WO2022137570A1 - 端末、基地局及び無線通信方法 - Google Patents

端末、基地局及び無線通信方法 Download PDF

Info

Publication number
WO2022137570A1
WO2022137570A1 PCT/JP2020/048989 JP2020048989W WO2022137570A1 WO 2022137570 A1 WO2022137570 A1 WO 2022137570A1 JP 2020048989 W JP2020048989 W JP 2020048989W WO 2022137570 A1 WO2022137570 A1 WO 2022137570A1
Authority
WO
WIPO (PCT)
Prior art keywords
control channel
control information
stage control
data
carrier
Prior art date
Application number
PCT/JP2020/048989
Other languages
English (en)
French (fr)
Inventor
優元 ▲高▼橋
翔平 吉岡
真哉 岡村
慎也 熊谷
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2020/048989 priority Critical patent/WO2022137570A1/ja
Priority to EP20967055.3A priority patent/EP4271076A4/en
Publication of WO2022137570A1 publication Critical patent/WO2022137570A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to terminals, base stations and wireless communication methods that execute wireless communication, in particular, terminals, base stations and wireless communication methods that support cross-carrier scheduling.
  • the 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and next-generation specifications called Beyond 5G, 5G Evolution or 6G. We are also proceeding with the conversion.
  • 5G New Radio
  • NG Next Generation
  • FR1 410MHz-7.125GHz
  • FR2 24.25GHz-52.6GHz
  • Non-Patent Document 1 studies are underway on NR that supports up to 71 GHz, exceeding 52.6 GHz.
  • 5G Evolution or 6G aims to support frequency bands above 71GHz.
  • a different frequency band different from FR1 and FR2 such as a high frequency band exceeding 52.6 GHz, it is large because it supports stable wireless communication when the terminal (User Equipment, UE) moves at high speed. Wider) subcarrier spacing (SCS) is applied and symbol time is expected to be shorter.
  • SCS subcarrier spacing
  • the channel estimation (CE) of the control channel for example, PDCCH (Physical Downlink Control Channel)
  • CE Physical Downlink Control Channel
  • cross-carrier scheduling using two or more carriers can be considered, but as a result of diligent studies, the inventors can schedule data depending on the difference in symbol time of two or more carriers. Was found to be less.
  • the following disclosure was made in view of such a situation, and an object is to provide a terminal, a base station, and a wireless communication method that can appropriately cope with cross-carrier scheduling.
  • the present disclosure is a terminal, which is a receiving unit that receives the first control information by the first control channel on the first carrier and receives the second control information by the second control channel on the second carrier, and the first.
  • a control unit that controls reception of the second control information based on the first control information and controls data communication based on the second control information when the applicable conditions are satisfied.
  • the gist is that.
  • the present disclosure comprises a transmission unit which is a base station and transmits the first control information by the first control channel on the first carrier and the second control information by the second control channel on the second carrier.
  • a control unit that controls transmission of the second control information based on the first control information and controls data communication based on the second control information so that the application conditions are satisfied. Is the gist.
  • the present disclosure is a wireless communication method, in which a step A of receiving the first control information by the first control channel on the first carrier and a step of receiving the second control information by the second control channel on the second carrier.
  • the step A includes a step of controlling the reception of the second control information based on the first control information when the first application condition is satisfied, and the step B is the first step.
  • the gist is to include a step of controlling data communication based on control information.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a diagram showing a frequency range used in the wireless communication system 10.
  • FIG. 3 is a diagram showing a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
  • FIG. 4 is a functional block configuration diagram of the UE 200.
  • FIG. 5 is a functional block configuration diagram of the gNB 100.
  • FIG. 6 is a diagram for explaining 2 step control channel indication.
  • FIG. 7 is a sequence diagram showing an operation example.
  • FIG. 8 is a diagram for explaining the 2 step control channel indication according to the modification example 1.
  • FIG. 9 is a diagram for explaining the 2 step control channel indication according to the modification example 1.
  • FIG. 10 is a diagram for explaining the 2 step control channel indication according to the modification example 1.
  • FIG. 11 is a diagram for explaining the 2 step control channel indication according to the modification example 1.
  • FIG. 12 is a diagram for explaining the 2 step control channel indication according to the modification example 1.
  • FIG. 13 is a diagram for explaining 2 step control channel indication according to the second modification.
  • FIG. 14 is a diagram for explaining 2 step control channel indication according to the second modification.
  • FIG. 15 is a diagram for explaining 2 step control channel indication according to the second modification.
  • FIG. 16 is a diagram for explaining 2 step control channel indication according to the third modification.
  • FIG. 17 is a diagram for explaining 2 step control channel indication according to the third modification.
  • FIG. 18 is a diagram for explaining 2 step control channel indication according to the modification example 6.
  • FIG. 19 is a diagram for explaining 2 step control channel indication according to the modification example 6.
  • FIG. 20 is a diagram for explaining 2 step control channel indication according to the modification example 6.
  • FIG. 21 is a diagram for explaining 2 step control channel indication according to the modification example 6.
  • FIG. 22 is a diagram for explaining 2 step control channel indication according to the modification example 6.
  • FIG. 23 is a diagram for explaining 2 step control channel indication according to the modification example 6.
  • FIG. 24 is a diagram for explaining 2 step control channel indication according to the modification example 6.
  • FIG. 25 is a diagram for explaining 2 step control channel indication according to the modification example 6.
  • FIG. 26 is a diagram showing an example of a hardware configuration of gNB100 or UE200.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the embodiment.
  • the wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20, and a terminal 200 (hereinafter, UE200)).
  • NR 5G New Radio
  • NG-RAN20 Next Generation-Radio Access Network
  • UE200 terminal 200
  • the wireless communication system 10 may be a wireless communication system according to a method called Beyond 5G, 5G Evolution or 6G.
  • NG-RAN20 includes a radio base station 100A (hereinafter, gNB100A) and a radio base station 100B (hereinafter, gNB100B).
  • gNB100A radio base station 100A
  • gNB100B radio base station 100B
  • the specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • NG-RAN20 actually includes multiple NG-RANNodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G.
  • NG-RAN20 and 5GC may be simply expressed as "network”.
  • GNB100A and gNB100B are radio base stations according to 5G, and execute wireless communication according to UE200 and 5G.
  • gNB100A, gNB100B and UE200 are Massive MIMO (Multiple-Input Multiple-Output) and multiple component carriers (CC) that generate beam BM with higher directivity by controlling radio signals transmitted from multiple antenna elements.
  • Massive MIMO Multiple-Input Multiple-Output
  • CC multiple component carriers
  • CA carrier aggregation
  • DC dual connectivity
  • the wireless communication system 10 supports a plurality of frequency ranges (FR).
  • FIG. 2 shows the frequency range used in the wireless communication system 10.
  • the wireless communication system 10 corresponds to FR1 and FR2.
  • the frequency bands of each FR are as follows.
  • FR1 410 MHz to 7.125 GHz
  • FR2 24.25 GHz to 52.6 GHz
  • SCS Sub-Carrier Spacing
  • BW bandwidth
  • FR2 has a higher frequency than FR1, and SCS of 60, or 120kHz (240kHz may be included) is used, and a bandwidth (BW) of 50 to 400MHz may be used.
  • SCS may be interpreted as numerology. Numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier interval in the frequency domain.
  • the wireless communication system 10 also supports a higher frequency band than the FR2 frequency band. Specifically, the wireless communication system 10 corresponds to a frequency band exceeding 52.6 GHz and up to 114.25 GHz. Such a high frequency band may be referred to as "FR2x" for convenience.
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing CP-OFDM
  • SCS Discrete Fourier Transform-Spread
  • SCS Sub-Carrier Spacing
  • FIG. 3 shows a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
  • one slot is composed of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period).
  • the SCS is not limited to the interval (frequency) shown in FIG. For example, 480 kHz, 960 kHz, etc. may be used.
  • the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, 28, 56 symbols).
  • the number of slots per subframe may vary from SCS to SCS.
  • the time direction (t) shown in FIG. 3 may be referred to as a time domain, a symbol period, a symbol time, or the like.
  • the frequency direction may be referred to as a frequency domain, a resource block, a subcarrier, a bandwidth part (BWP: Bandwidth part), or the like.
  • DMRS is a kind of reference signal and is prepared for various channels.
  • it may mean a downlink data channel, specifically, a DMRS for PDSCH (Physical Downlink Shared Channel).
  • the upstream data channel specifically, the DMRS for PUSCH (Physical Uplink Shared Channel) may be interpreted in the same manner as the DMRS for PDSCH.
  • DMRS can be used for channel estimation in UE200 as part of a device, eg, coherent demodulation.
  • DMRS may only be present in the resource block (RB) used for PDSCH transmission.
  • DMRS may have multiple mapping types. Specifically, DMRS has mapping type A and mapping type B. In mapping type A, the first DMRS is placed in the second or third symbol of the slot. With mapping type A, DMRS may be mapped relative to the slot boundaries, regardless of where the actual data transmission begins in the slot. The reason why the first DMRS is placed in the second or third symbol of the slot may be interpreted as placing the first DMRS after the control resource sets (CORESET).
  • CORESET control resource sets
  • mapping type B the first DMRS may be placed in the first symbol of the data allocation. That is, the DMRS position may be given relative to where the data is located, rather than relative to the slot boundaries.
  • DMRS may have multiple types. Specifically, DMRS has Type 1 and Type 2. Type 1 and Type 2 differ in the maximum number of mapping and orthogonal reference signals in the frequency domain. Type 1 can output up to 4 orthogonal signals with a single-symbol DMRS, and Type 2 can output up to 8 orthogonal signals with a double-symbol DMRS.
  • FIG. 4 is a functional block configuration diagram of UE200.
  • the UE 200 includes a radio signal transmission / reception unit 210, an amplifier unit 220, a modulation / demodulation unit 230, a control signal / reference signal processing unit 240, a coding / decoding unit 250, a data transmission / reception unit 260, and a control unit 270. ..
  • the radio signal transmission / reception unit 210 transmits / receives a radio signal according to NR.
  • the radio signal transmission / reception unit 210 corresponds to Massive MIMO, a CA that bundles a plurality of CCs, and a DC that simultaneously communicates between the UE and each of the two NG-RAN Nodes.
  • the radio signal transmission / reception unit 210 constitutes a reception unit that receives the first control information by the first control channel on the first carrier and receives the second control information by the second control channel on the second carrier. do.
  • the SCS applied to the second carrier may be larger than the SCS applied to the first carrier.
  • the first control channel may be referred to as the first PDCCH and the second control channel may be referred to as the second PDCCH.
  • the first control information may be referred to as a first DCI, and the second control information may be referred to as a second DCI.
  • the amplifier unit 220 is composed of PA (Power Amplifier) / LNA (Low Noise Amplifier) and the like.
  • the amplifier unit 220 amplifies the signal output from the modulation / demodulation unit 230 to a predetermined power level. Further, the amplifier unit 220 amplifies the RF signal output from the radio signal transmission / reception unit 210.
  • the modulation / demodulation unit 230 executes data modulation / demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB100 or other gNB).
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) / Discrete Fourier Transform-Spread (DFT-S-OFDM) may be applied to the modulation / demodulation unit 230. Further, the DFT-S-OFDM may be used not only for the uplink (UL) but also for the downlink (DL).
  • the control signal / reference signal processing unit 240 executes processing related to various control signals transmitted / received by the UE 200 and processing related to various reference signals transmitted / received by the UE 200.
  • control signal / reference signal processing unit 240 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, control signals of the radio resource control layer (RRC). Further, the control signal / reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
  • a predetermined control channel for example, control signals of the radio resource control layer (RRC).
  • RRC radio resource control layer
  • the control signal / reference signal processing unit 240 executes processing using a reference signal (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
  • RS reference signal
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • DMRS is a reference signal (pilot signal) known between the base station and the terminal of each terminal for estimating the fading channel used for data demodulation.
  • PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
  • the reference signal may include ChannelStateInformation-ReferenceSignal (CSI-RS), SoundingReferenceSignal (SRS), and PositioningReferenceSignal (PRS) for location information.
  • CSI-RS ChannelStateInformation-ReferenceSignal
  • SRS SoundingReferenceSignal
  • PRS PositioningReferenceSignal
  • control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel), Random Access Radio Network Temporary Identifier (RA-RNTI), Downlink Control Information (DCI), and Physical Broadcast Channel (PBCH) etc. are included.
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • RACH Random Access Channel
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • DCI Downlink Control Information
  • PBCH Physical Broadcast Channel
  • the data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
  • Data means data transmitted over a data channel.
  • the data channel may be read as a shared channel.
  • control signal / reference signal processing unit 240 constitutes a receiving unit that receives downlink control information (DCI).
  • DCI has existing fields such as DCI Formats, Carrier indicator (CI), BWP indicator, FDRA (Frequency Domain Resource Allocation), TDRA (Time Domain Resource Allocation), MCS (Modulation and Coding Scheme), HPN (HARQ Process Number). , NDI (NewDataIndicator), RV (RedundancyVersion), etc. are included.
  • the value stored in the DCI Format field is an information element that specifies the DCI format.
  • the value stored in the CI field is an information element that specifies the CC to which DCI applies.
  • the value stored in the BWP indicator field is an information element that specifies the BWP to which DCI applies.
  • the BWP that can be specified by the BWP indicator is set by the information element (BandwidthPart-Config) included in the RRC message.
  • the value stored in the FDRA field is an information element that specifies the frequency domain resource to which DCI applies.
  • the frequency domain resource is specified by the value stored in the FDRA field and the information element (RAType) contained in the RRC message.
  • the value stored in the TDRA field is an information element that specifies the time domain resource to which DCI applies.
  • the time domain resource is specified by the value stored in the TDRA field and the information elements (pdsch-TimeDomainAllocationList, push-TimeDomainAllocationList) contained in the RRC message.
  • Time domain resources may be specified by the values stored in the TDRA field and the default table.
  • the value stored in the MCS field is an information element that specifies the MCS to which DCI applies.
  • MCS is specified by the values stored in MCS and the MCS table.
  • the MCS table may be specified by RRC messages or specified by RNTI scrambling.
  • the value stored in the HPN field is an information element that specifies the HARQ Process to which DCI is applied.
  • the value stored in the NDI is an information element for specifying whether or not the data to which DCI is applied is the initial data.
  • the value stored in the RV field is an information element that specifies the redundancy of the data to which DCI is applied.
  • DCI includes Time Domain Resource Allocation (TDRA) for Uplink Channel (PUSCH).
  • TDRA Time Domain Resource Allocation
  • PUSCH Uplink Channel
  • the DCI including the TDRA of PUSCH may be a DCI of Format 0_0, Format 0_1 or Format 0_2.
  • the coding / decoding unit 250 executes data division / concatenation and channel coding / decoding for each predetermined communication destination (gNB100 or other gNB).
  • the coding / decoding unit 250 divides the data output from the data transmission / reception unit 260 into predetermined sizes, and executes channel coding for the divided data. Further, the coding / decoding unit 250 decodes the data output from the modulation / demodulation unit 230 and concatenates the decoded data.
  • the data transmission / reception unit 260 executes transmission / reception of Protocol Data Unit (PDU) and Service Data Unit (SDU).
