WO2022137827A1 - Granule inspection device, raising/lowering equipment for conveying granules, and scraper for raising/lowering equipment - Google Patents

Granule inspection device, raising/lowering equipment for conveying granules, and scraper for raising/lowering equipment Download PDF

Info

Publication number
WO2022137827A1
WO2022137827A1 PCT/JP2021/040702 JP2021040702W WO2022137827A1 WO 2022137827 A1 WO2022137827 A1 WO 2022137827A1 JP 2021040702 W JP2021040702 W JP 2021040702W WO 2022137827 A1 WO2022137827 A1 WO 2022137827A1
Authority
WO
WIPO (PCT)
Prior art keywords
granules
inspection
unit
sensor
output
Prior art date
Application number
PCT/JP2021/040702
Other languages
French (fr)
Japanese (ja)
Inventor
井上浩典
今村昌平
前田剛志
黒水泰守
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020214384A external-priority patent/JP7510870B2/en
Priority claimed from JP2021002877A external-priority patent/JP7482799B2/en
Priority claimed from JP2021002878A external-priority patent/JP7433257B2/en
Priority claimed from JP2021002876A external-priority patent/JP2022108063A/en
Priority claimed from JP2021002875A external-priority patent/JP7482798B2/en
Priority claimed from JP2021002879A external-priority patent/JP7433258B2/en
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Publication of WO2022137827A1 publication Critical patent/WO2022137827A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G17/00Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface
    • B65G17/12Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface comprising a series of individual load-carriers fixed, or normally fixed, relative to traction element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G65/00Loading or unloading
    • B65G65/30Methods or devices for filling or emptying bunkers, hoppers, tanks, or like containers, of interest apart from their use in particular chemical or physical processes or their application in particular machines, e.g. not covered by a single other subclass
    • B65G65/34Emptying devices
    • B65G65/40Devices for emptying otherwise than from the top
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids

