WO2022085156A1 - 端末 - Google Patents

端末 Download PDF

Info

Publication number
WO2022085156A1
WO2022085156A1 PCT/JP2020/039733 JP2020039733W WO2022085156A1 WO 2022085156 A1 WO2022085156 A1 WO 2022085156A1 JP 2020039733 W JP2020039733 W JP 2020039733W WO 2022085156 A1 WO2022085156 A1 WO 2022085156A1
Authority
WO
WIPO (PCT)
Prior art keywords
range
scaling factor
uplink
uci
extended range
Prior art date
Application number
PCT/JP2020/039733
Other languages
English (en)
French (fr)
Inventor
優元 ▲高▼橋
聡 永田
チーピン ピ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2020/039733 priority Critical patent/WO2022085156A1/ja
Publication of WO2022085156A1 publication Critical patent/WO2022085156A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria

Definitions

  • the present disclosure relates to a terminal that executes wireless communication, particularly a terminal that executes multiplexing of uplink control information for an uplink shared channel.
  • the 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and next-generation specifications called Beyond 5G, 5G Evolution or 6G. We are also proceeding with the conversion.
  • 5G New Radio
  • NG Next Generation
  • Release 15 of 3GPP supports multiplexing of two or more uplink channels (PUCCH (Physical Uplink Control Channel) and PUSCH (Physical Uplink Shared Channel)) transmitted in the same slot.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • an object is to provide a terminal capable of appropriately multiplexing uplink control information for an uplink shared channel.
  • One aspect of the present disclosure is a terminal, in which an uplink signal is transmitted by using a control unit that multiplexes uplink control information on an uplink shared channel and the uplink shared channel on which the uplink control information is multiplexed.
  • the control unit comprises a communication unit for transmission, and the control unit multiplies the radio resource available for transmission of the uplink control information by a scaling factor in the rate matching of the uplink control information, and the control unit ,
  • the gist is to apply an extended range including a value smaller than the predetermined range as the range that the scaling factor can take.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a diagram showing a frequency range used in the wireless communication system 10.
  • FIG. 3 is a diagram showing a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
  • FIG. 4 is a functional block configuration diagram of the UE 200.
  • FIG. 5 is a diagram for explaining rate matching.
  • FIG. 6 is a diagram for explaining rate matching.
  • FIG. 7 is a diagram for explaining rate matching.
  • FIG. 8 is a diagram showing an example of the range that the scaling factor ( ⁇ ) can take.
  • FIG. 9 is a diagram showing an example of the range that the scaling factor ( ⁇ ) can take.
  • FIG. 10 is a diagram showing an example of a range that the scaling factor ( ⁇ ) can take.
  • FIG. 10 is a diagram showing an example of a range that the scaling factor ( ⁇ ) can take.
  • FIG. 11 is a diagram showing an example of the range that the scaling factor ( ⁇ ) can take.
  • FIG. 12 is a diagram showing an example of the range that the scaling factor ( ⁇ ) can take.
  • FIG. 13 is a diagram showing an example of the range that the scaling factor ( ⁇ ) can take.
  • FIG. 14 is a diagram showing an example of the range that the scaling factor ( ⁇ ) can take.
  • FIG. 15 is a diagram showing an example of a range that the scaling factor ( ⁇ ) can take.
  • FIG. 16 is a diagram showing an operation example.
  • FIG. 17 is a diagram showing an example of the hardware configuration of the UE 200.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the embodiment.
  • the wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20) and a terminal 200 (hereinafter, UE200).
  • NR 5G New Radio
  • NG-RAN20 Next Generation-Radio Access Network 20
  • UE200 terminal 200
  • the wireless communication system 10 may be a wireless communication system according to a method called Beyond 5G, 5G Evolution, or 6G.
  • NG-RAN20 includes a radio base station 100A (hereinafter, gNB100A) and a radio base station 100B (hereinafter, gNB100B).
  • gNB100A radio base station 100A
  • gNB100B radio base station 100B
  • the specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • NG-RAN20 actually includes multiple NG-RANNodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G.
  • NG-RAN20 and 5GC may be simply expressed as "network”.
  • GNB100A and gNB100B are radio base stations according to 5G, and execute wireless communication according to UE200 and 5G.
