b, which is the other opening directed in a specific direction.
  • the first duct 17 is located downstream of the first radiator 14 in the direction of air flow passing through the heat dissipation surface of the first radiator 14.
  • the second duct 18 is a wall component that guides the flow of air that has passed through the heat dissipation surface of the second radiator 15 in a specific direction.
  • the second duct 18 is a tubular member with both ends open.
  • the second duct 18 is supported by the second radiator 15 or the flying object control device support portion 4. At least a part of the second duct 18 is provided with a resin wall component.
  • the second duct 18 uses one opening as the inflow port 18a and discharges the air flowing in from the inflow port 18a from the discharge port 18b which is the other opening directed in a specific direction.
  • the second duct 18 is located downstream of the second radiator 15 in the direction of air flow passing through the heat dissipation surface of the second radiator 15.
  • the first fan 19 is a device for cooling the first radiator 14.
  • the first fan 19 is supported by the first radiator 14 or the flying object control device support portion 4.
  • the first fan 19 is located near the heat radiation surface of the first radiator 14 so that air moves toward the heat radiation surface of the first radiator 14.
  • the first fan 19 draws air from the heat dissipation surface of the first radiator 14. That is, the first fan 19 is located downstream of the first radiator 14 in the direction of air flow passing through the heat dissipation surface of the first radiator 14.
  • the first fan 19 is positioned so that the rotation axis F of the first fan 19 and the heat dissipation surface of the first radiator 14 are orthogonal to each other.
  • the second fan 20 is a device for cooling the second radiator 15.
  • the second fan 20 is supported by the second radiator 15 or the flying object control device support portion 4.
  • the second fan 20 is located near the heat dissipation surface of the second radiator 15 so that air moves toward the heat dissipation surface of the second radiator 15.
  • the second fan 20 draws air from the heat dissipation surface of the second radiator 15. That is, the second fan 20 is located downstream of the second radiator 15 in the direction of air flow passing through the heat dissipation surface of the second radiator 15.
  • the second fan 20 is positioned so that the rotation axis F of the second fan 20 and the heat dissipation surface of the second radiator 15 are orthogonal to each other.
  • the battery 21 stores the electric power generated by the generator 10.
  • the battery 21 is, for example, a lithium ion battery.
  • Two batteries 21 are arranged in the main body 3.
  • the engine generator unit 9 is located between the two batteries 21. That is, the two batteries 21 are arranged so that the center of gravity of the engine generator unit 9 is located substantially in the center between the two batteries 21. Further, the two batteries 21 are arranged close to the engine generator unit 9.
  • the battery 21 is positioned so that the weight balance in the flying object 1 is even. Further, the battery 21 is positioned so as to be warmed by the radiant heat of the generator engine 12 even when the temperature of the battery 21 is low at the time of starting and at a low temperature. This makes it possible to improve the low temperature discharge characteristics of the battery 21 at low temperatures.
  • the battery 21 is electrically connected to the engine generator unit 9, the electric motor 23 of the rotor 22, the vehicle body control device 25, and the like to supply electric power.
  • the rotor 22 is a device that generates lift by rotating the propeller 24 (blade).
  • the rotor 22 is located on each of the arm portions 7.
  • the six rotors 22 have an inverter 11, an electric motor 23, and a propeller 24.
  • the inverter 11 is a control device that supplies a current corresponding to a control signal to the electric motor 23.
  • the inverter 11 is electrically connected to the electric motor 23, respectively.
  • the inverter 11 is supported by each arm portion 7.
  • the electric motor 23 is a rotary electric machine that rotates the propeller 24 (blade). Each electric motor 23 is controlled by the inverter 11. Each electric motor 23 is supported by each arm portion 7 so that the output shaft faces in the axis P direction of the main body portion 3. A propeller 24 is connected to the output shaft of each electric motor 23. The rotor 22 generates lift in the downward direction of the axis P of the main body 3 by rotating the propeller 24 by the electric motor 23.
  • the flight body control device 25 is a device that controls the position, attitude, speed, flight direction, etc. of the flight body 1 based on a control signal or the like from the outside.
  • the flight object control device 25 may be configured such that a CPU, ROM, RAM, HDD and the like are connected by a bus, for example. Further, the flying object control device 25 may be configured by, for example, a one-chip LSI or the like.
  • the flying object control device 25 includes an inertial measurement unit, a directional sensor, and an altitude sensor.
  • the inertial measurement unit is a device that measures the angular velocity and the angular acceleration of the three axes of the flying object 1.
  • the flying object control device 25 is located on the mounting plate 5 of the flying object control device support portion 4.
  • the airframe control device 25 is supported by a mounting plate 5 via a mount member 25a for an airframe control device, which is a vibration suppression member that suppresses vibration transmitted from the airframe frame 2.
  • the vehicle body control device 25 is electrically connected to the generator control device of the generator 10, the control device of the generator engine 12, and the inverter 11 of each rotor 22.
  • the vehicle body control device 25 stores various programs and data for controlling the operation of the engine generator unit 9, each inverter 11, various measuring devices, and the like.
  • the flying object control device 25 can transmit a control signal to the generator control device of the generator 10, the control device of the generator engine 12, and the inverter 11.
  • the flying object control device 25 is electrically connected to the inertial measurement unit, the directional sensor, and the altitude sensor.
  • the flying object control device 25 can acquire the measured values of each velocity and the angular acceleration from the inertial measurement unit, acquire the directional measurement values by the directional sensor, and acquire the altitude measured values by the altitude sensor.
  • the flying object control device 25 can generate a control signal for the generator of the generator 10, the control device of the generator engine 12, and the inverter 11 from the acquired measured values.
  • the flying object control device 25 including the inertial measurement unit accurately measures each velocity and angular acceleration of the flying object 1 in flight, so that the vibration and temperature applied to the flying object control device 25 are suppressed below the threshold value. ..
  • the flying object 1 configured in this way drives the flying object control device 25, the engine generator unit 9, the rotor 22, various sensors, and the like by the electric power supplied by the battery 21.
  • the aircraft 1 charges the battery 21 by the engine generator unit 9 based on an external power command, the amount of power generation, the remaining amount of the battery 21, and the like.
  • the flying object 1 can move in an arbitrary direction at an arbitrary speed by independently changing the rotation speeds of the six rotors 22 by the flying object control device 25.
  • FIG. 5 is a partial side view showing the flow of air passing through the first radiator 14 and the second radiator 15 in the aircraft 1.
  • FIG. 6 is a schematic diagram showing the air flow due to the action of the propeller 24, the first fan 19, and the second fan 20 in the flying object 1. The arrows in FIG. 6 represent the flow of air.
  • the first radiator 14 is supported by the support legs 6 of the flight object control device support portion 4 that supports the flight object control device 25 above the main body portion 3.
  • the first radiator 14 is located between the engine generator unit 9 including the engine for the generator 12 and the flight object control device 25. Further, the first radiator 14 is located between the propeller 24 and the flying object control device 25. That is, the first radiator 14 is located below the flying object control device 25 and above the propeller 24 in the vertical direction. Further, the first radiator 14 is located outside the rotation region A (see FIGS. 1 and 3) of the propeller 24 when viewed in the rotation axis direction of the rotor 22. As a result, the exhaust air (downwash) pushed out by the rotating propeller 24 does not pass through the heat dissipation surface of the first radiator 14. That is, the first radiator 14 is not cooled by the downwash of the propeller 24.
  • the first fan 19 is located above the engine generator unit 9 and below the first radiator 14. Further, the first fan 19 is located between the propeller 24 and the first radiator 14. That is, the first fan 19 is located above the propeller 24 in the vertical direction. The first fan 19 moves the air located above the first radiator 14 below the first radiator 14. As a result, the first fan 19 allows air to pass through the heat radiating surface of the first radiator 14.
  • the first duct 17 is located above the engine generator unit 9 and below the first radiator 14. That is, the first duct 17 is located downstream of the first radiator 14 in the direction of air flow passing through the heat radiation surface of the first radiator 14.
  • the first duct 17 is a wall component constituting an exhaust passage that guides the exhaust air of the first fan 19 that has passed through the heat radiation surface of the first radiator 14 in a predetermined direction.
  • the inflow port 17a of the first duct 17 has a size sufficient to surround the heat radiation surface of the first radiator 14.
  • the inflow port 17a of the first duct 17 is located so as to overlap substantially the entire heat dissipation surface of the first radiator 14 when viewed in the direction of air flow passing through the first radiator 14. Further, the inflow port 17a of the first duct 17 is located close to the heat radiation surface of the first radiator 14. Further, the inflow port 17a of the first duct 17 is located above the propeller 24. At this time, the inflow port 17a of the first duct 17 is located so as to surround the first fan 19. That is, the first fan 19 is located inside the first duct 17. As a result, the first duct 17 suppresses the exhaust air of the first fan 19 that has passed through the heat radiation surface of the first radiator 14 from flowing out of the first duct 17.
  • the discharge port 17b of the first duct 17 is open toward the engine generator unit 9.
  • the first duct 17 guides the exhaust air of the first fan 19 that has passed through the heat radiation surface of the first radiator 14 toward the engine generator unit 9. Further, the first duct 17 suppresses the exhaust air of the first fan 19 passing through the heat radiation surface of the first radiator 14 from flowing in a direction other than the direction toward the engine generator unit 9. That is, the first duct 17 is configured so that the exhaust air of the first fan 19 does not flow toward the flying object control device 25 but flows toward the generator engine 12 of the engine generator unit 9.
  • the second radiator 15 is supported by the support legs 6 of the air vehicle control device support unit 4 that supports the air vehicle control device 25 above the main body unit 3.
  • the second radiator 15 is located between the engine generator unit 9 including the engine for generator 12 and the flight object control device 25. Further, the second radiator 15 is located between the first radiator 14 and the flying object control device 25. That is, the second radiator 15 is located below the flying object control device 25 and above the first radiator 14 and the propeller 24 in the vertical direction.
  • the second radiator 15 is arranged vertically with the first radiator 14 so that the heat radiation surface of the first radiator 14 and the heat radiation surface of the second radiator 15 are substantially parallel to each other.
  • the second radiator 15 is located outside the rotation region A of the propeller 24 when viewed in the rotation axis direction of the rotor 22 (see FIGS. 1 and 3). As a result, the exhaust air (downwash) pushed out by the rotating propeller 24 does not pass through the heat dissipation surface of the second radiator 15. The second radiator 15 is not cooled by the downwash of the propeller 24.
  • the second fan 20 is located above the first radiator 14 and below the second radiator 15. Further, the second fan 20 is located between the second radiator 15 and the first radiator 14. That is, the first fan 19 is located above the propeller 24 in the vertical direction.
  • the second fan 20 moves the air located above the second radiator 15 below the second radiator 15. As a result, the second fan 20 allows air to pass through the heat radiating surface of the second radiator 15. Further, the second fan 20 moves air toward the heat dissipation surface of the first radiator 14 located below the second radiator 15.
  • the second duct 18 is located above the first radiator 14 and below the second radiator 15. That is, the second duct 18 is located downstream of the second radiator 15 in the direction of air flow passing through the heat radiation surface of the second radiator 15.
  • the second duct 18 is a wall component constituting an exhaust passage that guides the exhaust air of the second fan 20 that has passed through the heat radiation surface of the second radiator 15 in a predetermined direction.
  • the inflow port 18a of the second duct 18 has a size sufficient to surround the heat radiation surface of the second radiator 15.
  • the inflow port 18a of the second duct 18 is located so as to overlap substantially the entire heat dissipation surface of the second radiator 15 when viewed in the direction of air flow passing through the second radiator 15. Further, the inflow port 18a of the second duct 18 is located close to the heat radiation surface of the second radiator 15. Further, the discharge port 18b of the second duct 18 is located above the first radiator 14 and the propeller 24. At this time, the inflow port 18a of the second duct 18 is located so as to surround the second fan 20. That is, the second fan 20 is located inside the second duct 18. As a result, the second duct 18 suppresses the exhaust air of the second fan 20 that has passed through the heat radiation surface of the second radiator 15 from flowing out of the second duct 18.
  • the discharge port 18b of the second duct 18 is open toward the first radiator 14.
  • the second duct 18 guides the exhaust air of the second fan 20 that has passed through the heat radiation surface of the second radiator 15 toward the first radiator 14.
  • the second duct 18 suppresses the exhaust air of the second fan 20 that has passed through the heat radiation surface of the second radiator 15 from flowing in a direction other than the direction toward the engine generator unit 9.
  • the exhaust air of the second fan 20 that has passed through the heat radiation surface of the first radiator 14 is guided in the direction toward the engine generator unit 9 by the first duct 17. That is, in the second duct 18, the exhaust air of the second fan 20 does not flow toward the flying object control device 25 but passes through the heat radiation surface of the first radiator 14 to the generator engine 12 of the engine generator unit 9. It is configured to flow toward you.