Definitions

  • the present invention relates to a granular material inspection device, an elevator for transporting granular materials, and a scraper for the elevator.
  • Patent Document 1 describes a granular material sorting apparatus.
  • the transfer means (vibration feeder, shooter, etc.) passes the rice grains in a single layer state and spreads in a plurality of rows in the horizontal direction through the measurement target location.
  • Light from the measurement target location is incident on a light receiving device provided with a plurality of unit light receiving units (pixels). Based on the output of each unit light receiving unit, it is determined whether or not the rice grain is defective.
  • the rice grains determined to be defective are separated from other rice grains by an air blowing device at a separation point downstream of the measurement target point.
  • the granular material sorting device of Patent Document 1 includes a feeding transport device, a transport means, a light receiving device, and an air blowing device one by one.
  • the rice grains are supplied from the supply transportation device to the transfer means via the storage hopper.
  • the present invention relates to an elevator for transporting granules such as brown rice, paddy, and rice grains by a bucket, and a scraper used for the elevator.
  • the elevator for transporting granules of Patent Document 2 includes a belt entwined between a pair of pulleys, and a plurality of buckets attached to the belt at appropriate intervals by a connecting tool on the back surface thereof. Granules are transported by the bucket.
  • the elevator for transporting granules of Patent Document 2 includes a scraper bucket in which a scraper for scooping up the granules staying in the main body case is attached to a part of the buckets among the plurality of buckets.
  • the scraper bucket collects the granules collected at the bottom of the main body case by scooping them up with a scraper.
  • the granule inspection device In order to increase the processing capacity (the amount of granules that can be processed per unit time), it is conceivable to equip the granule inspection device with a plurality of inspection units that inspect the granules and detect defective products. In this case, the granules charged into the granule inspection device are distributed to a plurality of inspection units. Then, each inspection unit inspects the distributed granules. Since the defect rate (ratio of defective products contained) of the granules inspected by each inspection unit is the same in principle, the sorting sensitivity when the inspection unit is operated (the number of defective products detected per unit time). Is preferably the same among multiple inspection units.
  • each inspection unit may differ due to individual differences in the inspection units (for example, individual differences in the sensitivity of the light receiving device, individual differences in the brightness of the illumination, individual differences in the vibration intensity of the vibration feeder, etc.).
  • individual differences in the inspection units for example, individual differences in the sensitivity of the light receiving device, individual differences in the brightness of the illumination, individual differences in the vibration intensity of the vibration feeder, etc.
  • the inspection population a group of granules input to the granule inspection device
  • the number of granules judged to be defective by one inspection unit is different from the number of granules.
  • the situation is different from the number of granules judged to be defective by the inspection unit.
  • the inspection unit detects the non-defective product as a defective product (sorting sensitivity is unreasonably high), or the defective product is not detected and is treated as a non-defective product (sorting sensitivity is unreasonably low). Is it? In any case, it cannot be said that appropriate inspection performance can be exhibited as a granular material inspection apparatus.
  • An object of the present invention is to provide a means for realizing appropriate inspection performance in a granular inspection apparatus provided with a plurality of inspection units.
  • the light from the measurement target point enters the light receiving device via the slit, mirror, lens device, etc. If the device receives an impact during transportation, installation, or operation, the measurement target location will move from an appropriate position. For example, if the measurement target location shifts in the width direction, the correspondence between the position of the granules in the width direction and the output of the light receiving device becomes abnormal, and defective products cannot be properly separated. If the measurement target location shifts in the transfer direction of the granules, the operation timing of the air blowing device becomes inappropriate, and defective products cannot be properly separated.
  • the contrast in the output of the light receiving device decreases, and a defective product cannot be properly determined. That is, when an abnormality occurs at the measurement target location, the inspection performance of the granular material sorting device deteriorates.
  • An object of the present invention is to provide a method capable of determining the presence or absence of an abnormality in the position of a detection region in a granular material inspection apparatus and suppressing inspection in a state where inspection performance is deteriorated.
  • An object of the present invention is to provide a method capable of determining a state in which channel distribution is inappropriate in a granular material inspection device and suppressing inspection in a state where inspection performance is deteriorated.
  • the granule inspection device In order to increase the processing capacity (the amount of granules that can be processed per unit time), it is conceivable to equip the granule inspection device with a plurality of inspection units that inspect the granules and detect defective products. In this case, the granules charged into the granule inspection device are distributed to a plurality of inspection units. Then, each inspection unit inspects the distributed granules.
  • the amount of granules supplied to the inspection unit is even among the plurality of inspection units.
  • the inspection unit with a small supply amount has a margin in processing capacity, and the processing capacity of the entire device is reduced.
  • the supply amount may be uneven.
  • An object of the present invention is to provide a means for suppressing a decrease in the processing capacity of the entire apparatus in a granular inspection apparatus including a plurality of inspection units.
  • the granular material sorting device of Patent Document 1 the granular material is supplied from the feeding transport device to the transfer means via the storage hopper.
  • the amount of supply from the delivery transport device for supply and the amount of delivery from the transfer means may fluctuate.
  • the amount of granules stored in the storage hopper increases, and the granules may flow back to the feeding / transporting device for supply.
  • the granules charged into the storage hopper from the supply transport device directly flow into the overflow outlet. This is because the granules supplied to the transfer means may be insufficient and the processing capacity of the granule sorting apparatus may be reduced. Further, when the granules flow back to the feeding / transporting apparatus for supply and flow out from the storage hopper, the processing capacity of the granule sorting apparatus may be similarly reduced.
  • An object of the present invention is to provide a means capable of suppressing a decrease in processing capacity in a granular material inspection apparatus.
  • the present invention solves the above problems, and an object of the present invention is to provide an elevator for transporting granules and a scraper for the elevator, which can reduce the load of the device drive source at the start of operation of the device.
  • the granular material inspection apparatus of the present invention comprises a plurality of inspection units for inspecting granular materials to detect defective products, and a reference unit which is one of the plurality of the inspection units.
  • the operating parameters of the adjusted unit are changed so that the difference between the sorting sensitivity, which is the number of defective products detected per unit time, and the sorting sensitivity of the adjusted unit, which is the remaining inspection unit, becomes small. It is characterized by having a change part.
  • the operating parameters of the adjusted unit are changed so that the difference between the sorting sensitivity in the reference unit and the sorting sensitivity in the adjusted unit becomes small, so that the difference in the sorting sensitivity of a plurality of inspection units becomes small.
  • Appropriate inspection performance can be realized in a granular inspection apparatus provided with a plurality of inspection units.
  • the inspection unit detects a defective product of the granules based on a sending device that sends the granules to the inspection area, a sensor that detects light from the inspection area, and the output of the sensor.
  • the sending device includes a detection device, the sending device controls the sending amount of the granules based on the set sending amount as an operation parameter of the adjusted unit, and the changing unit controls the sorting in the adjusted unit.
  • the sensitivity is smaller than the sorting sensitivity in the reference unit, it is preferable to increase the set delivery amount in the adjusted unit.
  • the sorting sensitivity in the adjusted unit when the sorting sensitivity in the adjusted unit is smaller than the sorting sensitivity in the reference unit, the set transmission amount in the adjusted unit increases. As a result, the sorting sensitivity of the unit to be adjusted is increased, so that the difference in the sorting sensitivity of the plurality of inspection units is reduced, and appropriate inspection performance can be realized in the granular inspection apparatus provided with the plurality of inspection units.
  • the modified portion reduces the set transmission amount in the adjusted unit when the sorting sensitivity in the adjusted unit is larger than the sorting sensitivity in the reference unit.
  • the sorting sensitivity in the adjusted unit is larger than the sorting sensitivity in the reference unit, the set transmission amount in the adjusted unit is reduced.
  • the sorting sensitivity of the unit to be adjusted is reduced, so that the difference in the sorting sensitivity of the plurality of inspection units is reduced, and appropriate inspection performance can be realized in the granular inspection apparatus provided with the plurality of inspection units.
  • the inspection unit detects a defective product of the granules based on a sending device that sends the granules to the inspection area, a sensor that detects light from the inspection area, and the output of the sensor.
  • the detection device includes a detection device, and the detection device regards the granule as a defective product when the light intensity detected by the sensor is lower than the selection threshold value based on the selection threshold value as an operation parameter of the adjusted unit. It is preferable that the changing unit raises the sorting threshold value in the adjusted unit when the sorting sensitivity in the adjusted unit is smaller than the sorting sensitivity in the reference unit.
  • the sorting threshold value in the adjusted unit becomes high.
  • the sorting sensitivity of the unit to be adjusted is increased, so that the difference in the sorting sensitivity of the plurality of inspection units is reduced, and appropriate inspection performance can be realized in the granular inspection apparatus provided with the plurality of inspection units.
  • the modified portion lowers the sorting threshold value in the adjusted unit when the sorting sensitivity in the adjusted unit is larger than the sorting sensitivity in the reference unit.
  • the sorting threshold value in the adjusted unit becomes low.
  • the sorting sensitivity of the unit to be adjusted is reduced, so that the difference in the sorting sensitivity of the plurality of inspection units is reduced, and appropriate inspection performance can be realized in the granular inspection apparatus provided with the plurality of inspection units.
  • the inspection unit detects a defective product of the granules based on a sending device that sends the granules to the inspection area, a sensor that detects light from the inspection area, and the output of the sensor.
  • the change unit includes a detection device for illuminating the inspection area and a lighting device for illuminating the inspection area, and the change unit is based on the difference between the selection sensitivity of the reference unit and the selection sensitivity of the adjusted unit. It is preferable to change the emission intensity of the lighting device as an operation parameter of the above.
  • the emission intensity of the lighting device as an operating parameter of the adjusted unit is changed based on the difference between the selection sensitivity of the reference unit and the selection sensitivity of the adjusted unit, so that the emission intensity of the adjusted unit is increased. It will be appropriate. Therefore, the difference in the sorting sensitivity of the plurality of inspection units is reduced, and appropriate inspection performance can be realized in the granular inspection apparatus including the plurality of inspection units.
  • the inspection unit detects a defective product of the granules based on a sending device that sends the granules to the inspection area, a sensor that detects light from the inspection area, and the output of the sensor.
  • the change unit determines the sensitivity of the sensor as an operating parameter of the adjusted unit based on the difference between the sorting sensitivity of the reference unit and the sorting sensitivity of the adjusted unit. It is preferable to change it.
  • the sensitivity of the sensor as an operating parameter of the adjusted unit is changed based on the difference between the sorting sensitivity of the reference unit and the sorting sensitivity of the adjusted unit, so that the sensitivity of the sensor in the adjusted unit is appropriate. It will be something like that. Therefore, the difference in the sorting sensitivity of the plurality of inspection units is reduced, and appropriate inspection performance can be realized in the granular inspection apparatus including the plurality of inspection units.
  • the change unit preferentially changes the operation parameter of the transmission device over the operation parameter of the detection device.
  • the changing unit calculates the time average of the sorting sensitivity in a predetermined period for each of the reference unit and the adjusted unit, and sets the operating parameters of the adjusted unit so that the difference between them becomes small. It is preferable to change it.
  • the time average of the sorting sensitivity in a predetermined period is calculated for each of the reference unit and the adjusted unit, and the operating parameters of the adjusted unit are changed so that the difference between them becomes small.
  • adverse effects due to sudden or accidental changes in sorting sensitivity are suppressed, and it becomes easy to realize appropriate inspection performance in a granular inspection apparatus provided with a plurality of inspection units.
  • the granular material inspection device of the present invention has a detection device that detects light from a detection region, a transmission device that sends out particles so as to pass through the detection region, and a graphic on the surface.
  • An abnormality in the position of the detection area is drawn based on the member arranged in the detection area so that the figure appears in the output of the detection device and the portion corresponding to the figure in the output of the detection device. It is characterized by including a position abnormality determination unit for determining the presence / absence.
  • the presence or absence of abnormality in the detection area is determined by the figure drawn on the member, it is possible to suppress the inspection in the state where the inspection performance is deteriorated. For example, it is possible to notify the operator of the abnormality, stop the inspection, perform automatic adjustment, and take other measures in response to the occurrence of the abnormality. As a result, it is possible to suppress the continuation of the inspection when the position of the detection region is abnormal, and it is possible to suppress the inspection when the inspection performance is deteriorated.
  • a storage unit for storing a normal output which is an output of the detection device when the detection area is normal is provided, and the position abnormality determination unit compares the output of the detection device with the normal output. It is preferable to determine whether or not there is an abnormality in the position of the detection region.
  • the presence or absence of an abnormality in the position of the detection area is determined by comparison with the normal output, so that the determination is made more appropriately.
  • the figure has a first portion and a second portion, and the first portion is the first portion in the output of the detection device when the detection region is displaced along a specific direction.
  • the corresponding portion changes
  • the second portion is a form in which the portion corresponding to the second portion in the output of the detection device does not change when the detection region shifts along the specific direction.
  • the position abnormality determination unit determines the presence or absence of an abnormality in the position of the detection region based on the portion corresponding to the first portion and the portion corresponding to the second portion in the output of the detection device.
  • the first part is a part of the triangle included in the figure and the second part is a part of the rectangle included in the figure.
  • the figure drawn on the member includes the first part and the second part due to the simple shape of a triangle and a quadrangle. Therefore, it is preferable that the process of determining the presence or absence of an abnormality in the position of the detection region is simple.
  • the notification device is provided and the position abnormality determination unit operates the notification device when it is determined that there is an abnormality in the position of the detection region.
  • the notification device is activated when it is determined that an abnormality has occurred in the position of the detection area, so that the operator who received the notification can deal with the abnormality (stop the device, change the setting, etc.). It will be possible. Therefore, it is possible to suppress the inspection in a state where the inspection performance is deteriorated.
  • the notification device is provided, the position abnormality determination unit calculates the position fluctuation amount of the detection region, and the notification device is operated when the position fluctuation amount exceeds the notification threshold value.
  • the notification device since the notification device is activated when the position fluctuation amount exceeds the notification threshold value, the operator who receives the notification can deal with the abnormality (stop the device, change the setting, etc.). Therefore, it is possible to suppress the inspection in a state where the inspection performance is deteriorated. Further, since the notification device does not operate in the case of a slight position change, the operation of the granular body inspection device can be simplified.
  • a quality determination unit for determining the quality of the granules based on the output of the detection device
  • the delivery device is configured to send out a plurality of the granules in parallel
  • the detection device is the same.
  • the position abnormality determination unit includes a plurality of pixels arranged in a direction corresponding to the parallel direction of the granules in the detection region, and the position abnormality determination unit is based on the portion corresponding to the figure in the output of the detection device.
  • the parallel direction fluctuation amount which is the fluctuation amount of the position of the detection region, is calculated, and the pass / fail determination unit distributes the plurality of the pixels so as to correspond to the plurality of parallel granules, and sets a plurality of channels. It is preferable to determine the quality of the granules for each of the channels and change the distribution of the pixels to the channels according to the amount of fluctuation in the parallel direction.
  • the amount of fluctuation in the parallel direction is calculated and the distribution of the pixels to the channels is automatically changed, so that the inspection in the state where the inspection performance is deteriorated is automatically performed without bothering the operator. Can be suppressed.
  • the quality determination unit that determines the quality of the granular material based on the output of the detection device
  • the exclusion device that eliminates the granular material determined by the quality determination unit to be non-defective
  • the exclusion control unit for controlling the operation timing is provided, and the position abnormality determination unit is a detection region for the transmission direction of the granules by the transmission device based on the portion corresponding to the figure in the output of the detection device. It is preferable that the exclusion control unit changes the operation timing of the exclusion device based on the transmission direction variation amount by calculating the transmission direction variation amount which is the position variation amount.
  • the amount of fluctuation in the transmission direction is calculated and the operation timing of the exclusion device is automatically changed, so that the inspection in a state where the inspection performance is deteriorated is automatically performed without bothering the operator. It can be suppressed.
  • the detection device includes a sensor that detects incident light and a lens device that focuses the light incident on the sensor, and the position abnormality determination unit is the graphic figure in the output of the detection device. It is preferable to adjust the focus of the lens device based on the portion corresponding to.
  • the granular body inspection device of the present invention has a sending device that sends out a plurality of granules to the inspection area in parallel, a sensor that detects light from the inspection area, and an adjacent sensor in the output. It is characterized by comprising an abnormality determination unit for determining that an abnormality has occurred when it is detected that one of the granules straddles the channel.
  • one granule corresponds to one channel, so that one granule straddles adjacent channels cannot occur.
  • a detection unit for detecting a decrease in light intensity due to the granules is provided for each of the plurality of channels in the output of the sensor, and the abnormality determination unit simultaneously emits light in the channel adjacent to the detection unit. It is preferable to determine that an abnormality has occurred when a decrease in the strength of the light is detected.
  • the granules are randomly sent from the sending device, it is unlikely that a decrease in light intensity due to the granules will be detected at the same time in the adjacent channels if the channel distribution is appropriate.
  • the channel distribution is improper, the decrease in light intensity due to one granule always appears simultaneously in both adjacent channels. According to this configuration, the decrease in light intensity due to the granules is detected for each channel, and it is determined that an abnormality has occurred when the decrease in light intensity is detected simultaneously in the adjacent channels, so that the channel distribution is unsuccessful. The appropriate state can be determined appropriately.
  • the abnormality determination unit determines that an abnormality has occurred when the detection unit detects a decrease in light intensity simultaneously and over time in the adjacent channel.
  • the abnormality determination unit determines that an abnormality has occurred when a state in which the detection unit simultaneously detects a decrease in light intensity in the adjacent channels occurs in a plurality of sets of the adjacent channels. It is preferable to judge.
  • the senor includes a detection unit that detects a decrease in light intensity due to the granules at the output of the sensor, and the sensors are arranged along a direction corresponding to a parallel direction of the granules in the inspection region. It is preferable that the abnormality determination unit has pixels and determines that an abnormality has occurred when the decrease in light intensity due to the granules is simultaneously detected in the continuous pixels belonging to the adjacent channel.
  • the channel distribution is appropriate, it is unlikely that the decrease in light intensity due to the granules will be detected simultaneously in consecutive pixels belonging to adjacent channels.
  • the channel distribution is inappropriate, the decrease in light intensity due to one granule always appears at the same time in the continuous pixels belonging to the adjacent channels. According to this configuration, it is determined that an abnormality has occurred when the decrease in light intensity due to the granules is simultaneously detected in consecutive pixels belonging to adjacent channels. It can be determined.
  • the abnormality determination unit determines that an abnormality has occurred when the decrease in light intensity due to the granules is simultaneously and temporally detected in the continuous pixels belonging to the adjacent channel. Is.
  • the senor includes a detection unit that detects a decrease in light intensity due to the granules at the output of the sensor, and the sensors are arranged along a direction corresponding to a parallel direction of the granules in the inspection region.
  • the abnormality determination unit has pixels, and the abnormality determination unit identifies detection pixels that are pixels in which a decrease in light intensity due to the granules is detected, and the detection pixels of the detection pixels belonging to different channels, whichever is smaller. It is preferable to divide the number by the total number of the detected pixels to calculate the ratio, and when the ratio exceeds a predetermined threshold, it is determined that an abnormality has occurred.
  • the degree of inappropriate channel distribution is calculated numerically as a "ratio", and it is determined that an abnormality has occurred based on the ratio. It can be judged appropriately.
  • the notification device is provided and the abnormality determination unit operates the notification device when it is determined that an abnormality has occurred.
  • the notification device since the notification device is activated when it is determined that an abnormality has occurred, the operator who received the notification can deal with the abnormality (stop the device or change the setting). Therefore, it is possible to suppress the inspection in a state where the inspection performance is deteriorated.
  • the first sensor as the sensor that detects the light emitted from the inspection area in the first direction and the second sensor emitted from the inspection area in the direction opposite to the first direction.
  • the second sensor as the sensor that detects light and the abnormality determination unit determine that an abnormality has occurred in the first sensor and the second sensor at approximately the same time, it is determined that an abnormality has occurred. It is preferable to include an abnormality determination unit between facing sensors.
  • the upper sensor as the sensor that detects the light from the upper part in the inspection area
  • the lower sensor as the sensor that detects the light from the lower part in the inspection area
  • the abnormality determination unit corresponds to the abnormal channel set in the output of the lower sensor. It is preferable to include an abnormality determination unit between the upper and lower sensors that determines that an abnormality has occurred when it is detected that one of the granules straddles the channel.
  • the granule inspection apparatus of the present invention includes a plurality of inspection units for inspecting granules to detect defective products, and a plurality of inspection units for storing the supplied granules. It is characterized by comprising a storage device for supplying the granules to the storage device and an adjusting mechanism provided in the storage device and adjusting the supply amount of the granules to a plurality of the inspection units.
  • the amount of granules supplied to a plurality of inspection units can be adjusted by the adjusting mechanism, the amount of granules supplied to the inspection units can be equalized, and the processing capacity of the entire apparatus is reduced. Can be suppressed.
  • the adjusting mechanism includes a guide member capable of changing the position in a direction intersecting the movement path of the granules.
  • the adjustment mechanism can be realized by a simple configuration.
  • the guide member can slide in the left-right direction.
  • the position of the guide member can be easily changed.
  • the configuration of the adjustment mechanism can be further simplified.
  • a bucket conveyor is provided for transporting the granules upward and charging the granules into the storage device, and the guide member is on the moving path of the granules loaded from the bucket conveyor. It is preferable that it is arranged in.
  • the moving direction of the granular body can be changed by changing the position of the guide member, and the granular body can be supplied to a plurality of inspection units.
  • the amount can be adjusted effectively.
  • the guide member is located below the uppermost end of the bucket conveyor.
  • the moving direction of the granules charged from the bucket conveyor can be reliably changed, and the supply amount of the granules to a plurality of inspection units can be reliably adjusted.
  • the storage device includes a branch member that branches its internal space corresponding to a plurality of the inspection units, and the guide member is located above the branch member.
  • the guide member since the guide member is above the branch member, the moving direction of the granular body can be changed before the granular body reaches the branch member. Therefore, the amount of granules supplied to the plurality of inspection units can be effectively adjusted.
  • the storage device includes a wall member extending in the vertical direction, an inspection opening formed in the wall member, and a closing member for closing the inspection opening, and the guide member is closed. It is preferable that it is supported by a member.
  • the storage device and the adjustment mechanism can be configured as a whole, and space efficiency and maintainability can be improved.
  • the granular material inspection apparatus of the present invention has an inspection unit that inspects the granular material and detects a defective product, and stores the charged granular material and puts the granular material into the inspection unit.
  • the storage device is provided with an inlet arranged at the upper part where the granules are input, an outlet arranged at the lower part where the granules flow out to the inspection unit, and an inlet thereof. It is arranged below and above the outlet so that the granules can flow out from the overflow outlet, and between the inlet and the overflow outlet and on the movement path of the granules introduced from the inlet.
  • a cover member is provided, and the granules stored in the storage device below the cover member are configured to be able to flow into the overflow discharge port.
  • the cover member is arranged between the inlet and the overflow outlet and on the movement path of the granules, the granules input from the inlet are suppressed from directly entering the overflow outlet. Therefore, it is possible to suppress a decrease in processing capacity. Further, since the granules can flow into the overflow discharge port below the cover member, it is possible to prevent the storage device from becoming full and the granules from flowing out from the inlet. In this respect as well, it is possible to suppress a decrease in processing capacity.
  • the storage device is provided with a lower constriction-shaped lower constriction portion connected to the outlet, and the overflow outlet is provided on the side wall of the lower constriction portion, and the overflow outlet is provided. It is preferable that the cover member is provided above.
  • the overflow outlet is provided on the side wall of the lower constriction portion, the granules can smoothly flow out from the overflow outlet. Further, since the cover member is provided above the overflow discharge port, it is effectively suppressed that the granules thrown in from the inlet directly enter the overflow discharge port. Therefore, the decrease in processing capacity can be effectively suppressed.
  • the width of the overflow outlet and the width of the cover member are substantially the same.
  • the cover member does not easily hinder the movement of the granules to the outlet while effectively suppressing the granules thrown in from the inlet from directly entering the overflow outlet. Therefore, the decrease in processing capacity can be effectively suppressed.
  • the upper end of the cover member and the lower end of the inlet are located at substantially the same height.
  • the upper surface of the cover member is provided with an inclined surface that is inclined diagonally downward.
  • the elevator for transporting granules of the present invention is bridged between an upper pulley and a lower pulley pivotally supported at the upper and lower ends of the main body case, and between the upper pulley and the lower pulley.
  • An elevator for transporting granules comprising a belt and a plurality of buckets attached to the belt, and transporting the granules by the buckets, wherein the belt retains the granules in the main body case.
  • a scraper for scooping up is provided, and the scraper has a passable portion through which the granules scooped up by the scraper can pass.
  • the passable portion is provided in the scraper on the side close to the belt.
  • the scraper has a scraper member for scooping up the granules staying in the main body case, and a holding member for holding the scraper member with respect to the belt.
  • the passable portion is provided on the holding member.
  • the elevator for transporting granules of the present invention is configured such that the scraper attaches a scraper member for scooping up the granules staying in the main body case to a part of the buckets among the plurality of buckets.
  • the passable portion is provided in a bucket to which the scraper member is attached.
  • the scraper for an elevator of the present invention includes an upper pulley and a lower pulley pivotally supported at the upper and lower ends of a main body case, a belt spanned between the upper pulley and the lower pulley, and a plurality of scrapers attached to the belt.
  • a scraper for an elevator provided on the belt of an elevator for transporting granules by the bucket, and for scooping up the granules staying in the main body case. , The granules to be scooped up have a passable portion through which they can pass.
  • the granules scooped up by the scraper pass through the passable portion of the scraper at the start of operation of the device, and therefore at the start of operation of the device.
  • the load on the scraper itself is reduced. Therefore, the load on the device drive source at the start of operation of the device can be reduced, and the capacity of the device drive source to be used can be reduced. Further, by reducing the load applied to the scraper itself at the start of operation of the apparatus, the belt holding the scraper is less likely to slip with respect to the pulley, and the wear of the belt can be suppressed.
  • FIG. 11 It is a figure which shows the 1st Embodiment (hereinafter the same until FIG. 11), and is the right side view of the granular body inspection apparatus. It is a front view of the granular body inspection apparatus. It is a right side view which shows the main part of an inspection unit. It is a functional block diagram which shows the control system of a granular material inspection apparatus. It is a figure which shows the outline of the optical inspection performed by the granular body inspection apparatus. It is a figure which shows an example of the output of a sensor. It is a figure which shows an example of the output of a sensor when an abnormality of the position of a detection area occurs.
  • FIG. 18 It is a figure which shows the 3rd Embodiment (hereinafter the same until FIG. 18), and is the figure which shows the state which the channel distribution is normal. It is a figure which shows the state which the channel distribution is abnormal. It is a figure which shows the state which the channel distribution is abnormal. It is a flowchart of abnormality detection processing. It is a figure which shows the 4th Embodiment (hereinafter the same until FIG. 23), and is the top view which shows the positional relationship of a storage hopper, a vibration feeder, and a shooter. It is a cross-sectional right side view which shows the 1st transport conveyor and the storage hopper. It is a front view which shows the storage hopper.
  • the direction indicated by the code (FR) is the front side of the device
  • the direction indicated by the code (BK) is the rear side of the device
  • the direction indicated by the code (LH) is the left side of the device
  • the direction indicated by the code (RH) is the right side of the device.
  • the direction indicated by UP) is the upper side
  • the direction indicated by the symbol (DW) is the lower side.
  • the granular material inspection device is a device that optically inspects whether the injected granular material is a normal product or a defective product, and selects and discharges the normal product and the defective product.
  • the granules are grains such as brown rice and white rice.
  • the granules may be resin pellets or the like.
  • the granular body inspection device includes a charging hopper 1, a first transport conveyor 2 (an example of a bucket conveyor), a storage hopper 3 (an example of a storage device), an inspection unit 4, and a second. It is equipped with a lifting conveyor 5, an operation display device 6, a control device 7 (FIG. 4), and a notification device 8 (FIG. 4).
  • the charging hopper 1 is provided at the lower part of the rear part of the device and receives the granules to be inspected.
  • the first transport conveyor 2 is provided at the center of the left and right sides of the rear part of the apparatus, and the granules charged in the charging hopper 1 are conveyed upward and charged into the storage hopper 3.
  • the storage hopper 3 stores the granules charged from the first transport conveyor 2 and supplies the granules to the inspection unit 4.
  • the inspection unit 4 inspects the granules supplied from the storage hopper 3, detects defective products, sorts the granules into normal products and defective products, and discharges them.
  • the granular body inspection device includes a left inspection unit 4L and a right inspection unit 4R.
  • the second transport conveyor 5 is provided on the left side portion of the rear part of the device, and transports the granules discharged as normal products from the inspection unit 4 upward and discharges them to the outside of the device.
  • the operation display device 6 is provided in the center of the front part of the device.
  • the operation display device 6 receives the human operation from the operator and transmits it to the control device 7. Further, the operation display device 6 is controlled by the control device 7 to display various screens.
  • the operation display device 6 is a liquid crystal display with a touch panel.
  • the operation display device 6 may be a device in which a push button and a liquid crystal display are combined.
  • the control device 7 controls the overall operation of the granular body inspection device.
  • the notification device 8 is controlled by the control device 7 to notify the operator of an abnormality of the device or the like.
  • the notification device 8 is, for example, a buzzer, a speaker, a lamp, or an information display device.
  • the operation display device 6 may also serve as the notification device 8.
  • the moving direction of the granules is the Z direction
  • the upstream side of the moving direction of the granules is the Z1 side
  • the downstream side of the moving direction of the granules is the Z2 side
  • the plane orthogonal to the left-right direction of the device is the Z direction
  • the direction orthogonal to the Z direction is referred to as the Y direction
  • the front side of the device in the Y direction is referred to as the Y1 side
  • the rear side of the device in the Y direction is referred to as the Y2 side.
  • the granular material to be inspected falls from the shooter 12 to the Z2 side and is sent out to the inspection area IA.
  • the inspection area IA is illuminated by the illuminating device 21.
  • Light from the inspection area IA enters the front camera 22A, the rear camera 22B, and the transmission camera 22C, and is detected by the front sensor 23A, the rear sensor 23B, and the transmission sensor 23C (hereinafter, the front camera 22A, the rear camera 22B, And the transmission camera 22C are collectively referred to as “camera 22”.
  • the front sensor 23A, the rear sensor 23B, and the transmission sensor 23C are collectively referred to as “sensor 23”).
  • the light reflected on the Y1 side of the granular material is incident on the front camera 22A and detected by the front sensor 23A.
  • the light reflected on the Y2 side of the granular material enters the rear camera 22B and is detected by the rear sensor 23B.
  • the light transmitted through the granules from the Y1 side to the Y2 side is incident on the transmission camera 22C and detected by the transmission sensor 23C.
  • the output of the sensor 23 is transmitted to the control device 7.
  • the control device 7 determines whether the granular body is a normal product or a defective product based on the output of the sensor 23.
  • the control device 7 operates the air blowing device 31 at the timing when the granular material determined to be defective falls to the front of the air blowing device 31.
  • the granules blown with air are pushed toward the Y1 side and fall to the defective product collection unit 41. Other granules fall to the normal product collection unit 42.
  • the inspection unit 4 includes a transmission device 10, a detection device 20, and an exclusion device 30. As described above, the left inspection unit 4L and the right inspection unit 4R have the same configuration.
  • the delivery device 10 is a device that sends out a plurality of granules to the inspection area IA in parallel (left-right direction of the device, orthogonal direction on the paper surface in FIG. 3).
  • the delivery device 10 includes a vibration feeder 11 and a shooter 12.
  • the vibration feeder 11 receives the granules flowing down from the storage hopper 3 by the trough 11a, vibrates the trough 11a, and sends the granules to the shooter 12.
  • the operation of the vibration feeder 11 is controlled by the control device 7.
  • the shooter 12 is a plate-shaped member.
  • a plurality of linear grooves are formed on the upper surface of the shooter 12 in a state of being arranged in parallel in the left-right direction.
  • the width of the groove is set so that the granules can flow down in a row.
  • the granules that have fallen from the trough 11a of the vibration feeder 11 to the shooter 12 are guided by the grooves of the shooter 12, flow down in parallel on the shooter 12, and are sent out to the inspection region IA.
  • the detection device 20 is a device that detects light from the inspection area IA, and includes the above-mentioned lighting device 21, a camera 22, a sensor 23, and a mirror 24.
  • the lighting device 21 includes background members 21A, 121B, 121C, and lighting units 21D, 121E, 121F, 121G.
  • the background members 21A, 121B, and 121C are members that guide the light from a light emitting device (not shown) to illuminate the inspection area IA.
  • the background members 21A, 121B, 121C function as a background of the granular material in the light reaching the camera 22 from the inspection area IA.
  • the light emitting device that is the light source of the background members 21A, 121B, and 121C is controlled by the control device 7 so that the illumination to the inspection area IA has an appropriate intensity.
  • the lighting units 21D, 121E, 121F, 121G include an LED package whose emission intensity is controlled by the control device 7, and illuminate the inspection area IA.
  • the lighting units 21D and 121E are arranged on the Y1 side with respect to the inspection area IA, and illuminate the inspection area IA from the Y1 side.
  • the lighting units 21F and 121G are arranged on the Y2 side with respect to the inspection area IA, and illuminate the inspection area IA from the Y2 side.
  • the front camera 22A includes a front lens device 25A.
  • the front sensor 23A is arranged inside the front camera 22A.
  • the optical axis 26A of the front camera 22A is shown in FIG.
  • the light reflected by the surface of the granular material on the Y1 side and the light emitted from the background member 21A are radiated from the inspection region IA to the Y1 side.
  • the light is reflected by the mirror 24, converged by the front lens device 25A, and irradiates the front sensor 23A. That is, the front sensor 23A of the front camera 22A detects the light reflected by the surface of the granular body on the Y1 side and the light emitted from the background member 21A.
  • the rear camera 22B includes a rear lens device 25B.
  • the rear sensor 23B is arranged inside the rear camera 22B.
  • the optical axis 26B of the rear camera 22B is shown in FIG.
  • the light reflected by the surface of the granular material on the Y2 side and the light emitted from the background member 21B are radiated from the inspection region IA to the Y2 side.
  • the light is reflected by the mirror 24, converged by the rear lens device 25B, and irradiates the rear sensor 23B. That is, the rear sensor 23B of the rear camera 22B detects the light reflected by the surface of the granular body on the Y2 side and the light emitted from the background member 21B.
  • the transmissive camera 22C includes a transmissive lens device 25C.
  • the transmission sensor 23C is arranged inside the transmission camera 22C.
  • the optical axis 26C of the transmission camera 22C is shown in FIG.
  • the light transmitted through the granules from the Y1 side to the Y2 side and the light radiated from the background member 21C are radiated from the inspection region IA to the Y2 side.
  • the light is reflected by the mirror 24, converged by the transmission lens device 25C, and irradiates the transmission sensor 23C. That is, the transmission sensor 23C of the transmission camera 22C detects the light transmitted through the granules from the Y1 side to the Y2 side and the light radiated from the background member 21C.
  • the front lens device 25A, the rear lens device 25B, and the transmission lens device 25C may be collectively referred to as the "lens device 25".
  • the front sensor 23A, the rear sensor 23B, and the transmission sensor 23C detect light over time and transmit the output data at predetermined time intervals to the control device 7.
  • a light-shielding member 27 is arranged in the inspection area IA.
  • the light-shielding member 27 suppresses the light reflected by the granules and the illumination light from the lighting units 21D, 121E, 121F, and 121G from directly incident on the transmission camera 22C.
  • the exclusion device 30 is a device that eliminates granules determined to be defective.
  • the exclusion device 30 is composed of an air blowing device 31.
  • the air blowing device 31 includes a plurality of injection ports arranged in the left-right direction of the device.
  • the injection port is arranged at a position corresponding to the granules falling from the plurality of grooves of the shooter 12.
  • a plate-shaped member 51 is arranged in the inspection area IA.
  • the member 51 is arranged in the detection areas DU and DL so that the figure F is drawn on the surface and the figure F appears in the output of the detection device 20 (sensor 23).
  • the support mode of the member 51 is arbitrary, but it is preferable that the member 51 is supported by the shooter 12.
  • the presence or absence of an abnormality in the positions of the detection areas DU and DL is determined based on the portion corresponding to the figure F in the output of the detection device 20 (sensor 23).
  • the member 51 is arranged in such a posture that the normal of its surface is parallel to the Y direction.
  • the figure F is drawn on the Y1 side surface and the Y2 side surface of the member 51.
  • the figure F is drawn so that the reflectance of light is smaller than that of the remaining area.
  • the figure F is drawn so that the transmittance of light is smaller than that of the remaining area.
  • the figure F is preferably drawn in black.
  • the region of the member 51 other than the figure F is translucent or transparent.
  • the figure F includes a triangle F1 and a rectangle F2.
  • the control device 7 is an ECU, and as shown in FIG. 4, a quality determination unit 7a, a detection unit 7b, an abnormality determination unit 7c, an abnormality determination unit 7d between facing sensors, an abnormality determination unit 7e between upper and lower sensors, and a storage unit 7f.
  • a selection sensitivity calculation unit 7g, a change unit 7h, an exclusion control unit 7j, and a position abnormality determination unit 7k are provided.
  • the control device 7 is connected to the inspection unit 4 and the notification device 8 and is configured to be controllable.
  • the control device 7 includes a memory (HDD, non-volatile RAM, etc., not shown) for storing programs and control parameters corresponding to the above-mentioned functional units, and a CPU (not shown) for executing the program. There is. When the program is executed by the CPU, the functions of each functional unit are realized.
  • the control device 7 may be composed of a plurality of ECUs capable of communicating with each other.
  • the quality determination unit 7a determines whether the granular material is a normal product or a defective product based on the output of the sensor 23 received by the control device 7. The details of the operation of the pass / fail determination unit 7a and other functional units will be described later with reference to FIGS. 5-10.
  • the detection unit 7b detects a decrease in light intensity due to the granules for each of a plurality of channels in the output of the sensor 23.
  • the abnormality determination unit 7c determines that an abnormality has occurred when it detects that one granular body straddles an adjacent channel in the output of the sensor 23.
  • the abnormality determination unit 7c activates the notification device 8 when it is determined that an abnormality has occurred.
  • the abnormality determination unit 7d between the facing sensors determines that an abnormality has occurred. Judge that an abnormality has occurred.
  • the abnormality determination unit 7d between the facing sensors operates the notification device 8 when it is determined that an abnormality has occurred.
  • the abnormality determination unit 7e between the upper and lower sensors detects that the abnormality determination unit 7c straddles one granular body in the abnormality channel set which is an adjacent channel in the output of the rear sensor 23B (an example of the upper sensor). Further, when the abnormality determination unit 7c detects that one granular body straddles the channel corresponding to the abnormality channel set in the output of the transmission sensor 23C (an example of the lower sensor), it is determined that an abnormality has occurred. do.
  • the abnormality determination unit 7e between the upper and lower sensors operates the notification device 8 when it is determined that an abnormality has occurred.
  • the storage unit 7f stores, for example, the operation parameters of the inspection unit 4, the threshold value used for determining the quality of the granules, and the like.
  • the sorting sensitivity calculation unit 7g calculates the sorting sensitivity, which is the number of defective products detected per unit time, for each of the plurality of inspection units 4 based on the judgment result by the quality determination unit 7a.
  • the changing unit 7h is adjusted so that the difference between the sorting sensitivity in the reference unit, which is one of the plurality of inspection units 4, and the sorting sensitivity in the adjusted unit, which is the remaining inspection unit 4, is small. Change the operating parameters of the unit.
  • the exclusion control unit 7j controls the operation timing of the exclusion device 30 (air blowing device 31).
  • the position abnormality determination unit 7k determines whether or not there is an abnormality in the positions of the detection areas DL and DU based on the portion corresponding to the figure F in the output of the detection device 20 (sensor 23).
  • FIG. 5 is a schematic view of the inspection region IA viewed from the front side of the device in the directions orthogonal to the Y direction and the Z direction.
  • the right side in the figure corresponds to the right side of the device, and the upper part in the figure corresponds to the Z1 side.
  • the paths through which the granules move are referred to as paths R1, R2, R3, ... Rn in order from the left. n is the same as the number of grooves in the shooter 12.
  • the injection port of the air blowing device 31 is arranged so as to correspond to each of the path R1 to the path Rn.
  • the injection ports corresponding to the paths R1, R2, ... Rn are referred to as injection ports S1, S2, S3, ... Sn. That is, the granules falling on the path R1 pass in front of the injection port S1.
  • the front sensor 23A is a line sensor and has a plurality of pixels E1, E2, ... Em arranged in a row. m is the total number of pixels possessed by the front sensor 23A.
  • What is detected by the front sensor 23A is the light from the elongated region extending from the optical axis 26A in the left-right direction of the device among the light from the inspection region IA. This area is referred to as a detection area DU.
  • a detection area DU As shown in FIGS. 3 and 5, light from the detection region DU is incident on the front sensor 23A.
  • the plurality of pixels E1, E2, ... Em are arranged along the direction corresponding to the parallel direction (left-right direction of the device) of the granules in the inspection region IA (detection region DU).
  • the rear sensor 23B of the rear camera 22B is also a line sensor. As shown in FIG. 3, the optical axis 26B of the rear camera 22B passes through the detection region DU. That is, the light from the detection region DU is incident on the rear sensor 23B.
  • the transmission sensor 23C of the transmission camera 22C is also a line sensor. As shown in FIG. 3, the optical axis 26C of the transmission camera 22C passes through the Z2 side (lower side in the vertical direction of the device) of the detection region DU. What is detected by the transmission sensor 23C of the transmission camera 22C is the light from the elongated region extending from the optical axis 26C in the left-right direction of the device among the light from the inspection region IA. This region is referred to as a detection region DL (FIGS. 3 and 5). As shown in FIG. 3, the light from the detection region DL is incident on the transmission sensor 23C. The detection area DL is located on the lower side (Z2 side) of the detection area DU.
  • the output of the front sensor 23A shows a decrease in output at 6 points. This is because the granules G1 falling on the path R2, the granules G2 falling on the path R4, and the four figures F are located in the detection region DU and reflect the granules G1, the granules G2, and the four figures F. This is due to the fact that the light is incident on the front sensor 23A. That is, the intensity of the light that reflects the granules and is incident on the front sensor 23A is smaller than the intensity of the light from the background member 21A. As described above, when the granules pass through the detection region DU (and the detection region DL), the output of the sensor 23 changes.
  • FIG. 6 shows an example in which the granular material G1 is a defective product.
  • the granular body G1 is a grain of rice and has a normal region A1, a colored region A2, and a black region A3.
  • the color of the colored region A2 is darker than the color of the normal region A1. Therefore, the intensity of the light reflected in the colored region A2 is smaller than the intensity of the light reflected in the normal region A1.
  • the color of the black region A3 is darker than the color of the colored region A2. Therefore, the intensity of the light reflected in the black region A3 is smaller than the intensity of the light reflected in the colored region A2.
  • the output of the front sensor 23A has a region where the output is reduced by the normal region A1, the colored region A2, and the black region A3.
  • the background light (light from the background member 21A) is incident on the pixels E41-E44.
  • the output of the pixels E41-E44 is smaller than the upper second threshold value SU2 and larger than the granular body detection threshold value SH.
  • Light from the normal region A1 is incident on the pixels E45-47, E53-54, and E57-58.
  • the output of these pixels is smaller than the granularity detection threshold SH and larger than the lower second threshold SL2.
  • Light from the colored region A2 is incident on the pixels E48-52.
  • the output of these pixels is smaller than the lower second threshold SL2 and larger than the lower first threshold SL1.
  • Light from the black region A3 is incident on the pixels E55-56.
  • the output of these pixels is smaller than the lower first threshold SL1.
  • the quality determination unit 7a determines that the granular material is a defective product when there are pixels whose output is smaller than the lower first threshold value SL1 or the lower second threshold value SL2 in the output of the front sensor 23A. Specifically, the pass / fail determination unit 7a determines that the granular material is a defective product related to the lower first defect when there are pixels whose output is smaller than the lower first threshold SL1 in the output of the front sensor 23A. ..
  • the first lower defect is, for example, "stink bug damage”.
  • the quality determination unit 7a determines that the granular material is a defective product related to the lower second defect when there are pixels whose output is smaller than the lower second threshold SL2 in the output of the front sensor 23A.
  • the lower second defect is, for example, "burning".
  • the pass / fail determination unit 7a determines that the granular material is a defective product when there are pixels whose output is larger than the upper first threshold value SU1 or the upper second threshold value SU2 in the output of the front sensor 23A. Specifically, the pass / fail determination unit 7a determines that the granular material is a defective product related to the upper first defect when there is a pixel whose output is larger than the upper first threshold value SU1 in the output of the front sensor 23A.
  • the upper first defect is, for example, "glass” or "transparent resin”.
  • the quality determination unit 7a determines that the granular material is a defective product related to the upper second defect when there is a pixel whose output is larger than the upper second threshold value SU2 in the output of the front sensor 23A.
  • the pass / fail determination unit 7a may make a pass / fail determination based on the number of pixels whose output is below the threshold value, in addition to the magnitude of the output with respect to the threshold value. For example, the pass / fail determination unit 7a determines that, in the output of the front sensor 23A, there are pixels whose output is smaller than the lower first threshold value SL1, and the number of the pixels is larger than the lower first threshold value. It is determined that the granular material is a defective product related to the lower first defect.
  • the pass / fail determination unit 7a is a granular body in the output of the front sensor 23A when there are pixels whose output is smaller than the lower second threshold value SL2 and the number of the pixels is larger than the lower second quantity threshold value.
  • the quality determination unit 7a indicates that the granular body is on the upper side when there are pixels whose output is larger than the upper first threshold value SU1 and the number of the pixels is larger than the upper first quantity threshold value. It is determined that the product is defective according to the first defect. In the output of the front sensor 23A, the quality determination unit 7a indicates that the granular body is on the upper side when there are pixels whose output is larger than the upper second threshold value SU2 and the number of the pixels is larger than the upper second quantity threshold value. It is determined that the product is defective according to the second defect.
  • the quality determination unit 7a determines the quality of the granular material based on the output of the rear sensor 23B, as in the case of the output of the front sensor 23A described above.
  • the rear sensor 23B detects the light emitted from the detection area DU of the inspection area IA to the Y2 side. Therefore, the quality determination unit 7a determines the quality of the granular material for both the reflected light on the Y1 side and the Y2 side of the granular material.
  • the quality determination unit 7a determines the quality of the granular material based on the output of the transmission sensor 23C, as in the case of the output of the front sensor 23A described above.
  • the judgment of the lower first defect by the quality determination unit 7a based on the output of the transmission sensor 23C is compared with the normal products such as "fir”, “shirata”, and “milky white”. It is a judgment that it is difficult for light to pass through.
  • the determination of the first defect on the upper side is a determination that light is more easily transmitted than normal products such as "glutinous rice in glutinous rice” and "blue rice".
  • the quality determination unit 7a determines the quality of the granular material based on the output of the front sensor 23A for each of the plurality of paths R1, R2, ... Rn. Specifically, the pass / fail determination unit 7a distributes a plurality of pixels E1, E2, ... Em of the front sensor 23A so as to correspond to a plurality of parallel paths R1, R2, ... Rn, and a plurality of channels. CH1, CH2, ... CHn are set, and the quality of the granules is determined for each of these plurality of channels. That is, the plurality of channels CH1, CH2, ... CHn correspond to the plurality of paths R1, R2, ... Rn, and the plurality of injection ports S1, S2, ... -Corresponds to Sn.
  • the light from the portion overlapping the path R2 in the detection region DU is incident on the pixels E41-63 in the front sensor 23A. Therefore, the pixels E41-63 corresponding to the path R2 are set as the channel CH2.
  • a predetermined number of pixels up to the pixel E40 corresponding to the path R1 are set as the channel CH1.
  • a predetermined number of pixels after the pixel E64 corresponding to the path R3 are set as the channel CH3.
  • the channels are initially set when the device is manufactured.
  • the distribution setting values of the pixels E1, E2, ... Em with respect to the channels CH1, CH2, ... CHn are stored in the storage unit 7f.
  • the quality determination unit 7a determines that the granular material in the path corresponding to the channel is a defective product. Then, when the quality determination unit 7a determines that the granular material of one channel is a defective product, the exclusion control unit 7j determines that the air blowing device 31 (exclusion device 30) injects air from the injection port corresponding to the channel. ) Is activated. Specifically, the exclusion control unit 7j operates the air blowing device 31 after a predetermined time has elapsed after the quality determination unit 7a determines that the granular material is a defective product.
  • the quality determination unit 7a determines the quality of the granular material based on the output of the rear sensor 23B for each of the plurality of paths R1, R2, ... Rn. Specifically, the pass / fail determination unit 7a distributes a plurality of pixels E1, E2, ... Em of the rear sensor 23B so as to correspond to a plurality of parallel paths R1, R2, ... Rn, and a plurality of channels. CH1, CH2, ... CHn are set, and the quality of the granules is determined for each of these plurality of channels. Further, the quality determination unit 7a determines the quality of the granular material based on the output of the transmission sensor 23C for each of the plurality of paths R1, R2, ... Rn.
  • the pass / fail determination unit 7a distributes a plurality of pixels E1, E2, ... Em of the transmission sensor 23C so as to correspond to a plurality of parallel paths R1, R2, ... Rn, and a plurality of channels. CH1, CH2, ... CHn are set, and the quality of the granules is determined for each of these plurality of channels. That is, the channel distributions of the front sensor 23A, the rear sensor 23B, and the transmission sensor 23C are set so that the channels of the same number correspond to the paths and injection ports of the same number. The number and number of pixels E distributed to the same channel number may differ among the front sensor 23A, the rear sensor 23B, and the transmission sensor 23C.
  • the setting value of pixel distribution for each channel in each sensor is stored in the storage unit 7f.
  • the quality determination unit 7a reads data indicating the correspondence between the channel and the pixel from the storage unit 7f, and determines the quality of the granular material based on the output of each sensor for each channel.
  • the detection areas DU and DL are set to the design positions. Specifically, when the transmission device 10 and the detection device 20 are assembled as designed and the focus of the lens device 25 is adjusted, the detection areas DU and DL are determined at the design positions. However, if the granular inspection device is impacted during transportation, installation, or operation, the transmission device 10, the detection device 20, and the internal configurations of these devices are displaced, and the positions of the detection areas DU and DL are abnormal. May occur. In the present embodiment, the presence or absence of an abnormality in the positions of the detection areas DU and DL is determined based on the portion corresponding to the figure F in the output of the detection device 20 (sensor 23), and notification, automatic adjustment, and the like are performed.
  • the mode of determining the abnormality of the position of the detection area DU and the automatic adjustment will be described.
  • the triangle F1 and the rectangle F2 as the figure F are drawn on the member 51.
  • the hypotenuse of the triangle F1 is referred to as a portion F1a (an example of the first portion).
  • the portion F1a is located on the left side as it goes to the Z2 side. In other words, the portion F1a is inclined with respect to the Z direction.
  • the long side of the triangle F1 is referred to as a portion F1b.
  • the portion F1b extends parallel to the Z direction.
  • the one closer to the triangle F1 is referred to as a portion F2a (an example of a second portion).
  • the portion F2a extends parallel to the Z direction.
  • the one farther from the triangle F1 is referred to as a portion F2b (an example of a second portion).
  • the portion F2b extends parallel to the Z direction.
  • FIG. 7 shows a change in the output of the front sensor 23A when the position of the detection area DU changes to the Z2 side (lower side).
  • the detection area DU of the normal position before the change is shown by a solid line
  • the detection area DU of the abnormal position after the change is shown by a broken line.
  • the detection area DU is in the solid line position
  • the detection area DU is in the upper position in the triangle F1 and the rectangle F2.
  • the detection area DU moves to the position of the broken line, the detection area DU moves to the lower position in the triangle F1 and the rectangle F2. Therefore, the area occupied by the triangle F1 in the detection area DU becomes larger in the left-right direction. This is because the portion F1a, which is the hypotenuse of the triangle F1, is located on the left side as it advances toward the Z2 side, and is inclined with respect to the moving direction (Z direction) of the detection region DU.
  • the size of the area occupied by the rectangle F2 in the detection area DU does not change. This is because the portions F2a and F2b of the rectangle F2 extend in parallel with the Z direction.
  • the above-mentioned change in the area occupied by the figure F in the detection area DU appears as a change in the output of the front sensor 23A.
  • the output of the front sensor 23A (hereinafter referred to as “pre-change output”) when the detection region DU is at the position of the solid line is shown in the middle of FIG. 7.
  • the lower part of FIG. 7 shows the output of the front sensor 23A (hereinafter referred to as “changed output”) when the detection area DU is at the position of the broken line.
  • the movement direction and movement amount of the detection region DU with respect to the Z direction correspond to the movement direction and movement amount of the portion (rising and falling) corresponding to the portion F1a in the output of the front sensor 23A on a one-to-one basis.
  • the shape of the triangle F1 drawn on the member 51 (inclination of the portion F1a with respect to the Z direction, etc.) is known. Therefore, the amount of change in the position of the detection region DU in the Z direction (hereinafter referred to as “the amount of change in the transmission direction”) can be calculated based on the amount of change in the output of the front sensor 23A.
  • the amount of change in the output of the front sensor 23A that can be used to calculate the amount of change in the transmission direction is, for example, the following amount.
  • the amount of change in the falling position of the output at the left end that is, the distance between the pixel a1 and the pixel b1.
  • the amount of change in the distance from the falling position to the rising position of the output that is, the difference between (distance between pixel a1 and pixel a2) and (distance between pixel b1 and pixel b2).
  • the amount of change in the rising position of the output at the right end that is, the distance between the pixel a8 and the pixel b8.
  • the amount of change in the distance from the falling position to the rising position of the output that is, the difference between (distance between pixel a7 and pixel a8) and (distance between pixel b7 and pixel b8).
  • the presence or absence of an abnormality in the position of the detection area DU is determined by using the above-mentioned items. That is, the position abnormality determination unit 7k determines whether or not there is an abnormality in the position of the detection area DU based on the portion corresponding to the figure F in the output of the detection device 20 (front sensor 23A). For example, the position abnormality determination unit 7k determines that the position of the detection area DU is abnormal when the falling position (pixels b1 and b8) at the right end (or left end) exceeds a preset normal range. do.
  • the storage unit 7f may store the normal output (the above-mentioned pre-change output) which is the output of the detection device 20 (pre-sensor 23A) when the detection area DU is normal.
  • the position abnormality determination unit 7k compares the output of the current front sensor 23A with the normal output stored in the storage unit 7f, and determines whether or not there is an abnormality in the position of the detection area DU.
  • the position abnormality determination unit 7k has a falling position (pixels a1 and a8) at the right end (or left end) in the normal output and a falling position (pixel b1 and) at the right end (or left end) in the output of the current front sensor 23A.
  • the amount of fluctuation in the transmission direction is calculated based on b8), and when the amount of fluctuation in the transmission direction exceeds the threshold value, it is determined that the position of the detection region DU is abnormal.
  • the exclusion control unit 7j operates the air blowing device 31 after a predetermined time has elapsed after the quality determination unit 7a determines that the granular material is a defective product.
  • the operation timing of the air blowing device 31 is controlled by the exclusion control unit 7j.
  • the detection region DU moves in the Z direction, it becomes necessary to change the operation timing of the air blowing device 31. This is because when the detection region DU moves in the Z direction, the time for the granules to reach the front of the injection port of the air blowing device 31 after passing through the detection region DU changes.
  • the exclusion control unit 7j changes the operation timing of the exclusion device 30 (air blowing device 31) based on the transmission direction fluctuation amount calculated by the position abnormality determination unit 7k. For example, when the detection area DU moves to the Z1 side, the exclusion control unit 7j delays the operation timing by the time corresponding to the calculated transmission direction fluctuation amount.
  • the storage unit 7f may store (update) the output of the front sensor 23A as a normal output.
  • the portion F1a of the triangle F1 is the leftmost output in the output of the detection device 20 (front sensor 23A) when the detection region DU shifts along the Z direction (an example of a specific direction) (FIG. 7).
  • the falling position (the portion corresponding to the portion F1a) changes (pixel a1 ⁇ pixel b1).
  • the part F1a (hypotenuse) of the triangle F1 is an example of the "first part" described in the claims.
  • the portions F2a and F2b of the rectangle F2 are the second from the left in the output of the detection device 20 (front sensor 23A) when the detection region DU shifts along the Z direction (an example of a specific direction) (FIG. 7).
  • the falling position of the output (the part corresponding to the part F2a) and the rising position of the second output from the left (the part corresponding to the part F2b) do not change (pixel a3 ⁇ pixel b3, pixel a4 ⁇ pixel b4).
  • the portions F2a and F2b of the rectangle F2 are examples of the "second portion" described in the claims.
  • FIG. 8 shows a change in the output of the front sensor 23A when the position of the detection area DU changes to the right side.
  • the detection area DU of the normal position before the change is shown by a solid line
  • the detection area DU of the abnormal position after the change is shown by a broken line.
  • the above-mentioned movement of the area occupied by the figure F in the detection area DU appears as a change in the output of the front sensor 23A.
  • the output of the front sensor 23A hereinafter referred to as “pre-change output” when the detection region DU is at the position of the solid line is shown.
  • the lower part of FIG. 8 shows the output of the front sensor 23A (hereinafter referred to as “changed output”) when the detection area DU is at the position of the broken line.
  • the movement direction and movement amount of the detection area DU in the left-right direction correspond to the movement direction and movement amount of the portion (rising and falling) corresponding to the figure F in the output of the front sensor 23A on a one-to-one basis.
  • the shape of the figure F drawn on the member 51 (width of rectangle F2, distance between triangle F1 and rectangle F2, etc.) is known. Therefore, the amount of change in the position of the detection region DU in the left-right direction (hereinafter referred to as "the amount of change in the parallel direction") can be calculated based on the amount of change in the output of the front sensor 23A.
  • the amount of change in the output of the front sensor 23A that can be used to calculate the amount of fluctuation in the parallel direction is, for example, the following amount.
  • the amount of change in the falling position and rising position of the output that is, the distance between the pixel a1 and the pixel b1, the distance between the pixel a2 and the pixel b2, the distance between the pixel a3 and the pixel b3, and the distance between the pixel a4 and the pixel b4.
  • Pixel b2-b7 distance between pixel a2 and pixel b2, distance between pixel a3 and pixel b3, distance between pixel a4 and pixel b4, distance between pixel a5 and pixel b5, and distance between pixel a6 and pixel b6.
  • the presence or absence of an abnormality in the position of the detection area DU is determined by using the above-mentioned items. That is, the position abnormality determination unit 7k determines whether or not there is an abnormality in the position of the detection area DU based on the portion corresponding to the figure F in the output of the detection device 20 (front sensor 23A). For example, in the position abnormality determination unit 7k, when the falling position and / or the rising position (pixels a2-a7) excluding the left end and the right end exceed the preset normal range, the position of the detection area DU is abnormal. Is determined to be.
  • the storage unit 7f may store the normal output (the above-mentioned pre-change output) which is the output of the detection device 20 (pre-sensor 23A) when the detection area DU is normal.
  • the position abnormality determination unit 7k compares the output of the current front sensor 23A with the normal output stored in the storage unit 7f, and determines whether or not there is an abnormality in the position of the detection area DU.
  • the position abnormality determination unit 7k has a falling position and / or a rising position (pixels a2-a7) excluding the left end and the right end in the normal output, and a falling position and / or a falling position excluding the left end and the right end in the current output of the front sensor 23A.
  • the parallel direction fluctuation amount is calculated based on the rising position (pixel b2-b7), and when the parallel direction fluctuation amount exceeds the threshold value, it is determined that the position of the detection region DU is abnormal.
  • the quality determination unit 7a determines the quality of the granular material for each of a plurality of channels. If the detection region DU moves in the left-right direction, the quality of the granules and the elimination of defective products are not properly performed. For example, if the detection region DU shifts to the right in the state shown in FIG. 6, the light from the colored region A2 may be incident on the pixels (pixels to the left of the pixel E40) distributed to the channel CH1. Then, although the granular body G1 is located in the path R2, the quality determination unit 7a may determine that the channel CH1 is a defective product. In that case, since the exclusion control unit 7j ejects air from the injection port S1 corresponding to the path R1, the granular body G1 located in the path R2 is not excluded.
  • the pass / fail determination unit 7a changes the distribution of the pixels to the channels according to the parallel direction fluctuation amount calculated by the position abnormality determination unit 7k. For example, the pass / fail determination unit 7a changes the channel distribution in the direction opposite to the moving direction of the detection region DU with a size corresponding to the amount of fluctuation in the parallel direction.
  • the storage unit 7f stores the new channel distribution changed by the pass / fail determination unit 7a.
  • the storage unit 7f may store (update) the output of the front sensor 23A as a normal output.
  • the control device 7 may be configured to perform only one of the determination / processing related to the movement of the detection area DU in the left-right direction and the determination / processing related to the movement of the detection area DU in the Z direction described above.
  • the control device 7 may be configured to perform both in combination.
  • FIG. 9 shows a change in the output of the front sensor 23A when the position of the detection area DU is rotated.
  • the detection area DU of the normal position before the change is shown by a solid line
  • the detection area DU of the abnormal position after the change is shown by a broken line.
  • the area occupied by the triangle F1 and the rectangle F2 in the detection area DU becomes larger in the left-right direction and moves to the left.
  • the area occupied by the triangle F1 and the rectangle F2 in the detection area DU becomes smaller in the left-right direction and moves to the right.
  • the above-mentioned change in the area occupied by the figure F in the detection area DU appears as a change in the output of the front sensor 23A.
  • the output of the front sensor 23A (hereinafter referred to as “pre-change output”) when the detection region DU is at the position of the solid line is shown in the middle of FIG. 7.
  • the lower part of FIG. 7 shows the output of the front sensor 23A (hereinafter referred to as “changed output”) when the detection area DU is at the position of the broken line.
  • the falling and rising positions (pixels a1-a8) in the output before the change correspond to the changes in the area occupied by the figure F in the detection area DU, and the falling and rising positions in the output after the change. It changes to the position (pixels b1-b8).
  • the relationship between the movement (translation, rotation) of the detection area DU and the output change of the front sensor 23A will be examined.
  • Light from the inspection area IA travels along the optical axis 26A, passes through the mirror 24 and the lens device 25, and reaches the light receiving surface of the front sensor 23A. Therefore, the coordinate system in the inspection area IA and the coordinate system in the light receiving surface of the front sensor 23A have a one-to-one correspondence and can be geometrically converted. Based on this conversion relationship, it is possible to calculate the movement amount (translation / rotation) of the detection region DU from the changes in the falling and rising positions in the output of the front sensor 23A.
  • the detection area DU When the detection area DU is rotated (or tilted) as shown in FIG. 9, the amount of movement in the Z direction and the amount of movement in the left-right direction change according to the position in the detection area DU. Therefore, regarding the change of the operation timing of the exclusion device 30 and the change of the channel distribution described above, it is necessary to change the mode of the change for each channel.
  • the detection area DU has moved to the Z2 side, so it is necessary to accelerate the operation timing of the exclusion device 30.
  • the detection region DU has moved to the Z1 side, so it is necessary to delay the operation timing of the exclusion device 30.
  • control device 7 may be configured as follows.
  • the position abnormality determination unit 7k calculates the amount of fluctuation in the transmission direction for each channel.
  • the exclusion control unit 7j changes the operation timing of the exclusion device 30 based on the transmission direction fluctuation amount for each channel calculated by the position abnormality determination unit 7k.
  • the position abnormality determination unit 7k calculates the translational direction fluctuation amount for each channel.
  • the pass / fail determination unit 7a changes the channel distribution based on the translational direction variation amount for each channel calculated by the position abnormality determination unit 7k.
  • FIG. 10 shows a change in the output of the front sensor 23A when the position of the detection area DU changes in the Y direction (direction orthogonal to the paper surface).
  • the so-called out-of-focus state is reached.
  • the contrast of the output after change (lower part of FIG. 10) is smaller than that of the output before change (middle part of FIG. 10).
  • the amount of decrease in the output due to the figure F in the post-change output is smaller than the amount of decrease in the output due to the figure F in the pre-change output.
  • the falling and rising positions (pixels b1-b8) in the output after the change have not changed from the output before the change.
  • the presence or absence of an abnormality in the position of the detection area DU is determined by using the above-mentioned items. That is, the position abnormality determination unit 7k determines whether or not there is an abnormality in the position of the detection area DU based on the portion corresponding to the figure F in the output of the detection device 20 (front sensor 23A). For example, the position abnormality determination unit 7k determines that the position of the detection area DU is abnormal when the output by the figure F exceeds the preset normal range.
  • the position abnormality determination unit 7k adjusts the focus of the front lens device 25A based on the portion corresponding to the figure F in the output of the detection device 20 (front sensor 23A). For example, the position abnormality determination unit 7k adjusts the focus of the front lens device 25A so that the amount of decrease in the output due to the figure F is small.
  • the determination of the abnormality in the position of the detection area DU is performed based on the output of the rear sensor 23B. That is, the position abnormality determination unit 7k determines whether or not there is an abnormality in the position of the detection region DU based on the portion corresponding to the figure F in the output of the rear sensor 23B. In that case, the change of the channel distribution by the pass / fail determination unit 7a is executed for the channel distribution of the rear sensor 23B. The change of the operation timing of the exclusion device 30 by the exclusion control unit 7j is executed with respect to the operation timing of the rear sensor 23B. The focus adjustment by the position abnormality determination unit 7k is executed for the front lens device 25A.
  • the determination of the abnormality in the position of the detection region DL is performed based on the output of the transmission sensor 23C. That is, the position abnormality determination unit 7k determines whether or not there is an abnormality in the position of the detection region DL based on the portion corresponding to the figure F in the output of the transmission sensor 23C. In that case, the change of the channel distribution by the pass / fail determination unit 7a is executed for the channel distribution of the transmission sensor 23C. The change of the operation timing of the exclusion device 30 by the exclusion control unit 7j is executed with respect to the operation timing of the transmission sensor 23C. The focus adjustment by the position abnormality determination unit 7k is executed for the front lens device 25A.
  • the detection area abnormality handling process executed by the granular material inspection apparatus will be described with reference to the flowchart of FIG.
  • the detection area abnormality handling process is repeatedly executed while the granular inspection device is in operation.
  • the detection area abnormality handling process may be executed when the granular body inspection device is started, or may be executed in response to an operation input from the operator.
  • the control device 7 acquires an output from each sensor 23 (step # 101).
  • the position abnormality determination unit 7k determines whether or not an abnormality has occurred in the positions of the detection areas DU and DL based on the output of each sensor 23 acquired in step # 101 (step # 102).
  • the position abnormality determination unit 7k activates the notification device 8 (step # 103).
  • the pass / fail determination unit 7a changes the channel distribution of the sensor 23 (step # 104).
  • step # 104 After the execution of step # 104, the exclusion control unit 7j changes the operation timing of the exclusion device 30 (step # 105).
  • the position abnormality determination unit 7k adjusts the focus of the lens device 25.
  • step # 102 When it is determined that no abnormality has occurred in the positions of the detection areas DU and DL (step # 102: No), and after the execution of step # 105, the detection area abnormality handling process ends.
  • the quantity, shape and position of the member 51 are not limited to the above examples.
  • the inspection area IA may be provided with a member 51 for the front sensor 23A, a member 51 for the rear sensor 23B, and a member 51 for the transmission sensor 23C. A part of the member 51 for each sensor 23 may be provided in the inspection area IA.
  • the quantity, shape and position of the figure F are not limited to the above examples.
  • the figure F may be one of a triangle F1 and a rectangle F2.
  • the figure F may be a polygon.
  • the figure F may include a white figure (that is, a figure having only a contour line).
  • the figure F may be a line segment.
  • the member 51 for the front sensor 23A and the member 51 for the rear sensor 23B preferably have an opaque white region other than the figure F.
  • the member 51 for the transmission sensor 23C preferably has a transparent region other than the figure F.
  • the control device 7 may be configured to control the sensitivity of the sensor 23 and / or the emission intensity of the lighting device 21 based on the corresponding portion between the two figures F in the output of the sensor 23. ..
  • the position abnormality determination unit 7k calculates the position fluctuation amount (sending direction fluctuation amount, parallel direction fluctuation amount) of the detection areas DU and DL, and operates the notification device 8 when the position fluctuation amount exceeds the notification threshold value. It may be configured as follows.
  • the notification threshold value is set as a fluctuation amount of a limit in which defective product exclusion can be appropriately executed by changing the timing and channel distribution.
  • control device 7 determines that the positions of the detection areas DU and DL are abnormal, the notification device 8 is operated, the channel distribution is changed, the operation timing of the exclusion device 30 is changed, and the lens device 25 is focused. It may be configured to perform at least one of the adjustments.
  • the present invention can be applied to an apparatus for inspecting granules (color sorter, optical sorter, etc.).
  • the plate-shaped member 51 is not arranged in the inspection area IA.
  • An example of the output of the front sensor 23A is shown at the bottom of FIG.
  • the output of the front sensor 23A shows a decrease in output at two points. This is because the granular body G1 falling on the path R2 and the granular body G2 falling on the path R4 are located in the detection region DU, and the light reflected from the granular body G1 and the granular body G2 is incident on the front sensor 23A. caused by. That is, the intensity of the light that reflects the granules and is incident on the front sensor 23A is smaller than the intensity of the light from the background member 21A.
  • the operation parameters of the inspection unit 4 are automatically changed by the changing unit 7h so that the difference in the sorting sensitivity between the two inspection units 4 becomes small.
  • the operation parameter may be changed by the changing unit 7h while the inspection unit 4 is operating (inspection is being executed) or while the inspection unit 4 is stopped (inspection is being stopped).
  • the left inspection unit 4L is the "reference unit which is one of a plurality of inspection units” described in the claims.
  • the right inspection unit 4R is the "adjusted unit which is the remaining inspection unit” described in the claims.
  • a reverse form that is, a form in which the right inspection unit 4R is a reference unit and the left inspection unit 4L is an adjusted unit is also possible.
  • the reference unit may be determined from the plurality of inspection units 4 based on the operation input from the operator.
  • the sorting sensitivity calculation unit 7g calculates the sorting sensitivity, which is the number of defective products detected per unit time, for each of the plurality of inspection units 4 based on the determination result by the quality determination unit 7a. For example, the sorting sensitivity calculation unit 7g stores the time, the type of the inspection unit 4, the type of the sensor 23, and the type of defect in the storage unit 7f as defective product data each time the quality determination unit 7a detects a defective product. For example, the sorting sensitivity calculation unit 7g stores the storage unit 7f as "time 15:07:24, right inspection unit 4R, front sensor 23A, lower first defect". The sorting sensitivity calculation unit 7g calculates the sorting sensitivity with reference to the defective product data stored in the storage unit 7f.
  • the "unit time" as a reference when the sorting sensitivity calculation unit 7g calculates the sorting sensitivity is determined in advance and stored in the storage unit 7f.
  • the unit time may be changed by an operation input from the operator.
  • the sorting sensitivity calculation unit 7g may detect the sorting sensitivity for a plurality of unit times (for example, 30 seconds and 1 hour).
  • the following 6 are listed as the sorting sensitivity that can be calculated by the sorting sensitivity calculation unit 7g.
  • Sorting sensitivity of the front sensor 23A of the left inspection unit 4L (hereinafter referred to as "left front sorting sensitivity")
  • Sorting sensitivity of the rear sensor 23B of the left inspection unit 4L (hereinafter referred to as "left rear sorting sensitivity")
  • Sorting sensitivity of the transmission sensor 23C of the left inspection unit 4L (hereinafter referred to as "left transmission sorting sensitivity")
  • Average of the sorting sensitivity of the left inspection unit 4L (the average of the left front sorting sensitivity, the left rear sorting sensitivity, and the left transmission sorting sensitivity, hereinafter referred to as "left average sorting sensitivity").
  • Sorting sensitivity of the front sensor 23A of the right inspection unit 4R (hereinafter referred to as "right front sorting sensitivity")
  • Average of the sorting sensitivity of the right inspection unit 4R (the average of the right front sorting sensitivity, the right rear sorting sensitivity, and the right transmission sorting sensitivity, hereinafter referred to as "right average sorting sensitivity").
  • the sorting sensitivity calculation unit 7g may calculate the sorting sensitivity for each type of defect (lower first defect (for example, "stink bug damage"), lower second defect (for example, "burnt”)).
  • Sorting thresholds for each camera 22 (lower first threshold SL1, lower first quantity threshold, lower second threshold SL2, lower second quantity threshold, upper first threshold SU1, upper first quantity threshold, upper second) Threshold SU2, upper second quantity threshold)
  • Light emission intensity of lighting device 21 (light emitting devices of background members 21A, 121B, 121C, lighting units 21D, 121E, 121F, 121G)
  • Sensitivity of each sensor 23 (magnification of output voltage from pixel, magnification at the time of quantization, etc.)
  • control device 7 controls the transmission device 10 (vibration feeder 11) based on the set transmission amount as the operation parameter.
  • the sending device 10 controls the sending amount of the granular material based on the set sending amount.
  • the quality determination unit 7a determines the quality of the granular material based on the selection threshold value as an operation parameter. In other words, the detection device 20 detects the granular material as a defective product based on the selection threshold value.
  • the control device 7 controls the lighting device 21 based on the emission intensity as an operation parameter.
  • the illuminating device 21 illuminates the inspection area IA based on the emission intensity.
  • the control device 7 processes the output data from each sensor 23 based on the sensitivity of each sensor 23 as an operation parameter. In other words, the sensitivity of each sensor 23 is controlled by the control device 7.
  • the changing unit 7h changes the set transmission amount of the transmission device 10 so that the difference between the selection sensitivity of the right inspection unit 4R and the selection sensitivity of the left inspection unit 4L becomes small. Specifically, the changing unit 7h increases the set transmission amount in the right inspection unit 4R when the sorting sensitivity in the right inspection unit 4R is smaller than the sorting sensitivity in the left inspection unit 4L. As the set transmission amount increases, the amount of granules transmitted from the transmission device 10 increases. As the parameter of inspection increases, the number of granules determined to be defective increases, and the sorting sensitivity in the right inspection unit 4R increases. Therefore, the difference in sorting sensitivity becomes small.
  • the changing unit 7h reduces the set transmission amount in the right inspection unit 4R when the sorting sensitivity in the right inspection unit 4R is larger than the sorting sensitivity in the left inspection unit 4L.
  • the set transmission amount decreases, the amount of granules transmitted from the transmission device 10 decreases.
  • the number of granules determined to be defective is reduced, and the sorting sensitivity in the right inspection unit 4R is reduced. Therefore, the difference in sorting sensitivity becomes small.
  • the sorting sensitivity used for comparison by the changing unit 7h in the first changing mode can be, for example, the following combinations.
  • the changing unit 7h changes the sorting threshold value of each camera 22 so that the difference between the sorting sensitivity of the right inspection unit 4R and the sorting sensitivity of the left inspection unit 4L becomes small. Specifically, when the sorting sensitivity in the right inspection unit 4R is smaller than the sorting sensitivity in the left inspection unit 4L, the changing unit 7h changes the sorting threshold value in the right inspection unit 4R in a direction in which sorting becomes stricter. When the sorting threshold is changed in the direction of stricter sorting, the number of granules determined to be defective increases, and the sorting sensitivity in the right inspection unit 4R increases. Therefore, the difference in sorting sensitivity becomes small.
  • the detection device 20 detects the granular material as a defective product when the light intensity detected by the sensor 23 is lower than the selection threshold value based on the selection threshold value.
  • the changing unit 7h raises the sorting threshold value in the right inspection unit 4R when the sorting sensitivity in the right inspection unit 4R is smaller than the sorting sensitivity in the left inspection unit 4L.
  • the detection device 20 detects the granular material as a defective product when the light intensity detected by the sensor 23 is higher than the selection threshold value based on the selection threshold value.
  • the changing unit 7h lowers the sorting threshold value in the right inspection unit 4R when the sorting sensitivity in the right inspection unit 4R is smaller than the sorting sensitivity in the left inspection unit 4L.
  • the changing unit 7h changes the sorting threshold value in the right inspection unit 4R in a direction in which the sorting becomes loose.
  • the sorting threshold is changed in the direction of loosening the sorting, the number of granules determined to be defective is reduced, and the sorting sensitivity in the right inspection unit 4R is reduced. Therefore, the difference in sorting sensitivity becomes small.
  • the change of the sorting threshold value in the direction of loosening the sorting is as follows.
  • the detection device 20 detects the granular material as a defective product when the light intensity detected by the sensor 23 is lower than the selection threshold value based on the selection threshold value.
  • the changing unit 7h lowers the sorting threshold value in the right inspection unit 4R when the sorting sensitivity in the right inspection unit 4R is larger than the sorting sensitivity in the left inspection unit 4L.
  • the detection device 20 detects the granular material as a defective product when the light intensity detected by the sensor 23 is higher than the selection threshold value based on the selection threshold value.
  • the changing unit 7h raises the sorting threshold value in the right inspection unit 4R when the sorting sensitivity in the right inspection unit 4R is larger than the sorting sensitivity in the left inspection unit 4L.
  • the sorting sensitivity used for comparison by the changing unit 7h in the second changing mode can be, for example, the following combinations.
  • the sorting sensitivity calculated for each type of defect may be used for comparison by the changing unit 7h.
  • the selection threshold value for example, the lower first threshold SL1 and / or the lower first quantity threshold
  • the type of defect for example, the lower first defect
  • the changing unit 7h changes the emission intensity of the lighting device 21 so that the difference between the sorting sensitivity of the right inspection unit 4R and the sorting sensitivity of the left inspection unit 4L becomes small. Specifically, the changing unit 7h reduces the emission intensity in the right inspection unit 4R when the sorting sensitivity in the right inspection unit 4R is smaller than the sorting sensitivity in the left inspection unit 4L. When the emission intensity becomes small, the inspection region IA becomes dark, the number of granules determined to be defective products increases, and the sorting sensitivity in the right inspection unit 4R increases. Therefore, the difference in sorting sensitivity becomes small.
  • the change unit 7h increases the emission intensity in the right inspection unit 4R when the sorting sensitivity in the right inspection unit 4R is larger than the sorting sensitivity in the left inspection unit 4L.
  • the emission intensity is increased, the inspection region IA becomes brighter, the number of granules determined to be defective is reduced, and the sorting sensitivity in the right inspection unit 4R is reduced. Therefore, the difference in sorting sensitivity becomes small.
  • the sorting sensitivity used for comparison by the changing unit 7h in the third changing mode can be, for example, the following combinations.
  • Left average sorting sensitivity and right average sorting sensitivity In this case, it is preferable that the emission intensity of the entire lighting device 21 (light emitting device related to all background members, all lighting units) is changed.
  • Left front sorting sensitivity and right front sorting sensitivity it is preferable that the light emitting intensity of the lighting device 21 (light emitting device related to the background member 21A, lighting units 21D, 121E) related to the front sensor 23A is changed.
  • Left rear sorting sensitivity and right rear sorting sensitivity it is preferable that the emission intensity of the lighting device 21 (light emitting device related to the background member 21B, lighting units 21F, 121G) related to the rear sensor 23B is changed.
  • Left transmission sorting sensitivity and right transmission sorting sensitivity In this case, it is preferable that the emission intensity of the lighting device 21 (light emitting device related to the background member 21C, lighting units 21D, 121E) related to the transmission sensor 23C is changed.
  • the changing unit 7h changes the sensitivity of the sensor 23 so that the difference between the sorting sensitivity of the right inspection unit 4R and the sorting sensitivity of the left inspection unit 4L becomes small. Specifically, the changing unit 7h increases the sensitivity of the sensor 23 in the right inspection unit 4R when the sorting sensitivity in the right inspection unit 4R is smaller than the sorting sensitivity in the left inspection unit 4L. When the sensitivity of the sensor 23 becomes high (sensitive), the number of granules determined to be defective increases, and the sorting sensitivity in the right inspection unit 4R increases. Therefore, the difference in sorting sensitivity becomes small.
  • the changing unit 7h lowers the sensitivity of the sensor 23 in the right inspection unit 4R when the sorting sensitivity in the right inspection unit 4R is larger than the sorting sensitivity in the left inspection unit 4L.
  • the sensitivity of the sensor 23 becomes low (insensitive)
  • the number of granules determined to be defective is reduced, and the sorting sensitivity in the right inspection unit 4R is reduced. Therefore, the difference in sorting sensitivity becomes small.
  • the sorting sensitivity used for comparison by the changing unit 7h in the fourth changing mode can be, for example, the following combinations.
  • the operation parameter change process executed by the granular material inspection apparatus will be described with reference to the flowchart of FIG.
  • the operation parameter change process is repeatedly executed during the operation of the granular material inspection device.
  • the operation parameter change process may be executed at a set predetermined time interval, or may be executed in response to an operation input from the operator.
  • the sorting sensitivity calculation unit 7g calculates the sorting sensitivity of the reference unit (left inspection unit 4L, the same applies hereinafter) and the adjusted unit (right inspection unit 4R, the same applies hereinafter) (step # 201).
  • the changing unit 7h calculates the difference between the sorting sensitivity of the adjusted unit and the sorting sensitivity of the reference unit based on the calculation result of step # 201, and determines whether or not the difference is equal to or less than a predetermined value (step #). 202). When the difference is equal to or less than a predetermined value (step # 202: Yes), the operation parameter change process ends.
  • step # 202 determines whether or not the sorting sensitivity of the unit to be adjusted is smaller than the sorting sensitivity of the reference unit (step # 203).
  • the changing unit 7h reduces the set transmission amount of the adjusted unit (step # 204).
  • the changing unit 7h increases the set transmission amount of the adjusted unit (step # 205).
  • step # 204 After executing step # 204 or step # 205, the sorting sensitivity calculation unit 7g again calculates the sorting sensitivity of the reference unit and the adjusted unit (step # 206).
  • the changing unit 7h calculates the difference between the sorting sensitivity of the adjusted unit and the sorting sensitivity of the reference unit based on the calculation result of step # 206, and determines whether or not the difference is equal to or less than a predetermined value (step #). 207). When the difference is not more than a predetermined value (step # 207: Yes), the operation parameter change process ends.
  • step # 207 determines whether or not the sorting sensitivity of the unit to be adjusted is smaller than the sorting sensitivity of the reference unit (step # 208).
  • the changing unit 7h raises the sorting threshold value of the adjusted unit (step # 209) to illuminate the lighting device 21. It is weakened (step # 210) and the sensitivity of the sensor 23 is lowered (step # 211).
  • the changing unit 7h lowers the sorting threshold value of the adjusted unit (step # 212) to illuminate the lighting device 21. (Step # 213) to increase the sensitivity of the sensor 23 (step # 214).
  • step # 201 is executed again. That is, the operation parameter change process is executed until the difference between the selection sensitivity of the adjusted unit and the selection sensitivity of the reference unit becomes equal to or less than a predetermined value (step # 202: Yes or step # 207: Yes).
  • the change unit 7h gives priority to the change of the operation parameter of the transmission device 10 (steps # 204, 205) over the change of the operation parameter of the detection device 20 (step # 209-214). Do it.
  • the control device 7 causes the operation display device 6 to display a screen prompting the operator to select and input the sensitivity to be adjusted (step # 301). On the screen, buttons with the character strings of "stink bug damage”, “burnt”, “shirata / milky white / fir", and “blue rice” are displayed as targets for selecting and inputting the sensitivity to be adjusted.
  • the control device 7 waits for an operation input from the operator to the operation display device 6 (step # 302).
  • the control device 7 waits until there is a selection input (step # 302: No).
  • step # 302 When the selection input of the sensitivity to be adjusted is received (step # 302: Yes), the control device 7 executes the test selection (step # 303). Specifically, the control device 7 operates the grain discharge device in response to the operation display device 6 receiving the operation input to start the test sorting from the operator, and the test sorting from the operator is completed. When the operation display device 6 accepts the operation input, the grain discharge device is stopped.
  • step # 303 the control device 7 causes the operation display device 6 to display a screen prompting the operator to input the selection result of the test selection (step # 304).
  • a button with the character strings of "no problem”, “many selection mistakes”, and “poor yield” is displayed as a selection input target of the test selection result.
  • the control device 7 waits for an operation input from the operator to the operation display device 6 (steps # 305, # 306). The control device 7 waits until there is a selection input (step # 305: No, step # 306: No).
  • step # 305: No, step # 306: Yes the control device 7 selects and inputs the sensitivity adjustment range.
  • the screen prompting the operator is displayed on the operation display device 6 (step # 307).
  • a button with the character strings "I want to reduce it a little” and “I want to reduce it considerably” is displayed as a target for selecting and inputting the sensitivity adjustment range.
  • the control device 7 waits for an operation input from the operator to the operation display device 6 (step # 308).
  • the control device 7 waits until there is a selection input (step # 308: No).
  • control device 7 Upon receiving the selection input of the sensitivity adjustment range (step # 308: Yes), the control device 7 changes the sensitivity of the defective product determination in the inspection unit 4, and displays a screen showing the changed sensitivity on the operation display device 6. (Step # 309).
  • control device 7 adjusts the input received in step # 301 based on the result of the test selection received in step # 305 and the adjustment range of the sensitivity received in step # 307. For sensitivity, change the sensitivity.
  • the control device 7 changes the sensitivity in the direction of increasing the sensitivity. If the result of the test selection is "poor yield”, the control device 7 changes the sensitivity in the direction of weakening the sensitivity.
  • the direction in which the sensitivity becomes stronger is the direction in which each threshold value is changed as follows.
  • the direction in which the sensitivity is weakened is the opposite direction.
  • Lower 1st threshold SL1 or lower 2nd threshold SL2 high
  • Lower 1st quantity threshold or lower 2nd quantity threshold small
  • Upper 1st threshold SU1 or upper 2nd threshold SU2 low
  • Upper 1st quantity threshold or upper Second quantity threshold small
  • the control device 7 changes the threshold value described in the previous section by a predetermined amount (first predetermined amount).
  • first predetermined amount When the adjustment range of the sensitivity is "want to be considerably reduced", the control device 7 increases the threshold value described in the previous section to be larger than that in the case of "want to reduce a little" (a second predetermined amount larger than the first predetermined amount). )change.
  • the control device 7 changes the lower first threshold value SL1 and / or the lower first quantity threshold value for the front sensor 23A and the rear sensor 23B.
  • control device 7 changes the lower second threshold value SL2 and / or the lower second quantity threshold value for the front sensor 23A and the rear sensor 23B.
  • the control device 7 changes the lower first threshold value SL1 and / or the lower first quantity threshold value for the transmission sensor 23C.
  • the control device 7 changes the upper first threshold value SU1 and / or the upper first quantity threshold value for the transmission sensor 23C.
  • step # 309 When step # 309 is completed, step # 303 is executed again.
  • the control device 7 proposes the recommended sensitivity and displays a screen on the operation display device 6 to prompt the operator to select and input the subsequent processing. Display (step # 310). On the screen, the current sensitivity (sensitivity after change) is displayed as “recommended sensitivity”, and a button with the character strings “redo” and “set to this sensitivity” as the target of selection input for subsequent processing. Is displayed.
  • the control device 7 waits for an operation input from the operator to the operation display device 6 (steps # 311 and # 312). The control device 7 waits until there is a selection input (step # 311: No, step # 312: No).
  • step # 304 is executed again.
  • step # 312 When the selection input of "Set to this sensitivity" is accepted (step # 312: Yes), the control device 7 operates a screen prompting the operator to select whether to end the processing or adjust another sensitivity. It is displayed on the display device 6 (step # 313). On the screen, buttons with the character strings “End” and “Adjust other sensitivities” are displayed as targets for selection input.
  • the control device 7 waits for an operation input from the operator to the operation display device 6 (steps # 314 and # 315). The control device 7 waits until there is a selection input (step # 314: No, step # 315: No).
  • step # 301 is executed again.
  • step # 315 Yes
  • the sensitivity setting process ends.
  • the granular material inspection device may include three or more inspection units 4.
  • the changing unit 7h is configured to calculate the time average of the sorting sensitivity in a predetermined period for each of the reference unit and the adjusted unit, and change the operating parameters of the adjusted unit so that the difference between them becomes small. May be done.
  • the "predetermined period” may be preset and stored in the storage unit 7f, or may be changed according to an operation input from the operator.
  • the change unit 7h may be configured to calculate the time average of the selection sensitivity in a plurality of "predetermined periods".
  • the changing unit 7h may be configured to change only the set transmission amount of the transmission device 10.
  • the change unit 7h is configured to change at least one of the selection threshold value of each camera 22, the emission intensity of the lighting device 21, and the sensitivity of each sensor 23 without changing the set transmission amount of the transmission device 10. May be done.
  • the amount of change of the operation parameter by the change unit 7h may be set in advance or may be determined each time according to the magnitude of the difference in sorting sensitivity.
  • the change unit 7h may include a machine-learned neural network.
  • the neural network of the change unit 7h is machine-learned using the calculated selection sensitivity, the mode of changing the operation parameter, and the fluctuation amount of the selection sensitivity due to the change of the operation parameter as teacher data, and receives the input of the current selection sensitivity. It may be configured to output the change amount of the operation parameter.
  • the inspection unit 4 is provided separately in a plurality of devices.
  • the inspection unit 4 may be divided into a plurality of granular body inspection devices and arranged.
  • the inspection unit 4 included in one granular inspection device may function as a reference unit, and the inspection unit 4 included in the other granular inspection device may function as an adjusted unit.
  • the control device 7 may operate the notification device 8 to notify the operator that the change unit 7h has changed the operation parameter.
  • the present invention can be applied to a granular body inspection device, a color sorter, an optical sorter, and the like provided with a plurality of inspection units.
  • the present invention is also applicable to a plurality of granular material inspection devices (inspection systems) in which granules from one source are distributed and supplied.
  • FIG. 15 shows a state in which the channel distribution of the front sensor 23A is normal.
  • the granular material G3 is present in the detection region DU in the route R6, and the granular material G4 is present in the detection region DU in the route R9.
  • the quality determination unit 7a determines that the grain of the channel CH6 is a defective product, and injects air from the injection port S6 of the air blowing device 31. As a result, the granular material G3 is eliminated.
  • FIG. 16 shows a state in which the channel distribution of the front sensor 23A is abnormal.
  • pixels E to the left of the example of FIG. 15 are distributed to each channel.
  • the granular material G3 is present in the detection region DU in the path R6, and the granular material G4 is present in the detection region DU in the path R9.
  • an output change corresponding to the defective granular material appears at a position (pixel) corresponding to the path R9 in the output of the front sensor 23A.
  • the pixels corresponding to the path R9 in the output of the front sensor 23A are distributed to both the channel CH6 and the channel CH7.
  • the quality determination unit 7a may determine that both channels CH6 and CH7 are defective. In that case, since the quality determination unit 7a injects air from the injection ports S6 and S7 of the air blowing device 31, if there is a good quality granular material in the path R7, it may be excluded.
  • the quality determination unit 7a may determine that the channel CH7 is a defective product instead of the channel CH6. In that case, since the quality determination unit 7a injects air from the injection port S7 of the air blowing device 31, the defective granular material G3 in the path R6 is not excluded.
  • Such an abnormality in channel distribution may occur when the positional relationship between the shooter 12 and the detection device 20 (camera 22, mirror 24, etc.) changes from the state at the time of shipment (state at the time of adjustment).
  • the abnormality of the channel distribution of each sensor 23 is determined by the abnormality determination unit 7c based on the detection result by the detection unit 7b.
  • the determination of the abnormality of the channel distribution is performed based on the following idea. That is, since the granules are randomly sent from the shooter 12 to the inspection region IA, the probability of passing through the detection region DU at the same time in the adjacent route is low. Therefore, there is a low probability that one granule will straddle adjacent channels in the output of the sensor 23.
  • the channels are distributed so that the light from one path is incident on the pixels belonging to the two adjacent channels, one grain is formed on the adjacent channels in the output of the sensor 23. The body is straddling. In other words, at the same time, the output change due to the granules appears in the adjacent channels in the output of the sensor 23.
  • the abnormality determination unit 7c determines that an abnormality has occurred when it detects that one granular body straddles an adjacent channel in the output of the sensor 23. Specifically, the detection unit 7b detects a decrease in light intensity due to the granules for each of a plurality of channels in the output of the sensor 23. Then, the abnormality determination unit 7c determines that an abnormality has occurred when the detection unit 7b simultaneously detects a decrease in light intensity in an adjacent channel.
  • the detection unit 7b detects in the path corresponding to a certain channel in the output of the sensor 23 when there is a pixel whose output is smaller than the granular body detection threshold SH (FIG. 6). Detects the presence of granules in the region DU.
  • the detection unit 7b detects a decrease in light intensity due to the granules in channels CH6, CH7, CH9, and CH10 of the front sensor 23A (detection result: Yes). Since the detection unit 7b simultaneously detects a decrease in light intensity in adjacent channels (channels CH6, CH7, and channels CH9, CH10), the abnormality determination unit 7c determines that an abnormality in channel distribution has occurred.
  • the abnormality determination unit 7c may determine the abnormality in the following form.
  • the above-mentioned form of determination (form 1) and the other forms of determination described below (forms 2 and 3) may be used in combination or in combination.
  • the abnormality determination unit 7c determines that an abnormality has occurred when the detection unit 7b detects a decrease in light intensity simultaneously and over time in an adjacent channel. In other words, when the detection unit 7b detects that the light intensity is reduced due to the granules at the same time, continues, and ends at the same time in the adjacent channels, the abnormality determination unit 7c has generated an abnormality. Is determined.
  • the abnormality determination unit 7c determines that an abnormality has occurred when a state in which the detection unit 7b simultaneously detects a decrease in light intensity in adjacent channels occurs in a plurality of sets of adjacent channels. .. In other words, a state in which the light intensity is lowered by the granules simultaneously occurs in one set of adjacent channels, and a state in which the light intensity is lowered by the granules simultaneously occurs in another set of adjacent channels.
  • the abnormality determination unit 7c determines that an abnormality has occurred.
  • the abnormality determination unit 7c determines that an abnormality has occurred when the decrease in light intensity due to the granules is simultaneously detected in consecutive pixels belonging to adjacent channels. The form of this determination will be described with reference to FIG.
  • the light from the granular material G3 passing through the path R6 is incident on the pixels E145-E159 of the front sensor 23A, and the decrease in the light intensity due to the granular material G3 appears in the output of the front sensor 23A. ..
  • the pixels up to the pixel E154 are distributed to the channel CH6, and the pixels after the pixel E155 are distributed to the channel CH7. Since the light from the path R6 is incident on the different channels CH6 and CH7, the channel distribution abnormality has occurred. Therefore, it is possible to determine that an abnormality in channel distribution has occurred based on the fact that the decrease in light intensity due to the granular material G3 is simultaneously detected in the continuous pixels E145-159 belonging to the adjacent channels CH6 and CH7. It becomes.
  • the abnormality determination unit 7c determines that an abnormality has occurred when the decrease in light intensity due to the granules is detected simultaneously and temporally in consecutive pixels belonging to adjacent channels. In other words, when the detection unit 7b detects that the decrease in light intensity due to the granules simultaneously occurs in consecutive pixels belonging to adjacent channels, continues, and ends at the same time, as shown in FIG. 17 described above. , The abnormality determination unit 7c determines that an abnormality has occurred.
  • the abnormality determination unit 7c identifies the detection pixels that are the pixels in which the decrease in light intensity due to the granules is detected, and determines the number of the detection pixels that are the smaller of the detection pixels belonging to different channels. The ratio is calculated by dividing by the total number, and when the ratio exceeds a predetermined threshold, it is determined that an abnormality has occurred. The form of this determination will be described with reference to FIG.
  • the light from the granular material G3 passing through the path R6 is incident on the pixels E145-E159 of the front sensor 23A, and the decrease in the light intensity due to the granular material G3 is the output of the front sensor 23A. Appears in. That is, the pixels E145-E159 are the detection pixels DE. The total number of detected pixels is 15.
  • the detection pixel (E145-E154) belonging to the channel CH6 is referred to as a detection pixel DE6.
  • the number of detection pixels DE6 is 10.
  • the detection pixel (E155-E159) belonging to the channel CH7 is referred to as a detection pixel DE7.
  • the number of detection pixels DE7 is 5.
  • the abnormality determination unit 7c divides "5", which is the number of detection pixels DE7, by "15", which is the total number of detection pixels DE, to calculate the ratio "1/3", and the ratio is a predetermined threshold value (for example, 1). If it exceeds / 8), it is determined that an abnormality has occurred. The greater the degree to which the granules protrude from the channel corresponding to the passage through which the granules pass, the larger the "ratio" calculated by the abnormality determination unit 7c.
  • the detection unit 7b and the abnormality determination unit 7c execute the same processing for the outputs of the rear sensor 23B and the transmission sensor 23C, and determine the occurrence of an abnormality in the channel distribution.
  • the abnormality determination by the abnormality determination unit 7c described above determines the presence or absence of an abnormality in one sensor 23.
  • the abnormality determination unit 7d between the facing sensors determines whether or not there is an abnormality in the two sensors 23 at the facing positions.
  • the abnormality determination unit 7e between the upper and lower sensors determines whether or not there is an abnormality in the two sensors 23 located in the upper and lower positions.
  • the front sensor 23A detects the light emitted from the inspection area IA to the Y1 side (an example of the first direction).
  • the rear sensor 23B detects the light emitted from the inspection area IA to the Y2 side (an example of the second direction). That is, the front sensor 23A corresponds to the "first sensor” described in the claims, and the rear sensor 23B corresponds to the "second sensor".
  • the abnormality determination unit 7c determines that the front sensor 23A (an example of the first sensor) and the rear sensor 23B (an example of the second sensor) have an abnormality at about the same time
  • the abnormality determination unit 7d between the facing sensors determines that an abnormality has occurred.
  • Judge that an abnormality has occurred can occur, for example, when the frame supporting the two sensors (front sensor 23A and rear sensor 23B) (for example, the frame of the detection device 20) is misaligned.
  • the expression "opposed sensor” does not mean that the target is limited to the two sensors 23 whose light receiving surfaces face each other.
  • the front sensor 23A (and the rear sensor 23B) detects the light from the detection area DU which is the upper part in the inspection area IA.
  • the transmission sensor 23C detects light from the detection region DL, which is the lower part of the inspection region IA. That is, the front sensor 23A and the rear sensor 23B correspond to the "upper sensor” described in the claims, and the transmission sensor 23C corresponds to the "lower sensor”.
  • one granular body straddles an abnormality channel set in which the abnormality determination unit 7c is an adjacent channel in the output of the front sensor 23A or the rear sensor 23B (an example of the upper sensor).
  • the abnormality determination unit 7c detects that one granular body straddles the channel corresponding to the abnormality channel set in the output of the transmission sensor 23C (an example of the lower sensor), an abnormality occurs. Judge that it has occurred.
  • the abnormality determination unit 7c detects that one granular body G3 straddles the adjacent channels CH6 and CH7 (referred to as an abnormal channel set) in the output of the front sensor 23A.
  • the channel corresponding to the abnormal channel set in the output of the transmission sensor 23C is the channel corresponding to the paths R6 and R7 in the transmission sensor 23C (referred to as the corresponding channel set).
  • the abnormality determination unit 7e determines that an abnormality has occurred.
  • Such an abnormality occurs, for example, when the frame supporting the two sensors (front sensor 23A and transmission sensor 23C, or rear sensor 23B and transmission sensor 23C) (for example, the frame of the detection device 20) is misaligned. sell.
  • the expression “upper and lower sensors” does not mean that the target is limited to the two sensors 23 located above and below.
  • abnormality detection processing The abnormality detection process executed by the granular material inspection apparatus will be described with reference to the flowchart of FIG. The abnormality detection process is repeatedly executed during the operation of the granular material inspection device.
  • the control device 7 acquires an output from each sensor 23 (step # 401).
  • the abnormality determination unit 7c determines whether or not an abnormality has occurred in the channel distribution based on the output of each sensor 23 acquired in step # 401 (step # 402).
  • the abnormality determination unit 7c activates the notification device 8 (step # 403).
  • the facing sensor abnormality determination unit 7d determines whether or not there is an abnormality in the channel distribution between the two sensors based on the determination result of the abnormality determination unit 7c regarding the outputs of the front sensor 23A and the rear sensor 23B. (Step # 404).
  • the abnormality determination unit 7c activates the notification device 8 (step # 405).
  • the abnormality determination unit 7e between the upper and lower sensors has an abnormality in the channel distribution between the sensors based on the determination result of the abnormality determination unit 7c regarding the outputs of the front sensor 23A, the rear sensor 23B, and the transmission sensor 23C. (Step # 406).
  • the abnormality determination unit 7c activates the notification device 8 (step # 407).
  • step # 402 When it is determined that no abnormality has occurred in the channel distribution (step # 402: No), and after the execution of step # 407, the abnormality detection process ends.
  • the abnormality determination unit 7c may be configured to determine that an abnormality has occurred when it detects that one granular body straddles an adjacent channel in the output of the sensor 23 a plurality of times. .. The same applies to the abnormality determination unit 7d between the facing sensors and the abnormality determination unit 7e between the upper and lower sensors.
  • the abnormality determination unit 7c may be configured to operate the notification device 8 when it is determined that an abnormality has occurred a plurality of times. The same applies to the abnormality determination unit 7d between the facing sensors and the abnormality determination unit 7e between the upper and lower sensors.
  • the mode of notification performed by the notification device 8 is the operation by the abnormality determination unit 7c, the abnormality determination unit 7d between the facing sensors. It may be different or the same between the operation by the operation by the upper and lower sensors and the operation by the abnormality determination unit 7e between the upper and lower sensors.
  • the mode of notification performed by the notification device 8 may be different or the same depending on the mode of determination (form 1-6) performed by the abnormality determination unit 7c.
  • the control device 7 stops the operation of the granular body inspection device in response to the determination by the abnormality determination unit 7c, the abnormality determination unit 7d between the facing sensors, and the abnormality determination unit 7e between the upper and lower sensors that an abnormality has occurred.
  • the channel distribution may be changed so that the abnormality of the channel distribution is eliminated.
  • the number and arrangement of the sensors 23 are not limited to the above examples.
  • the present invention can be applied to an apparatus for inspecting granules (granular body inspection apparatus, color sorter, optical sorter, etc.).
  • the storage hopper 3 is a box-shaped member having a hollow inside.
  • the storage hopper 3 includes an inlet 61, a left outlet 62L, and a right outlet 62R.
  • the inlet 61 is an opening that is arranged above the storage hopper 3 and into which granules are charged.
  • the inlet 61 is a rectangular opening formed in the upper part of the rear part of the storage hopper 3. Granules are charged into the storage hopper 3 by the first transport conveyor 2 through the inlet 61.
  • the outlets 62L and 62R are openings arranged at the lower part (lower end) of the storage hopper 3 and allowing the granular material to flow out to the inspection unit 4.
  • the granular material inside the storage hopper 3 is supplied from the outlet 62L to the left inspection unit 4L, and is supplied from the outlet 62R to the right inspection unit 4R.
  • the outlet 62L is positioned so as to overlap the upward protrusion 11b of the trough 11a of the left inspection unit 4L in a plan view.
  • the outlet 62R is located at a position where it overlaps with the upward protrusion 11b of the trough 11a of the right inspection unit 4R in a plan view.
  • the storage hopper 3 is provided with a branch member 71 that branches the internal space corresponding to the left and right inspection units 4.
  • the branch member 71 constitutes a part of the bottom wall of the storage hopper 3. As shown in FIG. 20, the branch member 71 extends from the front portion to the rear portion of the storage hopper 3.
  • the left exit 62L is located to the left of the branch member 71, and the right exit 62R is located to the right of the branch member 71.
  • the storage hopper 3 is provided with a lower constriction portion 3a having a lower constriction shape connected to the outlets 62L and 62R.
  • the side wall 3b of the lower constriction 3a is the lower rear wall of the storage hopper 3. As shown in FIG. 20, the side wall 3b is arranged so that its normal line faces upward and diagonally forward.
  • the storage hopper 3 includes a front wall member 72 (an example of a wall member) extending in the vertical direction, an inspection opening 72a formed in the front wall member 72, and a closing member 73 for closing the inspection opening 72a. ing.
  • the closing member 73 is slidable in the vertical direction with respect to the front wall member 72, and is removable from the front wall member 72.
  • the storage hopper 3 includes transparent left and right monitoring windows 72b and 72c provided on the front wall member 72, and closing members 74 and 75 that close the monitoring windows 72b and 72c.
  • the granules introduced from the inlet 61 by the first transport conveyor 2 flow downward from the left outlet 62L or the right outlet 62R and fall to the trough 11a.
  • the delivery amount by the vibration feeder 11 is smaller than the input amount by the first transport conveyor 2, the granular material is deposited on the trough 11a and is stored inside the storage hopper 3.
  • the storage hopper 3 is provided with the adjustment mechanism AD.
  • the adjusting mechanism AD adjusts the supply amount of the granular material to the left and right inspection units 4.
  • the adjustment mechanism AD includes a guide member 80.
  • the guide member 80 is a triangular columnar member, and is arranged inside the storage hopper 3 in a posture in which the central axis is along the vertical direction and the ridge line 80a of 1 faces the inlet 61.
  • the guide member 80 is supported by the closing member 73 in a state where it can slide in the left-right direction. Specifically, as shown in FIG. 21, an elongated hole 73a extending in the left-right direction is formed in the closing member 73.
  • a bolt 81 for attaching the guide member 80 to the closing member 73 is inserted through the elongated hole 73a.
  • the movement path RT of the granules extends forward or diagonally downward from the first transport conveyor 2 as shown in FIG.
  • the guide member 80 is arranged on the movement path RT of the granules charged from the first transport conveyor 2. Therefore, the granules that collide with the guide member 80 are scattered to the left or right. That is, the granules are distributed to the left and right outlets 62L and 62R by the guide member 80.
  • the guide member 80 can slide in the left-right direction. In other words, the guide member 80 can be repositioned in the direction intersecting the movement path RT of the granular body. Positioning the guide member 80 to the left leads more granules to the right exit 62R. Therefore, the amount of granules supplied from the storage hopper 3 to the right inspection unit 4R increases, and the amount of granules supplied from the storage hopper 3 to the left inspection unit 4L decreases. Positioning the guide member 80 to the right gives the opposite result. In this way, the supply amount of the granular material to the left and right inspection units 4 can be adjusted by the adjusting mechanism AD.
  • the guide member 80 is located below the uppermost end 2a of the first transport conveyor 2.
  • the uppermost end 2a is the position of the upper end of the bucket 2b when the bucket 2b of the first transport conveyor 2 is at the highest position.
  • the guide member 80 is located above the branch member 71. Specifically, the entire guide member 80 is located above the upper end of the branch member 71.
  • the lower end of the guide member 80 is located below the lower end of the inlet 61.
  • the upper end of the guide member 80 is located above the lower end of the inlet 61.
  • the closing member 73 can be removed from the storage hopper 3 with the guide member 80 attached. Therefore, the internal maintenance of the adjustment mechanism AD and the storage hopper 3 can be easily performed.
  • the inside of the storage hopper 3 can be visually recognized from the monitoring windows 72b and 72c. Therefore, the position of the guide member 80 can be adjusted while checking the outflow state of the granular material to the left and right outlets 62L and 62R from the monitoring windows 72b and 72c.
  • the storage hopper 3 includes an overflow discharge port 63 and a cover member 90.
  • the overflow discharge port 63 is a trapezoidal opening formed on the side wall 3b of the lower constriction portion 3a.
  • the granules stored in the storage hopper 3 can flow out to the outside of the storage hopper 3 through the overflow discharge port 63.
  • the overflow outlet 63 is arranged below the inlet 61 of the storage hopper 3 and above the outlets 62L and 62R.
  • the cover member 90 is a plate-shaped member that covers the overflow discharge port 63 from above.
  • the rear end portion of the cover member 90 is supported by the side wall 3b of the lower constriction portion 3a.
  • the cover member 90 extends forward from the side wall 3b.
  • the upper surface of the cover member 90 includes inclined surfaces 90a and 90b that incline diagonally downward.
  • the inclination angles ⁇ (FIG. 22) of the inclined surfaces 90a and 90b with respect to the horizontal plane are 35 degrees. It is preferable that the inclination angle ⁇ is 35 degrees or more.
  • the cover member 90 is provided below the inlet 61 of the storage hopper 3 and above the overflow discharge port 63. That is, the cover member 90 is arranged between the inlet 61 and the overflow outlet 63. Specifically, as shown in FIG. 20, the upper end of the cover member 90 and the lower end of the inlet 61 are located at substantially the same height.
  • the cover member 90 is arranged on the movement path RT of the granules charged from the inlet 61.
  • the granules introduced from the inlet 61 come into contact with the cover member 90, are guided by the inclined surfaces 90a and 90b, and flow down to the left and right. Therefore, it is suppressed that the granules introduced from the inlet 61 directly flow into the overflow discharge port 63.
  • the storage hopper 3 is configured so that the granules stored in the storage hopper 3 can flow into the overflow discharge port 63 below the cover member 90.
  • the width of the overflow discharge port 63 and the width of the cover member 90 are almost the same. Specifically, the width of the lower end (lower side of the trapezoid) of the overflow discharge port 63 and the width of the cover member 90 are substantially the same.
  • the form of the adjustment mechanism AD is not limited to the above example.
  • the adjusting mechanism AD may include a member that is moved or operated by an actuator.
  • the shape, number, and position of the guide members 80 are not limited to the above examples. Further, the mechanism for making the guide member 80 movable and the support mechanism for the guide member 80 are not limited to the above examples.
  • a handle capable of operating the guide member 80 from the outside of the storage hopper 3 may be provided in the storage hopper 3.
  • the present invention can be applied to an apparatus provided with a plurality of inspection units (granular body inspection apparatus, color sorter, optical sorter, etc.).
  • the front end of the cover member 90 and the front end of the overflow discharge port 63 coincide with each other in a plan view. Therefore, it is effectively suppressed that the granules introduced from the inlet 61 directly enter the overflow discharge port 63.
  • the front end of the cover member 90 may be located in front of the front end of the overflow outlet 63.
  • the movement path RT of the granules in the storage hopper 3 changes depending on the shape of the storage hopper 3 and the position and shape of the inlet 61.
  • the front end of the cover member 90 may be located after the front end of the overflow outlet 64. Even in this case, the presence of the cover member 90 prevents the granules introduced from the inlet 61 from directly entering the overflow discharge port 63.
  • the cover member 90 may have the shape shown in FIG. 24. In the illustrated example, the cover member 90 extends diagonally forward and downward from the side wall 3b. The lower end of the front end portion of the cover member 90 is located below the upper end of the overflow discharge port 63.
  • the cover member 90 may have the shape shown in FIG. 25.
  • the cover member 90 extends forward from the side wall 3b to the front wall member 72.
  • the rear end portion of the cover member 90 is supported by the side wall 3b.
  • the front end of the cover member 90 is supported by the front wall member 72. Therefore, the rigidity of the cover member 90 is higher than that of the above example, and the deformation of the cover member 90 due to an external force is suppressed.
  • the shape, number, and position of the overflow outlet 63 are not limited to the above examples.
  • the cover member 90 may be provided only on a part of the overflow discharge ports 63.
  • the storage hopper 3 may not be provided with the adjusting mechanism AD (guide member 80).
  • the adjustment mechanism AD (guide member 80) is not shown in FIGS. 24 and 25. However, both the cover member 90 and the adjusting mechanism AD (guide member 80) according to the modified example may be provided in the storage hopper 3.
  • the present invention can be applied to an apparatus provided with a storage apparatus (granular body inspection apparatus, color sorter, optical sorter, etc.).
  • the elevator 120 for transporting granules according to the present invention will be described. As shown in FIG. 26, the elevator 120 is provided in, for example, the sorter 110.
  • the elevator 120 for transporting granules according to the present invention is not limited to the one provided in the sorting machine 110, and may be provided in a rice milling machine, a huller, or the like.
  • the sorter 110 is provided inside the apparatus main body 111 and optically measures the granular body R (see FIG. 28) (for example, the granular body R is recognized as an image by transmitted light or reflected light) to obtain normal grains. It has a selection processing unit (not shown) for selecting the granular material R.
  • the elevator 120 when the elevator 120 is provided in the sorter 110, the granules R such as brown rice and rice grains charged in the charging hopper 112 provided on the back side are provided in the upper part of the sorter 110. It is used as a supply elevator 120A to be transported (transferred upward) to the storage hopper 113, and is granular in order to discharge the granular body R of normal grains after being processed by the selection processing unit from the upper part of the sorting machine 110. It is used as a discharge elevator 120B that transfers the body R upward.
  • a supply elevator 120A to be transported (transferred upward) to the storage hopper 113, and is granular in order to discharge the granular body R of normal grains after being processed by the selection processing unit from the upper part of the sorting machine 110. It is used as a discharge elevator 120B that transfers the body R upward.
  • the elevator 120 is provided with an input port 121, which is an entrance of the granular body R, on one lower side surface of the main body case 122.
  • the loading port 121 is provided with a loading hopper 112 for loading the granular material R into the main body case 122.
  • the elevator 120 is provided with a discharge port 123, which is an outlet for the granular material R, on the upper and other side surfaces of the main body case 122.
  • the discharge port 123 is provided with a discharge unit 124 for discharging the granular material R from the inside of the main body case 122.
  • the elevator 120 is mounted between the upper pulley 125 provided at the upper end of the main body case 122 extending in the vertical direction, the lower pulley 126 provided at the lower end of the main body case 122, and the upper pulley 125 and the lower pulley 126. It comprises a belt 127 to be passed and a plurality of buckets 128 attached to the outside of the belt 127 at predetermined intervals.
  • the upper pulley 125 is rotated by the motor 129 to rotate and drive the belt 127, so that the bucket 128 moves up and down together with the belt 127.
  • the granular material R charged through the charging port 121 is conveyed to the upper part of the main body case 122 and discharged from the discharging port 123.
  • the back surface portion 128a of the bucket 128 that conveys the granular material R is connected to the outside of the belt 127.
  • the bucket 128 receives the granular material R from the opening edge portion 128b formed on the opposite side of the back surface portion 128a, and holds the received granular material R at the bottom portion 128c provided in series with the opening edge portion 128b.
  • the bottom 128c which is the holding portion of the granular material R, is a direction orthogonal to the direction in which the granular material R enters the bucket 128 (the direction S in which the granular material R enters the bucket 128) when the granular material R is received. Is formed in.
  • the elevator 120 has a scraper bucket 130 (an example of a “scraper”) in which a scraper member 131 is attached to a part of the buckets 128 among the plurality of buckets 128.
  • Two scraper buckets 130 are attached to the outside of the belt 127 at predetermined intervals. Specifically, as shown in FIG. 27, when one scraper bucket 130 is in the lowermost position of the main body case 122, the other scraper bucket 130 is in the uppermost position of the main body case 122.
  • a pair of scraper buckets 130 are arranged at positions facing each other.
  • the elevator 120 is provided with two scraper buckets 130, but the present invention is not limited to this, and only one or three or more scraper buckets 130 may be provided.
  • the scraper bucket 130 is composed of a scraper member 131 for scooping up the granular material R staying in the main body case 122, and a bucket member 132 (an example of a “holding member”) that holds the scraper member 131 against the belt 127. Has been done.
  • the scraper member 131 is in a direction orthogonal to the direction in which the granular material R enters the scraper bucket 130 (direction S in which the granular material R enters the scraper bucket 130) when the granular material R is scooped up by the scraper bucket 130. Is formed in.
  • the elevator 120 has a predetermined gap 122c formed between the opening edge portion 128b of the bucket 128 and the bottom surface 122a and the side surface 122b of the main body case 122, and the opening edge portion of the bucket 128 is formed.
  • the granular material R is likely to stay in the gap 122c formed between the portion 128b and the bottom surface 122a of the main body case 122. Therefore, in the elevator 120, by providing the scraper bucket 130 in which the scraper member 131 is attached to a part of the buckets 128 among the plurality of buckets 128, the granular body R staying in the bottom surface 122a of the main body case 122 is removed from the scraper member 131. The granules R that have been scooped up and stagnated can be efficiently recovered.
  • the scraper member 131 is attached to the bucket member 132 so that its tip is in non-contact with the bottom surface 122a and the side surface 122b of the main body case 122 and protrudes from the opening edge portion 128b of the bucket 128. That is, the scraper member 131 is attached to the bucket member 132 so that its tip passes through a predetermined gap 122c formed between the opening edge portion 128b of the bucket 128 and the bottom surface 122a and the side surface 122b of the main body case 122. Has been done.
  • the bucket member 132 has a back surface portion 132a connected to the outside of the belt 127, an opening edge portion 132b for holding the scraper member 131, and side surface portions 132c and 32d fixed to the back surface portion 132a and holding the opening edge portion 132b. It is composed of.
  • the bucket member 132 has a rectangular opening 132e (an example of a “passable portion”) formed by a combination of the back surface portion 132a, the opening edge portion 132b, and the side surface portions 132c, 32d.
  • the opening 132e of the bucket member 132 is provided so as to be connected to the opening edge 132b.
  • the opening 132e is a direction orthogonal to the direction in which the granular material R enters the scraper bucket 130 (direction S in which the granular material R enters the scraper bucket 130) when the granular material R is scooped up by the scraper bucket 130. Is formed in. Therefore, as shown in FIG. 29, when the granular material R is scooped up by the scraper bucket 130, the granular material R passes through the opening 132e and is discharged from the scraper bucket 130.
  • the opening 132e is provided in the scraper bucket 130 on the side close to the belt 127 (the side opposite to the side on which the scraper member 131 is provided). By providing the opening 132e on the side closer to the belt 127, the granular material R discharged from the scraper bucket 130 can be easily collected by the subsequent bucket 128.
  • the granular body R charged from the charging port 121 is scooped up at the lower part of the main body case 122 by the bucket 128 that moves downward, and is held at the bottom 128c.
  • the granular body R held in the bottom portion 128c is conveyed to the upper part of the main body case 122 by the bucket 128 that moves upward, and is discharged from the discharge port 123.
  • most of the granular material R charged from the charging port 121 is sufficiently conveyed by the bucket 128 and discharged from the discharging port 123, but the granular material R that cannot be scooped up by the bucket 128 is the main body case 122. It will stay in the lower part (gap 122c). Therefore, as shown in FIG.
  • the granular body R staying in the gap 122c is scooped up by the scraper member 131 of the scraper bucket 130.
  • the scooped granular material R is once received by the opening edge portion 132b connected to the scraper member 131, but is continuously provided to the opening edge portion 132b by the ascending movement of the scraper bucket 130. It is discharged to the outside of the scraper bucket 130 through the opening 132e. That is, the scraper bucket 130 has a function of scooping up the granular material R from the lower part of the main body case 122, but does not have a function of holding and transporting the granular material R.
  • the granular material R discharged to the outside of the scraper bucket 130 is collected by the subsequent bucket 128 and transported to the upper part of the main body case 122.
  • the granular material R that was not collected by the subsequent bucket 128 will stay in the lower part (gap 122c) of the main body case 122 again, but will be collected by the subsequent bucket 128 by scooping up again by the other scraper bucket 130. Will be done.
  • the scraper bucket 130 moves up.
  • the granular material R is scooped up by the scraper member 131, and the granular material R is received by the scraper member 131 and the opening end portion 130b.
  • the granular material R passes through the opening portion 132e and is scraped. Since it is discharged to the outside of the bucket 130, a large load is not applied to the scraper bucket 130 itself. Therefore, a stronger load than during steady operation is not generated on the motor 129 (motor 129 that rotationally drives the upper pulley 125) that moves the scraper bucket 130 up and down.
  • the granular material R scooped up by the scraper bucket 130 passes through the opening 132e of the scraper bucket 130 at the start of the operation of the elevator 120.
  • the load applied to the scraper bucket 130 itself at the start of operation of the elevator 120 is reduced. Therefore, the load on the motor 129 at the start of operation of the elevator 120 can be reduced, and the capacity of the motor 129 used can be reduced. Further, by reducing the load applied to the scraper bucket 130 itself at the start of operation of the elevator 120, the belt 127 holding the scraper bucket 130 is less likely to slip with respect to the upper pulley 125, and the wear of the belt 127 is suppressed. be able to.
  • the opening 132e of the scraper bucket 130 which is a passable portion of the granular body R, is formed by combining the back surface portion 132a, the opening edge portion 132b, and the respective edges of the side surface portions 132c and 32d.
  • the present invention is not limited to this, and a part of the opening 132e may be closed (for example, the side half of the opening 132e, the side half of the side portion 132d, or the opening).
  • An opening through which the granular material R can pass is provided only in the central portion of 132e).
  • the bucket member 132 is provided with a passable portion (opening 132e) of the granular material R in the scraper bucket 130, but the present invention is not limited to this, and as shown in FIG.
  • the scraper member 131 may be provided with a passable portion of the granular material R in the scraper bucket 130.
  • Form 131e an example of "passable portion of granular material”
  • the scraper bucket 130 rises when the scraper bucket 130 is located at the lower part of the main body case 122 at the start of operation of the elevator 120.
  • the granular material R is scooped up by the scraper member 131, and the granular material R is received by the scraper member 131 and the opening end portion 130b. Since the granular body R is not scooped up in the portion 131f, the load applied to the scraper bucket 130 itself is smaller than in the case where the granular body R is scooped up by the entire scraper member 131.
  • the scraper member 131 when the scraper member 131 is provided with the right notch portion 131e or the left notch portion 131f, the granular body R scooped up by the scraper member 131 can be held by the bottom portion 132f, so that the granular body R can be held in the scraper bucket 130. It is possible to reduce the load applied to the scraper bucket 130 itself while having both the function of scooping up R and the function of holding and transporting the granular material R.
  • the scraper member 131 when the scraper member 131 is provided with the right notch portion 131e or the left notch portion 131f, the granular body R which cannot be completely scooped up by the scraper bucket 130 having the right notch portion 131e is removed from the left notch portion 131f. Since it can be scooped up by the scraper bucket 130 having the above, the granular body R staying in the gap 122c of the main body case 122 can be sufficiently scooped up.
  • the scraper for scooping up the granular material R staying in the main body case 122 is the scraper bucket 130 composed of the scraper member 131 and the bucket member 132, but the scraper is limited to this.
  • the scraper 130A composed of the scraper member 131 and the holding member 131A that holds the scraper member 131 against the belt 127 may be used as the scraper.
  • passable portions 131B through which the granular material R scooped up by the scraper member 131 can pass are formed on both sides of the holding member 131A.
  • the holding member 131A is provided at the center in the longitudinal direction of the scraper member 131, but the present invention is not limited to this, and the two holding members 131A are provided in the longitudinal direction of the scraper member 131.
  • a passable portion 131B may be formed between the two holding members 131A by arranging them on both sides of the above.
  • the scraper member 131 is held by the holding member 131A, but the present invention is not limited to this, and the scraper member 131 itself may be directly attached to the belt 127 as the scraper. do not have. In this case, a passable portion through which the granular material R can pass is formed on the scraper member 131 itself.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Sorting Of Articles (AREA)