  • gNB100A, gNB100B and UE200 are Massive MIMO (Multiple-Input Multiple-Output) and multiple component carriers (CC) that generate beam BM with higher directivity by controlling radio signals transmitted from multiple antenna elements.
  • CC multiple component carriers
  • the DC may include MR-DC (Multi-RAT Dual Connectivity) using MCG (Master Cell Group) and SCG (Secondary Cell Group).
  • MR-DC examples include EN-DC (E-UTRA-NR Dual Connectivity), NE-DC (NR-EUTRA Dual Connectivity) and NR-DC (NR-NR Dual Connectivity).
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-EUTRA Dual Connectivity
  • NR-DC NR-NR Dual Connectivity
  • CCs (cells) used in CA may be considered to form the same cell group.
  • MCG and SCG may be considered to constitute the same cell group.
  • the wireless communication system 10 supports a plurality of frequency ranges (FR).
  • FIG. 2 shows the frequency range used in the wireless communication system 10.
  • the wireless communication system 10 corresponds to FR1 and FR2.
  • the frequency bands of each FR are as follows.
  • FR1 uses a Sub-Carrier Spacing (SCS) of 15, 30 or 60 kHz and may use a bandwidth (BW) of 5-100 MHz.
  • SCS Sub-Carrier Spacing
  • BW bandwidth
  • FR2 has a higher frequency than FR1, and SCS of 60, or 120kHz (240kHz may be included) is used, and a bandwidth (BW) of 50 to 400MHz may be used.
  • SCS may be interpreted as numerology. Numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier interval in the frequency domain.
  • the wireless communication system 10 also supports a higher frequency band than the FR2 frequency band. Specifically, the wireless communication system 10 corresponds to a frequency band exceeding 52.6 GHz and up to 114.25 GHz. Such a high frequency band may be referred to as "FR2x" for convenience.
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing CP-OFDM
  • DFT- Discrete Fourier Transform-Spread
  • S-OFDM Discrete Fourier Transform-Spread
  • FIG. 3 shows a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
  • one slot is composed of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period).
  • the SCS is not limited to the interval (frequency) shown in FIG. For example, 480 kHz, 960 kHz, etc. may be used.
  • the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, 28, 56 symbols).
  • the number of slots per subframe may vary from SCS to SCS.
  • the time direction (t) shown in FIG. 3 may be referred to as a time domain, a symbol period, a symbol time, or the like.
  • the frequency direction may be referred to as a frequency domain, a resource block, a subcarrier, a BWP (Bandwidth Part), or the like.
  • FIG. 4 is a functional block configuration diagram of UE200.
  • the UE 200 includes a radio signal transmission / reception unit 210, an amplifier unit 220, a modulation / demodulation unit 230, a control signal / reference signal processing unit 240, a coding / decoding unit 250, a data transmission / reception unit 260, and a control unit 270. ..
  • the radio signal transmission / reception unit 210 transmits / receives a radio signal according to NR.
  • the radio signal transmission / reception unit 210 corresponds to Massive MIMO, a CA that bundles a plurality of CCs, and a DC that simultaneously communicates between the UE and each of the two NG-RAN Nodes.
  • the amplifier unit 220 is composed of PA (Power Amplifier) / LNA (Low Noise Amplifier) and the like.
  • the amplifier unit 220 amplifies the signal output from the modulation / demodulation unit 230 to a predetermined power level. Further, the amplifier unit 220 amplifies the RF signal output from the radio signal transmission / reception unit 210.
  • the modulation / demodulation unit 230 executes data modulation / demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB100 or other gNB).
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) / Discrete Fourier Transform-Spread (DFT-S-OFDM) may be applied to the modulation / demodulation unit 230. Further, the DFT-S-OFDM may be used not only for the uplink (UL) but also for the downlink (DL).
  • the control signal / reference signal processing unit 240 executes processing related to various control signals transmitted / received by the UE 200 and processing related to various reference signals transmitted / received by the UE 200.
  • control signal / reference signal processing unit 240 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, control signals of the radio resource control layer (RRC). Further, the control signal / reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
  • RRC radio resource control layer
  • the control signal / reference signal processing unit 240 executes processing using a reference signal (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
  • RS reference signal
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • DMRS is a reference signal (pilot signal) known between the base station and the terminal of each terminal for estimating the fading channel used for data demodulation.
  • PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
  • the reference signal may include ChannelStateInformation-ReferenceSignal (CSI-RS), SoundingReferenceSignal (SRS), and PositioningReferenceSignal (PRS) for location information.
  • CSI-RS ChannelStateInformation-ReferenceSignal
  • SRS SoundingReferenceSignal
  • PRS PositioningReferenceSignal
  • control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel), Random Access Radio Network Temporary Identifier (RA-RNTI), Downlink Control Information (DCI), and Physical Broadcast Channel (PBCH) etc. are included.
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • RACH Random Access Channel
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • DCI Downlink Control Information
  • PBCH Physical Broadcast Channel
  • the data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
  • Data means data transmitted over a data channel.
  • the data channel may be read as a shared channel.
  • the control signal / reference signal processing unit 240 uses an uplink shared channel (ULSCH (UplinkSharedChannel)) in which uplink control information (UCI (UplinkControlInformation)) is multiplexed to provide an uplink signal.
  • ULSCH is a transport channel that is multiplexed with PUSCH: PhysicalUplink Shared Channel.
  • the uplink signal transmitted via ULSCH (PUSCH) may include UCI or may include data.
  • the UCI may include an acknowledgment (HARQ-ACK) for one or more TBs.
  • the UCI may include an SR (Scheduling Request) that requests the scheduling of resources, or may include a CSI (Channel State Information) that represents the state of the channel.
  • the UCI may be transmitted via PUCCH or may be transmitted via PUSCH.
  • the coding / decoding unit 250 executes data division / concatenation and channel coding / decoding for each predetermined communication destination (gNB100 or other gNB).
  • the coding / decoding unit 250 divides the data output from the data transmission / reception unit 260 into predetermined sizes, and executes channel coding for the divided data. Further, the coding / decoding unit 250 decodes the data output from the modulation / demodulation unit 230 and concatenates the decoded data.
  • the data transmission / reception unit 260 executes transmission / reception of Protocol Data Unit (PDU) and Service Data Unit (SDU).
  • the data transmitter / receiver 260 is a PDU / SDU in a plurality of layers (such as a medium access control layer (MAC), a radio link control layer (RLC), and a packet data convergence protocol layer (PDCP)). Assemble / disassemble the.
  • the data transmission / reception unit 260 executes data error correction and retransmission control based on the hybrid ARQ (Hybrid automatic repeat request).
  • the control unit 270 controls each functional block constituting the UE 200.
  • the control unit 270 constitutes a control unit that multiplexes UCI to UL SCH.
  • the control unit 270 multiplies the radio resource available for transmission of uplink control information by the scaling factor ( ⁇ ) in UCI rate matching.
  • the control unit 270 applies an extended range including a value smaller than the predetermined range as a range that ⁇ can take.
  • the default range may be considered to be the range defined by Release 16 of 3GPP.
  • the extended range may be considered to be the range defined by Release 17 of 3GPP.
  • Rate matching The rate matching will be described below. Specifically, the rate matching of UCI in the case of multiplexing UCI to UL SCH will be described.
  • HARQ-ACK, CSI Part 1, and CSI Part 2 are exemplified as UCI.
  • HARQ-ACK, CSI-Part 1 and CSI-Part 2 are executed separately.
  • the bit sequence of "C00, C01, " is obtained by applying the channel coding to the HARQ-ACK having the bit sequence of "X 0 , X 1 , !. Rate matching is applied to such bitstreams.
  • N L is the number of transmission layers in PUSCH.
  • Q m is the modulation condition of PUSCH.
  • Q'ACK is expressed by the following equation (TS38.212 V16.3.0 ⁇ 6.3.2.4.1.1 “HARQ-ACK”).
  • Q'ACK is the minimum value of the item defined by the coefficient ( ⁇ ) (left side) and the item defined by the scaling factor ( ⁇ ) (right side). Therefore, it should be noted that the RE (Resource Element) used to transmit HARQ-ACK can be limited by the scaling factor ( ⁇ ).
  • bit sequence of "C00, C01, " Is obtained by applying the channel coding to CSI Part 1 having the bit sequence of "Y 0 , Y 1 , !. Rate matching is applied to such bitstreams.
  • N L is the number of transmission layers in PUSCH.
  • Q m is the modulation condition of PUSCH.