  • the rotating propeller 24 causes a downward air flow in the space above the propeller 24 by the action of sucking air.
  • the rotating first fan 19 and the second fan 20 allow air in the space above the first fan 19 and the second fan 20 to flow downward.
  • the first fan 19 and the second fan 20 which are located above the propeller 24 in the vertical direction, are located in a space where air is flowing downward due to the action of the propeller 24. That is, the first fan 19 and the second fan 20 further downwardly push out the air that has already flowed downward. At this time, the amount of air sent out from the first fan 19 and the second fan 20 toward the radiator increases. Therefore, the cooling capacity of the first radiator 14 and the second radiator 15 is improved by locating the first fan 19 and the second fan 20 above the propeller 24.
  • the rotating propeller 24 causes a downward air flow in the space around the flying object control device 25 located above the propeller 24 by the action of sucking air. Therefore, the air that has passed through the first radiator 14 and the second radiator 15 due to the action of the first fan 19 and the second fan 20 enters the flight object control device 25 located above the first radiator 14 and the second radiator 15. It is hard to flow toward.
  • the exhaust air of the first fan 19 and the second fan 20 that have passed through the first radiator 14 and the second radiator 15 is discharged by the action of the first fan 19, the second fan 20, and the propeller 24. It is configured to flow toward the generator engine 12 without flowing toward the air vehicle control device 25.
  • the flying object 1 has a first radiator 14 and a second radiator 15 having appropriate capacities for the generator engine 12 and the generator 10 having different calorific values.
  • the size of the first radiator 14 and the second radiator 15 is smaller than the radiator capable of cooling the engine generator unit 9 including the generator engine 12 and the generator 10 by itself. Therefore, the degree of freedom in arranging the first radiator 14 and the second radiator 15 with respect to the airframe frame 2 is improved.
  • first radiator 14 and the second radiator 15 are supported by the airframe frame 2, they can be freely arranged with respect to the airframe frame 2 without being affected by the position of the generator engine 12. Further, since the first radiator 14 and the second radiator 15 are cooled by the first fan 19 and the second fan 20 that can be supported at arbitrary positions of the airframe frame 2, any one above the propeller 24 in the airframe frame 2 is cooled. Can be located at.
  • the radiator mount member 16 and the air vehicle control device mount member 25a suppress the transmission of vibration from the generator engine 12 to the first radiator 14, the second radiator 15, and the air vehicle control device 25. Therefore, the first radiator 14, the second radiator 15, and the airframe control device 25 are positioned at any position above the propeller 24 in the airframe frame 2 without being affected by the vibration generated by the generator engine 12. can do.
  • the degree of freedom in arranging the first radiator 14, the second radiator 15, and the airframe control device 25 with respect to the airframe frame 2 in the airframe 1 is improved.
  • the first radiator 14 and the second radiator 15 can be positioned close to the generator engine 12 until the first fan 19 and the second fan 20 do not interfere with the generator engine 12.
  • the first radiator 14 and the second radiator 15 included in the cooling unit 8 are located between the vehicle body control device 25 and the generator engine 12. Further, the first radiator 14 and the second radiator 15 are located above the propeller 24. Similarly, the first fan 19 and the second fan 20 are located between the flying object control device 25 and the generator engine 12. Further, the first fan 19 and the second fan 20 are located above the propeller 24. Therefore, the first fan 19 and the second fan 20 allow the air in the space around the flying object control device 25 to flow toward the generator engine 12 through the first radiator 14 and the second radiator 15. Inhale and drain. As a result, it is possible to suppress the air that has passed through the first radiator 14 and the second radiator 15 from flowing toward the flying object control device 25. Further, the downward air flow generated by the action of the rotating propeller 24 can improve the cooling capacity of the first radiator 14 and the second radiator 15 by the first fan 19 and the second fan 20.
  • the cooling unit 8 has a first duct 17 which is a wall component constituting the exhaust passage of the first fan 19, and a second duct 18 which is a wall component constituting the exhaust passage of the second fan 20.
  • the first duct 17 and the second duct 18 guide the exhaust air of the first fan 19 and the second fan 20 toward the engine generator unit 9.
  • the first duct 17 and the second duct 18 regulate so that a part of the exhaust air in the first fan 19 and the second fan 20 does not go toward the flying object control device 25.
  • the weight of the flying object 1 increases even if the first duct 17 and the second duct 18 are provided. It is suppressed.
  • the exhaust air from the first fan 19 and the second fan 20 is guided to the generator engine 12 by the first duct 17 and the second duct 18. That is, in the exhaust air of the first fan 19 and the second fan 20, the first fan 19 and the second fan 20 are positioned so that the rotation axis F of the first fan 19 and the second fan 20 faces the generator engine 12. Even if it is not done, it flows toward the generator engine 12 by the first duct 17 and the second duct 18. Therefore, the first radiator 14 and the second radiator 15 can be freely positioned with respect to the machine frame 2 without being affected by the position of the generator engine 12.
  • the engine generator unit 9 moves the flying object control device 25 to a position where the radiant heat from the generator engine 12 cooled by the first radiator 14 and the generator 10 cooled by the second radiator 15 does not affect. Can be located close to.
  • the engine generator unit 9 including the flying object control device 25 and the cooling unit 8 is compactly positioned with respect to the body frame 2 while satisfying the performance of the flying object control device 25 and the performance of the engine generator unit 9.
  • the rotation axis F of the first fan 19 extends toward the first radiator 14 and the engine generator unit 9.
  • the first fan 19 is located closer to the first radiator 14 and the engine generator unit 9 than when the rotation axis F extends toward other than the first radiator 14 and the engine generator unit 9. be able to.
  • the second fan 20 is positioned so that the rotation axis F of the second fan 20 extends toward the first radiator 14 and the second radiator 15 in order to allow the exhaust air to flow toward the first radiator 14. There is.
  • the second fan 20 can be located closer to the first radiator 14 and the second radiator 15 than when the rotation axis F extends toward other than the first radiator 14 and the second radiator 15.
  • the degree of freedom in arranging the first fan 19 and the second fan 20 with respect to the machine frame 2 is improved. Therefore, the first fan 19 and the second fan 20 can be brought close to the generator engine 12 to a position where they do not interfere with the generator engine 12. As a result, while satisfying the performance of the flight object control device 25 and the performance of the engine generator, the flight object control device 25, the first fan 19, the second fan 20, and the engine engine 12 for the generator are attached to the body frame 2. By being positioned compactly, it is possible to realize an air vehicle 1 capable of reducing the size and weight of the body frame 2.
  • FIG. 7 is a partial side view showing the flow of air passing through the radiator in the flying object 1A.
  • the same components as those in the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and only the parts different from the first embodiment will be described.
  • the first radiator 26 is located between the engine generator unit 9 including the generator engine 12 and the flying object control device 25. Further, the first radiator 26 is located above the propeller 24 in the vertical direction. The first radiator 26 is positioned at an angle with respect to the axis P so as to be along the support leg 6 of the flight object control device support portion 4 that supports the flight object control device 25 above the main body portion 3. .. Specifically, the first radiator 26 is positioned so as to extend from the outer peripheral portion of the annular member of the main body portion 3 in a direction intersecting the axis P. That is, the first radiator 26 is positioned so as to be inclined in a direction away from the generator engine 12 as it goes from the flight object control device 25 toward the generator engine 12.
  • the first fan 28 is located above the engine generator unit 9, below the first radiator 26, and inward in the radial direction. Further, the first fan 28 is located above the propeller 24 in the vertical direction. The first fan 28 moves the air located above the first radiator 26 below the first radiator 26. As a result, the first fan 28 allows air to pass through the heat radiating surface of the first radiator 26.
  • the first duct 27 is located above the engine generator unit 9, below the first radiator 26, and inward in the radial direction.
  • the inflow port 27a of the first duct 27 is located close to the heat dissipation surface of the first radiator 26.
  • the discharge port 27b of the first duct 27 is open toward the engine generator unit 9. That is, the first duct 27 is positioned so as to extend from the outer peripheral portion of the annular member of the main body 3 toward the axis P of the main body 3.
  • the second radiator 29 is located between the engine generator unit 9 including the engine for the generator 12 and the flying object control device 25. Further, the second radiator 29 is located above the propeller 24 in the vertical direction. The second radiator 29 is positioned at an angle with respect to the axis P so as to be along the support leg 6 of the flight object control device support portion 4 that supports the flight object control device 25 above the main body portion 3. .. Specifically, the first radiator 26 is positioned so as to extend from the outer peripheral portion of the annular member of the main body 3 in a direction intersecting the axis P. That is, the second radiator 29 is positioned so as to be inclined in a direction away from the generator engine 12 as it goes from the flight object control device 25 toward the generator engine 12. Further, the second radiator 29 is positioned so as to face the first radiator 26 in the radial direction of the main body portion 3. As described above, the first radiator 26 and the second radiator 29 are positioned so that the weight balance in the flying object 1A is even.
  • the second fan 31 is located above the engine generator unit 9, below the second radiator 29, and inward in the radial direction. Further, the second fan 31 is located above the propeller 24 in the vertical direction. The second fan 31 moves the air located above the second radiator 29 below the second radiator 29. As a result, the second fan 31 allows air to pass through the heat radiating surface of the second radiator 29.
  • the second duct 30 is located above the engine generator unit 9, below the second radiator 29, and inward in the radial direction.
  • the inflow port 29a of the second duct 30 is located close to the heat dissipation surface of the second radiator 29.
  • the discharge port 29b of the second duct 30 is directed to the engine generator unit 9. That is, the second duct 30 is positioned so as to extend from the outer peripheral portion of the annular member of the main body 3 toward the axis P of the main body 3.
  • the flying object 1A can reduce the size and weight of the aircraft frame 2 by compactly locating the radiator while satisfying the performance of the flying object control device 25 and the performance of the engine generator. can do.
  • the main body 3 has a hexagonal columnar shape.
  • the main body may have a shape other than the hexagonal column shape.
  • the airframe frame 2 has a flight body control device support portion 4.
  • the airframe frame does not have to have an airframe control device support.
  • the flying object control device, the first radiator and the second radiator may be directly supported by, for example, the main body portion.
  • the generator engine 12 is cooled by the first radiators 14 and 26.
  • the generator 10 is cooled by the second radiators 15 and 29.
  • the generator engine and the generator may be cooled by one radiator.
  • the radiator hoses 13 of the first radiators 14 and 26 and the second radiators 15 and 29 are located along the outside of the pipe material constituting the machine body frame 2.
  • the radiator hose may be located inside the pipe material that constitutes the airframe frame.
  • the radiator hose 13 of the first radiators 14 and 26 and the second radiators 15 and 29 is a pipe through which the cooling water of the generator engine 12 and the cooling water of the generator control device of the generator 10 pass.
  • the airframe may make the radiator hose function as a vibration suppressing member by fixing the first radiator and the second radiator to the airframe frame via the radiator hose.
  • air is supplied to the first radiator 14 by the first fan 19.
  • Air is supplied to the second radiator 15 by the second fan 20.
  • the first radiator and the second radiator located side by side in the vertical direction may be supplied with air by one fan.
  • the first fans 19 and 28 are located downstream of the first radiators 14 and 26.
  • the second fans 20 and 31 are located downstream of the second radiators 15 and 29.
  • the first fan may be located upstream of the first radiator.
  • the second fan may be located upstream of the second radiator. In this case, the first fan and the second fan supply the exhaust to the first radiator or the second radiator.
  • the first fans 19 and 28 are located downstream of the first radiators 14 and 26.
  • the second fans 20 and 31 are located downstream of the second radiators 15 and 29.
  • the first fan may be located upstream of the first radiator.
  • the second fan may be located upstream of the second radiator. In this case, the first fan and the second fan supply the exhaust to the first radiator or the second radiator.
  • the first radiators 14 and 26 and the second radiators 15 and 29 are located on the machine frame 2.
  • the radiator may form part of the airframe frame.
  • the support leg of the flight object control device support portion may be composed of a first radiator and a second radiator.
  • the first radiators 14 and 26 and the second radiators 15 and 29 are supported by the support legs 6 of the flight body control device support portion 4.
  • the first radiator and the second radiator may be supported at any position on the airframe frame.
  • the exhaust air of the first fans 19, 28 and the second fans 20, 31 that have passed through the heat dissipation surfaces of the first radiators 14, 26 and the second radiators 15, 29 is first.
  • the ducts 17 and 27 and the second ducts 18 and 30 are configured to flow toward the engine generator unit 9.
  • the cooling unit may be configured so that the exhaust air of the fan that has passed through the heat dissipation surface of the radiator flows toward the generator engine without passing through the duct.
  • Generator 12 Generator engine 12a
  • Engine mount member 13 Radiator hose 14, 26 1st radiator 15, 29 2nd radiator 17, 27 1st duct 18, 30 2nd duct 19, 28 1st fan 20, 31 2nd fan 22