Abstract

This granule inspection device comprises: a plurality of inspection units 4 that inspect granules and detect inferior products; and a changing unit 7h that, in order to reduce the difference between the sorting sensitivity of a reference unit 4L that is one of the plurality of inspection units 4 and the sorting sensitivity of a unit 4 being adjusted that is among the remaining inspection units 4, the sorting sensitivity being the number of inferior products detected per unit time, changes operation parameters of the unit 4R being adjusted.

Description

粒状体検査装置、粒状体搬送用の昇降機、および昇降機用のスクレーパGranular inspection equipment, elevators for transporting granules, and scrapers for elevators
 本発明は、粒状体検査装置、粒状体搬送用の昇降機、および昇降機用のスクレーパに関するものである。 The present invention relates to a granular material inspection device, an elevator for transporting granular materials, and a scraper for the elevator.
〔背景技術1〕
 特許文献1には、粒状体選別装置が記載されている。この装置では、移送手段(振動フィーダ、シュータ等)が米粒を一層状態で且つ横幅方向に複数列に広がる状態で計測対象箇所を通過させる。計測対象箇所からの光が、複数の単位受光部(画素)を備えた受光装置に入射する。各単位受光部の出力に基づいて、米粒が不良であるか否かの判定が行われる。不良であると判定された米粒は、計測対象箇所の下流の分離箇所において、エアー吹き付け装置により他の米粒と分離される。
[Background Technique 1]
Patent Document 1 describes a granular material sorting apparatus. In this device, the transfer means (vibration feeder, shooter, etc.) passes the rice grains in a single layer state and spreads in a plurality of rows in the horizontal direction through the measurement target location. Light from the measurement target location is incident on a light receiving device provided with a plurality of unit light receiving units (pixels). Based on the output of each unit light receiving unit, it is determined whether or not the rice grain is defective. The rice grains determined to be defective are separated from other rice grains by an air blowing device at a separation point downstream of the measurement target point.
 特許文献1の粒状体選別装置は、供給用揚送搬送装置、移送手段、受光装置、及びエアー吹き付け装置を1つずつ備える。米粒は、供給用揚送搬送装置から貯留ホッパを経由して移送手段に供給される。 The granular material sorting device of Patent Document 1 includes a feeding transport device, a transport means, a light receiving device, and an air blowing device one by one. The rice grains are supplied from the supply transportation device to the transfer means via the storage hopper.
〔背景技術2〕
 本発明は、玄米、籾、米粒等の粒状体をバケットによって搬送する粒状体搬送用の昇降機及びその昇降機に用いられるスクレーパに関するものである。
[Background Technique 2]
The present invention relates to an elevator for transporting granules such as brown rice, paddy, and rice grains by a bucket, and a scraper used for the elevator.
 従来、この種の粒状体搬送用の昇降機としては、特許文献2に示すようなものがある。
特許文献2の粒状体搬送用の昇降機は、対となったプーリ間にわたって掛け合わされたベルトと、このベルトに連結具によって適当間隔毎にその背面部で取り付けられた複数のバケットと、を備え、当該バケットによって粒状体を搬送するものである。
Conventionally, there is an elevator for transporting granules of this kind as shown in Patent Document 2.
The elevator for transporting granules of Patent Document 2 includes a belt entwined between a pair of pulleys, and a plurality of buckets attached to the belt at appropriate intervals by a connecting tool on the back surface thereof. Granules are transported by the bucket.
 特許文献2の粒状体搬送用の昇降機は、上記複数のバケットのうちの一部のバケットに、本体ケース内に滞留する粒状体を掬い上げるためのスクレーパが取り付けられたスクレーパバケットを備える。スクレーパバケットは、本体ケースの下部に溜まった粒状体をスクレーパによって掬い上げることで回収する。 The elevator for transporting granules of Patent Document 2 includes a scraper bucket in which a scraper for scooping up the granules staying in the main body case is attached to a part of the buckets among the plurality of buckets. The scraper bucket collects the granules collected at the bottom of the main body case by scooping them up with a scraper.
日本国特開2012-250193号公報Japanese Patent Application Laid-Open No. 2012-250193 日本国特開2016-124688号公報Japanese Patent Application Laid-Open No. 2016-124688
〔課題1〕
 〔背景技術1〕に対応する課題その1は、以下の通りである。
[Problem 1]
The first problem corresponding to [Background Technique 1] is as follows.
 処理能力(単位時間あたりに処理可能な粒状体の量)を増大させるために、粒状体検査装置に、粒状体を検査して不良品を検出する複数の検査ユニットを備えさせることが考えられる。この場合、粒状体検査装置へ投入された粒状体を、複数の検査ユニットへ分配する。そして、分配された粒状体を、それぞれの検査ユニットが検査する。それぞれの検査ユニットが検査する粒状体の不良率(含まれる不良品の割合)は原理的に同じであるから、検査ユニットを作動させたときの選別感度(単位時間あたりの不良品の検出数)は、複数の検査ユニットの間で同じであると好ましい。 In order to increase the processing capacity (the amount of granules that can be processed per unit time), it is conceivable to equip the granule inspection device with a plurality of inspection units that inspect the granules and detect defective products. In this case, the granules charged into the granule inspection device are distributed to a plurality of inspection units. Then, each inspection unit inspects the distributed granules. Since the defect rate (ratio of defective products contained) of the granules inspected by each inspection unit is the same in principle, the sorting sensitivity when the inspection unit is operated (the number of defective products detected per unit time). Is preferably the same among multiple inspection units.
 しかし、検査ユニットの個体差(例えば、受光装置の感度の個体差、照明の明るさの個体差、振動フィーダの振動強度の個体差など)により、各検査ユニットの選別感度が異なってしまう可能性がある。その場合、検査の母集団(粒状体検査装置へ投入された1群の粒状体)は同一であるにもかかわらず、1つの検査ユニットで不良品と判定される粒状体の数と、別の検査ユニットで不良品と判定される粒状体の数と、が異なる事態となる。この場合、いずれかの検査ユニットで良品が不良品として検出されているか(選別感度が不当に高い)、不良品が検出されず良品として扱われているか(選別感度が不当に低い)、のいずれかである。何れの場合であっても、粒状体検査装置として適切な検査性能が発揮できているとはいえない。 However, the selection sensitivity of each inspection unit may differ due to individual differences in the inspection units (for example, individual differences in the sensitivity of the light receiving device, individual differences in the brightness of the illumination, individual differences in the vibration intensity of the vibration feeder, etc.). There is. In that case, although the inspection population (a group of granules input to the granule inspection device) is the same, the number of granules judged to be defective by one inspection unit is different from the number of granules. The situation is different from the number of granules judged to be defective by the inspection unit. In this case, either the inspection unit detects the non-defective product as a defective product (sorting sensitivity is unreasonably high), or the defective product is not detected and is treated as a non-defective product (sorting sensitivity is unreasonably low). Is it? In any case, it cannot be said that appropriate inspection performance can be exhibited as a granular material inspection apparatus.
 このような課題は、特許文献1の粒状体選別装置のように、供給用揚送搬送装置、移送手段、受光装置、及びエアー吹き付け装置を1つずつ備える装置においては生じ得ない。 Such a problem cannot occur in a device provided with a feeding / transporting device, a transporting means, a light receiving device, and an air blowing device, such as the granular material sorting device of Patent Document 1.
 本発明の目的は、複数の検査ユニットを備える粒状体検査装置において適切な検査性能を実現する手段を提供することにある。 An object of the present invention is to provide a means for realizing appropriate inspection performance in a granular inspection apparatus provided with a plurality of inspection units.
〔課題2〕
 〔背景技術1〕に対応する課題その2は、以下の通りである。
[Problem 2]
The second problem corresponding to [Background Technique 1] is as follows.
 計測対象箇所からの光は、スリットやミラー、レンズ装置等を経由して受光装置へ入射する。輸送や設置、運転時に装置が衝撃を受けると、計測対象箇所が適切な位置から移動してしまう。例えば、計測対象箇所が横幅方向にずれると、粒状体の横幅方向の位置と受光装置の出力との対応関係が異常になり、不良品の分離が適切に行えない。計測対象箇所が粒状体の移送方向にずれると、エアー吹き付け装置の作動タイミングが不適切になり、不良品の分離が適切に行えない。計測対象箇所が光の進行方向にずれると、所謂ピントがずれた状態となり、受光装置の出力においてコントラストが低下し、不良品の判定を適切に行えない。すなわち、計測対象箇所の異常が発生すると、粒状体選別装置の検査性能が悪化した状態となる。 The light from the measurement target point enters the light receiving device via the slit, mirror, lens device, etc. If the device receives an impact during transportation, installation, or operation, the measurement target location will move from an appropriate position. For example, if the measurement target location shifts in the width direction, the correspondence between the position of the granules in the width direction and the output of the light receiving device becomes abnormal, and defective products cannot be properly separated. If the measurement target location shifts in the transfer direction of the granules, the operation timing of the air blowing device becomes inappropriate, and defective products cannot be properly separated. If the measurement target location shifts in the traveling direction of the light, a so-called out-of-focus state occurs, the contrast in the output of the light receiving device decreases, and a defective product cannot be properly determined. That is, when an abnormality occurs at the measurement target location, the inspection performance of the granular material sorting device deteriorates.
 本発明の目的は、粒状体検査装置において検出領域の位置の異常の有無を判定し、検査性能が悪化した状態での検査を抑制可能な手法を提供することにある。 An object of the present invention is to provide a method capable of determining the presence or absence of an abnormality in the position of a detection region in a granular material inspection apparatus and suppressing inspection in a state where inspection performance is deteriorated.
〔課題3〕
 〔背景技術1〕に対応する課題その3は、以下の通りである。
[Problem 3]
The third problem corresponding to [Background Technique 1] is as follows.
 複数列に広がる米粒のそれぞれについて判定を行うためには、計測対象箇所における米粒の位置(通過経路)と、受光装置における単位受光部(画素)とが適切に対応している必要がある。そのために、受光装置からの出力を複数のチャンネルに分割し、それぞれのチャンネルに複数列の米粒の経路を対応させ、チャンネルごとに良否の判定を行うことが考えられる。この出力の分割(チャンネル分配)が不適切な場合、不良であると判定された米粒が分離されない事態や、不良でない米粒が分離されてしまう事態が発生し、粒状体検査装置の検査性能が悪化した状態となる。 In order to make a judgment for each of the rice grains spread in multiple rows, it is necessary that the position (passage path) of the rice grains at the measurement target location and the unit light receiving unit (pixel) in the light receiving device appropriately correspond. Therefore, it is conceivable to divide the output from the light receiving device into a plurality of channels, associate the paths of a plurality of rows of rice grains with each channel, and judge the quality of each channel. If this output division (channel distribution) is inappropriate, the rice grains determined to be defective may not be separated, or the rice grains that are not defective may be separated, and the inspection performance of the granular material inspection device deteriorates. It will be in the state of.
 本発明の目的は、粒状体検査装置においてチャンネル分配が不適切な状態を判定し、検査性能が悪化した状態での検査を抑制可能な手法を提供することにある。 An object of the present invention is to provide a method capable of determining a state in which channel distribution is inappropriate in a granular material inspection device and suppressing inspection in a state where inspection performance is deteriorated.
〔課題4〕
 〔背景技術1〕に対応する課題その4は、以下の通りである。
[Issue 4]
The fourth problem corresponding to [Background Technique 1] is as follows.
 処理能力(単位時間あたりに処理可能な粒状体の量)を増大させるために、粒状体検査装置に、粒状体を検査して不良品を検出する複数の検査ユニットを備えさせることが考えられる。この場合、粒状体検査装置へ投入された粒状体を、複数の検査ユニットへ分配する。そして、分配された粒状体を、それぞれの検査ユニットが検査する。 In order to increase the processing capacity (the amount of granules that can be processed per unit time), it is conceivable to equip the granule inspection device with a plurality of inspection units that inspect the granules and detect defective products. In this case, the granules charged into the granule inspection device are distributed to a plurality of inspection units. Then, each inspection unit inspects the distributed granules.
 検査ユニットへの粒状体の供給量は、複数の検査ユニットの間で均等であると望ましい。不均等の場合、供給量の少ない検査ユニットでは処理能力に余裕がある状態となり、装置全体としての処理能力が低下してしまう。 It is desirable that the amount of granules supplied to the inspection unit is even among the plurality of inspection units. In the case of unevenness, the inspection unit with a small supply amount has a margin in processing capacity, and the processing capacity of the entire device is reduced.
 検査ユニットへの粒状体の供給量が均等になるように装置を設計しても、例えば装置が傾いて設置された場合には供給量が不均等になる可能性がある。 Even if the device is designed so that the supply amount of granules to the inspection unit is even, for example, if the device is installed at an angle, the supply amount may be uneven.
 このような課題は、特許文献1の粒状体選別装置のように、供給用揚送搬送装置、移送手段、受光装置、及びエアー吹き付け装置を1つずつ備える装置においては生じ得ない。 Such a problem cannot occur in a device provided with a feeding / transporting device, a transporting means, a light receiving device, and an air blowing device, such as the granular material sorting device of Patent Document 1.
 本発明の目的は、複数の検査ユニットを備える粒状体検査装置において、装置全体としての処理能力の低下を抑制できる手段を提供することにある。 An object of the present invention is to provide a means for suppressing a decrease in the processing capacity of the entire apparatus in a granular inspection apparatus including a plurality of inspection units.
〔課題5〕
 〔背景技術1〕に対応する課題その5は、以下の通りである。
[Problem 5]
Problem No. 5 corresponding to [Background Technique 1] is as follows.
 特許文献1の粒状体選別装置では、粒状体は、供給用揚送搬送装置から貯留ホッパを経由して移送手段に供給される。供給用揚送搬送装置からの供給量、及び移送手段からの送出量は、いずれも変動する場合がある。そうすると、貯留ホッパに貯留される粒状体が増加し、粒状体が供給用揚送搬送装置へ逆流する可能性がある。この事態を回避するため、粒状体が流出可能なオーバーフロー排出口を貯留ホッパに設けることが考えられる。 In the granular material sorting device of Patent Document 1, the granular material is supplied from the feeding transport device to the transfer means via the storage hopper. The amount of supply from the delivery transport device for supply and the amount of delivery from the transfer means may fluctuate. Then, the amount of granules stored in the storage hopper increases, and the granules may flow back to the feeding / transporting device for supply. In order to avoid this situation, it is conceivable to provide an overflow discharge port in which the granules can flow out in the storage hopper.
 しかし、供給用揚送搬送装置から貯留ホッパへ投入された粒状体がオーバーフロー排出口へ直接流入すると好ましくない。なぜなら、移送手段へ供給される粒状体が不足して、粒状体選別装置の処理能力が低下する可能性があるからである。また、粒状体が供給用揚送搬送装置へ逆流して貯留ホッパから流出した場合も、同様に粒状体選別装置の処理能力が低下する可能性がある。 However, it is not preferable that the granules charged into the storage hopper from the supply transport device directly flow into the overflow outlet. This is because the granules supplied to the transfer means may be insufficient and the processing capacity of the granule sorting apparatus may be reduced. Further, when the granules flow back to the feeding / transporting apparatus for supply and flow out from the storage hopper, the processing capacity of the granule sorting apparatus may be similarly reduced.
 本発明の目的は、粒状体検査装置において処理能力の低下を抑制可能な手段を提供することにある。 An object of the present invention is to provide a means capable of suppressing a decrease in processing capacity in a granular material inspection apparatus.
〔課題6〕
 〔背景技術2〕に対応する課題は、以下の通りである。
[Problem 6]
The issues corresponding to [Background Technique 2] are as follows.
 しかしながら、特許文献2の粒状体搬送用の昇降機では、装置の運転開始時に、上記スクレーパバケットが、本体ケースの下部に溜まった多量の粒状体を持ち上げると、上記スクレーパバケット自体に大きな負荷が掛かり、それに伴って、上記スクレーパバケットを昇降移動させるモータ(プーリを回転駆動させるモータ)に定常運転時以上の強い負荷が発生する。特に、上記スクレーパバケットが、粒状体が多く溜まる本体ケースの最下部付近の位置から上昇動作を開始する場合に、上記モータに対する負荷が最も大きくなる。そのため、装置の定常運転時に必要な容量よりも大きな容量の上記モータを昇降機に搭載する必要がある。
 また、上記スクレーパバケット自体に大きな負荷が掛かると、上記スクレーパバケットを保持する上記ベルトがプーリに対してスリップし易い状態となり、上記ベルトが激しく消耗する。
However, in the elevator for transporting granules of Patent Document 2, when the scraper bucket lifts a large amount of granules accumulated in the lower part of the main body case at the start of operation of the apparatus, a large load is applied to the scraper bucket itself. Along with this, a stronger load than during steady operation is generated on the motor (motor that drives the pulley to rotate) that moves the scraper bucket up and down. In particular, when the scraper bucket starts the ascending operation from a position near the bottom of the main body case where a large amount of granules are accumulated, the load on the motor becomes the largest. Therefore, it is necessary to mount the motor having a capacity larger than the capacity required for steady operation of the device on the elevator.
Further, when a large load is applied to the scraper bucket itself, the belt holding the scraper bucket tends to slip with respect to the pulley, and the belt is severely consumed.
 本発明は上記課題を解決するもので、装置の運転開始時における装置駆動源の負荷を軽減可能な粒状体搬送用の昇降機及び昇降機用のスクレーパを提供することを目的とする。 The present invention solves the above problems, and an object of the present invention is to provide an elevator for transporting granules and a scraper for the elevator, which can reduce the load of the device drive source at the start of operation of the device.
〔手段1〕
 〔課題1〕に対応する手段は、以下の通りである。
[Means 1]
The means corresponding to [Problem 1] are as follows.
 上述した課題を解決する手段として、本発明の粒状体検査装置は、粒状体を検査して不良品を検出する複数の検査ユニットと、複数の前記検査ユニットのうちの1つである基準ユニットにおける単位時間あたりの不良品の検出数である選別感度と、その余の前記検査ユニットである被調整ユニットにおける前記選別感度と、の差が小さくなるように、前記被調整ユニットの動作パラメータを変更する変更部と、を備えることを特徴とする。 As a means for solving the above-mentioned problems, the granular material inspection apparatus of the present invention comprises a plurality of inspection units for inspecting granular materials to detect defective products, and a reference unit which is one of the plurality of the inspection units. The operating parameters of the adjusted unit are changed so that the difference between the sorting sensitivity, which is the number of defective products detected per unit time, and the sorting sensitivity of the adjusted unit, which is the remaining inspection unit, becomes small. It is characterized by having a change part.
 本構成によれば、基準ユニットにおける選別感度と被調整ユニットにおける選別感度との差が小さくなるように被調整ユニットの動作パラメータが変更されるので、複数の検査ユニットの選別感度の差異が小さくなり、複数の検査ユニットを備える粒状体検査装置において適切な検査性能を実現することができる。 According to this configuration, the operating parameters of the adjusted unit are changed so that the difference between the sorting sensitivity in the reference unit and the sorting sensitivity in the adjusted unit becomes small, so that the difference in the sorting sensitivity of a plurality of inspection units becomes small. , Appropriate inspection performance can be realized in a granular inspection apparatus provided with a plurality of inspection units.
 本発明において、前記検査ユニットは、検査領域へ前記粒状体を送出する送出装置と、前記検査領域からの光を検知するセンサと、前記センサの出力に基づいて前記粒状体の不良品を検出する検出装置と、を備え、前記送出装置は、前記被調整ユニットの動作パラメータとしての設定送出量に基づいて、前記粒状体の送出量を制御し、前記変更部は、前記被調整ユニットにおける前記選別感度が前記基準ユニットにおける前記選別感度よりも小さい場合に、当該被調整ユニットにおける前記設定送出量を増加させると好適である。 In the present invention, the inspection unit detects a defective product of the granules based on a sending device that sends the granules to the inspection area, a sensor that detects light from the inspection area, and the output of the sensor. The sending device includes a detection device, the sending device controls the sending amount of the granules based on the set sending amount as an operation parameter of the adjusted unit, and the changing unit controls the sorting in the adjusted unit. When the sensitivity is smaller than the sorting sensitivity in the reference unit, it is preferable to increase the set delivery amount in the adjusted unit.
 本構成によれば、被調整ユニットにおける選別感度が基準ユニットにおける選別感度よりも小さい場合に、当該被調整ユニットにおける設定送出量が増加する。これにより、当該被調整ユニットにおける選別感度が増加するので、複数の検査ユニットの選別感度の差異が小さくなり、複数の検査ユニットを備える粒状体検査装置において適切な検査性能を実現することができる。 According to this configuration, when the sorting sensitivity in the adjusted unit is smaller than the sorting sensitivity in the reference unit, the set transmission amount in the adjusted unit increases. As a result, the sorting sensitivity of the unit to be adjusted is increased, so that the difference in the sorting sensitivity of the plurality of inspection units is reduced, and appropriate inspection performance can be realized in the granular inspection apparatus provided with the plurality of inspection units.
 本発明において、前記変更部は、前記被調整ユニットにおける前記選別感度が前記基準ユニットにおける前記選別感度よりも大きい場合に、当該被調整ユニットにおける前記設定送出量を減少させると好適である。 In the present invention, it is preferable that the modified portion reduces the set transmission amount in the adjusted unit when the sorting sensitivity in the adjusted unit is larger than the sorting sensitivity in the reference unit.
 本構成によれば、被調整ユニットにおける選別感度が基準ユニットにおける選別感度よりも大きい場合に、当該被調整ユニットにおける設定送出量が減少する。これにより、当該被調整ユニットにおける選別感度が減少するので、複数の検査ユニットの選別感度の差異が小さくなり、複数の検査ユニットを備える粒状体検査装置において適切な検査性能を実現することができる。 According to this configuration, when the sorting sensitivity in the adjusted unit is larger than the sorting sensitivity in the reference unit, the set transmission amount in the adjusted unit is reduced. As a result, the sorting sensitivity of the unit to be adjusted is reduced, so that the difference in the sorting sensitivity of the plurality of inspection units is reduced, and appropriate inspection performance can be realized in the granular inspection apparatus provided with the plurality of inspection units.
 本発明において、前記検査ユニットは、検査領域へ前記粒状体を送出する送出装置と、前記検査領域からの光を検知するセンサと、前記センサの出力に基づいて前記粒状体の不良品を検出する検出装置と、を備え、前記検出装置は、前記被調整ユニットの動作パラメータとしての選別閾値に基づき、前記センサが検出する光の強度が前記選別閾値よりも低い場合に前記粒状体を不良品として検出し、前記変更部は、前記被調整ユニットにおける前記選別感度が前記基準ユニットにおける前記選別感度よりも小さい場合に、当該被調整ユニットにおける前記選別閾値を高くすると好適である。 In the present invention, the inspection unit detects a defective product of the granules based on a sending device that sends the granules to the inspection area, a sensor that detects light from the inspection area, and the output of the sensor. The detection device includes a detection device, and the detection device regards the granule as a defective product when the light intensity detected by the sensor is lower than the selection threshold value based on the selection threshold value as an operation parameter of the adjusted unit. It is preferable that the changing unit raises the sorting threshold value in the adjusted unit when the sorting sensitivity in the adjusted unit is smaller than the sorting sensitivity in the reference unit.
 本構成によれば、被調整ユニットにおける選別感度が基準ユニットにおける選別感度よりも小さい場合に、当該被調整ユニットにおける選別閾値が高くなる。これにより、当該被調整ユニットにおける選別感度が増加するので、複数の検査ユニットの選別感度の差異が小さくなり、複数の検査ユニットを備える粒状体検査装置において適切な検査性能を実現することができる。 According to this configuration, when the sorting sensitivity in the adjusted unit is smaller than the sorting sensitivity in the reference unit, the sorting threshold value in the adjusted unit becomes high. As a result, the sorting sensitivity of the unit to be adjusted is increased, so that the difference in the sorting sensitivity of the plurality of inspection units is reduced, and appropriate inspection performance can be realized in the granular inspection apparatus provided with the plurality of inspection units.
 本発明において、前記変更部は、前記被調整ユニットにおける前記選別感度が前記基準ユニットにおける前記選別感度よりも大きい場合に、当該被調整ユニットにおける前記選別閾値を低くすると好適である。 In the present invention, it is preferable that the modified portion lowers the sorting threshold value in the adjusted unit when the sorting sensitivity in the adjusted unit is larger than the sorting sensitivity in the reference unit.
 本構成によれば、被調整ユニットにおける選別感度が基準ユニットにおける選別感度よりも大きい場合に、当該被調整ユニットにおける選別閾値が低くなる。これにより、当該被調整ユニットにおける選別感度が減少するので、複数の検査ユニットの選別感度の差異が小さくなり、複数の検査ユニットを備える粒状体検査装置において適切な検査性能を実現することができる。 According to this configuration, when the sorting sensitivity in the adjusted unit is larger than the sorting sensitivity in the reference unit, the sorting threshold value in the adjusted unit becomes low. As a result, the sorting sensitivity of the unit to be adjusted is reduced, so that the difference in the sorting sensitivity of the plurality of inspection units is reduced, and appropriate inspection performance can be realized in the granular inspection apparatus provided with the plurality of inspection units.
 本発明において、前記検査ユニットは、前記検査領域へ前記粒状体を送出する送出装置と、前記検査領域からの光を検知するセンサと、前記センサの出力に基づいて前記粒状体の不良品を検出する検出装置と、前記検査領域を照明する照明装置と、を備え、前記変更部は、前記基準ユニットにおける前記選別感度と前記被調整ユニットの前記選別感度との差に基づいて、前記被調整ユニットの動作パラメータとしての前記照明装置の発光強度を変更すると好適である。 In the present invention, the inspection unit detects a defective product of the granules based on a sending device that sends the granules to the inspection area, a sensor that detects light from the inspection area, and the output of the sensor. The change unit includes a detection device for illuminating the inspection area and a lighting device for illuminating the inspection area, and the change unit is based on the difference between the selection sensitivity of the reference unit and the selection sensitivity of the adjusted unit. It is preferable to change the emission intensity of the lighting device as an operation parameter of the above.
 本構成によれば、基準ユニットにおける選別感度と被調整ユニットの選別感度との差に基づいて被調整ユニットの動作パラメータとしての照明装置の発光強度が変更されるので、被調整ユニットにおける発光強度が適切なものとなる。従って、複数の検査ユニットの選別感度の差異が小さくなり、複数の検査ユニットを備える粒状体検査装置において適切な検査性能を実現することができる。 According to this configuration, the emission intensity of the lighting device as an operating parameter of the adjusted unit is changed based on the difference between the selection sensitivity of the reference unit and the selection sensitivity of the adjusted unit, so that the emission intensity of the adjusted unit is increased. It will be appropriate. Therefore, the difference in the sorting sensitivity of the plurality of inspection units is reduced, and appropriate inspection performance can be realized in the granular inspection apparatus including the plurality of inspection units.
 本発明において、前記検査ユニットは、前記検査領域へ前記粒状体を送出する送出装置と、前記検査領域からの光を検知するセンサと、前記センサの出力に基づいて前記粒状体の不良品を検出する検出装置と、を備え、前記変更部は、前記基準ユニットにおける前記選別感度と前記被調整ユニットの前記選別感度との差に基づいて、前記被調整ユニットの動作パラメータとしての前記センサの感度を変更すると好適である。 In the present invention, the inspection unit detects a defective product of the granules based on a sending device that sends the granules to the inspection area, a sensor that detects light from the inspection area, and the output of the sensor. The change unit determines the sensitivity of the sensor as an operating parameter of the adjusted unit based on the difference between the sorting sensitivity of the reference unit and the sorting sensitivity of the adjusted unit. It is preferable to change it.
 本構成によれば、基準ユニットにおける選別感度と被調整ユニットの選別感度との差に基づいて被調整ユニットの動作パラメータとしてのセンサの感度が変更されるので、被調整ユニットにおけるセンサの感度が適切なものとなる。従って、複数の検査ユニットの選別感度の差異が小さくなり、複数の検査ユニットを備える粒状体検査装置において適切な検査性能を実現することができる。 According to this configuration, the sensitivity of the sensor as an operating parameter of the adjusted unit is changed based on the difference between the sorting sensitivity of the reference unit and the sorting sensitivity of the adjusted unit, so that the sensitivity of the sensor in the adjusted unit is appropriate. It will be something like that. Therefore, the difference in the sorting sensitivity of the plurality of inspection units is reduced, and appropriate inspection performance can be realized in the granular inspection apparatus including the plurality of inspection units.
 本発明において、前記変更部は、前記検出装置の動作パラメータよりも前記送出装置の動作パラメータを優先して変更すると好適である。 In the present invention, it is preferable that the change unit preferentially changes the operation parameter of the transmission device over the operation parameter of the detection device.
 本構成によれば、検出装置の動作パラメータよりも送出装置の動作パラメータが優先して変更されるので、複数の検査ユニットの選別感度の差異が小さくなり易い。従って、複数の検査ユニットを備える粒状体検査装置において適切な検査性能を実現し易くなる。 According to this configuration, since the operation parameter of the transmission device is changed with priority over the operation parameter of the detection device, the difference in the sorting sensitivity of a plurality of inspection units tends to be small. Therefore, it becomes easy to realize appropriate inspection performance in a granular inspection apparatus provided with a plurality of inspection units.
 本発明において、前記変更部は、所定の期間における前記選別感度の時間平均を前記基準ユニット及び前記被調整ユニットの夫々について算出し、それらの差が小さくなるように前記被調整ユニットの動作パラメータを変更すると好適である。 In the present invention, the changing unit calculates the time average of the sorting sensitivity in a predetermined period for each of the reference unit and the adjusted unit, and sets the operating parameters of the adjusted unit so that the difference between them becomes small. It is preferable to change it.
 本構成によれば、所定の期間における選別感度の時間平均が基準ユニット及び被調整ユニットの夫々について算出され、それらの差が小さくなるように被調整ユニットの動作パラメータが変更される。これにより、突発的・偶発的な選別感度の変化による悪影響が抑制されて、複数の検査ユニットを備える粒状体検査装置において適切な検査性能を実現し易くなる。 According to this configuration, the time average of the sorting sensitivity in a predetermined period is calculated for each of the reference unit and the adjusted unit, and the operating parameters of the adjusted unit are changed so that the difference between them becomes small. As a result, adverse effects due to sudden or accidental changes in sorting sensitivity are suppressed, and it becomes easy to realize appropriate inspection performance in a granular inspection apparatus provided with a plurality of inspection units.
〔手段2〕
 〔課題2〕に対応する手段は、以下の通りである。
[Means 2]
The means corresponding to [Problem 2] are as follows.
 上述した課題を解決する手段として、本発明の粒状体検査装置は、検出領域からの光を検出する検出装置と、前記検出領域を通過するように粒状体を送り出す送出装置と、表面に図形が描かれると共に、前記図形が前記検出装置の出力に表れるように前記検出領域に配置される部材と、前記検出装置の出力における前記図形に対応する部分に基づいて、前記検出領域の位置の異常の有無を判定する位置異常判定部と、を備えることを特徴とする。 As a means for solving the above-mentioned problems, the granular material inspection device of the present invention has a detection device that detects light from a detection region, a transmission device that sends out particles so as to pass through the detection region, and a graphic on the surface. An abnormality in the position of the detection area is drawn based on the member arranged in the detection area so that the figure appears in the output of the detection device and the portion corresponding to the figure in the output of the detection device. It is characterized by including a position abnormality determination unit for determining the presence / absence.
 本構成によれば、部材に描かれた図形により検出領域の異常の有無が判定されるので、検査性能が悪化した状態での検査を抑制することができる。例えば、異常が発生したことに応じてオペレータへの異常の報知、検査の停止、自動調整等の対処を実行することが可能となる。これにより、検出領域の位置が異常な状態で検査を続行することが抑制され、検査性能が悪化した状態での検査を抑制することができる。 According to this configuration, since the presence or absence of abnormality in the detection area is determined by the figure drawn on the member, it is possible to suppress the inspection in the state where the inspection performance is deteriorated. For example, it is possible to notify the operator of the abnormality, stop the inspection, perform automatic adjustment, and take other measures in response to the occurrence of the abnormality. As a result, it is possible to suppress the continuation of the inspection when the position of the detection region is abnormal, and it is possible to suppress the inspection when the inspection performance is deteriorated.
 本発明において、前記検出領域が正常である時の前記検出装置の出力である正常出力を記憶する記憶部を備え、前記位置異常判定部は、前記検出装置の出力と前記正常出力とを比較して前記検出領域の位置の異常の有無を判定すると好適である。 In the present invention, a storage unit for storing a normal output which is an output of the detection device when the detection area is normal is provided, and the position abnormality determination unit compares the output of the detection device with the normal output. It is preferable to determine whether or not there is an abnormality in the position of the detection region.
 本構成によれば、正常出力との比較により検出領域の位置の異常の有無が判定されるので、判定が更に適切に行われる。これにより、検出領域の位置が異常な状態で検査を続行することが適切に抑制され、検査性能が悪化した状態での検査を抑制することができる。 According to this configuration, the presence or absence of an abnormality in the position of the detection area is determined by comparison with the normal output, so that the determination is made more appropriately. As a result, it is possible to appropriately suppress the continuation of the inspection when the position of the detection region is abnormal, and suppress the inspection when the inspection performance is deteriorated.
 本発明において、前記図形は、第1部位と第2部位とを有し、前記第1部位は、特定方向に沿って前記検出領域がずれた場合に前記検出装置の出力における前記第1部位に対応する部分が変化する形態であり、前記第2部位は、前記特定方向に沿って前記検出領域がずれた場合に前記検出装置の出力における前記第2部位に対応する部分が変化しない形態であり、前記位置異常判定部は、前記検出装置の出力における前記第1部位に対応する部分及び前記第2部位に対応する部分に基づいて前記検出領域の位置の異常の有無を判定すると好適である。 In the present invention, the figure has a first portion and a second portion, and the first portion is the first portion in the output of the detection device when the detection region is displaced along a specific direction. The corresponding portion changes, and the second portion is a form in which the portion corresponding to the second portion in the output of the detection device does not change when the detection region shifts along the specific direction. It is preferable that the position abnormality determination unit determines the presence or absence of an abnormality in the position of the detection region based on the portion corresponding to the first portion and the portion corresponding to the second portion in the output of the detection device.
 本構成によれば、第1部位と第2部位とを有する図形を判定に用いることによって特定方向に沿った検出領域のずれを検知することが可能となり、検出領域の位置の異常の有無の判定を更に確実に行うことができる。従って、検出領域の位置が異常な状態で検査を続行することが確実に抑制され、検査性能が悪化した状態での検査を確実に抑制することができる。 According to this configuration, it is possible to detect the deviation of the detection area along a specific direction by using the figure having the first part and the second part for the judgment, and it is possible to judge whether or not there is an abnormality in the position of the detection area. Can be performed more reliably. Therefore, it is possible to surely suppress the continuation of the inspection in the state where the position of the detection region is abnormal, and it is possible to surely suppress the inspection in the state where the inspection performance is deteriorated.
 本発明において、前記第1部位は、前記図形が含む三角形の一部であり、前記第2部位は、前記図形が含む長方形の一部であると好適である。 In the present invention, it is preferable that the first part is a part of the triangle included in the figure and the second part is a part of the rectangle included in the figure.
 本構成によれば、三角形及び四角形という単純な形状により、部材に描かれる図形が第1部位及び第2部位を含むことになる。従って、検出領域の位置の異常の有無を判定する処理が簡易なものとなり好ましい。 According to this configuration, the figure drawn on the member includes the first part and the second part due to the simple shape of a triangle and a quadrangle. Therefore, it is preferable that the process of determining the presence or absence of an abnormality in the position of the detection region is simple.
 本発明において、報知装置を備え、前記位置異常判定部は、前記検出領域の位置の異常が有ると判定した場合に前記報知装置を作動させると好適である。 In the present invention, it is preferable that the notification device is provided and the position abnormality determination unit operates the notification device when it is determined that there is an abnormality in the position of the detection region.
 本構成によれば、検出領域の位置の異常が発生したと判定されると報知装置が作動するので、報知を受けたオペレータが異常への対処(装置の停止や設定変更など)を行うことが可能となる。従って、検査性能が悪化した状態での検査を抑制することができる。 According to this configuration, the notification device is activated when it is determined that an abnormality has occurred in the position of the detection area, so that the operator who received the notification can deal with the abnormality (stop the device, change the setting, etc.). It will be possible. Therefore, it is possible to suppress the inspection in a state where the inspection performance is deteriorated.
 本発明において、報知装置を備え、前記位置異常判定部は、前記検出領域の位置変動量を算出し、前記位置変動量が報知閾値を超える場合に前記報知装置を作動させると好適である。 In the present invention, it is preferable that the notification device is provided, the position abnormality determination unit calculates the position fluctuation amount of the detection region, and the notification device is operated when the position fluctuation amount exceeds the notification threshold value.
 本構成によれば、位置変動量が報知閾値を超える場合に報知装置が作動するので、報知を受けたオペレータが異常への対処(装置の停止や設定変更など)を行うことが可能となる。従って、検査性能が悪化した状態での検査を抑制することができる。また、軽微な位置変動の場合には報知装置が作動しないので、粒状体検査装置のオペレーションを簡易なものとすることができる。 According to this configuration, since the notification device is activated when the position fluctuation amount exceeds the notification threshold value, the operator who receives the notification can deal with the abnormality (stop the device, change the setting, etc.). Therefore, it is possible to suppress the inspection in a state where the inspection performance is deteriorated. Further, since the notification device does not operate in the case of a slight position change, the operation of the granular body inspection device can be simplified.
 本発明において、前記検出装置の出力に基づいて前記粒状体の良否を判定する良否判定部を備え、前記送出装置は、前記粒状体を複数並列で送り出すように構成され、前記検出装置は、前記検出領域における前記粒状体の並列方向に対応する方向に並ぶ複数の画素を備え、前記位置異常判定部は、前記検出装置の出力における前記図形に対応する部分に基づいて、前記並列方向についての前記検出領域の位置の変動量である並列方向変動量を算出し、前記良否判定部は、並列する複数の前記粒状体に対応するように複数の前記画素を分配して複数のチャンネルを設定し、前記チャンネルごとに前記粒状体の良否を判定し、前記並列方向変動量に応じて前記画素の前記チャンネルへの分配を変更すると好適である。 In the present invention, a quality determination unit for determining the quality of the granules based on the output of the detection device is provided, the delivery device is configured to send out a plurality of the granules in parallel, and the detection device is the same. The position abnormality determination unit includes a plurality of pixels arranged in a direction corresponding to the parallel direction of the granules in the detection region, and the position abnormality determination unit is based on the portion corresponding to the figure in the output of the detection device. The parallel direction fluctuation amount, which is the fluctuation amount of the position of the detection region, is calculated, and the pass / fail determination unit distributes the plurality of the pixels so as to correspond to the plurality of parallel granules, and sets a plurality of channels. It is preferable to determine the quality of the granules for each of the channels and change the distribution of the pixels to the channels according to the amount of fluctuation in the parallel direction.
 本構成によれば、並列方向変動量が算出され、画素のチャンネルへの分配が自動的に変更されるので、オペレータの手を煩わせることなく、検査性能が悪化した状態での検査を自動的に抑制することができる。 According to this configuration, the amount of fluctuation in the parallel direction is calculated and the distribution of the pixels to the channels is automatically changed, so that the inspection in the state where the inspection performance is deteriorated is automatically performed without bothering the operator. Can be suppressed.
 本発明において、前記検出装置の出力に基づいて前記粒状体の良否を判定する良否判定部と、前記良否判定部により良品でないと判定された前記粒状体を排除する排除装置と、前記排除装置の動作タイミングを制御する排除制御部を備え、前記位置異常判定部は、前記検出装置の出力における前記図形に対応する部分に基づいて、前記送出装置による前記粒状体の送出方向についての前記検出領域の位置の変動量である送出方向変動量を算出し、前記排除制御部は、前記送出方向変動量に基づいて前記排除装置の動作タイミングを変更すると好適である。 In the present invention, the quality determination unit that determines the quality of the granular material based on the output of the detection device, the exclusion device that eliminates the granular material determined by the quality determination unit to be non-defective, and the exclusion device. The exclusion control unit for controlling the operation timing is provided, and the position abnormality determination unit is a detection region for the transmission direction of the granules by the transmission device based on the portion corresponding to the figure in the output of the detection device. It is preferable that the exclusion control unit changes the operation timing of the exclusion device based on the transmission direction variation amount by calculating the transmission direction variation amount which is the position variation amount.
 本構成によれば、送出方向変動量が算出され、排除装置の動作タイミングが自動的に変更されるので、オペレータの手を煩わせることなく、検査性能が悪化した状態での検査を自動的に抑制することができる。 According to this configuration, the amount of fluctuation in the transmission direction is calculated and the operation timing of the exclusion device is automatically changed, so that the inspection in a state where the inspection performance is deteriorated is automatically performed without bothering the operator. It can be suppressed.
 本発明において、前記検出装置が、入射した光を検出するセンサと、前記センサに入射する光を合焦させるレンズ装置と、を備え、前記位置異常判定部は、前記検出装置の出力における前記図形に対応する部分に基づいて前記レンズ装置のピントを調整すると好適である。 In the present invention, the detection device includes a sensor that detects incident light and a lens device that focuses the light incident on the sensor, and the position abnormality determination unit is the graphic figure in the output of the detection device. It is preferable to adjust the focus of the lens device based on the portion corresponding to.
 本構成によれば、レンズ装置のピントが自動的に変更されるので、オペレータの手を煩わせることなく、検査性能が悪化した状態での検査を自動的に抑制することができる。 According to this configuration, since the focus of the lens device is automatically changed, it is possible to automatically suppress the inspection in a state where the inspection performance is deteriorated without bothering the operator.
〔手段3〕
 〔課題3〕に対応する手段は、以下の通りである。
[Means 3]
The means corresponding to [Problem 3] are as follows.
 上述した課題を解決する手段として、本発明の粒状体検査装置は、検査領域へ粒状体を複数並列で送り出す送出装置と、前記検査領域からの光を検出するセンサと、前記センサの出力における隣接するチャンネルに1つの前記粒状体が跨がっていることを検出した場合に、異常が発生したと判定する異常判定部と、を備えることを特徴とする。 As a means for solving the above-mentioned problems, the granular body inspection device of the present invention has a sending device that sends out a plurality of granules to the inspection area in parallel, a sensor that detects light from the inspection area, and an adjacent sensor in the output. It is characterized by comprising an abnormality determination unit for determining that an abnormality has occurred when it is detected that one of the granules straddles the channel.
 チャンネル分配が適切な場合、1つのチャンネルには1つの粒状体が対応するので、隣接するチャンネルに1つの粒状体が跨がった状態は発生し得ない。本構成によれば、隣接するチャンネルに1つの粒状体が跨がっていることが検出された場合に異常が発生したと判定されるので、粒状体検査装置においてチャンネル分配が不適切な状態を判定し、検査性能が悪化した状態での検査を抑制することができる。例えば、異常が発生したことに応じてオペレータへの異常の報知、検査の停止、チャンネル分配の修正等の対処を実行することが可能となる。これにより、チャンネル分配が不適切な状態で検査を続行することが抑制され、検査性能が悪化した状態での検査を抑制することができる。 When channel distribution is appropriate, one granule corresponds to one channel, so that one granule straddles adjacent channels cannot occur. According to this configuration, it is determined that an abnormality has occurred when it is detected that one granule straddles an adjacent channel, so that the channel distribution is inappropriate in the granule inspection device. It is possible to make a judgment and suppress the inspection in a state where the inspection performance is deteriorated. For example, it is possible to notify the operator of the abnormality, stop the inspection, correct the channel distribution, and take other measures in response to the occurrence of the abnormality. As a result, it is possible to suppress the continuation of the inspection in a state where the channel distribution is inappropriate, and it is possible to suppress the inspection in a state where the inspection performance is deteriorated.
 本発明において、前記センサの出力における複数の前記チャンネルごとに、前記粒状体による光の強度の低下を検出する検出部を備え、前記異常判定部は、前記検出部が隣接する前記チャンネルにおいて同時に光の強度の低下を検出した場合に、異常が発生したと判定すると好適である。 In the present invention, a detection unit for detecting a decrease in light intensity due to the granules is provided for each of the plurality of channels in the output of the sensor, and the abnormality determination unit simultaneously emits light in the channel adjacent to the detection unit. It is preferable to determine that an abnormality has occurred when a decrease in the strength of the light is detected.
 粒状体は送出装置からランダムに送出されるから、チャンネル分配が適切な場合には、隣接するチャンネルにおいて同時に粒状体による光の強度の低下が検出される可能性は低い。一方、チャンネル分配が不適切な場合、隣接するチャンネルの両方に1つの粒状体による光の強度の低下が常に同時に表れる。本構成によれば、チャンネルごとに粒状体による光の強度の低下が検出され、隣接するチャンネルにおいて同時に光の強度の低下を検出した場合に異常が発生したと判定されるので、チャンネル分配が不適切な状態を適切に判定することができる。 Since the granules are randomly sent from the sending device, it is unlikely that a decrease in light intensity due to the granules will be detected at the same time in the adjacent channels if the channel distribution is appropriate. On the other hand, if the channel distribution is improper, the decrease in light intensity due to one granule always appears simultaneously in both adjacent channels. According to this configuration, the decrease in light intensity due to the granules is detected for each channel, and it is determined that an abnormality has occurred when the decrease in light intensity is detected simultaneously in the adjacent channels, so that the channel distribution is unsuccessful. The appropriate state can be determined appropriately.
 本発明において、前記異常判定部は、前記検出部が隣接する前記チャンネルにおいて同時且つ経時的に光の強度の低下を検出した場合に、異常が発生したと判定すると好適である。 In the present invention, it is preferable that the abnormality determination unit determines that an abnormality has occurred when the detection unit detects a decrease in light intensity simultaneously and over time in the adjacent channel.
 偶発的な電気ノイズ等により隣接するチャンネルにおいて同時に光の強度の低下が検出されたとしても、その状態が経時的に継続する可能性は低い。本構成によれば、隣接するチャンネルにおいて同時且つ経時的に光の強度の低下を検出した場合に異常が発生したと判定されるので、電気ノイズ等による偶発的な誤判定を抑制し、チャンネル分配が不適切な状態を確実に判定することができる。 Even if a decrease in light intensity is detected at the same time in adjacent channels due to accidental electrical noise, etc., it is unlikely that the state will continue over time. According to this configuration, it is determined that an abnormality has occurred when a decrease in light intensity is detected simultaneously and over time in adjacent channels, so accidental erroneous determination due to electrical noise or the like is suppressed and channel distribution is performed. Can reliably determine the inappropriate state.
 本発明において、前記異常判定部は、前記検出部が隣接する前記チャンネルにおいて同時に光の強度の低下を検出する状態が、隣接する前記チャンネルの複数の組において発生した場合に、異常が発生したと判定すると好適である。 In the present invention, the abnormality determination unit determines that an abnormality has occurred when a state in which the detection unit simultaneously detects a decrease in light intensity in the adjacent channels occurs in a plurality of sets of the adjacent channels. It is preferable to judge.
 チャンネル分配が適切な場合であっても、検査領域を通過する粒状体の移動経路がずれると、隣接するチャンネルにおいて同時に光の強度の低下が検出される可能性がある。しかし、そのような偶発的な事態が複数の箇所で同時に発生する可能性は低い。隣接するチャンネルにおいて同時に光の強度の低下を検出する状態が、隣接するチャンネルの複数の組において発生した場合には、チャンネル分配が不適切である可能性が高い。本構成によれば、誤判定を抑制してチャンネル分配が不適切な状態を確実に判定することができる。 Even if the channel distribution is appropriate, if the movement path of the granules passing through the inspection area is deviated, a decrease in light intensity may be detected at the same time in the adjacent channel. However, it is unlikely that such an accidental situation will occur at multiple locations at the same time. If a situation in which a decrease in light intensity is detected simultaneously in adjacent channels occurs in a plurality of sets of adjacent channels, it is highly possible that the channel distribution is inappropriate. According to this configuration, it is possible to suppress erroneous determination and reliably determine a state in which channel distribution is inappropriate.
 本発明において、前記センサの出力における前記粒状体による光の強度の低下を検出する検出部を備え、前記センサは、前記検査領域における前記粒状体の並列方向に対応する方向に沿って並ぶ複数の画素を有し、前記異常判定部は、前記粒状体による光の強度の低下が隣接する前記チャンネルに属する連続した前記画素において同時に検出された場合に、異常が発生したと判定すると好適である。 In the present invention, the sensor includes a detection unit that detects a decrease in light intensity due to the granules at the output of the sensor, and the sensors are arranged along a direction corresponding to a parallel direction of the granules in the inspection region. It is preferable that the abnormality determination unit has pixels and determines that an abnormality has occurred when the decrease in light intensity due to the granules is simultaneously detected in the continuous pixels belonging to the adjacent channel.
 粒状体は送出装置からランダムに送出されるから、チャンネル分配が適切な場合には、粒状体による光の強度の低下が隣接するチャンネルに属する連続した画素において同時に検出される可能性は低い。一方、チャンネル分配が不適切な場合、隣接するチャンネルに属する連続した画素において1つの粒状体による光の強度の低下が常に同時に表れる。本構成によれば、粒状体による光の強度の低下が隣接するチャンネルに属する連続した画素において同時に検出された場合に異常が発生したと判定されるので、チャンネル分配が不適切な状態を適切に判定することができる。 Since the granules are randomly sent from the sending device, if the channel distribution is appropriate, it is unlikely that the decrease in light intensity due to the granules will be detected simultaneously in consecutive pixels belonging to adjacent channels. On the other hand, when the channel distribution is inappropriate, the decrease in light intensity due to one granule always appears at the same time in the continuous pixels belonging to the adjacent channels. According to this configuration, it is determined that an abnormality has occurred when the decrease in light intensity due to the granules is simultaneously detected in consecutive pixels belonging to adjacent channels. It can be determined.
 本発明において、前記異常判定部は、前記粒状体による光の強度の低下が隣接する前記チャンネルに属する連続した前記画素において同時且つ経時的に検出された場合に、異常が発生したと判定すると好適である。 In the present invention, it is preferable that the abnormality determination unit determines that an abnormality has occurred when the decrease in light intensity due to the granules is simultaneously and temporally detected in the continuous pixels belonging to the adjacent channel. Is.
 偶発的な電気ノイズ等により、粒状体による光の強度の低下が隣接するチャンネルに属する連続した画素において検出されたとしても、その状態が経時的に継続する可能性は低い。本構成によれば、粒状体による光の強度の低下が隣接するチャンネルに属する連続した画素において同時且つ経時的に検出された場合に、異常が発生したと判定されるので、電気ノイズ等による偶発的な誤判定を抑制し、チャンネル分配が不適切な状態を確実に判定することができる。 Even if a decrease in light intensity due to granules is detected in consecutive pixels belonging to adjacent channels due to accidental electrical noise or the like, it is unlikely that the state will continue over time. According to this configuration, when the decrease in light intensity due to the granules is detected simultaneously and over time in consecutive pixels belonging to adjacent channels, it is determined that an abnormality has occurred, so it is accidental due to electrical noise or the like. It is possible to suppress an erroneous determination and reliably determine a state in which channel distribution is inappropriate.
 本発明において、前記センサの出力における前記粒状体による光の強度の低下を検出する検出部を備え、前記センサは、前記検査領域における前記粒状体の並列方向に対応する方向に沿って並ぶ複数の画素を有し、前記異常判定部は、前記粒状体による光の強度の低下が検出された画素である検出画素を特定し、異なる前記チャンネルに属する前記検出画素のうち少ない方の前記検出画素の数を前記検出画素の総数で除して比率を算出し、前記比率が所定の閾値を超えた場合に、異常が発生したと判定すると好適である。 In the present invention, the sensor includes a detection unit that detects a decrease in light intensity due to the granules at the output of the sensor, and the sensors are arranged along a direction corresponding to a parallel direction of the granules in the inspection region. The abnormality determination unit has pixels, and the abnormality determination unit identifies detection pixels that are pixels in which a decrease in light intensity due to the granules is detected, and the detection pixels of the detection pixels belonging to different channels, whichever is smaller. It is preferable to divide the number by the total number of the detected pixels to calculate the ratio, and when the ratio exceeds a predetermined threshold, it is determined that an abnormality has occurred.
 本構成によれば、チャンネル分配が不適切な度合いが「比率」として数値で算出され、その比率に基づいて異常が発生したと判定されるので、チャンネル分配が不適切な状態を数値に基づいて適切に判定することができる。 According to this configuration, the degree of inappropriate channel distribution is calculated numerically as a "ratio", and it is determined that an abnormality has occurred based on the ratio. It can be judged appropriately.
 本発明において、報知装置を備え、前記異常判定部は、異常が発生したと判定した場合に前記報知装置を作動させると好適である。 In the present invention, it is preferable that the notification device is provided and the abnormality determination unit operates the notification device when it is determined that an abnormality has occurred.
 本構成によれば、異常が発生したと判定されると報知装置が作動するので、報知を受けたオペレータが異常への対処(装置の停止や設定変更)を行うことが可能となる。従って、検査性能が悪化した状態での検査を抑制することができる。 According to this configuration, since the notification device is activated when it is determined that an abnormality has occurred, the operator who received the notification can deal with the abnormality (stop the device or change the setting). Therefore, it is possible to suppress the inspection in a state where the inspection performance is deteriorated.
 本発明において、前記検査領域から第1方向に放射される光を検出する、前記センサとしての第1センサと、前記検査領域から前記第1方向と逆の方向である第2方向に放射される光を検出する、前記センサとしての第2センサと、前記異常判定部が前記第1センサ及び前記第2センサについてほぼ同時期に異常が発生したと判定した場合に、異常が発生したと判定する対向センサ間異常判定部と、を備えると好適である。 In the present invention, the first sensor as the sensor that detects the light emitted from the inspection area in the first direction and the second sensor emitted from the inspection area in the direction opposite to the first direction. When the second sensor as the sensor that detects light and the abnormality determination unit determine that an abnormality has occurred in the first sensor and the second sensor at approximately the same time, it is determined that an abnormality has occurred. It is preferable to include an abnormality determination unit between facing sensors.
 第1センサと第2センサでほぼ同時期に異常が発生した場合、両センサを支持するフレーム等の位置ずれや送出装置の不具合など、重大な問題が発生している可能性がある。本構成によれば、このような重大な問題の発生が対向センサ間異常判定部により判定されるので、検査性能が悪化した状態での検査を適切に抑制することができる。 If an abnormality occurs in the first sensor and the second sensor at about the same time, there is a possibility that a serious problem has occurred, such as a misalignment of the frame supporting both sensors or a malfunction of the transmission device. According to this configuration, since the occurrence of such a serious problem is determined by the facing sensor abnormality determination unit, it is possible to appropriately suppress the inspection in a state where the inspection performance is deteriorated.
 本発明において、前記検査領域における上部からの光を検出する、前記センサとしての上センサと、前記検査領域における下部からの光を検出する、前記センサとしての下センサと、前記異常判定部が前記上センサの出力における隣接するチャンネルである異常チャンネル組に1つの前記粒状体が跨がっていることを検出し、且つ、前記異常判定部が前記下センサの出力における前記異常チャンネル組に対応するチャンネルに1つの前記粒状体が跨がっていることを検出した場合に、異常が発生したと判定する上下センサ間異常判定部と、を備えると好適である。 In the present invention, the upper sensor as the sensor that detects the light from the upper part in the inspection area, the lower sensor as the sensor that detects the light from the lower part in the inspection area, and the abnormality determination unit are said. It is detected that one of the granules straddles the abnormal channel set which is an adjacent channel in the output of the upper sensor, and the abnormality determination unit corresponds to the abnormal channel set in the output of the lower sensor. It is preferable to include an abnormality determination unit between the upper and lower sensors that determines that an abnormality has occurred when it is detected that one of the granules straddles the channel.
 上センサと下センサでほぼ同時期に異常が発生した場合、両センサを支持するフレーム等の位置ずれや送出装置の不具合など、重大な問題が発生している可能性がある。本構成によれば、このような重大な問題の発生が上下センサ間異常判定部により判定されるので、検査性能が悪化した状態での検査を適切に抑制することができる。 If an abnormality occurs in the upper sensor and the lower sensor at about the same time, there is a possibility that a serious problem has occurred, such as a misalignment of the frame supporting both sensors or a malfunction of the transmission device. According to this configuration, since the occurrence of such a serious problem is determined by the abnormality determination unit between the upper and lower sensors, it is possible to appropriately suppress the inspection in a state where the inspection performance is deteriorated.
〔手段4〕
 〔課題4〕に対応する手段は、以下の通りである。
[Means 4]
The means corresponding to [Problem 4] are as follows.
 上述した課題を解決する手段として、本発明の粒状体検査装置は、粒状体を検査して不良品を検出する複数の検査ユニットと、供給された前記粒状体を貯留すると共に複数の前記検査ユニットへ前記粒状体を供給する貯留装置と、前記貯留装置に設けられるとともに複数の前記検査ユニットへの前記粒状体の供給量を調整する調整機構と、を備えることを特徴とする。 As a means for solving the above-mentioned problems, the granule inspection apparatus of the present invention includes a plurality of inspection units for inspecting granules to detect defective products, and a plurality of inspection units for storing the supplied granules. It is characterized by comprising a storage device for supplying the granules to the storage device and an adjusting mechanism provided in the storage device and adjusting the supply amount of the granules to a plurality of the inspection units.
 本構成によれば、調整機構により複数の検査ユニットへの粒状体の供給量を調整することができるので、検査ユニットへの粒状体の供給量を均等化でき、装置全体としての処理能力の低下を抑制することができる。 According to this configuration, since the amount of granules supplied to a plurality of inspection units can be adjusted by the adjusting mechanism, the amount of granules supplied to the inspection units can be equalized, and the processing capacity of the entire apparatus is reduced. Can be suppressed.
 本発明において、前記調整機構は、前記粒状体の移動経路と交差する方向での位置変更が可能なガイド部材を備えると好適である。 In the present invention, it is preferable that the adjusting mechanism includes a guide member capable of changing the position in a direction intersecting the movement path of the granules.
 本構成によれば、ガイド部材の位置を変更できるので、複数の検査ユニットへの粒状体の供給量を容易に調整することができる。また、簡易な構成により調整機構を実現することができる。 According to this configuration, since the position of the guide member can be changed, the supply amount of the granular material to a plurality of inspection units can be easily adjusted. Moreover, the adjustment mechanism can be realized by a simple configuration.
 本発明において、前記ガイド部材は、左右方向にスライド可能であると好適である。 In the present invention, it is preferable that the guide member can slide in the left-right direction.
 本構成によれば、ガイド部材の位置の変更を容易に行うことができる。また、調整機構の構成を更に簡素化することができる。 According to this configuration, the position of the guide member can be easily changed. In addition, the configuration of the adjustment mechanism can be further simplified.
 本発明において、前記粒状体を上方へ搬送すると共に前記粒状体を前記貯留装置の内部へ投入するバケットコンベアを備え、前記ガイド部材は、前記バケットコンベアから投入された前記粒状体の前記移動経路上に配置されていると好適である。 In the present invention, a bucket conveyor is provided for transporting the granules upward and charging the granules into the storage device, and the guide member is on the moving path of the granules loaded from the bucket conveyor. It is preferable that it is arranged in.
 本構成によれば、ガイド部材が粒状体の移動経路上に配置されているので、ガイド部材の位置変更により粒状体の移動方向を変更することができ、複数の検査ユニットへの粒状体の供給量を効果的に調整することができる。 According to this configuration, since the guide member is arranged on the moving path of the granular body, the moving direction of the granular body can be changed by changing the position of the guide member, and the granular body can be supplied to a plurality of inspection units. The amount can be adjusted effectively.
 本発明において、前記ガイド部材は、前記バケットコンベアの最上端よりも下に位置していると好適である。 In the present invention, it is preferable that the guide member is located below the uppermost end of the bucket conveyor.
 本構成によれば、バケットコンベアから投入される粒状体の移動方向を確実に変更することができ、複数の検査ユニットへの粒状体の供給量を確実に調整することができる。 According to this configuration, the moving direction of the granules charged from the bucket conveyor can be reliably changed, and the supply amount of the granules to a plurality of inspection units can be reliably adjusted.
 本発明において、前記貯留装置は、その内部空間を複数の前記検査ユニットに対応して分岐させる分岐部材を備え、前記ガイド部材は、前記分岐部材よりも上に位置すると好適である。 In the present invention, it is preferable that the storage device includes a branch member that branches its internal space corresponding to a plurality of the inspection units, and the guide member is located above the branch member.
 本構成によれば、ガイド部材が分岐部材よりも上にあるので、粒状体が分岐部材に達するより前に粒状体の移動方向を変更することができる。従って、複数の検査ユニットへの粒状体の供給量を効果的に調整することができる。 According to this configuration, since the guide member is above the branch member, the moving direction of the granular body can be changed before the granular body reaches the branch member. Therefore, the amount of granules supplied to the plurality of inspection units can be effectively adjusted.
 本発明において、前記貯留装置は、上下方向に沿って延びる壁部材と、前記壁部材に形成された点検用開口と、前記点検用開口を塞ぐ閉塞部材と、を備え、前記ガイド部材は前記閉塞部材に支持されていると好適である。 In the present invention, the storage device includes a wall member extending in the vertical direction, an inspection opening formed in the wall member, and a closing member for closing the inspection opening, and the guide member is closed. It is preferable that it is supported by a member.
 本構成によれば、貯留装置及び調整機構を一纏まりに構成することができ、スペース効率とメンテナンス性とを向上することが可能となる。 According to this configuration, the storage device and the adjustment mechanism can be configured as a whole, and space efficiency and maintainability can be improved.
〔手段5〕
 〔課題5〕に対応する手段は、以下の通りである。
[Means 5]
The means corresponding to [Problem 5] are as follows.
 上述した課題を解決する手段として、本発明の粒状体検査装置は、粒状体を検査して不良品を検出する検査ユニットと、投入された前記粒状体を貯留すると共に前記検査ユニットへ前記粒状体を供給する貯留装置と、を備え、前記貯留装置は、上部に配置され前記粒状体が投入される入口と、下部に配置され前記粒状体が前記検査ユニットへ流出する出口と、前記入口よりも下且つ前記出口よりも上に配置され前記粒状体が流出可能なオーバーフロー排出口と、前記入口と前記オーバーフロー排出口との間且つ前記入口から投入される前記粒状体の移動経路上に配置されるカバー部材と、を備え、前記カバー部材の下方において前記貯留装置に貯留された前記粒状体が前記オーバーフロー排出口に流入可能なように構成されている、ことを特徴とする。 As a means for solving the above-mentioned problems, the granular material inspection apparatus of the present invention has an inspection unit that inspects the granular material and detects a defective product, and stores the charged granular material and puts the granular material into the inspection unit. The storage device is provided with an inlet arranged at the upper part where the granules are input, an outlet arranged at the lower part where the granules flow out to the inspection unit, and an inlet thereof. It is arranged below and above the outlet so that the granules can flow out from the overflow outlet, and between the inlet and the overflow outlet and on the movement path of the granules introduced from the inlet. A cover member is provided, and the granules stored in the storage device below the cover member are configured to be able to flow into the overflow discharge port.
 本構成によれば、カバー部材が入口とオーバーフロー排出口との間且つ粒状体の移動経路上に配置されるので、入口から投入された粒状体がオーバーフロー排出口へ直接入ることが抑制される。従って、処理能力の低下を抑制することができる。また、カバー部材の下方において粒状体がオーバーフロー排出口に流入可能であるから、貯留装置が満杯となって粒状体が入口から流出することが抑制される。この点でも、処理能力の低下を抑制することができる。 According to this configuration, since the cover member is arranged between the inlet and the overflow outlet and on the movement path of the granules, the granules input from the inlet are suppressed from directly entering the overflow outlet. Therefore, it is possible to suppress a decrease in processing capacity. Further, since the granules can flow into the overflow discharge port below the cover member, it is possible to prevent the storage device from becoming full and the granules from flowing out from the inlet. In this respect as well, it is possible to suppress a decrease in processing capacity.
 本発明において、前記貯留装置は、前記出口に繋がる下窄まり形状の下窄まり部を備えており、前記下窄まり部の側壁に前記オーバーフロー排出口が設けられており、前記オーバーフロー排出口の上方に前記カバー部材が設けられていると好適である。 In the present invention, the storage device is provided with a lower constriction-shaped lower constriction portion connected to the outlet, and the overflow outlet is provided on the side wall of the lower constriction portion, and the overflow outlet is provided. It is preferable that the cover member is provided above.
 本構成によれば、下窄まり部の側壁にオーバーフロー排出口が設けられているので、粒状体がオーバーフロー排出口からスムースに流出できる。また、オーバーフロー排出口の上方にカバー部材が設けられているので、入口から投入された粒状体がオーバーフロー排出口へ直接入ることが効果的に抑制される。従って、処理能力の低下を効果的に抑制することができる。 According to this configuration, since the overflow outlet is provided on the side wall of the lower constriction portion, the granules can smoothly flow out from the overflow outlet. Further, since the cover member is provided above the overflow discharge port, it is effectively suppressed that the granules thrown in from the inlet directly enter the overflow discharge port. Therefore, the decrease in processing capacity can be effectively suppressed.
 本発明において、前記オーバーフロー排出口の幅と前記カバー部材の幅とがほぼ同じであると好適である。 In the present invention, it is preferable that the width of the overflow outlet and the width of the cover member are substantially the same.
 本構成によれば、入口から投入された粒状体がオーバーフロー排出口へ直接入ることを効果的に抑制しつつ、出口への粒状体の移動をカバー部材が妨げにくい。従って、処理能力の低下を効果的に抑制することができる。 According to this configuration, the cover member does not easily hinder the movement of the granules to the outlet while effectively suppressing the granules thrown in from the inlet from directly entering the overflow outlet. Therefore, the decrease in processing capacity can be effectively suppressed.
 本発明において、前記カバー部材の上端と前記入口の下端とがほぼ同じ高さに位置すると好適である。 In the present invention, it is preferable that the upper end of the cover member and the lower end of the inlet are located at substantially the same height.
 本構成によれば、入口から投入された粒状体が早期にカバー部材と接触することができるので、オーバーフロー排出口への粒状体の直接流入を効果的に抑制することができる。
従って、処理能力の低下を効果的に抑制することができる。
According to this configuration, since the granules introduced from the inlet can come into contact with the cover member at an early stage, the direct inflow of the granules into the overflow discharge port can be effectively suppressed.
Therefore, the decrease in processing capacity can be effectively suppressed.
 本発明において、前記カバー部材の上面が、斜め下方に傾斜する傾斜面を備えると好適である。 In the present invention, it is preferable that the upper surface of the cover member is provided with an inclined surface that is inclined diagonally downward.
 本構成によれば、傾斜面には粒状体が滞留し難いので、カバー部材の上に粒状体が滞留することを効果的に抑制することができる。従って、貯留装置の内部に粒状体が滞留して検査されない事態を抑制することができる。 According to this configuration, since the granules are unlikely to stay on the inclined surface, it is possible to effectively prevent the granules from staying on the cover member. Therefore, it is possible to prevent a situation in which granules stay inside the storage device and are not inspected.
〔手段6〕
 〔課題6〕に対応する手段は、以下の通りである。
[Means 6]
The means corresponding to [Problem 6] are as follows.
 上記課題を解決するために、本発明の粒状体搬送用の昇降機は、本体ケースの上下端に軸支された上部プーリ及び下部プーリと、前記上部プーリと前記下部プーリの間に架け渡されたベルトと、前記ベルトに取り付けられた複数のバケットと、を備え、粒状体を前記バケットによって搬送する粒状体搬送用の昇降機であって、前記ベルトには、前記本体ケース内に滞留する前記粒状体を掬い上げるためのスクレーパが設けられ、前記スクレーパは、前記スクレーパによって掬い上げられる前記粒状体が通過可能な通過可能部分を有するものである。 In order to solve the above problems, the elevator for transporting granules of the present invention is bridged between an upper pulley and a lower pulley pivotally supported at the upper and lower ends of the main body case, and between the upper pulley and the lower pulley. An elevator for transporting granules, comprising a belt and a plurality of buckets attached to the belt, and transporting the granules by the buckets, wherein the belt retains the granules in the main body case. A scraper for scooping up is provided, and the scraper has a passable portion through which the granules scooped up by the scraper can pass.
 上記構成では、スクレーパが粒状体を掬い上げる際に、スクレーパによって掬い上げられる粒状体がスクレーパに設けられる通過可能部分を通過する。 In the above configuration, when the scraper scoops up the granules, the granules scooped up by the scraper pass through the passable portion provided in the scraper.
 本発明の粒状体搬送用の昇降機は、前記通過可能部分が、前記スクレーパにおいて前記ベルトに近い側に設けられるものである。 In the elevator for transporting granules of the present invention, the passable portion is provided in the scraper on the side close to the belt.
 上記構成では、スクレーパが粒状体を掬い上げる際に、スクレーパによって掬い上げられる粒状体がスクレーパにおいてベルトに近い側を通過する。 In the above configuration, when the scraper scoops up the granules, the granules scooped up by the scraper pass through the side of the scraper near the belt.
 本発明の粒状体搬送用の昇降機は、前記スクレーパが、前記本体ケース内に滞留する前記粒状体を掬い上げるためのスクレーパ部材と、前記スクレーパ部材を前記ベルトに対して保持する保持部材と、を備え、前記通過可能部分は、前記保持部材に設けられるものである。 In the elevator for transporting granules of the present invention, the scraper has a scraper member for scooping up the granules staying in the main body case, and a holding member for holding the scraper member with respect to the belt. The passable portion is provided on the holding member.
 上記構成では、スクレーパ部材が粒状体を掬い上げる際に、スクレーパ部材によって掬い上げられる粒状体が保持部材の上記通過可能部分を通過する。 In the above configuration, when the scraper member scoops up the granules, the granules scooped up by the scraper member pass through the passable portion of the holding member.
 本発明の粒状体搬送用の昇降機は、前記スクレーパが、前記本体ケース内に滞留する前記粒状体を掬い上げるためのスクレーパ部材を、前記複数のバケットのうちの一部のバケットに取り付けて構成されるものであり、前記通過可能部分は、前記スクレーパ部材が取り付けられるバケットに設けられるものである。 The elevator for transporting granules of the present invention is configured such that the scraper attaches a scraper member for scooping up the granules staying in the main body case to a part of the buckets among the plurality of buckets. The passable portion is provided in a bucket to which the scraper member is attached.
 上記構成では、スクレーパ部材が粒状体を掬い上げる際に、スクレーパ部材によって掬い上げられる粒状体がバケットの上記通過可能部分を通過する。 In the above configuration, when the scraper member scoops up the granules, the granules scooped up by the scraper member pass through the passable portion of the bucket.
 本発明の昇降機用のスクレーパは、本体ケースの上下端に軸支された上部プーリ及び下部プーリと、前記上部プーリと前記下部プーリの間に架け渡されたベルトと、前記ベルトに取り付けられた複数のバケットと、を備えて粒状体を前記バケットによって搬送する粒状体搬送用の昇降機における前記ベルトに設けられ、前記本体ケース内に滞留する前記粒状体を掬い上げるための昇降機用のスクレーパであって、掬い上げられる前記粒状体が通過可能な通過可能部分を有するものである。 The scraper for an elevator of the present invention includes an upper pulley and a lower pulley pivotally supported at the upper and lower ends of a main body case, a belt spanned between the upper pulley and the lower pulley, and a plurality of scrapers attached to the belt. A scraper for an elevator provided on the belt of an elevator for transporting granules by the bucket, and for scooping up the granules staying in the main body case. , The granules to be scooped up have a passable portion through which they can pass.