  • Q'CSI -part1 is expressed by the following equation (TS38.212 V16.3.0 ⁇ 6.3.2.4.1.2 “CSI part 1”).
  • Q'ACK is the minimum value of the item defined by the coefficient ( ⁇ ) (left side) and the item defined by the scaling factor ( ⁇ ) (right side). Therefore, it should be noted that the RE (Resource Element) used to transmit CSI Part 1 can be limited by the scaling factor ( ⁇ ).
  • the bit sequence of "C00, C01, " is obtained by applying the channel coding to CSI Part 2 having the bit sequence of "Z 0 , Z 1 , !. Rate matching is applied to such bitstreams.
  • N L is the number of transmission layers in PUSCH.
  • Q m is the modulation condition of PUSCH.
  • Q'CSI -part2 is expressed by the following equation (TS38.212 V16.3.0 ⁇ 6.3.2.4.1.3 “CSI part 2”).
  • Q'ACK is the minimum value of the item defined by the coefficient ( ⁇ ) (left side) and the item defined by the scaling factor ( ⁇ ) (right side). Therefore, it should be noted that the RE (Resource Element) used to transmit CSI Part 2 can be limited by the scaling factor ( ⁇ ).
  • the scaling factor ( ⁇ ) may be an information element (scaling) included in UCI-OnPUSCH, and may be UCI-OnPUSCH-ForDCI-Fromat0-2-r16. It may be an information element (scalingForDCI-Fromat0-2-r16) included.
  • UCI-OnPUSCH-ForDCI-Fromat0-2-r16 is an information element used when the DCI format is DCI Format 0_2.
  • the minimum value that the scaling factor ( ⁇ ) can take in the default range is "0.5" (f0p5), and the maximum value that the scaling factor ( ⁇ ) can take in the default range is "1" (f1).
  • the default range is the range defined in Release 16 of 3GPP (TS38.331 V16.2.0 ⁇ 6.3.2 “Radio Resource Control Information elements”).
  • Example 1 of the extended range includes a value smaller than the predetermined range as the range that the scaling factor ( ⁇ ) included in the UCI-OnPUSCH can take.
  • a value smaller than the minimum value "0.5" that the scaling factor ( ⁇ ) can take in the default range here, "0" (f0), "0.2” (f0p2), "" Includes 0.350 ”(f0p35)).
  • a value smaller than the default range is defined by expanding the information element (scaling) used in the default range.
  • Example 2 of extended range the scaling factor ( ⁇ ) included in UCI-OnPUSCH-ForDCI-Fromat0-2-r16 includes a value smaller than the default range as a possible range.
  • a value smaller than the minimum value "0.5" that the scaling factor ( ⁇ ) can take in the default range here, "0" (f0), "0.2” (f0p2), "" Includes 0.350 ”(f0p35)).
  • a value smaller than the default range is defined by expanding the information element (scalingForDCI-Fromat0-2-r16) used in the default range.
  • Example of expansion range 3 As shown in FIG. 11, for Example 3 of the extended range, the scaling factor ( ⁇ ) included in UCI-OnPUSCH and UCI-OnPUSCH-ForDCI-Fromat0-2-r16 is a range smaller than the default range. including. For example, in Example 3 of the extended range, a value smaller than the minimum value "0.5" that the scaling factor ( ⁇ ) can take in the default range (here, "0" (f0), "0.2” (f0p2), "” Includes 0.350 ”(f0p35)). In Example 3 of the extended range, a value smaller than the default range is defined by expanding the information elements (scaling and scalingForDCI-Fromat0-2-r16) used in the default range.
  • Example 4 of the extended range includes a value smaller than the predetermined range as the range that the scaling factor ( ⁇ ) included in UCI-OnPUSCH can take.
  • a value smaller than the minimum value "0.5" that the scaling factor ( ⁇ ) can take in the default range here, "0" (f0), "0.2” (f0p2), "" Includes 0.350 ”(f0p35)).
  • a value smaller than the default range is defined by introducing a new information element (scalingForDifferentPriorities-r17).
  • the possible values of the scaling factor ( ⁇ ) of the new information element are the possible values of the scaling factor ( ⁇ ) in the default range (“0.5” (f0p5), “0.65” (f0p65), “0.8” (f0p8), It may contain “1” (f1)).