  • the data transmitter / receiver 260 is a PDU / SDU in a plurality of layers (such as a medium access control layer (MAC), a radio link control layer (RLC), and a packet data convergence protocol layer (PDCP)). Assemble / disassemble the.
  • the data transmission / reception unit 260 executes data error correction and retransmission control based on the hybrid ARQ (Hybrid automatic repeat request).
  • the control unit 270 controls each functional block constituting the UE 200.
  • the control unit 270 constitutes a control unit that controls reception of the second control channel based on the first control information and controls data communication based on the second control information.
  • Data communication may be performed via a channel on the second carrier. Communication of data may be performed via a channel on a third carrier that is different from the second carrier.
  • the data may be DL data or UL data. Therefore, data communication may be performed via PDSCH or PUSCH.
  • FIG. 5 is a functional block configuration diagram of gNB100. As shown in FIG. 5, the gNB 100 has a receiving unit 110, a transmitting unit 120, and a control unit 130.
  • the receiving unit 110 receives various signals from the UE 200.
  • the receiving unit 110 may receive the UL signal via PUCCH or PUSCH.
  • the transmission unit 120 transmits various signals to the UE 200.
  • the transmission unit 120 may transmit a DL signal via PDCCH or PDSCH.
  • the transmission unit 120 constitutes a transmission unit that transmits the first control information by the first control channel on the first carrier and transmits the second control information by the second control channel on the second carrier.
  • the control unit 130 controls the gNB 100.
  • the control unit 130 constitutes a control unit that controls the transmission of the second control information based on the first control information and controls the communication of data based on the second control information.
  • the first control information transmitted by the first control channel (hereinafter, 1st stage control channel) on the first carrier (hereinafter, Carrier # 1) is used.
  • the second control information transmitted by the second control channel (hereinafter, 2nd stage control channel) on the 2 carriers (hereinafter, Carrier # 2) is scheduled, and the data is scheduled based on the second control information.
  • Such scheduling may be referred to as 2-step control channel indication.
  • FIG. 6 merely illustrates a case where the slot length of Carrier # 1 is the same as the slot length of Carrier # 2 for the sake of simplicity of explanation.
  • the SCS applied to Carrier # 2 may be larger than the SCS applied to Carrier # 1, and the slot length of Carrier # 2 may be shorter than the slot length of Carrier # 1.
  • Carrier # 1 and Carrier # 2 may be carriers belonging to FR2x described above.
  • Carrier # 1 may be a carrier belonging to FR1 or FR2 described above
  • Carrier # 2 may be a carrier belonging to FR2x.
  • the first control information may include an information element that specifies the start point and length of the time domain resource of the 2nd stage control channel.
  • the start point and length may be specified in symbol units, slot units, subframe units, or frame units.
  • the first control information may include an information element that specifies all the lower time units included in the upper time unit.
  • the first control information may include an information element that specifies all symbols included in the slot, or may include an information element that specifies all slots (or symbols) included in the subframe, and is included in the frame. It may include an information element that specifies all subframes (slots or symbols).
  • the time domain resource of the 2nd stage control channel may be set by the upper layer.
  • the upper layer may be an RRC layer. In such cases, the options shown below are conceivable.
  • the set time domain resource may always be available.
  • the set time domain resource may be activated only once by the 1st stage control channel.
  • the set time domain resource may be activated over a specific time interval.
  • the specific time interval may be a symbol of N1, a slot of N1, a subframe of N1, or a frame of N1.
  • N1 is an integer of 1 or more, and may be specified by the 1st stage control channel (first control information), may be set by the upper layer, or may be predetermined.
  • N2 is an integer of 1 or more, and may be defined in symbol units, slot units, subframe units, or frame units.
  • N2 is an integer of 1 or more, and may be specified by the 1st stage control channel (first control information), may be set by the upper layer, or may be predetermined.
  • N2 may be smaller than N1, larger than N1, and identical to N1.
  • the time unit (symbol, slot, subframe, frame) that defines N2 may be different from the time unit (symbol, slot, subframe, frame) that defines N1.
  • the invalidation of the time domain resource may be introduced by the 1st stage control channel (first control information) including one or more specific fields, as in the case of CG (Configured Grant) and SPS (Semi-Persistent Scheduling).
  • first control information including one or more specific fields, as in the case of CG (Configured Grant) and SPS (Semi-Persistent Scheduling).
  • the method of specifying the time domain resource described above may be switched according to the setting of the upper layer, the combination of two or more elements selected from the 1st stage control channel and other control channels.
  • the other control channel may be a control channel for each UE200, or may be a group common control channel.
  • the first control information may include an information element that specifies the start point and length of the frequency domain resource of the 2nd stage control channel.
  • the start point and length may be specified in RE (Resource Element) units, RB units, BWP units, or CC units.
  • the frequency unit (RE, RB, BWP, CC) may be switched by the Type (Type 1, Type 2) of NR FDRA.
  • the first control information may include an information element (for example, a 1-bit flag) indicating whether or not all the resources contained in the frequency unit (RB, BWP , CC) can be used for the 2nd stage control channel. good. All such resource allocations or other resource allocations (Type 1, Type 2) may be dynamically switched by the control channel or set to quasi-static by the upper layer. ..
  • the frequency domain resource of the 2nd stage control channel may be set by the upper layer.
  • the upper layer may be an RRC layer. In such cases, the following options are possible.
  • the set frequency domain resource may always be fixed.
  • the resources actually used for the 2nd stage control channel may be shifted by the set frequency domain resource and offset value pair. Such a resource shift may be performed every hour or every 2nd stage control channel.
  • the method of specifying the frequency domain resource described above may be switched according to the setting of the upper layer, the combination of two or more elements selected from the 1st stage control channel and other control channels.
  • the other control channel may be a control channel for each UE200, or may be a group common control channel.
  • A Aggregation Level (AL) of the 2nd stage control channel
  • the number of ALs that can be specified may be set by the upper layer or may be predetermined.
  • the UE200 may specify the format of the 2nd stage control channel by BD (Blind Decoding ) of the 2nd stage control channel.
  • the UE200 may also specify the AL of the 2nd stage control channel by the BD (Blind Decoding) of the 2nd stage control channel.
  • one format for example, DCI format 1_1
  • two or more formats for example, DCI format 1_1 or DCI format 1_2
  • the number of formats that can be specified may be set by the upper layer or may be predetermined.
  • the format of the 2nd stage control channel may be DCI format format 1_0, 1_1, 1_2, 0_0, 0_1 , 0_2.
  • the format of the 2nd stage control channel may be a newly defined format.
  • the UE200 may specify the AL of the 2nd stage control channel by BD (Blind Decoding ) of the 2nd stage control channel.
  • the UE200 may also specify the format of the 2nd stage control channel by BD (Blind Decoding ) of the 2nd stage control channel.
  • the 2nd stage control channel resources are the 1st stage control channel (1st stage control channel) from the resources set by the upper layer, similar to the mechanism for specifying PUCCH resources. It may be specified by control information).
  • the resources of the 2nd stage control channel may be mapped one-to-one with the resources of the 1st stage control channel.
  • the mapping may be set by the upper layer or specified by a predetermined expression.
  • the format of the 1st stage control channel may be DCI format format 1_0, 1_1, 1_2, 0_0, 0_1 , 0_2.
  • the format of the 1st stage control channel may be a newly defined format.
  • the fields specified by the first control information may be BWP ID, CC ID, modulation order (for example, MCS index), RV, frequency hopping, priority indicator, power control (TPC command), and the like.
  • the BWP or CC specified by the first control information may be activated after the notification of power saving, or may be activated at all times.
  • the second control information may specify the time domain resource of the data using the existing TDRA.
  • the second control information may include an information element that specifies all the lower time units included in the upper time unit.
  • the second control information may include an information element that specifies all symbols included in the slot, or may include an information element that specifies all slots (or symbols) included in the subframe, and is included in the frame. It may include an information element that specifies all subframes (slots or symbols).
  • the second control information specifies the frequency domain resource of the data.
  • the time domain resource of the data may be specified by using the existing FDRA.
  • the second control information may include an information element (for example, a 1-bit flag) indicating whether or not all the resources included in the frequency unit (RB, BWP, CC) can be used for the data.
  • an information element for example, a 1-bit flag
  • control unit 270 of the UE 200 may specify at least one of the time domain resource and the frequency domain resource of the 2nd stage control channel based on the first control information. good.
  • the control unit 270 of the UE 200 may specify at least one of the time domain resource and the frequency domain resource of the 2nd stage control channel based on the setting of the upper layer.
  • the control unit 270 of the UE 200 may specify at least one of the time domain resource and the frequency domain resource of the 2nd stage control channel based on the first control information and the setting of the upper layer.
  • the first control information may include an information element for identifying at least one of the number of control channel elements (CCE (s)) that can be assigned to the 2nd stage control channel and at least one of the 2nd stage control channels.
  • CCE control channel elements
  • the UE 200 transmits the UE capability to the NG-RAN 20.
  • the UE capability may include an information element indicating the capability of the UE 200 with respect to the 2 step control channel indication.
  • the UE capability may include an information element indicating whether or not the UE 200 corresponds to the 2 step control channel indication.
  • NG-RAN20 sends an RRC message to UE200.
  • the RRC message may include an information element indicating a setting regarding 2 step control channel indication.
  • Such a setting is an example of the setting of the upper layer described above.
  • step S12 NG-RAN20 transmits the first control information to UE200 by the 1st stage control channel on carrier # 1.
  • the UE200 receives the first control information and identifies the resource of the second stage control channel based on the first control information.
  • NG-RAN20 transmits the second control information to UE200 by the 2nd stage control channel on carrier # 2.
  • the NG-RAN20 controls the transmission of the second control information based on the first control information.
  • the UE200 receives the second control information and identifies data resources and the like based on the second control information.
  • step S14 UE200 and NG-RAN20 execute (control) data communication based on the second control information.
  • the data may be DL data or UL data.
  • the UE 200 uses the 2nd stage control channel on carrier # 2 to provide the 2nd control information based on the 1st control information received by the 1st stage control channel on carrier # 1. It is received and data communication is executed based on the received second control information (2 step control channel indication).
  • 2-step control channel indication makes it possible to flexibly schedule data while reducing the restrictions of channel estimation including BD. As a result, appropriate cross-carrier scheduling can be performed.
  • control unit 130 of the gNB 100 controls the transmission of the second stage control channel (second control information) so that the first application condition is satisfied.
  • control unit 270 of the UE 200 controls the reception of the 2nd stage control channel (second control information) so that the first application condition is satisfied.
  • the first application condition may include a condition for individually applying the first control information to the second stage control channel. That is, the first control information is applied to individual 2nd stage control channels.
  • Application may be read as available and may be read as activation.
  • the first application condition may include a condition for applying the first control information over a specific time interval.
  • the specific time interval may be a symbol of N3, a slot of N3, a subframe of N3, or a frame of N3.
  • N3 is an integer of 1 or more, and may be specified by the 1st stage control channel (first control information), may be set by the upper layer, or may be predetermined.
  • Application may be read as available and may be read as activation.
  • N4 is an integer of 1 or more, and may be defined in symbol units, slot units, subframe units, or frame units.
  • N4 is an integer of 1 or more, and may be specified by the 1st stage control channel (first control information), may be set by the upper layer, or may be predetermined.
  • N4 may be smaller than N3, larger than N3, and identical to N3.
  • the time unit (symbol, slot, subframe, frame) that defines N4 may be different from the time unit (symbol, slot, subframe, frame) that defines N3.
  • the invalidation of the first control information may be introduced by the 1st stage control channel (first control information) including one or more specific fields, as in the case of CG (Configured Grant) and SPS (Semi-Persistent Scheduling). ..
  • the first application condition described above may be switched according to the combination of two or more elements selected from the upper layer settings, the 1st stage control channel (eg DCI format in NR) and other control channels. good.
  • the other control channel may be a control channel for each UE200, or may be a group common control channel.
  • the first applicable condition may include the following options.
  • the first application condition includes the condition that the 1st stage control channel (first control information) is applied to one 2nd stage control channel (second control information). good.
  • the first application condition may include a condition in which the 1st stage control channel (first control information) is applied to two or more second stage control channels (second control information).
  • first control information the 1st stage control channel
  • second control information the second stage control channels
  • the first application condition includes a condition to which the 1st stage control channel (first control information) is applied in the same time unit (slot, subframe, frame). good. That is, the first application condition may include the condition that the 1st stage control channel (first control information) is not applied in different time units.
  • the first application condition may include a condition to which the 1st stage control channel (first control information) is applied in different time units (slot, subframe, frame) as shown in FIG. .. That is, the first application condition may not include a time unit limitation.
  • 1 st stage control channel eg DCI format in NR
  • other control channels may be a control channel for each UE200, or may be a group common control channel.
  • the first applicable condition may include the following options.
  • the first application condition includes a condition that two or more 1 st stage control channels (first control information) are not assumed in the same time unit (slot, subframe, frame). But it may be.
  • the first application condition is that, as shown in FIG. 12, two or more 1 st stage control channels (first control information) are assumed in the same time unit (slot, subframe, frame). It may be included.
  • the options described above may be applied depending on the combination of two or more elements selected from the upper layer settings, 1 st stage control channel (eg DCI format in NR) and other control channels.
  • the other control channel may be a control channel for each UE200, or may be a group common control channel.
  • the options mentioned above may be applied based on the UE capability of the UE 200.
  • control unit 130 of the gNB 100 controls data communication so that the second application condition is satisfied.
  • control unit 270 of the UE 200 controls data communication so that the second application condition is satisfied.
  • the second applicable condition may include the following options.
  • the second application condition may include a condition in which the second stage control channel is applied to one piece of data, as shown in FIG.
  • the second application condition may include a condition in which the second stage control channel (second control information) is applied to two or more data.
  • Such cases may further include the options shown below.
  • the second application condition includes the condition that the second stage control channel (second control information) is applied in the same time unit (slot, subframe, frame) as shown in FIG. good. That is, the second application condition may include the condition that the 2nd stage control channel (second control information) is not applied in different time units.