 上記構成では、スクレーパが粒状体を掬い上げる際に、スクレーパによって掬い上げられる粒状体がスクレーパの上記通過可能部分を通過する。 In the above configuration, when the scraper scoops up the granules, the granules scooped up by the scraper pass through the passable portion of the scraper.
 本発明の粒状体搬送用の昇降機及び昇降機用のスクレーパによれば、装置の運転開始時に、上記スクレーパによって掬い上げられる粒状体がスクレーパの通過可能部分を通過することから、装置の運転開始時におけるスクレーパ自体に掛かる負荷が軽減される。そのため、装置の運転開始時における装置駆動源の負荷を軽減することができ、使用する装置駆動源の容量を下げることができる。また、装置の運転開始時におけるスクレーパ自体に掛かる負荷が軽減されることで、スクレーパを保持するベルトがプーリに対してスリップし難い状態となり、上記ベルトの消耗を抑えることができる。 According to the elevator for transporting granules and the scraper for the elevator of the present invention, the granules scooped up by the scraper pass through the passable portion of the scraper at the start of operation of the device, and therefore at the start of operation of the device. The load on the scraper itself is reduced. Therefore, the load on the device drive source at the start of operation of the device can be reduced, and the capacity of the device drive source to be used can be reduced. Further, by reducing the load applied to the scraper itself at the start of operation of the apparatus, the belt holding the scraper is less likely to slip with respect to the pulley, and the wear of the belt can be suppressed.
第1実施形態を示す図であって(以下図11まで同じ)、粒状体検査装置の右側面図である。It is a figure which shows the 1st Embodiment (hereinafter the same until FIG. 11), and is the right side view of the granular body inspection apparatus. 粒状体検査装置の正面図である。It is a front view of the granular body inspection apparatus. 検査ユニットの要部を示す右側面図である。It is a right side view which shows the main part of an inspection unit. 粒状体検査装置の制御系を示す機能ブロック図である。It is a functional block diagram which shows the control system of a granular material inspection apparatus. 粒状体検査装置で行われる光学的検査の概要を示す図である。It is a figure which shows the outline of the optical inspection performed by the granular body inspection apparatus. センサの出力の一例を示す図である。It is a figure which shows an example of the output of a sensor. 検出領域の位置の異常が発生した場合のセンサの出力の一例を示す図である。It is a figure which shows an example of the output of a sensor when an abnormality of the position of a detection area occurs. 検出領域の位置の異常が発生した場合のセンサの出力の一例を示す図である。It is a figure which shows an example of the output of a sensor when an abnormality of the position of a detection area occurs. 検出領域の位置の異常が発生した場合のセンサの出力の一例を示す図である。It is a figure which shows an example of the output of a sensor when an abnormality of the position of a detection area occurs. 検出領域の位置の異常が発生した場合のセンサの出力の一例を示す図である。It is a figure which shows an example of the output of a sensor when an abnormality of the position of a detection area occurs. 検出領域異常対応処理のフローチャートである。It is a flowchart of the detection area abnormality correspondence processing. 第2実施形態を示す図であって(以下図14まで同じ)、粒状体検査装置で行われる光学的検査の概要を示す図である。It is a figure which shows the 2nd Embodiment (hereinafter the same until FIG. 14), and is the figure which shows the outline of the optical inspection performed by the granular body inspection apparatus. 動作パラメータ変更処理のフローチャートである。It is a flowchart of operation parameter change processing. 感度設定処理のフローチャートである。It is a flowchart of a sensitivity setting process. 第3実施形態を示す図であって(以下図18まで同じ)、チャンネル分配が正常である状態を示す図である。It is a figure which shows the 3rd Embodiment (hereinafter the same until FIG. 18), and is the figure which shows the state which the channel distribution is normal. チャンネル分配が異常である状態を示す図である。It is a figure which shows the state which the channel distribution is abnormal. チャンネル分配が異常である状態を示す図である。It is a figure which shows the state which the channel distribution is abnormal. 異常検出処理のフローチャートである。It is a flowchart of abnormality detection processing. 第4実施形態を示す図であって(以下図23まで同じ)、貯留ホッパ、振動フィーダ、及びシュータの位置関係を示す平面図である。It is a figure which shows the 4th Embodiment (hereinafter the same until FIG. 23), and is the top view which shows the positional relationship of a storage hopper, a vibration feeder, and a shooter. 第1揚送コンベア及び貯留ホッパを示す断面右側面図である。It is a cross-sectional right side view which shows the 1st transport conveyor and the storage hopper. 貯留ホッパを示す正面図である。It is a front view which shows the storage hopper. 貯留ホッパの内部を示す断面正面図である。It is sectional front view which shows the inside of a storage hopper. 貯留ホッパの内部を示す断面平面図である。It is sectional drawing which shows the inside of the storage hopper. 第5実施形態を示す図であって(以下図25まで同じ)、変形例に係るカバー部材を示す断面右側面図である。It is a figure which shows the 5th Embodiment (hereinafter the same until FIG. 25), and is the right side view of the cross section which shows the cover member which concerns on the modification. 変形例に係るカバー部材を示す断面右側面図である。It is a cross-sectional right side view which shows the cover member which concerns on the modification. 第6実施形態を示す図であって(以下図32まで同じ)、本発明の実施の形態に係る粒状体搬送用の昇降機を有する選別機の左側面図である。It is a figure which shows the 6th Embodiment (hereinafter the same until FIG. 32), and is the left side view of the sorter which has the elevator for transporting granules which concerns on embodiment of this invention. 同粒状体搬送用の昇降機を有する選別機の背面図である。It is a rear view of the sorter which has the elevator for transporting the same granular material. 同粒状体搬送用の昇降機の側面断面図である。It is a side sectional view of the elevator for transporting the same granular material. 同粒状体搬送用の昇降機の下部の拡大側面断面図である。It is an enlarged side sectional view of the lower part of the elevator for transporting the same granular material. 同粒状体搬送用の昇降機の下部の拡大側面断面図である。It is an enlarged side sectional view of the lower part of the elevator for transporting the same granular material. 同粒状体搬送用の昇降機に設けられるスクレーパバケットの斜視図である。It is a perspective view of the scraper bucket provided in the elevator for transporting the same granular material. 同粒状体搬送用の昇降機に設けられる別実施例のスクレーパバケットであってスクレーパの一方側に切欠き部を設けた場合の斜視図である。It is a perspective view of the scraper bucket of another embodiment provided in the elevator for transporting the same granular material, in the case where the notch portion is provided on one side of the scraper. 同粒状体搬送用の昇降機に設けられる別実施例のスクレーパバケットであってスクレーパの他方側に切欠き部を設けた場合の斜視図である。It is a perspective view of the scraper bucket of another embodiment provided in the elevator for transporting the same granular material, in the case where the cutout portion is provided on the other side of the scraper. 同粒状体搬送用の昇降機に設けられる別実施例のスクレーパの斜視図である。It is a perspective view of the scraper of another embodiment provided in the elevator for transporting the same granular material.
〔第1実施形態〕
 以下、本発明に係る粒状体検査装置の実施の形態について、図面に基づいて説明する。
なお、本発明は、以下の実施形態に限定されることなく、その要旨を逸脱しない範囲内で種々の変形が可能である。各図に符号(FR)で示す方向が装置前側、符号(BK)で示す方向が装置後側、符号(LH)で示す方向が装置左側、符号(RH)で示す方向が装置右側、符号(UP)で示す方向が上側、符号(DW)で示す方向が下側である。
[First Embodiment]
Hereinafter, embodiments of the granular body inspection apparatus according to the present invention will be described with reference to the drawings.
The present invention is not limited to the following embodiments, and various modifications can be made without departing from the gist thereof. In each figure, the direction indicated by the code (FR) is the front side of the device, the direction indicated by the code (BK) is the rear side of the device, the direction indicated by the code (LH) is the left side of the device, and the direction indicated by the code (RH) is the right side of the device. The direction indicated by UP) is the upper side, and the direction indicated by the symbol (DW) is the lower side.
 粒状体検査装置は、投入される粒状体が正常品であるか不良品であるかを光学的に検査し、正常品と不良品とを選別して排出する装置である。本実施形態では、粒状体は、玄米や白米などの穀粒である。粒状体は樹脂ペレット等であってもよい。 The granular material inspection device is a device that optically inspects whether the injected granular material is a normal product or a defective product, and selects and discharges the normal product and the defective product. In the present embodiment, the granules are grains such as brown rice and white rice. The granules may be resin pellets or the like.
 図1、図2に示されるように、粒状体検査装置は、投入ホッパ1、第1揚送コンベア2(バケットコンベアの一例)、貯留ホッパ3(貯留装置の一例)、検査ユニット4、第2揚送コンベア5、操作表示装置6、制御装置7(図4)、及び報知装置8(図4)を備えている。 As shown in FIGS. 1 and 2, the granular body inspection device includes a charging hopper 1, a first transport conveyor 2 (an example of a bucket conveyor), a storage hopper 3 (an example of a storage device), an inspection unit 4, and a second. It is equipped with a lifting conveyor 5, an operation display device 6, a control device 7 (FIG. 4), and a notification device 8 (FIG. 4).
 投入ホッパ1は、装置後部の下部に設けられ、検査される粒状体を受け入れる。 The charging hopper 1 is provided at the lower part of the rear part of the device and receives the granules to be inspected.
 第1揚送コンベア2は、装置後部の左右中央に設けられ、投入ホッパ1に投入された粒状体を上方に搬送し、貯留ホッパ3へ投入する。 The first transport conveyor 2 is provided at the center of the left and right sides of the rear part of the apparatus, and the granules charged in the charging hopper 1 are conveyed upward and charged into the storage hopper 3.
 貯留ホッパ3は、第1揚送コンベア2から投入された粒状体を貯留すると共に、検査ユニット4へ粒状体を供給する。 The storage hopper 3 stores the granules charged from the first transport conveyor 2 and supplies the granules to the inspection unit 4.
 検査ユニット4は、貯留ホッパ3から供給された粒状体を検査し、不良品を検出して、粒状体を正常品と不良品とに選別して排出する。本実施形態では、粒状体検査装置は、左検査ユニット4L及び右検査ユニット4Rを備える。 The inspection unit 4 inspects the granules supplied from the storage hopper 3, detects defective products, sorts the granules into normal products and defective products, and discharges them. In the present embodiment, the granular body inspection device includes a left inspection unit 4L and a right inspection unit 4R.
 第2揚送コンベア5は、装置後部の左側部分に設けられ、検査ユニット4から正常品として排出された粒状体を上方に搬送し、装置外部へ排出する。 The second transport conveyor 5 is provided on the left side portion of the rear part of the device, and transports the granules discharged as normal products from the inspection unit 4 upward and discharges them to the outside of the device.
 操作表示装置6は、装置前部の中央部に設けられている。操作表示装置6は、オペレータからの人為操作を受け付けて、制御装置7へ送信する。また、操作表示装置6は、制御装置7に制御されて各種の画面を表示する。本実施形態では、操作表示装置6は、タッチパネル付き液晶ディスプレイである。操作表示装置6が、押しボタンと液晶ディスプレイとを組み合わせた装置であってもよい。 The operation display device 6 is provided in the center of the front part of the device. The operation display device 6 receives the human operation from the operator and transmits it to the control device 7. Further, the operation display device 6 is controlled by the control device 7 to display various screens. In the present embodiment, the operation display device 6 is a liquid crystal display with a touch panel. The operation display device 6 may be a device in which a push button and a liquid crystal display are combined.
 制御装置7は、粒状体検査装置の全体の動作を制御する。 The control device 7 controls the overall operation of the granular body inspection device.
 報知装置8は、制御装置7に制御されてオペレータへ装置の異常等の報知を行う。報知装置8は、例えば、ブザー、スピーカー、ランプ、または情報表示装置である。操作表示装置6が、報知装置8を兼ねてもよい。 The notification device 8 is controlled by the control device 7 to notify the operator of an abnormality of the device or the like. The notification device 8 is, for example, a buzzer, a speaker, a lamp, or an information display device. The operation display device 6 may also serve as the notification device 8.
〔検査ユニット〕
 図3を参照しながら、検査ユニット4の構成及び動作の概要について説明する。なお、左検査ユニット4L及び右検査ユニット4Rは同じ構成を備え同じ動作を行う。以下、図3に示されるように、粒状体の移動方向をZ方向、粒状体の移動方向の上流側をZ1側、粒状体の移動方向の下流側をZ2側、装置左右方向に直交する面内におけるZ方向に直交する方向をY方向、Y方向における装置前側をY1側、Y方向における装置後側をY2側、と称する。
[Inspection unit]
The outline of the configuration and operation of the inspection unit 4 will be described with reference to FIG. The left inspection unit 4L and the right inspection unit 4R have the same configuration and perform the same operation. Hereinafter, as shown in FIG. 3, the moving direction of the granules is the Z direction, the upstream side of the moving direction of the granules is the Z1 side, the downstream side of the moving direction of the granules is the Z2 side, and the plane orthogonal to the left-right direction of the device. The direction orthogonal to the Z direction is referred to as the Y direction, the front side of the device in the Y direction is referred to as the Y1 side, and the rear side of the device in the Y direction is referred to as the Y2 side.
 検査対象の粒状体が、シュータ12からZ2側へ落下し、検査領域IAへ送り出される。検査領域IAは、照明装置21により照明されている。検査領域IAからの光が、前カメラ22A、後カメラ22B、及び透過カメラ22Cに入射し、前センサ23A、後センサ23B、透過センサ23Cにより検出される(以下、前カメラ22A、後カメラ22B、及び透過カメラ22Cを「カメラ22」と総称する。前センサ23A、後センサ23B、透過センサ23Cを「センサ23」と総称する。)。 The granular material to be inspected falls from the shooter 12 to the Z2 side and is sent out to the inspection area IA. The inspection area IA is illuminated by the illuminating device 21. Light from the inspection area IA enters the front camera 22A, the rear camera 22B, and the transmission camera 22C, and is detected by the front sensor 23A, the rear sensor 23B, and the transmission sensor 23C (hereinafter, the front camera 22A, the rear camera 22B, And the transmission camera 22C are collectively referred to as “camera 22”. The front sensor 23A, the rear sensor 23B, and the transmission sensor 23C are collectively referred to as “sensor 23”).
 詳しくは、粒状体のY1側で反射した光が、前カメラ22Aへ入射して、前センサ23Aにより検出される。粒状体のY2側で反射した光が、後カメラ22Bへ入射して、後センサ23Bにより検出される。粒状体をY1側からY2側へ透過した光が、透過カメラ22Cへ入射して、透過センサ23Cにより検出される。 Specifically, the light reflected on the Y1 side of the granular material is incident on the front camera 22A and detected by the front sensor 23A. The light reflected on the Y2 side of the granular material enters the rear camera 22B and is detected by the rear sensor 23B. The light transmitted through the granules from the Y1 side to the Y2 side is incident on the transmission camera 22C and detected by the transmission sensor 23C.
 センサ23の出力は、制御装置7に送信される。制御装置7は、センサ23の出力に基づいて粒状体が正常品であるか不良品であるかを判定する。制御装置7は、不良品と判定された粒状体が空気吹き付け装置31の正面まで落下したタイミングで空気吹き付け装置31を作動させる。空気を吹き付けられた粒状体は、Y1側へ押されて、不良品回収部41へ落下する。その他の粒状体は、正常品回収部42へ落下する。 The output of the sensor 23 is transmitted to the control device 7. The control device 7 determines whether the granular body is a normal product or a defective product based on the output of the sensor 23. The control device 7 operates the air blowing device 31 at the timing when the granular material determined to be defective falls to the front of the air blowing device 31. The granules blown with air are pushed toward the Y1 side and fall to the defective product collection unit 41. Other granules fall to the normal product collection unit 42.
〔検査ユニットの構成〕
 検査ユニット4は、送出装置10、検出装置20、及び排除装置30を備える。上述の通り、左検査ユニット4L及び右検査ユニット4Rは同様の構成を有する。
[Inspection unit configuration]
The inspection unit 4 includes a transmission device 10, a detection device 20, and an exclusion device 30. As described above, the left inspection unit 4L and the right inspection unit 4R have the same configuration.
 送出装置10は、検査領域IAへ粒状体を複数並列(装置左右方向、図3の紙面直交方向)で送り出す装置である。送出装置10は、振動フィーダ11、及びシュータ12を備える。 The delivery device 10 is a device that sends out a plurality of granules to the inspection area IA in parallel (left-right direction of the device, orthogonal direction on the paper surface in FIG. 3). The delivery device 10 includes a vibration feeder 11 and a shooter 12.
 振動フィーダ11は、貯留ホッパ3から流下した粒状体をトラフ11aで受け止めて、トラフ11aを振動させて粒状体をシュータ12へ送り出す。振動フィーダ11の動作は、制御装置7に制御される。 The vibration feeder 11 receives the granules flowing down from the storage hopper 3 by the trough 11a, vibrates the trough 11a, and sends the granules to the shooter 12. The operation of the vibration feeder 11 is controlled by the control device 7.
 シュータ12は、板状の部材である。シュータ12の上面には、複数の直線上の溝が左右方向に平行に並ぶ状態で形成されている。溝の幅は、粒状体が1列に並んで流下可能な大きさに設定されている。振動フィーダ11のトラフ11aからシュータ12へ落下した粒状体は、シュータ12の溝に案内されて、シュータ12の上を複数並列で流下し、検査領域IAへ送り出される。 The shooter 12 is a plate-shaped member. A plurality of linear grooves are formed on the upper surface of the shooter 12 in a state of being arranged in parallel in the left-right direction. The width of the groove is set so that the granules can flow down in a row. The granules that have fallen from the trough 11a of the vibration feeder 11 to the shooter 12 are guided by the grooves of the shooter 12, flow down in parallel on the shooter 12, and are sent out to the inspection region IA.
 検出装置20は、検査領域IAからの光を検出する装置であって、上述の照明装置21、カメラ22、センサ23、及びミラー24を備える。 The detection device 20 is a device that detects light from the inspection area IA, and includes the above-mentioned lighting device 21, a camera 22, a sensor 23, and a mirror 24.
 照明装置21は、背景部材21A、121B、121C、及び照明ユニット21D、121E、121F、121Gを備えている。 The lighting device 21 includes background members 21A, 121B, 121C, and lighting units 21D, 121E, 121F, 121G.
 背景部材21A、121B、121Cは、非図示の発光装置からの光を導いて検査領域IAを照明する部材である。背景部材21A、121B、121Cは、検査領域IAからカメラ22へ届く光において粒状体の背景として機能する。背景部材21A、121B、121Cの光源となる発光装置は、検査領域IAへの照明が適切な強度となるように、制御装置7により制御される。 The background members 21A, 121B, and 121C are members that guide the light from a light emitting device (not shown) to illuminate the inspection area IA. The background members 21A, 121B, 121C function as a background of the granular material in the light reaching the camera 22 from the inspection area IA. The light emitting device that is the light source of the background members 21A, 121B, and 121C is controlled by the control device 7 so that the illumination to the inspection area IA has an appropriate intensity.
 照明ユニット21D、121E、121F、121Gは、制御装置7により発光強度が制御されるLEDパッケージを備え、検査領域IAを照明する。照明ユニット21D、121Eは、検査領域IAに対してY1側に配置され、検査領域IAをY1側から照明する。照明ユニット21F、121Gは、検査領域IAに対してY2側に配置され、検査領域IAをY2側から照明する。 The lighting units 21D, 121E, 121F, 121G include an LED package whose emission intensity is controlled by the control device 7, and illuminate the inspection area IA. The lighting units 21D and 121E are arranged on the Y1 side with respect to the inspection area IA, and illuminate the inspection area IA from the Y1 side. The lighting units 21F and 121G are arranged on the Y2 side with respect to the inspection area IA, and illuminate the inspection area IA from the Y2 side.
 前カメラ22Aは、前レンズ装置25Aを備える。前センサ23Aが、前カメラ22Aの内部に配置される。前カメラ22Aの光軸26Aが図3に示されている。粒状体のY1側の面で反射した光、及び背景部材21Aから放射された光が、検査領域IAからY1側へ放射される。その光は、ミラー24で反射されて、前レンズ装置25Aにより収束され、前センサ23Aに照射される。すなわち、前カメラ22Aの前センサ23Aは、粒状体のY1側の面で反射した光、及び背景部材21Aから放射された光を検出する。 The front camera 22A includes a front lens device 25A. The front sensor 23A is arranged inside the front camera 22A. The optical axis 26A of the front camera 22A is shown in FIG. The light reflected by the surface of the granular material on the Y1 side and the light emitted from the background member 21A are radiated from the inspection region IA to the Y1 side. The light is reflected by the mirror 24, converged by the front lens device 25A, and irradiates the front sensor 23A. That is, the front sensor 23A of the front camera 22A detects the light reflected by the surface of the granular body on the Y1 side and the light emitted from the background member 21A.
 後カメラ22Bは、後レンズ装置25Bを備える。後センサ23Bが、後カメラ22Bの内部に配置される。後カメラ22Bの光軸26Bが図3に示されている。粒状体のY2側の面で反射した光、及び背景部材21Bから放射された光が、検査領域IAからY2側へ放射される。その光は、ミラー24で反射されて、後レンズ装置25Bにより収束され、後センサ23Bに照射される。すなわち、後カメラ22Bの後センサ23Bは、粒状体のY2側の面で反射した光、及び背景部材21Bから放射された光を検出する。 The rear camera 22B includes a rear lens device 25B. The rear sensor 23B is arranged inside the rear camera 22B. The optical axis 26B of the rear camera 22B is shown in FIG. The light reflected by the surface of the granular material on the Y2 side and the light emitted from the background member 21B are radiated from the inspection region IA to the Y2 side. The light is reflected by the mirror 24, converged by the rear lens device 25B, and irradiates the rear sensor 23B. That is, the rear sensor 23B of the rear camera 22B detects the light reflected by the surface of the granular body on the Y2 side and the light emitted from the background member 21B.
 透過カメラ22Cは、透過レンズ装置25Cを備える。透過センサ23Cが、透過カメラ22Cの内部に配置される。透過カメラ22Cの光軸26Cが図3に示されている。粒状体をY1側からY2側へ透過した光、及び背景部材21Cから放射された光が、検査領域IAからY2側へ放射される。その光は、ミラー24で反射されて、透過レンズ装置25Cにより収束され、透過センサ23Cに照射される。すなわち、透過カメラ22Cの透過センサ23Cは、粒状体をY1側からY2側へ透過した光、及び背景部材21Cから放射された光を検出する。 The transmissive camera 22C includes a transmissive lens device 25C. The transmission sensor 23C is arranged inside the transmission camera 22C. The optical axis 26C of the transmission camera 22C is shown in FIG. The light transmitted through the granules from the Y1 side to the Y2 side and the light radiated from the background member 21C are radiated from the inspection region IA to the Y2 side. The light is reflected by the mirror 24, converged by the transmission lens device 25C, and irradiates the transmission sensor 23C. That is, the transmission sensor 23C of the transmission camera 22C detects the light transmitted through the granules from the Y1 side to the Y2 side and the light radiated from the background member 21C.
 以下、前レンズ装置25A、後レンズ装置25B、及び透過レンズ装置25Cを「レンズ装置25」と総称する場合がある。 Hereinafter, the front lens device 25A, the rear lens device 25B, and the transmission lens device 25C may be collectively referred to as the "lens device 25".
 前センサ23A、後センサ23B、及び透過センサ23Cは、経時的に光を検出し、所定の時間毎の刻々の出力データを制御装置7に送信する。 The front sensor 23A, the rear sensor 23B, and the transmission sensor 23C detect light over time and transmit the output data at predetermined time intervals to the control device 7.
 検査領域IAに、遮光部材27が配置されている。遮光部材27は、粒状体に反射された光や、照明ユニット21D、121E、121F、121Gからの照明光が透過カメラ22Cへ直接入射することを抑制する。 A light-shielding member 27 is arranged in the inspection area IA. The light-shielding member 27 suppresses the light reflected by the granules and the illumination light from the lighting units 21D, 121E, 121F, and 121G from directly incident on the transmission camera 22C.
 排除装置30は、不良品と判定された粒状体を排除する装置である。排除装置30は、空気吹き付け装置31により構成される。空気吹き付け装置31は、装置左右方向に並ぶ複数の噴射口を備える。噴射口は、シュータ12の複数の溝から落下する粒状体に対応する位置に配置されている。 The exclusion device 30 is a device that eliminates granules determined to be defective. The exclusion device 30 is composed of an air blowing device 31. The air blowing device 31 includes a plurality of injection ports arranged in the left-right direction of the device. The injection port is arranged at a position corresponding to the granules falling from the plurality of grooves of the shooter 12.
 本実施形態では、図1、図3に示されるように、検査領域IAに、板状の部材51が配置されている。部材51は、図5に示されるように、表面に図形Fが描かれると共に、図形Fが検出装置20(センサ23)の出力に表れるように検出領域DU,DLに配置される。部材51の支持態様は任意であるが、部材51がシュータ12に支持されると好適である。検出装置20(センサ23)の出力における図形Fに対応する部分に基づいて、検出領域DU、DLの位置の異常の有無が判定される。 In this embodiment, as shown in FIGS. 1 and 3, a plate-shaped member 51 is arranged in the inspection area IA. As shown in FIG. 5, the member 51 is arranged in the detection areas DU and DL so that the figure F is drawn on the surface and the figure F appears in the output of the detection device 20 (sensor 23). The support mode of the member 51 is arbitrary, but it is preferable that the member 51 is supported by the shooter 12. The presence or absence of an abnormality in the positions of the detection areas DU and DL is determined based on the portion corresponding to the figure F in the output of the detection device 20 (sensor 23).
 部材51は、図3に示されるように、その表面の法線がY方向に平行となる姿勢で配置される。図形Fは、部材51のY1側の面及びY2側の面に描かれる。図形Fは、その余の領域よりも光の反射率が小さくなるように描かれる。図形Fは、その余の領域よりも光の透過率が小さくなるように描かれる。図形Fは、好ましくは黒色で描かれる。部材51における図形F以外の領域は、半透明または透明である。図形Fは、三角形F1及び長方形F2を含む。 As shown in FIG. 3, the member 51 is arranged in such a posture that the normal of its surface is parallel to the Y direction. The figure F is drawn on the Y1 side surface and the Y2 side surface of the member 51. The figure F is drawn so that the reflectance of light is smaller than that of the remaining area. The figure F is drawn so that the transmittance of light is smaller than that of the remaining area. The figure F is preferably drawn in black. The region of the member 51 other than the figure F is translucent or transparent. The figure F includes a triangle F1 and a rectangle F2.
〔制御装置〕
 制御装置7は、ECUであり、図4に示されるように、良否判定部7a、検出部7b、異常判定部7c、対向センサ間異常判定部7d、上下センサ間異常判定部7e、記憶部7f、選別感度算出部7g、変更部7h、排除制御部7j、及び位置異常判定部7kを備える。制御装置7は、検査ユニット4、及び報知装置8と接続され、これらを制御可能に構成されている。制御装置7は、上掲の機能部に対応するプログラムや制御パラメータ等を記憶するメモリ(HDDや不揮発性RAMなど。図示省略)と、当該プログラムを実行するCPU(図示省略)と、を備えている。プログラムがCPUにより実行されることにより、各機能部の機能が実現される。制御装置7が、互いに通信可能な複数のECUにより構成されてもよい。
〔Control device〕
The control device 7 is an ECU, and as shown in FIG. 4, a quality determination unit 7a, a detection unit 7b, an abnormality determination unit 7c, an abnormality determination unit 7d between facing sensors, an abnormality determination unit 7e between upper and lower sensors, and a storage unit 7f. A selection sensitivity calculation unit 7g, a change unit 7h, an exclusion control unit 7j, and a position abnormality determination unit 7k are provided. The control device 7 is connected to the inspection unit 4 and the notification device 8 and is configured to be controllable. The control device 7 includes a memory (HDD, non-volatile RAM, etc., not shown) for storing programs and control parameters corresponding to the above-mentioned functional units, and a CPU (not shown) for executing the program. There is. When the program is executed by the CPU, the functions of each functional unit are realized. The control device 7 may be composed of a plurality of ECUs capable of communicating with each other.
 良否判定部7aは、制御装置7が受信したセンサ23の出力に基づいて、粒状体が正常品であるか不良品であるかを判定する。良否判定部7a、及び他の機能部の動作の詳細については図5-10を参照しながら後で説明する。 The quality determination unit 7a determines whether the granular material is a normal product or a defective product based on the output of the sensor 23 received by the control device 7. The details of the operation of the pass / fail determination unit 7a and other functional units will be described later with reference to FIGS. 5-10.
 検出部7bは、センサ23の出力における複数のチャンネルごとに、粒状体による光の強度の低下を検出する。 The detection unit 7b detects a decrease in light intensity due to the granules for each of a plurality of channels in the output of the sensor 23.
 異常判定部7cは、センサ23の出力における隣接するチャンネルに1つの粒状体が跨がっていることを検出した場合に、異常が発生したと判定する。異常判定部7cは、異常が発生したと判定した場合に報知装置8を作動させる。 The abnormality determination unit 7c determines that an abnormality has occurred when it detects that one granular body straddles an adjacent channel in the output of the sensor 23. The abnormality determination unit 7c activates the notification device 8 when it is determined that an abnormality has occurred.
 対向センサ間異常判定部7dは、異常判定部7cが前センサ23A(第1センサの一例)及び後センサ23B(第2センサの一例)についてほぼ同時期に異常が発生したと判定した場合に、異常が発生したと判定する。対向センサ間異常判定部7dは、異常が発生したと判定した場合に報知装置8を作動させる。 When the abnormality determination unit 7c determines that the front sensor 23A (an example of the first sensor) and the rear sensor 23B (an example of the second sensor) have an abnormality at about the same time, the abnormality determination unit 7d between the facing sensors determines that an abnormality has occurred. Judge that an abnormality has occurred. The abnormality determination unit 7d between the facing sensors operates the notification device 8 when it is determined that an abnormality has occurred.
 上下センサ間異常判定部7eは、異常判定部7cが後センサ23B(上センサの一例)の出力における隣接するチャンネルである異常チャンネル組に1つの粒状体が跨がっていることを検出し、且つ、異常判定部7cが透過センサ23C(下センサの一例)の出力における異常チャンネル組に対応するチャンネルに1つの粒状体が跨がっていることを検出した場合に、異常が発生したと判定する。上下センサ間異常判定部7eは、異常が発生したと判定した場合に報知装置8を作動させる。 The abnormality determination unit 7e between the upper and lower sensors detects that the abnormality determination unit 7c straddles one granular body in the abnormality channel set which is an adjacent channel in the output of the rear sensor 23B (an example of the upper sensor). Further, when the abnormality determination unit 7c detects that one granular body straddles the channel corresponding to the abnormality channel set in the output of the transmission sensor 23C (an example of the lower sensor), it is determined that an abnormality has occurred. do. The abnormality determination unit 7e between the upper and lower sensors operates the notification device 8 when it is determined that an abnormality has occurred.
 記憶部7fは、例えば、検査ユニット4の動作パラメータ、粒状体の良否判定に用いられる閾値等を記憶する。 The storage unit 7f stores, for example, the operation parameters of the inspection unit 4, the threshold value used for determining the quality of the granules, and the like.
 選別感度算出部7gは、良否判定部7aによる判定結果に基づいて、複数の検査ユニット4のそれぞれについて、単位時間あたりの不良品の検出数である選別感度を算出する。 The sorting sensitivity calculation unit 7g calculates the sorting sensitivity, which is the number of defective products detected per unit time, for each of the plurality of inspection units 4 based on the judgment result by the quality determination unit 7a.
 変更部7hは、複数の検査ユニット4のうちの1つである基準ユニットにおける選別感度と、その余の検査ユニット4である被調整ユニットにおける選別感度と、の差が小さくなるように、被調整ユニットの動作パラメータを変更する。 The changing unit 7h is adjusted so that the difference between the sorting sensitivity in the reference unit, which is one of the plurality of inspection units 4, and the sorting sensitivity in the adjusted unit, which is the remaining inspection unit 4, is small. Change the operating parameters of the unit.
 排除制御部7jは、排除装置30(空気吹き付け装置31)の動作タイミングを制御する。 The exclusion control unit 7j controls the operation timing of the exclusion device 30 (air blowing device 31).
 位置異常判定部7kは、検出装置20(センサ23)の出力における図形Fに対応する部分に基づいて、検出領域DL、DUの位置の異常の有無を判定する。 The position abnormality determination unit 7k determines whether or not there is an abnormality in the positions of the detection areas DL and DU based on the portion corresponding to the figure F in the output of the detection device 20 (sensor 23).
〔粒状体の良否判定〕
 図5、図6を参照しながら、検査ユニット4で行われる粒状体の良否判定及び不良品の排除について説明する。図5は、装置前側からY方向及びZ方向に直交する方向に検査領域IAを視た模式図であり、図中の右が装置右側、図中の上がZ1側に対応する。
[Judgment of quality of granules]
With reference to FIGS. 5 and 6, the quality determination of the granular material and the elimination of defective products performed by the inspection unit 4 will be described. FIG. 5 is a schematic view of the inspection region IA viewed from the front side of the device in the directions orthogonal to the Y direction and the Z direction. The right side in the figure corresponds to the right side of the device, and the upper part in the figure corresponds to the Z1 side.
 シュータ12の溝から放出された粒状体は、Z2方向に落下し、検査領域IAを通過し、空気吹き付け装置31の前を通過する。粒状体の移動する経路を、左から順に経路R1、R2、R3、・・・Rnと称する。nは、シュータ12の溝の数と同じである。 The granules released from the groove of the shooter 12 fall in the Z2 direction, pass through the inspection area IA, and pass in front of the air blowing device 31. The paths through which the granules move are referred to as paths R1, R2, R3, ... Rn in order from the left. n is the same as the number of grooves in the shooter 12.
 空気吹き付け装置31の噴射口は、経路R1から経路Rnまでの夫々に対応するように配置されている。経路R1、R2、・・Rnに対応する噴射口を噴射口S1、S2、S3、・・・Snと称する。すなわち、経路R1を落下する粒状体は、噴射口S1の前を通過する。 The injection port of the air blowing device 31 is arranged so as to correspond to each of the path R1 to the path Rn. The injection ports corresponding to the paths R1, R2, ... Rn are referred to as injection ports S1, S2, S3, ... Sn. That is, the granules falling on the path R1 pass in front of the injection port S1.
 上述したとおり、検査領域IAからの光が、光軸26Aに沿って進み、前カメラ22Aに入射し、前センサ23Aの表面に到達する。本実施形態では、前センサ23Aはラインセンサであり、1列に並ぶ複数の画素E1、E2、・・・Emを有する。mは、前センサ23Aが有する画素の総数である。前センサ23Aにより検出されるのは、検査領域IAからの光のうち、光軸26Aから装置左右方向に延びる細長い領域からの光である。この領域を、検出領域DUと称する。図3、図5に示されるように、検出領域DUからの光が、前センサ23Aに入射する。複数の画素E1、E2、・・・Emは、検査領域IA(検出領域DU)における粒状体の並列方向(装置左右方向)に対応する方向に沿って並ぶ。 As described above, the light from the inspection area IA travels along the optical axis 26A, enters the front camera 22A, and reaches the surface of the front sensor 23A. In the present embodiment, the front sensor 23A is a line sensor and has a plurality of pixels E1, E2, ... Em arranged in a row. m is the total number of pixels possessed by the front sensor 23A. What is detected by the front sensor 23A is the light from the elongated region extending from the optical axis 26A in the left-right direction of the device among the light from the inspection region IA. This area is referred to as a detection area DU. As shown in FIGS. 3 and 5, light from the detection region DU is incident on the front sensor 23A. The plurality of pixels E1, E2, ... Em are arranged along the direction corresponding to the parallel direction (left-right direction of the device) of the granules in the inspection region IA (detection region DU).
 なお、本実施形態では、後カメラ22Bの後センサ23Bもラインセンサである。図3に示されるように、後カメラ22Bの光軸26Bは、検出領域DUを通る。すなわち、検出領域DUからの光が、後センサ23Bに入射する。 In the present embodiment, the rear sensor 23B of the rear camera 22B is also a line sensor. As shown in FIG. 3, the optical axis 26B of the rear camera 22B passes through the detection region DU. That is, the light from the detection region DU is incident on the rear sensor 23B.
 本実施形態では、透過カメラ22Cの透過センサ23Cもラインセンサである。図3に示されるように、透過カメラ22Cの光軸26Cは、検出領域DUのZ2側(装置上下方向の下側)を通る。透過カメラ22Cの透過センサ23Cにより検出されるのは、検査領域IAからの光のうち、光軸26Cから装置左右方向に延びる細長い領域からの光である。この領域を、検出領域DL(図3、図5)と称する。図3に示されるように、検出領域DLからの光が、透過センサ23Cに入射する。検出領域DLは、検出領域DUの下側(Z2側)に位置する。 In this embodiment, the transmission sensor 23C of the transmission camera 22C is also a line sensor. As shown in FIG. 3, the optical axis 26C of the transmission camera 22C passes through the Z2 side (lower side in the vertical direction of the device) of the detection region DU. What is detected by the transmission sensor 23C of the transmission camera 22C is the light from the elongated region extending from the optical axis 26C in the left-right direction of the device among the light from the inspection region IA. This region is referred to as a detection region DL (FIGS. 3 and 5). As shown in FIG. 3, the light from the detection region DL is incident on the transmission sensor 23C. The detection area DL is located on the lower side (Z2 side) of the detection area DU.
 前センサ23Aの出力の一例が図5の下部に示されている。図示例では、前センサ23Aの出力において6箇所で出力の低下が見られる。これは、経路R2を落下する粒状体G1、経路R4を落下する粒状体G2、及び4つの図形Fが検出領域DUに位置し、粒状体G1、粒状体G2、及び4つの図形Fを反射した光が前センサ23Aに入射していることに起因する。すなわち、粒状体を反射して前センサ23Aに入射する光の強度は、背景部材21Aからの光の強度よりも小さい。このように、検出領域DU(及び検出領域DL)を粒状体が通過すると、センサ23の出力に変化が生じる。 An example of the output of the front sensor 23A is shown at the bottom of FIG. In the illustrated example, the output of the front sensor 23A shows a decrease in output at 6 points. This is because the granules G1 falling on the path R2, the granules G2 falling on the path R4, and the four figures F are located in the detection region DU and reflect the granules G1, the granules G2, and the four figures F. This is due to the fact that the light is incident on the front sensor 23A. That is, the intensity of the light that reflects the granules and is incident on the front sensor 23A is smaller than the intensity of the light from the background member 21A. As described above, when the granules pass through the detection region DU (and the detection region DL), the output of the sensor 23 changes.
 図6に、粒状体G1が不良品である例が示されている。図示例では、粒状体G1は米の穀粒であり、正常領域A1、着色領域A2、及び黒色領域A3を有する。着色領域A2の色は、正常領域A1の色よりも濃い。従って、着色領域A2で反射した光の強度は、正常領域A1で反射した光の強度よりも小さくなる。黒色領域A3の色は、着色領域A2の色よりも濃い。従って、黒色領域A3で反射した光の強度は、着色領域A2で反射した光の強度よりも小さくなる。粒状体G1が検出領域DUに対して図6の位置にある時、前センサ23Aの出力には、正常領域A1、着色領域A2、及び黒色領域A3により出力が低下する領域が生じる。 FIG. 6 shows an example in which the granular material G1 is a defective product. In the illustrated example, the granular body G1 is a grain of rice and has a normal region A1, a colored region A2, and a black region A3. The color of the colored region A2 is darker than the color of the normal region A1. Therefore, the intensity of the light reflected in the colored region A2 is smaller than the intensity of the light reflected in the normal region A1. The color of the black region A3 is darker than the color of the colored region A2. Therefore, the intensity of the light reflected in the black region A3 is smaller than the intensity of the light reflected in the colored region A2. When the granular body G1 is at the position of FIG. 6 with respect to the detection region DU, the output of the front sensor 23A has a region where the output is reduced by the normal region A1, the colored region A2, and the black region A3.
 具体的には、背景光(背景部材21Aからの光)が画素E41-E44に入射する。画素E41-E44の出力は、上側第2閾値SU2よりも小さく粒状体検出閾値SHよりも大きくなる。正常領域A1からの光が、画素E45-47,E53-54,E57-58に入射する。これらの画素の出力は、粒状体検出閾値SHよりも小さく下側第2閾値SL2よりも大きくなる。着色領域A2からの光が、画素E48-52に入射する。これらの画素の出力は、下側第2閾値SL2よりも小さく下側第1閾値SL1よりも大きくなる。
黒色領域A3からの光が、画素E55-56に入射する。これらの画素の出力は、下側第1閾値SL1よりも小さくなる。
Specifically, the background light (light from the background member 21A) is incident on the pixels E41-E44. The output of the pixels E41-E44 is smaller than the upper second threshold value SU2 and larger than the granular body detection threshold value SH. Light from the normal region A1 is incident on the pixels E45-47, E53-54, and E57-58. The output of these pixels is smaller than the granularity detection threshold SH and larger than the lower second threshold SL2. Light from the colored region A2 is incident on the pixels E48-52. The output of these pixels is smaller than the lower second threshold SL2 and larger than the lower first threshold SL1.
Light from the black region A3 is incident on the pixels E55-56. The output of these pixels is smaller than the lower first threshold SL1.
 良否判定部7aは、前センサ23Aの出力において出力が下側第1閾値SL1または下側第2閾値SL2よりも小さい画素が存在する場合に、粒状体が不良品であると判断する。詳しくは、良否判定部7aは、前センサ23Aの出力において出力が下側第1閾値SL1よりも小さい画素が存在する場合に、粒状体が下側第1不良に係る不良品であると判断する。下側第1不良は、例えば「カメムシ被害」である。良否判定部7aは、前センサ23Aの出力において出力が下側第2閾値SL2よりも小さい画素が存在する場合に、粒状体が下側第2不良に係る不良品であると判断する。下側第2不良は、例えば「ヤケ」である。 The quality determination unit 7a determines that the granular material is a defective product when there are pixels whose output is smaller than the lower first threshold value SL1 or the lower second threshold value SL2 in the output of the front sensor 23A. Specifically, the pass / fail determination unit 7a determines that the granular material is a defective product related to the lower first defect when there are pixels whose output is smaller than the lower first threshold SL1 in the output of the front sensor 23A. .. The first lower defect is, for example, "stink bug damage". The quality determination unit 7a determines that the granular material is a defective product related to the lower second defect when there are pixels whose output is smaller than the lower second threshold SL2 in the output of the front sensor 23A. The lower second defect is, for example, "burning".
 また、良否判定部7aは、前センサ23Aの出力において出力が上側第1閾値SU1または上側第2閾値SU2よりも大きい画素が存在する場合に、粒状体が不良品であると判断する。詳しくは、良否判定部7aは、前センサ23Aの出力において出力が上側第1閾値SU1よりも大きい画素が存在する場合に、粒状体が上側第1不良に係る不良品であると判断する。上側第1不良は、例えば「ガラス」や「透明樹脂」である。良否判定部7aは、前センサ23Aの出力において出力が上側第2閾値SU2よりも大きい画素が存在する場合に、粒状体が上側第2不良に係る不良品であると判断する。 Further, the pass / fail determination unit 7a determines that the granular material is a defective product when there are pixels whose output is larger than the upper first threshold value SU1 or the upper second threshold value SU2 in the output of the front sensor 23A. Specifically, the pass / fail determination unit 7a determines that the granular material is a defective product related to the upper first defect when there is a pixel whose output is larger than the upper first threshold value SU1 in the output of the front sensor 23A. The upper first defect is, for example, "glass" or "transparent resin". The quality determination unit 7a determines that the granular material is a defective product related to the upper second defect when there is a pixel whose output is larger than the upper second threshold value SU2 in the output of the front sensor 23A.
 ここで、良否判定部7aが、閾値に対する出力の大小に加えて、出力が閾値を下回る画素の数に基づいて良否判定を行ってもよい。例えば、良否判定部7aは、前センサ23Aの出力において、出力が下側第1閾値SL1よりも小さい画素が存在し、且つ、その画素の数が下側第1数量閾値よりも多い場合に、粒状体が下側第1不良に係る不良品であると判断する。良否判定部7aは、前センサ23Aの出力において、出力が下側第2閾値SL2よりも小さい画素が存在し、且つ、その画素の数が下側第2数量閾値よりも多い場合に、粒状体が下側第2不良に係る不良品であると判断する。良否判定部7aは、前センサ23Aの出力において、出力が上側第1閾値SU1よりも大きい画素が存在し、且つ、その画素の数が上側第1数量閾値よりも多い場合に、粒状体が上側第1不良に係る不良品であると判断する。良否判定部7aは、前センサ23Aの出力において、出力が上側第2閾値SU2よりも大きい画素が存在し、且つ、その画素の数が上側第2数量閾値よりも多い場合に、粒状体が上側第2不良に係る不良品であると判断する。 Here, the pass / fail determination unit 7a may make a pass / fail determination based on the number of pixels whose output is below the threshold value, in addition to the magnitude of the output with respect to the threshold value. For example, the pass / fail determination unit 7a determines that, in the output of the front sensor 23A, there are pixels whose output is smaller than the lower first threshold value SL1, and the number of the pixels is larger than the lower first threshold value. It is determined that the granular material is a defective product related to the lower first defect. The pass / fail determination unit 7a is a granular body in the output of the front sensor 23A when there are pixels whose output is smaller than the lower second threshold value SL2 and the number of the pixels is larger than the lower second quantity threshold value. Is a defective product related to the lower second defect. In the output of the front sensor 23A, the quality determination unit 7a indicates that the granular body is on the upper side when there are pixels whose output is larger than the upper first threshold value SU1 and the number of the pixels is larger than the upper first quantity threshold value. It is determined that the product is defective according to the first defect. In the output of the front sensor 23A, the quality determination unit 7a indicates that the granular body is on the upper side when there are pixels whose output is larger than the upper second threshold value SU2 and the number of the pixels is larger than the upper second quantity threshold value. It is determined that the product is defective according to the second defect.
 良否判定部7aは、上述した前センサ23Aの出力の場合と同様に、後センサ23Bの出力に基づいて粒状体の良否を判定する。後センサ23Bは、検査領域IAの検出領域DUからY2側へ放射される光を検出する。従って、良否判定部7aにより、粒状体のY1側とY2側の両方の反射光について粒状体の良否が判定される。 The quality determination unit 7a determines the quality of the granular material based on the output of the rear sensor 23B, as in the case of the output of the front sensor 23A described above. The rear sensor 23B detects the light emitted from the detection area DU of the inspection area IA to the Y2 side. Therefore, the quality determination unit 7a determines the quality of the granular material for both the reflected light on the Y1 side and the Y2 side of the granular material.
 良否判定部7aは、上述した前センサ23Aの出力の場合と同様に、透過センサ23Cの出力に基づいて粒状体の良否を判定する。粒状体が米の穀粒である場合、透過センサ23Cの出力に基づく良否判定部7aによる下側第1不良の判定は、「もみ」、「シラタ」、「乳白」など、正常品に比べて光を透過し難い旨の判定である。上側第1不良の判定は、「もち米中のうるち米」や「青米」など、正常品に比べて光を透過し易い旨の判定である。 The quality determination unit 7a determines the quality of the granular material based on the output of the transmission sensor 23C, as in the case of the output of the front sensor 23A described above. When the granules are rice grains, the judgment of the lower first defect by the quality determination unit 7a based on the output of the transmission sensor 23C is compared with the normal products such as "fir", "shirata", and "milky white". It is a judgment that it is difficult for light to pass through. The determination of the first defect on the upper side is a determination that light is more easily transmitted than normal products such as "glutinous rice in glutinous rice" and "blue rice".
〔チャンネル〕
 良否判定部7aは、前センサ23Aの出力に基づく粒状体の良否判定を、複数の経路R1、R2、・・・Rnのそれぞれについて行う。具体的には、良否判定部7aは、並列する複数の経路R1、R2、・・Rnに対応するように前センサ23Aの複数の画素E1、E2、・・・Emを分配して複数のチャンネルCH1,CH2,・・・CHnを設定し、これら複数のチャンネルごとに粒状体の良否を判定する。すなわち、複数のチャンネルCH1,CH2、・・・CHnは、複数の経路R1、R2、・・・Rnに対応し、空気吹き付け装置31(排除装置30)の複数の噴射口S1、S2、・・・Snに対応する。
〔Channel〕
The quality determination unit 7a determines the quality of the granular material based on the output of the front sensor 23A for each of the plurality of paths R1, R2, ... Rn. Specifically, the pass / fail determination unit 7a distributes a plurality of pixels E1, E2, ... Em of the front sensor 23A so as to correspond to a plurality of parallel paths R1, R2, ... Rn, and a plurality of channels. CH1, CH2, ... CHn are set, and the quality of the granules is determined for each of these plurality of channels. That is, the plurality of channels CH1, CH2, ... CHn correspond to the plurality of paths R1, R2, ... Rn, and the plurality of injection ports S1, S2, ... -Corresponds to Sn.
 図6の例では、検出領域DUにおける経路R2と重なる部分からの光は、前センサ23Aにおける画素E41-63に入射する。そこで、経路R2に対応する画素E41-63がチャンネルCH2として設定される。経路R1に対応する画素E40までの所定数の画素は、チャンネルCH1として設定される。経路R3に対応する画素E64以降の所定数の画素は、チャンネルCH3として設定される。チャンネルは、装置の製造時に初期設定される。チャンネルCH1,CH2,・・・CHnに対する画素E1、E2、・・・Emの分配の設定値は、記憶部7fに記憶される。 In the example of FIG. 6, the light from the portion overlapping the path R2 in the detection region DU is incident on the pixels E41-63 in the front sensor 23A. Therefore, the pixels E41-63 corresponding to the path R2 are set as the channel CH2. A predetermined number of pixels up to the pixel E40 corresponding to the path R1 are set as the channel CH1. A predetermined number of pixels after the pixel E64 corresponding to the path R3 are set as the channel CH3. The channels are initially set when the device is manufactured. The distribution setting values of the pixels E1, E2, ... Em with respect to the channels CH1, CH2, ... CHn are stored in the storage unit 7f.
 良否判定部7aは、前センサ23Aの出力における、あるチャンネルに対応する部分において、上述した判定基準が満たされた場合、そのチャンネルに対応する経路にある粒状体が不良品であると判断する。そして良否判定部7aが1つのチャンネルの粒状体を不良品であると判定すると、排除制御部7jは、当該チャンネルに対応する噴射口から空気を噴射させるように、空気吹き付け装置31(排除装置30)を作動させる。詳しくは、排除制御部7jは、粒状体が不良品であると良否判定部7aが判定してから所定の時間の経過後に、空気吹き付け装置31を作動させる。 If the above-mentioned determination criteria are satisfied in the portion of the output of the front sensor 23A corresponding to a certain channel, the quality determination unit 7a determines that the granular material in the path corresponding to the channel is a defective product. Then, when the quality determination unit 7a determines that the granular material of one channel is a defective product, the exclusion control unit 7j determines that the air blowing device 31 (exclusion device 30) injects air from the injection port corresponding to the channel. ) Is activated. Specifically, the exclusion control unit 7j operates the air blowing device 31 after a predetermined time has elapsed after the quality determination unit 7a determines that the granular material is a defective product.
 同様に、良否判定部7aは、後センサ23Bの出力に基づく粒状体の良否判定を、複数の経路R1、R2、・・・Rnのそれぞれについて行う。具体的には、良否判定部7aは、並列する複数の経路R1、R2、・・Rnに対応するように後センサ23Bの複数の画素E1、E2、・・・Emを分配して複数のチャンネルCH1,CH2,・・・CHnを設定し、これら複数のチャンネルごとに粒状体の良否を判定する。また、良否判定部7aは、透過センサ23Cの出力に基づく粒状体の良否判定を、複数の経路R1、R2、・・・Rnのそれぞれについて行う。具体的には、良否判定部7aは、並列する複数の経路R1、R2、・・Rnに対応するように透過センサ23Cの複数の画素E1、E2、・・・Emを分配して複数のチャンネルCH1,CH2,・・・CHnを設定し、これら複数のチャンネルごとに粒状体の良否を判定する。すなわち、前センサ23A、後センサ23B、及び透過センサ23Cのチャンネル分配は、同じ番号のチャンネルが同じ番号の経路及び噴射口に対応するように、設定される。なお、同じチャンネル番号に分配される画素Eの数及び番号は、前センサ23A、後センサ23B、及び透過センサ23Cの間で異なってもよい。 Similarly, the quality determination unit 7a determines the quality of the granular material based on the output of the rear sensor 23B for each of the plurality of paths R1, R2, ... Rn. Specifically, the pass / fail determination unit 7a distributes a plurality of pixels E1, E2, ... Em of the rear sensor 23B so as to correspond to a plurality of parallel paths R1, R2, ... Rn, and a plurality of channels. CH1, CH2, ... CHn are set, and the quality of the granules is determined for each of these plurality of channels. Further, the quality determination unit 7a determines the quality of the granular material based on the output of the transmission sensor 23C for each of the plurality of paths R1, R2, ... Rn. Specifically, the pass / fail determination unit 7a distributes a plurality of pixels E1, E2, ... Em of the transmission sensor 23C so as to correspond to a plurality of parallel paths R1, R2, ... Rn, and a plurality of channels. CH1, CH2, ... CHn are set, and the quality of the granules is determined for each of these plurality of channels. That is, the channel distributions of the front sensor 23A, the rear sensor 23B, and the transmission sensor 23C are set so that the channels of the same number correspond to the paths and injection ports of the same number. The number and number of pixels E distributed to the same channel number may differ among the front sensor 23A, the rear sensor 23B, and the transmission sensor 23C.
 各センサにおけるチャンネルに対する画素の分配の設定値は、記憶部7fに保存される。良否判定部7aは、チャンネルと画素の対応関係を示すデータを記憶部7fから読み出して、各センサの出力に基づく粒状体の良否判定を各チャンネル毎に行う。 The setting value of pixel distribution for each channel in each sensor is stored in the storage unit 7f. The quality determination unit 7a reads data indicating the correspondence between the channel and the pixel from the storage unit 7f, and determines the quality of the granular material based on the output of each sensor for each channel.
〔検出領域の異常の判定〕
 粒状体検査装置が製造される時に、検出領域DU,DLは設計上の位置に設定される。
詳しくは、送出装置10及び検出装置20が設計通りに組み立てられ、レンズ装置25のピントが調整されると、検出領域DU、DLは設計上の位置に定まる。しかし、輸送中や設置時、稼働中に粒状体検査装置が衝撃を受けると、送出装置10、検出装置20、及びそれら装置の内部構成に位置ずれが生じ、検出領域DU、DLの位置に異常が生じる場合がある。本実施形態では、検出装置20(センサ23)の出力における図形Fに対応する部分に基づいて、検出領域DU,DLの位置の異常の有無が判定され、報知や自動調整等が行われる。
[Judgment of abnormality in the detection area]
When the granular inspection device is manufactured, the detection areas DU and DL are set to the design positions.
Specifically, when the transmission device 10 and the detection device 20 are assembled as designed and the focus of the lens device 25 is adjusted, the detection areas DU and DL are determined at the design positions. However, if the granular inspection device is impacted during transportation, installation, or operation, the transmission device 10, the detection device 20, and the internal configurations of these devices are displaced, and the positions of the detection areas DU and DL are abnormal. May occur. In the present embodiment, the presence or absence of an abnormality in the positions of the detection areas DU and DL is determined based on the portion corresponding to the figure F in the output of the detection device 20 (sensor 23), and notification, automatic adjustment, and the like are performed.
 以下、検出領域DUの位置の異常の判定、及び自動調整の態様について説明する。本実施形態では、図5、図7-10に示されるように、図形Fとしての三角形F1及び長方形F2が、部材51に描かれている。 Hereinafter, the mode of determining the abnormality of the position of the detection area DU and the automatic adjustment will be described. In the present embodiment, as shown in FIGS. 5 and 7-10, the triangle F1 and the rectangle F2 as the figure F are drawn on the member 51.
 以下、三角形F1の斜辺を部位F1a(第1部位の一例)と称する。部位F1aはZ2側へ進むほど左側へ位置する。換言すれば、部位F1aはZ方向に対して傾斜している。
三角形F1の長辺を部位F1bと称する。部位F1bはZ方向と平行に延びている。長方形F2の長辺のうち三角形F1に近い方を部位F2a(第2部位の一例)と称する。部位F2aはZ方向と平行に延びている。長方形F2の長辺のうち三角形F1から遠い方を部位F2b(第2部位の一例)と称する。部位F2bはZ方向と平行に延びている。
Hereinafter, the hypotenuse of the triangle F1 is referred to as a portion F1a (an example of the first portion). The portion F1a is located on the left side as it goes to the Z2 side. In other words, the portion F1a is inclined with respect to the Z direction.
The long side of the triangle F1 is referred to as a portion F1b. The portion F1b extends parallel to the Z direction. Of the long sides of the rectangle F2, the one closer to the triangle F1 is referred to as a portion F2a (an example of a second portion). The portion F2a extends parallel to the Z direction. Of the long sides of the rectangle F2, the one farther from the triangle F1 is referred to as a portion F2b (an example of a second portion). The portion F2b extends parallel to the Z direction.
 図7に、検出領域DUの位置がZ2側(下側)に変化した場合の、前センサ23Aの出力の変化が示されている。 FIG. 7 shows a change in the output of the front sensor 23A when the position of the detection area DU changes to the Z2 side (lower side).
 変化前の正常な位置の検出領域DUが実線で示され、変化後の異常な位置の検出領域DUが破線で示されている。検出領域DUが実線の位置にある時、検出領域DUは三角形F1及び長方形F2における上寄りの位置にある。 The detection area DU of the normal position before the change is shown by a solid line, and the detection area DU of the abnormal position after the change is shown by a broken line. When the detection area DU is in the solid line position, the detection area DU is in the upper position in the triangle F1 and the rectangle F2.
 検出領域DUが破線の位置へ移動すると、検出領域DUは三角形F1及び長方形F2における下寄りの位置へ移動する。従って、検出領域DUにおける三角形F1が占める領域は、左右方向に大きくなる。これは、三角形F1の斜辺である部位F1aがZ2側へ進むほど左側へ位置する形態であり、検出領域DUの移動方向(Z方向)に対して傾斜していることに起因する。 When the detection area DU moves to the position of the broken line, the detection area DU moves to the lower position in the triangle F1 and the rectangle F2. Therefore, the area occupied by the triangle F1 in the detection area DU becomes larger in the left-right direction. This is because the portion F1a, which is the hypotenuse of the triangle F1, is located on the left side as it advances toward the Z2 side, and is inclined with respect to the moving direction (Z direction) of the detection region DU.
 一方、検出領域DUにおける長方形F2が占める領域の大きさは、変化しない。これは、長方形F2の部位F2a、F2bがZ方向と平行に延びていることに起因する。 On the other hand, the size of the area occupied by the rectangle F2 in the detection area DU does not change. This is because the portions F2a and F2b of the rectangle F2 extend in parallel with the Z direction.
 上述の、検出領域DUにおける図形Fが占める領域の変化は、前センサ23Aの出力の変化として表れる。図7の中段に、検出領域DUが実線の位置にある時の前センサ23Aの出力(以下「変化前出力」と称する。)が示されている。図7の下段に、検出領域DUが破線の位置にある時の前センサ23Aの出力(以下「変化後出力」と称する。)が示されている。 The above-mentioned change in the area occupied by the figure F in the detection area DU appears as a change in the output of the front sensor 23A. The output of the front sensor 23A (hereinafter referred to as “pre-change output”) when the detection region DU is at the position of the solid line is shown in the middle of FIG. 7. The lower part of FIG. 7 shows the output of the front sensor 23A (hereinafter referred to as “changed output”) when the detection area DU is at the position of the broken line.
 前センサ23Aの出力における左端の出力の立ち下がり(左から1つ目)に着目する。
この立ち下がりは、左の三角形F1の部位F1aに対応する。変化前出力において、この立ち下がりは、画素a1で発生している。変化後出力において、この立ち下がりは、より左に位置する画素b1で発生している。すなわち、立ち下がりの位置が左に移動している。
Focus on the falling edge of the leftmost output (first from the left) in the output of the front sensor 23A.
This fall corresponds to the portion F1a of the left triangle F1. In the pre-change output, this fall occurs in pixel a1. In the post-change output, this fall occurs in pixel b1 located further to the left. That is, the falling position has moved to the left.
 前センサ23Aの出力における左端の出力の立ち上がり(左から1つ目)に着目する。
この立ち上がりは、左の三角形F1の部位F1bに対応する。変化前出力において、この立ち上がりは、画素a2で発生している。変化後出力において、この立ち上がりは、画素a2とほぼ同じ位置である画素b2で発生している。すなわち、立ち上がりの位置は移動していない。
Focus on the rising edge of the leftmost output (first from the left) in the output of the front sensor 23A.
This rise corresponds to the portion F1b of the left triangle F1. In the pre-change output, this rise occurs in pixel a2. In the post-change output, this rise occurs at pixel b2, which is at substantially the same position as pixel a2. That is, the rising position has not moved.
 前センサ23Aの出力における左から2つ目の出力の立ち下がりに着目する。この立ち下がりは、左の長方形F2の部位F2aに対応する。変化前出力において、この立ち下がりは、画素a3で発生している。変化後出力において、この立ち下がりは、画素a3とほぼ同じ位置である画素b3で発生している。すなわち、立ち下がりの位置は移動していない。 Pay attention to the fall of the second output from the left in the output of the front sensor 23A. This fall corresponds to the portion F2a of the rectangle F2 on the left. In the pre-change output, this fall occurs in pixel a3. In the post-change output, this fall occurs at pixel b3, which is at approximately the same position as pixel a3. That is, the falling position has not moved.
 前センサ23Aの出力における左から2つ目の出力の立ち上がりに着目する。この立ち上がりは、左の長方形F2の部位F2bに対応する。変化前出力において、この立ち上がりは、画素a4で発生している。変化後出力において、この立ち上がりは、画素a4とほぼ同じ位置である画素b4で発生している。すなわち、立ち上がりの位置は移動していない。 Focus on the rising edge of the second output from the left in the output of the front sensor 23A. This rise corresponds to the portion F2b of the rectangle F2 on the left. In the pre-change output, this rise occurs in pixel a4. In the post-change output, this rise occurs at pixel b4, which is at approximately the same position as pixel a4. That is, the rising position has not moved.
 前センサ23Aの出力における左から3つ目の出力の立ち下がりに着目する。この立ち下がりは、右の長方形F2の部位F2bに対応する。変化前出力において、この立ち下がりは、画素a5で発生している。変化後出力において、この立ち下がりは、画素a5とほぼ同じ位置である画素b5で発生している。すなわち、立ち下がりの位置は移動していない。 Focus on the fall of the third output from the left in the output of the front sensor 23A. This fall corresponds to the portion F2b of the right rectangle F2. In the pre-change output, this fall occurs in pixel a5. In the post-change output, this fall occurs at pixel b5, which is at approximately the same position as pixel a5. That is, the falling position has not moved.
 前センサ23Aの出力における左から3つ目の出力の立ち上がりに着目する。この立ち上がりは、右の長方形F2の部位F2aに対応する。変化前出力において、この立ち上がりは、画素a6で発生している。変化後出力において、この立ち上がりは、画素a6とほぼ同じ位置である画素b6で発生している。すなわち、立ち上がりの位置は移動していない。 Focus on the rising edge of the third output from the left in the output of the front sensor 23A. This rise corresponds to the portion F2a of the right rectangle F2. In the pre-change output, this rise occurs in pixel a6. In the post-change output, this rise occurs at pixel b6, which is at approximately the same position as pixel a6. That is, the rising position has not moved.
 前センサ23Aの出力における左から4つ目(右端)の立ち上がりに着目する。この立ち上がりは、右の三角形F1の部位F1bに対応する。変化前出力において、この立ち上がりは、画素a7で発生している。変化後出力において、この立ち上がりは、画素a7とほぼ同じ位置である画素b7で発生している。すなわち、立ち上がりの位置は移動していない。 Focus on the rise of the fourth (right end) from the left in the output of the front sensor 23A. This rise corresponds to the portion F1b of the right triangle F1. In the pre-change output, this rise occurs at pixel a7. In the post-change output, this rise occurs at pixel b7, which is at approximately the same position as pixel a7. That is, the rising position has not moved.
 前センサ23Aの出力における左から4つ目(右端)の立ち下がりに着目する。この立ち下がりは、右の三角形F1の部位F1aに対応する。変化前出力において、この立ち下がりは、画素a8で発生している。変化後出力において、この立ち下がりは、より右に位置する画素b8で発生している。すなわち、立ち下がりの位置が右に移動している。 Pay attention to the falling edge of the fourth (right end) from the left in the output of the front sensor 23A. This fall corresponds to the portion F1a of the right triangle F1. In the pre-change output, this fall occurs in pixel a8. In the post-change output, this fall occurs at pixel b8 located further to the right. That is, the falling position has moved to the right.
 Z方向に関する検出領域DUの移動方向及び移動量は、前センサ23Aの出力における部位F1aに対応する部分(立ち上がり及び立ち下がり)の移動方向及び移動量に、1対1で対応する。部材51に描かれた三角形F1の形状(部位F1aのZ方向に対する傾斜等)は、既知である。従って、前センサ23Aの出力における変化量に基づいて、Z方向についての検出領域DUの位置の変動量(以下、「送出方向変動量」と称する。)を算出することができる。送出方向変動量の算出に用い得る前センサ23Aの出力における変化量は、例えば以下の量である。 The movement direction and movement amount of the detection region DU with respect to the Z direction correspond to the movement direction and movement amount of the portion (rising and falling) corresponding to the portion F1a in the output of the front sensor 23A on a one-to-one basis. The shape of the triangle F1 drawn on the member 51 (inclination of the portion F1a with respect to the Z direction, etc.) is known. Therefore, the amount of change in the position of the detection region DU in the Z direction (hereinafter referred to as “the amount of change in the transmission direction”) can be calculated based on the amount of change in the output of the front sensor 23A. The amount of change in the output of the front sensor 23A that can be used to calculate the amount of change in the transmission direction is, for example, the following amount.
 左端の出力の立ち下がり位置の変化量、すなわち、画素a1と画素b1との距離。 The amount of change in the falling position of the output at the left end, that is, the distance between the pixel a1 and the pixel b1.
 出力の立ち下がり位置から立ち上がり位置までの距離の変化量、すなわち、(画素a1と画素a2との距離)と(画素b1と画素b2との距離)の差。 The amount of change in the distance from the falling position to the rising position of the output, that is, the difference between (distance between pixel a1 and pixel a2) and (distance between pixel b1 and pixel b2).
 右端の出力の立ち上がり位置の変化量、すなわち、画素a8と画素b8との距離。 The amount of change in the rising position of the output at the right end, that is, the distance between the pixel a8 and the pixel b8.
 出力の立ち下がり位置から立ち上がり位置までの距離の変化量、すなわち、(画素a7と画素a8との距離)と(画素b7と画素b8との距離)の差。 The amount of change in the distance from the falling position to the rising position of the output, that is, the difference between (distance between pixel a7 and pixel a8) and (distance between pixel b7 and pixel b8).
 本実施形態では、以上述べた事項を利用して、検出領域DUの位置の異常の有無が判定される。すなわち、位置異常判定部7kが、検出装置20(前センサ23A)の出力における図形Fに対応する部分に基づいて、検出領域DUの位置の異常の有無を判定する。例えば、位置異常判定部7kは、右端(または左端)の立ち下がり位置(画素b1、b8)が、予め設定された正常範囲を超えている場合に、検出領域DUの位置が異常であると判定する。 In the present embodiment, the presence or absence of an abnormality in the position of the detection area DU is determined by using the above-mentioned items. That is, the position abnormality determination unit 7k determines whether or not there is an abnormality in the position of the detection area DU based on the portion corresponding to the figure F in the output of the detection device 20 (front sensor 23A). For example, the position abnormality determination unit 7k determines that the position of the detection area DU is abnormal when the falling position (pixels b1 and b8) at the right end (or left end) exceeds a preset normal range. do.
 記憶部7fが、検出領域DUが正常である時の検出装置20(前センサ23A)の出力である正常出力(上述した変化前出力)を記憶してもよい。この場合、位置異常判定部7kは、現在の前センサ23Aの出力と、記憶部7fに記憶された正常出力と、を比較して、検出領域DUの位置の異常の有無を判定する。例えば、位置異常判定部7kは、正常出力における右端(または左端)の立ち下がり位置(画素a1、a8)と、現在の前センサ23Aの出力における右端(または左端)の立ち下がり位置(画素b1、b8)と、に基づいて送出方向変動量を算出し、送出方向変動量が閾値を超えている場合に、検出領域DUの位置が異常であると判定する。 The storage unit 7f may store the normal output (the above-mentioned pre-change output) which is the output of the detection device 20 (pre-sensor 23A) when the detection area DU is normal. In this case, the position abnormality determination unit 7k compares the output of the current front sensor 23A with the normal output stored in the storage unit 7f, and determines whether or not there is an abnormality in the position of the detection area DU. For example, the position abnormality determination unit 7k has a falling position (pixels a1 and a8) at the right end (or left end) in the normal output and a falling position (pixel b1 and) at the right end (or left end) in the output of the current front sensor 23A. The amount of fluctuation in the transmission direction is calculated based on b8), and when the amount of fluctuation in the transmission direction exceeds the threshold value, it is determined that the position of the detection region DU is abnormal.
 ここで、排除制御部7jは、粒状体が不良品であると良否判定部7aが判定してから所定の時間の経過後に、空気吹き付け装置31を作動させる。空気吹き付け装置31の動作タイミングは、排除制御部7jに制御される。検出領域DUがZ方向に移動すると、空気吹き付け装置31の動作タイミングを変更する必要が生じる。なぜなら、検出領域DUがZ方向に移動すると、粒状体が検出領域DUを通過してから空気吹き付け装置31の噴射口の前に到達する時間が変化するからである。 Here, the exclusion control unit 7j operates the air blowing device 31 after a predetermined time has elapsed after the quality determination unit 7a determines that the granular material is a defective product. The operation timing of the air blowing device 31 is controlled by the exclusion control unit 7j. When the detection region DU moves in the Z direction, it becomes necessary to change the operation timing of the air blowing device 31. This is because when the detection region DU moves in the Z direction, the time for the granules to reach the front of the injection port of the air blowing device 31 after passing through the detection region DU changes.
 本実施形態では、排除制御部7jは、位置異常判定部7kが算出した送出方向変動量に基づいて、排除装置30(空気吹き付け装置31)の動作タイミングを変更する。例えば、検出領域DUがZ1側に移動した場合、排除制御部7jは、算出された送出方向変動量に対応する時間分、動作タイミングを遅らせる。 In the present embodiment, the exclusion control unit 7j changes the operation timing of the exclusion device 30 (air blowing device 31) based on the transmission direction fluctuation amount calculated by the position abnormality determination unit 7k. For example, when the detection area DU moves to the Z1 side, the exclusion control unit 7j delays the operation timing by the time corresponding to the calculated transmission direction fluctuation amount.
 なお、排除制御部7jが動作タイミングを変更した後は、不良品の排除が適切に行われる。排除制御部7jが動作タイミングを変更した後に、記憶部7fが、前センサ23Aの出力を、正常出力として記憶(更新)してもよい。 After the exclusion control unit 7j changes the operation timing, defective products are appropriately excluded. After the exclusion control unit 7j changes the operation timing, the storage unit 7f may store (update) the output of the front sensor 23A as a normal output.
 以上述べたとおり、三角形F1の部位F1aは、Z方向(特定方向の一例)に沿って検出領域DUがずれた場合に(図7)、検出装置20(前センサ23A)の出力における左端の出力の立ち下がり位置(部位F1aに対応する部分)が変化する(画素a1→画素b1)形態である。三角形F1の部位F1a(斜辺)は、特許請求の範囲に記載された「第1部位」の一例である。 As described above, the portion F1a of the triangle F1 is the leftmost output in the output of the detection device 20 (front sensor 23A) when the detection region DU shifts along the Z direction (an example of a specific direction) (FIG. 7). The falling position (the portion corresponding to the portion F1a) changes (pixel a1 → pixel b1). The part F1a (hypotenuse) of the triangle F1 is an example of the "first part" described in the claims.
 また、長方形F2の部位F2a、F2bは、Z方向(特定方向の一例)に沿って検出領域DUがずれた場合に(図7)、検出装置20(前センサ23A)の出力における左から2番目の出力の立ち下がり位置(部位F2aに対応する部分)、及び左から2番目の出力の立ち上がり位置(部位F2bに対応する部分)が変化しない(画素a3→画素b3、画素a4→画素b4)形態である。長方形F2の部位F2a、F2bは、特許請求の範囲に記載された「第2部位」の一例である。 Further, the portions F2a and F2b of the rectangle F2 are the second from the left in the output of the detection device 20 (front sensor 23A) when the detection region DU shifts along the Z direction (an example of a specific direction) (FIG. 7). The falling position of the output (the part corresponding to the part F2a) and the rising position of the second output from the left (the part corresponding to the part F2b) do not change (pixel a3 → pixel b3, pixel a4 → pixel b4). Is. The portions F2a and F2b of the rectangle F2 are examples of the "second portion" described in the claims.
 図8に、検出領域DUの位置が右側に変化した場合の、前センサ23Aの出力の変化が示されている。 FIG. 8 shows a change in the output of the front sensor 23A when the position of the detection area DU changes to the right side.
 変化前の正常な位置の検出領域DUが実線で示され、変化後の異常な位置の検出領域DUが破線で示されている。検出領域DUが実線の位置から破線の位置へ変化すると、検出領域DUにおける図形Fが占める領域は左に移動する。一方、検出領域DUにおける図形Fが占める領域の大きさは、変化しない。 The detection area DU of the normal position before the change is shown by a solid line, and the detection area DU of the abnormal position after the change is shown by a broken line. When the detection area DU changes from the position of the solid line to the position of the broken line, the area occupied by the figure F in the detection area DU moves to the left. On the other hand, the size of the area occupied by the figure F in the detection area DU does not change.
 上述の、検出領域DUにおける図形Fが占める領域の移動は、前センサ23Aの出力の変化として表れる。図8の中段に、検出領域DUが実線の位置にある時の前センサ23Aの出力(以下「変化前出力」と称する。)が示されている。図8の下段に、検出領域DUが破線の位置にある時の前センサ23Aの出力(以下「変化後出力」と称する。)が示されている。 The above-mentioned movement of the area occupied by the figure F in the detection area DU appears as a change in the output of the front sensor 23A. In the middle of FIG. 8, the output of the front sensor 23A (hereinafter referred to as “pre-change output”) when the detection region DU is at the position of the solid line is shown. The lower part of FIG. 8 shows the output of the front sensor 23A (hereinafter referred to as “changed output”) when the detection area DU is at the position of the broken line.
 前センサ23Aの出力における左端の出力の立ち下がり(左から1つ目)に着目する。
この立ち下がりは、左の三角形F1の部位F1aに対応する。変化前出力において、この立ち下がりは、画素a1で発生している。変化後出力において、この立ち下がりは、画素a1から少し左に位置する画素b2で発生している。すなわち、立ち下がりの位置が左に移動している。
Focus on the falling edge of the leftmost output (first from the left) in the output of the front sensor 23A.
This fall corresponds to the portion F1a of the left triangle F1. In the pre-change output, this fall occurs in pixel a1. In the post-change output, this fall occurs in pixel b2, which is located slightly to the left of pixel a1. That is, the falling position has moved to the left.
 他の立ち下がり及び立ち上がりについても、変化後出力において、変化前出力における画素(a2-a8)から少し左に位置する画素(b2-b8)で発生している。すなわち、他の立ち下がり及び立ち上がりの位置も左に移動している。 Other falling edges and rising edges also occur in the pixel (b2-b8) located slightly to the left of the pixel (a2-a8) in the output before the change in the output after the change. That is, the other falling and rising positions are also moving to the left.
