WO2021199387A1 - 端末 - Google Patents

端末 Download PDF

Info

Publication number
WO2021199387A1
WO2021199387A1 PCT/JP2020/015112 JP2020015112W WO2021199387A1 WO 2021199387 A1 WO2021199387 A1 WO 2021199387A1 JP 2020015112 W JP2020015112 W JP 2020015112W WO 2021199387 A1 WO2021199387 A1 WO 2021199387A1
Authority
WO
WIPO (PCT)
Prior art keywords
component carrier
ack
harq
pucch
uplink control
Prior art date
Application number
PCT/JP2020/015112
Other languages
English (en)
French (fr)
Inventor
翔平 吉岡
浩樹 原田
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2020/015112 priority Critical patent/WO2021199387A1/ja
Priority to JP2022511447A priority patent/JPWO2021199387A1/ja
Publication of WO2021199387A1 publication Critical patent/WO2021199387A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to a terminal that executes wireless communication, particularly a terminal that executes wireless communication using a component carrier.
  • the 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and next-generation specifications called Beyond 5G, 5G Evolution or 6G. We are also proceeding with the conversion.
  • 5G New Radio
  • NG Next Generation
  • Release 15 and Release 16 (NR) of 3GPP specify the operation of multiple frequency ranges, specifically, bands including FR1 (410MHz to 7.125GHz) and FR2 (24.25GHz to 52.6GHz). ..
  • Non-Patent Document 1 studies are underway on NR that supports up to 71 GHz beyond 52.6 GHz.
  • 5G Evolution or 6G aims to support frequency bands above 71GHz.
  • the physical uplink control channel is used from the viewpoint of power amplifier efficiency and high phase noise. It is necessary to suppress the decrease in reliability of the uplink control information (UCI: Uplink Control Information) transmitted via (PUCCH: Physical Uplink Control Channel) or the physical uplink shared channel (PUSCH: Physical Uplink Shared Channel). ..
  • UCI Uplink Control Information
  • PUSCH Physical Uplink Shared Channel
  • the following disclosure was made in view of such a situation, and aims to provide a terminal capable of suppressing a decrease in the reliability of UCI.
  • One aspect of the present disclosure is a terminal, comprising a communication unit that executes data communication with a network via a second component carrier different from the first component carrier, and the communication unit is the first component carrier.
  • the communication unit is the first component carrier.
  • the second component carrier is used after transmitting uplink control information regarding at least one of the component carrier and the second component carrier to the network or discarding transmission of a predetermined physical uplink channel.
  • the gist is that the uplink control information regarding the component carrier is transmitted, or when the predetermined condition is satisfied, the uplink control information regarding the second component carrier is multiplexed with the predetermined physical uplink channel and transmitted to the network. do.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a diagram showing a frequency range used in the wireless communication system 10.
  • FIG. 3 is a diagram showing a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
  • FIG. 4 is a functional block configuration diagram of the UE 200.
  • FIG. 5 is a diagram showing an operation example 1.
  • FIG. 6 is a diagram showing an operation example 2.
  • FIG. 7 is a diagram showing an operation example 3.
  • FIG. 8 is a diagram showing an operation example 4.
  • FIG. 9 is a diagram showing an operation example 5.
  • FIG. 10 is a diagram showing an operation example 6.
  • FIG. 11 is a diagram showing an operation example 7.
  • FIG. 12 is a diagram for explaining modification 1.
  • FIG. 13 is a diagram showing an example of the hardware configuration of the UE 200.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment.
  • the wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20) and a terminal 200 (hereinafter, UE200).
  • NR 5G New Radio
  • NG-RAN20 Next Generation-Radio Access Network 20
  • UE200 terminal 200
  • the wireless communication system 10 may be a wireless communication system according to a method called Beyond 5G, 5G Evolution or 6G.
  • NG-RAN20 includes a radio base station 100A (hereinafter, gNB100A) and a radio base station 100B (hereinafter, gNB100B).
  • gNB100A radio base station 100A
  • gNB100B radio base station 100B
  • the specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • the NG-RAN20 actually includes multiple NG-RANNodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G.
  • NG-RAN20 and 5GC may be simply expressed as "network”.
  • GNB100 and gNB100B are radio base stations that comply with 5G, and execute wireless communication according to UE200 and 5G.
  • the gNB100, gNB100B and UE200 are Massive MIMO (Multiple-Input Multiple-Output) and multiple component carriers (CC) that generate more directional beam BM by controlling radio signals transmitted from multiple antenna elements. ) Can be bundled and used for carrier aggregation (CA), and dual connectivity (DC) for simultaneous communication between the UE and each of the two NG-RAN Nodes.
  • Massive MIMO Multiple-Input Multiple-Output
  • CC component carriers
  • CA carrier aggregation
  • DC dual connectivity
  • the wireless communication system 10 supports a plurality of frequency ranges (FR).
  • FIG. 2 shows the frequency range used in the wireless communication system 10.
  • the wireless communication system 10 corresponds to FR1 and FR2.
  • the frequency bands of each FR are as follows.
  • FR1 410 MHz to 7.125 GHz
  • FR2 24.25 GHz to 52.6 GHz
  • SCS Sub-Carrier Spacing
  • BW bandwidth
  • FR2 has a higher frequency than FR1, SCS of 60, or 120kHz (240kHz may be included) is used, and a bandwidth (BW) of 50 to 400MHz may be used.
  • SCS may be interpreted as numerology. Numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
  • the wireless communication system 10 also supports a higher frequency band than the FR2 frequency band. Specifically, the wireless communication system 10 corresponds to a frequency band exceeding 52.6 GHz and up to 114.25 GHz. Such a high frequency band may be referred to as "FR2x" for convenience.
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing CP-OFDM
  • DFT- Discrete Fourier Transform-Spread
  • SCS Sub-Carrier Spacing
  • FIG. 3 shows a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
  • one slot is composed of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period).
  • the SCS is not limited to the interval (frequency) shown in FIG. For example, 480kHz, 960kHz and the like may be used.
  • the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, 28, 56 symbols).
  • the number of slots per subframe may vary from SCS to SCS.
  • the time direction (t) shown in FIG. 3 may be referred to as a time domain, a symbol period, a symbol time, or the like.
  • the frequency direction may be referred to as a frequency domain, a resource block, a subcarrier, a BWP (Bandwidth part), or the like.
  • FIG. 4 is a functional block configuration diagram of the UE 200.
  • the UE 200 includes a radio signal transmission / reception unit 210, an amplifier unit 220, a modulation / demodulation unit 230, a control signal / reference signal processing unit 240, a coding / decoding unit 250, a data transmission / reception unit 260, and a control unit 270. ..
  • the wireless signal transmitter / receiver 210 transmits / receives a wireless signal according to NR.
  • the radio signal transmitter / receiver 210 corresponds to Massive MIMO, a CA that bundles a plurality of CCs, and a DC that simultaneously communicates between the UE and each of the two NG-RAN Nodes.
  • the amplifier unit 220 is composed of PA (Power Amplifier) / LNA (Low Noise Amplifier) and the like.
  • the amplifier unit 220 amplifies the signal output from the modulation / demodulation unit 230 to a predetermined power level. Further, the amplifier unit 220 amplifies the RF signal output from the radio signal transmission / reception unit 210.
  • the modulation / demodulation unit 230 executes data modulation / demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB100 or other gNB).
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) / Discrete Fourier Transform-Spread (DFT-S-OFDM) may be applied to the modulation / demodulation unit 230. Further, DFT-S-OFDM may be used not only for uplink (UL) but also for downlink (DL).
  • the control signal / reference signal processing unit 240 executes processing related to various control signals transmitted / received by the UE 200 and processing related to various reference signals transmitted / received by the UE 200.
  • control signal / reference signal processing unit 240 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, control signals of the radio resource control layer (RRC). Further, the control signal / reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
  • a predetermined control channel for example, control signals of the radio resource control layer (RRC).
  • RRC radio resource control layer
  • the control signal / reference signal processing unit 240 executes processing using a reference signal (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
  • RS reference signal
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • DMRS is a known reference signal (pilot signal) between the base station and the terminal of each terminal for estimating the fading channel used for data demodulation.
  • PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
  • the reference signal may include ChannelStateInformation-ReferenceSignal (CSI-RS), SoundingReferenceSignal (SRS), and PositioningReferenceSignal (PRS) for position information.
  • CSI-RS ChannelStateInformation-ReferenceSignal
  • SRS SoundingReferenceSignal
  • PRS PositioningReferenceSignal
  • control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel), Random Access Radio Network Temporary Identifier (RA-RNTI), Downlink Control Information (DCI), and Physical Broadcast Channel (PBCH) etc. are included.
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • RACH Random Access Channel
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • DCI Downlink Control Information
  • PBCH Physical Broadcast Channel
  • the data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
  • Data means data transmitted over a data channel.
  • the data channel may be read as a shared channel.
  • control signal / reference signal processing unit 240 is connected to the network (for example, NG-RAN20) via a second component carrier (hereinafter, second CC) different from the first component carrier (hereinafter, first CC). It constitutes a communication unit that executes data communication.
  • second CC second component carrier
  • first CC first component carrier
  • the control signal / reference signal processing unit 240 uses the first CC or the second CC to transmit uplink control information (UCI; Uplink Control Information) regarding the second CC to the network.
  • UCI Uplink Control Information
  • control signal / reference signal processing unit 240 may transmit the UCI related to the second CC using the first CC (operation example 1 described later).
  • control signal / reference signal processing unit 240 transmits the UCI for at least one of the first CC and the second CC to the network by simultaneous transmission of the predetermined physical uplink channels in the first CC and the second CC. It may be good (operation examples 2 and 5 described later).
  • the control signal / reference signal processing unit 240 discards the transmission of the predetermined physical uplink channel when the predetermined condition is satisfied. At this time, at least one of the first CC and the second CC may be used to transmit the UCI relating to at least one of the first CC and the second CC (operation examples 3 and 6 described later).
  • control signal / reference signal processing unit 240 may multiplex the UCI relating to at least one of the first CC and the second CC to the predetermined physical uplink channel and transmit the UCI to the network (operation example described later). 4, 7).
  • the predetermined condition may include the first predetermined condition in which the PUCCH in the first CC and the PUCCH in the second CC collide.
  • the predetermined condition may include a second predetermined condition in which the PUCCH in at least one of the first CC and the second CC collides with the PUSCH in the second CC. It should be noted that the collision in the present disclosure may be that two or more channels are included in the same time unit, for example, that two or more channels are instructed to be transmitted in the same slot. ..
  • control signal / reference signal processing unit 240 multiplexes the UCI related to the second CC to the predetermined physical uplink channel and transmits it to the network when the third predetermined condition is satisfied in the operation examples 4 and 7 described later. You may.
  • the third predetermined condition may include a condition that the UCI related to the first CC can be decoded independently of the UCI related to the second CC.
  • the third predetermined condition may include the condition that the UCI codebook for the second CC is generated separately from the UCI codebook for the first CC.
  • the first CC is a CC belonging to the first frequency range (for example, 52.6 GHz or less)
  • the second CC is a second frequency range (for example, 52.6 GHz or less) higher than the first frequency range (for example, 52.6 GHz or less). It is explained as a CC belonging to 52.6GHz or higher).
  • the parameters related to the first frequency range are distinguished by "non-above”, and the parameters related to the second frequency range are distinguished by "above”.
  • the first CC belonging to the first frequency range is referred to as non-above CC
  • the second CC belonging to the second frequency range is referred to as above CC.
  • UCI includes at least response acknowledgment (HARQ-ACK) corresponding to data (eg, one TB).
  • the UCI may include an SR (Scheduling Request) that requests resource scheduling, or may include a CSI (Channel State Information) that indicates the state of the channel.