  • the second application condition may include a condition to which the second stage control channel (second control information) is applied in different time units (slot, subframe, frame) as shown in FIG. .. That is, the second application condition may not include a time unit limitation.
  • the options described above may be applied depending on the combination of two or more elements selected from the upper layer settings, the 2nd stage control channel (eg DCI format in NR) and other control channels.
  • the other control channel may be a control channel for each UE200, or may be a group common control channel.
  • the first application condition relates to whether or not to allow the designation of the same 2nd stage control channel (second control information) by two or more 1 st stage control channels (first control information). Including conditions.
  • the first application condition may include a condition that does not allow the designation of the same 2nd stage control channel (second control information) by two or more 1 st stage control channels (first control information).
  • the first application condition may include a condition that allows the designation of the same 2nd stage control channel (second control information) by two or more 1 st stage control channels (first control information).
  • second control information the same 2nd stage control channel
  • first control information the latest first control information
  • the previous first control information may be updated by the latest first control information.
  • the options described above may be applied depending on the combination of two or more elements selected from the upper layer settings, the 2nd stage control channel (eg DCI format in NR) and other control channels.
  • the other control channel may be a control channel for each UE200, or may be a group common control channel.
  • the second application condition includes a condition regarding whether or not to allow the designation of the same data by two or more 2nd stage control channels (second control information).
  • the second application condition may include a condition that does not allow the specification of the same data by two or more 2nd stage control channels (second control information).
  • the first application condition may include a condition that allows the designation of the same data by two or more 2nd stage control channels (second control information).
  • second control information may be applied instead of the previous second control information.
  • the previous second control information may be updated by the latest second control information.
  • the options described above may be applied depending on the combination of two or more elements selected from the upper layer settings, the 2nd stage control channel (eg DCI format in NR) and other control channels.
  • the other control channel may be a control channel for each UE200, or may be a group common control channel.
  • first control information the case where one 1st stage control channel (first control information) is used for scheduling one second stage control channel (second control information) has been described.
  • second control information a case where one 1st stage control channel (first control information) is used for scheduling two or more second stage control channels (second control information) will be described.
  • the resource may include a time domain resource or a frequency domain resource.
  • resources of two or more 2nd stage control channels may be continuous.
  • the 1st stage control channel (first control information) may include an information element that specifies the length of the resource of two or more 2nd stage control channels.
  • the 1st stage control channel (first control information) may include an information element that specifies the starting point of each of the resources of two or more 2nd stage control channels.
  • the resources of two or more 2nd stage control channels may be discontinuous.
  • the 1st stage control channel may include information elements indicating the length and starting point of each of the resources of the 2 or more 2nd stage control channels.
  • the length of each resource of two or more 2nd stage control channels may be the same. In such cases, the following options may be further considered.
  • the resources of two or more 2nd stage control channels may be continuous.
  • the 1st stage control channel may include an information element that specifies the number of 2 or more 2nd stage control channels.
  • the start point of the nth (n is an integer greater than or equal to 2) th 2nd stage control channel is the end point of the n-1st 2nd stage control channel.
  • the starting point of the first 2nd stage control channel may be specified by the 1st stage control channel (first control information).
  • the resources of two or more 2nd stage control channels may be discontinuous.
  • the 1st stage control channel may include an information element indicating the starting point of each of the resources of two or more 2nd stage control channels.
  • resources of two or more 2nd stage control channels may be set by the upper layer, and the set resources may be activated by the 1st stage control channel (first control information).
  • the cycle of RV is set by the upper layer, and each RV of two or more 2nd stage control channels may be different according to the set cycle.
  • (2) Field of 2nd stage control channel the value of the specific field included in each of 2 or more 2nd stage control channels (second control information) may be the same.
  • Specific fields may include MCS, RV, NDI, TPC, and the like.
  • the value of the specific field included in the 2nd stage control channel (second control information) may be the same as the value of the specific field included in the 1st stage control channel (first control information).
  • the value of the specific field included in each of the two or more 2nd stage control channels may be the same.
  • Specific fields may include MCS, RV, NDI, TPC, and the like.
  • the value of the specific field contained in each 2nd stage control channel (second control information) may be specified by the information element contained in the 1st stage control channel (first control information).
  • each resource of two or more data may be different, as in the case of multi-PUSCH scheduling. In such cases, the following options may be further considered.
  • the resource may include a time domain resource or a frequency domain resource.
  • resources of two or more data may be continuous.
  • the 2nd stage control channel may include an information element that specifies the length of the resource of two or more data.
  • the 2nd stage control channel may include an information element that specifies the starting point of each of the resources of two or more data.
  • the resources of two or more data may be discontinuous.
  • the 2nd stage control channel may include information elements indicating the length and start point of each of the two or more data resources.
  • the length of each resource of two or more data may be the same. In such cases, the following options may be further considered.
  • the resources of two or more data may be continuous.
  • the 2nd stage control channel may include an information element that specifies the number of data of 2 or more.
  • the start point of the nth data (n is an integer greater than or equal to 2) is the end point of the n-1st data.
  • the starting point of the first data may be specified by the 2nd stage control channel.
  • the resources of two or more data may be discontinuous.
  • the 2nd stage control channel may include an information element indicating the starting point of each of the resources of two or more data.
  • resources of two or more data may be set by the upper layer, and the set resources may be activated by the 2nd stage control channel (second control information).
  • the cycle of RV is set by the upper layer, and each RV of two or more data may be different according to the set cycle.
  • mapping option 1 the value of a specific field included in one 2nd stage control channel (second control information) may be applied to all data.
  • Specific fields may include MCS, RV, NDI, TPC, and the like.
  • the value of the specific field applied to each of the two or more data may be different for each of the two or more data.
  • Specific fields may include MCS, RV, NDI, TPC, and the like.
  • the value of the specific field applied to each data may be specified by the information element contained in the 2nd stage control channel (second control information).
  • Such a constraint condition may be considered as one of the above-mentioned first application conditions.
  • Option 1 may allow scheduling of the 2nd stage control channel prior to the 1st stage control channel, as shown in FIG.
  • a time difference in symbol units may be assumed as the time difference between the 1st stage control channel and the 2nd stage control channel.
  • Option 2 does not have to allow scheduling of the 2nd stage control channel prior to the 1st stage control channel, as shown in FIG.
  • Such a constraint condition may be considered as one of the above-mentioned first application conditions.
  • Option 1 may allow scheduling of data prior to the 2nd stage control channel, as shown in FIG.
  • a time difference in symbol units may be assumed as the time difference between the 2nd stage control channel and the data.
  • Option 2 does not have to allow scheduling of data prior to the 2nd stage control channel, as shown in FIG.
  • the 1st stage control channel (eg DCI format in NR) and other control channels. May be done.
  • the other control channel may be a control channel for each UE200, or may be a group common control channel.
  • the options mentioned above may be defined based on the UE capability of the UE 200.
  • the 2nd stage control channel (for example, DCI format in NR) and the combination of two or more elements selected from other control channels. May be done.
  • the other control channel may be a control channel for each UE200, or may be a group common control channel.
  • the options mentioned above may be defined based on the UE capability of the UE 200.
  • Modification 7 describes other constraints on the 1st stage control channel and the 2nd stage control channel. Such a constraint condition may be considered as one of the above-mentioned first application conditions.
  • carrier # 1 for the 1st stage control channel and carrier # 2 for the 2nd stage control channel may be carriers belonging to the same BWP , the same CC, or the same band.
  • the 1st stage control channel and the 2nd stage control channel may be mapped to the same time interval.
  • the time interval may be defined in symbol units, slot units, subframe units, or frame units.
  • carrier # 1 for the 1st stage control channel and carrier # 2 for the 2nd stage control channel may be carriers belonging to different BWPs , different CCs or different bands.
  • the time difference between the 1st stage control channel and the 2nd stage control channel may be greater than or equal to the time offset.
  • the time offset the time offset specified in Release 16 of 3GPP may be used, or the newly defined time offset may be used.
  • the time offset may be referred to as Preparation time. For example, if carrier # 1 has an SCS of 15 kHz and carrier # 2 has an SCS of 30 kHz, the preparation time may be 4 symbols.
  • the 1st stage control channel and the 2nd stage control channel may be mapped to the same time interval in different frequency resources.
  • the time interval may be defined in symbol units, slot units, subframe units, or frame units.
  • the 2step control channel indication may be applied to DL or UL. It may be applied to SL (SideLink).
  • At least one of the 1st stage control channel and the 2nd stage control channel may be PDCCH or PSCCH (Physical Sidelink Control Channel).
  • the channel for transmitting data may be PDSCH, PUSCH, or PSSCH (Physical Sidelink Shared Channel).
  • the 2nd stage control channel may be multiplexed with a data channel (eg, PDSCH).
  • the second control information may be treated as data.
  • each functional block is realized by any combination of at least one of hardware and software.
  • the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't.
  • a functional block (configuration unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter).
  • the realization method is not particularly limited.
  • FIG. 26 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of each of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each functional block of the device (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function in the device is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of memory 1002 and storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA).
  • the hardware may implement some or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (eg Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (eg RRC signaling, Medium Access Control (MAC) signaling, Master Information Block). (MIB), System Information Block (SIB)), other signals or combinations thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling eg RRC signaling, Medium Access Control (MAC) signaling, Master Information Block). (MIB), System Information Block (SIB)
  • RRC signaling may also be referred to as an RRC message, eg, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobileBroadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand
  • Bluetooth® Ultra-WideBand
  • other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them. It may be applied to one.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in this disclosure may be performed by its upper node (upper node).
  • various operations performed for communication with the terminal are the base station and other network nodes other than the base station (eg, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network node
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table.
  • the input / output information may be overwritten, updated, or added.
  • the output information may be deleted.
  • the entered information may be transmitted to other devices.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software may use at least one of wired technology (coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) to create a website.
  • wired technology coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented.
  • the radio resource may be indexed.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • Fixed Station NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Access point "transmission point”
  • reception point "transmission / reception point”
  • cell “sector”
  • Cell group “cell group”
  • Terms such as “carrier” and “component carrier” may be used interchangeably.
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a remote radio for indoor use). Communication services can also be provided by Head: RRH).
  • RRH Remote Radio Head
  • cell refers to a part or all of the coverage area of at least one of the base station providing communication services in this coverage and the base station subsystem.
  • MS Mobile Station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same shall apply hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the functions of the base station.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • the wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
  • the subframe may be further composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval: TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. It may indicate at least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time region.
  • the slot may be a unit of time based on numerology.
  • the slot may include a plurality of mini slots.
  • Each minislot may be composed of one or more symbols in the time domain. Further, the mini-slot may be referred to as a sub-slot.
  • a minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • Wireless frames, subframes, slots, mini slots and symbols all represent time units when transmitting signals.
  • the radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. May be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • a base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • TTI with a time length of 1 ms may be called normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI (for example, shortened TTI, etc.) may be read as a TTI less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, and the like. May be called.
  • Physical RB Physical RB: PRB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB pair, and the like. May be called.
  • the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
  • RE resource elements
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth) may represent a subset of consecutive common resource blocks for a neurology in a carrier. good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB.
  • the number of subcarriers, as well as the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection means any direct or indirect connection or connection between two or more elements and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-comprehensive examples, the radio frequency region.
  • Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions, etc. can be considered to be “connected” or “coupled” to each other.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applied standard.
  • RS Reference Signal
  • Pilot pilot
  • each of the above devices may be replaced with a "part”, a “circuit”, a “device”, or the like.
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. It may include (for example, accessing data in memory) to be regarded as “judgment” or “decision”.
  • judgment and “decision” are considered to be “judgment” and “decision” when the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming", “expecting”, “considering” and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • Radio communication system 20 NG-RAN 100 gNB 110 Receiver 120 Transmitter 130 Control 200 UE 210 Wireless signal transmitter / receiver 220 Amplifier 230 Modulator / demodulator 240 Control signal / reference signal processing 250 Encoding / decoding 260 Data transmitter / receiver 270 Control 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末は、第1キャリア上の第1制御チャネルによって第1制御情報を受信し、第2キャリア上の第2制御チャネルによって第2制御情報を受信する受信部と、第1適用条件が満たされている場合に、前記第1制御情報に基づいて前記第2制御情報の受信を制御し、前記第2制御情報に基づいてデータの通信を制御する制御部と、を備える。