 左右方向に関する検出領域DUの移動方向及び移動量は、前センサ23Aの出力における図形Fに対応する部分(立ち上がり及び立ち下がり)の移動方向及び移動量に、1対1で対応する。部材51に描かれた図形Fの形状(長方形F2の幅、三角形F1と長方形F2との間隔等)は、既知である。従って、前センサ23Aの出力における変化量に基づいて、左右方向についての検出領域DUの位置の変動量(以下、「並列方向変動量」と称する。)を算出することができる。並列方向変動量の算出に用い得る前センサ23Aの出力における変化量は、例えば以下の量である。 The movement direction and movement amount of the detection area DU in the left-right direction correspond to the movement direction and movement amount of the portion (rising and falling) corresponding to the figure F in the output of the front sensor 23A on a one-to-one basis. The shape of the figure F drawn on the member 51 (width of rectangle F2, distance between triangle F1 and rectangle F2, etc.) is known. Therefore, the amount of change in the position of the detection region DU in the left-right direction (hereinafter referred to as "the amount of change in the parallel direction") can be calculated based on the amount of change in the output of the front sensor 23A. The amount of change in the output of the front sensor 23A that can be used to calculate the amount of fluctuation in the parallel direction is, for example, the following amount.
 出力の立ち下がり位置及び立ち上がり位置の変化量、すなわち、画素a1と画素b1との距離、画素a2と画素b2との距離、画素a3と画素b3との距離、画素a4と画素b4との距離、画素a5と画素b5との距離、画素a6と画素b6との距離、画素a7と画素b7との距離、及び画素a8と画素b8との距離。 The amount of change in the falling position and rising position of the output, that is, the distance between the pixel a1 and the pixel b1, the distance between the pixel a2 and the pixel b2, the distance between the pixel a3 and the pixel b3, and the distance between the pixel a4 and the pixel b4. The distance between the pixel a5 and the pixel b5, the distance between the pixel a6 and the pixel b6, the distance between the pixel a7 and the pixel b7, and the distance between the pixel a8 and the pixel b8.
 検出領域DUについて、Z方向の移動及び左右方向の移動は同時に発生し得る。検出領域DUがZ方向に移動した時に、三角形F1の部位F1aに対応する立ち下がり及び立ち上がりの位置は、変化する。一方、長方形F2の部位F2a、F2b(及び三角形F1の部位F1b)に対応する立ち下がり及び立ち上がりの位置は、変化しない。従って、左右方向の移動の有無の判定、及び並列方向変動量の算出には、後者を用いると好適である。
以下、列挙する。
For the detection area DU, movement in the Z direction and movement in the left-right direction can occur at the same time. When the detection region DU moves in the Z direction, the falling and rising positions corresponding to the portion F1a of the triangle F1 change. On the other hand, the falling and rising positions corresponding to the portions F2a and F2b of the rectangle F2 (and the portion F1b of the triangle F1) do not change. Therefore, it is preferable to use the latter for determining the presence or absence of movement in the left-right direction and calculating the amount of fluctuation in the parallel direction.
Listed below.
 画素b2-b7、画素a2と画素b2との距離、画素a3と画素b3との距離、画素a4と画素b4との距離、画素a5と画素b5との距離、及び画素a6と画素b6との距離、画素a7と画素b7との距離、 Pixel b2-b7, distance between pixel a2 and pixel b2, distance between pixel a3 and pixel b3, distance between pixel a4 and pixel b4, distance between pixel a5 and pixel b5, and distance between pixel a6 and pixel b6. , The distance between pixel a7 and pixel b7,
 本実施形態では、以上述べた事項を利用して、検出領域DUの位置の異常の有無が判定される。すなわち、位置異常判定部7kが、検出装置20(前センサ23A)の出力における図形Fに対応する部分に基づいて、検出領域DUの位置の異常の有無を判定する。例えば、位置異常判定部7kは、左端及び右端を除く立ち下がり位置及び/または立ち上がり位置(画素a2-a7)が、予め設定された正常範囲を超えている場合に、検出領域DUの位置が異常であると判定する。 In the present embodiment, the presence or absence of an abnormality in the position of the detection area DU is determined by using the above-mentioned items. That is, the position abnormality determination unit 7k determines whether or not there is an abnormality in the position of the detection area DU based on the portion corresponding to the figure F in the output of the detection device 20 (front sensor 23A). For example, in the position abnormality determination unit 7k, when the falling position and / or the rising position (pixels a2-a7) excluding the left end and the right end exceed the preset normal range, the position of the detection area DU is abnormal. Is determined to be.
 記憶部7fが、検出領域DUが正常である時の検出装置20(前センサ23A)の出力である正常出力(上述した変化前出力)を記憶してもよい。この場合、位置異常判定部7kは、現在の前センサ23Aの出力と、記憶部7fに記憶された正常出力と、を比較して、検出領域DUの位置の異常の有無を判定する。例えば、位置異常判定部7kは、正常出力における左端及び右端を除く立ち下がり位置及び/または立ち上がり位置(画素a2-a7)と、現在の前センサ23Aの出力における左端及び右端を除く立ち下がり位置及び/または立ち上がり位置(画素b2-b7)と、に基づいて並列方向変動量を算出し、並列方向変動量が閾値を超えている場合に、検出領域DUの位置が異常であると判定する。 The storage unit 7f may store the normal output (the above-mentioned pre-change output) which is the output of the detection device 20 (pre-sensor 23A) when the detection area DU is normal. In this case, the position abnormality determination unit 7k compares the output of the current front sensor 23A with the normal output stored in the storage unit 7f, and determines whether or not there is an abnormality in the position of the detection area DU. For example, the position abnormality determination unit 7k has a falling position and / or a rising position (pixels a2-a7) excluding the left end and the right end in the normal output, and a falling position and / or a falling position excluding the left end and the right end in the current output of the front sensor 23A. / Or The parallel direction fluctuation amount is calculated based on the rising position (pixel b2-b7), and when the parallel direction fluctuation amount exceeds the threshold value, it is determined that the position of the detection region DU is abnormal.
 ここで、良否判定部7aは、複数のチャンネルごとに粒状体の良否を判定する。検出領域DUが左右方向に移動すると、粒状体の良否の判定及び不良品の排除が適切に行われない。例えば、図6に示される状態において検出領域DUが右にずれると、着色領域A2からの光がチャンネルCH1に分配された画素(画素E40より左の画素)に入射する可能性がある。そうすると、粒状体G1は経路R2に位置するにもかかわらず、良否判定部7aがチャンネルCH1について不良品と判定する可能性がある。その場合、排除制御部7jは経路R1に対応する噴射口S1から空気を噴出させるので、経路R2に位置する粒状体G1は排除されない。 Here, the quality determination unit 7a determines the quality of the granular material for each of a plurality of channels. If the detection region DU moves in the left-right direction, the quality of the granules and the elimination of defective products are not properly performed. For example, if the detection region DU shifts to the right in the state shown in FIG. 6, the light from the colored region A2 may be incident on the pixels (pixels to the left of the pixel E40) distributed to the channel CH1. Then, although the granular body G1 is located in the path R2, the quality determination unit 7a may determine that the channel CH1 is a defective product. In that case, since the exclusion control unit 7j ejects air from the injection port S1 corresponding to the path R1, the granular body G1 located in the path R2 is not excluded.
 本実施形態では、良否判定部7aは、位置異常判定部7kが算出した並列方向変動量に応じて画素のチャンネルへの分配を変更する。例えば、良否判定部7aは、並列方向変動量に対応する大きさで、検出領域DUの移動方向と反対方向に、チャンネル分配を変更する。記憶部7fは、良否判定部7aが変更した新たなチャンネル分配を記憶する。 In the present embodiment, the pass / fail determination unit 7a changes the distribution of the pixels to the channels according to the parallel direction fluctuation amount calculated by the position abnormality determination unit 7k. For example, the pass / fail determination unit 7a changes the channel distribution in the direction opposite to the moving direction of the detection region DU with a size corresponding to the amount of fluctuation in the parallel direction. The storage unit 7f stores the new channel distribution changed by the pass / fail determination unit 7a.
 なお、良否判定部7aがチャンネル分配を変更した後は、不良品の判定及び排除が適切に行われる。良否判定部7aがチャンネル分配を変更した後に、記憶部7fが、前センサ23Aの出力を、正常出力として記憶(更新)してもよい。 After the quality determination unit 7a changes the channel distribution, defective products are appropriately determined and eliminated. After the pass / fail determination unit 7a changes the channel distribution, the storage unit 7f may store (update) the output of the front sensor 23A as a normal output.
 以上述べた検出領域DUの左右方向の移動に係る判定・処理、及び検出領域DUのZ方向の移動に係る判定・処理について、一方のみを行うように制御装置7が構成されてもよい。両方を組み合わせて行うように制御装置7が構成されてもよい。 The control device 7 may be configured to perform only one of the determination / processing related to the movement of the detection area DU in the left-right direction and the determination / processing related to the movement of the detection area DU in the Z direction described above. The control device 7 may be configured to perform both in combination.
 図9に、検出領域DUの位置が回転した場合の、前センサ23Aの出力の変化が示されている。 FIG. 9 shows a change in the output of the front sensor 23A when the position of the detection area DU is rotated.
 変化前の正常な位置の検出領域DUが実線で示され、変化後の異常な位置の検出領域DUが破線で示されている。検出領域DUが実線の位置から破線の位置へ変化すると、検出領域DUにおける図形Fが占める領域は、回転中心の左右で異なる態様で変化する。 The detection area DU of the normal position before the change is shown by a solid line, and the detection area DU of the abnormal position after the change is shown by a broken line. When the detection area DU changes from the position of the solid line to the position of the broken line, the area occupied by the figure F in the detection area DU changes in different manners on the left and right of the center of rotation.
 回転中心の左において、検出領域DUにおける三角形F1及び長方形F2が占める領域は、左右方向に大きくなり、且つ、左に移動する。 To the left of the center of rotation, the area occupied by the triangle F1 and the rectangle F2 in the detection area DU becomes larger in the left-right direction and moves to the left.
 回転中心の右において、検出領域DUにおける三角形F1及び長方形F2が占める領域は、左右方向に小さくなり、且つ、右に移動する。 To the right of the center of rotation, the area occupied by the triangle F1 and the rectangle F2 in the detection area DU becomes smaller in the left-right direction and moves to the right.
 上述の、検出領域DUにおける図形Fが占める領域の変化は、前センサ23Aの出力の変化として表れる。図7の中段に、検出領域DUが実線の位置にある時の前センサ23Aの出力(以下「変化前出力」と称する。)が示されている。図7の下段に、検出領域DUが破線の位置にある時の前センサ23Aの出力(以下「変化後出力」と称する。)が示されている。 The above-mentioned change in the area occupied by the figure F in the detection area DU appears as a change in the output of the front sensor 23A. The output of the front sensor 23A (hereinafter referred to as “pre-change output”) when the detection region DU is at the position of the solid line is shown in the middle of FIG. 7. The lower part of FIG. 7 shows the output of the front sensor 23A (hereinafter referred to as “changed output”) when the detection area DU is at the position of the broken line.
 詳しい説明は省略するが、検出領域DUにおける図形Fが占める領域の変化に対応して、変化前出力における立ち下がり及び立ち上がりの位置(画素a1-a8)が、変化後出力における立ち下がり及び立ち上がりの位置(画素b1-b8)へ変化する。 Although detailed description is omitted, the falling and rising positions (pixels a1-a8) in the output before the change correspond to the changes in the area occupied by the figure F in the detection area DU, and the falling and rising positions in the output after the change. It changes to the position (pixels b1-b8).
 ここで、検出領域DUの移動(並進、回転)と前センサ23Aの出力変化との関係について検討する。検査領域IAからの光が光軸26Aに沿って進みミラー24及びレンズ装置25を通って前センサ23Aの受光面に達する。従って、検査領域IAにおける座標系と前センサ23Aの受光面における座標系とは、一対一で対応し、幾何的に変換可能である。この変換関係に基づいて、前センサ23Aの出力における立ち下がり及び立ち上がりの位置の変化から、検出領域DUの移動量(並進・回転)を算出することが可能である。 Here, the relationship between the movement (translation, rotation) of the detection area DU and the output change of the front sensor 23A will be examined. Light from the inspection area IA travels along the optical axis 26A, passes through the mirror 24 and the lens device 25, and reaches the light receiving surface of the front sensor 23A. Therefore, the coordinate system in the inspection area IA and the coordinate system in the light receiving surface of the front sensor 23A have a one-to-one correspondence and can be geometrically converted. Based on this conversion relationship, it is possible to calculate the movement amount (translation / rotation) of the detection region DU from the changes in the falling and rising positions in the output of the front sensor 23A.
 図9に示されるように検出領域DUが回転(または傾斜)した場合、Z方向の移動量及び左右方向の移動量が、検出領域DUにおける位置に応じて変化する。従って、上述した排除装置30の動作タイミングの変更及びチャンネル分配の変更に関して、変更の態様をチャンネルごとに異ならせる必要がある。 When the detection area DU is rotated (or tilted) as shown in FIG. 9, the amount of movement in the Z direction and the amount of movement in the left-right direction change according to the position in the detection area DU. Therefore, regarding the change of the operation timing of the exclusion device 30 and the change of the channel distribution described above, it is necessary to change the mode of the change for each channel.
 例えば、回転中心よりも左に位置するチャンネルについては、検出領域DUがZ2側に移動しているので、排除装置30の動作タイミングを早くする必要がある。一方、回転中心よりも右に位置するチャンネルについては、検出領域DUがZ1側に移動しているので、排除装置30の動作タイミングを遅くする必要がある。また、回転中心からの距離に応じてチャンネルの幅を異ならせる必要がある。回転中心から遠いチャンネルの幅は、回転中心に近いチャンネルの幅よりも小さくする必要がある。 For example, for the channel located to the left of the center of rotation, the detection area DU has moved to the Z2 side, so it is necessary to accelerate the operation timing of the exclusion device 30. On the other hand, for the channel located to the right of the center of rotation, the detection region DU has moved to the Z1 side, so it is necessary to delay the operation timing of the exclusion device 30. In addition, it is necessary to make the width of the channel different according to the distance from the center of rotation. The width of the channel far from the center of rotation should be smaller than the width of the channel near the center of rotation.
 以上述べた事項を考慮し、制御装置7が次のように構成されてもよい。位置異常判定部7kは、送出方向変動量をチャンネルごとに算出する。排除制御部7jは、位置異常判定部7kが算出したチャンネルごとの送出方向変動量に基づいて、排除装置30の動作タイミングを変更する。位置異常判定部7kは、並進方向変動量をチャンネルごとに算出する。良否判定部7aは、位置異常判定部7kが算出したチャンネルごとの並進方向変動量に基づいて、チャンネル分配を変更する。 In consideration of the above-mentioned matters, the control device 7 may be configured as follows. The position abnormality determination unit 7k calculates the amount of fluctuation in the transmission direction for each channel. The exclusion control unit 7j changes the operation timing of the exclusion device 30 based on the transmission direction fluctuation amount for each channel calculated by the position abnormality determination unit 7k. The position abnormality determination unit 7k calculates the translational direction fluctuation amount for each channel. The pass / fail determination unit 7a changes the channel distribution based on the translational direction variation amount for each channel calculated by the position abnormality determination unit 7k.
 図10に、検出領域DUの位置がY方向(紙面直交方向)に変化した場合の、前センサ23Aの出力の変化が示されている。 FIG. 10 shows a change in the output of the front sensor 23A when the position of the detection area DU changes in the Y direction (direction orthogonal to the paper surface).
 この場合、いわゆるピントが外れた状態となる。変化後出力(図10下段)のコントラストが、変化前出力(図10中段)よりも小さくなっている。換言すれば、変化後出力における図形Fによる出力の低下量が、変化前出力における図形Fによる出力の低下量よりも小さくなっている。一方、変化後出力における立ち下がり及び立ち上がりの位置(画素b1-b8)は、変化前出力から変化していない。 In this case, the so-called out-of-focus state is reached. The contrast of the output after change (lower part of FIG. 10) is smaller than that of the output before change (middle part of FIG. 10). In other words, the amount of decrease in the output due to the figure F in the post-change output is smaller than the amount of decrease in the output due to the figure F in the pre-change output. On the other hand, the falling and rising positions (pixels b1-b8) in the output after the change have not changed from the output before the change.
 本実施形態では、以上述べた事項を利用して、検出領域DUの位置の異常の有無が判定される。すなわち、位置異常判定部7kが、検出装置20(前センサ23A)の出力における図形Fに対応する部分に基づいて、検出領域DUの位置の異常の有無を判定する。例えば、位置異常判定部7kは、図形Fによる出力が、予め設定された正常範囲を超えている場合に、検出領域DUの位置が異常であると判定する。 In the present embodiment, the presence or absence of an abnormality in the position of the detection area DU is determined by using the above-mentioned items. That is, the position abnormality determination unit 7k determines whether or not there is an abnormality in the position of the detection area DU based on the portion corresponding to the figure F in the output of the detection device 20 (front sensor 23A). For example, the position abnormality determination unit 7k determines that the position of the detection area DU is abnormal when the output by the figure F exceeds the preset normal range.
 また、位置異常判定部7kは、検出装置20(前センサ23A)の出力における図形Fに対応する部分に基づいて、前レンズ装置25Aのピントを調整する。例えば、位置異常判定部7kは、図形Fによる出力の低下量が小さくなるように、前レンズ装置25Aのピントを調整する。 Further, the position abnormality determination unit 7k adjusts the focus of the front lens device 25A based on the portion corresponding to the figure F in the output of the detection device 20 (front sensor 23A). For example, the position abnormality determination unit 7k adjusts the focus of the front lens device 25A so that the amount of decrease in the output due to the figure F is small.
 上述した形態と同様にして、検出領域DUの位置の異常の判定が、後センサ23Bの出力に基づいて行われる。すなわち、位置異常判定部7kは、後センサ23Bの出力における図形Fに対応する部分に基づいて、検出領域DUの位置の異常の有無を判定する。その場合、良否判定部7aによるチャンネル分配の変更は、後センサ23Bのチャンネル分配に対して実行される。排除制御部7jによる排除装置30の動作タイミングの変更は、後センサ23Bに関する動作タイミングに対して実行される。位置異常判定部7kによるピント調整は、前レンズ装置25Aを対象として実行される。 Similar to the above-described embodiment, the determination of the abnormality in the position of the detection area DU is performed based on the output of the rear sensor 23B. That is, the position abnormality determination unit 7k determines whether or not there is an abnormality in the position of the detection region DU based on the portion corresponding to the figure F in the output of the rear sensor 23B. In that case, the change of the channel distribution by the pass / fail determination unit 7a is executed for the channel distribution of the rear sensor 23B. The change of the operation timing of the exclusion device 30 by the exclusion control unit 7j is executed with respect to the operation timing of the rear sensor 23B. The focus adjustment by the position abnormality determination unit 7k is executed for the front lens device 25A.
 上述した形態と同様にして、検出領域DLの位置の異常の判定は、透過センサ23Cの出力に基づいて行われる。すなわち、位置異常判定部7kは、透過センサ23Cの出力における図形Fに対応する部分に基づいて、検出領域DLの位置の異常の有無を判定する。
その場合、良否判定部7aによるチャンネル分配の変更は、透過センサ23Cのチャンネル分配に対して実行される。排除制御部7jによる排除装置30の動作タイミングの変更は、透過センサ23Cに関する動作タイミングに対して実行される。位置異常判定部7kによるピント調整は、前レンズ装置25Aを対象として実行される。
Similar to the above-described embodiment, the determination of the abnormality in the position of the detection region DL is performed based on the output of the transmission sensor 23C. That is, the position abnormality determination unit 7k determines whether or not there is an abnormality in the position of the detection region DL based on the portion corresponding to the figure F in the output of the transmission sensor 23C.
In that case, the change of the channel distribution by the pass / fail determination unit 7a is executed for the channel distribution of the transmission sensor 23C. The change of the operation timing of the exclusion device 30 by the exclusion control unit 7j is executed with respect to the operation timing of the transmission sensor 23C. The focus adjustment by the position abnormality determination unit 7k is executed for the front lens device 25A.
〔検出領域異常対応処理〕
 図11のフローチャートを参照しながら、粒状体検査装置で実行される検出領域異常対応処理について説明する。検出領域異常対応処理は、粒状体検査装置の稼働中に繰り返し実行される。検出領域異常対応処理が、粒状体検査装置の起動時に実行されてもよいし、オペレータからの操作入力に応じて実行されてもよい。
[Detection area error handling process]
The detection area abnormality handling process executed by the granular material inspection apparatus will be described with reference to the flowchart of FIG. The detection area abnormality handling process is repeatedly executed while the granular inspection device is in operation. The detection area abnormality handling process may be executed when the granular body inspection device is started, or may be executed in response to an operation input from the operator.
 制御装置7は、各センサ23から出力を取得する(ステップ#101)。 The control device 7 acquires an output from each sensor 23 (step # 101).
 位置異常判定部7kは、ステップ#101で取得された各センサ23の出力に基づいて、検出領域DU、DLの位置の異常の発生の有無を判定する(ステップ#102)。 The position abnormality determination unit 7k determines whether or not an abnormality has occurred in the positions of the detection areas DU and DL based on the output of each sensor 23 acquired in step # 101 (step # 102).
 検出領域DU、DLの位置に異常が発生していると判定されると(ステップ#102:Yes)、位置異常判定部7kは報知装置8を作動させる(ステップ#103)。 When it is determined that an abnormality has occurred in the positions of the detection areas DU and DL (step # 102: Yes), the position abnormality determination unit 7k activates the notification device 8 (step # 103).
 ステップ#103の実行後、良否判定部7aは、センサ23のチャンネル分配を変更する(ステップ#104)。 After executing step # 103, the pass / fail determination unit 7a changes the channel distribution of the sensor 23 (step # 104).
 ステップ#104の実行後、排除制御部7jは、排除装置30の動作タイミングを変更する(ステップ#105)。 After the execution of step # 104, the exclusion control unit 7j changes the operation timing of the exclusion device 30 (step # 105).
 ステップ#105の実行後、位置異常判定部7kは、レンズ装置25のピントを調整する。 After executing step # 105, the position abnormality determination unit 7k adjusts the focus of the lens device 25.
 検出領域DU、DLの位置に異常が発生していないと判定された場合(ステップ#102:No)、及びステップ#105の実行後、検出領域異常対応処理は終了する。 When it is determined that no abnormality has occurred in the positions of the detection areas DU and DL (step # 102: No), and after the execution of step # 105, the detection area abnormality handling process ends.
〔他の実施形態〕
(1)部材51の数量、形状及び位置は、上述の例に限定されない。検査領域IAに、前センサ23A用の部材51、後センサ23B用の部材51、及び透過センサ23C用の部材51が設けられてもよい。検査領域IAに各センサ23用の部材51のうちの一部が設けられてもよい。
[Other embodiments]
(1) The quantity, shape and position of the member 51 are not limited to the above examples. The inspection area IA may be provided with a member 51 for the front sensor 23A, a member 51 for the rear sensor 23B, and a member 51 for the transmission sensor 23C. A part of the member 51 for each sensor 23 may be provided in the inspection area IA.
(2)図形Fの数量、形状及び位置は、上述の例に限定されない。図形Fが、三角形F1及び長方形F2のうちの一方でもよい。図形Fが、多角形であってもよい。図形Fが、白抜きの図形(すなわち、輪郭線のみの図形)を含んでもよい。図形Fが、線分でもよい。 (2) The quantity, shape and position of the figure F are not limited to the above examples. The figure F may be one of a triangle F1 and a rectangle F2. The figure F may be a polygon. The figure F may include a white figure (that is, a figure having only a contour line). The figure F may be a line segment.
(3)前センサ23A用の部材51、及び後センサ23B用の部材51は、図形F以外の領域が不透明の白色であると好ましい。透過センサ23C用の部材51は、図形F以外の領域が透明であると好ましい。 (3) The member 51 for the front sensor 23A and the member 51 for the rear sensor 23B preferably have an opaque white region other than the figure F. The member 51 for the transmission sensor 23C preferably has a transparent region other than the figure F.
(4)センサ23の出力における2つの図形Fの間に対応する部分に基づいて、センサ23の感度及び/または照明装置21の発光強度を制御するように、制御装置7が構成されてもよい。 (4) The control device 7 may be configured to control the sensitivity of the sensor 23 and / or the emission intensity of the lighting device 21 based on the corresponding portion between the two figures F in the output of the sensor 23. ..
(5)位置異常判定部7kが、検出領域DU、DLの位置変動量(送出方向変動量、並列方向変動量)を算出し、位置変動量が報知閾値を超える場合に報知装置8を作動させるように構成されてもよい。例えば、報知閾値は、タイミング変更及びチャンネル分配変更を行うことにより不良品排除が適切に実行可能な限度の変動量として設定される。 (5) The position abnormality determination unit 7k calculates the position fluctuation amount (sending direction fluctuation amount, parallel direction fluctuation amount) of the detection areas DU and DL, and operates the notification device 8 when the position fluctuation amount exceeds the notification threshold value. It may be configured as follows. For example, the notification threshold value is set as a fluctuation amount of a limit in which defective product exclusion can be appropriately executed by changing the timing and channel distribution.
(6)制御装置7が、検出領域DU、DLの位置が異常であると判定した時に、報知装置8の作動、チャンネル分配の変更、排除装置30の動作タイミングの変更、及びレンズ装置25のピント調整のうち少なくとも1つを実行するよう、構成されてもよい。 (6) When the control device 7 determines that the positions of the detection areas DU and DL are abnormal, the notification device 8 is operated, the channel distribution is changed, the operation timing of the exclusion device 30 is changed, and the lens device 25 is focused. It may be configured to perform at least one of the adjustments.
(7)本発明は、粒状体を検査する装置(色彩選別器、光学選別器等)に適用可能である。 (7) The present invention can be applied to an apparatus for inspecting granules (color sorter, optical sorter, etc.).
〔第2実施形態〕
 第2実施形態では、第1実施形態と異なる構成を中心に説明する。第1実施形態と共通する構成については、ここで省略する。
[Second Embodiment]
In the second embodiment, a configuration different from that of the first embodiment will be mainly described. The configuration common to the first embodiment will be omitted here.
 本実施形態では、図12に示されているように、検査領域IAに、板状の部材51が配置されていない。前センサ23Aの出力の一例が図12の下部に示されている。図示例では、前センサ23Aの出力において2箇所で出力の低下が見られる。これは、経路R2を落下する粒状体G1、及び経路R4を落下する粒状体G2が検出領域DUに位置し、粒状体G1及び粒状体G2を反射した光が前センサ23Aに入射していることに起因する。すなわち、粒状体を反射して前センサ23Aに入射する光の強度は、背景部材21Aからの光の強度よりも小さい。このように、検出領域DU(及び検出領域DL)を粒状体が通過すると、センサ23の出力に変化が生じる。
〔動作パラメータの変更〕
 本実施形態では、2つの検査ユニット4の選別感度の差が小さくなるように、変更部7hにより検査ユニット4の動作パラメータが自動的に変更される。変更部7hによる動作パラメータの変更は、検査ユニット4の作動中(検査の実行中)に行われてもよいし、検査ユニット4の停止中(検査の停止中)に行われてもよい。
In this embodiment, as shown in FIG. 12, the plate-shaped member 51 is not arranged in the inspection area IA. An example of the output of the front sensor 23A is shown at the bottom of FIG. In the illustrated example, the output of the front sensor 23A shows a decrease in output at two points. This is because the granular body G1 falling on the path R2 and the granular body G2 falling on the path R4 are located in the detection region DU, and the light reflected from the granular body G1 and the granular body G2 is incident on the front sensor 23A. caused by. That is, the intensity of the light that reflects the granules and is incident on the front sensor 23A is smaller than the intensity of the light from the background member 21A. As described above, when the granules pass through the detection region DU (and the detection region DL), the output of the sensor 23 changes.
[Change of operating parameters]
In the present embodiment, the operation parameters of the inspection unit 4 are automatically changed by the changing unit 7h so that the difference in the sorting sensitivity between the two inspection units 4 becomes small. The operation parameter may be changed by the changing unit 7h while the inspection unit 4 is operating (inspection is being executed) or while the inspection unit 4 is stopped (inspection is being stopped).
 以下、左検査ユニット4Lを基準として右検査ユニット4Rの動作パラメータを変更する例を説明する。すなわち、左検査ユニット4Lが、特許請求の範囲に記載された「複数の検査ユニットのうちの1つである基準ユニット」である。右検査ユニット4Rが、特許請求の範囲に記載された「その余の検査ユニットである被調整ユニット」である。逆の形態、すなわち右検査ユニット4Rが基準ユニットであり左検査ユニット4Lが被調整ユニットである形態も可能である。オペレータからの操作入力に基づいて、複数の検査ユニット4から基準ユニットが決定されてもよい。 Hereinafter, an example of changing the operating parameters of the right inspection unit 4R with the left inspection unit 4L as a reference will be described. That is, the left inspection unit 4L is the "reference unit which is one of a plurality of inspection units" described in the claims. The right inspection unit 4R is the "adjusted unit which is the remaining inspection unit" described in the claims. A reverse form, that is, a form in which the right inspection unit 4R is a reference unit and the left inspection unit 4L is an adjusted unit is also possible. The reference unit may be determined from the plurality of inspection units 4 based on the operation input from the operator.
〔選別感度〕
 選別感度算出部7gが、良否判定部7aによる判定結果に基づいて、複数の検査ユニット4のそれぞれについて、単位時間あたりの不良品の検出数である選別感度を算出する。
例えば、選別感度算出部7gは、良否判定部7aが不良品を検出する都度、時刻、検査ユニット4の種別、センサ23の種別、不良の種別を不良品データとして記憶部7fに記憶させる。例えば、選別感度算出部7gは、「時刻15時7分24秒、右検査ユニット4R、前センサ23A、下側第1不良」と記憶部7fに記憶させる。選別感度算出部7gは、記憶部7fに記憶された不良品データを参照して、選別感度を算出する。
[Selection sensitivity]
The sorting sensitivity calculation unit 7g calculates the sorting sensitivity, which is the number of defective products detected per unit time, for each of the plurality of inspection units 4 based on the determination result by the quality determination unit 7a.
For example, the sorting sensitivity calculation unit 7g stores the time, the type of the inspection unit 4, the type of the sensor 23, and the type of defect in the storage unit 7f as defective product data each time the quality determination unit 7a detects a defective product. For example, the sorting sensitivity calculation unit 7g stores the storage unit 7f as "time 15:07:24, right inspection unit 4R, front sensor 23A, lower first defect". The sorting sensitivity calculation unit 7g calculates the sorting sensitivity with reference to the defective product data stored in the storage unit 7f.
 選別感度算出部7gが選別感度を算出するとき基準となる「単位時間」は、予め決定されて記憶部7fに記憶される。単位時間が、オペレータからの操作入力により変更されてもよい。選別感度算出部7gが、複数の単位時間(例えば、30秒と1時間)について選別感度を検出してもよい。 The "unit time" as a reference when the sorting sensitivity calculation unit 7g calculates the sorting sensitivity is determined in advance and stored in the storage unit 7f. The unit time may be changed by an operation input from the operator. The sorting sensitivity calculation unit 7g may detect the sorting sensitivity for a plurality of unit times (for example, 30 seconds and 1 hour).
 選別感度算出部7gが算出可能な選別感度としては、以下が6つが挙げられる。 The following 6 are listed as the sorting sensitivity that can be calculated by the sorting sensitivity calculation unit 7g.
 左検査ユニット4Lの前センサ23Aの選別感度(以下「左前選別感度」と称する。) Sorting sensitivity of the front sensor 23A of the left inspection unit 4L (hereinafter referred to as "left front sorting sensitivity")
 左検査ユニット4Lの後センサ23Bの選別感度(以下「左後選別感度」と称する。) Sorting sensitivity of the rear sensor 23B of the left inspection unit 4L (hereinafter referred to as "left rear sorting sensitivity")
 左検査ユニット4Lの透過センサ23Cの選別感度(以下「左透過選別感度」と称する。) Sorting sensitivity of the transmission sensor 23C of the left inspection unit 4L (hereinafter referred to as "left transmission sorting sensitivity")
 左検査ユニット4Lの選別感度の平均(左前選別感度、左後選別感度、及び左透過選別感度の平均、以下「左平均選別感度」と称する。) Average of the sorting sensitivity of the left inspection unit 4L (the average of the left front sorting sensitivity, the left rear sorting sensitivity, and the left transmission sorting sensitivity, hereinafter referred to as "left average sorting sensitivity").
 右検査ユニット4Rの前センサ23Aの選別感度(以下「右前選別感度」と称する。) Sorting sensitivity of the front sensor 23A of the right inspection unit 4R (hereinafter referred to as "right front sorting sensitivity")
 右検査ユニット4Rの後センサ23Bの選別感度(以下「右後選別感度」と称する。) Sorting sensitivity of the rear sensor 23B of the right inspection unit 4R (hereinafter referred to as "right rear sorting sensitivity")
 右検査ユニット4Rの透過センサ23Cの選別感度(以下「右透過選別感度」と称する。) Sorting sensitivity of the transmission sensor 23C of the right inspection unit 4R (hereinafter referred to as "right transmission sorting sensitivity")
 右検査ユニット4Rの選別感度の平均(右前選別感度、右後選別感度、及び右透過選別感度の平均、以下「右平均選別感度」と称する。) Average of the sorting sensitivity of the right inspection unit 4R (the average of the right front sorting sensitivity, the right rear sorting sensitivity, and the right transmission sorting sensitivity, hereinafter referred to as "right average sorting sensitivity").
 なお、選別感度算出部7gが、不良の種別(下側第1不良(例えば「カメムシ被害」)、下側第2不良(例えば「ヤケ」))ごとに選別感度を算出してもよい。 Note that the sorting sensitivity calculation unit 7g may calculate the sorting sensitivity for each type of defect (lower first defect (for example, "stink bug damage"), lower second defect (for example, "burnt")).
〔動作パラメータ〕
 変更部7hによる変更の対象となる動作パラメータとしては、以下が挙げられる。以下の動作パラメータは、記憶部7fに記憶されている。
[Operation parameters]
The following are examples of operating parameters to be changed by the changing unit 7h. The following operation parameters are stored in the storage unit 7f.
 送出装置10の設定送出量(振動フィーダ11の動作強度、動作時間、動作間隔) Setting transmission amount of the transmission device 10 (operation strength, operation time, operation interval of vibration feeder 11)
 各カメラ22の選別閾値(下側第1閾値SL1、下側第1数量閾値、下側第2閾値SL2、下側第2数量閾値、上側第1閾値SU1、上側第1数量閾値、上側第2閾値SU2、上側第2数量閾値) Sorting thresholds for each camera 22 (lower first threshold SL1, lower first quantity threshold, lower second threshold SL2, lower second quantity threshold, upper first threshold SU1, upper first quantity threshold, upper second) Threshold SU2, upper second quantity threshold)
 照明装置21の発光強度(背景部材21A、121B、121Cの夫々の発光装置、照明ユニット21D、121E、121F、121G) Light emission intensity of lighting device 21 (light emitting devices of background members 21A, 121B, 121C, lighting units 21D, 121E, 121F, 121G)
 各センサ23の感度(画素からの出力電圧の倍率、量子化の際の倍率等) Sensitivity of each sensor 23 (magnification of output voltage from pixel, magnification at the time of quantization, etc.)
 ここで、制御装置7は、動作パラメータとしての設定送出量に基づいて、送出装置10(振動フィーダ11)を制御する。換言すれば、送出装置10は、設定送出量に基づいて粒状体の送出量を制御する。 Here, the control device 7 controls the transmission device 10 (vibration feeder 11) based on the set transmission amount as the operation parameter. In other words, the sending device 10 controls the sending amount of the granular material based on the set sending amount.
 良否判定部7aは、動作パラメータとしての選別閾値に基づいて、粒状体の良否の判定を行う。換言すれば、検出装置20は、選別閾値に基づいて粒状体を不良品として検出する。 The quality determination unit 7a determines the quality of the granular material based on the selection threshold value as an operation parameter. In other words, the detection device 20 detects the granular material as a defective product based on the selection threshold value.
 制御装置7は、動作パラメータとしての発光強度に基づいて、照明装置21を制御する。換言すれば、照明装置21は、発光強度に基づいて検査領域IAを照明する。 The control device 7 controls the lighting device 21 based on the emission intensity as an operation parameter. In other words, the illuminating device 21 illuminates the inspection area IA based on the emission intensity.
 制御装置7は、動作パラメータとしての各センサ23の感度に基づいて、各センサ23からの出力データについて処理を施す。換言すれば、各センサ23の感度は、制御装置7により制御される。 The control device 7 processes the output data from each sensor 23 based on the sensitivity of each sensor 23 as an operation parameter. In other words, the sensitivity of each sensor 23 is controlled by the control device 7.
〔動作パラメータの第1変更態様:設定送出量〕
 変更部7hは、右検査ユニット4Rの選別感度と左検査ユニット4Lの選別感度の差が小さくなるように、送出装置10の設定送出量を変更する。具体的には、変更部7hは、右検査ユニット4Rにおける選別感度が左検査ユニット4Lにおける選別感度よりも小さい場合に、右検査ユニット4Rにおける設定送出量を増加させる。設定送出量が増加すると、送出装置10から送出される粒状体が増加する。検査の母数が増加することにより、不良品と判定される粒状体が増加し、右検査ユニット4Rにおける選別感度が大きくなる。従って、選別感度の差が小さくなる。
[First change mode of operation parameter: set transmission amount]
The changing unit 7h changes the set transmission amount of the transmission device 10 so that the difference between the selection sensitivity of the right inspection unit 4R and the selection sensitivity of the left inspection unit 4L becomes small. Specifically, the changing unit 7h increases the set transmission amount in the right inspection unit 4R when the sorting sensitivity in the right inspection unit 4R is smaller than the sorting sensitivity in the left inspection unit 4L. As the set transmission amount increases, the amount of granules transmitted from the transmission device 10 increases. As the parameter of inspection increases, the number of granules determined to be defective increases, and the sorting sensitivity in the right inspection unit 4R increases. Therefore, the difference in sorting sensitivity becomes small.
 反対に、変更部7hは、右検査ユニット4Rにおける選別感度が左検査ユニット4Lにおける選別感度よりも大きい場合に、右検査ユニット4Rにおける設定送出量を減少させる。設定送出量が減少すると、送出装置10から送出される粒状体が減少する。検査の母数が減少することにより、不良品と判定される粒状体が減少し、右検査ユニット4Rにおける選別感度が小さくなる。従って、選別感度の差が小さくなる。 On the contrary, the changing unit 7h reduces the set transmission amount in the right inspection unit 4R when the sorting sensitivity in the right inspection unit 4R is larger than the sorting sensitivity in the left inspection unit 4L. When the set transmission amount decreases, the amount of granules transmitted from the transmission device 10 decreases. By reducing the parameter of inspection, the number of granules determined to be defective is reduced, and the sorting sensitivity in the right inspection unit 4R is reduced. Therefore, the difference in sorting sensitivity becomes small.
 第1変更態様において変更部7hが比較に用いる選別感度は、例えば以下の組み合わせが可能である。 The sorting sensitivity used for comparison by the changing unit 7h in the first changing mode can be, for example, the following combinations.
 左平均選別感度と右平均選別感度 Left average sorting sensitivity and right average sorting sensitivity
 左前選別感度と右前選別感度 Left front sorting sensitivity and right front sorting sensitivity
 左後選別感度と右後選別感度 Left rear sorting sensitivity and right rear sorting sensitivity
 左透過選別感度と右透過選別感度 Left transmission sorting sensitivity and right transmission sorting sensitivity
〔動作パラメータの第2変更態様:選別閾値〕
 変更部7hは、右検査ユニット4Rの選別感度と左検査ユニット4Lの選別感度の差が小さくなるように、各カメラ22の選別閾値を変更する。具体的には、変更部7hは、右検査ユニット4Rにおける選別感度が左検査ユニット4Lにおける選別感度よりも小さい場合に、右検査ユニット4Rにおける選別閾値を、選別が厳しくなる方向に変更する。選別閾値が、選別が厳しくなる方向に変更されると、不良品と判定される粒状体が増加し、右検査ユニット4Rにおける選別感度が大きくなる。従って、選別感度の差が小さくなる。
[Second change mode of operation parameter: selection threshold value]
The changing unit 7h changes the sorting threshold value of each camera 22 so that the difference between the sorting sensitivity of the right inspection unit 4R and the sorting sensitivity of the left inspection unit 4L becomes small. Specifically, when the sorting sensitivity in the right inspection unit 4R is smaller than the sorting sensitivity in the left inspection unit 4L, the changing unit 7h changes the sorting threshold value in the right inspection unit 4R in a direction in which sorting becomes stricter. When the sorting threshold is changed in the direction of stricter sorting, the number of granules determined to be defective increases, and the sorting sensitivity in the right inspection unit 4R increases. Therefore, the difference in sorting sensitivity becomes small.
 選別閾値の、選別が厳しくなる方向への変更とは、次の通りである。
  下側第1閾値SL1または下側第2閾値SL2:高く
  下側第1数量閾値または下側第2数量閾値:小さく
  上側第1閾値SU1または上側第2閾値SU2:低く
  上側第1数量閾値または上側第2数量閾値:小さく
The changes in the selection threshold in the direction of stricter selection are as follows.
Lower 1st threshold SL1 or lower 2nd threshold SL2: high Lower 1st quantity threshold or lower 2nd quantity threshold: small Upper 1st threshold SU1 or upper 2nd threshold SU2: low Upper 1st quantity threshold or upper Second quantity threshold: small
 すなわち、「下側」の閾値に関して、検出装置20は、選別閾値に基づき、センサ23が検出する光の強度が選別閾値よりも低い場合に粒状体を不良品として検出する。変更部7hは、右検査ユニット4Rにおける選別感度が左検査ユニット4Lにおける選別感度よりも小さい場合に、右検査ユニット4Rにおける選別閾値を高くする。 That is, with respect to the "lower" threshold value, the detection device 20 detects the granular material as a defective product when the light intensity detected by the sensor 23 is lower than the selection threshold value based on the selection threshold value. The changing unit 7h raises the sorting threshold value in the right inspection unit 4R when the sorting sensitivity in the right inspection unit 4R is smaller than the sorting sensitivity in the left inspection unit 4L.
 また、「上側」の閾値に関して、検出装置20は、選別閾値に基づき、センサ23が検出する光の強度が選別閾値よりも高い場合に粒状体を不良品として検出する。変更部7hは、右検査ユニット4Rにおける選別感度が左検査ユニット4Lにおける選別感度よりも小さい場合に、右検査ユニット4Rにおける選別閾値を低くする。 Further, regarding the "upper" threshold value, the detection device 20 detects the granular material as a defective product when the light intensity detected by the sensor 23 is higher than the selection threshold value based on the selection threshold value. The changing unit 7h lowers the sorting threshold value in the right inspection unit 4R when the sorting sensitivity in the right inspection unit 4R is smaller than the sorting sensitivity in the left inspection unit 4L.
 反対に、変更部7hは、右検査ユニット4Rにおける選別感度が左検査ユニット4Lにおける選別感度よりも大きい場合に、右検査ユニット4Rにおける選別閾値を、選別が緩くなる方向に変更する。選別閾値が、選別が緩くなる方向に変更されると、不良品と判定される粒状体が減少し、右検査ユニット4Rにおける選別感度が小さくなる。従って、選別感度の差が小さくなる。 On the contrary, when the sorting sensitivity in the right inspection unit 4R is larger than the sorting sensitivity in the left inspection unit 4L, the changing unit 7h changes the sorting threshold value in the right inspection unit 4R in a direction in which the sorting becomes loose. When the sorting threshold is changed in the direction of loosening the sorting, the number of granules determined to be defective is reduced, and the sorting sensitivity in the right inspection unit 4R is reduced. Therefore, the difference in sorting sensitivity becomes small.
 選別閾値の、選別が緩くなる方向への変更とは、次の通りである。
  下側第1閾値SL1または下側第2閾値SL2:低く
  下側第1数量閾値または下側第2数量閾値:大きく
  上側第1閾値SU1または上側第2閾値SU2:高く
  上側第1数量閾値または上側第2数量閾値:大きく
The change of the sorting threshold value in the direction of loosening the sorting is as follows.
Lower First Threshold SL1 or Lower Second Threshold SL2: Low Lower First Quantity Threshold or Lower Second Quantum Threshold: Large Upper First Threshold SU1 or Upper Second Threshold SU2: High Upper First Quantity Threshold or Upper Second quantity threshold: large
 すなわち、「下側」の閾値に関して、検出装置20は、選別閾値に基づき、センサ23が検出する光の強度が選別閾値よりも低い場合に粒状体を不良品として検出する。変更部7hは、右検査ユニット4Rにおける選別感度が左検査ユニット4Lにおける選別感度よりも大きい場合に、右検査ユニット4Rにおける選別閾値を低くする。 That is, with respect to the "lower" threshold value, the detection device 20 detects the granular material as a defective product when the light intensity detected by the sensor 23 is lower than the selection threshold value based on the selection threshold value. The changing unit 7h lowers the sorting threshold value in the right inspection unit 4R when the sorting sensitivity in the right inspection unit 4R is larger than the sorting sensitivity in the left inspection unit 4L.
 また、「上側」の閾値に関して、検出装置20は、選別閾値に基づき、センサ23が検出する光の強度が選別閾値よりも高い場合に粒状体を不良品として検出する。変更部7hは、右検査ユニット4Rにおける選別感度が左検査ユニット4Lにおける選別感度よりも大きい場合に、右検査ユニット4Rにおける選別閾値を高くする。 Further, regarding the "upper" threshold value, the detection device 20 detects the granular material as a defective product when the light intensity detected by the sensor 23 is higher than the selection threshold value based on the selection threshold value. The changing unit 7h raises the sorting threshold value in the right inspection unit 4R when the sorting sensitivity in the right inspection unit 4R is larger than the sorting sensitivity in the left inspection unit 4L.
 第2変更態様において変更部7hが比較に用いる選別感度は、例えば以下の組み合わせが可能である。 The sorting sensitivity used for comparison by the changing unit 7h in the second changing mode can be, for example, the following combinations.
 左平均選別感度と右平均選別感度:この場合、全てのセンサ23に係る選別閾値が変更されると好ましい。 Left average selection sensitivity and right average selection sensitivity: In this case, it is preferable that the selection threshold values related to all the sensors 23 are changed.
 左前選別感度と右前選別感度:この場合、前センサ23Aに係る選別閾値が変更されると好ましい。 Left front sorting sensitivity and right front sorting sensitivity: In this case, it is preferable that the sorting threshold value related to the front sensor 23A is changed.
 左後選別感度と右後選別感度:この場合、後センサ23Bに係る選別閾値が変更されると好ましい。 Left rear sorting sensitivity and right rear sorting sensitivity: In this case, it is preferable that the sorting threshold value related to the rear sensor 23B is changed.
 左透過選別感度と右透過選別感度:この場合、透過センサ23Cに係る選別閾値が変更されると好ましい。 Left transmission sorting sensitivity and right transmission sorting sensitivity: In this case, it is preferable that the sorting threshold value related to the transmission sensor 23C is changed.
 不良の種別ごとに算出された選別感度が、変更部7hにより比較に用いられてもよい。
この場合、不良の種別(例えば、下側第1不良)に対応する選別閾値(例えば、下側第1閾値SL1及び/または下側第1数量閾値)が変更されると好ましい。
The sorting sensitivity calculated for each type of defect may be used for comparison by the changing unit 7h.
In this case, it is preferable that the selection threshold value (for example, the lower first threshold SL1 and / or the lower first quantity threshold) corresponding to the type of defect (for example, the lower first defect) is changed.
〔動作パラメータの第3変更態様:発光強度〕
 変更部7hは、右検査ユニット4Rの選別感度と左検査ユニット4Lの選別感度の差が小さくなるように、照明装置21の発光強度を変更する。具体的には、変更部7hは、右検査ユニット4Rにおける選別感度が左検査ユニット4Lにおける選別感度よりも小さい場合に、右検査ユニット4Rにおける発光強度を小さくする。発光強度が小さくなると、検査領域IAが暗くなり、不良品と判定される粒状体が増加し、右検査ユニット4Rにおける選別感度が大きくなる。従って、選別感度の差が小さくなる。
[Third modification of operating parameters: emission intensity]
The changing unit 7h changes the emission intensity of the lighting device 21 so that the difference between the sorting sensitivity of the right inspection unit 4R and the sorting sensitivity of the left inspection unit 4L becomes small. Specifically, the changing unit 7h reduces the emission intensity in the right inspection unit 4R when the sorting sensitivity in the right inspection unit 4R is smaller than the sorting sensitivity in the left inspection unit 4L. When the emission intensity becomes small, the inspection region IA becomes dark, the number of granules determined to be defective products increases, and the sorting sensitivity in the right inspection unit 4R increases. Therefore, the difference in sorting sensitivity becomes small.
 反対に、変更部7hは、右検査ユニット4Rにおける選別感度が左検査ユニット4Lにおける選別感度よりも大きい場合に、右検査ユニット4Rにおける発光強度を大きくする。発光強度が大きくなると、検査領域IAが明るくなり、不良品と判定される粒状体が減少し、右検査ユニット4Rにおける選別感度が小さくなる。従って、選別感度の差が小さくなる。 On the contrary, the change unit 7h increases the emission intensity in the right inspection unit 4R when the sorting sensitivity in the right inspection unit 4R is larger than the sorting sensitivity in the left inspection unit 4L. When the emission intensity is increased, the inspection region IA becomes brighter, the number of granules determined to be defective is reduced, and the sorting sensitivity in the right inspection unit 4R is reduced. Therefore, the difference in sorting sensitivity becomes small.
 第3変更態様において変更部7hが比較に用いる選別感度は、例えば以下の組み合わせが可能である。 The sorting sensitivity used for comparison by the changing unit 7h in the third changing mode can be, for example, the following combinations.
 左平均選別感度と右平均選別感度:この場合、照明装置21全体(全ての背景部材に係る発光装置、全ての照明ユニット)について発光強度が変更されると好ましい。 Left average sorting sensitivity and right average sorting sensitivity: In this case, it is preferable that the emission intensity of the entire lighting device 21 (light emitting device related to all background members, all lighting units) is changed.
 左前選別感度と右前選別感度:この場合、前センサ23Aに関係する照明装置21(背景部材21Aに係る発光装置、照明ユニット21D、121E)について発光強度が変更されると好ましい。 Left front sorting sensitivity and right front sorting sensitivity: In this case, it is preferable that the light emitting intensity of the lighting device 21 (light emitting device related to the background member 21A, lighting units 21D, 121E) related to the front sensor 23A is changed.
 左後選別感度と右後選別感度:この場合、後センサ23Bに関係する照明装置21(背景部材21Bに係る発光装置、照明ユニット21F、121G)について発光強度が変更されると好ましい。 Left rear sorting sensitivity and right rear sorting sensitivity: In this case, it is preferable that the emission intensity of the lighting device 21 (light emitting device related to the background member 21B, lighting units 21F, 121G) related to the rear sensor 23B is changed.
 左透過選別感度と右透過選別感度:この場合、透過センサ23Cに関係する照明装置21(背景部材21Cに係る発光装置、照明ユニット21D、121E)について発光強度が変更されると好ましい。 Left transmission sorting sensitivity and right transmission sorting sensitivity: In this case, it is preferable that the emission intensity of the lighting device 21 (light emitting device related to the background member 21C, lighting units 21D, 121E) related to the transmission sensor 23C is changed.
〔動作パラメータの第3変更態様:発光強度〕
 変更部7hは、右検査ユニット4Rの選別感度と左検査ユニット4Lの選別感度の差が小さくなるように、センサ23の感度を変更する。具体的には、変更部7hは、右検査ユニット4Rにおける選別感度が左検査ユニット4Lにおける選別感度よりも小さい場合に、右検査ユニット4Rにおけるセンサ23の感度を高くする。センサ23の感度が高く(敏感に)なると、不良品と判定される粒状体が増加し、右検査ユニット4Rにおける選別感度が大きくなる。従って、選別感度の差が小さくなる。
[Third modification of operating parameters: emission intensity]
The changing unit 7h changes the sensitivity of the sensor 23 so that the difference between the sorting sensitivity of the right inspection unit 4R and the sorting sensitivity of the left inspection unit 4L becomes small. Specifically, the changing unit 7h increases the sensitivity of the sensor 23 in the right inspection unit 4R when the sorting sensitivity in the right inspection unit 4R is smaller than the sorting sensitivity in the left inspection unit 4L. When the sensitivity of the sensor 23 becomes high (sensitive), the number of granules determined to be defective increases, and the sorting sensitivity in the right inspection unit 4R increases. Therefore, the difference in sorting sensitivity becomes small.
 反対に、変更部7hは、右検査ユニット4Rにおける選別感度が左検査ユニット4Lにおける選別感度よりも大きい場合に、右検査ユニット4Rにおけるセンサ23の感度を低くする。センサ23の感度が低く(鈍感に)なると、不良品と判定される粒状体が減少し、右検査ユニット4Rにおける選別感度が小さくなる。従って、選別感度の差が小さくなる。 On the contrary, the changing unit 7h lowers the sensitivity of the sensor 23 in the right inspection unit 4R when the sorting sensitivity in the right inspection unit 4R is larger than the sorting sensitivity in the left inspection unit 4L. When the sensitivity of the sensor 23 becomes low (insensitive), the number of granules determined to be defective is reduced, and the sorting sensitivity in the right inspection unit 4R is reduced. Therefore, the difference in sorting sensitivity becomes small.
 第4変更態様において変更部7hが比較に用いる選別感度は、例えば以下の組み合わせが可能である。 The sorting sensitivity used for comparison by the changing unit 7h in the fourth changing mode can be, for example, the following combinations.
 左平均選別感度と右平均選別感度:この場合、全てのセンサ23について感度が変更されると好ましい。 Left average sorting sensitivity and right average sorting sensitivity: In this case, it is preferable that the sensitivities of all the sensors 23 are changed.
 左前選別感度と右前選別感度:この場合、前センサ23Aについて感度が変更されると好ましい。 Left front sorting sensitivity and right front sorting sensitivity: In this case, it is preferable that the sensitivity of the front sensor 23A is changed.
 左後選別感度と右後選別感度:この場合、後センサ23Bについて感度が変更されると好ましい。 Left rear sorting sensitivity and right rear sorting sensitivity: In this case, it is preferable that the sensitivity of the rear sensor 23B is changed.
 左透過選別感度と右透過選別感度:この場合、透過センサ23Cについて感度が変更されると好ましい。 Left transmission sorting sensitivity and right transmission sorting sensitivity: In this case, it is preferable that the sensitivity of the transmission sensor 23C is changed.
〔動作パラメータ変更処理〕
 図13のフローチャートを参照しながら、粒状体検査装置で実行される動作パラメータ変更処理について説明する。動作パラメータ変更処理は、粒状体検査装置の稼働中に繰り返し実行される。動作パラメータ変更処理が、設定された所定の時間間隔で実行されてもよいし、オペレータからの操作入力に応じて実行されてもよい。
[Operation parameter change processing]
The operation parameter change process executed by the granular material inspection apparatus will be described with reference to the flowchart of FIG. The operation parameter change process is repeatedly executed during the operation of the granular material inspection device. The operation parameter change process may be executed at a set predetermined time interval, or may be executed in response to an operation input from the operator.
 選別感度算出部7gは、基準ユニット(左検査ユニット4L、以下同じ)及び被調整ユニット(右検査ユニット4R、以下同じ)の選別感度を算出する(ステップ#201)。 The sorting sensitivity calculation unit 7g calculates the sorting sensitivity of the reference unit (left inspection unit 4L, the same applies hereinafter) and the adjusted unit (right inspection unit 4R, the same applies hereinafter) (step # 201).
 変更部7hは、ステップ#201の算出結果に基づいて、被調整ユニットの選別感度と基準ユニットの選別感度との差を算出し、差が所定値以下であるか否かを判定する(ステップ#202)。差が所定値以下である場合(ステップ#202:Yes)、動作パラメータ変更処理は終了する。 The changing unit 7h calculates the difference between the sorting sensitivity of the adjusted unit and the sorting sensitivity of the reference unit based on the calculation result of step # 201, and determines whether or not the difference is equal to or less than a predetermined value (step #). 202). When the difference is equal to or less than a predetermined value (step # 202: Yes), the operation parameter change process ends.
 選別感度の差が所定値以下でない場合(ステップ#202:No)、変更部7hは、被調整ユニットの選別感度が基準ユニットの選別感度よりも小さいか否かを判定する(ステップ#203)。 When the difference in sorting sensitivity is not less than or equal to a predetermined value (step # 202: No), the changing unit 7h determines whether or not the sorting sensitivity of the unit to be adjusted is smaller than the sorting sensitivity of the reference unit (step # 203).
 被調整ユニットの選別感度が基準ユニットの選別感度よりも小さい場合(ステップ#203:Yes)、変更部7hは、被調整ユニットの設定送出量を減少させる(ステップ#204)。 When the sorting sensitivity of the adjusted unit is smaller than the sorting sensitivity of the reference unit (step # 203: Yes), the changing unit 7h reduces the set transmission amount of the adjusted unit (step # 204).
 被調整ユニットの選別感度が基準ユニットの選別感度よりも小さくない場合(ステップ#203:No)、変更部7hは、被調整ユニットの設定送出量を増加させる(ステップ#205)。 When the sorting sensitivity of the adjusted unit is not smaller than the sorting sensitivity of the reference unit (step # 203: No), the changing unit 7h increases the set transmission amount of the adjusted unit (step # 205).
 ステップ#204またはステップ#205の実行後、選別感度算出部7gは、再度、基準ユニット及び被調整ユニットの選別感度を算出する(ステップ#206) After executing step # 204 or step # 205, the sorting sensitivity calculation unit 7g again calculates the sorting sensitivity of the reference unit and the adjusted unit (step # 206).
 変更部7hは、ステップ#206の算出結果に基づいて、被調整ユニットの選別感度と基準ユニットの選別感度との差を算出し、差が所定値以下であるか否かを判定する(ステップ#207)。差が所定値以下である場合(ステップ#207:Yes)、動作パラメータ変更処理は終了する。 The changing unit 7h calculates the difference between the sorting sensitivity of the adjusted unit and the sorting sensitivity of the reference unit based on the calculation result of step # 206, and determines whether or not the difference is equal to or less than a predetermined value (step #). 207). When the difference is not more than a predetermined value (step # 207: Yes), the operation parameter change process ends.
 選別感度の差が所定値以下でない場合(ステップ#207:No)、変更部7hは、被調整ユニットの選別感度が基準ユニットの選別感度よりも小さいか否かを判定する(ステップ#208)。 When the difference in sorting sensitivity is not less than or equal to a predetermined value (step # 207: No), the changing unit 7h determines whether or not the sorting sensitivity of the unit to be adjusted is smaller than the sorting sensitivity of the reference unit (step # 208).
 被調整ユニットの選別感度が基準ユニットの選別感度よりも小さい場合(ステップ#203:Yes)、変更部7hは、被調整ユニットの選別閾値を高くし(ステップ#209)、照明装置21の照明を弱くし(ステップ#210)、センサ23の感度を低くする(ステップ#211)。 When the sorting sensitivity of the adjusted unit is smaller than the sorting sensitivity of the reference unit (step # 203: Yes), the changing unit 7h raises the sorting threshold value of the adjusted unit (step # 209) to illuminate the lighting device 21. It is weakened (step # 210) and the sensitivity of the sensor 23 is lowered (step # 211).
 被調整ユニットの選別感度が基準ユニットの選別感度よりも小さくない場合(ステップ#203:No)、変更部7hは、被調整ユニットの選別閾値を低くし(ステップ#212)、照明装置21の照明を強くし(ステップ#213)、センサ23の感度を高くする(ステップ#214)。 When the sorting sensitivity of the adjusted unit is not smaller than the sorting sensitivity of the reference unit (step # 203: No), the changing unit 7h lowers the sorting threshold value of the adjusted unit (step # 212) to illuminate the lighting device 21. (Step # 213) to increase the sensitivity of the sensor 23 (step # 214).
 ステップ#211またはステップ#214の実行後、再びステップ#201が実行される。すなわち、動作パラメータ変更処理は、被調整ユニットの選別感度と基準ユニットの選別感度との差が所定値以下(ステップ#202:Yes、またはステップ#207:Yes)となるまで実行される。 After executing step # 211 or step # 214, step # 201 is executed again. That is, the operation parameter change process is executed until the difference between the selection sensitivity of the adjusted unit and the selection sensitivity of the reference unit becomes equal to or less than a predetermined value (step # 202: Yes or step # 207: Yes).
 以上述べたとおり、本実施形態では、変更部7hは、検出装置20の動作パラメータの変更(ステップ#209-214)よりも送出装置10の動作パラメータの変更(ステップ#204,205)を優先して行う。 As described above, in the present embodiment, the change unit 7h gives priority to the change of the operation parameter of the transmission device 10 (steps # 204, 205) over the change of the operation parameter of the detection device 20 (step # 209-214). Do it.
〔感度設定処理〕
 図14のフローチャートを参照しながら、粒状体検査装置で実行される感度設定処理について説明する。感度設定処理は、オペレータからの操作入力により開始される。
[Sensitivity setting process]
The sensitivity setting process executed by the granular material inspection apparatus will be described with reference to the flowchart of FIG. The sensitivity setting process is started by an operation input from the operator.
 制御装置7は、調整する感度の選択入力をオペレータに促す画面を操作表示装置6に表示させる(ステップ#301)。画面には、調整する感度の選択入力の対象として、「カメムシ被害」、「ヤケ」、「シラタ/乳白/もみ」、及び「青米」の文字列が付されたボタンが表示される。 The control device 7 causes the operation display device 6 to display a screen prompting the operator to select and input the sensitivity to be adjusted (step # 301). On the screen, buttons with the character strings of "stink bug damage", "burnt", "shirata / milky white / fir", and "blue rice" are displayed as targets for selecting and inputting the sensitivity to be adjusted.
 制御装置7は、オペレータからの操作表示装置6への操作入力を待機する(ステップ#302)。制御装置7は、選択入力があるまで待機する(ステップ#302:No)。 The control device 7 waits for an operation input from the operator to the operation display device 6 (step # 302). The control device 7 waits until there is a selection input (step # 302: No).
 調整する感度の選択入力を受け付けると(ステップ#302:Yes)、制御装置7は、テスト選別を実行する(ステップ#303)。詳しくは、制御装置7は、オペレータからのテスト選別を開始する旨の操作入力を操作表示装置6が受け付けたことに応じて穀粒排出装置を作動させ、オペレータからのテスト選別が終了した旨の操作入力を操作表示装置6が受け付けたことに応じて穀粒排出装置を停止させる。 When the selection input of the sensitivity to be adjusted is received (step # 302: Yes), the control device 7 executes the test selection (step # 303). Specifically, the control device 7 operates the grain discharge device in response to the operation display device 6 receiving the operation input to start the test sorting from the operator, and the test sorting from the operator is completed. When the operation display device 6 accepts the operation input, the grain discharge device is stopped.
 ステップ#303が終了すると、制御装置7は、テスト選別の結果の選択入力をオペレータに促す画面を操作表示装置6に表示させる(ステップ#304)。画面には、テスト選別の結果の選択入力の対象として「問題ない」、「選別ミスが多い」、及び「歩留まりが悪い」の文字列が付されたボタンが表示される。 When step # 303 is completed, the control device 7 causes the operation display device 6 to display a screen prompting the operator to input the selection result of the test selection (step # 304). On the screen, a button with the character strings of "no problem", "many selection mistakes", and "poor yield" is displayed as a selection input target of the test selection result.
 制御装置7は、オペレータからの操作表示装置6への操作入力を待機する(ステップ#305、#306)。制御装置7は、選択入力があるまで待機する(ステップ#305:No、ステップ#306:No)。 The control device 7 waits for an operation input from the operator to the operation display device 6 (steps # 305, # 306). The control device 7 waits until there is a selection input (step # 305: No, step # 306: No).
 テスト選別の結果として「選別ミスが多い」または「歩留まりが悪い」が選択入力されると(ステップ#305:No,ステップ#306:Yes)、制御装置7は、感度の調整幅の選択入力をオペレータに促す画面を操作表示装置6に表示させる(ステップ#307)。画面には、感度の調整幅の選択入力の対象として「少し減らしたい」及び「かなり減らしたい」の文字列が付されたボタンが表示される。 When "many sorting errors" or "poor yield" is selected and input as a result of the test sorting (step # 305: No, step # 306: Yes), the control device 7 selects and inputs the sensitivity adjustment range. The screen prompting the operator is displayed on the operation display device 6 (step # 307). On the screen, a button with the character strings "I want to reduce it a little" and "I want to reduce it considerably" is displayed as a target for selecting and inputting the sensitivity adjustment range.
 制御装置7は、オペレータからの操作表示装置6への操作入力を待機する(ステップ#308)。制御装置7は、選択入力があるまで待機する(ステップ#308:No)。 The control device 7 waits for an operation input from the operator to the operation display device 6 (step # 308). The control device 7 waits until there is a selection input (step # 308: No).
 感度の調整幅の選択入力を受け付けると(ステップ#308:Yes)、制御装置7は、検査ユニット4における不良品の判定の感度を変更し、変更した感度を示す画面を操作表示装置6に表示させる(ステップ#309)。 Upon receiving the selection input of the sensitivity adjustment range (step # 308: Yes), the control device 7 changes the sensitivity of the defective product determination in the inspection unit 4, and displays a screen showing the changed sensitivity on the operation display device 6. (Step # 309).
 詳しくは、制御装置7は、ステップ#305で入力を受け付けたテスト選別の結果と、ステップ#307で入力を受け付けた感度の調整幅と、に基づいて、ステップ#301で入力を受け付けた調整する感度について、感度の変更を実行する。 Specifically, the control device 7 adjusts the input received in step # 301 based on the result of the test selection received in step # 305 and the adjustment range of the sensitivity received in step # 307. For sensitivity, change the sensitivity.
 テスト選別の結果が「選別ミスが多い」である場合には、制御装置7は感度が強くなる方向に感度を変更する。テスト選別の結果が「歩留まりが悪い」である場合には、制御装置7は感度が弱くなる方向に感度を変更する。感度が強くなる方向とは、各閾値を次の通り変更する方向である。感度が弱くなる方向とは、その反対の方向である。
  下側第1閾値SL1または下側第2閾値SL2:高く
  下側第1数量閾値または下側第2数量閾値:小さく
  上側第1閾値SU1または上側第2閾値SU2:低く
  上側第1数量閾値または上側第2数量閾値:小さく
When the result of the test selection is "many selection errors", the control device 7 changes the sensitivity in the direction of increasing the sensitivity. If the result of the test selection is "poor yield", the control device 7 changes the sensitivity in the direction of weakening the sensitivity. The direction in which the sensitivity becomes stronger is the direction in which each threshold value is changed as follows. The direction in which the sensitivity is weakened is the opposite direction.
Lower 1st threshold SL1 or lower 2nd threshold SL2: high Lower 1st quantity threshold or lower 2nd quantity threshold: small Upper 1st threshold SU1 or upper 2nd threshold SU2: low Upper 1st quantity threshold or upper Second quantity threshold: small
 感度の調整幅が「少し減らしたい」である場合には、制御装置7は、前項で述べた閾値を所定量(第1所定量)変更する。感度の調整幅が「かなり減らしたい」である場合には、制御装置7は、前項で述べた閾値を、「少し減らしたい」の場合よりも多く(第1所定量よりも多い第2所定量)変更する。 When the sensitivity adjustment range is "want to be reduced a little", the control device 7 changes the threshold value described in the previous section by a predetermined amount (first predetermined amount). When the adjustment range of the sensitivity is "want to be considerably reduced", the control device 7 increases the threshold value described in the previous section to be larger than that in the case of "want to reduce a little" (a second predetermined amount larger than the first predetermined amount). )change.
 調整する感度が「カメムシ被害」である場合には、制御装置7は、前センサ23A及び後センサ23Bについての下側第1閾値SL1及び(または)下側第1数量閾値を変更する。 When the sensitivity to be adjusted is "stink bug damage", the control device 7 changes the lower first threshold value SL1 and / or the lower first quantity threshold value for the front sensor 23A and the rear sensor 23B.
 調整する感度が「ヤケ」である場合には、制御装置7は、前センサ23A及び後センサ23Bについての下側第2閾値SL2及び(または)下側第2数量閾値を変更する。 When the sensitivity to be adjusted is "discolored", the control device 7 changes the lower second threshold value SL2 and / or the lower second quantity threshold value for the front sensor 23A and the rear sensor 23B.
 調整する感度が「シラタ/乳白/もみ」である場合には、制御装置7は、透過センサ23Cについての下側第1閾値SL1及び(または)下側第1数量閾値を変更する。 When the sensitivity to be adjusted is "shirata / milky white / fir", the control device 7 changes the lower first threshold value SL1 and / or the lower first quantity threshold value for the transmission sensor 23C.
 調整する感度が「青米」である場合には、制御装置7は、透過センサ23Cについての上側第1閾値SU1及び(または)上側第1数量閾値を変更する。 When the sensitivity to be adjusted is "blue rice", the control device 7 changes the upper first threshold value SU1 and / or the upper first quantity threshold value for the transmission sensor 23C.
 ステップ#309が終了すると、再びステップ#303が実行される。 When step # 309 is completed, step # 303 is executed again.
 テスト選別の結果として「問題ない」が選択入力されると(ステップ#305:Yes)、制御装置7は、おすすめ感度を提案しその後の処理の選択入力をオペレータに促す画面を操作表示装置6に表示させる(ステップ#310)。画面には、「おすすめ感度」として現在の感度(変更後の感度)が表示され、その後の処理の選択入力の対象として「やり直す」及び「この感度に設定する」の文字列が付されたボタンが表示される。 When "no problem" is selected and input as a result of the test selection (step # 305: Yes), the control device 7 proposes the recommended sensitivity and displays a screen on the operation display device 6 to prompt the operator to select and input the subsequent processing. Display (step # 310). On the screen, the current sensitivity (sensitivity after change) is displayed as "recommended sensitivity", and a button with the character strings "redo" and "set to this sensitivity" as the target of selection input for subsequent processing. Is displayed.
 制御装置7は、オペレータからの操作表示装置6への操作入力を待機する(ステップ#311、#312)。制御装置7は、選択入力があるまで待機する(ステップ#311:No、ステップ#312:No)。 The control device 7 waits for an operation input from the operator to the operation display device 6 (steps # 311 and # 312). The control device 7 waits until there is a selection input (step # 311: No, step # 312: No).
 「やり直す」の選択入力を受け付けると(ステップ#311:Yes)、再びステップ#304が実行される。 When the selection input of "Redo" is accepted (step # 311: Yes), step # 304 is executed again.
 「この感度に設定する」の選択入力を受け付けると(ステップ#312:Yes)、制御装置7は、処理を終了するか否か他の感度を調整するかの選択入力をオペレータに促す画面を操作表示装置6に表示させる(ステップ#313)。画面には、選択入力の対象として「終了」及び「他の感度を調整する」の文字列が付されたボタンが表示される。 When the selection input of "Set to this sensitivity" is accepted (step # 312: Yes), the control device 7 operates a screen prompting the operator to select whether to end the processing or adjust another sensitivity. It is displayed on the display device 6 (step # 313). On the screen, buttons with the character strings "End" and "Adjust other sensitivities" are displayed as targets for selection input.
 制御装置7は、オペレータからの操作表示装置6への操作入力を待機する(ステップ#314、#315)。制御装置7は、選択入力があるまで待機する(ステップ#314:No、ステップ#315:No)。 The control device 7 waits for an operation input from the operator to the operation display device 6 (steps # 314 and # 315). The control device 7 waits until there is a selection input (step # 314: No, step # 315: No).
 「他の感度を調整する」の選択入力を受け付けると(ステップ#314:Yes)、再びステップ#301が実行される。 When the selection input of "Adjust other sensitivities" is accepted (step # 314: Yes), step # 301 is executed again.
 「終了」の選択入力を受け付けると(ステップ#315:Yes)、感度設定処理は終了する。 When the selection input of "End" is accepted (step # 315: Yes), the sensitivity setting process ends.
〔他の実施形態〕
(1)粒状体検査装置が、3つ以上の検査ユニット4を備えてもよい。
[Other embodiments]
(1) The granular material inspection device may include three or more inspection units 4.
(2)変更部7hが、所定の期間における選別感度の時間平均を基準ユニット及び被調整ユニットの夫々について算出し、それらの差が小さくなるように被調整ユニットの動作パラメータを変更するよう、構成されてもよい。算出された選別感度の時間平均を用いることにより、突発的・偶発的な選別感度の変化による悪影響が抑制される。「所定の期間」は、予め設定され記憶部7fに記憶されてもよいし、オペレータからの操作入力に応じて変更されてもよい。変更部7hが、複数の「所定の期間」における選別感度の時間平均を算出するよう、構成されてもよい。 (2) The changing unit 7h is configured to calculate the time average of the sorting sensitivity in a predetermined period for each of the reference unit and the adjusted unit, and change the operating parameters of the adjusted unit so that the difference between them becomes small. May be done. By using the calculated time average of the sorting sensitivity, the adverse effect due to the sudden or accidental change in the sorting sensitivity is suppressed. The "predetermined period" may be preset and stored in the storage unit 7f, or may be changed according to an operation input from the operator. The change unit 7h may be configured to calculate the time average of the selection sensitivity in a plurality of "predetermined periods".
(3)変更部7hが、送出装置10の設定送出量のみを変更するように構成されてもよい。 (3) The changing unit 7h may be configured to change only the set transmission amount of the transmission device 10.
(4)変更部7hが、送出装置10の設定送出量を変更せず、各カメラ22の選別閾値、照明装置21の発光強度、及び各センサ23の感度のうち少なくとも1つを変更するよう構成されてもよい。 (4) The change unit 7h is configured to change at least one of the selection threshold value of each camera 22, the emission intensity of the lighting device 21, and the sensitivity of each sensor 23 without changing the set transmission amount of the transmission device 10. May be done.
(5)変更部7hによる動作パラメータの変更量は、予め設定されてもよいし、選別感度の差の大きさに応じて都度決定されてもよい。 (5) The amount of change of the operation parameter by the change unit 7h may be set in advance or may be determined each time according to the magnitude of the difference in sorting sensitivity.
(6)変更部7hが、機械学習されたニューラルネットワークを含んでもよい。例えば、変更部7hのニューラルネットワークが、算出された選別感度、動作パラメータの変更の態様、及び動作パラメータの変更による選別感度の変動量を教師データとして機械学習され、現在の選別感度の入力を受けて動作パラメータの変更量を出力するように構成されてもよい。 (6) The change unit 7h may include a machine-learned neural network. For example, the neural network of the change unit 7h is machine-learned using the calculated selection sensitivity, the mode of changing the operation parameter, and the fluctuation amount of the selection sensitivity due to the change of the operation parameter as teacher data, and receives the input of the current selection sensitivity. It may be configured to output the change amount of the operation parameter.
(7)検査ユニット4が、複数の装置に分かれて設けられる形態も可能である。例えば、複数の粒状体検査装置を含む検査システムにおいて、検査ユニット4が複数の粒状体検査装置に分かれて配置されてもよい。1つの粒状体検査装置が備える検査ユニット4が基準ユニットとして機能し、他の粒状体検査装置が備える検査ユニット4が被調整ユニットとして機能してもよい。 (7) It is also possible that the inspection unit 4 is provided separately in a plurality of devices. For example, in an inspection system including a plurality of granular body inspection devices, the inspection unit 4 may be divided into a plurality of granular body inspection devices and arranged. The inspection unit 4 included in one granular inspection device may function as a reference unit, and the inspection unit 4 included in the other granular inspection device may function as an adjusted unit.
(8)制御装置7が報知装置8を作動させて、変更部7hが動作パラメータを変更した旨をオペレータに報知してもよい。 (8) The control device 7 may operate the notification device 8 to notify the operator that the change unit 7h has changed the operation parameter.
(9)本発明は、複数の検査ユニットを備える粒状体検査装置、色彩選別器、光学選別器等に適用可能である。また、本発明は、1つの供給源からの粒状体が分配供給される複数の粒状体検査装置(検査システム)にも適用可能である。 (9) The present invention can be applied to a granular body inspection device, a color sorter, an optical sorter, and the like provided with a plurality of inspection units. The present invention is also applicable to a plurality of granular material inspection devices (inspection systems) in which granules from one source are distributed and supplied.