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

飛行体制御装置の性能及びエンジン発電機の性能を満足しつつ、飛行体制御装置及び発電機用エンジンを機体フレームに対してコンパクトに配置することにより、前記機体フレームを小型化及び軽量化することができる飛行体を提供する。機体フレーム2と、電動モータ23及びプロペラ24を含む複数のロータ22と、電動モータ23に電力を供給する発電機10と、発電機10を駆動する発電機用エンジン12と、電動モータ23及び発電機用エンジン12を制御する飛行体制御装置25と、発電機10及び発電機用エンジン12の少なくとも一つを冷却するラジエータを有する冷却部と、前記ラジエータを冷却するファンと、を有する飛行体1である。前記ファンは、鉛直方向においてプロペラ24よりも上方に位置する。前記冷却部は、前記ラジエータを通過した前記ファンの排風が飛行体制御装置25に向かって流れずに発電機用エンジン12に向かって流れる。

Description

飛行体
 本発明は、飛行体に関する。
 複数のロータを有する電動式のマルチコプター(飛行体)が知られている。マルチコプターは、航続距離を延ばすためにエネルギー密度の高い動力源を搭載することが望ましい。そこで、電動式のマルチコプターにエンジン発電機が搭載されたマルチコプターが知られている。特許文献1に開示されているマルチコプターは、機体本体部(機体フレーム)と、プロペラと電動モータとを含む8台のロータと、バッテリーと、発電機と、発電機用エンジンと、冷却ファンと、制御部(飛行体制御装置)を有している。前記機体フレームは、前記バッテリー、前記発電機及び前記発電機用エンジンが搭載されている前記機体フレームの本体部分と、前記ロータが積載されている8本のアーム部分とを備えている。特許文献1に開示されているマルチコプターは、前記発電機用エンジンによって前記発電機を駆動し、前記バッテリーを充電する。前記マルチコプターは、前記エンジン発電機を有することにより、長時間飛行を実現できる。
 前記マルチコプターの3軸方向の姿勢角、加速度等をリアルタイムで測定する前記飛行体制御装置は、外部からの制御信号に従って前記8台のロータの電動モータの出力をそれぞれ独立して制御する。前記マルチコプターの操縦者は、前記飛行体制御装置よって前記8台のロータを容易に連動して制御することができる。電子部品によって構成されている飛行体制御装置は、十分に性能を発揮させるために、振動対策及び熱対策を施すことが望ましい。エンジン発電機が搭載されるマルチコプターでは、エンジン発電機が性能を発揮し、前記マルチコプターの操作性を向上させるために、前記発電機用エンジンから発生する熱及び振動の抑制が求められる。
 特許文献1に記載のマルチコプターは、前記発電機と発電機用エンジンとを冷却ファンによって冷却している。また、特許文献2には、発電機と発電機用エンジンとの冷却効果を向上させるためにラジエータを有するマルチコプターが開示されている。特許文献2に開示されるマルチコプターは、前記発電機用エンジンの温度を低下させるラジエータと、ラジエータ冷却用ファンとを更に有している。特許文献2に開示されるマルチコプターは、前記ラジエータを搭載することにより、冷却ファンによる前記エンジン発電機の冷却よりも前記エンジン発電機を効率よく冷却することができる。
 また、非特許文献1には、エンジンの駆動力でプロペラを回転駆動するエンジン駆動式のマルチコプターが開示されている。非特許文献1に記載のマルチコプターは、機体フレームと、2つの推進用プロペラと、4つの姿勢制御用プロペラと、推進用エンジンと、ラジエータと、制御部とを有している。非特許文献1に記載のマルチコプターは、推進用エンジンをラジエータによって冷却している。前記ラジエータは、推進用プロペラの吸引作用によって生じる空気の流れによって冷却される。
特開2020-183210号公報 韓国公開特許10-2019-0084835号公報
株式会社IHIエアロスペース、"ハイブリッドドローン i-Gryphon"[online]、[令和3年11月19日検索]、インターネット<URL:https://www.ihi.co.jp/ia/products/defense/I―Gryphon/index.html>
 特許文献1に記載のマルチコプターは、冷却ファンの作用による空気の流れによって発電機及び発電機用エンジンを冷却している。このため、特許文献1に記載のマルチコプターは、周囲の環境、飛行状態等によって前記発電機及び発電機用エンジンの冷却効果が変動する。また、特許文献1に記載のマルチコプターは、前記発電機の軸部に連結された前記冷却ファンが前記機体本体部と前記発電機との間に位置している。従って、特許文献1に記載のマルチコプターは、前記機体本体部に対して、前記発電機及び発電機用エンジンを冷却するために必要な空気を前記冷却ファンが吸引可能な間隔を空けて、前記冷却ファン、前記発電機及び前記発電機用エンジンが位置している。
 特許文献2に記載のマルチコプターは、ラジエータによって発電機及び発電機用エンジンを冷却している。このため、特許文献2に記載のマルチコプターは、周囲の環境、飛行状態等による前記発電機及び前記発電機用エンジンの冷却効果の変動が少ない。特許文献2に記載のマルチコプターは、前記ラジエータ及び前記ラジエータ冷却用ファンが本体(機体フレーム)と前記発電機用エンジンとの間に位置している。前記ラジエータ用冷却ファンは、前記ラジエータを冷却するために必要な空気を本体のアームの延伸方向から吸引可能な姿勢で位置している。つまり、特許文献2に記載のマルチコプターでは、前記本体に対して、前記ラジエータ用冷却ファンが前記アームの延伸方向から空気を吸引可能な間隔を空けて、前記発電機及び前記発電機用エンジンが位置している。
 非特許文献1に記載のマルチコプターは、推進用プロペラによる空気の流れを利用して前記ラジエータを冷却している。よって、非特許文献1に記載のマルチコプターは、前記ラジエータを冷却するファンを有していない。非特許文献1に記載のマルチコプターは、前記推進用プロペラによる空気の流れの一部が前記ラジエータを通過するように、前記推進用プロペラよりも上流側に前記ラジエータ及び推進用エンジンが位置している。この際、前記ラジエータは、前記推進用プロペラの推進力を抑制しないように前記推進用プロペラによる空気の流れ方向に放熱面が沿って位置している。
 上述のような飛行体において、発電機用エンジンの熱及び振動の対策として、発電機用エンジンによる熱及び振動の影響が小さい位置に飛行体制御装置を搭載し、且つ冷却用の空気を十分に取り込み可能な状態で冷却ファン、ラジエータを搭載する場合、飛行体の機体フレームが大型化し、前記飛行体の重量が増加する。前記飛行体は、重量の増加によりペイロードが減少するだけでなく航続距離が短くなる。よって、飛行体制御装置の性能及び前記エンジン発電機の性能を満足しつつ、機体フレームを小型化及び軽量化することができる飛行体が求められている。
 本発明は、飛行体制御装置の性能及びエンジン発電機の性能を満足しつつ、前記機体フレームを小型化及び軽量化することができる飛行体を提供することを目的とする。
 本発明者らは、飛行体制御装置の性能及びエンジン発電機の性能を満足しつつ、前記機体フレームを小型化及び軽量化することができる飛行体の構成について検討した。本発明者らは、鋭意検討の結果、以下のような構成に想到した。
 本発明の一実施形態に係る飛行体は、機体フレームと、電動モータ及び前記電動モータによって回転されるプロペラを含み、揚力を発生する複数のロータと、前記電動モータに電力を供給する発電機と、前記発電機を駆動する発電機用エンジンと、前記電動モータ及び前記発電機用エンジンを制御する飛行体制御装置と、前記発電機及び前記発電機用エンジンの少なくとも一つを冷却し且つ前記ロータの回転軸線の方向に見て、前記プロペラの回転領域の外に位置するラジエータを有する冷却部と、前記ラジエータを冷却するファンと、を有する飛行体である。
 前記ファンは、鉛直方向において前記プロペラよりも上方に位置する。前記冷却部は、前記ラジエータを通過した前記ファンの排風が前記飛行体制御装置に向かって流れずに前記発電機用エンジンに向かって流れるように構成される。
 上述のように、前記飛行体は、前記発電機用エンジンの性能を発揮させるために、前記発電機及び前記発電機用エンジンを冷却するラジエータを有している。前記ラジエータは、前記ロータのプロペラが回転することにより発生する空気の流れ(ダウンウォッシュ)によって冷却されるのではなく、前記ラジエータを冷却するファンからの送風によって冷却される。また、前記ファンは、鉛直方向において前記プロペラよりも上方に位置する。前記プロペラの上方の空間は、前記プロペラの作用によって下向きの空気の流れが生じている。前記プロペラ上方の空間において、前記プロペラの作用によって生じる下方向の空気の流れは、前記ファンの作用による下方向の空気の流れと略同一の方向である。よって、前記ファンの作用によって生じる空気の流れに加え、前記プロペラの作用によって生じる空気の流れによってラジエータの冷却効果が向上する。よって、前記ラジエータは、前記機体フレームの任意の位置において支持される。従って、前記ラジエータは、前記飛行体における配置の自由度が向上する。
 また、前記ファン及び前記ラジエータは、前記ラジエータを通過して加熱された前記ファンの排風が前記飛行体制御装置に向かって流れずに前記発電機用エンジンに向かって流れるように位置する。よって、前記飛行体制御装置は、前記排風による昇温が抑制される。また、前記飛行体は、前記ラジエータによって冷却されている前記発電機用エンジンからの輻射熱の影響が及ばない位置まで、前記飛行体制御装置を前記発電機用エンジンに近づけることができる。つまり、前記飛行体は、前記飛行体制御装置、前記ラジエータ及び前記発電機用エンジンが前記機体フレームにおいてコンパクトに位置している。これにより、前記飛行体制御装置の性能及び前記エンジン発電機の性能を満足しつつ、前記機体フレームを小型化及び軽量化を可能な飛行体を実現できる。
 また、前記ファンは、排風を前記発電機用エンジンに向けて流すために、前記ファンの回転軸線が前記発電機用エンジンに向かって延びるように位置している。前記ファンは、前記回転軸線が前記発電機用エンジン以外に向かって延びている場合に比べて前記発電機用エンジンの近くに位置している。従って、前記機体フレームに対する前記ファンの配置の自由度が向上する。前記発電機用エンジンと干渉しない位置まで、前記ファンを前記発電機用エンジンに近づけることができる。これにより、前記飛行体制御装置の性能及び前記エンジン発電機の性能を満足しつつ、前記機体フレームを小型化及び軽量化を可能な飛行体を実現できる。
 他の観点によれば、本発明の飛行体は、以下の構成を含むことが好ましい。前記ラジエータは、前記機体フレームに支持される。
 上述の構成により、前記ラジエータを、前記発電機用エンジンの位置に影響を受けることなく前記機体フレームに対して自由に配置できる。よって、前記機体フレームに対する前記ラジエータの配置の自由度を向上できる。これにより、前記ファンと前記発電機用エンジンとが干渉しない位置まで、前記ラジエータを前記発電機用エンジンに近づけて位置することができる。つまり、前記飛行体は、前記飛行体制御装置、前記ラジエータ及び前記発電機用エンジンが前記機体フレームにおいてコンパクトに位置している。したがって、前記飛行体制御装置の性能及び前記エンジン発電機の性能を満足しつつ、前記機体フレームを小型化及び軽量化可能な飛行体を実現できる。
 他の観点によれば、本発明の飛行体は、以下の構成を含むことが好ましい。前記発電機用エンジン、前記ラジエータ及び前記飛行体制御装置の少なくとも一つは、前記機体フレームから伝わる振動及び前記機体フレームに伝わる振動を抑制する振動抑制部材を介して前記機体フレームに支持される。
 上述の構成により、前記振動抑制部材によって、前記発電機用エンジンから前記ラジエータ及び前記飛行体制御装置への振動の伝達が抑制される。従って、前記ラジエータ及び前記飛行体制御装置を、前記発電機用エンジンで発生する振動に影響を受けることなく、前記機体フレームに対して自由に位置することができる。よって、前記機体フレームに対する前記ラジエータ及び前記飛行体制御装置の配置の自由度を向上できる。これにより、前記ファンと前記発電機用エンジンとが干渉しない位置まで、前記ラジエータを前記発電機用エンジンに近づけて位置することができる。したがって、前記飛行体制御装置の性能及び前記エンジン発電機の性能を満足しつつ、前記機体フレームを小型化及び軽量化可能な飛行体を実現できる。
 他の観点によれば、本発明の飛行体は、以下の構成を含むことが好ましい。前記ラジエータを通過した前記ファンの排風を前記発電機用エンジンに導く排風路を構成する壁部品を有する。
 上述の構成により、前記ファンの排風は、前記排風路によって前記発電機用エンジンまで導かれる。つまり、前記ファンの排風は、前記ファンの回転軸線が前記発電機用エンジンに向くように前記ファンが位置していなくても、前記排風路によって前記飛行体制御装置に向かって流れずに前記発電機用エンジンに向かって流れる。従って、前記機体フレームに対する前記ラジエータ及び前記ファンの配置の自由度が向上する。これにより、前記飛行体制御装置の性能及び前記エンジン発電機の性能を満足しつつ、前記機体フレームを小型化及び軽量化可能な飛行体を実現できる。
 他の観点によれば、本発明の飛行体は、以下の構成を含むことが好ましい。前記壁部品の少なくとも一部は、樹脂によって構成されている。
 上述の構成により、前記飛行体は、前記排風路を有している場合でも、重量の増加が抑制される。これにより、前記飛行体制御装置の性能及び前記エンジン発電機の性能を満足しつつ、前記機体フレームを小型化及び軽量化可能な飛行体を実現できる。
 他の観点によれば、本発明の飛行体は、以下の構成を含むことが好ましい。前記ラジエータは、前記発電機用エンジンを冷却する第1ラジエータと前記発電機を冷却する第2ラジエータとの少なくとも一つを含む。前記ファンは、前記第1ラジエータを冷却する第1ファンと前記第2ラジエータを冷却する第2ファンとの少なくとも一つを含む。
 上述の構成により、発熱量の異なる前記発電機用エンジン及び前記発電機に対してそれぞれ適切な能力を有するラジエータが用いられる。前記第1ラジエータ及び前記第2ラジエータは、前記発電機用エンジン及び前記発電機を合わせて冷却するラジエータよりも小さくなるので、前記機体フレームに対する前記ラジエータの配置の自由度が向上する。つまり、前記飛行体は、前記飛行体制御装置、前記ラジエータ及び前記発電機用エンジンが前記機体フレームにおいてコンパクトに位置している。これにより、前記飛行体制御装置の性能及び前記エンジン発電機の性能を満足しつつ、前記機体フレームを小型化及び軽量化可能な飛行体を実現できる。
 他の観点によれば、本発明の飛行体は、以下の構成を含むことが好ましい。前記ラジエータは、前記飛行体制御装置と前記発電機用エンジンとの間であって、鉛直方向において前記プロペラよりも上方に位置する。