Description

端末、基地局及び無線通信方法
 本開示は、無線通信を実行する端末、基地局及び無線通信方法、特に、クロスキャリアスケジューリングに対応する端末、基地局及び無線通信方法に関する。
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。
 3GPPのRelease 15及びRelease 16(NR)では、複数の周波数レンジ、具体的には、FR1(410 MHz~7.125 GHz)及びFR2(24.25 GHz~52.6 GHz)を含む帯域の動作が仕様化されている。
 また、52.6GHzを超え、71GHzまでをサポートするNRについても検討が進められている(非特許文献1)。さらに、Beyond 5G、5G Evolution或いは6G(Release-18以降)は、71GHzを超える周波数帯もサポートすることを目標としている。
"New WID on Extending current NR operation to 71 GHz", RP-193229, 3GPP TSG RAN Meeting #86, 3GPP, 2019年12月
 52.6GHzを超えるような高周波数帯域など、FR1, FR2と異なる異周波数帯域を利用する場合には、端末(User Equipment, UE)の高速移動時における安定した無線通信のサポートなどのため、大きな(広い)サブキャリア間隔(SCS)が適用され、シンボル時間が短くなることが想定される。
 大きなSCSが適用されたキャリアでは、制御チャネル(例えば、PDCCH(Physical Downlink Control Channel))のチャネル推定(CE)が制限されるため、制御チャネルの割当に用いるCCE(s)(Control Channel Element(s))の数が少なくなる。
 このような問題を解消するために、2以上のキャリアを用いたクロスキャリアスケジューリングが考えられるが、発明者等は、鋭意検討の結果、2以上のキャリアのシンボル時間の違いによって、スケジューリング可能なデータが少なくなることを見出した。
 そこで、以下の開示は、このような状況に鑑みてなされたものであり、クロスキャリアスケジューリングに適切に対応し得る端末、基地局及び無線通信方法の提供を目的とする。
 本開示は、端末であって、第1キャリア上の第1制御チャネルによって第1制御情報を受信し、第2キャリア上の第2制御チャネルによって第2制御情報を受信する受信部と、第1適用条件が満たされている場合に、前記第1制御情報に基づいて前記第2制御情報の受信を制御し、前記第2制御情報に基づいてデータの通信を制御する制御部と、を備える、ことを要旨とする。
 本開示は、基地局であって、第1キャリア上の第1制御チャネルによって第1制御情報を送信し、第2キャリア上の第2制御チャネルによって第2制御情報を送信する送信部と、第1適用条件が満たされるように、前記第1制御情報に基づいて前記第2制御情報の送信を制御し、前記第2制御情報に基づいてデータの通信を制御する制御部と、を備える、ことを要旨とする。
 本開示は、無線通信方法であって、第1キャリア上の第1制御チャネルによって第1制御情報を受信するステップAと、第2キャリア上の第2制御チャネルによって第2制御情報を受信するステップBと、を備え、前記ステップAは、第1適用条件が満たされる場合に、前記第1制御情報に基づいて前記第2制御情報の受信を制御するステップを含み、前記ステップBは、前記第2制御情報に基づいてデータの通信を制御するステップを含む、ことを要旨とする。
図1は、無線通信システム10の全体概略構成図である。 図2は、無線通信システム10において用いられる周波数レンジを示す図である。 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。 図4は、UE200の機能ブロック構成図である。 図5は、gNB100の機能ブロック構成図である。 図6は、2 step control channel indicationを説明するための図である。 図7は、動作例を示すシーケンス図である。 図8は、変更例1に係る2 step control channel indicationを説明するための図である。 図9は、変更例1に係る2 step control channel indicationを説明するための図である。 図10は、変更例1に係る2 step control channel indicationを説明するための図である。 図11は、変更例1に係る2 step control channel indicationを説明するための図である。 図12は、変更例1に係る2 step control channel indicationを説明するための図である。 図13は、変更例2に係る2 step control channel indicationを説明するための図である。 図14は、変更例2に係る2 step control channel indicationを説明するための図である。 図15は、変更例2に係る2 step control channel indicationを説明するための図である。 図16は、変更例3に係る2 step control channel indicationを説明するための図である。 図17は、変更例3に係る2 step control channel indicationを説明するための図である。 図18は、変更例6に係る2 step control channel indicationを説明するための図である。 図19は、変更例6に係る2 step control channel indicationを説明するための図である。 図20は、変更例6に係る2 step control channel indicationを説明するための図である。 図21は、変更例6に係る2 step control channel indicationを説明するための図である。 図22は、変更例6に係る2 step control channel indicationを説明するための図である。 図23は、変更例6に係る2 step control channel indicationを説明するための図である。 図24は、変更例6に係る2 step control channel indicationを説明するための図である。 図25は、変更例6に係る2 step control channel indicationを説明するための図である。 図26は、gNB100又はUE200のハードウェア構成の一例を示す図である。
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。
 [実施形態]
 (1)無線通信システムの全体概略構成
 図1は、実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び端末200(以下、UE200)を含む。
 なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。
 NG-RAN20は、無線基地局100A(以下、gNB100A)及び無線基地局100B(以下、gNB100B)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。
 gNB100A及びgNB100Bは、5Gに従った無線基地局であり、UE200と5Gに従った無線通信を実行する。gNB100A、gNB100B及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMassive MIMO(Multiple-Input Multiple-Output)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時2以上のトランスポートブロックに通信を行うデュアルコネクティビティ(DC)などに対応することができる。
 また、無線通信システム10は、複数の周波数レンジ(FR)に対応する。図2は、無線通信システム10において用いられる周波数レンジを示す。
 図2に示すように、無線通信システム10は、FR1及びFR2に対応する。各FRの周波数帯は、次のとおりである。
 ・FR1:410 MHz~7.125 GHz
 ・FR2:24.25 GHz~52.6 GHz
 FR1では、15, 30または60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60,または120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。
 なお、SCSは、numerologyと解釈されてもよい。numerologyは、3GPP TS38.300において定義されており、周波数ドメインにおける一つのサブキャリア間隔と対応する。
 さらに、無線通信システム10は、FR2の周波数帯よりも高周波数帯にも対応する。具体的には、無線通信システム10は、52.6GHzを超え、114.25GHzまでの周波数帯に対応する。このような高周波数帯は、便宜上「FR2x」と呼ばれてもよい。
 このような問題を解決するため、52.6GHzを超える帯域を用いる場合には、より大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)を適用してもよい。
 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す。
 図3に示すように、1スロットは、14シンボルで構成され、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。SCSは、図3に示す間隔(周波数)に限定されない。例えば、480kHz、960kHzなどが用いられてもよい。
 また、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28、56シンボル)。さらに、サブフレーム当たりのスロット数は、SCSによって異なっていてよい。
 なお、図3に示す時間方向(t)は、時間領域、シンボル期間またはシンボル時間などと呼ばれてもよい。また、周波数方向は、周波数領域、リソースブロック、サブキャリア、バンド幅部分(BWP: Bandwidth part)などと呼ばれてもよい。
 DMRSは、参照信号の一種であり、各種チャネル用に準備される。ここでは、特に断りがない限り、下りデータチャネル、具体的には、PDSCH(Physical Downlink Shared Channel)用のDMRSを意味してよい。但し、上りデータチャネル、具体的には、PUSCH(Physical Uplink Shared Channel)用のDMRSは、PDSCH用のDMRSと同様と解釈されてもよい。
 DMRSは、デバイス、例えば、コヒーレント復調の一部分として、UE200におけるチャネル推定に用い得る。DMRSは、PDSCH送信に使用されるリソースブロック(RB)のみに存在してよい。
 DMRSは、複数のマッピングタイプを有してよい。具体的には、DMRSは、マッピングタイプA及びマッピングタイプBを有する。マッピングタイプAでは、最初のDMRSは、スロットの2または3番目のシンボルに配置される。マッピングタイプAでは、DMRSは、実際のデータ送信がスロットのどこで開始されるかに関係なく、スロット境界を基準にしてマッピングされてよい。最初のDMRSがスロットの2または3番目のシンボルに配置される理由は、制御リソースセット(CORESET:control resource sets)の後に最初のDMRSを配置するためと解釈されてもよい。
 マッピングタイプBでは、最初のDMRSがデータ割り当ての最初のシンボルに配置されてよい。すなわち、DMRSの位置は、スロット境界に対してではなく、データが配置されている場所に対して相対的に与えられてよい。
 また、DMRSは、複数の種類(Type)を有してよい。具体的には、DMRSは、Type 1及びType 2を有する。Type 1とType 2とは、周波数領域におけるマッピング及び直交参照信号(orthogonal reference signals)の最大数が異なる。Type 1は、単一シンボル(single-symbol)DMRSで最大4本の直交信号を出力でき、Type 2は、二重シンボル(double-symbol)DMRSで最大8本の直交信号を出力できる。
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。
 第1に、UE200の機能ブロック構成について説明する。
 図4は、UE200の機能ブロック構成図である。図4に示すように、UE200は、無線信号送受信部210、アンプ部220、変復調部230、制御信号・参照信号処理部240、符号化/復号部250、データ送受信部260及び制御部270を備える。
 無線信号送受信部210は、NRに従った無線信号を送受信する。無線信号送受信部210は、Massive MIMO、複数のCCを束ねて用いるCA、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うDCなどに対応する。
 実施形態では、無線信号送受信部210は、第1キャリア上の第1制御チャネルによって第1制御情報を受信し、第2キャリア上の第2制御チャネルによって第2制御情報を受信する受信部を構成する。
 第2キャリアに適用されるSCSは、第1キャリアに適用されるSCSよりも大きくてもよい。第1制御チャネルは、第1PDCCHと呼称されてもよく、第2制御チャネルは、第2PDCCHと呼称されてもよい。第1制御情報は、第1DCIと呼称されてもよく、第2制御情報は、第2DCIと呼称されてもよい。
 アンプ部220は、PA (Power Amplifier)/LNA (Low Noise Amplifier)などによって構成される。アンプ部220は、変復調部230から出力された信号を所定の電力レベルに増幅する。また、アンプ部220は、無線信号送受信部210から出力されたRF信号を増幅する。
 変復調部230は、所定の通信先(gNB100または他のgNB)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。変復調部230では、Cyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)が適用されてもよい。また、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)にも用いられてもよい。
 制御信号・参照信号処理部240は、UE200が送受信する各種の制御信号に関する処理、及びUE200が送受信する各種の参照信号に関する処理を実行する。
 具体的には、制御信号・参照信号処理部240は、gNB100から所定の制御チャネルを介して送信される各種の制御信号、例えば、無線リソース制御レイヤ(RRC)の制御信号を受信する。また、制御信号・参照信号処理部240は、gNB100に向けて、所定の制御チャネルを介して各種の制御信号を送信する。
 制御信号・参照信号処理部240は、Demodulation Reference Signal(DMRS)、及びPhase Tracking Reference Signal (PTRS)などの参照信号(RS)を用いた処理を実行する。
 DMRSは、データ復調に用いるフェージングチャネルを推定するための端末個別の基地局~端末間において既知の参照信号(パイロット信号)である。PTRSは、高い周波数帯で課題となる位相雑音の推定を目的した端末個別の参照信号である。
 なお、参照信号には、DMRS及びPTRS以外に、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)が含まれてもよい。
 また、チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、RACH(Random Access Channel)、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDownlink Control Information (DCI))、及びPhysical Broadcast Channel(PBCH)などが含まれる。
 また、データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。データとは、データチャネルを介して送信されるデータを意味する。データチャネルは、共有チャネルと読み替えられてもよい。
 ここで、制御信号・参照信号処理部240は、下りリンク制御情報(DCI)を受信する受信部を構成する。DCIは、既存のフィールドとして、DCI Formats、Carrier indicator(CI)、BWP indicator、FDRA(Frequency Domain Resource Allocation)、TDRA(Time Domain Resource Allocation)、MCS(Modulation and Coding Scheme)、HPN(HARQ Process Number)、NDI(New Data Indicator)、RV(Redundancy Version)などを格納するフィールドを含む。