  • HARQ-ACK will be mainly described.
  • the coding / decoding unit 250 executes data division / concatenation and channel coding / decoding for each predetermined communication destination (gNB100 or other gNB).
  • the coding / decoding unit 250 divides the data output from the data transmitting / receiving unit 260 into a predetermined size, and executes channel coding for the divided data. Further, the coding / decoding unit 250 decodes the data output from the modulation / demodulation unit 230 and concatenates the decoded data.
  • the data transmission / reception unit 260 executes transmission / reception of Protocol Data Unit (PDU) and Service Data Unit (SDU).
  • the data transmitter / receiver 260 is a PDU / SDU in a plurality of layers (such as a medium access control layer (MAC), a wireless link control layer (RLC), and a packet data convergence protocol layer (PDCP)). Assemble / disassemble.
  • the data transmission / reception unit 260 executes data error correction and retransmission control based on the hybrid ARQ (Hybrid automatic repeat request).
  • the control unit 270 controls each functional block constituting the UE 200.
  • the control unit 270 controls the communication between the non-above CC and the above CC.
  • Operation example (3.1) Operation example 1 the UE 200 transmits a UCI related to above CC using non-above CC. That is, operation example 1 is an operation example in which HARQ-ACK related to above CC is transmitted using non-above CC. Here, a case where the UE 200 receives data via PDSCH mapped to above CC and transmits HARQ-ACK corresponding to the received data is illustrated.
  • the UE 200 receives the RRC message from the NG-RAN 20.
  • the RRC message contains the resource settings used to send the HARQ-ACK.
  • the resource setting may include PUCCH-Config used in non-above CC, or may include PUSCH-Config. Used in non-above CC.
  • step S11 UE200 receives DCI from NG-RAN20 via PDCCH mapped to one or more CCs included in non-above CC and above CC.
  • step S12 UE200 receives data from NG-RAN20 via PDSCH mapped to above CC.
  • step S13 UE200 transmits HARQ-ACK related to above CC to NG-RAN20 via non-above CC.
  • the HARQ-ACK related to the above CC may be transmitted via the PUCCH mapped to the non-above CC, or may be transmitted via the PUSCH mapped to the non-above CC.
  • SpCell (Special Cell) does not have to be set for above CC.
  • the SpCell may be a PCell (PrimaryCell) belonging to the MCG (MasterCellGroup), a PSCell (PrimarySecondaryCell) belonging to the SCG (SecondaryCellGroup), or a PCell other than these.
  • PUCCH may be set to non-aboveCC instead of being set to aboveCC.
  • the SCell (Secondary Cell) that supports PUCCH may not be set for above CC. That is, PUCCH may be set to non-above CC instead of being set to above CC.
  • Operation example 2 the UE 200 transmits a UCI related to above CC to the network by simultaneous transmission of a predetermined physical uplink channel in non-above CC and above CC when a predetermined condition is satisfied.
  • the predetermined physical uplink channel is PUCCH in non-above CC and above CC.
  • the UCI for the above CC may be included in the PUCCH in above CC. That is, operation example 2 is an operation example in which PUCCH is transmitted using above CC.
  • PUCCH may contain a HARQ-ACK for above CC.
  • a case where the UE 200 receives data via PDSCH mapped to non-above CC and above CC and transmits HARQ-ACK corresponding to the received data is illustrated.
  • multiplexing of HARQ-ACK related to above CC and HARQ-ACK related to non-above CC is not allowed.
  • PUCCH in above CC and PUCCH in non-above CC collide at least in the time domain
  • UCI included in PUCCH in above CC and UCI contained in PUCCH in non-above CC are multiplexed on the same channel. It does not have to be.
  • simultaneous transmission of PUCCH in above CC and PUCCH in non-above CC may be permitted.
  • the UE 200 receives the RRC message from the NG-RAN 20.
  • the RRC message contains the resource settings used to send the HARQ-ACK.
  • the resource setting includes PUCCH-Config used in non-above CC and above CC.
  • step S21 UE200 receives DCI from NG-RAN20 via PDCCH mapped to one or more CCs included in non-above CC and above CC.
  • step S22 the UE 200 receives data from the NG-RAN 20 via the non-above CC and the PDSCH mapped to the above CC.
  • step S23A UE200 transmits HARQ-ACK related to above CC to NG-RAN20 via PUCCH mapped to above CC.
  • step S23B the UE 200 transmits a HARQ-ACK regarding the non-above CC to the NG-RAN 20 via the PUCCH or PUSCH mapped to the non-above CC.
  • step S23A and step 23B are scheduled by the DCI received in step S21.
  • simultaneous transmission of HARQ-ACK related to above CC and HARQ-ACK related to non-above CC is allowed.
  • Operation example 3 In the operation example 3, when the predetermined condition is satisfied, the UE 200 discards the transmission of the predetermined physical uplink channel, and then transmits the UCI related to the above CC by using the above CC.
  • the predetermined physical uplink channel is PUCCH in non-above CC.
  • the transmission of PUCCH in non-above CC may not be discarded, and the transmission of PUCCH in above CC may be discarded.
  • the operation example 3 is an operation example in which PUCCH is transmitted using above CC or the transmission of PUCCH using above CC is discarded.
  • PUCCH may contain a HARQ-ACK for above CC.
  • the UE 200 receives data via PDSCH mapped to non-above CC and above CC and transmits HARQ-ACK corresponding to the received data is illustrated.
  • multiplexing of HARQ-ACK related to above CC and HARQ-ACK related to non-above CC is not allowed.
  • the PUCCH in above CC and the PUCCH in non-above CC collide at least in the time domain, the UCI contained in the PUCCH in above CC and the UCI contained in the PUCCH in non-above CC are multiplexed on the same channel. It does not have to be. At this time, only one of PUCCH in above CC and PUCCH in non-above may be transmitted.
  • step S30 the UE 200 receives the RRC message from the NG-RAN 20. Since step S30 is the same as step S20 described above, the details of step S30 will be omitted.
  • step S31 UE200 receives DCI from NG-RAN20 via PDCCH mapped to one or more CCs included in non-above CC and above CC.
  • step S32 UE200 receives data from NG-RAN20 via PDSCH mapped to non-above CC and above CC.
  • step S33 the UE 200 transmits either HARQ-ACK related to above CC or HARQ-ACK related to non-above CC to NG-RAN20. In other words, the UE 200 discards either the HARQ-ACK for above CC or the HARQ-ACK for non-above CC.
  • HARQ-ACK related to above CC is transmitted via PUCCH mapped to above CC.
  • the HARQ-ACK for non-above CC may be transmitted via PUCCH or PUSCH mapped to non-above CC.
  • Operation example 4 In the operation example 4, the UE 200 multiplexes the UCI related to the above CC to the predetermined physical uplink channel and transmits the UCI to the network when the first predetermined condition in which the PUCCH in the non-above CC and the PUCCH in the above CC collide is satisfied. do.
  • the predetermined physical uplink channel may be PUCCH in above CC or PUCCH in non-above CC. That is, operation example 4 is an operation example in which HARQ-ACK related to above CC is transmitted using non-above CC or above CC.
  • the UE 200 receives data via PDSCH mapped to non-above CC and above CC and transmits HARQ-ACK corresponding to the received data is illustrated.
  • multiple HARQ-ACKs for above CC and HARQ-ACKs for non-above CC are allowed.
  • the UCI contained in PUCCH in above CC and the UCI contained in PUCCH in non-above CC become PUCCH in above CC.
  • the included UCI and the UCI included in the PUCCH in the non-above CC may be multiplexed on the same PUCCH.
  • the UE 200 receives the RRC message from the NG-RAN 20.
  • the RRC message contains the resource settings used to send the HARQ-ACK.
  • the resource setting includes PUCCH-Config used in above CC.
  • step S41 UE200 receives DCI from NG-RAN20 via PDCCH mapped to one or more CCs included in non-above CC and above CC.
  • step S42 the UE 200 receives data from the NG-RAN 20 via the non-above CC and the PDSCH mapped to the above CC.
  • step S43 the UE 200 multiplexes the non-above CC and the HARQ-ACK for the above CC to the PUCCH, and NG-the multiplexed HARQ-ACK via the non-above CC or the PUCCH mapped to the above CC. Send to RAN20.
  • At least one of the parameters shown below may be specified independently of HARQ-ACK related to above CC. That is, the UCI related to above CC can be decoded independently of the UCI related to non-above CC (an example in which the third predetermined condition is satisfied).
  • Parameter A Payload size of HARQ-ACK for non-above Parameter B: Resource set of PUCCH or resource Parameter C: Coding rate of HARQ-ACK for non-above Parameter D: RE to which HARQ-ACK for non-above is mapped (Resource Element) Parameter E: Number of PRBs (Physical Resource Blocks) used in PUCCH For example, the multiplexed HARQ-ACK resources are mapped to PUCCH belonging to non-above CC or above CC by the following procedure.
  • the payload size (parameter A) of HARQ-ACK related to non-above is N bits.
  • the payload size of HARQ-ACK for above is M bits.
  • the HARQ-ACK payload size for the above is assumed to be M2 bits.
  • M2bit is a value that can be calculated by the method agreed between UE200 and NG-RAN20. For example, M2bit may be assumed based on DAI (Downlink Assignment Index) regarding above.
  • DAI Downlink Assignment Index
  • N bits HARQ-ACK related to non-above is mapped to some REs of PUCCH, and M bits HARQ-ACK related to above is mapped to the remaining REs of PUCCH.
  • the N bits HARQ-ACK related to non-above may be mapped to all REs of PUCCH and overwritten by the M bits HARQ-ACK related to above in some REs of PUCCH (punctured).
  • the coding rate for non-above may be a value that does not exceed a predetermined threshold value.
  • the RE to which at least one of SR and CSI related to non-above is mapped may be preferentially selected.
  • the M bits HARQ-ACK for above may be mapped to all REs in PUCCH and overwritten by the N bits HARQ-ACK for non-above in some REs in PUCCH (punctured).
  • the HARQ-ACK codebook for above CC may be generated separately from the HARQ-ACK codebook for non-above CC (an example in which the third predetermined condition is satisfied). This allows multiplexing of HARQ-ACK for above CC and HARQ-ACK for non-above CC.
  • the PDSCH DAI for above CC may be defined and calculated separately from the PDSCH DAI for non-above CC.
  • Only static HARQ-ACK codebooks may be supported for HARQ-ACK for above CC. In such cases, the (Semi-) static HARQ-ACK codebook does not have to apply for HARQ-ACK for non-above CC.
  • Operation example 5 the UE 200 networks the UCI for at least one of the non-above CC and / or the above CC by simultaneously transmitting the predetermined physical uplink channel in the non-above CC and / or the above CC when the predetermined condition is satisfied.
  • the predetermined physical uplink channels are PUCCH in non-above CC or above CC and PUSCH in above CC.
  • the UCI for at least one of non-above CC and above CC may be included in PUCCH in non-above CC or above CC.
  • the operation example 5 is an operation example in which at least one of HARQ-ACK relating to above CC and non-above is transmitted by using non-above CC or above CC.
  • the UE 200 receives data via PDSCH mapped to non-above CC and above CC and transmits HARQ-ACK corresponding to the received data is illustrated, but non-above CC and above are illustrated. It may be applied when data is received via PDSCH mapped to either CC. However, it is not permissible to multiplex HARQ-ACK for at least one of above CC and non-above to PUSCH in above CC.
  • the UCI contained in the PUCCH in non-above CC does not have to be multiplexed with the PUSCH in above CC.
  • simultaneous transmission of PUCCH in non-above CC and PUSCH in above CC may be permitted.
  • PUCCH in non-above CC may be replaced by PUCCH in above CC.
  • the UE 200 receives the RRC message from the NG-RAN 20.
  • the RRC message contains the resource settings used to send the HARQ-ACK.
  • the resource setting includes PUSCH-Config used in above CC.
  • Resource settings include PUCCH-Config or PUSCH-Config used in non-above CC.
  • step S51 UE200 receives DCI from NG-RAN20 via PDCCH mapped to one or more CCs included in non-above CC and above CC.
  • step S52 UE200 receives data from NG-RAN20 via PDSCH mapped to non-above CC and above CC.
  • step S53A UE200 transmits HARQ-ACK regarding non-above CC and above CC to NG-RAN20 via PUCCH mapped to non-above CC or above CC.
  • step S53B the UE 200 transmits a HARQ-ACK regarding the non-above CC and the above CC to the NG-RAN 20 via the PUSCH mapped to the above CC.
  • step S53A and step 53B are scheduled by the DCI received in step S51.
  • simultaneous transmission of PUCCH in non-above CC or above CC and PUSCH in above CC is allowed.
  • Operation example 6 when the predetermined condition is satisfied, the UE 200 discards the transmission of the predetermined physical uplink channel, and then uses non-above CC or above CC to use at least one of non-above CC and above CC. Send a UCI about.
  • the predetermined physical uplink channel is PUCCH in non-above CC or above CC. However, the PUCCH transmission in non-above CC or above CC may not be discarded, and the PUSCH transmission in above CC may be discarded.
  • At least one of HARQ-ACK related to above CC and non-above is transmitted by using non-above CC or above CC, or the transmission of PUCCH in non-above CC or above CC is discarded.
  • This is an operation example.
  • a case where the UE 200 receives data via PDSCH mapped to non-above CC and above CC and transmits HARQ-ACK corresponding to the received data is illustrated, but non-above CC and above are illustrated. It may be applied when data is received via PDSCH mapped to either CC. However, it is not permissible to multiplex HARQ-ACK for at least one of above CC and non-above to PUSCH in above CC.