 上述の構成により、前記ファンは、前記飛行体制御装置の周辺の空気を含む空気を、前記ラジエータを通過して、前記飛行体制御装置に向かって流れずに前記発電機用エンジンに向かって流れるように吸入及び排出する。これにより、前記ラジエータを通過した空気が、前記飛行体制御装置に向かって流れるのを抑制できる。また、前記ファン及び前記ラジエータは、鉛直方向において前記プロペラよりも上方に位置する。前記プロペラの上方の空間は、前記プロペラの作用によって下向きの空気の流れが生じている。よって、前記プロペラの作用と前記ファンの作用によって生じる空気の流れによってラジエータの冷却効果が向上する。
 また、前記飛行体制御装置と前記発電機用エンジンとの間に前記ラジエータを位置することにより、前記飛行体制御装置を、前記ラジエータによって冷却されている前記発電機用エンジンからの輻射熱の影響が及ばない位置まで前記発電機用エンジンに近づけることができる。これにより、前記飛行体制御装置の性能及び前記エンジン発電機の性能を満足しつつ、前記機体フレームを小型化及び軽量化可能な飛行体を実現できる。
 他の観点によれば、本発明の飛行体は、以下の構成を含むことが好ましい。前記ラジエータは、前記飛行体を前記飛行体制御装置と前記発電機用エンジンとが並ぶ方向に直交する方向に見て、前記飛行体制御装置から前記発電機用エンジンに向かうにつれて前記発電機用エンジンから離隔するように傾いて位置する。
 上述の構成により、前記機体フレームにおける前記ラジエータを支持可能な範囲が拡大する。従って、前記機体フレームに対する前記ラジエータの配置の自由度が向上する。つまり、前記飛行体は、コンパクトに前記ラジエータが位置している。これにより、前記飛行体は、前記飛行体制御装置の性能及び前記エンジン発電機の性能を満足しつつ、前記機体フレームを小型化及び軽量化することができる。
 本明細書で使用される専門用語は、特定の実施例のみを定義する目的で使用されるのであって、前記専門用語によって発明を制限する意図はない。
 本明細書で使用される「及び/または」は、一つまたは複数の関連して列挙された構成物のすべての組み合わせを含む。
 本明細書において、「含む、備える(including)」「含む、備える(comprising)」または「有する(having)」及びそれらの変形の使用は、記載された特徴、工程、操作、要素、成分、及び/または、それらの等価物の存在を特定するが、ステップ、動作、要素、コンポーネント、及び/または、それらのグループのうちの1つまたは複数を含むことができる。
 本明細書において、「取り付けられた」、「接続された」、「結合された」、及び/または、それらの等価物は、広義の意味で使用され、“直接的及び間接的な”取り付け、接続及び結合の両方を包含する。さらに、「接続された」及び「結合された」は、物理的または機械的な接続または結合に限定されず、直接的または間接的な電気的な接続または結合を含むことができる。
 他に定義されない限り、本明細書で使用される全ての用語(技術用語及び科学用語を含む)は、本発明が属する技術分野の当業者によって一般的に理解される意味と同じ意味を有する。
 一般的に使用される辞書に定義された用語は、関連する技術及び本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、本明細書で明示的に定義されていない限り、理想的または過度に形式的な意味で解釈されることはない。
 本発明の説明においては、いくつもの技術および工程が開示されていると理解される。これらの各々は、個別の利益を有し、他に開示された技術の1つ以上、または、場合によっては全てと共に使用することもできる。
 したがって、明確にするために、本発明の説明では、不要に個々のステップの可能な組み合わせをすべて繰り返すことを控える。しかしながら、本明細書及び特許請求の範囲は、そのような組み合わせがすべて本発明の範囲内であることを理解して読まれるべきである。
 本明細書では、本発明に係る飛行体の実施形態について説明する。
 以下の説明では、本発明の完全な理解を提供するために多数の具体的な例を述べる。しかしながら、当業者は、これらの具体的な例がなくても本発明を実施できることが明らかである。
 よって、以下の開示は、本発明の例示として考慮されるべきであり、本発明を以下の図面または説明によって示される特定の実施形態に限定することを意図するものではない。
 [飛行体]
 本明細書において、飛行体とは、複数のロータを有するマルチコプターを意味する。前記複数のロータの回転軸は、略鉛直方向に向けられている。前記複数のロータは、電動モータによって駆動される。また、前記飛行体は、少なくともエンジン及び発電機を搭載し、前記発電機が発電した電力を前記電動モータに供給可能に構成されている。
 [エンジン発電機ユニット]
 本明細書において、エンジン発電機ユニットとは、ディーゼルエンジン、ガソリンエンジンなどの各種のレシプロエンジンである発電機用エンジンによって、ダイナモを駆動して発電する装置である。エンジン発電機ユニットは、外部からの電力発電要求に応じて、発電機用エンジンの回転数及び出力を制御して発電する。前記エンジン発電機ユニットは、発電機用エンジンの駆動力を前記発電機以外に供給していない。例えば、前記エンジン発電機ユニットは、マルチコプターのプロペラを回転させるための動力を出力しない。
 [飛行体制御装置]
 本明細書において、飛行体制御装置とは、前記飛行体の位置、速度、姿勢、移動方向等を制御する装置である。前記飛行体制御装置は、例えばコンピュータである。前記制御装置は、前記飛行体の姿勢等を制御するために用いられる慣性計測装置(IMU:inertial measurement unit)を含む。慣性計測装置は、例えば、角速度と加速度を検出する。
 [振動抑制部材]
 本明細書において、振動抑制部材とは、機体フレームから前記飛行体制御装置に伝達される運動エネルギー(振動)を減衰させる。また、前記発電機用エンジンから前記機体フレームに伝達される運動エネルギー(振動)を減衰させる。
 [冷却部]
 本明細書において、冷却部とは、前記発電機、前記発電機用エンジン及び前記飛行体制御装置の少なくとも一つを冷却する熱交換器と、該熱交換器を通過した機体を所定の方向に導く排風路とを含む。熱交換器は、例えばラジエータである。排風路は、例えばダクトである。
 [並ぶ方向]
 本明細書において、並ぶ方向とは、2つの物体が並んで位置している場合に、前記2つの物体が重複して見える方向をいう。
 本発明の一実施形態によれば、飛行体制御装置の性能及びエンジン発電機の性能を満足しつつ、前記機体フレームの小型化及び軽量化を可能な飛行体を実現できる。
図1は、本発明の実施形態1に係る飛行体の平面図を示す。 図2は、本発明の実施形態1に係る飛行体の側面図を示す。 図3は、本発明の実施形態1に係る飛行体の部分側面図を示す。 図4は、本発明の実施形態1に係る飛行体の部分平面図を示す。 図5は、本発明の実施形態1に係る飛行体においてラジエータを通過する空気の流れを表す部分側面図を示す。 図6は、本発明の実施形態1に係る飛行体においてプロペラとファンの作用による空気の流れを表す模式図を示す。 図7は、本発明の実施形態2に係る飛行体においてラジエータを通過する空気の流れを表す部分側面図を示す。
 以下で、各実施形態について、図面を参照しながら説明する。各図において、同一部分には同一の符号を付して、その同一部分の説明は繰り返さない。なお、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表したものではない。
 以下、飛行体1における本体部の軸線方向を「上下方向」とする。また、前記本体部の軸線は、鉛直方向に延びているものとする。飛行体1における本体部の軸線と直交する方向を「径方向」とする。
 [実施形態1]
 <飛行体の全体構成>
 図1から図4を用いて本発明の実施形態1に係る飛行体1について説明する。図1は、飛行体1の平面図である。図2は、飛行体1の側面図である。図3は、飛行体1の本体部を示す部分側面図である。図4は、飛行体1の本体部を示す部分平面図である。
 図1から図3に示すように、本発明の実施形態1に係る飛行体1は、複数のロータ22によって飛行するマルチコプターである。飛行体1は、無線による遠隔操縦及び各種センサによる自立飛行が可能に構成されている。飛行体1は、機体フレーム2、エンジン発電機ユニット9、バッテリー21、6つのロータ22及び飛行体制御装置25を備える。
 機体フレーム2は、飛行体1を構成するエンジン発電機ユニット9、バッテリー21、ロータ22及び飛行体制御装置25を支持する。機体フレーム2は、本体部3、飛行体制御装置支持部4、アーム部7を備える。機体フレーム2は、例えば、アルミニウム合金製のパイプ材によって構成されている。
 本体部3は、アーム部7、エンジン発電機ユニット9、バッテリー21及び飛行体制御装置25を支持する部分である。本体部3は、2つの六角形の環状部材の頂点同士が互いに棒状部材によって連結された枠体である。つまり、本体部3は、飛行体1を上下方向に見て、2つの六角形の環状部材の中心を通る中心線を軸線Pとして軸線P方向に延びる柱状の枠体である。本体部3には、飛行体制御装置支持部4、アーム部7が固定されている。本体部3の軸線Pが延びる方向を上下方向として2つの環状部材のうち上に位置する環状部材には、飛行体制御装置支持部4が位置している。本体部3の一方の環状部材及び他方の環状部材の各頂点には、アーム部7がそれぞれ接続されている。
 飛行体制御装置支持部4は、飛行体制御装置25を支持する。飛行体制御装置支持部4は、本体部3の2つの環状部材のうち上に位置する環状部材に取り付けられている。飛行体制御装置支持部4は、飛行体制御装置25を取り付けるための取付板5と、取付板5を支持する複数の支持脚6とを有する。取付板5は、複数の支持脚6によって、本体部3に対して支持されている。取付板5は、本体部3の上方に軸線Pと交差する位置に位置している。つまり、取付板5は、本体部3の軸線Pを中心として放射状に径方向且つ下方に延びる複数の支持脚6によって支持されている。取付板5は、例えば断熱材によって構成されている。
 アーム部7は、ロータ22を支持する。アーム部7は、棒状部材によって構成される。アーム部7は、本体部3における環状部材の各頂点に対して径方向に延びるように設けられている。つまり、複数のアーム部7は、軸線Pを中心として放射状に径方向に延びている。アーム部7は、径方向中央部分に位置するロータ22を有している。
 エンジン発電機ユニット9は、エンジンを動力源とする発電装置である。エンジン発電機ユニット9は、発電機10、発電機用制御装置(図示省略)、発電機用エンジン12、冷却部8、第1ファン19、第2ファン20、サイレンサー(図示省略)、燃料タンク(図示省略)、制御装置(図示省略)を有する。エンジン発電機ユニット9において、発電機10、発電機用エンジン12及び燃料タンクは、本体部3によって支持されている。サイレンサーは、発電機用エンジン12に支持されている。
 発電機10は、外部からの動力によって発電する。発電機10は、例えば交流発電機である。発電機10は、発電機用エンジン12のクランク軸に連結されている。発電機10は、発電機用エンジン12を動力源として発電する。発電機用制御装置は、発電機10から出力される交流電流を直流電流に変換する。発電機用制御装置は、発電機10の近傍に位置している。
 発電機用エンジン12は、発電機10を駆動する動力源である。発電機用エンジン12の前記クランク軸(出力軸)には、発電機10が連結されている。発電機用エンジン12は、前記クランク軸の回転運動によって発電機10を駆動する。
 発電機用エンジン12は、例えば、水冷のレシプロエンジンである。発電機用エンジン12は、発電機用エンジン12を制御する制御装置(図示省略)を含む。発電機用エンジン12は、本体部3に搭載されている。発電機用エンジン12は、機体フレーム2に伝わる振動を抑制する振動抑制部材であるエンジン用マウント部材12aを介して、機体フレーム2に支持されている。エンジン用マウント部材12aは、例えば円筒状のゴムマウント部材である。また、発電機用エンジン12は、排気音を抑制するサイレンサー(図示省略)、燃料タンク(図示省略)等、発電機用エンジン12が機能を発揮するために必要な装置を有している。
 発電機用エンジン12の制御装置、発電機10の制御装置である発電機用制御装置は、外部からの電力指令、発電量及びバッテリー21の残量等の情報に基づいて発電機10及び発電機用エンジン12を制御する。
 冷却部8は、発電機10及び発電機用エンジン12を冷却する。冷却部8は、第1ラジエータ14、第2ラジエータ15、第1ダクト17及び第2ダクト18を有する。
 第1ラジエータ14は、熱交換器である。第1ラジエータ14は、飛行体制御装置支持部4によって支持されている。第1ラジエータ14の熱交換を行う放熱フィンが集約されている部分において空気が通過する領域(以下、単に「第1ラジエータ14の放熱面」)は、本体部3の軸線Pに対して略直交している。第1ラジエータ14と発電機用エンジン12のウォータージャケット(図示省略)とは、ラジエータホース13によって接続されている。ラジエータホース13は、機体フレーム2を構成しているパイプ材に沿って位置している。第1ラジエータ14は、発電機用エンジン12のウォータージャケット内を通過した冷却水の熱を大気中に放熱することによって、発電機用エンジン12のシリンダブロック等を冷却する。すなわち、第1ラジエータ14は、発電機用エンジン12の冷却水を熱媒体として発電機用エンジン12を冷却する。
 第2ラジエータ15は、熱交換器である。第2ラジエータ15は、飛行体制御装置支持部4によって支持されている。第2ラジエータ15の熱交換を行う放熱フィンが集約されている部分において空気が通過する領域(以下、単に「第2ラジエータ15の放熱面」)は、本体部3の軸線Pに対して略直交している。第2ラジエータ15と発電機10及び発電機用制御装置のウォータージャケット(図示省略)とは、ラジエータホース13によって接続されている。第2ラジエータ15は、発電機10及び発電機用制御装置のウォータージャケット内を通過した冷却水の熱を大気中に放熱することによって、発電機10及び発電機用制御装置を冷却する。すなわち、第2ラジエータ15は、発電機10の冷却水を熱媒体として発電機10及び発電機用制御装置を冷却する。
 第1ラジエータ14及び第2ラジエータ15は、機体フレーム2から伝わる振動を抑制する振動抑制部材であるラジエータ用マウント部材16を介して飛行体制御装置支持部4に支持されている。ラジエータ用マウント部材16は、例えば円筒状のゴムマウント部材である。
 第1ダクト17は、第1ラジエータ14の放熱面を通過した空気の流れを、特定の方向に導く壁部品である。第1ダクト17は、両端部が開口された筒状の部材である。第1ダクト17は、第1ラジエータ14または飛行体制御装置支持部4によって支持されている。第1ダクト17の少なくとも一部は、樹脂製の壁部品を備えている。例えば、第1ダクト17は、樹脂の許容温度以下までしか温度が上昇しない部分を樹脂製の壁部品によって構成することができる。第1ダクト17は、一方の開口を流入口17aとして、流入口17aから流入した空気を特定の方向に向けられた他方の開口である排出口17bから排出する。第1ダクト17は、第1ラジエータ14の放熱面を通過する空気の流れ方向における第1ラジエータ14の下流に位置している。