  • Example of expansion range 5 As shown in FIG. 13, for Example 5 of the extended range, the scaling factor ( ⁇ ) included in UCI-OnPUSCH-ForDCI-Fromat0-2-r16 includes a value smaller than the default range as a possible range. For example, in Example 5 of the extended range, a value smaller than the minimum value "0.5" that the scaling factor ( ⁇ ) can take in the default range (here, "0" (f0), "0.2” (f0p2), "” Includes 0.350 ”(f0p35)). In Example 5 of the extended range, a value smaller than the default range is defined by introducing a new information element (scalingForDCI-Fromat0-2-DifferentPriorities-r17).
  • the possible values of the scaling factor ( ⁇ ) of the new information element are the possible values of the scaling factor ( ⁇ ) in the default range (“0.5” (f0p5), “0.65” (f0p65), “0.8” (f0p8), It may contain “1” (f1)).
  • Example of extended range 6 As shown in FIG. 14, for Example 6 of the extended range, the scaling factor ( ⁇ ) included in UCI-OnPUSCH and UCI-OnPUSCH-ForDCI-Fromat0-2-r16 is a range smaller than the default range. including. For example, in Example 6 of the extended range, a value smaller than the minimum value "0.5" that the scaling factor ( ⁇ ) can take in the default range (here, "0" (f0), “0.2” (f0p2), "” Includes 0.350 ”(f0p35)).
  • Example 6 of the extended range a value smaller than the default range is defined by introducing new information elements (scalingForDifferentPriorities-r17 and scalingForDCI-Fromat0-2-DifferentPriorities-r17).
  • the possible values of the scaling factor ( ⁇ ) of the new information element are the possible values of the scaling factor ( ⁇ ) in the default range (“0.5” (f0p5), “0.65” (f0p65), “0.8” (f0p8), It may contain "1” (f1)).
  • Example of extended range 7 As shown in FIG. 15, for Example 7 of the extended range, the scaling factor ( ⁇ ) is associated with an index (eg, alpha-Index1, alpha-Index1, ... Alpha-Indexz) as well as the coefficient ( ⁇ ). May be done.
  • the range of the scaling factor ( ⁇ ) associated with the index is smaller than the minimum value “0.5” that the scaling factor ( ⁇ ) can take in the default range (here, “0” (f0), “0.2””. (F0p2), "0.350" (f0p35)) is included.
  • the introduction of new information elements (alphas) defines values smaller than the default range.
  • the possible values of the scaling factor ( ⁇ ) of the new information element are the possible values of the scaling factor ( ⁇ ) in the default range (“0.5” (f0p5), “0.65” (f0p65), “0.8” (f0p8), It may contain “1” (f1)).
  • the first index (for example, alpha-Index1) may be used as an index used in the case where the default range is applied.
  • the scaling factor ( ⁇ ) associated with the first index includes a value smaller than the minimum value “0.5” that the scaling factor ( ⁇ ) can take in the default range, but due to the implementation of gNB100 or the like, It is not necessary to use a value smaller than the minimum value "0.5” that the scaling factor ( ⁇ ) can take in the default range.
  • the second index (for example, alpha-Index2) may be used as an index used in the case of applying the extended range.
  • the scaling factor ( ⁇ ) associated with the second index includes a value smaller than the minimum value “0.5” that the scaling factor ( ⁇ ) can take in the default range, and is defaulted by the implementation of gNB100 or the like. A value smaller than the minimum value "0.5" that the scaling factor ( ⁇ ) can take in the range may be used.
  • alpha-Index may be specified by an information element included in DCI. For example, when the information element included in DCI is "0", the value included in the default range (for example, the value associated with alpha-Index1) may be used. When the information element included in the DCI is "1", the value included in the extension range (for example, the value associated with alpha-Index1) may be used. If such information elements are not included in DCI, the default range (alpha-Index1 or scaling) may be applied.
  • Example 7 of the extended range when the format of DCI that schedules PUSCH is a specific format (for example, DCI Format 0_2), a value ( ⁇ ) smaller than the existing range may be specified by DCI. .. If the format of the DCI that schedules PUSCH is not a specific format (for example, DCI Format 0_2), it is not necessary for DCI to specify a value ( ⁇ ) smaller than the existing range.
  • a new information element (alphas) included in UCI-OnPUSCH has been described, but the embodiment is not limited to this.