  • the UCI contained in PUCCH in non-above CC does not have to be multiplexed with PUSCH in above CC.
  • PUCCH in non-above CC and PUSCH in above CC may be transmitted.
  • PUCCH in non-above CC may be replaced by PUCCH in above CC.
  • step S60 the UE 200 receives the RRC message from the NG-RAN 20. Since step S60 is the same as step S50 described above, the details of step S60 will be omitted.
  • step S61 UE200 receives DCI from NG-RAN20 via PDCCH mapped to one or more CCs included in non-above CC and above CC.
  • step S62 the UE 200 receives data from the NG-RAN 20 via the non-above CC and the PDSCH mapped to the above CC.
  • step S63 the UE 200 transmits either PUCCH including HARQ-ACK related to non-above CC or above CC or PUSCH in above CC to NG-RAN20.
  • the UE 200 discards one or the other of the PUCCH containing the HARQ-ACK for above CC and the HARQ-ACK for non-above CC, and the PUSCH in above CC.
  • Operation example 7 In operation example 7, the UE 200 is of non-above CC and above CC when the second predetermined condition in which PUCCH in at least one of non-above CC and above CC collides with PUSCH in above CC is satisfied.
  • the UCI for at least one is multiplexed on a predetermined physical uplink channel and transmitted to the network.
  • the predetermined physical uplink channel is PUSCH in above CC. That is, the operation example 7 is an operation example in which HARQ-ACK relating to non-above CC or above CC is transmitted using above CC.
  • a case where the UE 200 receives data via PDSCH mapped to non-above CC and above CC and transmits HARQ-ACK corresponding to the received data is illustrated, but non-above CC and above are illustrated. It may be applied when data is received via PDSCH mapped to either CC. Furthermore, it is permissible to multiplex at least one of the HARQ-ACK for above CC and the HARQ-ACK for non-above CC to PUSCH in above CC.
  • the UE 200 receives the RRC message from the NG-RAN 20.
  • the RRC message contains the resource settings used to send the HARQ-ACK.
  • the resource setting includes PUSCH-Config used in above CC.
  • step S71 UE200 receives DCI from NG-RAN20 via PDCCH mapped to one or more CCs included in non-above CC and above CC.
  • step S72 the UE 200 receives data from the NG-RAN 20 via the non-above CC and the PDSCH mapped to the above CC.
  • step S73 when the HARQ-ACK related to non-above CC and above CC is multiplexed on PUCCH, UE200 detects that it collides with PUSCH mapped to above CC in the time domain. At this time, the HARQ-ACK is multiplexed with the PUSCH, and the multiplexed HARQ-ACK is transmitted to the NG-RAN 20 via the PUSCH.
  • At least one of the parameters shown below is specified independently of HARQ-ACK related to above CC. That is, at least one of the UCI related to non-above CC and UL-SCH can be decoded independently of the UCI related to above CC (an example in which the third predetermined condition is satisfied).
  • Parameter F Coding rate of at least one of HARQ-ACK and UL-SCH related to non-above
  • G RE (Resource Element) to which at least one of HARQ-ACK and UL-SCH related to non-above is mapped
  • the multiplexed HARQ-ACK resource is mapped to PUSCH belonging to above CC by the following procedure.
  • the payload size (parameter F) of at least one of HARQ-ACK and UL-SCH regarding non-above is N'bits.
  • the payload size of HARQ-ACK for above is M bits.
  • the HARQ-ACK payload size for the above is assumed to be M2 bits.
  • M2bit is a value that can be calculated by the method agreed between UE200 and NG-RAN20. For example, M2bit may be assumed based on DAI (Downlink Assignment Index) regarding above.
  • the above-mentioned parameters F and G are determined based on N'+ M2 bits.
  • At least one of the HARQ-ACK and UL-SCH for non-above of N'bits is mapped to some REs of PUSCH, and the HARQ-ACK of M bits for above remains in PUSCH. Mapped to the RE of.
  • At least one of N'bits non-above HARQ-ACK and UL-SCH is mapped to at least some REs of PUSCH, and in some PUSCH REs by M bits HARQ-ACK of above. It may be overwritten (punctured).
  • the coding rate for non-above may be a value that does not exceed a predetermined threshold value.
  • the RE to which at least one of SR and CSI related to non-above is mapped may be preferentially selected.
  • N bits HARQ-ACK for non-above is mapped to at least some REs of PUSCH, and at least one of N'bits HARQ-ACK and UL-SCH for some REs of PUSCH. It may be overwritten by one (punctured).
  • the HARQ-ACK codebook for above CC may be generated separately from the HARQ-ACK codebook for non-above CC (the third predetermined condition is satisfied).
  • the PDSCH DAI for above CC may be defined and calculated separately from the PDSCH DAI for non-above CC.
  • Only static HARQ-ACK codebooks may be supported for HARQ-ACK for above CC. In such cases, the (Semi-) static HARQ-ACK codebook does not have to apply for HARQ-ACK for non-above CC.
  • the UE 200 transmits HARQ-ACK related to above CC to the network using non above CC. With such a configuration, it is possible to suppress a decrease in the reliability of HARQ-ACK regarding above CC.
  • the UE 200 executes the predetermined transmission shown in the operation examples 2 to 7 when the predetermined conditions are satisfied. For example, as described in Operation Examples 2 and 5, when simultaneous transmission of a predetermined physical uplink channel in non-above CC and above CC is permitted, HARQ-related to above CC is performed by simultaneous transmission of the predetermined physical uplink channel. Send ACK. Alternatively, as described in Operation Examples 3 and 6, when simultaneous transmission of physical uplink channels in non-above CC and above CC is not allowed, transmission of a predetermined physical uplink channel is discarded. At this time, HARQ-ACK relating to at least one of non-above CC and above CC is transmitted using non-above CC or above CC.
  • the UE 200 when the predetermined condition is satisfied, multiplexes the UCI relating to at least one of the non-above CC and the above CC to the predetermined physical uplink channel and transmits the UCI to the network.
  • the UE 200 multiplexes the UCI relating to at least one of the non-above CC and the above CC to the predetermined physical uplink channel and transmits the UCI to the network.
  • a third predetermined condition that allows multiplex is set. With such a configuration, it is possible to suppress a decrease in the reliability of HARQ-ACK regarding non-above CC.
  • the error rates such as ACK to NACK error, NACK to ACK error, and DTX to ACK error are reduced to the desired error rate or less. Can be suppressed.
  • the UE 200 transmits an information element indicating whether or not it has the ability to execute at least one of the above-mentioned operation examples 1 to 7 to the network (NG-RAN20).
  • the UE 200 has a UE capability including an information element indicating whether or not it has the ability to execute at least one of the operation examples 1 to 7.
  • Send (report) to NG-RAN20 the UE 200 may transmit a UE capability including an information element indicating whether or not there is a function for executing the simultaneous transmission described in the operation example 2 or the operation example 5.
  • UE200 may execute step S80 when an RRC connection is set with NG-RAN20.
  • step S80 may be executed before the processes shown in FIGS. 5 to 11.
  • PUCCHConfig is set by the upper layer parameters.
  • PUCCHConfig may be an information element included in the RRC message.
  • the PUCCH Config related to above CC may be the same as the PUCCH Config related to non-above CC.
  • PUCCHConfig may be shared between aboveCC and non-aboveCC.
  • the PUCCH Config related to above CC may be set separately from the PUCCH Config related to non-above CC.
  • PUCCH Config for non-above CC (or PUCCH Config for above CC) is applied in cases where multiplexing of HARQ-ACK for non-above CC and above CC is allowed (for example, operation example 4 or operation example 7 described above). May be done.
  • the PUCCH Config specified by the latest DCI used for HARQ-ACK multiplexing may be used.
  • PUCCH Config for above CC is set for HARQ-ACK, but it does not have to be set for SR and CSI (Periodic CSI, Semi-persistent CSI, Aperiodic CSI).
  • HARQ-ACK is multiplexed with respect to non-above CC and above CC, or HARQ-ACK with respect to at least one of non-above CC and above CC is multiplexed with PUSCH in above CC (for example, described above).
  • the operation example 4 or the operation example 7) will be further described.
  • the DCI that schedules PDSCH or PUSCH mapped to non-above CC may include the following information elements.
  • DCI may include an information element (for example, 1-bit information) indicating whether or not HARQ-ACK related to above CC is multiplexed.
  • the DCI may include an information element (for example, X bits information) indicating the number of HARQ-ACK bits related to above CC.
  • Such an information element may be an information element indicating the total resources identified by the most recent DAI for above CC.
  • the third predetermined condition may include that the above-mentioned information element is included in the DCI.
  • HARQ-ACK multiplexing related to non-above CC and above CC may not be applied.
  • the first CC is a non-above CC and the second CC is an above CC is illustrated.
  • the embodiment is not limited to this.
  • the first CC may be a CC other than the specific CC, and the second CC may be the specific CC.
  • the specific CC may be a CC in which transmission of HARQ-ACK is not set.
  • the first frequency range to which the first CC belongs is not limited to 52.6 GHz or less
  • the second frequency range to which the second CC belongs is not limited to 52.6 GHz or more.
  • HARQ-ACK has been described as an example of UCI.
  • HAQR-ACK may be read as UCI.
  • the above-mentioned operation examples 1 to 7 may be applied to each UCI type.
  • operation example 1 may be applied to HAQR-ACK, and an operation example selected from operation examples 2 to 7 may be applied to SR and CSI.
  • PUCCH may be interpreted in the same manner as the control information transmitted via PUCCH.
  • the transmission of PUCCH may be read as the transmission of UCI or the transmission of HARQ-ACK.
  • each functional block is realized by any combination of at least one of hardware and software.
  • the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't.
  • a functional block that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter).
  • transmitting unit transmitting unit
  • transmitter transmitter
  • FIG. 13 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each functional block of the device (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of memory 1002 and storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA).
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the hardware may realize a part or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobile Broadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in the present disclosure may be performed by its upper node.
  • various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network node
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table.
  • the input / output information can be overwritten, updated, or added.
  • the output information may be deleted.
  • the input information may be transmitted to another device.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
  • a base station subsystem eg, a small indoor base station (Remote Radio)
  • Communication services can also be provided by Head: RRH).
  • cell refers to a part or all of a base station that provides communication services in this coverage and at least one of the coverage areas of a base station subsystem.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the functions of the base station.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • the wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
  • the subframe may be further composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, wireless frame configuration, transmission / reception.
  • SCS SubCarrier Spacing
  • TTI transmission time interval
  • At least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Slots may be in numerology-based time units.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • a base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI (for example, shortened TTI, etc.) may be read as less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, and the like. May be called.
  • Physical RB Physical RB: PRB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB pair, and the like. May be called.
  • the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
  • RE resource elements
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common RBs (common resource blocks) for a neurology in a carrier. good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, minislots and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, and the number of RBs.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connections or connections between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
  • the reference signal may also be abbreviated as Reference Signal (RS) and may be referred to as the Pilot depending on the applied standard.
  • RS Reference Signal
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access.
  • Accessing (for example, accessing data in memory) may be regarded as "judgment” or “decision”.
  • judgment and “decision” mean that the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming”, “expecting”, “considering” and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • Radio communication system 20 NG-RAN 100 gNB 200 UE 210 Radio signal transmission / reception unit 220 Amplifier unit 230 Modulation / demodulation unit 240 Control signal / reference signal processing unit 250 Coding / decoding unit 260 Data transmission / reception unit 270 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末は、第1コンポーネントキャリアとは異なる第2コンポーネントキャリアを介して、ネットワークとデータの通信を実行する通信部を備え、前記通信部は、前記第1コンポーネントキャリアを用いて、前記第2コンポーネントキャリアに関する上りリンク制御情報を前記ネットワークに送信し、或いは、所定条件が満たされる場合に所定送信を実行する。