 第2ダクト18は、第2ラジエータ15の放熱面を通過した空気の流れを、特定の方向に導く壁部品である。第2ダクト18は、両端部が開口された筒状の部材である。第2ダクト18は、第2ラジエータ15または飛行体制御装置支持部4によって支持されている。第2ダクト18の少なくとも一部は、樹脂製の壁部品を備えている。第2ダクト18は、一方の開口を流入口18aとして、流入口18aから流入した空気を特定の方向に向けられた他方の開口である排出口18bから排出する。第2ダクト18は、第2ラジエータ15の放熱面を通過する空気の流れ方向における第2ラジエータ15よりも下流に位置している。
 第1ファン19は、第1ラジエータ14を冷却する装置である。第1ファン19は、第1ラジエータ14または飛行体制御装置支持部4によって支持されている。第1ファン19は、第1ラジエータ14の放熱面の近傍であって、第1ラジエータ14の放熱面に向かって空気が移動するように位置している。本実施形態において、第1ファン19は、第1ラジエータ14の放熱面から空気を引き込む。つまり、第1ファン19は、第1ラジエータ14の放熱面を通過する空気の流れ方向における第1ラジエータ14の下流に位置している。第1ファン19は、第1ファン19の回転軸線Fと第1ラジエータ14の放熱面とが直交するように位置している。
 第2ファン20は、第2ラジエータ15を冷却する装置である。第2ファン20は、第2ラジエータ15または飛行体制御装置支持部4によって支持されている。第2ファン20は、第2ラジエータ15の放熱面の近傍であって、第2ラジエータ15の放熱面に向かって空気が移動するように位置している。本実施形態において、第2ファン20は、第2ラジエータ15の放熱面から空気を引き込む。つまり、第2ファン20は、第2ラジエータ15の放熱面を通過する空気の流れ方向における第2ラジエータ15の下流に位置している。第2ファン20は、第2ファン20の回転軸線Fと第2ラジエータ15の放熱面とが直交するように位置している。
 バッテリー21は、発電機10が発電した電力を蓄える。バッテリー21は、例えばリチウムイオンバッテリーである。バッテリー21は、本体部3に2台配置されている。2台のバッテリー21の間には、エンジン発電機ユニット9が位置している。つまり、2台のバッテリー21は、エンジン発電機ユニット9の重心が2台のバッテリー21間の略中央に位置するように配置されている。また、2台のバッテリー21は、エンジン発電機ユニット9に近接して配置される。
 このようにバッテリー21は、飛行体1における重量バランスが均等になるように位置している。また、バッテリー21は、始動時、低気温時においてバッテリー21の温度が低温状態であっても、発電機用エンジン12の輻射熱によって暖められるように位置している。これにより、低温時におけるバッテリー21の低温放電特性を向上させることができる。バッテリー21は、エンジン発電機ユニット9、ロータ22の電動モータ23、飛行体制御装置25等に電気的に接続され、電力を供給する。
 ロータ22は、プロペラ24(ブレード)を回転させることにより揚力を発生させる装置である。ロータ22は、アーム部7にそれぞれ位置している。6つのロータ22は、インバータ11と電動モータ23とプロペラ24とを有する。
 インバータ11は、電動モータ23に制御信号に応じた電流を供給する制御機器である。インバータ11は、電動モータ23にそれぞれ電気的に接続されている。インバータ11は、各アーム部7に支持されている。
 電動モータ23は、プロペラ24(ブレード)を回転させる回転電機である。各電動モータ23は、インバータ11によって制御される。各電動モータ23は、本体部3の軸線P方向に出力軸が向くように、各アーム部7に支持されている。各電動モータ23の出力軸には、プロペラ24が接続されている。ロータ22は、電動モータ23によってプロペラ24を回転させることにより、本体部3の軸線Pの下方向に揚力を発生させる。
 飛行体制御装置25は、外部からの制御信号等に基づいて、飛行体1の位置、姿勢、速度、飛行方向等を制御する装置である。飛行体制御装置25は、例えば、CPU、ROM、RAM、HDD等がバスによって接続される構成であってもよい。また、飛行体制御装置25は、例えば、ワンチップのLSI等によって構成されていてもよい。飛行体制御装置25には、慣性計測装置、方位センサ、高度センサが含まれる。慣性計測装置は、飛行体1の3軸の角速度、角加速度を計測する装置である。
 飛行体制御装置25は、飛行体制御装置支持部4の取付板5上に位置している。飛行体制御装置25は、機体フレーム2から伝わる振動を抑制する振動抑制部材である飛行体制御装置用マウント部材25aを介して取付板5によって支持されている。飛行体制御装置25は、発電機10の発電機用制御装置、発電機用エンジン12の制御装置、各ロータ22のインバータ11に電気的に接続されている。飛行体制御装置25は、エンジン発電機ユニット9、各インバータ11、各種計測装置等の動作を制御するために種々のプログラム、データが格納されている。
 飛行体制御装置25は、発電機10の発電機用制御装置、発電機用エンジン12の制御装置及びインバータ11に制御信号を送信することができる。飛行体制御装置25は、慣性計測装置、方位センサ、高度センサに電気的に接続されている。飛行体制御装置25は、慣性計測装置から各速度及び角加速度の計測値を取得し、方位センサによって方位の計測値を取得し、高度センサによって高度の計測値を取得することができる。飛行体制御装置25は、取得した計測値から、発電機10の発電機用制御装置、発電機用エンジン12の制御装置及びインバータ11の制御信号を生成することができる。慣性計測装置を含む飛行体制御装置25は、飛行中の飛行体1の各速度、及び角加速度を精度よく計測するため、飛行体制御装置25に加わる振動、温度が閾値以下に抑制されている。
 このように構成される飛行体1は、バッテリー21によって供給される電力によって飛行体制御装置25、エンジン発電機ユニット9、ロータ22、各種センサ等を駆動させる。飛行体1は、外部からの電力指令、発電量及びバッテリー21の残量等に基づいて、エンジン発電機ユニット9によってバッテリー21を充電する。飛行体1は、飛行体制御装置25によって6つのロータ22の回転速度を独立して変更することにより、任意の方向に任意の速度で移動することができる。
 <ファン、ラジエータ及びダクトの位置>
 次に、図5と図6とを用いて飛行体1における第1ラジエータ14、第1ダクト17及び第1ファン19の位置と、第2ラジエータ15、第2ダクト18及び第2ファン20の位置及び空気の流れについて説明する。図5は、本飛行体1において、第1ラジエータ14及び第2ラジエータ15を通過する空気の流れを表す部分側面図である。図6は、飛行体1においてプロペラ24、第1ファン19及び第2ファン20の作用による空気の流れを表す模式図である。図6中の矢印は、空気の流れを表す。
 第1ラジエータ14は、本体部3の上方で飛行体制御装置25を支持している飛行体制御装置支持部4の支持脚6によって支持されている。第1ラジエータ14は、発電機用エンジン12を含むエンジン発電機ユニット9と飛行体制御装置25との間に位置する。更に、第1ラジエータ14は、プロペラ24と飛行体制御装置25との間に位置する。つまり、第1ラジエータ14は、鉛直方向において、飛行体制御装置25の下方であってプロペラ24よりも上方に位置する。また、第1ラジエータ14は、ロータ22の回転軸線方向に見て、プロペラ24の回転領域A(図1、図3参照)の外に位置する。これにより、回転するプロペラ24によって押し出された排風(ダウンウォッシュ)は、第1ラジエータ14の放熱面を通過しない。すなわち、第1ラジエータ14は、プロペラ24のダウンウォッシュによって冷却されない。
 第1ファン19は、エンジン発電機ユニット9の上方であって第1ラジエータ14の下方に位置している。更に、第1ファン19は、プロペラ24と第1ラジエータ14との間に位置する。つまり、第1ファン19は、鉛直方向において、プロペラ24よりも上方に位置する。第1ファン19は、第1ラジエータ14の上方に位置する空気を第1ラジエータ14の下方に移動させる。これにより、第1ファン19は、第1ラジエータ14の放熱面に空気を通過させる。
 第1ダクト17は、エンジン発電機ユニット9の上方であって第1ラジエータ14の下方に位置している。つまり、第1ダクト17は、第1ラジエータ14の放熱面を通過する空気の流れ方向における第1ラジエータ14の下流に位置している。第1ダクト17は、第1ラジエータ14の放熱面を通過した第1ファン19の排風を所定の方向に導く排風路を構成する壁部品である。
 第1ダクト17の流入口17aは、第1ラジエータ14の放熱面を囲うことができる程度の大きさを有する。第1ダクト17の流入口17aは、第1ラジエータ14を通過する空気の流れ方向に見て、第1ラジエータ14の放熱面の略全体に重複するように位置している。また、第1ダクト17の流入口17aは、第1ラジエータ14の放熱面に近接して位置している。更に、第1ダクト17の流入口17aは、プロペラ24よりも上方に位置する。この際、第1ダクト17の流入口17aは、第1ファン19を囲うように位置している。つまり、第1ファン19は、第1ダクト17の内部に位置している。これにより、第1ダクト17は、第1ラジエータ14の放熱面を通過した第1ファン19の排風が第1ダクト17の外に流れるのを抑制している。第1ダクト17の排出口17bは、エンジン発電機ユニット9に向かって開口している。
 第1ダクト17は、第1ラジエータ14の放熱面を通過した第1ファン19の排風をエンジン発電機ユニット9の方向に導く。また、第1ダクト17は、第1ラジエータ14の放熱面を通過した第1ファン19の排風がエンジン発電機ユニット9に向かう方向以外の方向に流れるのを抑制する。つまり、第1ダクト17は、第1ファン19の排風が飛行体制御装置25に向かって流れずにエンジン発電機ユニット9の発電機用エンジン12に向かって流れるように構成されている。
 第2ラジエータ15は、本体部3の上方で飛行体制御装置25を支持している飛行体制御装置支持部4の支持脚6によって支持されている。第2ラジエータ15は、発電機用エンジン12を含むエンジン発電機ユニット9と飛行体制御装置25との間に位置する。更に、第2ラジエータ15は、第1ラジエータ14と飛行体制御装置25との間に位置する。つまり、第2ラジエータ15は、鉛直方向において、飛行体制御装置25の下方であって第1ラジエータ14及びプロペラ24よりも上方に位置する。第2ラジエータ15は、第1ラジエータ14と上下方向に並び且つ第1ラジエータ14の放熱面と第2ラジエータ15の放熱面とが略平行になるように位置している。また、第2ラジエータ15は、ロータ22の回転軸線方向に見て、プロペラ24の回転領域Aの外に位置する(図1、図3参照)。これにより、回転するプロペラ24によって押し出された排風(ダウンウォッシュ)は、第2ラジエータ15の放熱面を通過しない。第2ラジエータ15は、プロペラ24のダウンウォッシュによって冷却されない。
 第2ファン20は、第1ラジエータ14の上方であって第2ラジエータ15の下方に位置している。更に、第2ファン20は、第2ラジエータ15と第1ラジエータ14との間に位置する。つまり、第1ファン19は、鉛直方向において、プロペラ24よりも上方に位置する。第2ファン20は、第2ラジエータ15の上方に位置する空気を第2ラジエータ15の下方に移動させる。これにより、第2ファン20は、第2ラジエータ15の放熱面に空気を通過させる。更に、第2ファン20は、第2ラジエータ15の下方に位置する第1ラジエータ14の放熱面に向かって空気を移動させる。
 第2ダクト18は、第1ラジエータ14の上方であって第2ラジエータ15の下方に位置している。つまり、第2ダクト18は、第2ラジエータ15の放熱面を通過する空気の流れ方向における第2ラジエータ15の下流に位置している。第2ダクト18は、第2ラジエータ15の放熱面を通過した第2ファン20の排風を所定の方向に導く排風路を構成する壁部品である。
 第2ダクト18の流入口18aは、第2ラジエータ15の放熱面を囲うことができる程度の大きさを有する。第2ダクト18の流入口18aは、第2ラジエータ15を通過する空気の流れ方向に見て、第2ラジエータ15の放熱面の略全体に重複するように位置している。また、第2ダクト18の流入口18aは、第2ラジエータ15の放熱面に近接して位置している。更に、第2ダクト18の排出口18bは、第1ラジエータ14及びプロペラ24よりも上方に位置する。この際、第2ダクト18の流入口18aは、第2ファン20を囲うように位置している。つまり、第2ファン20は、第2ダクト18の内部に位置している。これにより、第2ダクト18は、第2ラジエータ15の放熱面を通過した第2ファン20の排風が第2ダクト18の外に流れるのを抑制している。第2ダクト18の排出口18bは、第1ラジエータ14に向かって開口している。
 第2ダクト18は、第2ラジエータ15の放熱面を通過した第2ファン20の排風を第1ラジエータ14の方向に導く。第2ダクト18は、第2ラジエータ15の放熱面を通過した第2ファン20の排風がエンジン発電機ユニット9に向かう方向以外の方向に流れるのを抑制する。また、第1ラジエータ14の放熱面を通過した第2ファン20の排風は、第1ダクト17によってエンジン発電機ユニット9に向かう方向に導かれる。つまり、第2ダクト18は、第2ファン20の排風が飛行体制御装置25に向かって流れずに第1ラジエータ14の放熱面を通過してエンジン発電機ユニット9の発電機用エンジン12に向かって流れるように構成されている。
 図6に示すように、回転しているプロペラ24は、空気を吸引する作用によって、プロペラ24の上方の空間に下方向への空気の流れを生じさせている。また、回転している第1ファン19及び第2ファン20は、第1ファン19及び第2ファン20の上方の空間の空気を下向きに流す。このように、回転する第1ファン19及び第2ファン20の上方の空間における空気と回転するプロペラ24の上方の空間における空気とは、略同一の下方向に流れる。鉛直方向においてプロペラ24よりも上方に位置する第1ファン19及び第2ファン20は、プロペラ24の作用によって下向きに空気が流れている空間内に位置している。つまり、第1ファン19及び第2ファン20は、既に下方向に流れている空気を更に下向きに押し出す。この際、第1ファン19及び第2ファン20は、ラジエータに向かって送り出し空気量が増大する。よって、第1ラジエータ14及び第2ラジエータ15は、第1ファン19及び第2ファン20がプロペラ24の上方に位置することで、冷却能力が向上する。
 一方、プロペラ24の作用によってプロペラ24の下方に送り出された空気の一部は、エンジン発電機ユニット9に向かって流れる。第1ファン19及び第2ファン20がプロペラ24よりも下方に位置する場合、エンジン発電機ユニット9に向かって流れる空気の流れは、第1ファン19及び第2ファン20による下方向の空気の流れを乱す。よって、第1ラジエータ14及び第2ラジエータ15は、第1ファン19及び第2ファン20がプロペラ24の下方に位置する場合、冷却能力が低下する。
 また、回転するプロペラ24は、空気を吸引する作用によって、プロペラ24の上方に位置する飛行体制御装置25の周囲の空間に下方向への空気の流れを生じさせている。よって、第1ファン19及び第2ファン20の作用によって第1ラジエータ14及び第2ラジエータ15を通過した空気は、第1ラジエータ14及び第2ラジエータ15よりも上方に位置する飛行体制御装置25に向かって流れにくい。このように、飛行体1は、第1ファン19、第2ファン20及びプロペラ24の作用により、第1ラジエータ14及び第2ラジエータ15を通過した第1ファン19及び第2ファン20の排風が飛行体制御装置25に向かって流れずに発電機用エンジン12に向かって流れるように構成される。