〔第3実施形態〕
 第3実施形態では、第1実施形態や第2実施形態と異なる構成を中心に説明する。第1実施形態や第2実施形態と共通する構成については、ここで省略する。
[Third Embodiment]
In the third embodiment, a configuration different from the first embodiment and the second embodiment will be mainly described. The configuration common to the first embodiment and the second embodiment will be omitted here.
〔チャンネル異常の判定〕
 図15に、前センサ23Aのチャンネル分配が正常である状態が示されている。図示例では、経路R6において粒状体G3が検出領域DUに存在し、経路R9において粒状体G4が検出領域DUに存在している。粒状体G3が不良品である場合、前センサ23Aの出力におけるチャンネルCH6に対応する部分に、粒状体の不良に応じた出力変化が現れる。
そして良否判定部7aが、チャンネルCH6の穀粒が不良品であると判定し、空気吹き付け装置31の噴射口S6から空気を噴射させる。これにより、粒状体G3が排除される。
[Judgment of channel abnormality]
FIG. 15 shows a state in which the channel distribution of the front sensor 23A is normal. In the illustrated example, the granular material G3 is present in the detection region DU in the route R6, and the granular material G4 is present in the detection region DU in the route R9. When the granular material G3 is a defective product, an output change corresponding to the defective granular material appears in the portion corresponding to the channel CH6 in the output of the front sensor 23A.
Then, the quality determination unit 7a determines that the grain of the channel CH6 is a defective product, and injects air from the injection port S6 of the air blowing device 31. As a result, the granular material G3 is eliminated.
 図16に、前センサ23Aのチャンネル分配が異常である状態が示されている。図16の例では、各チャンネルに、図15の例よりも左寄りの画素Eが分配されている。図15の例と同様に、経路R6において粒状体G3が検出領域DUに存在し、経路R9において粒状体G4が検出領域DUに存在している。粒状体G3が不良品である場合、前センサ23Aの出力における経路R9に対応する位置(画素)に粒状体の不良に応じた出力変化が現れる。 FIG. 16 shows a state in which the channel distribution of the front sensor 23A is abnormal. In the example of FIG. 16, pixels E to the left of the example of FIG. 15 are distributed to each channel. Similar to the example of FIG. 15, the granular material G3 is present in the detection region DU in the path R6, and the granular material G4 is present in the detection region DU in the path R9. When the granular material G3 is a defective product, an output change corresponding to the defective granular material appears at a position (pixel) corresponding to the path R9 in the output of the front sensor 23A.
 しかし、図16の例では、前センサ23Aの出力における経路R9に対応する画素は、チャンネルCH6及びチャンネルCH7の両方に分配されている。 However, in the example of FIG. 16, the pixels corresponding to the path R9 in the output of the front sensor 23A are distributed to both the channel CH6 and the channel CH7.
 そうすると、良否判定部7aが、チャンネルCH6、CH7の両方について不良品であると判定する可能性がある。その場合、良否判定部7aは空気吹き付け装置31の噴射口S6,S7から空気を噴射させるので、経路R7に良品の粒状体があった場合に排除されてしまう可能性がある。 Then, the quality determination unit 7a may determine that both channels CH6 and CH7 are defective. In that case, since the quality determination unit 7a injects air from the injection ports S6 and S7 of the air blowing device 31, if there is a good quality granular material in the path R7, it may be excluded.
 また、良否判定部7aが、チャンネルCH6ではなくチャンネルCH7について不良品であると判定する可能性がある。その場合、良否判定部7aは空気吹き付け装置31の噴射口S7から空気を噴射させるので、経路R6にある不良品の粒状体G3は排除されない。 Further, the quality determination unit 7a may determine that the channel CH7 is a defective product instead of the channel CH6. In that case, since the quality determination unit 7a injects air from the injection port S7 of the air blowing device 31, the defective granular material G3 in the path R6 is not excluded.
 このように、チャンネル分配に異常があると、良品が不当に排除されたり、不良品が適切に排除されない可能性がある。このようなチャンネル分配の異常は、シュータ12と検出装置20(カメラ22、ミラー24等)との位置関係が出荷時の状態(調整時の状態)から変化した場合に発生し得る。 In this way, if there is an abnormality in the channel distribution, there is a possibility that non-defective products will be unfairly excluded or defective products will not be properly excluded. Such an abnormality in channel distribution may occur when the positional relationship between the shooter 12 and the detection device 20 (camera 22, mirror 24, etc.) changes from the state at the time of shipment (state at the time of adjustment).
 本実施形態では、各センサ23のチャンネル分配の異常が、検出部7bによる検出結果に基づいて、異常判定部7cにより判定される。チャンネル分配の異常の判定は、以下の考え方に基づいて行われる。すなわち、粒状体はランダムにシュータ12から検査領域IAへ送り出されるので、隣接する経路において同時に検出領域DUを通過する確率は低い。従って、センサ23の出力における隣接するチャンネルに1つの粒状体が跨がっている状態になる確率は低い。しかし、図16の例のように、一つの経路からの光が隣接する2つのチャンネルに属する画素に入射するようにチャンネル分配がなされていると、センサ23の出力における隣接するチャンネルに1つの粒状体が跨がっている状態になる。換言すれば、センサ23の出力において隣接するチャンネルに、同時に、粒状体による出力変化が現れる。 In the present embodiment, the abnormality of the channel distribution of each sensor 23 is determined by the abnormality determination unit 7c based on the detection result by the detection unit 7b. The determination of the abnormality of the channel distribution is performed based on the following idea. That is, since the granules are randomly sent from the shooter 12 to the inspection region IA, the probability of passing through the detection region DU at the same time in the adjacent route is low. Therefore, there is a low probability that one granule will straddle adjacent channels in the output of the sensor 23. However, as in the example of FIG. 16, if the channels are distributed so that the light from one path is incident on the pixels belonging to the two adjacent channels, one grain is formed on the adjacent channels in the output of the sensor 23. The body is straddling. In other words, at the same time, the output change due to the granules appears in the adjacent channels in the output of the sensor 23.
 図16の例では、経路R6の粒状体G3が検出領域DUを通過するとき、隣接するチャンネルCH6,CH7に粒状体G3が跨がった状態となっている。そして前センサ23Aの出力において隣接するチャンネルCH6,CH7に、同時に、粒状体G3による出力変化が現れている。経路R9の粒状体G4が検出領域DUを通過するとき、隣接するチャンネルCH9,CH10に粒状体G4が跨がった状態となっている。そして前センサ23Aの出力において隣接するチャンネルCH9,CH10に、同時に、粒状体G4による出力変化が現れている。 In the example of FIG. 16, when the granular material G3 of the path R6 passes through the detection region DU, the granular material G3 straddles the adjacent channels CH6 and CH7. Then, at the same time, the output change due to the granular material G3 appears on the adjacent channels CH6 and CH7 in the output of the front sensor 23A. When the granular material G4 of the path R9 passes through the detection region DU, the granular material G4 straddles the adjacent channels CH9 and CH10. Then, in the output of the front sensor 23A, the output change due to the granular material G4 appears at the same time on the adjacent channels CH9 and CH10.
 上述したチャンネル分配の異常を検出するための制御装置7の動作を説明する。異常判定部7cは、センサ23の出力における隣接するチャンネルに1つの粒状体が跨がっていることを検出した場合に、異常が発生したと判定する。詳しくは、検出部7bが、センサ23の出力における複数のチャンネルごとに、粒状体による光の強度の低下を検出する。
そして、異常判定部7cは、検出部7bが隣接するチャンネルにおいて同時に光の強度の低下を検出した場合に、異常が発生したと判定する。
The operation of the control device 7 for detecting the abnormality of the channel distribution described above will be described. The abnormality determination unit 7c determines that an abnormality has occurred when it detects that one granular body straddles an adjacent channel in the output of the sensor 23. Specifically, the detection unit 7b detects a decrease in light intensity due to the granules for each of a plurality of channels in the output of the sensor 23.
Then, the abnormality determination unit 7c determines that an abnormality has occurred when the detection unit 7b simultaneously detects a decrease in light intensity in an adjacent channel.
 なお、検出部7bは、センサ23の出力における、あるチャンネルに対応する部分において、出力が粒状体検出閾値SH(図6)よりも小さい画素が存在する場合に、そのチャンネルに対応する経路における検出領域DUに粒状体が存在することを検出する。 In addition, the detection unit 7b detects in the path corresponding to a certain channel in the output of the sensor 23 when there is a pixel whose output is smaller than the granular body detection threshold SH (FIG. 6). Detects the presence of granules in the region DU.
 図16の例で説明する。図16の状態において、検出部7bは、前センサ23AのチャンネルCH6,CH7,CH9,CH10において粒状体による光の強度の低下を検出する(検出結果:Yes)。検出部7bが隣接するチャンネル(チャンネルCH6,CH7、及びチャンネルCH9,CH10)において同時に光の強度の低下を検出したので、異常判定部7cは、チャンネル分配の異常が発生したと判定する。 This will be described with the example of FIG. In the state of FIG. 16, the detection unit 7b detects a decrease in light intensity due to the granules in channels CH6, CH7, CH9, and CH10 of the front sensor 23A (detection result: Yes). Since the detection unit 7b simultaneously detects a decrease in light intensity in adjacent channels (channels CH6, CH7, and channels CH9, CH10), the abnormality determination unit 7c determines that an abnormality in channel distribution has occurred.
 異常判定部7cによる異常の判定が、以下の形態により行われてもよい。なお、上述した判定の形態(形態1)と、以下述べる他の判定の形態(形態2、形態3)とが、併用されてもよいし、組み合わされて用いられてもよい。 The abnormality determination unit 7c may determine the abnormality in the following form. The above-mentioned form of determination (form 1) and the other forms of determination described below (forms 2 and 3) may be used in combination or in combination.
(形態2)異常判定部7cは、検出部7bが隣接するチャンネルにおいて同時且つ経時的に光の強度の低下を検出した場合に、異常が発生したと判定する。換言すれば、隣接するチャンネルにおいて、粒状体により光の強度が低下する状態が同時に発生し、継続し、同時に終了したことを検出部7bが検出した場合に、異常判定部7cは異常が発生したと判定する。 (Form 2) The abnormality determination unit 7c determines that an abnormality has occurred when the detection unit 7b detects a decrease in light intensity simultaneously and over time in an adjacent channel. In other words, when the detection unit 7b detects that the light intensity is reduced due to the granules at the same time, continues, and ends at the same time in the adjacent channels, the abnormality determination unit 7c has generated an abnormality. Is determined.
(形態3)異常判定部7cは、検出部7bが隣接するチャンネルにおいて同時に光の強度の低下を検出する状態が、隣接するチャンネルの複数の組において発生した場合に、異常が発生したと判定する。換言すれば、1組の隣接するチャンネルにおいて粒状体により光の強度が低下する状態が同時に発生し、且つ、別の1組の隣接するチャンネルにおいて粒状体により光の強度が低下する状態が同時に発生したことを検出部7bが検出した場合に、異常判定部7cは異常が発生したと判定する。 (Form 3) The abnormality determination unit 7c determines that an abnormality has occurred when a state in which the detection unit 7b simultaneously detects a decrease in light intensity in adjacent channels occurs in a plurality of sets of adjacent channels. .. In other words, a state in which the light intensity is lowered by the granules simultaneously occurs in one set of adjacent channels, and a state in which the light intensity is lowered by the granules simultaneously occurs in another set of adjacent channels. When the detection unit 7b detects that the error has occurred, the abnormality determination unit 7c determines that an abnormality has occurred.
(形態4)異常判定部7cは、粒状体による光の強度の低下が隣接するチャンネルに属する連続した画素において同時に検出された場合に、異常が発生したと判定する。この判定の形態について図17を参照しながら説明する。 (Form 4) The abnormality determination unit 7c determines that an abnormality has occurred when the decrease in light intensity due to the granules is simultaneously detected in consecutive pixels belonging to adjacent channels. The form of this determination will be described with reference to FIG.
 図17に示される状態では、経路R6を通る粒状体G3からの光が前センサ23Aの画素E145-E159に入射し、粒状体G3による光の強度の低下が前センサ23Aの出力に現れている。ここで、図示例では、画素E154までがチャンネルCH6に分配され、画素E155以降がチャンネルCH7に分配されている。経路R6からの光が異なるチャンネルCH6、CH7に入射しているので、チャンネル分配の異常が発生した状態である。従って、粒状体G3による光の強度の低下が隣接するチャンネルCH6、CH7に属する連続した画素E145-159において同時に検出されたことに基づいて、チャンネル分配の異常が発生したことを判定することが可能となる。 In the state shown in FIG. 17, the light from the granular material G3 passing through the path R6 is incident on the pixels E145-E159 of the front sensor 23A, and the decrease in the light intensity due to the granular material G3 appears in the output of the front sensor 23A. .. Here, in the illustrated example, the pixels up to the pixel E154 are distributed to the channel CH6, and the pixels after the pixel E155 are distributed to the channel CH7. Since the light from the path R6 is incident on the different channels CH6 and CH7, the channel distribution abnormality has occurred. Therefore, it is possible to determine that an abnormality in channel distribution has occurred based on the fact that the decrease in light intensity due to the granular material G3 is simultaneously detected in the continuous pixels E145-159 belonging to the adjacent channels CH6 and CH7. It becomes.
(形態5)異常判定部7cは、粒状体による光の強度の低下が隣接するチャンネルに属する連続した画素において同時且つ経時的に検出された場合に、異常が発生したと判定する。換言すれば、上述した図17のような、粒状体による光の強度の低下が隣接するチャンネルに属する連続した画素において同時に発生し、継続し、同時に終了したことを検出部7bが検出した場合に、異常判定部7cは異常が発生したと判定する。 (Form 5) The abnormality determination unit 7c determines that an abnormality has occurred when the decrease in light intensity due to the granules is detected simultaneously and temporally in consecutive pixels belonging to adjacent channels. In other words, when the detection unit 7b detects that the decrease in light intensity due to the granules simultaneously occurs in consecutive pixels belonging to adjacent channels, continues, and ends at the same time, as shown in FIG. 17 described above. , The abnormality determination unit 7c determines that an abnormality has occurred.
(形態6)異常判定部7cは、粒状体による光の強度の低下が検出された画素である検出画素を特定し、異なるチャンネルに属する検出画素のうち少ない方の検出画素の数を検出画素の総数で除して比率を算出し、比率が所定の閾値を超えた場合に、異常が発生したと判定する。この判定の形態について図17を参照しながら説明する。 (Form 6) The abnormality determination unit 7c identifies the detection pixels that are the pixels in which the decrease in light intensity due to the granules is detected, and determines the number of the detection pixels that are the smaller of the detection pixels belonging to different channels. The ratio is calculated by dividing by the total number, and when the ratio exceeds a predetermined threshold, it is determined that an abnormality has occurred. The form of this determination will be described with reference to FIG.
 上述の通り、図17に示される状態では、経路R6を通る粒状体G3からの光が前センサ23Aの画素E145-E159に入射し、粒状体G3による光の強度の低下が前センサ23Aの出力に現れている。すなわち、画素E145-E159が検出画素DEである。
検出画素の総数は15である。
As described above, in the state shown in FIG. 17, the light from the granular material G3 passing through the path R6 is incident on the pixels E145-E159 of the front sensor 23A, and the decrease in the light intensity due to the granular material G3 is the output of the front sensor 23A. Appears in. That is, the pixels E145-E159 are the detection pixels DE.
The total number of detected pixels is 15.
 チャンネルCH6に属する検出画素(E145-E154)を検出画素DE6と称する。検出画素DE6の数は10である。 The detection pixel (E145-E154) belonging to the channel CH6 is referred to as a detection pixel DE6. The number of detection pixels DE6 is 10.
 チャンネルCH7に属する検出画素(E155-E159)を検出画素DE7と称する。検出画素DE7の数は5である。 The detection pixel (E155-E159) belonging to the channel CH7 is referred to as a detection pixel DE7. The number of detection pixels DE7 is 5.
 チャンネルCH6,CH7に属する検出画素DEのうち少ない方は、検出画素DE7であり、その数は5である。 Of the detection pixels DE belonging to channels CH6 and CH7, the smaller one is the detection pixel DE7, and the number is 5.
 異常判定部7cは、検出画素DE7の数である「5」を検出画素DEの総数である「15」で除して比率「1/3」を算出し、比率が所定の閾値(例えば、1/8)を超えた場合に、異常が発生したと判定する。粒状体が通過する通路に対応するチャンネルから、粒状体がはみ出す度合いが大きくなるほど、異常判定部7cが算出する「比率」が大きくなる。 The abnormality determination unit 7c divides "5", which is the number of detection pixels DE7, by "15", which is the total number of detection pixels DE, to calculate the ratio "1/3", and the ratio is a predetermined threshold value (for example, 1). If it exceeds / 8), it is determined that an abnormality has occurred. The greater the degree to which the granules protrude from the channel corresponding to the passage through which the granules pass, the larger the "ratio" calculated by the abnormality determination unit 7c.
 なお、検出部7b及び異常判定部7cは、後センサ23B及び透過センサ23Cの出力についても同様の処理を実行し、チャンネル分配の異常の発生の判定を行う。 The detection unit 7b and the abnormality determination unit 7c execute the same processing for the outputs of the rear sensor 23B and the transmission sensor 23C, and determine the occurrence of an abnormality in the channel distribution.
 上述した異常判定部7cによる異常の判定は、1つのセンサ23についての異常の有無を判定する。これに対し、対向センサ間異常判定部7dは対向位置にある2つのセンサ23についての異常の有無の判定を行う。上下センサ間異常判定部7eは上下位置にある2つのセンサ23についての異常の有無の判定を行う。 The abnormality determination by the abnormality determination unit 7c described above determines the presence or absence of an abnormality in one sensor 23. On the other hand, the abnormality determination unit 7d between the facing sensors determines whether or not there is an abnormality in the two sensors 23 at the facing positions. The abnormality determination unit 7e between the upper and lower sensors determines whether or not there is an abnormality in the two sensors 23 located in the upper and lower positions.
 本実施形態では、前センサ23Aは検査領域IAからY1側(第1方向の一例)に放射される光を検出する。後センサ23Bは検査領域IAからY2側(第2方向の一例)に放射される光を検出する。すなわち、前センサ23Aが、特許請求の範囲に記載された「第1センサ」に対応し、後センサ23Bが同「第2センサ」に対応する。 In the present embodiment, the front sensor 23A detects the light emitted from the inspection area IA to the Y1 side (an example of the first direction). The rear sensor 23B detects the light emitted from the inspection area IA to the Y2 side (an example of the second direction). That is, the front sensor 23A corresponds to the "first sensor" described in the claims, and the rear sensor 23B corresponds to the "second sensor".
 対向センサ間異常判定部7dは、異常判定部7cが前センサ23A(第1センサの一例)及び後センサ23B(第2センサの一例)についてほぼ同時期に異常が発生したと判定した場合に、異常が発生したと判定する。このような異常は、例えば、2つのセンサ(前センサ23A及び後センサ23B)を支持するフレーム(例えば、検出装置20のフレーム)が位置ずれした場合に発生しうる。なお、「対向センサ」の表現は、受光面が対向する2つのセンサ23に対象を限定することを意味しない。 When the abnormality determination unit 7c determines that the front sensor 23A (an example of the first sensor) and the rear sensor 23B (an example of the second sensor) have an abnormality at about the same time, the abnormality determination unit 7d between the facing sensors determines that an abnormality has occurred. Judge that an abnormality has occurred. Such an abnormality can occur, for example, when the frame supporting the two sensors (front sensor 23A and rear sensor 23B) (for example, the frame of the detection device 20) is misaligned. The expression "opposed sensor" does not mean that the target is limited to the two sensors 23 whose light receiving surfaces face each other.
 本実施形態では、前センサ23A(及び後センサ23B)は検査領域IAにおける上部である検出領域DUからの光を検出する。透過センサ23Cは検査領域IAにおける下部である検出領域DLからの光を検出する。すなわち、前センサ23A及び後センサ23Bが、特許請求の範囲に記載された「上センサ」に対応し、透過センサ23Cが同「下センサ」に対応する。 In the present embodiment, the front sensor 23A (and the rear sensor 23B) detects the light from the detection area DU which is the upper part in the inspection area IA. The transmission sensor 23C detects light from the detection region DL, which is the lower part of the inspection region IA. That is, the front sensor 23A and the rear sensor 23B correspond to the "upper sensor" described in the claims, and the transmission sensor 23C corresponds to the "lower sensor".
 上下センサ間異常判定部7eは、異常判定部7cが前センサ23Aまたは後センサ23B(上センサの一例)の出力における隣接するチャンネルである異常チャンネル組に1つの粒状体が跨がっていることを検出し、且つ、異常判定部7cが透過センサ23C(下センサの一例)の出力における異常チャンネル組に対応するチャンネルに1つの粒状体が跨がっていることを検出した場合に、異常が発生したと判定する。 In the abnormality determination unit 7e between the upper and lower sensors, one granular body straddles an abnormality channel set in which the abnormality determination unit 7c is an adjacent channel in the output of the front sensor 23A or the rear sensor 23B (an example of the upper sensor). When the abnormality determination unit 7c detects that one granular body straddles the channel corresponding to the abnormality channel set in the output of the transmission sensor 23C (an example of the lower sensor), an abnormality occurs. Judge that it has occurred.
 例えば、図17の例のように、前センサ23Aの出力における隣接するチャンネルCH6、CH7(異常チャンネル組とする)に1つの粒状体G3が跨がっていることを、異常判定部7cが検出したとする。透過センサ23Cの出力における、異常チャンネル組に対応するチャンネルは、透過センサ23Cにおける経路R6、R7に対応するチャンネル(対応チャンネル組とする)である。そして、異常チャンネル組での異常検出の後に、異常判定部7cが透過センサ23Cの対応チャンネル組に1つの粒状体(粒状体G3)が跨がっていることを検出した場合に、上下センサ間異常判定部7eは、異常が発生したと判定する。このような異常は、例えば、2つのセンサ(前センサ23A及び透過センサ23C、または後センサ23B及び透過センサ23C)を支持するフレーム(例えば、検出装置20のフレーム)が位置ずれした場合に発生しうる。なお、「上下センサ」の表現は、上下に位置する2つのセンサ23に対象を限定することを意味しない。 For example, as in the example of FIG. 17, the abnormality determination unit 7c detects that one granular body G3 straddles the adjacent channels CH6 and CH7 (referred to as an abnormal channel set) in the output of the front sensor 23A. Suppose you did. The channel corresponding to the abnormal channel set in the output of the transmission sensor 23C is the channel corresponding to the paths R6 and R7 in the transmission sensor 23C (referred to as the corresponding channel set). Then, when the abnormality determination unit 7c detects that one granular body (granular body G3) straddles the corresponding channel set of the transmission sensor 23C after the abnormality is detected in the abnormal channel set, the upper and lower sensors are used with each other. The abnormality determination unit 7e determines that an abnormality has occurred. Such an abnormality occurs, for example, when the frame supporting the two sensors (front sensor 23A and transmission sensor 23C, or rear sensor 23B and transmission sensor 23C) (for example, the frame of the detection device 20) is misaligned. sell. The expression "upper and lower sensors" does not mean that the target is limited to the two sensors 23 located above and below.
〔異常検出処理〕
 図18のフローチャートを参照しながら、粒状体検査装置で実行される異常検出処理について説明する。異常検出処理は、粒状体検査装置の稼働中に繰り返し実行される。
[Abnormality detection processing]
The abnormality detection process executed by the granular material inspection apparatus will be described with reference to the flowchart of FIG. The abnormality detection process is repeatedly executed during the operation of the granular material inspection device.
 制御装置7は、各センサ23から出力を取得する(ステップ#401)。 The control device 7 acquires an output from each sensor 23 (step # 401).
 異常判定部7cは、ステップ#401で取得された各センサ23の出力に基づいて、チャンネル分配の異常の発生の有無を判定する(ステップ#402)。 The abnormality determination unit 7c determines whether or not an abnormality has occurred in the channel distribution based on the output of each sensor 23 acquired in step # 401 (step # 402).
 チャンネル分配に異常が発生していると判定されると(ステップ#402:Yes)、異常判定部7cは報知装置8を作動させる(ステップ#403)。 When it is determined that an abnormality has occurred in the channel distribution (step # 402: Yes), the abnormality determination unit 7c activates the notification device 8 (step # 403).
 ステップ#403の実行後、対向センサ間異常判定部7dは、前センサ23A及び後センサ23Bの出力についての異常判定部7cの判定結果に基づいて、両センサ間のチャンネル分配の異常の有無を判定する(ステップ#404)。 After the execution of step # 403, the facing sensor abnormality determination unit 7d determines whether or not there is an abnormality in the channel distribution between the two sensors based on the determination result of the abnormality determination unit 7c regarding the outputs of the front sensor 23A and the rear sensor 23B. (Step # 404).
 両センサ間でチャンネル分配に異常が発生していると判定されると(ステップ#404:Yes)、異常判定部7cは報知装置8を作動させる(ステップ#405)。 When it is determined that an abnormality has occurred in the channel distribution between the two sensors (step # 404: Yes), the abnormality determination unit 7c activates the notification device 8 (step # 405).
 ステップ#405の実行後、上下センサ間異常判定部7eは、前センサ23A、後センサ23B、及び透過センサ23Cの出力についての異常判定部7cの判定結果に基づいて、センサ間のチャンネル分配の異常の有無を判定する(ステップ#406)。 After the execution of step # 405, the abnormality determination unit 7e between the upper and lower sensors has an abnormality in the channel distribution between the sensors based on the determination result of the abnormality determination unit 7c regarding the outputs of the front sensor 23A, the rear sensor 23B, and the transmission sensor 23C. (Step # 406).
 センサ間でチャンネル分配に異常が発生していると判定されると(ステップ#406:Yes)、異常判定部7cは報知装置8を作動させる(ステップ#407)。 When it is determined that an abnormality has occurred in the channel distribution between the sensors (step # 406: Yes), the abnormality determination unit 7c activates the notification device 8 (step # 407).
 チャンネル分配に異常が発生していないと判定された場合(ステップ#402:No)、及びステップ#407の実行後、異常検出処理は終了する。 When it is determined that no abnormality has occurred in the channel distribution (step # 402: No), and after the execution of step # 407, the abnormality detection process ends.
〔他の実施形態〕
(1)異常判定部7cが、センサ23の出力における隣接するチャンネルに1つの粒状体が跨がっていることを複数回検出した場合に、異常が発生したと判定するよう構成されてもよい。対向センサ間異常判定部7d、及び上下センサ間異常判定部7eについても同様である。
[Other embodiments]
(1) The abnormality determination unit 7c may be configured to determine that an abnormality has occurred when it detects that one granular body straddles an adjacent channel in the output of the sensor 23 a plurality of times. .. The same applies to the abnormality determination unit 7d between the facing sensors and the abnormality determination unit 7e between the upper and lower sensors.
(2)異常判定部7cが、異常が発生したと複数回判定した場合に報知装置8を作動させるよう構成されてもよい。対向センサ間異常判定部7d、及び上下センサ間異常判定部7eについても同様である。 (2) The abnormality determination unit 7c may be configured to operate the notification device 8 when it is determined that an abnormality has occurred a plurality of times. The same applies to the abnormality determination unit 7d between the facing sensors and the abnormality determination unit 7e between the upper and lower sensors.
(3)報知装置8が行う報知の態様(ブザーまたはスピーカーの音量または音色、ランプの色、情報表示装置に表示される文言等)は、異常判定部7cによる作動、対向センサ間異常判定部7dによる作動、及び上下センサ間異常判定部7eによる作動の間で異なってもよいし、同じでもよい。報知装置8が行う報知の態様が、異常判定部7cが行う判定の形態(形態1-6)に応じて異なってもよいし、同じでもよい。 (3) The mode of notification performed by the notification device 8 (volume or tone of the buzzer or speaker, lamp color, wording displayed on the information display device, etc.) is the operation by the abnormality determination unit 7c, the abnormality determination unit 7d between the facing sensors. It may be different or the same between the operation by the operation by the upper and lower sensors and the operation by the abnormality determination unit 7e between the upper and lower sensors. The mode of notification performed by the notification device 8 may be different or the same depending on the mode of determination (form 1-6) performed by the abnormality determination unit 7c.
(4)異常判定部7c、対向センサ間異常判定部7d、及び上下センサ間異常判定部7eが異常が発生したと判定したことに応じて、制御装置7が粒状体検査装置の作動を停止させてもよいし、チャンネル分配の異常が解消するようにチャンネル分配を変更してもよい。 (4) The control device 7 stops the operation of the granular body inspection device in response to the determination by the abnormality determination unit 7c, the abnormality determination unit 7d between the facing sensors, and the abnormality determination unit 7e between the upper and lower sensors that an abnormality has occurred. Alternatively, the channel distribution may be changed so that the abnormality of the channel distribution is eliminated.
(5)センサ23の数及び配置は、上述の例に限られない。 (5) The number and arrangement of the sensors 23 are not limited to the above examples.
(6)本発明は、粒状体を検査する装置(粒状体検査装置、色彩選別器、光学選別器等)に適用可能である。 (6) The present invention can be applied to an apparatus for inspecting granules (granular body inspection apparatus, color sorter, optical sorter, etc.).
〔第4実施形態〕
 第4実施形態では、第1~3実施形態と異なる構成を中心に説明する。第1~3実施形態と共通する構成については、ここで省略する。
[Fourth Embodiment]
In the fourth embodiment, a configuration different from that of the first to third embodiments will be mainly described. The configuration common to the first to third embodiments will be omitted here.
〔貯留ホッパ〕
 貯留ホッパ3は、内部が空洞である箱状の部材である。貯留ホッパ3は、入口61、左の出口62L、及び右の出口62Rを備える。
[Storage hopper]
The storage hopper 3 is a box-shaped member having a hollow inside. The storage hopper 3 includes an inlet 61, a left outlet 62L, and a right outlet 62R.
 入口61は、貯留ホッパ3の上部に配置され粒状体が投入される開口である。入口61は、貯留ホッパ3の後部の上部に形成された長方形の開口である。入口61を通って、第1揚送コンベア2により粒状体が貯留ホッパ3の内部へ投入される。 The inlet 61 is an opening that is arranged above the storage hopper 3 and into which granules are charged. The inlet 61 is a rectangular opening formed in the upper part of the rear part of the storage hopper 3. Granules are charged into the storage hopper 3 by the first transport conveyor 2 through the inlet 61.
 出口62L、62Rは、貯留ホッパ3の下部(下端部)に配置され粒状体が検査ユニット4へ流出する開口である。貯留ホッパ3の内部の粒状体が、出口62Lから左検査ユニット4Lへ供給され、出口62Rから右検査ユニット4Rへ供給される。図19に示されるように、出口62Lは、左検査ユニット4Lのトラフ11aの上方突出部11bと平面視で重なる位置にある。出口62Rは、右検査ユニット4Rのトラフ11aの上方突出部11bと平面視で重なる位置にある。 The outlets 62L and 62R are openings arranged at the lower part (lower end) of the storage hopper 3 and allowing the granular material to flow out to the inspection unit 4. The granular material inside the storage hopper 3 is supplied from the outlet 62L to the left inspection unit 4L, and is supplied from the outlet 62R to the right inspection unit 4R. As shown in FIG. 19, the outlet 62L is positioned so as to overlap the upward protrusion 11b of the trough 11a of the left inspection unit 4L in a plan view. The outlet 62R is located at a position where it overlaps with the upward protrusion 11b of the trough 11a of the right inspection unit 4R in a plan view.
 貯留ホッパ3は、その内部空間を左右の検査ユニット4に対応して分岐させる分岐部材71を備えている。分岐部材71は、貯留ホッパ3の底壁の一部を構成している。分岐部材71は、図20に示されるように、貯留ホッパ3の前部から後部まで延びている。左の出口62Lが分岐部材71の左に位置し、右の出口62Rが分岐部材71の右に位置する。 The storage hopper 3 is provided with a branch member 71 that branches the internal space corresponding to the left and right inspection units 4. The branch member 71 constitutes a part of the bottom wall of the storage hopper 3. As shown in FIG. 20, the branch member 71 extends from the front portion to the rear portion of the storage hopper 3. The left exit 62L is located to the left of the branch member 71, and the right exit 62R is located to the right of the branch member 71.
 貯留ホッパ3は、出口62L、62Rに繋がる下窄まり形状の下窄まり部3aを備えている。下窄まり部3aの側壁3bは、貯留ホッパ3の下部の後壁である。側壁3bは、図20に示されるように、その法線が上斜め前を向く姿勢で配置されている。 The storage hopper 3 is provided with a lower constriction portion 3a having a lower constriction shape connected to the outlets 62L and 62R. The side wall 3b of the lower constriction 3a is the lower rear wall of the storage hopper 3. As shown in FIG. 20, the side wall 3b is arranged so that its normal line faces upward and diagonally forward.
 貯留ホッパ3は、上下方向に沿って延びる前壁部材72(壁部材の一例)と、前壁部材72に形成された点検用開口72aと、点検用開口72aを塞ぐ閉塞部材73と、を備えている。閉塞部材73は、前壁部材72に対して上下方向にスライド可能であり、前壁部材72に対して着脱可能である。 The storage hopper 3 includes a front wall member 72 (an example of a wall member) extending in the vertical direction, an inspection opening 72a formed in the front wall member 72, and a closing member 73 for closing the inspection opening 72a. ing. The closing member 73 is slidable in the vertical direction with respect to the front wall member 72, and is removable from the front wall member 72.
 貯留ホッパ3は、前壁部材72に設けられた透明な左右の監視窓72b、72cと、監視窓72b、72cを塞ぐ閉塞部材74、75を備えている。 The storage hopper 3 includes transparent left and right monitoring windows 72b and 72c provided on the front wall member 72, and closing members 74 and 75 that close the monitoring windows 72b and 72c.
 第1揚送コンベア2により入口61から投入された粒状体は、左の出口62Lまたは右の出口62Rから下方へ流出し、トラフ11aへ落下する。第1揚送コンベア2による投入量よりも振動フィーダ11による送出量が小さい場合、粒状体がトラフ11aの上に堆積し、貯留ホッパ3の内部に貯留される状態となる。 The granules introduced from the inlet 61 by the first transport conveyor 2 flow downward from the left outlet 62L or the right outlet 62R and fall to the trough 11a. When the delivery amount by the vibration feeder 11 is smaller than the input amount by the first transport conveyor 2, the granular material is deposited on the trough 11a and is stored inside the storage hopper 3.
〔調整機構〕
 本実施形態では、貯留ホッパ3に調整機構ADが設けられる。調整機構ADは、左右の検査ユニット4への粒状体の供給量を調整する。調整機構ADは、ガイド部材80を備える。
[Adjustment mechanism]
In the present embodiment, the storage hopper 3 is provided with the adjustment mechanism AD. The adjusting mechanism AD adjusts the supply amount of the granular material to the left and right inspection units 4. The adjustment mechanism AD includes a guide member 80.
 ガイド部材80は、三角柱状の部材であって、中心軸が上下方向に沿い、且つ1の稜線80aが入口61に面する姿勢にて、貯留ホッパ3の内部に配置されている。ガイド部材80は、左右方向にスライド可能な状態で、閉塞部材73に支持されている。詳しくは、図21に示されるように、閉塞部材73に左右方向へ延びる長穴73aが形成されている。
ガイド部材80を閉塞部材73へ取り付けるボルト81が、長穴73aに挿通されている。
The guide member 80 is a triangular columnar member, and is arranged inside the storage hopper 3 in a posture in which the central axis is along the vertical direction and the ridge line 80a of 1 faces the inlet 61. The guide member 80 is supported by the closing member 73 in a state where it can slide in the left-right direction. Specifically, as shown in FIG. 21, an elongated hole 73a extending in the left-right direction is formed in the closing member 73.
A bolt 81 for attaching the guide member 80 to the closing member 73 is inserted through the elongated hole 73a.
 本実施形態では、粒状体の移動経路RTは、図20に示されるように、第1揚送コンベア2から前方または前斜め下へ延びる。ガイド部材80は、第1揚送コンベア2から投入された粒状体の移動経路RT上に配置されている。従って、ガイド部材80と衝突した粒状体は、左または右へ飛散する。すなわち、ガイド部材80により粒状体が左右の出口62L、62Rへ分配される。 In the present embodiment, the movement path RT of the granules extends forward or diagonally downward from the first transport conveyor 2 as shown in FIG. The guide member 80 is arranged on the movement path RT of the granules charged from the first transport conveyor 2. Therefore, the granules that collide with the guide member 80 are scattered to the left or right. That is, the granules are distributed to the left and right outlets 62L and 62R by the guide member 80.
 また、ガイド部材80は左右方向にスライド可能である。換言すれば、ガイド部材80は、粒状体の移動経路RTと交差する方向での位置変更が可能である。ガイド部材80を左寄りに位置させると、より多くの粒状体が右の出口62Rへ導かれる。従って、貯留ホッパ3から右検査ユニット4Rへ供給される粒状体が増加し、貯留ホッパ3から左検査ユニット4Lへ供給される粒状体が減少する。ガイド部材80を右寄りに位置させると、反対の結果となる。このようにして、調整機構ADによって左右の検査ユニット4への粒状体の供給量が調整可能である。 Further, the guide member 80 can slide in the left-right direction. In other words, the guide member 80 can be repositioned in the direction intersecting the movement path RT of the granular body. Positioning the guide member 80 to the left leads more granules to the right exit 62R. Therefore, the amount of granules supplied from the storage hopper 3 to the right inspection unit 4R increases, and the amount of granules supplied from the storage hopper 3 to the left inspection unit 4L decreases. Positioning the guide member 80 to the right gives the opposite result. In this way, the supply amount of the granular material to the left and right inspection units 4 can be adjusted by the adjusting mechanism AD.
 図20に示されるように、ガイド部材80は、第1揚送コンベア2の最上端2aよりも下に位置している。最上端2aとは、第1揚送コンベア2のバケット2bが最も高い位置にある時のバケット2bの上端の位置である。 As shown in FIG. 20, the guide member 80 is located below the uppermost end 2a of the first transport conveyor 2. The uppermost end 2a is the position of the upper end of the bucket 2b when the bucket 2b of the first transport conveyor 2 is at the highest position.
 図20に示されるように、ガイド部材80は、分岐部材71よりも上に位置する。詳しくは、ガイド部材80の全体が分岐部材71の上端よりも上に位置する。 As shown in FIG. 20, the guide member 80 is located above the branch member 71. Specifically, the entire guide member 80 is located above the upper end of the branch member 71.
 図20に示されるように、ガイド部材80の下端は、入口61の下端よりも下に位置する。ガイド部材80の上端は、入口61の下端よりも上に位置する。 As shown in FIG. 20, the lower end of the guide member 80 is located below the lower end of the inlet 61. The upper end of the guide member 80 is located above the lower end of the inlet 61.
 本実施形態では、ガイド部材80が装着された状態で、閉塞部材73を貯留ホッパ3から取り外すことができる。従って、調整機構AD及び貯留ホッパ3の内部のメンテナンスを容易に行うことができる。 In the present embodiment, the closing member 73 can be removed from the storage hopper 3 with the guide member 80 attached. Therefore, the internal maintenance of the adjustment mechanism AD and the storage hopper 3 can be easily performed.
 また、本実施形態では、監視窓72b、72cから、貯留ホッパ3の内部を視認することができる。従って、左右の出口62L、62Rへの粒状体の流出状態を監視窓72b、72cから確認しながら、ガイド部材80の位置を調整することができる。 Further, in the present embodiment, the inside of the storage hopper 3 can be visually recognized from the monitoring windows 72b and 72c. Therefore, the position of the guide member 80 can be adjusted while checking the outflow state of the granular material to the left and right outlets 62L and 62R from the monitoring windows 72b and 72c.
〔オーバーフロー排出口及びカバー部材〕
 貯留ホッパ3は、オーバーフロー排出口63及びカバー部材90を備えている。
[Overflow outlet and cover member]
The storage hopper 3 includes an overflow discharge port 63 and a cover member 90.
 オーバーフロー排出口63は、下窄まり部3aの側壁3bに形成された台形の開口である。貯留ホッパ3に貯留された粒状体が、オーバーフロー排出口63を通って貯留ホッパ3の外部に流出可能である。図20に示されるように、オーバーフロー排出口63は、貯留ホッパ3の入口61よりも下且つ出口62L、62Rよりも上に配置されている。 The overflow discharge port 63 is a trapezoidal opening formed on the side wall 3b of the lower constriction portion 3a. The granules stored in the storage hopper 3 can flow out to the outside of the storage hopper 3 through the overflow discharge port 63. As shown in FIG. 20, the overflow outlet 63 is arranged below the inlet 61 of the storage hopper 3 and above the outlets 62L and 62R.
 カバー部材90は、オーバーフロー排出口63を上方から覆う板状の部材である。カバー部材90の後端部は、下窄まり部3aの側壁3bに支持されている。カバー部材90は、側壁3bから前方へ延びている。 The cover member 90 is a plate-shaped member that covers the overflow discharge port 63 from above. The rear end portion of the cover member 90 is supported by the side wall 3b of the lower constriction portion 3a. The cover member 90 extends forward from the side wall 3b.
 カバー部材90の上面は、斜め下方に傾斜する傾斜面90a、90bを備える。本実施形態では、水平面に対する傾斜面90a、90bの傾斜角θ(図22)は35度である。傾斜角θが35度以上であると好ましい。 The upper surface of the cover member 90 includes inclined surfaces 90a and 90b that incline diagonally downward. In the present embodiment, the inclination angles θ (FIG. 22) of the inclined surfaces 90a and 90b with respect to the horizontal plane are 35 degrees. It is preferable that the inclination angle θ is 35 degrees or more.
 カバー部材90は、貯留ホッパ3の入口61の下方、且つ、オーバーフロー排出口63の上方に設けられている。すなわち、カバー部材90は、入口61とオーバーフロー排出口63との間に配置されている。詳しくは、図20に示されるように、カバー部材90の上端と入口61の下端とがほぼ同じ高さに位置する。 The cover member 90 is provided below the inlet 61 of the storage hopper 3 and above the overflow discharge port 63. That is, the cover member 90 is arranged between the inlet 61 and the overflow outlet 63. Specifically, as shown in FIG. 20, the upper end of the cover member 90 and the lower end of the inlet 61 are located at substantially the same height.
 図20に示されるように、カバー部材90は、入口61から投入される粒状体の移動経路RT上に配置される。入口61から投入された粒状体は、カバー部材90に接触し傾斜面90a、90bに導かれて左右に流下する。従って、入口61から投入された粒状体がオーバーフロー排出口63に直接流入することが抑制される。 As shown in FIG. 20, the cover member 90 is arranged on the movement path RT of the granules charged from the inlet 61. The granules introduced from the inlet 61 come into contact with the cover member 90, are guided by the inclined surfaces 90a and 90b, and flow down to the left and right. Therefore, it is suppressed that the granules introduced from the inlet 61 directly flow into the overflow discharge port 63.
 貯留ホッパ3の内部に貯留された粒状体の上面がオーバーフロー排出口63の下端より高くなると、粒状体がオーバーフロー排出口63に流入する。すなわち、貯留ホッパ3は、カバー部材90の下方において貯留ホッパ3に貯留された粒状体がオーバーフロー排出口63に流入可能なように構成されている。 When the upper surface of the granules stored inside the storage hopper 3 is higher than the lower end of the overflow discharge port 63, the granules flow into the overflow discharge port 63. That is, the storage hopper 3 is configured so that the granules stored in the storage hopper 3 can flow into the overflow discharge port 63 below the cover member 90.
 図22に示されるように、オーバーフロー排出口63の幅とカバー部材90の幅とがほぼ同じである。詳しくは、オーバーフロー排出口63の下端(台形の下辺)の幅とカバー部材90の幅とがほぼ同じである。 As shown in FIG. 22, the width of the overflow discharge port 63 and the width of the cover member 90 are almost the same. Specifically, the width of the lower end (lower side of the trapezoid) of the overflow discharge port 63 and the width of the cover member 90 are substantially the same.
〔他の実施形態〕
(1)調整機構ADの形態は、上述の例に限られない。調整機構ADが、アクチュエータにより移動または動作する部材を備えてもよい。
[Other embodiments]
(1) The form of the adjustment mechanism AD is not limited to the above example. The adjusting mechanism AD may include a member that is moved or operated by an actuator.
(2)ガイド部材80の形状、数、及び位置は、上述の例に限られない。また、ガイド部材80を移動可能にする機構、及びガイド部材80の支持機構は、上述の例に限られない。 (2) The shape, number, and position of the guide members 80 are not limited to the above examples. Further, the mechanism for making the guide member 80 movable and the support mechanism for the guide member 80 are not limited to the above examples.
(3)貯留ホッパ3の外部からガイド部材80を操作可能な持ち手が、貯留ホッパ3に設けられてもよい。 (3) A handle capable of operating the guide member 80 from the outside of the storage hopper 3 may be provided in the storage hopper 3.
(4)本発明は、複数の検査ユニットを備える装置(粒状体検査装置、色彩選別器、光学選別器等)に適用可能である。 (4) The present invention can be applied to an apparatus provided with a plurality of inspection units (granular body inspection apparatus, color sorter, optical sorter, etc.).
〔第5実施形態〕
 第5実施形態では、第1~4実施形態と異なる構成を中心に説明する。第1~4実施形態と共通する構成については、ここで省略する。
[Fifth Embodiment]
In the fifth embodiment, a configuration different from that of the first to fourth embodiments will be mainly described. The configuration common to the first to fourth embodiments will be omitted here.
 図23に示されるように、カバー部材90の前端と、オーバーフロー排出口63の前端とが、平面視で一致している。従って、入口61から投入された粒状体がオーバーフロー排出口63に直接入ることが効果的に抑制される。カバー部材90の前端が、オーバーフロー排出口63の前端よりも前に位置してもよい。なお、貯留ホッパ3における粒状体の移動経路RTは、貯留ホッパ3の形状や入口61の位置及び形状に応じて変化する。粒状体の移動経路RTによっては、カバー部材90の前端がオーバーフロー排出口64の前端よりも後に位置してもよい。この場合でも、カバー部材90の存在により、入口61から投入された粒状体がオーバーフロー排出口63に直接入ることが抑制される。 As shown in FIG. 23, the front end of the cover member 90 and the front end of the overflow discharge port 63 coincide with each other in a plan view. Therefore, it is effectively suppressed that the granules introduced from the inlet 61 directly enter the overflow discharge port 63. The front end of the cover member 90 may be located in front of the front end of the overflow outlet 63. The movement path RT of the granules in the storage hopper 3 changes depending on the shape of the storage hopper 3 and the position and shape of the inlet 61. Depending on the movement path RT of the granules, the front end of the cover member 90 may be located after the front end of the overflow outlet 64. Even in this case, the presence of the cover member 90 prevents the granules introduced from the inlet 61 from directly entering the overflow discharge port 63.
〔変形例〕
 カバー部材90が、図24に示される形状であってもよい。図示例では、カバー部材90が、側壁3bから前斜め下へ延びている。カバー部材90の前端部の下端は、オーバーフロー排出口63の上端よりも下に位置している。
[Modification example]
The cover member 90 may have the shape shown in FIG. 24. In the illustrated example, the cover member 90 extends diagonally forward and downward from the side wall 3b. The lower end of the front end portion of the cover member 90 is located below the upper end of the overflow discharge port 63.
 カバー部材90が、図25に示される形状であってもよい。図示例では、カバー部材90が側壁3bから前壁部材72まで前方に延びている。カバー部材90の後端部は側壁3bに支持されている。カバー部材90前端部は前壁部材72に支持されている。従って、上述の例に比べてカバー部材90の剛性が高くなり、外力によるカバー部材90の変形が抑制される。 The cover member 90 may have the shape shown in FIG. 25. In the illustrated example, the cover member 90 extends forward from the side wall 3b to the front wall member 72. The rear end portion of the cover member 90 is supported by the side wall 3b. The front end of the cover member 90 is supported by the front wall member 72. Therefore, the rigidity of the cover member 90 is higher than that of the above example, and the deformation of the cover member 90 due to an external force is suppressed.
〔他の実施形態〕
(1)カバー部材90の形状、数、位置、及び支持態様は、上述の例に限られない。
[Other embodiments]
(1) The shape, number, position, and support mode of the cover member 90 are not limited to the above examples.
(2)オーバーフロー排出口63の形状、数、及び位置は、上述の例に限られない。貯留ホッパ3が複数のオーバーフロー排出口64を備える場合において、一部のオーバーフロー排出口63にのみカバー部材90が設けられてもよい。 (2) The shape, number, and position of the overflow outlet 63 are not limited to the above examples. When the storage hopper 3 includes a plurality of overflow discharge ports 64, the cover member 90 may be provided only on a part of the overflow discharge ports 63.
(3)上述の実施形態において、貯留ホッパ3が調整機構AD(ガイド部材80)を備えなくてもよい。 (3) In the above-described embodiment, the storage hopper 3 may not be provided with the adjusting mechanism AD (guide member 80).
(4)図24及び図25には調整機構AD(ガイド部材80)が記載されていない。しかし、変形例に係るカバー部材90と調整機構AD(ガイド部材80)との両方が貯留ホッパ3に設けられてもよい。 (4) The adjustment mechanism AD (guide member 80) is not shown in FIGS. 24 and 25. However, both the cover member 90 and the adjusting mechanism AD (guide member 80) according to the modified example may be provided in the storage hopper 3.
(5)本発明は、貯留装置を備える装置(粒状体検査装置、色彩選別器、光学選別器等)に適用可能である。 (5) The present invention can be applied to an apparatus provided with a storage apparatus (granular body inspection apparatus, color sorter, optical sorter, etc.).
〔第6実施形態〕
 本発明に係る粒状体搬送用の昇降機120について説明する。図26に示すように、昇降機120は、例えば、選別機110に設けられる。なお、本発明に係る粒状体搬送用の昇降機120は、選別機110に設けられるものに限定されるものではなく、精米機や籾摺機等に設けられるものであっても構わない。
[Sixth Embodiment]
The elevator 120 for transporting granules according to the present invention will be described. As shown in FIG. 26, the elevator 120 is provided in, for example, the sorter 110. The elevator 120 for transporting granules according to the present invention is not limited to the one provided in the sorting machine 110, and may be provided in a rice milling machine, a huller, or the like.
 選別機110は、装置本体111の内部に設けられて粒状体R(図28参照)を光学的に測定して(粒状体Rを透過光や反射光によって画像認識する等して)正常粒の粒状体Rを選択する選択処理部(図示せず)を有する。 The sorter 110 is provided inside the apparatus main body 111 and optically measures the granular body R (see FIG. 28) (for example, the granular body R is recognized as an image by transmitted light or reflected light) to obtain normal grains. It has a selection processing unit (not shown) for selecting the granular material R.
 図26に示すように、昇降機120が選別機110に設けられる場合には、背面側に設けられた投入ホッパ112に投入された玄米や米粒等の粒状体Rを選別機110の上部に設けられた貯留ホッパ113に搬送する(上方に移送する)供給用昇降機120Aとして用いられるとともに、上記選択処理部で処理された後の正常粒の粒状体Rを選別機110の上部から排出させるために粒状体Rを上方に移送する排出用昇降機120Bとして用いられる。 As shown in FIG. 26, when the elevator 120 is provided in the sorter 110, the granules R such as brown rice and rice grains charged in the charging hopper 112 provided on the back side are provided in the upper part of the sorter 110. It is used as a supply elevator 120A to be transported (transferred upward) to the storage hopper 113, and is granular in order to discharge the granular body R of normal grains after being processed by the selection processing unit from the upper part of the sorting machine 110. It is used as a discharge elevator 120B that transfers the body R upward.
 図27に示すように、昇降機120には、粒状体Rの入口である投入口121が本体ケース122の下部一側面に設けられている。昇降機120を供給用昇降機120Aとして用いる場合には、投入口121に、粒状体Rを本体ケース122内に投入するための投入ホッパ112が設けられる。 As shown in FIG. 27, the elevator 120 is provided with an input port 121, which is an entrance of the granular body R, on one lower side surface of the main body case 122. When the elevator 120 is used as the supply elevator 120A, the loading port 121 is provided with a loading hopper 112 for loading the granular material R into the main body case 122.
 昇降機120には、粒状体Rの出口である排出口123が本体ケース122の上部他側面に設けられている。排出口123には、粒状体Rを本体ケース122内から排出するための排出部124が設けられる。 The elevator 120 is provided with a discharge port 123, which is an outlet for the granular material R, on the upper and other side surfaces of the main body case 122. The discharge port 123 is provided with a discharge unit 124 for discharging the granular material R from the inside of the main body case 122.
 昇降機120は、上下方向に延びる本体ケース122内の上端部に設けられる上部プーリ125と、本体ケース122内の下端部に設けられる下部プーリ126と、上部プーリ125と下部プーリ126との間に架け渡されるベルト127と、ベルト127の外側に所定間隔毎に取り付けられた複数のバケット128と、を備える。 The elevator 120 is mounted between the upper pulley 125 provided at the upper end of the main body case 122 extending in the vertical direction, the lower pulley 126 provided at the lower end of the main body case 122, and the upper pulley 125 and the lower pulley 126. It comprises a belt 127 to be passed and a plurality of buckets 128 attached to the outside of the belt 127 at predetermined intervals.
 昇降機120では、上部プーリ125をモータ129によって回転してベルト127を回転駆動させることで、ベルト127とともにバケット128が昇降する。バケット128が昇降することで、投入口121を通して投入された粒状体Rが、本体ケース122の上部まで搬送され、排出口123から排出される。 In the elevator 120, the upper pulley 125 is rotated by the motor 129 to rotate and drive the belt 127, so that the bucket 128 moves up and down together with the belt 127. When the bucket 128 moves up and down, the granular material R charged through the charging port 121 is conveyed to the upper part of the main body case 122 and discharged from the discharging port 123.
 図28及び図29に示すように、粒状体Rを搬送するバケット128は、その背面部128aがベルト127の外側に連結されている。バケット128は、背面部128aの反対側に形成される開口縁部128bから粒状体Rを受け入れ、開口縁部128bに連なって設けられる底部128cにおいて受け入れた粒状体Rを保持する。粒状体Rの保持部である底部128cは、粒状体Rの受け入れ時に、粒状体Rがバケット128に入ってくる方向(バケット128内への粒状体Rの進入方向S)に対して直交する方向に形成されている。 As shown in FIGS. 28 and 29, the back surface portion 128a of the bucket 128 that conveys the granular material R is connected to the outside of the belt 127. The bucket 128 receives the granular material R from the opening edge portion 128b formed on the opposite side of the back surface portion 128a, and holds the received granular material R at the bottom portion 128c provided in series with the opening edge portion 128b. The bottom 128c, which is the holding portion of the granular material R, is a direction orthogonal to the direction in which the granular material R enters the bucket 128 (the direction S in which the granular material R enters the bucket 128) when the granular material R is received. Is formed in.
 図27から図30に示すように、昇降機120は、複数のバケット128のうちの一部のバケット128にスクレーパ部材131が取り付けられたスクレーパバケット130(「スクレーパ」の一例)を有する。スクレーパバケット130は、ベルト127の外側に所定の間隔を空けて2体取り付けられている。具体的には、図27に示すように、一方のスクレーパバケット130が本体ケース122の最下部の位置となる場合に、他方のスクレーパバケット130が本体ケース122の最上部の位置となるように、一対のスクレーパバケット130が互いに対向する位置に配置される。なお、昇降機120では、スクレーパバケット130を2体設けているが、これに限定されるものではなく、1体のみ、又は3体以上設けても構わない。 As shown in FIGS. 27 to 30, the elevator 120 has a scraper bucket 130 (an example of a “scraper”) in which a scraper member 131 is attached to a part of the buckets 128 among the plurality of buckets 128. Two scraper buckets 130 are attached to the outside of the belt 127 at predetermined intervals. Specifically, as shown in FIG. 27, when one scraper bucket 130 is in the lowermost position of the main body case 122, the other scraper bucket 130 is in the uppermost position of the main body case 122. A pair of scraper buckets 130 are arranged at positions facing each other. The elevator 120 is provided with two scraper buckets 130, but the present invention is not limited to this, and only one or three or more scraper buckets 130 may be provided.
 スクレーパバケット130は、本体ケース122内に滞留する粒状体Rを掬い上げるためスクレーパ部材131と、スクレーパ部材131をベルト127に対して保持するバケット部材132(「保持部材」の一例)と、から構成されている。 The scraper bucket 130 is composed of a scraper member 131 for scooping up the granular material R staying in the main body case 122, and a bucket member 132 (an example of a “holding member”) that holds the scraper member 131 against the belt 127. Has been done.
 スクレーパ部材131は、スクレーパバケット130による粒状体Rの掬い上げ時に、粒状体Rがスクレーパバケット130に入ってくる方向(スクレーパバケット130内への粒状体Rの進入方向S)に対して直交する方向に形成されている。 The scraper member 131 is in a direction orthogonal to the direction in which the granular material R enters the scraper bucket 130 (direction S in which the granular material R enters the scraper bucket 130) when the granular material R is scooped up by the scraper bucket 130. Is formed in.
 図28に示すように、昇降機120には、バケット128の開口縁部128bと、本体ケース122の底面122a及び側面122bと、の間に所定の隙間122cが形成されており、バケット128の開口縁部128bと本体ケース122の底面122aとの間に形成される隙間122cには粒状体Rが滞留し易い状態となっている。そのため、昇降機120では、複数のバケット128のうちの一部のバケット128にスクレーパ部材131が取り付けられたスクレーパバケット130を設けることで、本体ケース122の底面122aに滞留する粒状体Rをスクレーパ部材131によって掬い上げ、滞留する粒状体Rを効率良く回収できるようにしている。 As shown in FIG. 28, the elevator 120 has a predetermined gap 122c formed between the opening edge portion 128b of the bucket 128 and the bottom surface 122a and the side surface 122b of the main body case 122, and the opening edge portion of the bucket 128 is formed. The granular material R is likely to stay in the gap 122c formed between the portion 128b and the bottom surface 122a of the main body case 122. Therefore, in the elevator 120, by providing the scraper bucket 130 in which the scraper member 131 is attached to a part of the buckets 128 among the plurality of buckets 128, the granular body R staying in the bottom surface 122a of the main body case 122 is removed from the scraper member 131. The granules R that have been scooped up and stagnated can be efficiently recovered.
 スクレーパ部材131は、その先端が、本体ケース122の底面122a及び側面122bと非接触な状態であり、且つバケット128の開口縁部128bより突出するように、バケット部材132に取り付けられている。すなわち、スクレーパ部材131は、その先端が、バケット128の開口縁部128bと、本体ケース122の底面122a及び側面122bと、の間に形成される所定の隙間122cを通るようにバケット部材132に取り付けられている。 The scraper member 131 is attached to the bucket member 132 so that its tip is in non-contact with the bottom surface 122a and the side surface 122b of the main body case 122 and protrudes from the opening edge portion 128b of the bucket 128. That is, the scraper member 131 is attached to the bucket member 132 so that its tip passes through a predetermined gap 122c formed between the opening edge portion 128b of the bucket 128 and the bottom surface 122a and the side surface 122b of the main body case 122. Has been done.
 バケット部材132は、ベルト127の外側に連結され背面部132aと、スクレーパ部材131を保持する開口縁部132bと、背面部132aに固定されて開口縁部132bを保持する側面部132c、32dと、から構成されている。バケット部材132は、背面部132aと開口縁部132bと側面部132c、32dとのそれぞれの縁部の組み合わせによって形成される矩形の開口部132e(「通過可能部分」の一例)を有する。 The bucket member 132 has a back surface portion 132a connected to the outside of the belt 127, an opening edge portion 132b for holding the scraper member 131, and side surface portions 132c and 32d fixed to the back surface portion 132a and holding the opening edge portion 132b. It is composed of. The bucket member 132 has a rectangular opening 132e (an example of a “passable portion”) formed by a combination of the back surface portion 132a, the opening edge portion 132b, and the side surface portions 132c, 32d.
 図28及び図30に示すように、バケット部材132の開口部132eは、開口縁部132bに連なって設けられている。開口部132eは、スクレーパバケット130による粒状体Rの掬い上げ時に、粒状体Rがスクレーパバケット130に入ってくる方向(スクレーパバケット130内への粒状体Rの進入方向S)に対して直交する方向に形成されている。そのため、図29に示すように、スクレーパバケット130による粒状体Rの掬い上げ時に、粒状体Rが開口部132eを通過してスクレーパバケット130から排出される。 As shown in FIGS. 28 and 30, the opening 132e of the bucket member 132 is provided so as to be connected to the opening edge 132b. The opening 132e is a direction orthogonal to the direction in which the granular material R enters the scraper bucket 130 (direction S in which the granular material R enters the scraper bucket 130) when the granular material R is scooped up by the scraper bucket 130. Is formed in. Therefore, as shown in FIG. 29, when the granular material R is scooped up by the scraper bucket 130, the granular material R passes through the opening 132e and is discharged from the scraper bucket 130.
 図30に示すように、開口部132eは、スクレーパバケット130においてベルト127に近い側(スクレーパ部材131が設けられている側の反対側)に設けられている。開口部132eをベルト127に近い側に設けることで、スクレーパバケット130から排出される粒状体Rが、後続のバケット128によって回収され易くなる。 As shown in FIG. 30, the opening 132e is provided in the scraper bucket 130 on the side close to the belt 127 (the side opposite to the side on which the scraper member 131 is provided). By providing the opening 132e on the side closer to the belt 127, the granular material R discharged from the scraper bucket 130 can be easily collected by the subsequent bucket 128.
 次に、昇降機120における作用について説明する。 Next, the operation of the elevator 120 will be described.
 投入口121から投入された粒状体Rは、下降移動するバケット128によって、本体ケース122の下部において掬い上げられ、底部128cにおいて保持される。底部128cに保持される粒状体Rは、上昇移動するバケット128によって本体ケース122の上部まで搬送され、排出口123から排出される。このように、投入口121から投入された粒状体Rの多くは、バケット128によって充分に搬送され、排出口123から排出されるが、バケット128によって掬い切れない粒状体Rは、本体ケース122の下部(隙間122c)に滞留することとなる。そこで、図28に示すように、スクレーパバケット130のスクレーパ部材131によって隙間122cに滞留する粒状体Rを掬い上げる。図29に示すように、掬い上げられた粒状体Rは、スクレーパ部材131に連設される開口縁部132bによって一旦受けられるが、スクレーパバケット130の上昇移動によって、開口縁部132bに連設される開口部132eからスクレーパバケット130外に排出される。すなわち、スクレーパバケット130は、粒状体Rを本体ケース122の下部から掬い上げる機能を有するが、粒状体Rを保持して搬送する機能は有さない。スクレーパバケット130外に排出された粒状体Rは、後続のバケット128によって回収されて本体ケース122の上部まで搬送される。後続のバケット128によって回収されなかった粒状体Rは、再び本体ケース122の下部(隙間122c)に滞留することとなるが、もう一方のスクレーパバケット130によって再度掬い上げることで後続のバケット128によって回収される。 The granular body R charged from the charging port 121 is scooped up at the lower part of the main body case 122 by the bucket 128 that moves downward, and is held at the bottom 128c. The granular body R held in the bottom portion 128c is conveyed to the upper part of the main body case 122 by the bucket 128 that moves upward, and is discharged from the discharge port 123. As described above, most of the granular material R charged from the charging port 121 is sufficiently conveyed by the bucket 128 and discharged from the discharging port 123, but the granular material R that cannot be scooped up by the bucket 128 is the main body case 122. It will stay in the lower part (gap 122c). Therefore, as shown in FIG. 28, the granular body R staying in the gap 122c is scooped up by the scraper member 131 of the scraper bucket 130. As shown in FIG. 29, the scooped granular material R is once received by the opening edge portion 132b connected to the scraper member 131, but is continuously provided to the opening edge portion 132b by the ascending movement of the scraper bucket 130. It is discharged to the outside of the scraper bucket 130 through the opening 132e. That is, the scraper bucket 130 has a function of scooping up the granular material R from the lower part of the main body case 122, but does not have a function of holding and transporting the granular material R. The granular material R discharged to the outside of the scraper bucket 130 is collected by the subsequent bucket 128 and transported to the upper part of the main body case 122. The granular material R that was not collected by the subsequent bucket 128 will stay in the lower part (gap 122c) of the main body case 122 again, but will be collected by the subsequent bucket 128 by scooping up again by the other scraper bucket 130. Will be done.
 ここで、昇降機120の運転開始時に、スクレーパバケット130が本体ケース122の下部に位置する場合(スクレーパ部材131が本体ケース122の最下部付近に位置する場合)には、スクレーパバケット130が上昇移動することで、スクレーパ部材131によって粒状体Rを掬い上げて、スクレーパ部材131及び開口端部130bにて粒状体Rを受けることとなるが、その後、粒状体Rは、開口部132eを通過してスクレーパバケット130外に排出されるため、スクレーパバケット130自体に大きな負荷は掛からない。そのため、スクレーパバケット130を昇降移動させるモータ129(上部プーリ125を回転駆動させるモータ129)に定常運転時以上の強い負荷が発生しない。 Here, when the scraper bucket 130 is located at the lower part of the main body case 122 (when the scraper member 131 is located near the lowermost part of the main body case 122) at the start of operation of the elevator 120, the scraper bucket 130 moves up. As a result, the granular material R is scooped up by the scraper member 131, and the granular material R is received by the scraper member 131 and the opening end portion 130b. After that, the granular material R passes through the opening portion 132e and is scraped. Since it is discharged to the outside of the bucket 130, a large load is not applied to the scraper bucket 130 itself. Therefore, a stronger load than during steady operation is not generated on the motor 129 (motor 129 that rotationally drives the upper pulley 125) that moves the scraper bucket 130 up and down.
 以上のように、粒状体搬送用の昇降機120及びスクレーパバケット130においては、昇降機120の運転開始時に、スクレーパバケット130によって掬い上げられる粒状体Rがスクレーパバケット130の開口部132eを通過することから、昇降機120の運転開始時におけるスクレーパバケット130自体に掛かる負荷が軽減される。そのため、昇降機120の運転開始時におけるモータ129の負荷を軽減することができ、使用するモータ129の容量を下げることができる。また、昇降機120の運転開始時におけるスクレーパバケット130自体に掛かる負荷が軽減されることで、スクレーパバケット130を保持するベルト127が上部プーリ125に対してスリップし難い状態となり、ベルト127の消耗を抑えることができる。 As described above, in the elevator 120 and the scraper bucket 130 for transporting the granular material, the granular material R scooped up by the scraper bucket 130 passes through the opening 132e of the scraper bucket 130 at the start of the operation of the elevator 120. The load applied to the scraper bucket 130 itself at the start of operation of the elevator 120 is reduced. Therefore, the load on the motor 129 at the start of operation of the elevator 120 can be reduced, and the capacity of the motor 129 used can be reduced. Further, by reducing the load applied to the scraper bucket 130 itself at the start of operation of the elevator 120, the belt 127 holding the scraper bucket 130 is less likely to slip with respect to the upper pulley 125, and the wear of the belt 127 is suppressed. be able to.
 なお、本実施の形態では、粒状体Rの通過可能部分であるスクレーパバケット130の開口部132eを、背面部132aと開口縁部132bと側面部132c、32dとのそれぞれの縁部を組み合わせて形成しているが、これに限定されるものではなく、開口部132eの一部分を塞いでも構わない(例えば、開口部132eの側面部132c側半分又は開口部132eの側面部132d側半分、或いは開口部132eの中央部分のみに粒状体Rの通過可能な開口部を設ける。)。 In the present embodiment, the opening 132e of the scraper bucket 130, which is a passable portion of the granular body R, is formed by combining the back surface portion 132a, the opening edge portion 132b, and the respective edges of the side surface portions 132c and 32d. However, the present invention is not limited to this, and a part of the opening 132e may be closed (for example, the side half of the opening 132e, the side half of the side portion 132d, or the opening). An opening through which the granular material R can pass is provided only in the central portion of 132e).
 また、本実施の形態では、スクレーパバケット130おける粒状体Rの通過可能部分(開口部132e)をバケット部材132に設けているが、これに限定されるものではなく、図31に示すように、スクレーパバケット130おける粒状体Rの通過可能部分をスクレーパ部材131に設けても構わない。 Further, in the present embodiment, the bucket member 132 is provided with a passable portion (opening 132e) of the granular material R in the scraper bucket 130, but the present invention is not limited to this, and as shown in FIG. The scraper member 131 may be provided with a passable portion of the granular material R in the scraper bucket 130.
 この場合、図31Aに示すように、一対のスクレーパバケット130のうちの一方のスクレーパバケット130に設けられているスクレーパ部材131に、その一方側(図31Aでは右側)を切り欠いた右側切欠き部131e(「粒状体の通過可能部分」の一例)を形成する。また、図31Bに示すように、一対のスクレーパバケット130のうちの他方のスクレーパバケット130に設けられているスクレーパ部材131に、その他方側(図31Bでは左側)を切り欠いた左側切欠き部131f(「粒状体の通過可能部分」の一例)を形成する。 In this case, as shown in FIG. 31A, a right notch portion in which one side (right side in FIG. 31A) is cut out in the scraper member 131 provided in one of the scraper buckets 130 of the pair of scraper buckets 130. Form 131e (an example of "passable portion of granular material"). Further, as shown in FIG. 31B, the left side notch 131f having the other side (left side in FIG. 31B) cut out from the scraper member 131 provided in the other scraper bucket 130 of the pair of scraper buckets 130. (An example of "passable part of granular material") is formed.
 スクレーパ部材131に右側切欠き部131e又は左側切欠き部131fを設けた場合には、昇降機120の運転開始時に、スクレーパバケット130が本体ケース122の下部に位置する場合には、スクレーパバケット130が上昇移動することで、スクレーパ部材131によって粒状体Rを掬い上げて、スクレーパ部材131及び開口端部130bにて粒状体Rを受けることとなるが、スクレーパ部材131の右側切欠き部131e及び左側切欠き部131fでは、粒状体Rを掬い上げないため、スクレーパ部材131全体で粒状体Rを掬い上げる場合と比べてスクレーパバケット130自体に掛かる負荷が少なくなる。 When the scraper member 131 is provided with the right notch 131e or the left notch 131f, the scraper bucket 130 rises when the scraper bucket 130 is located at the lower part of the main body case 122 at the start of operation of the elevator 120. By moving, the granular material R is scooped up by the scraper member 131, and the granular material R is received by the scraper member 131 and the opening end portion 130b. Since the granular body R is not scooped up in the portion 131f, the load applied to the scraper bucket 130 itself is smaller than in the case where the granular body R is scooped up by the entire scraper member 131.
 また、スクレーパ部材131に右側切欠き部131e又は左側切欠き部131fを設けた場合には、スクレーパ部材131によって掬い上げた粒状体Rを底部132fで保持可能なため、スクレーパバケット130に、粒状体Rを掬い上げる機能と、粒状体Rを保持して搬送する機能と、の両機能を持たせつつ、スクレーパバケット130自体に掛かる負荷を少なくすることができる。 Further, when the scraper member 131 is provided with the right notch portion 131e or the left notch portion 131f, the granular body R scooped up by the scraper member 131 can be held by the bottom portion 132f, so that the granular body R can be held in the scraper bucket 130. It is possible to reduce the load applied to the scraper bucket 130 itself while having both the function of scooping up R and the function of holding and transporting the granular material R.
 さらに、スクレーパ部材131に右側切欠き部131e又は左側切欠き部131fを設けた場合には、右側切欠き部131eを有するスクレーパバケット130では掬い上げ切れなかった粒状体Rを、左側切欠き部131fを有するスクレーパバケット130によって掬い上げることができるため、本体ケース122の隙間122cに滞留する粒状体Rを充分に掬い上げることができる。 Further, when the scraper member 131 is provided with the right notch portion 131e or the left notch portion 131f, the granular body R which cannot be completely scooped up by the scraper bucket 130 having the right notch portion 131e is removed from the left notch portion 131f. Since it can be scooped up by the scraper bucket 130 having the above, the granular body R staying in the gap 122c of the main body case 122 can be sufficiently scooped up.
 また、本実施の形態では、本体ケース122内に滞留する粒状体Rを掬い上げるためのスクレーパを、スクレーパ部材131と、バケット部材132とから構成されるスクレーパバケット130としているが、これに限定されるものではなく、図32に示すように、スクレーパ部材131と、スクレーパ部材131をベルト127に対して保持する保持部材131Aと、から構成されるスクレーパ130Aを上記スクレーパとしても構わない。この場合、保持部材131Aの両側に、スクレーパ部材131によって掬い上げられる粒状体Rが通過可能な通過可能部分131Bを形成する。 Further, in the present embodiment, the scraper for scooping up the granular material R staying in the main body case 122 is the scraper bucket 130 composed of the scraper member 131 and the bucket member 132, but the scraper is limited to this. However, as shown in FIG. 32, the scraper 130A composed of the scraper member 131 and the holding member 131A that holds the scraper member 131 against the belt 127 may be used as the scraper. In this case, passable portions 131B through which the granular material R scooped up by the scraper member 131 can pass are formed on both sides of the holding member 131A.
 なお、図32のスクレーパ130Aでは、保持部材131Aをスクレーパ部材131の長手方向の中央部に設けているが、これに限定されるものではなく、2本の保持部材131Aをスクレーパ部材131の長手方向の両側にそれぞれ配置して、2本の保持部材131A間に通過可能部分131Bを形成しても構わない。 In the scraper 130A of FIG. 32, the holding member 131A is provided at the center in the longitudinal direction of the scraper member 131, but the present invention is not limited to this, and the two holding members 131A are provided in the longitudinal direction of the scraper member 131. A passable portion 131B may be formed between the two holding members 131A by arranging them on both sides of the above.
 さらに、図32のスクレーパ130Aでは、スクレーパ部材131を保持部材131Aによって保持しているが、これに限定されるものではなく、スクレーパ部材131自体を直接ベルト127に取り付けたものを上記スクレーパとしても構わない。この場合、スクレーパ部材131自体に、粒状体Rが通過可能な通過可能部分を形成する。 Further, in the scraper 130A of FIG. 32, the scraper member 131 is held by the holding member 131A, but the present invention is not limited to this, and the scraper member 131 itself may be directly attached to the belt 127 as the scraper. do not have. In this case, a passable portion through which the granular material R can pass is formed on the scraper member 131 itself.
 2   :第1揚送コンベア(バケットコンベア)
 2a  :最上端
 3   :貯留ホッパ(貯留装置)
 3a  :下窄まり部
 3b  :側壁
 4   :検査ユニット
 4L  :左検査ユニット(基準ユニット)
 4R  :右検査ユニット(被調整ユニット)
 7a  :良否判定部
 7b  :検出部
 7c  :異常判定部
 7d  :対向センサ間異常判定部
 7e  :上下センサ間異常判定部
 7f  :記憶部
 7h  :変更部
 7j  :排除制御部
 7k  :位置異常判定部
 71  :分岐部材
 72a :点検用開口
 73  :閉塞部材
 8   :報知装置
 10  :送出装置
 20  :検出装置
 21  :照明装置
 23  :センサ
 23A :前センサ(第1センサ、上センサ)
 23B :後センサ(第2センサ、上センサ)
 23C :透過センサ(下センサ)
 25  :レンズ装置
 30  :排除装置
 50  :部材
 61  :入口
 62L :出口
 62R :出口
 63  :オーバーフロー排出口
 80  :ガイド部材
 90  :カバー部材
 90a :傾斜面
 90b :傾斜面
 AD  :調整機構
 CH1 :チャンネル
 DE  :検出画素
 DL  :検出領域
 DU  :検出領域
 E   :画素
 F   :図形
 F1  :三角形
 F1a :部位(第1部位)
 F2  :長方形
 F2a :部位(第2部位)
 F2b :部位(第2部位)
 G   :粒状体
 G1  :粒状体
 G2  :粒状体
 IA :検査領域
 RT  :移動経路
 120 :粒状体搬送用の昇降機
 122 :本体ケース
 125 :上部プーリ
 126 :下部プーリ
 127 :ベルト
 128 :バケット
 130 :スクレーパバケット(スクレーパ)
 132e:開口部(通過可能部分)
 R   :粒状体
2: First transport conveyor (bucket conveyor)
2a: Top end 3: Storage hopper (storage device)
3a: Lower constriction 3b: Side wall 4: Inspection unit 4L: Left inspection unit (reference unit)
4R: Right inspection unit (adjusted unit)
7a: Good / bad judgment unit 7b: Detection unit 7c: Abnormality determination unit 7d: Opposite sensor abnormality determination unit 7e: Upper and lower sensor abnormality determination unit 7f: Storage unit 7h: Change unit 7j: Exclusion control unit 7k: Position abnormality determination unit 71 : Branch member 72a: Inspection opening 73: Closing member 8: Notification device 10: Transmission device 20: Detection device 21: Lighting device 23: Sensor 23A: Front sensor (first sensor, upper sensor)
23B: Rear sensor (second sensor, upper sensor)
23C: Transmission sensor (lower sensor)
25: Lens device 30: Exclusion device 50: Member 61: Inlet 62L: Outlet 62R: Outlet 63: Overflow outlet 80: Guide member 90: Cover member 90a: Inclined surface 90b: Inclined surface AD: Adjustment mechanism CH1: Channel DE: Detection pixel DL: Detection area DU: Detection area E: Pixel F: Figure F1: Triangle F1a: Part (first part)
F2: Rectangle F2a: Part (second part)
F2b: Site (second site)
G: Granules G1: Granules G2: Granules IA: Inspection area RT: Movement path 120: Elevator for transporting granules 122: Main body case 125: Upper pulley 126: Lower pulley 127: Belt 128: Bucket 130: Scraper bucket (Scraper)
132e: Opening (passable part)
R: Granules