Description

端末
 本開示は、無線通信を実行する端末、特に、コンポーネントキャリアを用いて無線通信を実行する端末に関する。
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。
 3GPPのRelease 15及びRelease 16(NR)では、複数の周波数レンジ、具体的には、FR1(410 MHz~7.125 GHz)及びFR2(24.25 GHz~52.6 GHz)を含む帯域の動作が仕様化されている。
 また、52.6GHzを超え、71GHzまでをサポートするNRについても検討が進められている(非特許文献1)。さらに、Beyond 5G、5G Evolution或いは6G(Release-18以降)は、71GHzを超える周波数帯もサポートすることを目標としている。
"New WID on Extending current NR operation to 71 GHz", RP-193229, 3GPP TSG RAN Meeting #86, 3GPP, 2019年12月
 上述したように、第1周波数レンジ(例えば、52.6GHz以下)よりも高い第2周波数レンジ(例えば、52.6GHz以上)では、電力増幅器の効率及び高位相雑音などの観点から、物理上りリンク制御チャネル(PUCCH: Physical Uplink Control Channel)又は物理上りリンク共有チャネル(PUSCH: Physical Uplink Shared Channel)を介して送信される上りリンク制御情報(UCI: Uplink Control Information)の信頼性の低下を抑制する必要がある。
 そこで、以下の開示は、このような状況に鑑みてなされたものであり、UCIの信頼性の低下を抑制し得る端末の提供を目的とする。
 本開示の一態様は、端末であって、第1コンポーネントキャリアとは異なる第2コンポーネントキャリアを介して、ネットワークとデータの通信を実行する通信部を備え、前記通信部は、前記第1コンポーネントキャリアを用いて、前記第2コンポーネントキャリアに関する上りリンク制御情報を前記ネットワークに送信し、或いは、所定条件が満たされる場合に、前記第2コンポーネントキャリアにおける所定物理上りリンクチャネルの同時送信によって、前記第1コンポーネントキャリア及び前記第2コンポーネントキャリアの少なくとも一方に関する上りリンク制御情報を前記ネットワークに送信し、或いは、所定物理上りリンクチャネルの送信を破棄した上で、前記第2コンポーネントキャリアを用いて、前記第2コンポーネントキャリアに関する上りリンク制御情報を送信し、或いは、所定条件が満たされる場合に、前記第2コンポーネントキャリアに関する上りリンク制御情報を所定物理上りリンクチャネルに多重して前記ネットワークに送信することを要旨とする。
図1は、無線通信システム10の全体概略構成図である。 図2は、無線通信システム10において用いられる周波数レンジを示す図である。 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。 図4は、UE200の機能ブロック構成図である。 図5は、動作例1を示す図である。 図6は、動作例2を示す図である。 図7は、動作例3を示す図である。 図8は、動作例4を示す図である。 図9は、動作例5を示す図である。 図10は、動作例6を示す図である。 図11は、動作例7を示す図である。 図12は、変更例1を説明するための図である。 図13は、UE200のハードウェア構成の一例を示す図である。
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。
 [実施形態]
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20)、及び端末200(以下、UE200)を含む。
 なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。
 NG-RAN20は、無線基地局100A(以下、gNB100A)及び無線基地局100B(以下、gNB100B)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。
 gNB100及びgNB100Bは、5Gに従った無線基地局であり、UE200と5Gに従った無線通信を実行する。gNB100、gNB100B及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMassive MIMO(Multiple-Input Multiple-Output)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。
 また、無線通信システム10は、複数の周波数レンジ(FR)に対応する。図2は、無線通信システム10において用いられる周波数レンジを示す。
 図2に示すように、無線通信システム10は、FR1及びFR2に対応する。各FRの周波数帯は、次のとおりである。
 ・FR1:410 MHz~7.125 GHz
 ・FR2:24.25 GHz~52.6 GHz
 FR1では、15, 30または60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60,または120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。
 なお、SCSは、numerologyと解釈されてもよい。numerologyは、3GPP TS38.300において定義されており、周波数ドメインにおける一つのサブキャリア間隔と対応する。
 さらに、無線通信システム10は、FR2の周波数帯よりも高周波数帯にも対応する。具体的には、無線通信システム10は、52.6GHzを超え、114.25GHzまでの周波数帯に対応する。このような高周波数帯は、便宜上「FR2x」と呼ばれてもよい。
 このような問題を解決するため、52.6GHzを超える帯域を用いる場合、より大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)を適用してもよい。
 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す。
 図3に示すように、1スロットは、14シンボルで構成され、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。SCSは、図3に示す間隔(周波数)に限定されない。例えば、480kHz、960kHzなどが用いられてもよい。
 また、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28、56シンボル)。さらに、サブフレーム当たりのスロット数は、SCSによって異なっていてよい。
 なお、図3に示す時間方向(t)は、時間領域、シンボル期間またはシンボル時間などと呼ばれてもよい。また、周波数方向は、周波数領域、リソースブロック、サブキャリア、BWP (Bandwidth part)などと呼ばれてもよい。
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、UE200の機能ブロック構成について説明する。
 図4は、UE200の機能ブロック構成図である。図4に示すように、UE200は、無線信号送受信部210、アンプ部220、変復調部230、制御信号・参照信号処理部240、符号化/復号部250、データ送受信部260及び制御部270を備える。
 無線信号送受信部210は、NRに従った無線信号を送受信する。無線信号送受信部210は、Massive MIMO、複数のCCを束ねて用いるCA、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うDCなどに対応する。
 アンプ部220は、PA (Power Amplifier)/LNA (Low Noise Amplifier)などによって構成される。アンプ部220は、変復調部230から出力された信号を所定の電力レベルに増幅する。また、アンプ部220は、無線信号送受信部210から出力されたRF信号を増幅する。
 変復調部230は、所定の通信先(gNB100または他のgNB)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。変復調部230では、Cyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)が適用されてもよい。また、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)にも用いられてもよい。
 制御信号・参照信号処理部240は、UE200が送受信する各種の制御信号に関する処理、及びUE200が送受信する各種の参照信号に関する処理を実行する。 
 具体的には、制御信号・参照信号処理部240は、gNB100から所定の制御チャネルを介して送信される各種の制御信号、例えば、無線リソース制御レイヤ(RRC)の制御信号を受信する。また、制御信号・参照信号処理部240は、gNB100に向けて、所定の制御チャネルを介して各種の制御信号を送信する。 
 制御信号・参照信号処理部240は、Demodulation Reference Signal(DMRS)、及びPhase Tracking Reference Signal (PTRS)などの参照信号(RS)を用いた処理を実行する。
 DMRSは、データ復調に用いるフェージングチャネルを推定するための端末個別の基地局~端末間において既知の参照信号(パイロット信号)である。PTRSは、高い周波数帯で課題となる位相雑音の推定を目的した端末個別の参照信号である。
 なお、参照信号には、DMRS及びPTRS以外に、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)が含まれてもよい。
 また、チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、RACH(Random Access Channel)、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDownlink Control Information (DCI))、及びPhysical Broadcast Channel(PBCH)などが含まれる。
 また、データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。データとは、データチャネルを介して送信されるデータを意味する。データチャネルは、共有チャネルと読み替えられてもよい。
 実施形態では、制御信号・参照信号処理部240は、第1コンポーネントキャリア(以下、第1CC)とは異なる第2コンポーネントキャリア(以下、第2CC)を介して、ネットワーク(例えば、NG-RAN20)とデータの通信を実行する通信部を構成する。
 制御信号・参照信号処理部240は、第1CC又は第2CCを用いて、第2CCに関する上りリンク制御情報(UCI; Uplink Control Information)をネットワークに送信する。
 具体的には、制御信号・参照信号処理部240は、第1CCを用いて第2CCに関するUCIを送信してもよい(後述する動作例1)。
 制御信号・参照信号処理部240は、所定条件が満たされる場合に、第1CC及び第2CCにおける所定物理上りリンクチャネルの同時送信によって、第1CC及び第2CCの少なくとも一方に関するUCIをネットワークに送信してもよい(後述する動作例2、5)。
 制御信号・参照信号処理部240は、所定条件が満たされる場合に、所定物理上りリンクチャネルの送信を破棄する。このとき、第1CC及び第2CCの少なくとも一方を用いて、第1CC及び第2CCの少なくとも一方に関するUCIを送信してもよい(後述する動作例3、6)。
 制御信号・参照信号処理部240は、所定条件が満たされる場合に、第1CC及び第2CCの少なくとも一方に関するUCIを所定物理上りリンクチャネルに多重してネットワークに送信してもよい(後述する動作例4、7)。
 所定条件は、第1CCにおけるPUCCHと第2CCにおけるPUCCHとが衝突する第1所定条件を含んでもよい。所定条件は、第1CC及び第2CCの少なくともいずれか1つにおけるPUCCHと第2CCにおけるPUSCHとが衝突する第2所定条件を含んでもよい。なお、本開示における衝突は、2以上のチャネルが同じ時間単位に含まれることであってもよく、例えば、2以上のチャネルが同じスロットで送信されることが指示されることであってもよい。