 上述のように、飛行体1は、発熱量の異なる前記発電機用エンジン12及び前記発電機10に対してそれぞれ適切な能力を備える第1ラジエータ14及び第2ラジエータ15を有している。第1ラジエータ14及び第2ラジエータ15のサイズは、単体で発電機用エンジン12及び発電機10を含むエンジン発電機ユニット9を冷却可能なラジエータよりも小さい。よって、機体フレーム2に対する第1ラジエータ14及び第2ラジエータ15の配置の自由度が向上する。
 第1ラジエータ14及び第2ラジエータ15は、機体フレーム2によって支持されているので、発電機用エンジン12の位置に影響を受けることなく機体フレーム2に対して自由に配置できる。また、第1ラジエータ14及び第2ラジエータ15は、機体フレーム2の任意の位置に支持可能な第1ファン19及び第2ファン20によって冷却されるので、機体フレーム2におけるプロペラ24よりも上方の任意の箇所に位置することができる。
 更に、ラジエータ用マウント部材16及び飛行体制御装置用マウント部材25aによって、発電機用エンジン12から、第1ラジエータ14、第2ラジエータ15及び飛行体制御装置25に対する振動の伝達が抑制される。従って、第1ラジエータ14、第2ラジエータ15及び飛行体制御装置25を、発電機用エンジン12によって発生する振動に影響を受けることなく、機体フレーム2におけるプロペラ24よりも上方の任意の箇所に位置することができる。
 従って、飛行体1における機体フレーム2に対する第1ラジエータ14、第2ラジエータ15及び飛行体制御装置25の配置の自由度が向上する。これにより、第1ファン19と第2ファン20とが発電機用エンジン12とが干渉しない位置まで、第1ラジエータ14及び第2ラジエータ15を発電機用エンジン12に近づけて位置することができる。
 冷却部8に含まれる第1ラジエータ14及び第2ラジエータ15は、飛行体制御装置25と発電機用エンジン12との間に位置する。また、第1ラジエータ14及び第2ラジエータ15は、プロペラ24よりも上方に位置する。同様に、第1ファン19及び第2ファン20は、飛行体制御装置25と発電機用エンジン12との間に位置する。また、第1ファン19及び第2ファン20は、プロペラ24よりも上方に位置する。よって、第1ファン19及び第2ファン20は、飛行体制御装置25の周辺の空間内の空気を、第1ラジエータ14及び第2ラジエータ15を通過して発電機用エンジン12に向かって流れるように吸入及び排出する。これにより、第1ラジエータ14及び第2ラジエータ15を通過した空気が、飛行体制御装置25に向かって流れるのを抑制できる。また、回転するプロペラ24の作用によって生じる下方向の空気の流れにより、第1ファン19及び第2ファン20による第1ラジエータ14及び第2ラジエータ15の冷却能力を向上することができる。
 冷却部8は、第1ファン19の排風路を構成する壁部品である第1ダクト17及び第2ファン20の排風路を構成する壁部品である第2ダクト18を有する。第1ダクト17及び第2ダクト18は、第1ファン19及び第2ファン20の排風をエンジン発電機ユニット9に向かうように導く。第1ダクト17及び第2ダクト18は、第1ファン19及び第2ファン20における排風の一部が飛行体制御装置25に向かわないように規制している。これにより、第1ファン19及び第2ファン20の排風による飛行体制御装置25の昇温を抑制することができる。また、第1ダクト17及び第2ダクト18の少なくとも一部の壁部品を樹脂によって構成した場合、飛行体1は、第1ダクト17及び第2ダクト18を有していても、重量の増加が抑制される。
 また、第1ファン19及び第2ファン20の排風は、第1ダクト17及び第2ダクト18によって発電機用エンジン12まで導かれる。つまり、第1ファン19及び第2ファン20の排風は、第1ファン19及び第2ファン20の回転軸線Fが発電機用エンジン12に向くように第1ファン19及び第2ファン20が位置していなくても、第1ダクト17及び第2ダクト18によって発電機用エンジン12に向かって流れる。従って、第1ラジエータ14及び第2ラジエータ15を発電機用エンジン12の位置に影響を受けることなく機体フレーム2に対して自由に位置することができる。
 よって、第1ラジエータ14によって冷却されている発電機用エンジン12と第2ラジエータ15によって冷却されている発電機10からの輻射熱の影響が及ばない位置まで飛行体制御装置25をエンジン発電機ユニット9に近づけて位置することができる。これにより、飛行体制御装置25の性能及びエンジン発電機ユニット9の性能を満足しつつ、飛行体制御装置25、冷却部8を含むエンジン発電機ユニット9を機体フレーム2に対してコンパクトに位置することにより、機体フレーム2を小型化及び軽量化を可能な飛行体1を実現できる。
 更に、第1ファン19の回転軸線Fは、第1ラジエータ14及びエンジン発電機ユニット9に向かって延びている。これにより、第1ファン19は、回転軸線Fが第1ラジエータ14及びエンジン発電機ユニット9以外に向かって延びている場合に比べて、第1ラジエータ14及びエンジン発電機ユニット9の近くに位置することができる。
 同様に、第2ファン20は、排風を第1ラジエータ14に向かって流すために、第2ファン20の回転軸線Fが第1ラジエータ14と第2ラジエータ15に向かって延びるように位置している。第2ファン20は、前記回転軸線Fが第1ラジエータ14及び第2ラジエータ15以外に向かって延びている場合に比べて、第1ラジエータ14及び第2ラジエータ15の近くに位置することができる。
 従って、機体フレーム2に対する第1ファン19及び第2ファン20の配置の自由度が向上する。よって、発電機用エンジン12と干渉しない位置まで、第1ファン19及び第2ファン20を発電機用エンジン12に近づけることができる。これにより、飛行体制御装置25の性能及び前記エンジン発電機の性能を満足しつつ、飛行体制御装置25、第1ファン19、第2ファン20及び発電機用エンジン12を機体フレーム2に対してコンパクトに位置することにより、機体フレーム2を小型化及び軽量化を可能な飛行体1を実現できる。
 [実施形態2]
 次に図7を用いて本発明の実施形態2に係る飛行体1Aについて説明する。図7は、飛行体1Aにおいてラジエータを通過する空気の流れを表す部分側面図である。以下の説明において、実施形態1と同様の構成には同一の符号を付して説明を省略し、実施形態1と異なる部分についてのみ説明する。
 <ラジエータ及びダクトの配置>
 第2実施形態に係る飛行体1Aにおける第1ラジエータ26、第1ダクト27及び第1ファン28の位置と、第2ラジエータ29、第2ダクト30及び第2ファン31の位置について説明する。
 図7に示すように、第1ラジエータ26は、発電機用エンジン12を含むエンジン発電機ユニット9と飛行体制御装置25との間に位置する。また、第1ラジエータ26は、鉛直方向においてプロペラ24よりも上方に位置する。第1ラジエータ26は、本体部3の上方で飛行体制御装置25を支持している飛行体制御装置支持部4の支持脚6に沿うように、軸線Pに対して傾斜して位置している。具体的には、第1ラジエータ26は、本体部3の環状部材の外形部分から軸線Pに対して交差する方向に向かって延びるように傾斜して位置している。つまり、第1ラジエータ26は、飛行体制御装置25から発電機用エンジン12に向かうにつれて発電機用エンジン12から離隔する方向に傾斜して位置している。
 第1ファン28は、エンジン発電機ユニット9の上方であって第1ラジエータ26の下方且つ径方向内方に位置している。また、第1ファン28は、鉛直方向においてプロペラ24よりも上方に位置する。第1ファン28は、第1ラジエータ26の上方に位置する空気を第1ラジエータ26の下方に移動させる。これにより、第1ファン28は、第1ラジエータ26の放熱面に対して空気を通過させる。
 第1ダクト27は、エンジン発電機ユニット9の上方であって第1ラジエータ26の下方且つ径方向内方に位置している。第1ダクト27の流入口27aは、第1ラジエータ26の放熱面に近接して位置している。第1ダクト27の排出口27bは、エンジン発電機ユニット9に向かって開口している。つまり、第1ダクト27は、本体部3の環状部材の外周部分から本体部3の軸線Pに向かって延びるように傾斜して位置している。
 第2ラジエータ29は、発電機用エンジン12を含むエンジン発電機ユニット9と飛行体制御装置25との間に位置する。また、第2ラジエータ29は、鉛直方向においてプロペラ24よりも上方に位置する。第2ラジエータ29は、本体部3の上方で飛行体制御装置25を支持している飛行体制御装置支持部4の支持脚6に沿うように、軸線Pに対して傾斜して位置している。具体的には、第1ラジエータ26は、本体部3の環状部材の外周部分から軸線Pに対して交差する方向に向かって延びるように傾斜して位置している。つまり、第2ラジエータ29は、飛行体制御装置25から発電機用エンジン12に向かうにつれて発電機用エンジン12から離隔する方向に傾斜して位置している。また、第2ラジエータ29は、本体部3の径方向に第1ラジエータ26と向かい合うように位置している。このように第1ラジエータ26と第2ラジエータ29とは、飛行体1Aにおける重量バランスが均等になるように位置している。
 第2ファン31は、エンジン発電機ユニット9の上方であって第2ラジエータ29の下方且つ径方向内方に位置している。また、第2ファン31は、鉛直方向においてプロペラ24よりも上方に位置する。第2ファン31は、第2ラジエータ29の上方に位置する空気を第2ラジエータ29の下方に移動させる。これにより、第2ファン31は、第2ラジエータ29の放熱面に対して空気を通過させる。
 第2ダクト30は、エンジン発電機ユニット9の上方であって第2ラジエータ29の下方且つ径方向内方に位置している。第2ダクト30の流入口29aは、第2ラジエータ29の放熱面に近接して位置している。第2ダクト30の排出口29bは、エンジン発電機ユニット9に向けられている。つまり、第2ダクト30は、本体部3の環状部材の外周部分から本体部3の軸線Pに向かって延びるように傾斜して位置している。
 このように第1ラジエータ26及び第2ラジエータ29を機体フレーム2に沿って位置することにより、機体フレーム2におけるラジエータの配置可能な範囲が拡大する。また、機体フレーム2に対する位置の自由度が向上している第1ラジエータ26及び第2ラジエータ29を、本体部3又は飛行体制御装置支持部4の外形部分に沿うように設けることで本体部3の上方に様々な装置を配置可能な空間を確保することができる。従って、これにより、前記飛行体1Aは、前記飛行体制御装置25の性能及び前記エンジン発電機の性能を満足しつつ、コンパクトに前記ラジエータを位置することにより前記機体フレーム2を小型化及び軽量化することができる。
 (その他の実施形態)
 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
 前記各実施形態では、本体部3は六角柱形状の形状を有している。しかしながら本体部は、六角柱形状以外の形状でもよい。
 前記各実施形態では、機体フレーム2は、飛行体制御装置支持部4を有している。しかしながら、機体フレームは、飛行体制御装置支持部を有していなくてもよい。この場合、飛行体制御装置、第1ラジエータ及び第2ラジエータは、例えば本体部に直接支持されていてもよい。
 前記各実施形態では、発電機用エンジン12は、第1ラジエータ14、26によって冷却される。発電機10は、第2ラジエータ15、29によって冷却される。しかしながら、発電機用エンジンと発電機とは、一つのラジエータによって冷却されてもよい。
 前記各実施形態では、第1ラジエータ14、26及び第2ラジエータ15、29のラジエータホース13は、機体フレーム2を構成しているパイプ材の外部に沿うように位置している。しかしながら、ラジエータホースは、機体フレームを構成しているパイプ材の内部に位置していてもよい。
 前記各実施形態では、第1ラジエータ14、26及び第2ラジエータ15、29のラジエータホース13は、発電機用エンジン12の冷却水及び発電機10の発電機用制御装置の冷却水が通過する配管としての機能している。しかしながら、飛行体は、ラジエータホースを介して第1ラジエータ及び第2ラジエータを機体フレームに固定することで、ラジエータホースを振動抑制部材として機能させてもよい。
 前記実施形態1では、第1ラジエータ14は、第1ファン19によって空気が供給される。第2ラジエータ15は、第2ファン20によって空気が供給される。しかしながら、上下方向に並んで位置する第1ラジエータと第2ラジエータとは、一つのファンによって空気を供給してもよい。
 前記各実施形態では、第1ファン19、28は、第1ラジエータ14、26の下流に位置している。第2ファン20、31は、第2ラジエータ15、29の下流に位置している。しかしながら、第1ファンは、第1ラジエータの上流に位置してもよい。また、第2ファンは、第2ラジエータの上流に位置してもよい。この場合、第1ファン及び第2ファンは、排気を第1ラジエータまたは第2ラジエータに供給する。
 前記各実施形態では、第1ファン19、28は、第1ラジエータ14、26の下流に位置している。第2ファン20、31は、第2ラジエータ15、29の下流に位置している。しかしながら、第1ファンは、第1ラジエータの上流に位置してもよい。また、第2ファンは、第2ラジエータの上流に位置してもよい。この場合、第1ファン及び第2ファンは、排気を第1ラジエータまたは第2ラジエータに供給する。
 前記各実施形態では、機体フレーム2に第1ラジエータ14、26及び第2ラジエータ15、29が位置している。しかしながら、ラジエータが機体フレームの一部を構成してもよい。例えば、飛行体制御装置支持部の支持脚は、第1ラジエータと第2ラジエータとによって構成されていてもよい。
 前記各実施形態では、第1ラジエータ14、26及び第2ラジエータ15、29は、飛行体制御装置支持部4の支持脚6に支持されている。しかしながら、第1ラジエータ及び第2ラジエータは、機体フレームの任意の位置に支持されていてもよい。
 前記各実施形態では、冷却部8は、第1ラジエータ14、26及び第2ラジエータ15、29の放熱面を通過した第1ファン19、28及び第2ファン20、31の排風が、第1ダクト17、27及び第2ダクト18、30によってエンジン発電機ユニット9に向かって流れるように構成されている。しかしながら、冷却部は、ラジエータの放熱面を通過したファンの排風がダクトを通過せずに前記発電機用エンジンに向かって流れるように構成されていてもよい。
  1、1A  飛行体
  2  機体フレーム
  3  本体部
  4  飛行体制御装置支持部
  7  アーム部
  9  エンジン発電機ユニット
 10  発電機
 12  発電機用エンジン
 12a エンジンマウント用部材
 13  ラジエータホース
 14、26  第1ラジエータ
 15、29  第2ラジエータ
 17、27  第1ダクト
 18、30  第2ダクト
 19、28  第1ファン
 20、31  第2ファン
 22  ロータ
 24  プロペラ
 25a  飛行体制御装置用マウント部材
  P  軸線