Claims (45)

  1.  粒状体を検査して不良品を検出する複数の検査ユニットと、
     複数の前記検査ユニットのうちの1つである基準ユニットにおける単位時間あたりの不良品の検出数である選別感度と、その余の前記検査ユニットである被調整ユニットにおける前記選別感度と、の差が小さくなるように、前記被調整ユニットの動作パラメータを変更する変更部と、を備える粒状体検査装置。
    Multiple inspection units that inspect granules and detect defective products,
    The difference between the sorting sensitivity, which is the number of defective products detected per unit time in the reference unit, which is one of the plurality of inspection units, and the sorting sensitivity in the adjusted unit, which is the remaining inspection unit. A granular body inspection device including a changing unit that changes the operating parameters of the unit to be adjusted so as to be smaller.
  2.  前記検査ユニットは、検査領域へ前記粒状体を送出する送出装置と、前記検査領域からの光を検知するセンサと、前記センサの出力に基づいて前記粒状体の不良品を検出する検出装置と、を備え、
     前記送出装置は、前記被調整ユニットの動作パラメータとしての設定送出量に基づいて、前記粒状体の送出量を制御し、
     前記変更部は、前記被調整ユニットにおける前記選別感度が前記基準ユニットにおける前記選別感度よりも小さい場合に、当該被調整ユニットにおける前記設定送出量を増加させる請求項1に記載の粒状体検査装置。
    The inspection unit includes a sending device that sends the granules to the inspection area, a sensor that detects light from the inspection area, and a detection device that detects defective products of the granules based on the output of the sensor. Equipped with
    The sending device controls the sending amount of the granules based on the set sending amount as the operation parameter of the adjusted unit.
    The granular body inspection apparatus according to claim 1, wherein the changing unit increases the set delivery amount in the adjusted unit when the sorting sensitivity in the adjusted unit is smaller than the sorting sensitivity in the reference unit.
  3.  前記変更部は、前記被調整ユニットにおける前記選別感度が前記基準ユニットにおける前記選別感度よりも大きい場合に、当該被調整ユニットにおける前記設定送出量を減少させる請求項2に記載の粒状体検査装置。 The granular body inspection device according to claim 2, wherein the changing unit reduces the set transmission amount in the adjusted unit when the sorting sensitivity in the adjusted unit is larger than the sorting sensitivity in the reference unit.
  4.  前記検査ユニットは、検査領域へ前記粒状体を送出する送出装置と、前記検査領域からの光を検知するセンサと、前記センサの出力に基づいて前記粒状体の不良品を検出する検出装置と、を備え、
     前記検出装置は、前記被調整ユニットの動作パラメータとしての選別閾値に基づき、前記センサが検出する光の強度が前記選別閾値よりも低い場合に前記粒状体を不良品として検出し、
     前記変更部は、前記被調整ユニットにおける前記選別感度が前記基準ユニットにおける前記選別感度よりも小さい場合に、当該被調整ユニットにおける前記選別閾値を高くする請求項1から3のいずれか1項に記載の粒状体検査装置。
    The inspection unit includes a sending device that sends the granules to the inspection area, a sensor that detects light from the inspection area, and a detection device that detects defective products of the granules based on the output of the sensor. Equipped with
    The detection device detects the granules as defective products when the light intensity detected by the sensor is lower than the selection threshold value based on the selection threshold value as the operation parameter of the adjustment unit.
    The changed portion is described in any one of claims 1 to 3 for increasing the sorting threshold value in the adjusted unit when the sorting sensitivity in the adjusted unit is smaller than the sorting sensitivity in the reference unit. Granularity inspection equipment.
  5.  前記変更部は、前記被調整ユニットにおける前記選別感度が前記基準ユニットにおける前記選別感度よりも大きい場合に、当該被調整ユニットにおける前記選別閾値を低くする請求項4に記載の粒状体検査装置。 The granular body inspection apparatus according to claim 4, wherein the changing unit lowers the sorting threshold value in the adjusted unit when the sorting sensitivity in the adjusted unit is larger than the sorting sensitivity in the reference unit.
  6.  前記検査ユニットは、検査領域へ前記粒状体を送出する送出装置と、前記検査領域からの光を検知するセンサと、前記センサの出力に基づいて前記粒状体の不良品を検出する検出装置と、前記検査領域を照明する照明装置と、を備え、
     前記変更部は、前記基準ユニットにおける前記選別感度と前記被調整ユニットの前記選別感度との差に基づいて、前記被調整ユニットの動作パラメータとしての前記照明装置の発光強度を変更する請求項1から5のいずれか1項に記載の粒状体検査装置。
    The inspection unit includes a sending device that sends the granules to the inspection area, a sensor that detects light from the inspection area, and a detection device that detects defective products of the granules based on the output of the sensor. A lighting device for illuminating the inspection area is provided.
    From claim 1, the changing unit changes the emission intensity of the lighting device as an operating parameter of the adjusted unit based on the difference between the sorting sensitivity in the reference unit and the sorting sensitivity of the adjusted unit. 5. The granular body inspection apparatus according to any one of 5.
  7.  前記検査ユニットは、検査領域へ前記粒状体を送出する送出装置と、前記検査領域からの光を検知するセンサと、前記センサの出力に基づいて前記粒状体の不良品を検出する検出装置と、を備え、
     前記変更部は、前記基準ユニットにおける前記選別感度と前記被調整ユニットの前記選別感度との差に基づいて、前記被調整ユニットの動作パラメータとしての前記センサの感度を変更する請求項1から6のいずれか1項に記載の粒状体検査装置。
    The inspection unit includes a sending device that sends the granules to the inspection area, a sensor that detects light from the inspection area, and a detection device that detects defective products of the granules based on the output of the sensor. Equipped with
    The changing unit changes the sensitivity of the sensor as an operating parameter of the adjusted unit based on the difference between the sorting sensitivity of the reference unit and the sorting sensitivity of the adjusted unit. The granular material inspection apparatus according to any one of the following items.
  8.  前記変更部は、前記検出装置の動作パラメータよりも前記送出装置の動作パラメータを優先して変更する請求項2から7のいずれか1項に記載の粒状体検査装置。 The granular body inspection device according to any one of claims 2 to 7, wherein the changing unit prioritizes and changes the operating parameters of the sending device over the operating parameters of the detecting device.
  9.  前記変更部は、所定の期間における前記選別感度の時間平均を前記基準ユニット及び前記被調整ユニットの夫々について算出し、それらの差が小さくなるように前記被調整ユニットの動作パラメータを変更する請求項1から8のいずれか1項に記載の粒状体検査装置。 The changing unit calculates the time average of the sorting sensitivity in a predetermined period for each of the reference unit and the adjusted unit, and changes the operating parameters of the adjusted unit so that the difference between them becomes small. The granular body inspection apparatus according to any one of 1 to 8.
  10.  検出領域からの光を検出する検出装置と、
     前記検出領域を通過するように粒状体を送り出す送出装置と、
     表面に図形が描かれると共に、前記図形が前記検出装置の出力に表れるように前記検出領域に配置される部材と、
     前記検出装置の出力における前記図形に対応する部分に基づいて、前記検出領域の位置の異常の有無を判定する位置異常判定部と、を備える粒状体検査装置。
    A detection device that detects light from the detection area, and
    A delivery device that sends out granules so as to pass through the detection region,
    A figure is drawn on the surface, and a member arranged in the detection area so that the figure appears in the output of the detection device.
    A granular body inspection device including a position abnormality determination unit for determining the presence or absence of an abnormality in the position of the detection region based on a portion corresponding to the figure in the output of the detection device.
  11.  前記検出領域が正常である時の前記検出装置の出力である正常出力を記憶する記憶部を備え、
     前記位置異常判定部は、前記検出装置の出力と前記正常出力とを比較して前記検出領域の位置の異常の有無を判定する請求項10に記載の粒状体検査装置。
    A storage unit for storing a normal output, which is an output of the detection device when the detection area is normal, is provided.
    The granular body inspection device according to claim 10, wherein the position abnormality determination unit compares the output of the detection device with the normal output to determine the presence or absence of an abnormality in the position of the detection region.
  12.  前記図形は、第1部位と第2部位とを有し、
     前記第1部位は、特定方向に沿って前記検出領域がずれた場合に前記検出装置の出力における前記第1部位に対応する部分が変化する形態であり、
     前記第2部位は、前記特定方向に沿って前記検出領域がずれた場合に前記検出装置の出力における前記第2部位に対応する部分が変化しない形態であり、
     前記位置異常判定部は、前記検出装置の出力における前記第1部位に対応する部分及び前記第2部位に対応する部分に基づいて前記検出領域の位置の異常の有無を判定する請求項10又は11に記載の粒状体検査装置。
    The figure has a first part and a second part, and has a first part and a second part.
    The first portion is a form in which a portion corresponding to the first portion in the output of the detection device changes when the detection region shifts along a specific direction.
    The second portion has a form in which the portion corresponding to the second portion in the output of the detection device does not change when the detection region shifts along the specific direction.
    10. The granular material inspection apparatus according to.
  13.  前記第1部位は、前記図形が含む三角形の一部であり、
     前記第2部位は、前記図形が含む長方形の一部である請求項12に記載の粒状体検査装置。
    The first part is a part of the triangle included in the figure.
    The granular body inspection apparatus according to claim 12, wherein the second portion is a part of a rectangle included in the figure.
  14.  報知装置を備え、
     前記位置異常判定部は、前記検出領域の位置の異常が有ると判定した場合に前記報知装置を作動させる請求項10から13のいずれか1項に記載の粒状体検査装置。
    Equipped with a notification device
    The granular body inspection device according to any one of claims 10 to 13, wherein the position abnormality determination unit operates the notification device when it is determined that there is an abnormality in the position of the detection region.
  15.  報知装置を備え、
     前記位置異常判定部は、前記検出領域の位置変動量を算出し、前記位置変動量が報知閾値を超える場合に前記報知装置を作動させる請求項10から14のいずれか1項に記載の粒状体検査装置。
    Equipped with a notification device
    The granular material according to any one of claims 10 to 14, wherein the position abnormality determination unit calculates the position fluctuation amount of the detection region and operates the notification device when the position fluctuation amount exceeds the notification threshold value. Inspection equipment.
  16.  前記検出装置の出力に基づいて前記粒状体の良否を判定する良否判定部を備え、
     前記送出装置は、前記粒状体を複数並列で送り出すように構成され、
     前記検出装置は、前記検出領域における前記粒状体の並列方向に対応する方向に並ぶ複数の画素を備え、
     前記位置異常判定部は、前記検出装置の出力における前記図形に対応する部分に基づいて、前記並列方向についての前記検出領域の位置の変動量である並列方向変動量を算出し、
     前記良否判定部は、並列する複数の前記粒状体に対応するように複数の前記画素を分配して複数のチャンネルを設定し、前記チャンネルごとに前記粒状体の良否を判定し、前記並列方向変動量に応じて前記画素の前記チャンネルへの分配を変更する請求項10から15のいずれか1項に記載の粒状体検査装置。
    A quality determination unit for determining the quality of the granules based on the output of the detection device is provided.
    The delivery device is configured to send out a plurality of the granules in parallel.
    The detection device includes a plurality of pixels arranged in a direction corresponding to the parallel direction of the granules in the detection region.
    The position abnormality determination unit calculates the parallel direction fluctuation amount, which is the fluctuation amount of the position of the detection region in the parallel direction, based on the portion corresponding to the figure in the output of the detection device.
    The pass / fail determination unit distributes a plurality of the pixels so as to correspond to the plurality of parallel granules, sets a plurality of channels, determines the quality of the granules for each channel, and changes the parallel direction. The granular body inspection apparatus according to any one of claims 10 to 15, wherein the distribution of the pixel to the channel is changed according to the amount.
  17.  前記検出装置の出力に基づいて前記粒状体の良否を判定する良否判定部と、
     前記良否判定部により良品でないと判定された前記粒状体を排除する排除装置と、
     前記排除装置の動作タイミングを制御する排除制御部を備え、
     前記位置異常判定部は、前記検出装置の出力における前記図形に対応する部分に基づいて、前記送出装置による前記粒状体の送出方向についての前記検出領域の位置の変動量である送出方向変動量を算出し、
     前記排除制御部は、前記送出方向変動量に基づいて前記排除装置の動作タイミングを変更する請求項10から16のいずれか1項に記載の粒状体検査装置。
    A quality determination unit that determines the quality of the granules based on the output of the detection device, and
    An exclusion device that eliminates the granules determined by the quality determination unit to be non-defective.
    It is provided with an exclusion control unit that controls the operation timing of the exclusion device.
    The position abnormality determination unit determines the amount of change in the sending direction, which is the amount of change in the position of the detection region with respect to the sending direction of the granules by the sending device, based on the portion of the output of the detecting device corresponding to the figure. Calculate and
    The granular body inspection device according to any one of claims 10 to 16, wherein the exclusion control unit changes the operation timing of the exclusion device based on the amount of fluctuation in the delivery direction.
  18.  前記検出装置が、入射した光を検出するセンサと、前記センサに入射する光を合焦させるレンズ装置と、を備え、
     前記位置異常判定部は、前記検出装置の出力における前記図形に対応する部分に基づいて前記レンズ装置のピントを調整する請求項10から17のいずれか1項に記載の粒状体検査装置。
    The detection device includes a sensor that detects incident light and a lens device that focuses the light incident on the sensor.
    The granular body inspection device according to any one of claims 10 to 17, wherein the position abnormality determination unit adjusts the focus of the lens device based on the portion corresponding to the figure in the output of the detection device.
  19.  検査領域へ粒状体を複数並列で送り出す送出装置と、
     前記検査領域からの光を検出するセンサと、
     前記センサの出力における隣接するチャンネルに1つの前記粒状体が跨がっていることを検出した場合に、異常が発生したと判定する異常判定部と、を備える粒状体検査装置。
    A sending device that sends out multiple granules in parallel to the inspection area,
    A sensor that detects light from the inspection area and
    A granular body inspection device including an abnormality determination unit for determining that an abnormality has occurred when it is detected that one of the granular bodies straddles an adjacent channel in the output of the sensor.
  20.  前記センサの出力における複数の前記チャンネルごとに、前記粒状体による光の強度の低下を検出する検出部を備え、
     前記異常判定部は、前記検出部が隣接する前記チャンネルにおいて同時に光の強度の低下を検出した場合に、異常が発生したと判定する請求項19に記載の粒状体検査装置。
    A detection unit for detecting a decrease in light intensity due to the granules is provided for each of the plurality of channels in the output of the sensor.
    The granular body inspection device according to claim 19, wherein the abnormality determination unit determines that an abnormality has occurred when the detection unit simultaneously detects a decrease in light intensity in the adjacent channel.
  21.  前記異常判定部は、前記検出部が隣接する前記チャンネルにおいて同時且つ経時的に光の強度の低下を検出した場合に、異常が発生したと判定する請求項20に記載の粒状体検査装置。 The granular body inspection device according to claim 20, wherein the abnormality determination unit determines that an abnormality has occurred when the detection unit detects a decrease in light intensity simultaneously and over time in the adjacent channel.
  22.  前記異常判定部は、前記検出部が隣接する前記チャンネルにおいて同時に光の強度の低下を検出する状態が、隣接する前記チャンネルの複数の組において発生した場合に、異常が発生したと判定する請求項20又は21に記載の粒状体検査装置。 A claim that the abnormality determination unit determines that an abnormality has occurred when a state in which the detection unit simultaneously detects a decrease in light intensity in the adjacent channels occurs in a plurality of sets of the adjacent channels. 20 or 21. The granular material inspection apparatus.
  23.  前記センサの出力における前記粒状体による光の強度の低下を検出する検出部を備え、
     前記センサは、前記検査領域における前記粒状体の並列方向に対応する方向に沿って並ぶ複数の画素を有し、
     前記異常判定部は、前記粒状体による光の強度の低下が隣接する前記チャンネルに属する連続した前記画素において同時に検出された場合に、異常が発生したと判定する請求項19に記載の粒状体検査装置。
    A detection unit for detecting a decrease in light intensity due to the granules at the output of the sensor is provided.
    The sensor has a plurality of pixels arranged along a direction corresponding to the parallel direction of the granules in the inspection region.
    The granular material inspection according to claim 19, wherein the abnormality determination unit determines that an abnormality has occurred when a decrease in light intensity due to the granular material is simultaneously detected in the continuous pixels belonging to the adjacent channel. Device.
  24.  前記異常判定部は、前記粒状体による光の強度の低下が隣接する前記チャンネルに属する連続した前記画素において同時且つ経時的に検出された場合に、異常が発生したと判定する請求項23に記載の粒状体検査装置。 23. Claim 23, wherein the abnormality determination unit determines that an abnormality has occurred when a decrease in light intensity due to the granules is detected simultaneously and temporally in the continuous pixels belonging to the adjacent channel. Granularity inspection equipment.
  25.  前記センサの出力における前記粒状体による光の強度の低下を検出する検出部を備え、
     前記センサは、前記検査領域における前記粒状体の並列方向に対応する方向に沿って並ぶ複数の画素を有し、
     前記異常判定部は、前記粒状体による光の強度の低下が検出された画素である検出画素を特定し、異なる前記チャンネルに属する前記検出画素のうち少ない方の前記検出画素の数を前記検出画素の総数で除して比率を算出し、前記比率が所定の閾値を超えた場合に、異常が発生したと判定する請求項23又は24に記載の粒状体検査装置。
    A detection unit for detecting a decrease in light intensity due to the granules at the output of the sensor is provided.
    The sensor has a plurality of pixels arranged along a direction corresponding to the parallel direction of the granules in the inspection region.
    The abnormality determination unit identifies detection pixels that are pixels in which a decrease in light intensity due to the granules is detected, and determines the number of the detection pixels that is smaller among the detection pixels belonging to different channels. The granular inspection apparatus according to claim 23 or 24, wherein the ratio is calculated by dividing by the total number of, and when the ratio exceeds a predetermined threshold value, it is determined that an abnormality has occurred.
  26.  報知装置を備え、
     前記異常判定部は、異常が発生したと判定した場合に前記報知装置を作動させる請求項19から25のいずれか1項に記載の粒状体検査装置。
    Equipped with a notification device
    The granular body inspection device according to any one of claims 19 to 25, wherein the abnormality determination unit operates the notification device when it is determined that an abnormality has occurred.
  27.  前記検査領域から第1方向に放射される光を検出する、前記センサとしての第1センサと、
     前記検査領域から前記第1方向と逆の方向である第2方向に放射される光を検出する、前記センサとしての第2センサと、
     前記異常判定部が前記第1センサ及び前記第2センサについてほぼ同時期に異常が発生したと判定した場合に、異常が発生したと判定する対向センサ間異常判定部と、を備える請求項19から26のいずれか1項に記載の粒状体検査装置。
    A first sensor as the sensor that detects light emitted in the first direction from the inspection area, and a first sensor.
    A second sensor as the sensor that detects light emitted from the inspection area in the second direction opposite to the first direction, and
    19 to claim 19, wherein the abnormality determination unit includes an opposite sensor abnormality determination unit that determines that an abnormality has occurred when the abnormality determination unit determines that an abnormality has occurred in the first sensor and the second sensor at approximately the same time. 26. The granular material inspection apparatus according to any one of Items.
  28.  前記検査領域における上部からの光を検出する、前記センサとしての上センサと、
     前記検査領域における下部からの光を検出する、前記センサとしての下センサと、
     前記異常判定部が前記上センサの出力における隣接するチャンネルである異常チャンネル組に1つの前記粒状体が跨がっていることを検出し、且つ、前記異常判定部が前記下センサの出力における前記異常チャンネル組に対応するチャンネルに1つの前記粒状体が跨がっていることを検出した場合に、異常が発生したと判定する上下センサ間異常判定部と、を備える請求項19から27のいずれか1項に記載の粒状体検査装置。
    An upper sensor as the sensor that detects light from the upper part in the inspection area,
    A lower sensor as the sensor that detects light from the lower part in the inspection area,
    The abnormality determination unit detects that one of the granules straddles an abnormality channel set which is an adjacent channel in the output of the upper sensor, and the abnormality determination unit detects the abnormality in the output of the lower sensor. Any of claims 19 to 27, comprising an abnormality determination unit between upper and lower sensors that determines that an abnormality has occurred when it is detected that one of the granules straddles the channel corresponding to the abnormality channel set. The granular inspection apparatus according to item 1.
  29.  粒状体を検査して不良品を検出する複数の検査ユニットと、
     供給された前記粒状体を貯留すると共に複数の前記検査ユニットへ前記粒状体を供給する貯留装置と、
     前記貯留装置に設けられるとともに複数の前記検査ユニットへの前記粒状体の供給量を調整する調整機構と、を備える粒状体検査装置。
    Multiple inspection units that inspect granules and detect defective products,
    A storage device that stores the supplied granules and supplies the granules to a plurality of the inspection units.
    A granular material inspection device provided in the storage device and provided with an adjusting mechanism for adjusting a supply amount of the granular material to a plurality of the inspection units.
  30.  前記調整機構は、前記粒状体の移動経路と交差する方向での位置変更が可能なガイド部材を備える請求項29に記載の粒状体検査装置。 The granular body inspection device according to claim 29, wherein the adjusting mechanism includes a guide member capable of changing the position in a direction intersecting the movement path of the granular body.
  31.  前記ガイド部材は、左右方向にスライド可能である請求項30に記載の粒状体検査装置。 The granular body inspection device according to claim 30, wherein the guide member is slidable in the left-right direction.
  32.  前記粒状体を上方へ搬送すると共に前記粒状体を前記貯留装置の内部へ投入するバケットコンベアを備え、
     前記ガイド部材は、前記バケットコンベアから投入された前記粒状体の前記移動経路上に配置されている請求項30又は31に記載の粒状体検査装置。
    A bucket conveyor for transporting the granules upward and charging the granules into the storage device is provided.
    The granular body inspection device according to claim 30 or 31, wherein the guide member is arranged on the moving path of the granular material loaded from the bucket conveyor.
  33.  前記ガイド部材は、前記バケットコンベアの最上端よりも下に位置している請求項32に記載の粒状体検査装置。 The granular body inspection device according to claim 32, wherein the guide member is located below the uppermost end of the bucket conveyor.
  34.  前記貯留装置は、その内部空間を複数の前記検査ユニットに対応して分岐させる分岐部材を備え、
     前記ガイド部材は、前記分岐部材よりも上に位置する請求項30から33のいずれか1項に記載の粒状体検査装置。
    The storage device includes a branching member that branches its internal space corresponding to the plurality of inspection units.
    The granular body inspection device according to any one of claims 30 to 33, wherein the guide member is located above the branch member.
  35.  前記貯留装置は、上下方向に沿って延びる壁部材と、前記壁部材に形成された点検用開口と、前記点検用開口を塞ぐ閉塞部材と、を備え、
     前記ガイド部材は前記閉塞部材に支持されている請求項30から34のいずれか1項に記載の粒状体検査装置。
    The storage device includes a wall member extending in the vertical direction, an inspection opening formed in the wall member, and a closing member for closing the inspection opening.
    The granular body inspection device according to any one of claims 30 to 34, wherein the guide member is supported by the closing member.
  36.  粒状体を検査して不良品を検出する検査ユニットと、
     投入された前記粒状体を貯留すると共に前記検査ユニットへ前記粒状体を供給する貯留装置と、を備え、
     前記貯留装置は、上部に配置され前記粒状体が投入される入口と、下部に配置され前記粒状体が前記検査ユニットへ流出する出口と、前記入口よりも下且つ前記出口よりも上に配置され前記粒状体が流出可能なオーバーフロー排出口と、前記入口と前記オーバーフロー排出口との間且つ前記入口から投入される前記粒状体の移動経路上に配置されるカバー部材と、を備え、
     前記カバー部材の下方において前記貯留装置に貯留された前記粒状体が前記オーバーフロー排出口に流入可能なように構成されている、粒状体検査装置。
    An inspection unit that inspects granules and detects defective products,
    A storage device for storing the charged granules and supplying the granules to the inspection unit is provided.
    The storage device is arranged at an upper part, an inlet where the granules are charged, an outlet which is arranged at a lower part, and an outlet where the granules flow out to the inspection unit, and below the inlet and above the outlet. An overflow discharge port from which the granules can flow out and a cover member arranged between the inlet and the overflow discharge port and on the movement path of the granules introduced from the inlet are provided.
    A granular material inspection device configured so that the granular material stored in the storage device below the cover member can flow into the overflow discharge port.
  37.  前記貯留装置は、前記出口に繋がる下窄まり形状の下窄まり部を備えており、
     前記下窄まり部の側壁に前記オーバーフロー排出口が設けられており、
     前記オーバーフロー排出口の上方に前記カバー部材が設けられている請求項36に記載の粒状体検査装置。
    The storage device includes a lower constriction portion having a lower constriction shape connected to the outlet.
    The overflow outlet is provided on the side wall of the lower constriction portion.
    The granular body inspection apparatus according to claim 36, wherein the cover member is provided above the overflow discharge port.
  38.  前記オーバーフロー排出口の幅と前記カバー部材の幅とがほぼ同じである請求項36又は37に記載の粒状体検査装置。 The granular body inspection device according to claim 36 or 37, wherein the width of the overflow outlet and the width of the cover member are substantially the same.
  39.  前記カバー部材の上端と前記入口の下端とがほぼ同じ高さに位置する請求項36から38のいずれか1項に記載の粒状体検査装置。 The granular body inspection apparatus according to any one of claims 36 to 38, wherein the upper end of the cover member and the lower end of the entrance are located at substantially the same height.
  40.  前記カバー部材の上面が、斜め下方に傾斜する傾斜面を備える請求項36から39のいずれか1項に記載の粒状体検査装置。 The granular body inspection apparatus according to any one of claims 36 to 39, wherein the upper surface of the cover member is provided with an inclined surface that is inclined diagonally downward.
  41.  本体ケースの上下端に軸支された上部プーリ及び下部プーリと、前記上部プーリと前記下部プーリの間に架け渡されたベルトと、前記ベルトに取り付けられた複数のバケットと、を備え、粒状体を前記バケットによって搬送する粒状体搬送用の昇降機であって、
     前記ベルトには、前記本体ケース内に滞留する前記粒状体を掬い上げるためのスクレーパが設けられ、
     前記スクレーパは、前記スクレーパによって掬い上げられる前記粒状体が通過可能な通過可能部分を有すること
     を特徴とする粒状体搬送用の昇降機。
    A granular body including an upper pulley and a lower pulley pivotally supported at the upper and lower ends of a main body case, a belt spanned between the upper pulley and the lower pulley, and a plurality of buckets attached to the belt. An elevator for transporting granules, which transports the above-mentioned bucket.
    The belt is provided with a scraper for scooping up the granules staying in the main body case.
    The scraper is an elevator for transporting granules, which comprises a passable portion through which the granules scooped up by the scraper can pass.
  42.  前記通過可能部分は、前記スクレーパにおいて前記ベルトに近い側に設けられること
     を特徴とする請求項41に記載の粒状体搬送用の昇降機。
    The elevator for transporting granules according to claim 41, wherein the passable portion is provided on the side of the scraper closer to the belt.
  43.  前記スクレーパは、
     前記本体ケース内に滞留する前記粒状体を掬い上げるためのスクレーパ部材と、
     前記スクレーパ部材を前記ベルトに対して保持する保持部材と、
     を備え、
     前記通過可能部分は、前記保持部材に設けられること
     を特徴とする請求項41に記載の粒状体搬送用の昇降機。
    The scraper is
    A scraper member for scooping up the granules staying in the main body case, and
    A holding member that holds the scraper member against the belt, and
    Equipped with
    The elevator for transporting granules according to claim 41, wherein the passable portion is provided on the holding member.
  44.  前記スクレーパは、前記本体ケース内に滞留する前記粒状体を掬い上げるためのスクレーパ部材を、前記複数のバケットのうちの一部のバケットに取り付けて構成されるものであり、
     前記通過可能部分は、前記スクレーパ部材が取り付けられるバケットに設けられること
     を特徴とする請求項41に記載の粒状体搬送用の昇降機。
    The scraper is configured by attaching a scraper member for scooping up the granules staying in the main body case to a part of the buckets among the plurality of buckets.
    The elevator for transporting granules according to claim 41, wherein the passable portion is provided in a bucket to which the scraper member is attached.
  45.  本体ケースの上下端に軸支された上部プーリ及び下部プーリと、前記上部プーリと前記下部プーリの間に架け渡されたベルトと、前記ベルトに取り付けられた複数のバケットと、を備えて粒状体を前記バケットによって搬送する粒状体搬送用の昇降機における前記ベルトに設けられ、前記本体ケース内に滞留する前記粒状体を掬い上げるための昇降機用のスクレーパであって、
     掬い上げられる前記粒状体が通過可能な通過可能部分を有すること
     を特徴とする昇降機用のスクレーパ。
    A granular body including an upper pulley and a lower pulley pivotally supported at the upper and lower ends of a main body case, a belt spanned between the upper pulley and the lower pulley, and a plurality of buckets attached to the belt. A scraper for an elevator provided on the belt in an elevator for transporting granules, and for scooping up the granules staying in the main body case.
    A scraper for an elevator characterized by having a passable portion through which the scooped granules can pass.
PCT/JP2021/040702 2020-12-24 2021-11-05 Granule inspection device, raising/lowering equipment for conveying granules, and scraper for raising/lowering equipment WO2022137827A1 (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2020-214384 2020-12-24
JP2020214384A JP7510870B2 (en) 2020-12-24 2020-12-24 Elevator for transporting granular material and scraper bucket for elevator
JP2021002877A JP7482799B2 (en) 2021-01-12 2021-01-12 Granular material inspection equipment
JP2021-002876 2021-01-12
JP2021002878A JP7433257B2 (en) 2021-01-12 2021-01-12 Granule inspection device
JP2021002876A JP2022108063A (en) 2021-01-12 2021-01-12 Granular material inspection device
JP2021002875A JP7482798B2 (en) 2021-01-12 2021-01-12 Granular material inspection equipment
JP2021-002875 2021-01-12
JP2021-002879 2021-01-12
JP2021-002878 2021-01-12
JP2021-002877 2021-01-12
JP2021002879A JP7433258B2 (en) 2021-01-12 2021-01-12 Granule inspection device