  • the new information elements (alphas) may be included in UCI-OnPUSCH-ForDCI-Fromat0-2-r16 and may be included in both UCI-OnPUSCH and UCI-OnPUSCH-ForDCI-Fromat0-2-r16. ..
  • Condition 1 is that there is no particular condition required in the case of applying the extended range. For example, if an existing information element (scaling and scaling ForDCI-Fromat0-2-r16) is used to define a value smaller than the default range (hereinafter referred to as an extended value of ⁇ ), the existing information element ⁇ It is possible to specify the extended value of. For example, the extended range shown in FIGS. 9 to 11 may be applied without any particular condition being required.
  • Condition 2 is specified based on the radio resource control message (RRC message).
  • RRC message radio resource control message
  • UE200 applies the extended range based on the RRC message.
  • the RRC message may include an information element indicating whether or not the extended range is applied.
  • the extended range may be applied if the RRC message contains an information element indicating that the extended range is applied.
  • the extended range may not be applied if the RRC message does not contain an information element indicating that the extended range applies, or if the RRC message contains an information element indicating that the extended range does not apply. ..
  • the information elements shown in FIGS. 12 to 14 scalingForDifferentPriorities-r17 and scalingForDCI-Fromat0-2-DifferentPriorities-r17
  • the information elements (alphas) shown in FIG. 15 may be an example of information elements indicating that the extended range is applied.
  • Condition 3 is that UE 200 reports UE Capability including information elements regarding the application of the extended range. In other words, the UE200 applies the extension range based on the UE Capability of the UE200.
  • the information element regarding the application of the extended range is an information element indicating that the UE200 supports UCI multiplexing for uplink channels (UL-SCH, PUSCH) having a priority different from that of the UCI. May be good.
  • the information element regarding the application of the extended range may be an information element indicating that the UE 200 corresponds to the extended range.
  • Condition 4 is that the format of the downlink control information (DCI) is a specific format. In other words, UE200 applies the extended range based on DCI.
  • the specific format may be DCI Format 0_2.
  • condition 4 may be combined with condition 2 described above.
  • the extended value of ⁇ can be specified by the information element (scalingForDCI-Fromat0-2-r16) included in UCI-OnPUSCH-ForDCI-Fromat0-2-r16, and the DCI format is DCIFormat0_2. If so, the extended range may be applied.
  • the extended value of ⁇ can be specified by a new information element (scalingForDCI-Fromat0-2-DifferentPriorities-r17 or alphas) included in UCI-OnPUSCH-ForDCI-Fromat0-2-r16, and the DCI format is If it is DCI Format 0_2, the extended range may be applied.
  • Condition 5 may be that the coefficient ( ⁇ ) is equal to or greater than the threshold value. In other words, the UE 200 applies an extension range based on the value of the coefficient ( ⁇ ).
  • the threshold value may be set according to the minimum value (“0.5” (0fp5)) of the value that the scaling factor ( ⁇ ) can take in the default range. If ⁇ is greater than or equal to the threshold corresponding to the Q'ACK specified by the minimum value of ⁇ , an extended range containing values smaller than the default range may be applied.
  • Condition 6 may be that the priority of the uplink control information (UCI) is different from that of the uplink shared channel (UL-SCH, PUSCH). In other words, the UE 200 may apply the extended range if the UCI priority is different from the UL-SCH priority.
  • UCI uplink control information
  • PUSCH UL-SCH
  • PUSCH UL-SCH
  • the UE200 may apply the default range when the UCI priority is the same as the UL-SCH priority. However, the UE200 may apply the extended range when the priority of UCI is the same as the priority of UL-SCH. Cases where the UCI priority is the same as the UL-SCH priority may include cases where both UCI and UL-SCH have low priority, and cases where both UCI and UL-SCH have high priority. It may be included.
  • step S10 the UE 200 transmits a message including the UE Capability to the NG-RAN 20.
  • UE Capability may include an information element regarding the application of the extended range (condition 3 described above).
  • step S11 UE100 receives an RRC message from NG-RAN20.
  • the RRC message may include an information element indicating whether or not the extended range is applied (conditions 1 and 2 described above).
  • step S12 UE200 receives one or more DCIs from NG-RAN20 via PDCCH.
  • the DCI format may be DCI Format 0_2 (condition 4 described above).