Claims (8)

  1.  機体フレームと、
     電動モータ及び前記電動モータによって回転されるプロペラを含み、揚力を発生する複数のロータと、
     前記電動モータに電力を供給する発電機と、
     前記発電機を駆動する発電機用エンジンと、
     前記電動モータ及び前記発電機用エンジンを制御する飛行体制御装置と、
     前記発電機及び前記発電機用エンジンの少なくとも一つを冷却し且つ前記ロータの回転軸線の方向に見て、前記プロペラの回転領域の外に位置するラジエータを有する冷却部と、
     前記ラジエータを冷却するファンと、
     を有する飛行体であって、
     前記ファンは、
     鉛直方向において前記プロペラよりも上方に位置し、
     前記冷却部は、
     前記ラジエータを通過した前記ファンの排風が前記飛行体制御装置に向かって流れずに前記発電機用エンジンに向かって流れるように構成される、
    飛行体。
  2.  請求項1に記載の飛行体において、
     前記ラジエータは、
     前記機体フレームに支持される、
     飛行体。
  3.  請求項1または2に記載の飛行体において、
     前記発電機用エンジン、前記ラジエータ及び前記飛行体制御装置の少なくとも一つは、
     前記機体フレームから伝わる振動及び前記機体フレームに伝わる振動を抑制する振動抑制部材を介して前記機体フレームに支持される、
    飛行体。
  4.  請求項1から3のいずれか一項に記載の飛行体において、
     前記冷却部は、前記ラジエータを通過した前記ファンの排風を前記発電機用エンジンに導く排風路を構成する壁部品を有する、
    飛行体。
  5.  請求項4に記載の飛行体において、
     前記壁部品の少なくとも一部は、樹脂によって構成されている、
    飛行体。
  6.  請求項1から5のいずれか一つに記載の飛行体において、
     前記ラジエータは、
     前記発電機用エンジンを冷却する第1ラジエータと前記発電機を冷却する第2ラジエータとの少なくとも一つを含み、
     前記ファンは、
     前記第1ラジエータを冷却する第1ファンと前記第2ラジエータを冷却する第2ファンとの少なくとも一つを含む、
    飛行体。
  7.  請求項1から6のいずれか一項に記載の飛行体において、
     前記ラジエータは、
     前記飛行体制御装置と前記発電機用エンジンとの間であって、鉛直方向において前記プロペラよりも上方に位置する、
    飛行体。
  8.  請求項7に記載の飛行体において、
     前記ラジエータは、
     前記飛行体制御装置から前記発電機用エンジンに向かうにつれて前記発電機用エンジンから離隔する方向に傾斜して位置する、
    飛行体。
PCT/JP2021/044743 2020-12-23 2021-12-06 飛行体 WO2022138115A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022535632A JP7231791B2 (ja) 2020-12-23 2021-12-06 飛行体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2020/048204 2020-12-23
PCT/JP2020/048204 WO2022137392A1 (ja) 2020-12-23 2020-12-23 飛行体