 ここで、制御信号・参照信号処理部240は、後述する動作例4,7において、第3所定条件が満たされる場合に、第2CCに関するUCIを所定物理上りリンクチャネルに多重してネットワークに送信してもよい。
 第3所定条件は、第1CCに関するUCIが第2CCに関するUCIとは独立で復号可能であるという条件を含んでもよい。
 第3所定条件は、第2CCに関するUCIのコードブックが第1CCに関するUCIのコードブックと別に生成されるという条件を含んでもよい。
 以下においては、第1CCは、第1周波数レンジ(例えば、52.6GHz以下)に属するCCであり、第2CCは、第1周波数レンジ(例えば、52.6GHz以下)よりも高い第2周波数レンジ(例えば、52.6GHz以上)に属するCCであるものとして説明する。
 さらに、第1周波数レンジに関するパラメータを“non-above”で区別し、第2周波数レンジに関するパラメータを“above”で区別する。例えば、第1周波数レンジに属する第1CCをnon-above CCと呼称し、第2周波数レンジに属する第2CCをabove CCと呼称する。
 UCIは、データ(例えば、1つのTB)に対応する応答確認(HARQ-ACK)を少なくとも含む。UCIは、リソースのスケジューリングを要求するSR(Scheduling Request)を含んでもよく、チャネルの状態を表すCSI(Channel State Information)を含んでもよい。以下においては、HARQ-ACKについて主として説明する。
 符号化/復号部250は、所定の通信先(gNB100または他のgNB)毎に、データの分割/連結及びチャネルコーディング/復号などを実行する。
 具体的には、符号化/復号部250は、データ送受信部260から出力されたデータを所定のサイズに分割し、分割されたデータに対してチャネルコーディングを実行する。また、符号化/復号部250は、変復調部230から出力されたデータを復号し、復号したデータを連結する。
 データ送受信部260は、Protocol Data Unit (PDU)ならびにService Data Unit (SDU)の送受信を実行する。具体的には、データ送受信部260は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDUの組み立て/分解などを実行する。また、データ送受信部260は、ハイブリッドARQ(Hybrid automatic repeat request)に基づいて、データの誤り訂正及び再送制御を実行する。
 制御部270は、UE200を構成する各機能ブロックを制御する。特に、本実施形態では、制御部270は、non-above CC及びabove CCの通信を制御する。
 (3)動作例
 (3.1)動作例1
 動作例1において、UE200は、non-above CCを用いてabove CCに関するUCIを送信する。すなわち、動作例1は、non-above CCを用いてabove CCに関するHARQ-ACKを送信する動作例である。ここでは、UE200が、above CCにマッピングされるPDSCHを介してデータを受信し、受信したデータに対応するHARQ-ACKを送信するケースを例示する。
 図5に示すように、ステップS10において、UE200は、RRCメッセージをNG-RAN20から受信する。RRCメッセージは、HARQ-ACKの送信に用いるリソース設定を含む。動作例1では、リソース設定は、non-above CCで用いるPUCCH-Configを含んでもよく、non-above CCで用いるPUSCH-Config.を含んでもよい。
 ステップS11において、UE200は、non-above CC及びabove CCに含まれる1以上のCCにマッピングされるPDCCHを介してDCIをNG-RAN20から受信する。
 ステップS12において、UE200は、above CCにマッピングされるPDSCHを介してデータをNG-RAN20から受信する。
 ステップS13において、UE200は、non-above CCを介して、above CCに関するHARQ-ACKをNG-RAN20に送信する。above CCに関するHARQ-ACKは、non-above CCにマッピングされるPUCCHを介して送信されてもよく、non-above CCにマッピングされるPUSCHを介して送信されてもよい。
 このようなケースにおいて、above CCについてSpCell(Special Cell)が設定されなくてもよい。SpCellは、MCG(Master Cell Group)に属するPCell(Primary Cell)、SCG(Secondary Cell Group)に属するPSCell(Primary Secondary Cell)、或いは、これら以外のPCellであってもよい。
 或いは、above CCについてSpCell(Special Cell)が設定されたとしても、PUCCHは、above CCに設定されずに、non-above CCに設定されてもよい。
 或いは、above CCについてPUCCHをサポートするSCell(Secondary Cell)が設定されなくてもよい。すなわち、PUCCHは、above CCに設定されずに、non-above CCに設定されてもよい。
 (3.2)動作例2
 動作例2において、UE200は、所定条件が満たされる場合に、non-above CC及びabove CCにおける所定物理上りリンクチャネルの同時送信によって、above CCに関するUCIをネットワークに送信する。所定物理上りリンクチャネルは、non-above CC及びabove CCにおけるPUCCHである。above CCに関するUCIは、above CCにおけるPUCCHに含まれていてもよい。すなわち、動作例2は、above CCを用いてPUCCHを送信する動作例である。例えば、PUCCHには、above CCに関するHARQ-ACKが含まれていてもよい。ここでは、UE200が、non-above CC及びabove CCにマッピングされるPDSCHを介してデータを受信し、受信したデータに対応するHARQ-ACKを送信するケースを例示する。
 但し、above CCに関するHARQ-ACK及びnon-above CCに関するHARQ-ACKの多重が許容されない。例えば、above CCにおけるPUCCHとnon-above CCにおけるPUCCHとが少なくとも時間領域において衝突する場合において、above CCにおけるPUCCHに含まれるUCI及びnon-above CCにおけるPUCCHに含まれるUCIは、同一チャネルに多重されなくてもよい。このとき、above CCにおけるPUCCH及びnon-above CCにおけるPUCCHの同時送信が許容されてもよい。
 図6に示すように、ステップS20において、UE200は、RRCメッセージをNG-RAN20から受信する。RRCメッセージは、HARQ-ACKの送信に用いるリソース設定を含む。動作例2では、リソース設定は、non-above CC及びabove CCで用いるPUCCH-Configを含む。
 ステップS21において、UE200は、non-above CC及びabove CCに含まれる1以上のCCにマッピングされるPDCCHを介してDCIをNG-RAN20から受信する。
 ステップS22において、UE200は、non-above CC及びabove CCにマッピングされるPDSCHを介してデータをNG-RAN20から受信する。
 ステップS23Aにおいて、UE200は、above CCにマッピングされるPUCCHを介して、above CCに関するHARQ-ACKをNG-RAN20に送信する。ステップS23Bにおいて、UE200は、non-above CCにマッピングされるPUCCH又はPUSCHを介して、non-above CCに関するHARQ-ACKをNG-RAN20に送信する。
 ここで、ステップS23A及びステップ23Bは、ステップS21で受信するDCIによってスケジューリングされる。言い換えると、above CCに関するHARQ-ACK及びnon-above CCに関するHARQ-ACKの同時送信が許容される。
 (3.3)動作例3
 動作例3において、UE200は、所定条件が満たされる場合に、所定物理上りリンクチャネルの送信を破棄した上で、above CCを用いて、above CCに関するUCIを送信する。所定物理上りリンクチャネルは、non-above CCにおけるPUCCHである。但し、non-above CCにおけるPUCCHの送信が破棄されずに、above CCにおけるPUCCHの送信が破棄されてもよい。すなわち、動作例3は、above CCを用いてPUCCHを送信する、又は、above CCを用いたPUCCHの送信を破棄する動作例である。例えば、PUCCHにはabove CCに関するHARQ-ACKが含まれていてもよい。ここでは、UE200が、non-above CC及びabove CCにマッピングされるPDSCHを介してデータを受信し、受信したデータに対応するHARQ-ACKを送信するケースを例示する。但し、above CCに関するHARQ-ACK及びnon-above CCに関するHARQ-ACKの多重が許容されない。例えば、above CCにおけるPUCCHとnon-above CCにおけるPUCCHとが少なくとも時間領域において衝突する場合において、above CCにおけるPUCCHに含まれるUCI及びnon-above CCにおけるPUCCHに含まれるUCIは、同一チャネルに多重されなくてもよい。このとき、above CCにおけるPUCCH及びnon-aboveにおけるPUCCHのいずれか一方のみが送信されてもよい。
 図7に示すように、ステップS30において、UE200は、RRCメッセージをNG-RAN20から受信する。ステップS30は上述したステップS20と同様であるため、ステップS30の詳細については省略する。
 ステップS31において、UE200は、non-above CC及びabove CCに含まれる1以上のCCにマッピングされるPDCCHを介してDCIをNG-RAN20から受信する。
 ステップS32において、UE200は、non-above CC及びabove CCにマッピングされるPDSCHを介してデータをNG-RAN20から受信する。
 ステップS33において、UE200は、above CCに関するHARQ-ACK及びnon-above CCに関するHARQ-ACKのいずれか一方をNG-RAN20に送信する。言い換えると、UE200は、above CCに関するHARQ-ACK及びnon-above CCに関するHARQ-ACKのいずれか他方を破棄する。above CCに関するHARQ-ACKは、above CCにマッピングされるPUCCHを介して送信される。non-above CCに関するHARQ-ACKは、non-above CCにマッピングされるPUCCH又はPUSCHを介して送信されてもよい。
 (3.4)動作例4
 動作例4において、UE200は、non-above CCにおけるPUCCHとabove CCにおけるPUCCHとが衝突する第1所定条件が満たされる場合に、above CCに関するUCIを所定物理上りリンクチャネルに多重してネットワークに送信する。所定物理上りリンクチャネルは、above CCにおけるPUCCHであってもよく、non-above CCにおけるPUCCHであってもよい。すなわち、動作例4は、non-above CC又はabove CCを用いてabove CCに関するHARQ-ACKを送信する動作例である。ここでは、UE200が、non-above CC及びabove CCにマッピングされるPDSCHを介してデータを受信し、受信したデータに対応するHARQ-ACKを送信するケースを例示する。さらに、above CCに関するHARQ-ACK及びnon-above CCに関するHARQ-ACKの多重が許容される。例えば、above CCにおけるPUCCHとnon-above CCにおけるPUCCHとが少なくとも時間領域において衝突する場合において、above CCにおけるPUCCHに含まれるUCI及びnon-above CCにおけるPUCCHに含まれるUCIは、above CCにおけるPUCCHに含まれるUCI及びnon-above CCにおけるPUCCHに含まれるUCIは同一PUCCHに多重されてもよい。
 図8に示すように、ステップS40において、UE200は、RRCメッセージをNG-RAN20から受信する。RRCメッセージは、HARQ-ACKの送信に用いるリソース設定を含む。動作例4では、リソース設定は、above CCで用いるPUCCH-Configを含む。