 DCI Formatフィールドに格納される値は、DCIのフォーマットを指定する情報要素である。CIフィールドに格納される値は、DCIが適用されるCCを指定する情報要素である。BWP indicatorフィールドに格納される値は、DCIが適用されるBWPを指定する情報要素である。BWP indicatorによって指定され得るBWPは、RRCメッセージに含まれる情報要素(BandwidthPart-Config)によって設定される。FDRAフィールドに格納される値は、DCIが適用される周波数ドメインリソースを指定する情報要素である。周波数ドメインリソースは、FDRAフィールドに格納される値及びRRCメッセージに含まれる情報要素(RA Type)によって特定される。TDRAフィールドに格納される値は、DCIが適用される時間ドメインリソースを指定する情報要素である。時間ドメインリソースは、TDRAフィールドに格納される値及びRRCメッセージに含まれる情報要素(pdsch-TimeDomainAllocationList、pusch-TimeDomainAllocationList)によって特定される。時間ドメインリソースは、TDRAフィールドに格納される値及びデフォルトテーブルによって特定されてもよい。MCSフィールドに格納される値は、DCIが適用されるMCSを指定する情報要素である。MCSは、MCSに格納される値及びMCSテーブルによって特定される。MCSテーブルは、RRCメッセージによって指定されてもよく、RNTIスクランブリングによって特定されてもよい。HPNフィールドに格納される値は、DCIが適用されるHARQ Processを指定する情報要素である。NDIに格納される値は、DCIが適用されるデータが初送データであるか否かを特定するための情報要素である。RVフィールドに格納される値は、DCIが適用されるデータの冗長性を指定する情報要素である。
 実施形態では、DCIは、上りリンクチャネル(PUSCH)の時間ドメインリソース割当(TDRA)を含む。PUSCHのTDRAを含むDCIは、Format 0_0、Format 0_1又はFormat 0_2のDCIであってもよい。
 符号化/復号部250は、所定の通信先(gNB100または他のgNB)毎に、データの分割/連結及びチャネルコーディング/復号などを実行する。
 具体的には、符号化/復号部250は、データ送受信部260から出力されたデータを所定のサイズに分割し、分割されたデータに対してチャネルコーディングを実行する。また、符号化/復号部250は、変復調部230から出力されたデータを復号し、復号したデータを連結する。
 データ送受信部260は、Protocol Data Unit (PDU)ならびにService Data Unit (SDU)の送受信を実行する。具体的には、データ送受信部260は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDUの組み立て/分解などを実行する。また、データ送受信部260は、ハイブリッドARQ(Hybrid automatic repeat request)に基づいて、データの誤り訂正及び再送制御を実行する。
 制御部270は、UE200を構成する各機能ブロックを制御する。例えば、実施形態では、制御部270は、第1制御情報に基づいて第2制御チャネルの受信を制御し、第2制御情報に基づいてデータの通信を制御する制御部を構成する。
 データの通信は、第2キャリア上のチャネルを介して実行されてもよい。データの通信は、第2キャリアとは異なる第3キャリア上のチャネルを介して実行されてもよい。データは、DLデータであってもよく、ULデータであってもよい。従って、データの通信は、PDSCHを介して実行されてもよく、PUSCHを介して実行されてもよい。
 第2に、gNB100の機能ブロック構成について説明する。
 図5は、gNB100の機能ブロック構成図である。図5に示すように、gNB100は、受信部110、送信部120及び制御部130を有する。
 受信部110は、UE200から各種信号を受信する。受信部110は、PUCCH又はPUSCHを介してUL信号を受信してもよい。
 送信部120は、UE200に各種信号を送信する。送信部120は、PDCCH又はPDSCHを介してDL信号を送信してもよい。実施形態では、送信部120は、第1キャリア上の第1制御チャネルによって第1制御情報を送信し、第2キャリア上の第2制御チャネルによって第2制御情報を送信する送信部を構成する。
 制御部130は、gNB100を制御する。実施形態では、制御部130は、第1制御情報に基づいて第2制御情報の送信を制御し、第2制御情報に基づいてデータの通信を制御する制御部を構成する。
 (3)適用例
 以下において、適用例について説明する。ここでは、クロスキャリアスケジューリングについて主として説明する。
 図6に示すように、クロスキャリアスケジューリングでは、第1キャリア(以下、Carrier #1)上の第1制御チャネル(以下、1st stage control channel)によって送信される第1制御情報に基づいて、第2キャリア(以下、Carrier #2)上の第2制御チャネル(以下、2nd stage control channel)によって送信される第2制御情報がスケジューリングされ、第2制御情報に基づいてデータがスケジューリングされる。このようなスケジューリングは、2 step control channel indicationと称されてもよい。
 図6では、説明簡略化のために、Carrier #1のslot長がCarrier #2のslot長と同一であるケースを例示しているに過ぎない。実際には、Carrier #2に適用されるSCSは、Carrier #1に適用されるSCSよりも大きくてもよく、Carrier #2のslot長は、Carrier #1のslot長よりも短くてもよい。Carrier #1及びCarrier #2は、上述したFR2xに属するcarrierであってもよい。或いは、Carrier #1は、上述したFR1又はFR2に属するcarrierであり、Carrier #2は、FR2xに属するcarrierであってもよい。
 (3.1)2nd stage control channelの時間ドメインリソース
 第1に、第1制御情報は、2nd stage control channelの時間ドメインリソースの開始ポイント及び長さを指定する情報要素を含んでもよい。開始ポイント及び長さは、symbol単位で指定されてもよく、slot単位で指定されてもよく、subframe単位で指定されてもよく、frame単位で指定されてもよい。
 第2に、第1制御情報は、上位時間単位に含まれる全ての下位時間単位を指定する情報要素を含んでもよい。例えば、第1制御情報は、slotに含まれる全てのsymbolsを指定する情報要素を含んでもよく、subframeに含まれる全てのslots(又はsymbols)を指定する情報要素を含んでもよく、frameに含まれる全てのsubframe(slots又はsymbols)を指定する情報要素を含んでもよい。
 第3に、2nd stage control channelの時間ドメインリソースは、上位レイヤによって設定されてもよい。上位レイヤは、RRCレイヤであってもよい。このようなケースにおいて、以下に示すオプションが考えられる。
 オプション1では、設定された時間ドメインリソースは常に利用可能であってもよい。
 オプション2では、設定された時間ドメインリソースは、1st stage control channel(第1制御情報)によって1回だけ有効化されてもよい。
 オプション3では、設定された時間ドメインリソースは、特定時間区間に亘って有効化されてもよい。特定時間区間は、N1のsymbolであってもよく、N1のslotであってもよく、N1のsubframeであってもよく、N1のframeであってもよい。N1は、1以上の整数であり、1st stage control channel(第1制御情報)によって指定されてもよく、上位レイヤによって設定されてもよく、予め定められてもよい。
 オプション3においては、設定された時間ドメインリソースを無効化する仕組みが導入されてもよい。特定時間区間の満了時間がN2によって定められてもよい。N2は、1以上の整数であり、symbol単位で定義されてもよく、slot単位で定義されてもよく、subframe単位で定義されてもよく、frame単位で定義されてもよい。N2は、1以上の整数であり、1st stage control channel(第1制御情報)によって指定されてもよく、上位レイヤによって設定されてもよく、予め定められてもよい。N2は、N1よりも小さくてもよく、N1よりも大きくてもよく、N1と同一であってもよい。N2を定義する時間単位(symbol、slot、subframe、frame)は、N1を定義する時間単位(symbol、slot、subframe、frame)と異なってもよい。
 時間ドメインリソースの無効化は、CG(Configured Grant)やSPS(Semi-Persistent Scheduling)と同様に、1以上の特定フィールドを含む1ststage control channel(第1制御情報)によって導入されてもよい。
 上述した時間ドメインリソースの指定方法は、上位レイヤの設定、1st stage control channel及び他の制御チャネルの中から選択された2以上の要素の組合せに応じて切り替えられてもよい。他の制御チャネルは、UE200毎の制御チャネルであってもよく、UE200のグループに共通する制御チャネル(group common control channel)であってもよい。
 (3.2)2nd stage control channelの周波数ドメインリソース
 第1に、第1制御情報は、2nd stage control channelの周波数ドメインリソースの開始ポイント及び長さを指定する情報要素を含んでもよい。開始ポイント及び長さは、RE(Resource Element)単位で指定されてもよく、RB単位で指定されてもよく、BWP単位で指定されてもよく、CC単位で指定されてもよい。周波数単位(RE、RB、BWP、CC)の切り替えは、NR FDRAのType(Type 1, Type 2)によって切り替えられてもよい。
 第2に、第1制御情報は、周波数単位(RB、BWP、CC)に含まれる全てのリソースを2nd stage control channelに利用可能か否かを示す情報要素(例えば、1bitフラグ)を含んでもよい。このような全てのリソース割当又は他のリソース割当(Type 1, Type 2)は、制御チャネルによって動的に切り替えられてもよく、準静的(semi-static)に上位レイヤによって設定されてもよい。
 第3に、2nd stage control channelの周波数ドメインリソースは、上位レイヤによって設定されてもよい。上位レイヤは、RRCレイヤであってもよい。このようなケースにおいて、以下のオプションが考えられる。
 オプション1では、設定された周波数ドメインリソースは常に固定的であってもよい。
 オプション2では、2nd stage control channelに実際に用いるリソースは、設定された周波数ドメインリソース及びオフセット値のペアによってシフトされてもよい。このようなリソースのシフトは、時間単位毎に行われてもよく、2nd stage control channel毎に行われてもよい。
 上述した周波数ドメインリソースの指定方法は、上位レイヤの設定、1st stage control channel及び他の制御チャネルの中から選択された2以上の要素の組合せに応じて切り替えられてもよい。他の制御チャネルは、UE200毎の制御チャネルであってもよく、UE200のグループに共通する制御チャネル(group common control channel)であってもよい。
 (3.3)2nd stage control channelのAggregation Level(AL)
 第1制御情報は、2nd stage control channelのALとして、1つのAL(例えば、AL=16)を指定してもよい。第1制御情報は、2nd stage control channelのALとして、2以上のAL(例えば、AL=8又はAL=16)を指定してもよい。いくつのALを指定可能であるかについては、上位レイヤによって設定されてもよく、予め定められてもよい。
 このようなケースにおいて、UE200は、2ndstage control channelのBD(Blind Decoding)によって、2nd stage control channelのフォーマットを特定してもよい。
 なお、UE200は、2nd stage control channelのALについても、2nd stage control channelのBD(Blind Decoding)によって特定してもよい。
 (3.4)2nd stage control channelのフォーマット
 第1制御情報は、2nd stage control channelのフォーマットとして、1つのフォーマット(例えば、DCI format 1_1)を指定してもよい。第1制御情報は、2nd stage control channelのフォーマットとして、2以上のフォーマット(例えば、DCI format 1_1又はDCI format 1_2)を指定してもよい。いくつのフォーマットを指定可能であるかについては、上位レイヤによって設定されてもよく、予め定められてもよい。2nd stage control channelのフォーマットは、DCI format format 1_0, 1_1, 1_2, 0_0, 0_1, 0_2であってもよい。2nd stage control channelのフォーマットは、新たに定義されるフォーマットであってもよい。
 このようなケースにおいて、UE200は、2ndstage control channelのBD(Blind Decoding)によって、2nd stage control channelのALを特定してもよい。
 なお、UE200は、2nd stage control channelのフォーマットについても、2nd stage control channelのBD(Blind Decoding)によって特定してもよい。
 (3.5)2nd stage control channelのリソース
 2ndstage control channelのリソースは、PUCCHリソースを指定する仕組みと同様に、上位レイヤによって設定されたリソースの中から、1st stage control channel(第1制御情報)によって指定されてもよい。
 2ndstage control channelのリソースは、1st stage control channelのリソースと1対1でマッピングされてもよい。マッピングは、上位レイヤによって設定されてもよく、予め定められた式によって特定されてもよい。このようなケースにおいて、1st  stage control channelのフォーマットは、DCI format format 1_0, 1_1, 1_2, 0_0, 0_1, 0_2であってもよい。1st stage control channelのフォーマットは、新たに定義されるフォーマットであってもよい。
 (3.6)2nd stage control channelのフィールド
 1ststage control channel(第1制御情報)は、2nd stage control channel(第2制御情報)に含まれるフィールドの値を指定してもよい。第1制御情報によって指定されるフィールドは、BWP ID、CC ID、変調順序(例えば、MCS index)、RV、frequency hopping、priority indicator、power control(TPC command)などであってもよい。第1制御情報によって指定されるBWP又はCCは、power savingの通知後に活性化されてもよく、常に活性化されてもよい。
 (3.7)データのリソース
 第2制御情報は、データの時間ドメインリソースを指定する。
 第1に、第2制御情報は、既存のTDRAを用いて、データの時間ドメインリソースを指定してもよい。
 第2に、第2制御情報は、上位時間単位に含まれる全ての下位時間単位を指定する情報要素を含んでもよい。例えば、第2制御情報は、slotに含まれる全てのsymbolsを指定する情報要素を含んでもよく、subframeに含まれる全てのslots(又はsymbols)を指定する情報要素を含んでもよく、frameに含まれる全てのsubframe(slots又はsymbols)を指定する情報要素を含んでもよい。
 第2制御情報は、データの周波数ドメインリソースを指定する。
 第1に、第2制御情報は、既存のFDRAを用いて、データの時間ドメインリソースを指定してもよい。
 第2に、第2制御情報は、周波数単位(RB、BWP、CC)に含まれる全てのリソースをデータに利用可能か否かを示す情報要素(例えば、1bitフラグ)を含んでもよい。
 (3.8)まとめ