Publications (1)

Publication Number Publication Date
WO2022138115A1 true WO2022138115A1 (ja) 2022-06-30

Family

ID=82158715

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/048204 WO2022137392A1 (ja) 2020-12-23 2020-12-23 飛行体
PCT/JP2021/044743 WO2022138115A1 (ja) 2020-12-23 2021-12-06 飛行体

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048204 WO2022137392A1 (ja) 2020-12-23 2020-12-23 飛行体

Country Status (2)

Country Link
JP (1) JP7231791B2 (ja)
WO (2) WO2022137392A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106043680A (zh) * 2016-07-28 2016-10-26 易瓦特科技股份公司 航空发动机
CN209650540U (zh) * 2018-12-18 2019-11-19 广州市华科尔科技股份有限公司 一种植保无人机旋翼组件
JP2020183210A (ja) * 2019-05-09 2020-11-12 愛三工業株式会社 マルチコプタ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106043680A (zh) * 2016-07-28 2016-10-26 易瓦特科技股份公司 航空发动机
CN209650540U (zh) * 2018-12-18 2019-11-19 广州市华科尔科技股份有限公司 一种植保无人机旋翼组件
JP2020183210A (ja) * 2019-05-09 2020-11-12 愛三工業株式会社 マルチコプタ

Also Published As

Publication number Publication date
WO2022137392A1 (ja) 2022-06-30
JPWO2022138115A1 (ja) 2022-06-30
JP7231791B2 (ja) 2023-03-01

Similar Documents

Publication Publication Date Title
EP3505449B1 (en) Heat dissipation system for electric aircraft engine
CN105408207B (zh) 用于飞行器的电力推进组件
JP7233170B2 (ja) 航空機のための推進システム
EP3486170B1 (en) Air management systems for stacked motor assemblies
US8026644B2 (en) Electric propulsion system useful in jet-type model airplanes and UAVS
CN108974348A (zh) 使用电分布式反扭矩发电机和反向电动马达推力来使主旋翼减速的旋翼制动效果
US10608505B1 (en) Cooling motor controller with a motor with duct
US20130264861A1 (en) Wheel assembly of in-wheel system
JP2015522751A (ja) 航空機エンジンのコンピュータを換気しかつ給電する装置
JP5534934B2 (ja) インホイールモータ冷却構造
JP2020131781A (ja) 飛行体
EP3764523B1 (en) Electric machine with integrated cooling system
WO2022138115A1 (ja) 飛行体
US11725882B2 (en) Cooling system for rotor hub mounted component
CN110259579A (zh) 燃气涡轮发电装置及飞行器
WO2022178452A1 (en) Range extending energy pod (reep) for an aircraft
JP2024510491A (ja) ハイブリッド式発電装置の複数の要素の同時空冷
JP2021090315A (ja) エンジン駆動式発電装置
WO2024048342A1 (ja) 駆動装置
WO2024048341A1 (ja) 駆動装置
US20230192310A1 (en) Cooling system, motor mount, and propeller device
CN214241252U (zh) 一种飞行器电力推进器散热系统
WO2023210316A1 (ja) 駆動装置及び駆動装置ユニット
CN211391716U (zh) 一种易于散热的无人机
WO2024004402A1 (ja) 推進装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022535632

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910265

Country of ref document: EP

Kind code of ref document: A1