 ステップS41において、UE200は、non-above CC及びabove CCに含まれる1以上のCCにマッピングされるPDCCHを介してDCIをNG-RAN20から受信する。
 ステップS42において、UE200は、non-above CC及びabove CCにマッピングされるPDSCHを介してデータをNG-RAN20から受信する。
 ステップS43において、UE200は、non-above CC及びabove CCに関するHARQ-ACKをPUCCHに多重して、non-above CC又はabove CCにマッピングされたPUCCHを介して、多重されたHARQ-ACKをNG-RAN20に送信する。
 動作例4では、以下に示すパラメータの少なくとも1つのパラメータは、above CCに関するHARQ-ACKとは独立して特定されてもよい。すなわち、above CCに関するUCIはnon-above CCに関するUCIとは独立で復号可能である(第3所定条件が満たされる一例)。
 パラメータA:non-aboveに関するHARQ-ACKのペイロードサイズ
 パラメータB:PUCCHのリソースセット又はリソース
 パラメータC:non-aboveに関するHARQ-ACKのコーディングレート
 パラメータD:non-aboveに関するHARQ-ACKがマッピングされたRE(Resource Element)
 パラメータE:PUCCHで用いるPRBs(Physical Resource Blocks)数
 例えば、多重されたHARQ-ACKのリソースは、以下の手順でnon-above CC又はabove CCに属するPUCCHにマッピングされる。
 non-aboveに関するHARQ-ACKのペイロードサイズ(パラメータA)は、N bitsである。aboveに関するHARQ-ACKのペイロードサイズは、M bitsである。aboveに関するHARQ-ACKのペイロードサイズは、M2 bitsであると仮定される。M2bitは、UE200とNG-RAN20との間で合意された方法で算出可能な値である。例えば、M2bitは、aboveに関するDAI(Downlink Assignment Index)に基づいて仮定されてもよい。上述したパラメータB,C,Dは、N+M2 bitsに基づいて決定される。
 このような背景下において、non-aboveに関するN bitsのHARQ-ACKがPUCCHのいくつかのREにマッピングされ、aboveに関するM bitsのHARQ-ACKがPUCCHの残りのREにマッピングされる。
 或いは、non-aboveに関するN bitsのHARQ-ACKがPUCCHの全てのREにマッピングされ、PUCCHのいくつかのREにおいてaboveに関するM bitsのHARQ-ACKによって上書きされてもよい(punctured)。non-aboveに関するコーディングレートは、所定閾値を超えない値であってもよい。上書きされるREは、non-aboveに関するSR及びCSIの少なくともいずれか1つがマッピングされるREが優先的に選択されてもよい。反対に、aboveに関するM bitsのHARQ-ACKがPUCCHの全てのREにマッピングされ、PUCCHのいくつかのREにおいてnon-aboveに関するN bitsのHARQ-ACKによって上書きされてもよい(punctured)。
 動作例4においては、above CCに関するHARQ-ACKのコードブックは、non-above CCに関するHARQ-ACKのコードブックとは別に生成されてもよい(第3所定条件が満たされる一例)。これによって、above CCに関するHARQ-ACK及びnon-above CCに関するHARQ-ACKの多重が許容される。このようなケースにおいて、above CCに関するPDSCHのDAIは、non-above CCに関するPDSCHのDAIとは別に定義され、計算されてもよい。(Semi-)static HARQ-ACKコードブックのみが、above CCに関するHARQ-ACKについてサポートされてもよい。このようなケースにおいて、(Semi-)static HARQ-ACKコードブックは、non-above CCに関するHARQ-ACKについて適用されなくてもよい。
 (3.5)動作例5
 動作例5において、UE200は、所定条件が満たされる場合に、non-above CC及び/又はabove CCにおける所定物理上りリンクチャネルの同時送信によって、non-above CC及びabove CCの少なくとも一方に関するUCIをネットワークに送信する。所定物理上りリンクチャネルは、non-above CC又はabove CCにおけるPUCCH及びabove CCにおけるPUSCHである。non-above CC及びabove CCの少なくとも一方に関するUCIは、non-above CC又はabove CCにおけるPUCCHに含まれてもよい。すなわち、動作例5は、non-above CC又はabove CCを用いて、above CC及びnon-aboveに関するHARQ-ACKの少なくとも一方を送信する動作例である。ここでは、UE200が、non-above CC及びabove CCにマッピングされるPDSCHを介してデータを受信し、受信したデータに対応するHARQ-ACKを送信するケースを例示するが、non-above CC及びabove CCのいずれか一方にマッピングされるPDSCHを介してデータを受信した場合に適用してもよい。但し、above CC及びnon-aboveの少なくとも一方に関するHARQ-ACKをabove CCにおけるPUSCHへ多重することは許容されない。例えば、non-above CCにおけるPUCCHとabove CCにおけるPUSCHとが少なくとも時間領域において衝突した場合において、non-above CCにおけるPUCCHに含まれるUCIは、above CCにおけるPUSCHに多重されなくてもよい。このとき、non-above CCにおけるPUCCH及びabove CCにおけるPUSCHの同時送信が許容されてもよい。non-above CCにおけるPUCCHは、above CCにおけるPUCCHに置き換えられてもよい。
 図9に示すように、ステップS50において、UE200は、RRCメッセージをNG-RAN20から受信する。RRCメッセージは、HARQ-ACKの送信に用いるリソース設定を含む。動作例5では、リソース設定は、above CCで用いるPUSCH-Configを含む。リソース設定は、non-above CCで用いるPUCCH-Config又はPUSCH-Configを含む。
 ステップS51において、UE200は、non-above CC及びabove CCに含まれる1以上のCCにマッピングされるPDCCHを介してDCIをNG-RAN20から受信する。
 ステップS52において、UE200は、non-above CC及びabove CCにマッピングされるPDSCHを介してデータをNG-RAN20から受信する。
 ステップS53Aにおいて、UE200は、non-above CC又はabove CCにマッピングされるPUCCHを介して、non-above CC及びabove CCに関するHARQ-ACKをNG-RAN20に送信する。ステップS53Bにおいて、UE200は、above CCにマッピングされるPUSCHを介して、non-above CC及びabove CCに関するHARQ-ACKをNG-RAN20に送信する。
 ここで、ステップS53A及びステップ53Bは、ステップS51で受信するDCIによってスケジューリングされる。言い換えると、non-above CC又はabove CCにおけるPUCCH及びabove CCにおけるPUSCHの同時送信が許容される。
 (3.6)動作例6
 動作例6において、UE200は、所定条件が満たされる場合に、所定物理上りリンクチャネルの送信を破棄した上で、non-above CC又はabove CCを用いて、non-above CC及びabove CCの少なくとも一方に関するUCIを送信する。所定物理上りリンクチャネルは、non-above CC又はabove CCにおけるPUCCHである。但し、non-above CC又はabove CCにおけるPUCCHの送信が破棄されずに、above CCにおけるPUSCHの送信が破棄されてもよい。すなわち、動作例6は、non-above CC又はabove CCを用いてabove CC及びnon-aboveに関するHARQ-ACKの少なくとも一方を送信する、又は、non-above CC又はabove CCにおけるPUCCHの送信を破棄する動作例である。ここでは、UE200が、non-above CC及びabove CCにマッピングされるPDSCHを介してデータを受信し、受信したデータに対応するHARQ-ACKを送信するケースを例示するが、non-above CC及びabove CCのいずれか一方にマッピングされるPDSCHを介してデータを受信した場合に適用してもよい。但し、above CC及びnon-aboveの少なくとも一方に関するHARQ-ACKをabove CCにおけるPUSCHへ多重することは許容されない。例えば、non-above CCにおけるPUCCH及びabove CCにおけるPUSCHが少なくとも時間領域において衝突した場合において、non-above CCにおけるPUCCHに含まれるUCIは、above CCにおけるPUSCHに多重されなくてもよい。このとき、non-above CCにおけるPUCCH及びabove CCにおけるPUSCHのいずれか一方のみが送信されてもよい。non-above CCにおけるPUCCHはabove CCにおけるPUCCHに置き換えられてもよい。
 図10に示すように、ステップS60において、UE200は、RRCメッセージをNG-RAN20から受信する。ステップS60は上述したステップS50と同様であるため、ステップS60の詳細については省略する。
 ステップS61において、UE200は、non-above CC及びabove CCに含まれる1以上のCCにマッピングされるPDCCHを介してDCIをNG-RAN20から受信する。
 ステップS62において、UE200は、non-above CC及びabove CCにマッピングされるPDSCHを介してデータをNG-RAN20から受信する。
 ステップS63において、UE200は、non-above CC及びabove CCに関するHARQ-ACKを含むPUCCH及びabove CCにおけるPUSCHのいずれか一方をNG-RAN20に送信する。言い換えると、UE200は、above CCに関するHARQ-ACK及びnon-above CCに関するHARQ-ACKを含むPUCCH、及びabove CCにおけるPUSCHのいずれか他方を破棄する。
 (3.7)動作例7
 動作例7において、UE200は、non-above CC及びabove CCの少なくともいずれか1つにおけるPUCCHとabove CCにおけるPUSCHとが衝突する第2所定条件が満たされる場合に、non-above CC及びabove CCの少なくとも一方に関するUCIを所定物理上りリンクチャネルに多重してネットワークに送信する。所定物理上りリンクチャネルは、above CCにおけるPUSCHである。すなわち、動作例7は、above CCを用いてnon-above CC又はabove CCに関するHARQ-ACKを送信する動作例である。ここでは、UE200が、non-above CC及びabove CCにマッピングされるPDSCHを介してデータを受信し、受信したデータに対応するHARQ-ACKを送信するケースを例示するが、non-above CC及びabove CCのいずれか一方にマッピングされるPDSCHを介してデータを受信した場合に適用してもよい。さらに、above CCに関するHARQ-ACK及びnon-above CCに関するHARQ-ACKの少なくとも一方を、above CCにおけるPUSCHへ多重することが許容される。
 図11に示すように、ステップS70において、UE200は、RRCメッセージをNG-RAN20から受信する。RRCメッセージは、HARQ-ACKの送信に用いるリソース設定を含む。動作例7では、リソース設定は、above CCで用いるPUSCH-Configを含む。
 ステップS71において、UE200は、non-above CC及びabove CCに含まれる1以上のCCにマッピングされるPDCCHを介してDCIをNG-RAN20から受信する。
 ステップS72において、UE200は、non-above CC及びabove CCにマッピングされるPDSCHを介してデータをNG-RAN20から受信する。