Publications (1)

Publication Number Publication Date
WO2022137827A1 true WO2022137827A1 (en) 2022-06-30

Family

ID=82157562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040702 WO2022137827A1 (en) 2020-12-24 2021-11-05 Granule inspection device, raising/lowering equipment for conveying granules, and scraper for raising/lowering equipment

Country Status (1)

Country Link
WO (1) WO2022137827A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147697A (en) * 1997-08-07 1999-02-23 Yamamoto Mfg Co Ltd Grain sorter
JP2011046470A (en) * 2009-08-26 2011-03-10 Sumitomo Chemical Co Ltd Method and device for detecting abnormality of screw feeder
JP2011104470A (en) * 2009-11-13 2011-06-02 Shizuoka Seiki Co Ltd Color sorter
JP2012250193A (en) * 2011-06-03 2012-12-20 Kubota Corp Granule sorting device
WO2014126232A1 (en) * 2013-02-18 2014-08-21 株式会社サタケ Optical granular substance sorter
JP2018199102A (en) * 2017-05-26 2018-12-20 株式会社クボタ Granular material selection device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147697A (en) * 1997-08-07 1999-02-23 Yamamoto Mfg Co Ltd Grain sorter
JP2011046470A (en) * 2009-08-26 2011-03-10 Sumitomo Chemical Co Ltd Method and device for detecting abnormality of screw feeder
JP2011104470A (en) * 2009-11-13 2011-06-02 Shizuoka Seiki Co Ltd Color sorter
JP2012250193A (en) * 2011-06-03 2012-12-20 Kubota Corp Granule sorting device
WO2014126232A1 (en) * 2013-02-18 2014-08-21 株式会社サタケ Optical granular substance sorter
JP2018199102A (en) * 2017-05-26 2018-12-20 株式会社クボタ Granular material selection device

Similar Documents

Publication Publication Date Title
KR101317104B1 (en) Granular material sorting apparatus
KR101393127B1 (en) Granular material sorting apparatus
KR20110034171A (en) Color sorter for grain
KR101389170B1 (en) Granular material sorting apparatus
WO2022137827A1 (en) Granule inspection device, raising/lowering equipment for conveying granules, and scraper for raising/lowering equipment
JP6052287B2 (en) Color sorter
JP3685672B2 (en) Powder inspection equipment
JP7482798B2 (en) Granular material inspection equipment
JP2011115765A (en) Color sorter
JP7433258B2 (en) Granule inspection device
JP7482799B2 (en) Granular material inspection equipment
JPH1190345A (en) Inspection apparatus of granular bodies
JP7433257B2 (en) Granule inspection device
JP2024004088A (en) Granular material screening device
JP2006231233A (en) Apparatus for sorting particulate material
JP2022108063A (en) Granular material inspection device
JP4454086B2 (en) Powder inspection equipment
JPH1052673A (en) Grain selecting machine
JP3221848B2 (en) Grain sorter
JP2023056378A (en) Inspection device
JP7282021B2 (en) color sorter
JP2023056380A (en) Inspection device
WO2021117417A1 (en) Particulate sorting apparatus and color sorting machine
JPH1054804A (en) Grain selector
JP2023056379A (en) Inspection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909981

Country of ref document: EP

Kind code of ref document: A1