 上述したように、UE200の制御部270は、第1制御情報に基づいて、2nd stage control channelの時間ドメインリソース及び周波数ドメインリソースの少なくともいずれか1つを特定してもよい。UE200の制御部270は、上位レイヤの設定に基づいて、2nd stage control channelの時間ドメインリソース及び周波数ドメインリソースの少なくともいずれか1つを特定してもよい。UE200の制御部270は、第1制御情報及び上位レイヤの設定に基づいて、2ndstage control channelの時間ドメインリソース及び周波数ドメインリソースの少なくともいずれか1つを特定してもよい。
 第1制御情報は、2nd stage control channelに割当可能な制御チャネルエレメント(CCE(s))数及び2nd stage control channelの少なくともいずれか1つを特定するための情報要素を含んでもよい。2ndstage control channelに割当可能なCCE(s)数は、上述したALと同義であってもよい。
 (4)動作例
 以下において、動作例について説明する。ここでは、クロスキャリアスケジューリングについて主として説明する。クロスキャリアスケジューリングでは、上述した2 step control channel indicationが適用される。
 図7に示すように、ステップS10において、UE200は、UE capabilityをNG-RAN20に送信する。UE capabilityは、2 step control channel indicationに関するUE200の能力を示す情報要素を含んでもよい。例えば、UE capabilityは、2 step control channel indicationにUE200が対応しているか否かを示す情報要素を含んでもよい。
 ステップS11において、NG-RAN20は、RRCメッセージをUE200に送信する。RRCメッセージは、2 step control channel indicationに関する設定を示す情報要素を含んでもよい。このような設定は、上述した上位レイヤの設定の一例である。
 ステップS12において、NG-RAN20は、carrier #1上の1st stage control channelによって第1制御情報をUE200に送信する。UE200は、第1制御情報を受信するとともに、第1制御情報に基づいて、2ndstage control channelのリソースなどを特定する。
 ステップS13において、NG-RAN20は、carrier #2上の2nd stage control channelによって第2制御情報をUE200に送信する。NG-RAN20は、第1制御情報に基づいて第2制御情報の送信を制御する。UE200は、第2制御情報を受信するとともに、第2制御情報に基づいて、データのリソースなどを特定する。
 ステップS14において、UE200及びNG-RAN20は、第2制御情報に基づいてデータの通信を実行(制御)する。データは、DLデータであってもよく、ULデータであってもよい。
 (5)作用及び効果
 実施形態では、UE200は、carrier #1上の1st stage control channelによって受信する第1制御情報に基づいて、carrier #2上の2nd stage control channelによって第2制御情報を受信し、受信された第2制御情報に基づいてデータの通信を実行する(2 step control channel indication)。このような構成によれば、2 step control channel indicationの導入によって、BDを含むチャネル推定の制約を軽減しながら、データを柔軟にスケジューリングすることができる。ひいては、適切なクロスキャリアスケジューリングを実行することができる。
 [変更例1]
 以下において、実施形態の変更例1について説明する。以下においては、実施形態に対する相違点について主として説明する。
 変更例1では、gNB100の制御部130は、第1適用条件が満たされるように、2ndstage control channel(第2制御情報)の送信を制御する。UE200の制御部270は、第1適用条件が満たされるように、2nd stage control channel(第2制御情報)の受信を制御する。
 第1適用条件は、第1制御情報を2nd stage control channelに個別に適用する条件を含んでもよい。すなわち、第1制御情報は、個別の2nd stage control channelに適用される。適用は、利用可能と読み替えてもよく、有効化と読み替えてもよい。
 第1適用条件は、第1制御情報を特定時間区間に亘って適用する条件を含んでもよい。特定時間区間は、特定時間区間は、N3のsymbolであってもよく、N3のslotであってもよく、N3のsubframeであってもよく、N3のframeであってもよい。N3は、1以上の整数であり、1st stage control channel(第1制御情報)によって指定されてもよく、上位レイヤによって設定されてもよく、予め定められてもよい。適用は、利用可能と読み替えてもよく、有効化と読み替えてもよい。
 このようなケースにおいて、第1制御情報を無効化する仕組みが導入されてもよい。特定時間区間の満了時間がN4によって定められてもよい。N4は、1以上の整数であり、symbol単位で定義されてもよく、slot単位で定義されてもよく、subframe単位で定義されてもよく、frame単位で定義されてもよい。N4は、1以上の整数であり、1st stage control channel(第1制御情報)によって指定されてもよく、上位レイヤによって設定されてもよく、予め定められてもよい。N4は、N3よりも小さくてもよく、N3よりも大きくてもよく、N3と同一であってもよい。N4を定義する時間単位(symbol、slot、subframe、frame)は、N3を定義する時間単位(symbol、slot、subframe、frame)と異なってもよい。
 第1制御情報の無効化は、CG(Configured Grant)やSPS(Semi-Persistent Scheduling)と同様に、1以上の特定フィールドを含む1ststage control channel(第1制御情報)によって導入されてもよい。
 上述した第1適用条件は、上位レイヤの設定、1st stage control channel(例えば、NRにおけるDCIフォーマット)及び他の制御チャネルの中から選択された2以上の要素の組合せに応じて切り替えられてもよい。他の制御チャネルは、UE200毎の制御チャネルであってもよく、UE200のグループに共通する制御チャネル(group common control channel)であってもよい。
 さらに、第1適用条件は、以下のオプションを含んでもよい。
 オプション1において、第1適用条件は、図8に示すように、1st stage control channel(第1制御情報)が1つの2nd stage control channel(第2制御情報)に適用される条件を含んでもよい。
 オプション2において、第1適用条件は、1st stage control channel(第1制御情報)が2以上の2nd stage control channel(第2制御情報)に適用される条件を含んでもよい。このようなケースは、以下に示すオプションをさらに含み得る。
 オプション2-1において、第1適用条件は、図9に示すように、同一の時間単位(slot、subframe、frame)において1st stage control channel(第1制御情報)が適用される条件を含んでもよい。すなわち、第1適用条件は、異なる時間単位において1st stage control channel(第1制御情報)が適用されないという条件を含んでもよい。
 オプション2-2において、第1適用条件は、図10に示すように、異なる時間単位(slot、subframe、frame)において1st stage control channel(第1制御情報)が適用される条件を含んでもよい。すなわち、第1適用条件は、時間単位に関する制限を含まなくてもよい。
 上述したオプションは、上位レイヤの設定、1st stage control channel(例えば、NRにおけるDCIフォーマット)及び他の制御チャネルの中から選択された2以上の要素の組合せに応じて適用されてもよい。他の制御チャネルは、UE200毎の制御チャネルであってもよく、UE200のグループに共通する制御チャネル(group common control channel)であってもよい。
 さらに、第1適用条件は、以下のオプションを含んでもよい。
 オプション1において、第1適用条件は、図11に示すように、同一の時間単位(slot、subframe、frame)において2以上の1st stage control channel(第1制御情報)が想定されないという条件を含んでもよい。
 オプション2において、第1適用条件は、図12に示すように、同一の時間単位(slot、subframe、frame)において2以上の1st stage control channel(第1制御情報)が想定されるという条件を含んでもよい。
 上述したオプションは、上位レイヤの設定、1st stage control channel(例えば、NRにおけるDCIフォーマット)及び他の制御チャネルの中から選択された2以上の要素の組合せに応じて適用されてもよい。他の制御チャネルは、UE200毎の制御チャネルであってもよく、UE200のグループに共通する制御チャネル(group common control channel)であってもよい。さらに、上述したオプションは、UE200のUE capabilityに基づいて適用されてもよい。
 [変更例2]
 以下において、実施形態の変更例2について説明する。以下においては、実施形態に対する相違点について主として説明する。
 変更例2では、gNB100の制御部130は、第2適用条件が満たされるように、データの通信を制御する。UE200の制御部270は、第2適用条件が満たされるように、データの通信を制御する。
 第2適用条件は、以下のオプションを含んでもよい。
 オプション1において、第2適用条件は、図13に示すように、2nd stage control channel(第2制御情報)が1つのデータに適用される条件を含んでもよい。
 オプション2において、第2適用条件は、2nd stage control channel(第2制御情報)が2以上のデータに適用される条件を含んでもよい。このようなケースは、以下に示すオプションをさらに含み得る。
 オプション2-1において、第2適用条件は、図14に示すように、同一の時間単位(slot、subframe、frame)において2nd stage control channel(第2制御情報)が適用される条件を含んでもよい。すなわち、第2適用条件は、異なる時間単位において2nd stage control channel(第2制御情報)が適用されないという条件を含んでもよい。
 オプション2-2において、第2適用条件は、図15に示すように、異なる時間単位(slot、subframe、frame)において2nd stage control channel(第2制御情報)が適用される条件を含んでもよい。すなわち、第2適用条件は、時間単位に関する制限を含まなくてもよい。
 上述したオプションは、上位レイヤの設定、2nd stage control channel(例えば、NRにおけるDCIフォーマット)及び他の制御チャネルの中から選択された2以上の要素の組合せに応じて適用されてもよい。他の制御チャネルは、UE200毎の制御チャネルであってもよく、UE200のグループに共通する制御チャネル(group common control channel)であってもよい。
 [変更例3]
 以下において、実施形態の変更例3について説明する。以下においては、実施形態に対する相違点について主として説明する。変更例3では、変更例1で説明した第1適用条件及び第2適用条件のバリエーションについて説明する。
 第1適用条件は、図16に示すように、2以上の1st stage control channel(第1制御情報)による同一の2nd stage control channel(第2制御情報)の指定を許容するか否かに関する条件を含む。
 オプション1において、第1適用条件は、2以上の1st stage control channel(第1制御情報)による同一の2nd stage control channel(第2制御情報)の指定を許容しない条件を含んでもよい。
 オプション2において、第1適用条件は、2以上の1st stage control channel(第1制御情報)による同一の2nd stage control channel(第2制御情報)の指定を許容する条件を含んでもよい。このようなケースにおいて、以前の第1制御情報に代えて、最新の第1制御情報が適用されてもよい。言い換えると、以前の第1制御情報は、最新の第1制御情報によって更新されてもよい。
 上述したオプションは、上位レイヤの設定、2nd stage control channel(例えば、NRにおけるDCIフォーマット)及び他の制御チャネルの中から選択された2以上の要素の組合せに応じて適用されてもよい。他の制御チャネルは、UE200毎の制御チャネルであってもよく、UE200のグループに共通する制御チャネル(group common control channel)であってもよい。
 例えば、第2適用条件は、図17に示すように、2以上の2nd stage control channel(第2制御情報)による同一のデータの指定を許容するか否かに関する条件を含む。
 オプション1において、第2適用条件は、2以上の2nd stage control channel(第2制御情報)による同一のデータの指定を許容しない条件を含んでもよい。
 オプション2において、第1適用条件は、2以上の2nd stage control channel(第2制御情報)による同一のデータの指定を許容する条件を含んでもよい。このようなケースにおいて、以前の第2制御情報に代えて、最新の第2制御情報が適用されてもよい。言い換えると、以前の第2制御情報は、最新の第2制御情報によって更新されてもよい。
 上述したオプションは、上位レイヤの設定、2nd stage control channel(例えば、NRにおけるDCIフォーマット)及び他の制御チャネルの中から選択された2以上の要素の組合せに応じて適用されてもよい。他の制御チャネルは、UE200毎の制御チャネルであってもよく、UE200のグループに共通する制御チャネル(group common control channel)であってもよい。
 [変更例4]
 以下において、実施形態の変更例4について説明する。以下においては、実施形態に対する相違点について主として説明する。
 実施形態では、1つの1st stage control channel(第1制御情報)が、1つの2nd stage control channel(第2制御情報)のスケジューリングに用いられるケースについて説明した。これに対して、変更例4では、1つの1st stage control channel(第1制御情報)が、2以上の2nd stage control channel(第2制御情報)のスケジューリングに用いられるケースについて説明する。
 (1)2ndstage control channelのリソースマッピング
 オプション1では、multi-PUSCHスケジューリングと同様に、2以上の2nd stage control channelの各々のリソースの長さは異なっていてもよい。このようなケースにおいては、さらに以下に示すオプションが考えられる。変更例4において、リソースは、時間ドメインリソースを含んでもよく、周波数ドメインリソースを含んでもよい。
 オプション1-1では、2以上の2nd stage control channelのリソースが連続であってもよい。このようなケースにおいて、1st stage control channel(第1制御情報)は、2以上の2nd stage control channelのリソースの長さを指定する情報要素を含んでもよい。1st stage control channel(第1制御情報)は、2以上の2nd stage control channelのリソースの各々の開始ポイントを指定する情報要素を含んでもよい。
 オプション1-2では、2以上の2nd stage control channelのリソースが非連続であってもよい。このようなケースにおいて、1st stage control channel(第1制御情報)は、2以上の2nd stage control channelのリソースの各々の長さ及び開始ポイントを示す情報要素を含んでもよい。
 オプション2では、2以上の2nd stage control channelの各々のリソースの長さは同一であってもよい。このようなケースにおいては、さらに以下に示すオプションが考えられる。
 オプション2-1では、2以上の2nd stage control channelのリソースが連続であってもよい。このようなケースにおいて、1st stage control channel(第1制御情報)は、2以上の2nd stage control channelの数を指定する情報要素を含んでもよい。n(nは2以上の整数)番目の2nd stage control channelの開始ポイントは、n-1番目の2nd stage control channelの終了ポイントである。最初の2nd stage control channelの開始ポイントは、1st stage control channel(第1制御情報)によって指定されてもよい。