 ステップS73において、UE200は、non-above CC及びabove CCに関するHARQ-ACKをPUCCHに多重した場合に、above CCにマッピングされたPUSCHと時間領域で衝突していることを検出する。このとき、当該HARQ-ACKを当該PUSCHに多重し、当該PUSCHを介して、多重されたHARQ-ACKをNG-RAN20に送信する。
 動作例7では、以下に示すパラメータの少なくとも1つのパラメータは、above CCに関するHARQ-ACKとは独立して特定される。すなわち、non-above CCに関するUCI及びUL-SCHの少なくとも一方はabove CCに関するUCIとは独立で復号可能である(第3所定条件が満たされる一例)。
 パラメータF:non-aboveに関するHARQ-ACK及びUL-SCHの少なくともいずれか1つのコーディングレート
 パラメータG:non-aboveに関するHARQ-ACK及びUL-SCHの少なくともいずれか1つがマッピングされるRE(Resource Element)
 例えば、多重されたHARQ-ACKのリソースは、以下の手順でabove CCに属するPUSCHにマッピングされる。
 non-aboveに関するHARQ-ACK及びUL-SCHの少なくともいずれか1つのペイロードサイズ(パラメータF)は、N’ bitsである。aboveに関するHARQ-ACKのペイロードサイズは、M bitsである。aboveに関するHARQ-ACKのペイロードサイズは、M2 bitsであると仮定される。M2bitは、UE200とNG-RAN20との間で合意された方法で算出可能な値である。例えば、M2bitは、aboveに関するDAI(Downlink Assignment Index)に基づいて仮定されてもよい。上述したパラメータF,Gは、N’+M2 bitsに基づいて決定される。
 このような背景下において、N’ bitsのnon-aboveに関するHARQ-ACK及びUL-SCHの少なくともいずれか1つがPUSCHのいくつかのREにマッピングされ、aboveに関するM bitsのHARQ-ACKがPUSCHの残りのREにマッピングされる。
 或いは、N’ bitsのnon-aboveに関するHARQ-ACK及びUL-SCHの少なくともいずれか1つがPUSCHの少なくとも一部のREにマッピングされ、PUSCHのいくつかのREにおいてaboveに関するM bitsのHARQ-ACKによって上書きされてもよい(punctured)。non-aboveに関するコーディングレートは、所定閾値を超えない値であってもよい。上書きされるREは、non-aboveに関するSR及びCSIの少なくともいずれか1つがマッピングされるREが優先的に選択されてもよい。反対に、non-aboveに関するN bitsのHARQ-ACKがPUSCHの少なくとも一部のREにマッピングされ、PUSCHのいくつかのREにおいてN’ bitsのaboveに関するHARQ-ACK及びUL-SCHの少なくともいずれか1つによって上書きされてもよい(punctured)。
 動作例7においては、動作例4と同様に、above CCに関するHARQ-ACKのコードブックは、non-above CCに関するHARQ-ACKのコードブックとは別に生成されてもよい(第3所定条件が満たされる一例)。これによって、above CCに関するHARQ-ACK及びnon-above CCに関するHARQ-ACKの多重が許容される。このようなケースにおいて、above CCに関するPDSCHのDAIは、non-above CCに関するPDSCHのDAIとは別に定義され、計算されてもよい。(Semi-)static HARQ-ACKコードブックのみが、above CCに関するHARQ-ACKについてサポートされてもよい。このようなケースにおいて、(Semi-)static HARQ-ACKコードブックは、non-above CCに関するHARQ-ACKについて適用されなくてもよい。
 (4)作用・効果
 実施形態では、UE200は、non above CCを用いて、above CCに関するHARQ-ACKをネットワークに送信する。このような構成によれば、above CCに関するHARQ-ACKの信頼性の低下を抑制することができる。
 実施形態では、UE200は、所定条件が満たされる場合に、動作例2~動作例7に示す所定送信を実行する。例えば、動作例2、5で説明したように、non-above CC及びabove CCにおける所定物理上りリンクチャネルの同時送信が許容される場合に、所定物理上りリンクチャネルの同時送信によってabove CCに関するHARQ-ACKを送信する。或いは、動作例3、6で説明したように、non-above CC及びabove CCにおける物理上りリンクチャネルの同時送信が許容されない場合に、所定物理上りリンクチャネルの送信を破棄する。このとき、non-above CC又はabove CCを用いてnon-above CC及びabove CCの少なくとも一方に関するHARQ-ACKを送信する。或いは、動作例7において、UE200は、所定条件が満たされる場合に、non-above CC及びabove CCの少なくとも一方に関するUCIを所定物理上りリンクチャネルに多重してネットワークに送信する。このような構成によれば、non-above CC及びabove CCに関するHARQ-ACKの信頼性の低下を抑制することができる。
 さらに、多重が許容される第3所定条件が定められている。このような構成によれば、non-above CCに関するHARQ-ACKの信頼性の低下を抑制することができる。
 上述したように、non-above CC及びabove CCに関するHARQ-ACKの信頼性の低下を抑制することによって、ACK to NACKエラー、NACK to ACKエラー、DTX to ACKエラーなどのエラー率を所望エラー率以下に抑制することができる。
 [変更例1]
 以下において、実施形態の変更例1について説明する。以下においては、実施形態に対する相違点について説明する。
 具体的には、UE200は、上述した動作例1~動作例7の少なくともいずれか1つを実行する能力があるか否かを示す情報要素をネットワーク(NG-RAN20)に送信する。具体的には、図12に示すように、ステップS80において、UE200は、動作例1~動作例7の少なくともいずれか1つを実行する能力があるか否かを示す情報要素を含むUE capabilityをNG-RAN20に送信(報告)する。例えば、UE200は、動作例2又は動作例5で説明した同時送信を実行する機能があるか否かを示す情報要素を含むUE capabilityを送信してもよい。
 特に限定されるものではないが、UE200は、NG-RAN20とRRCコネクションが設定された場合に、ステップS80を実行してもよい。言い換えると、ステップS80は、図5~図11に示す処理よりも前に実行されてもよい。
 [変更例2]
 以下において、実施形態の変更例2について説明する。以下においては、実施形態に対する相違点について説明する。
 変更例2では、above CCに関するPUCCH Configについて説明する。PUCCH Configは、上位レイヤパラメータによって設定される。PUCCH Configは、RRCメッセージに含まれる情報要素であってもよい。
 第1に、above CCに関するPUCCH Configは、non-above CCに関するPUCCH Configと同じであってもよい。言い換えると、PUCCH Configは、above CCとnon-aboveCCとの間で共有されてもよい。
 第2に、above CCに関するPUCCH Configは、non-above CCに関するPUCCH Configと別に設定されてもよい。non-above CC及びabove CCに関するHARQ-ACKの多重が許容されるケース(例えば、上述した動作例4又は動作例7)において、non-above CCに関するPUCCH Config(又はabove CCに関するPUCCH Config)が適用されてもよい。或いは、HARQ-ACKの多重に用いる直近のDCIによって指定されたPUCCH Configが用いられてもよい。
 第3に、above CCに関するPUCCH Configは、HARQ-ACKについて設定されるが、SR及びCSI(Periodic CSI, Semi-persistent CSI, Aperiodic CSI)について設定されなくてもよい。
 [変更例3]
 以下において、実施形態の変更例3について説明する。以下においては、実施形態に対する相違点について説明する。
 変更例3では、non-above CC及びabove CCに関するHARQ-ACKの多重又はnon-above CC及びabove CCの少なくとも一方に関するHARQ-ACKのabove CCにおけるPUSCHへの多重が行われるケース(例えば、上述した動作例4又は動作例7)についてさらに説明する。
 このようなケースにおいて、non-above CCにマッピングされるPDSCH又はPUSCHをスケジューリングするDCIは、以下に示す情報要素を含んでもよい。
 例えば、DCIは、above CCに関するHARQ-ACKが多重されるか否かを示す情報要素(例えば、1 bit情報)を含んでもよい。DCIは、above CCに関するHARQ-ACKのbit数を示す情報要素(例えば、X bits情報)を含んでもよい。このような情報要素は、above CCに関する直近のDAIによって特定される総リソースを示す情報要素であってもよい。
 上述した情報要素がDCIに含まれていれば、non-above CC及びabove CCに関するHARQ-ACKの多重が適用されてもよい。すなわち、第3所定条件は、上述した情報要素がDCIに含まれることを含んでもよい。一方で、上述した情報要素がDCIに含まれていなければ、non-above CC及びabove CCに関するHARQ-ACKの多重が適用されなくてもよい。
 [その他の実施形態]
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 上述した実施形態では、第1CCがnon-above CCであり、第2CCがabove CCであるケースについて例示した。しかしながら、実施形態はこれに限定されるものではない。例えば、第1CCは特定CC以外の他のCCであり、第2CCは特定CCであってもよい。特定CCは、HARQ-ACKの送信が設定されないCCであってもよい。また、第1CCが属する第1周波数レンジは、52.6GHz以下に限定されるものではなく、第2CCに属する第2周波数レンジは、52.6GHz以上に限定されるものではない。
 上述した実施形態では、UCIの一例としてHARQ-ACKについて説明した。しかしながら、実施形態はこれに限定されるものではない。HAQR-ACKはUCIと読み替えられてもよい。上述した動作例1~動作例7は、UCI type毎に適用されてもよい。例えば、HAQR-ACKについて動作例1が適用され、SR及びCSIについて動作例2~動作例7の中から選択された動作例が適用されてもよい。
 上述した実施形態において、PUCCHは、PUCCHを介して送信される制御情報と同様に解釈してもよい。例えば、PUCCHの送信は、UCIの送信やHARQ-ACKの送信と読み替えられてもよい。
 上述した実施形態の説明に用いたブロック構成図(図4)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼ばれる。何れも、上述したとおり、実現方法は特に限定されない。
 さらに、上述したUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図13は、当該装置のハードウェア構成の一例を示す図である。図13に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 当該装置の各機能ブロック(図4参照)は、当該コンピュータ装置の何れかのハードウェア要素、又は当該ハードウェア要素の組み合わせによって実現される。
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 情報、信号(情報等)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、又は追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。
 「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。
 サブフレームはさらに時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。