 オプション2-2では、2以上の2nd stage control channelのリソースが非連続であってもよい。このようなケースにおいて、1st stage control channel(第1制御情報)は、2以上の2nd stage control channelのリソースの各々の開始ポイントを示す情報要素を含んでもよい。
 オプション3では、2以上の2nd stage control channelのリソースが上位レイヤによって設定され、設定されたリソースが1st stage control channel(第1制御情報)によって活性化されてもよい。このようなケースにおいて、RVのサイクルが上位レイヤによって設定され、2以上の2nd stage control channelの各々のRVは、設定されたサイクルに従って異なってもよい。
 (2)2ndstage control channelのフィールド
 オプション1では、2以上の2nd stage control channel(第2制御情報)の各々に含まれる特定フィールドの値は同一であってもよい。特定フィールドは、MCS、RV、NDI、TPCなどを含んでもよい。2nd stage control channel(第2制御情報)に含まれる特定フィールドの値は、1ststage control channel(第1制御情報)に含まれる特定フィールドの値と同一であってもよい。
 オプション2では、2以上の2nd stage control channel(第2制御情報)の各々に含まれる特定フィールドの値は同一であってもよい。特定フィールドは、MCS、RV、NDI、TPCなどを含んでもよい。各2nd stage control channel(第2制御情報)に含まれる特定フィールドの値は、1ststage control channel(第1制御情報)に含まれる情報要素によって指定されてもよい。
 [変更例5]
 以下において、実施形態の変更例5について説明する。以下においては、実施形態に対する相違点について主として説明する。
 実施形態では、1つの2nd stage control channel(第2制御情報)が、1つのデータのスケジューリングに用いられるケースについて説明した。これに対して、変更例5では、1つの2nd stage control channel(第2制御情報)が、2以上のデータのスケジューリングに用いられるケースについて説明する。
 (1)データのリソースマッピング
 オプション1では、multi-PUSCHスケジューリングと同様に、2以上のデータの各々のリソースの長さは異なっていてもよい。このようなケースにおいては、さらに以下に示すオプションが考えられる。変更例5において、リソースは、時間ドメインリソースを含んでもよく、周波数ドメインリソースを含んでもよい。
 オプション1-1では、2以上のデータのリソースが連続であってもよい。このようなケースにおいて、2nd stage control channel(第2制御情報)は、2以上のデータのリソースの長さを指定する情報要素を含んでもよい。2nd stage control channel(第2制御情報)は、2以上のデータのリソースの各々の開始ポイントを指定する情報要素を含んでもよい。
 オプション1-2では、2以上のデータのリソースが非連続であってもよい。このようなケースにおいて、2nd stage control channel(第2制御情報)は、2以上のデータのリソースの各々の長さ及び開始ポイントを示す情報要素を含んでもよい。
 オプション2では、2以上のデータの各々のリソースの長さは同一であってもよい。このようなケースにおいては、さらに以下に示すオプションが考えられる。
 オプション2-1では、2以上のデータのリソースが連続であってもよい。このようなケースにおいて、2nd stage control channel(第2制御情報)は、2以上のデータの数を指定する情報要素を含んでもよい。n(nは2以上の整数)番目のデータの開始ポイントは、n-1番目のデータの終了ポイントである。最初のデータの開始ポイントは、2nd stage control channel(第2制御情報)によって指定されてもよい。
 オプション2-2では、2以上のデータのリソースが非連続であってもよい。このようなケースにおいて、2nd stage control channel(第2制御情報)は、2以上のデータのリソースの各々の開始ポイントを示す情報要素を含んでもよい。
 オプション3では、2以上のデータのリソースが上位レイヤによって設定され、設定されたリソースが2nd stage control channel(第2制御情報)によって活性化されてもよい。このようなケースにおいて、RVのサイクルが上位レイヤによって設定され、2以上のデータの各々のRVは、設定されたサイクルに従って異なってもよい。
 (2)他のマッピング
 オプション1では、1つの2nd stage control channel(第2制御情報)に含まれる特定フィールドの値は、全てのデータに適用されてもよい。特定フィールドは、MCS、RV、NDI、TPCなどを含んでもよい。
 オプション2では、2以上のデータの各々に適用される特定フィールドの値は、2以上のデータの各々で異なっていてもよい。特定フィールドは、MCS、RV、NDI、TPCなどを含んでもよい。各データに適用される特定フィールドの値は、2nd stage control channel(第2制御情報)に含まれる情報要素によって指定されてもよい。
 [変更例6]
 以下において、実施形態の変更例6について説明する。以下においては、実施形態に対する相違点について主として説明する。
 変更例6では、1st stage control channel(第1制御情報)、2nd stage control channel(第2制御情報)及びデータの送信順序(受信順序)に関する制約条件について説明する。
 第1に、1st stage control channel及び2nd stage control channelの送信順序(受信順序)に関する制約条件について説明する。このような制約条件は、上述した第1適用条件の1つであると考えてもよい。
 オプション1では、図18に示すように、1st stage control channelよりも前における2nd stage control channelのスケジューリングが許容されてもよい。このようなケースにおいて、1st stage control channelと2nd stage control channelとの時間差異としてsymbol単位の時間差異が想定されてもよい。
 オプション2では、図19に示すように、1st stage control channelよりも前における2nd stage control channelのスケジューリングが許容されなくてもよい。
 第2に、2nd stage control channel及びデータの送信順序(受信順序)に関する制約条件について説明する。このような制約条件は、上述した第1適用条件の1つであると考えてもよい。
 オプション1では、図20に示すように、2nd stage control channelよりも前におけるデータのスケジューリングが許容されてもよい。このようなケースにおいて、2nd stage control channelとデータとの時間差異としてsymbol単位の時間差異が想定されてもよい。
 オプション2では、図21に示すように、2nd stage control channelよりも前におけるデータのスケジューリングが許容されなくてもよい。
 第3に、2以上の1st stage control channelの各々が2nd stage control channelをスケジューリングするケースにおいて、各1ststage control channelによってスケジューリングされる2nd stage control channelの順序に関する制約条件について説明する。このような制約条件は、上述した第1適用条件の1つであると考えてもよい。
 オプション1では、図22に示すように、時刻iの1st stage control channelによって時刻jの2nd stage control channelがスケジューリングされる場合に、時刻iよりも後の時刻の1st stage control channelによって時刻jよりも前の時刻の2nd stage control channelのスケジューリング(OOO; Out Of Order)が許容されてもよい。
 オプション2では、図23に示すように、時刻iの1st stage control channelによって時刻jの2nd stage control channelがスケジューリングされる場合に、時刻iよりも後の時刻の1st stage control channelによって時刻jよりも前の時刻の2nd stage control channelのスケジューリング(OOO; Out Of Order)が許容されなくてもよい。
 上述したOOOを許容するか否かは、上位レイヤの設定、1st stage control channel(例えば、NRにおけるDCIフォーマット)及び他の制御チャネルの中から選択された2以上の要素の組合せに応じて定められてもよい。他の制御チャネルは、UE200毎の制御チャネルであってもよく、UE200のグループに共通する制御チャネル(group common control channel)であってもよい。さらに、上述したオプションは、UE200のUE capabilityに基づいて定められてもよい。
 第4に、2以上の2nd stage control channelの各々がデータをスケジューリングするケースにおいて、各2nd stage control channelによってスケジューリングされるデータの順序に関する制約条件について説明する。このような制約条件は、上述した第2適用条件の1つであると考えてもよい。
 オプション1では、図24に示すように、時刻iの2nd stage control channelによって時刻jのデータがスケジューリングされる場合に、時刻iよりも後の時刻の2nd stage control channelによって時刻jよりも前の時刻のデータのスケジューリング(OOO; Out Of Order)が許容されてもよい。
 オプション2では、図25に示すように、時刻iの2nd stage control channelによって時刻jのデータがスケジューリングされる場合に、時刻iのよりも後の時刻の2nd stage control channelによって時刻jよりも前の時刻のデータのスケジューリング(OOO; Out Of Order)が許容されなくてもよい。
 上述したOOOを許容するか否かは、上位レイヤの設定、2nd stage control channel(例えば、NRにおけるDCIフォーマット)及び他の制御チャネルの中から選択された2以上の要素の組合せに応じて定められてもよい。他の制御チャネルは、UE200毎の制御チャネルであってもよく、UE200のグループに共通する制御チャネル(group common control channel)であってもよい。さらに、上述したオプションは、UE200のUE capabilityに基づいて定められてもよい。
 [変更例7]
 以下において、実施形態の変更例7について説明する。以下においては、実施形態に対する相違点について主として説明する。
 変更例7では、1st stage control channel及び2nd stage control channelに関する他の制約条件について説明する。このような制約条件は、上述した第1適用条件の1つであると考えてもよい。
 オプション1では、1st stage control channelに関するcarrier #1及び2nd stage control channelに関するcarrier #2は、同一のBWP、同一のCC又は同一のbandに属するキャリアであっってもよい。このようなケースにおいて、1ststage control channel及び2nd stage control channelは、同一の時間区間にマッピングされてもよい。時間区間は、symbol単位で定義されてもよく、slot単位で定義されてもよく、subframe単位で定義されてもよく、frame単位で定義されてもよい。
 オプション2では、1st stage control channelに関するcarrier #1及び2nd stage control channelに関するcarrier #2は、異なるBWP、異なるCC又は異なるbandに属するキャリアであっってもよい。このようなケースにおいて、carrier #1及びcarrier #2のSCSが異なる場合には、1st stage control channelと2nd stage control channelとの時間差異が時間オフセット以上であってもよい。時間オフセットとしては、3GPPのRelease 16で規定される時間オフセットが用いられてもよく、新たに定義された時間オフセットが用いられてもよい。時間オフセットは、Preparation timeと呼称されてもよい。例えば、carrier #1のSCSが15kHzであり、carrier #2のSCSが30kHzである場合に、時間オフセット(Preparation time)は4 symbolsであってもよい。carrier #1及びcarrier #2のSCSが同一である場合には、1st stage control channel及び2nd stage control channelは、異なる周波数リソースにおいて同一の時間区間にマッピングされてもよい。時間区間は、symbol単位で定義されてもよく、slot単位で定義されてもよく、subframe単位で定義されてもよく、frame単位で定義されてもよい。
 オプション2においては、2nd stage control channelのためのsearch spaceやCORSETなどに関するパラメータは、上位レイヤによって設定されなくてもよい。
 [その他の実施形態]
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 上述した開示において、2 step control channel indicationは、DLに適用されてもよく、ULに適用されてもよい。SL(Side Link)に適用されてもよい。
 上述した開示において、1st stage control channel 及び2nd stage control channelの少なくともいずれか1つは、PDCCHであってもよく、PSCCH(Physical Sidelink Control Channel)であってもよい。
 上述した開示において、データを送信するためのチャネルは、PDSCHであってもよく、PUSCHであってもよく、PSSCH(Physical Sidelink Shared Channel)であってもよい。
 上述した開示において、2nd stage control channelは、データチャネル(例えば、PDSCH)に多重されてもよい。第2制御情報は、データとして扱われてもよい。
 上述した実施形態の説明に用いたブロック構成図(図4及び図5)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼ばれる。何れも、上述したとおり、実現方法は特に限定されない。
 さらに、上述したgNB100及びUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図26は、当該装置のハードウェア構成の一例を示す図である。図26に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 当該装置の各機能ブロック(図4参照)は、当該コンピュータ装置の何れかのハードウェア要素、又は当該ハードウェア要素の組み合わせによって実現される。
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 情報、信号(情報等)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、又は追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。
 「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。
 サブフレームはさらに時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
 10 無線通信システム
 20 NG-RAN
 100 gNB
 110 受信部
 120 送信部
 130 制御部
 200 UE
 210 無線信号送受信部
 220 アンプ部
 230 変復調部
 240 制御信号・参照信号処理部
 250 符号化/復号部
 260 データ送受信部
 270 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス

Claims (5)

  1.  第1キャリア上の第1制御チャネルによって第1制御情報を受信し、第2キャリア上の第2制御チャネルによって第2制御情報を受信する受信部と、
     第1適用条件が満たされている場合に、前記第1制御情報に基づいて前記第2制御情報の受信を制御し、前記第2制御情報に基づいてデータの通信を制御する制御部と、を備える、端末。
  2.  前記第1適用条件は、前記第1制御情報を前記第2制御チャネルに個別に適用する条件又は前記第1制御情報を特定時間区間に亘って適用する条件を含む、請求項1に記載の端末。
  3.  前記第1制御情報は、1つの前記第2制御チャネルのスケジューリングに用いられ、或いは、2以上の前記第2制御チャネルのスケジューリングに用いられる、請求項1又は請求項2に記載の端末。
  4.  第1キャリア上の第1制御チャネルによって第1制御情報を送信し、第2キャリア上の第2制御チャネルによって第2制御情報を送信する送信部と、
     第1適用条件が満たされるように、前記第1制御情報に基づいて前記第2制御情報の送信を制御し、前記第2制御情報に基づいてデータの通信を制御する制御部と、を備える、基地局。
  5.  第1キャリア上の第1制御チャネルによって第1制御情報を受信するステップAと、
     第2キャリア上の第2制御チャネルによって第2制御情報を受信するステップBと、を備え、
     前記ステップAは、第1適用条件が満たされる場合に、前記第1制御情報に基づいて前記第2制御情報の受信を制御するステップを含み、
     前記ステップBは、前記第2制御情報に基づいてデータの通信を制御するステップを含む、無線通信方法。
PCT/JP2020/048989 2020-12-25 2020-12-25 端末、基地局及び無線通信方法 WO2022137570A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/048989 WO2022137570A1 (ja) 2020-12-25 2020-12-25 端末、基地局及び無線通信方法
EP20967055.3A EP4271076A4 (en) 2020-12-25 2020-12-25 TERMINAL DEVICE, BASE STATION AND WIRELESS COMMUNICATION METHODS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/048989 WO2022137570A1 (ja) 2020-12-25 2020-12-25 端末、基地局及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2022137570A1 true WO2022137570A1 (ja) 2022-06-30

Family

ID=82157990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048989 WO2022137570A1 (ja) 2020-12-25 2020-12-25 端末、基地局及び無線通信方法

Country Status (2)

Country Link
EP (1) EP4271076A4 (ja)
WO (1) WO2022137570A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043562A1 (ja) * 2016-08-31 2018-03-08 株式会社Nttドコモ ユーザ端末及び無線通信方法
WO2019215932A1 (ja) * 2018-05-11 2019-11-14 株式会社Nttドコモ ユーザ端末及び無線基地局
JP2019536371A (ja) * 2016-11-29 2019-12-12 クアルコム,インコーポレイテッド 混合ヌメロロジーキャリアのためのチャネルアクセス
WO2020039483A1 (ja) * 2018-08-20 2020-02-27 株式会社Nttドコモ ユーザ端末

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102595154B1 (ko) * 2019-02-11 2023-10-27 삼성전자 주식회사 무선 통신 시스템에서 하향링크 제어정보 송수신 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043562A1 (ja) * 2016-08-31 2018-03-08 株式会社Nttドコモ ユーザ端末及び無線通信方法
JP2019536371A (ja) * 2016-11-29 2019-12-12 クアルコム,インコーポレイテッド 混合ヌメロロジーキャリアのためのチャネルアクセス
WO2019215932A1 (ja) * 2018-05-11 2019-11-14 株式会社Nttドコモ ユーザ端末及び無線基地局
WO2020039483A1 (ja) * 2018-08-20 2020-02-27 株式会社Nttドコモ ユーザ端末

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"New WID on Extending current NR operation to 71 GHz", RP -193229, 3 GPP TSG RAN MEETING # 86, 3 GPP, December 2019 (2019-12-01)
MEDIATEK INC.: "On Multi-cell PDSCH Scheduling via Single DCI", 3GPP DRAFT; R1-2008963, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 24 October 2020 (2020-10-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946751 *
NTT DOCOMO: "Discussion on multiple-step DCI for NR", 3GPP DRAFT; R1-1612717, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20161114 - 20161118, 13 November 2016 (2016-11-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051176660 *
See also references of EP4271076A4

Also Published As

Publication number Publication date
EP4271076A4 (en) 2024-08-21
EP4271076A1 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
WO2022149270A1 (ja) 端末、基地局及び無線通信方法
WO2022079876A1 (ja) 端末
WO2021214921A1 (ja) 端末
WO2022137559A1 (ja) 端末及び無線通信方法
WO2022149269A1 (ja) 端末、基地局及び無線通信方法
WO2022137570A1 (ja) 端末、基地局及び無線通信方法
WO2022137569A1 (ja) 端末、基地局及び無線通信方法
WO2022029972A1 (ja) 端末
WO2022107256A1 (ja) 端末
WO2021192063A1 (ja) 端末
WO2022190289A1 (ja) 端末、無線通信システム及び無線通信方法
WO2022249721A1 (ja) 端末、無線通信システム及び無線通信方法
WO2022102669A1 (ja) 端末
WO2022215271A1 (ja) 端末、無線通信システム及び無線通信方法
WO2022153505A1 (ja) 端末及び無線基地局
WO2022190287A1 (ja) 端末、無線通信システム及び無線通信方法
US20230113116A1 (en) Terminal
WO2022074842A1 (ja) 端末
WO2022113232A1 (ja) 端末、基地局及び無線通信方法
WO2022153509A1 (ja) 端末、基地局及び無線通信方法
WO2022097724A1 (ja) 端末
WO2022244504A1 (ja) 端末、無線通信システム及び無線通信方法
WO2022074843A1 (ja) 端末
WO2021199387A1 (ja) 端末
WO2022029973A1 (ja) 端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020967055

Country of ref document: EP

Effective date: 20230725

NENP Non-entry into the national phase

Ref country code: JP