 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
 10 無線通信システム
 20 NG-RAN
 100 gNB
 200 UE
 210 無線信号送受信部
 220 アンプ部
 230 変復調部
 240 制御信号・参照信号処理部
 250 符号化/復号部
 260 データ送受信部
 270 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス

Claims (5)

  1.  第1コンポーネントキャリアとは異なる第2コンポーネントキャリアを介して、ネットワークとデータの通信を実行する通信部を備え、
     前記通信部は、
      前記第1コンポーネントキャリアを用いて、前記第2コンポーネントキャリアに関する上りリンク制御情報を前記ネットワークに送信し、或いは、
      所定条件が満たされる場合に、前記第1コンポーネントキャリア及び前記第2コンポーネントキャリアにおける所定物理上りリンクチャネルの同時送信によって、前記第1コンポーネントキャリア及び前記第2コンポーネントキャリアの少なくとも一方に関する上りリンク制御情報を前記ネットワークに送信し、或いは、
      所定条件が満たされる場合に、所定物理上りリンクチャネルの送信を破棄し、或いは、
      所定条件が満たされる場合に、前記第1コンポーネントキャリア及び前記第2コンポーネントキャリアの少なくとも一方に関する上りリンク制御情報を所定物理上りリンクチャネルに多重して前記ネットワークに送信する、端末。
  2.  前記所定条件は、
      前記第1コンポーネントキャリアにおける物理上りリンク制御チャネルと前記第2コンポーネントキャリアにおける物理上りリンク制御チャネルとが衝突する第1所定条件、或いは、
      前記第1コンポーネントキャリア及び前記第2コンポーネントキャリアの少なくともいずれか1つにおける物理上りリンク制御チャネルと前記第2コンポーネントキャリアにおける物理上りリンク共有チャネルが衝突する第2所定条件を含む、請求項1に記載の端末。
  3. 前記通信部は、前記第1所定条件が満たされており、かつ、第3所定条件が満たされる場合において、前記第1コンポーネントキャリアに関する上りリンク制御情報及び前記第2コンポーネントキャリアに関する上りリンク制御情報を、前記第1コンポーネントキャリア又は前記第2コンポーネントキャリアにおける物理上りリンク制御チャネルに多重する、請求項2に記載の端末。
  4.  前記通信部は、前記第2所定条件が満たされており、かつ、第3所定条件が満たされる場合において、前記第1コンポーネントキャリア及び前記第2コンポーネントキャリアの少なくとも一方に関する上りリンク制御情報を、前記第2コンポーネントキャリアにおける物理上りリンク共有チャネルに多重する、請求項2に記載の端末。
  5.  前記第3所定条件は、前記第1コンポーネントキャリアに関する上りリンク制御情報が前記第2コンポーネントキャリアに関する上りリンク制御情報とは独立で復号可能であること、及び、前記第2コンポーネントキャリアに関する上りリンク制御情報のコードブックが前記第1コンポーネントキャリアに関する上りリンク制御情報のコードブックと別に生成されることの少なくとも一方である請求項3又は請求項4に記載の端末。
PCT/JP2020/015112 2020-04-01 2020-04-01 端末 WO2021199387A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/015112 WO2021199387A1 (ja) 2020-04-01 2020-04-01 端末
JP2022511447A JPWO2021199387A1 (ja) 2020-04-01 2020-04-01

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/015112 WO2021199387A1 (ja) 2020-04-01 2020-04-01 端末

Publications (1)

Publication Number Publication Date
WO2021199387A1 true WO2021199387A1 (ja) 2021-10-07

Family

ID=77929789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015112 WO2021199387A1 (ja) 2020-04-01 2020-04-01 端末

Country Status (2)

Country Link
JP (1) JPWO2021199387A1 (ja)
WO (1) WO2021199387A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016524881A (ja) * 2013-06-18 2016-08-18 サムスン エレクトロニクス カンパニー リミテッド Eノードb間のキャリアアグリゲーションのためのul tdmの方法
US20190103943A1 (en) * 2017-09-29 2019-04-04 Samsung Electronics Co., Ltd. Uplink transmission method and corresponding equipment
JP2019186676A (ja) * 2018-04-05 2019-10-24 シャープ株式会社 基地局装置および端末装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016524881A (ja) * 2013-06-18 2016-08-18 サムスン エレクトロニクス カンパニー リミテッド Eノードb間のキャリアアグリゲーションのためのul tdmの方法
US20190103943A1 (en) * 2017-09-29 2019-04-04 Samsung Electronics Co., Ltd. Uplink transmission method and corresponding equipment
JP2019186676A (ja) * 2018-04-05 2019-10-24 シャープ株式会社 基地局装置および端末装置

Also Published As

Publication number Publication date
JPWO2021199387A1 (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
WO2020261463A1 (ja) 端末
WO2021214921A1 (ja) 端末
WO2022137559A1 (ja) 端末及び無線通信方法
WO2021199348A1 (ja) 端末
WO2021199387A1 (ja) 端末
WO2021192063A1 (ja) 端末
WO2022153505A1 (ja) 端末及び無線基地局
WO2022097724A1 (ja) 端末
WO2022153509A1 (ja) 端末、基地局及び無線通信方法
WO2022113232A1 (ja) 端末、基地局及び無線通信方法
WO2022102718A1 (ja) 端末
WO2022029972A1 (ja) 端末
WO2022102714A1 (ja) 端末
WO2021199388A1 (ja) 端末
WO2022074842A1 (ja) 端末
WO2022085156A1 (ja) 端末
WO2022074843A1 (ja) 端末
WO2022137569A1 (ja) 端末、基地局及び無線通信方法
WO2022137570A1 (ja) 端末、基地局及び無線通信方法
WO2022079872A1 (ja) 端末
US20240015750A1 (en) Terminal
WO2022215272A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2022102670A1 (ja) 端末
WO2022201404A1 (ja) 端末
WO2022244097A1 (ja) 端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929499

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022511447

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929499

Country of ref document: EP

Kind code of ref document: A1