  • step S13 the UE 200 transmits an uplink signal using UL-SCH (PUSCH) in which UCI is multiplexed.
  • PUSCH UL-SCH
  • the UE 200 may apply an extended range as a range that the scaling factor ( ⁇ ) can take, based on at least one of the above-mentioned conditions 1 to 6.
  • the UE 200 applies an extended range (FIGS. 9 to 15) including a value smaller than the predetermined range as a possible range of the scaling factor ( ⁇ ) used in rate matching.
  • an extended range including a value smaller than the predetermined range as a possible range of the scaling factor ( ⁇ ) used in rate matching.
  • the UCI multiplexed on UL-SCH may include CSI Part 1 or CSI Part 2.
  • the default range is the range used when the priority of the uplink control information (UCI) is the same as the priority of the uplink shared channel (UL-SCH, PUSCH). May be good. Such a range may be referred to as a first range.
  • the priority of the uplink control information (UCI) may be in the range used when the priority of the uplink shared channel (UL-SCH, PUSCH) is different. Such a range may be referred to as a second range.
  • the priority may be set as follows.
  • the HARQ-ACK priority may be higher than the SR priority.
  • the priority for URLLC Ultra Reliable and Low Latency Communications
  • eMBB enhanced Mobile BroadBand
  • an extended range including a value smaller than the predetermined range may be introduced as a range in which the coefficient ( ⁇ ) can be taken.
  • the default range may be considered to be the range defined by Release 16 of 3GPP.
  • the extended range may be considered to be the range defined by Release 17 of 3GPP.
  • the information element related to the application of the extended range may be an information element indicating that the UE 200 corresponds to the extended range related to the coefficient ( ⁇ ) (condition 2 described above). If a value smaller than the existing range is used as the coefficient ( ⁇ ), the extension range for the scaling factor ( ⁇ ) may not be applied. If a value smaller than the existing range is not used as the coefficient ( ⁇ ), the extension range for the scaling factor ( ⁇ ) may be applied.
  • the block configuration diagram (FIG. 4) used in the description of the above-described embodiment shows a block of functional units.
  • These functional blocks are realized by any combination of at least one of hardware and software.
  • the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't.
  • a functional block (configuration unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter).
  • the realization method is not particularly limited.
  • FIG. 17 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of each of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each functional block of the device (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function in the device is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of the memory 1002 and the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an ApplicationSpecific Integrated Circuit (ASIC), a ProgrammableLogicDevice (PLD), and a FieldProgrammableGateArray (FPGA).
  • the hardware may implement some or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (eg Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (eg RRC signaling, Medium Access Control (MAC) signaling, Master Information Block). (MIB), System Information Block (SIB)), other signals or combinations thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling eg RRC signaling, Medium Access Control (MAC) signaling, Master Information Block). (MIB), System Information Block (SIB)
  • RRC signaling may also be referred to as an RRC message, eg, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobileBroadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand
  • Bluetooth® Ultra-WideBand
  • other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them. It may be applied to one.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in this disclosure may be performed by its upper node (upper node).
  • various operations performed for communication with the terminal are the base station and other network nodes other than the base station (eg, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network node
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table.
  • the input / output information may be overwritten, updated, or added.
  • the output information may be deleted.
  • the entered information may be transmitted to other devices.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • Fixed Station NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Access point "transmission point”
  • reception point "transmission / reception point”
  • cell “sector”
  • Cell group “cell group”
  • Terms such as “carrier” and “component carrier” may be used interchangeably.
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a remote radio for indoor use). Communication services can also be provided by Head: RRH).
  • RRH Remote Radio Head
  • cell refers to a part or all of the coverage area of at least one of the base station providing communication services in this coverage and the base station subsystem.
  • MS Mobile Station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same shall apply hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the functions of the base station.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • the wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
  • the subframe may be further composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval: TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. It may indicate at least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time region.
  • the slot may be a unit of time based on numerology.
  • the slot may include a plurality of mini slots.
  • Each minislot may be composed of one or more symbols in the time domain. Further, the mini-slot may be referred to as a sub-slot.
  • a minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • Wireless frames, subframes, slots, mini slots and symbols all represent time units when transmitting signals.
  • the radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. May be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • a base station schedules each user terminal to allocate wireless resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • TTI with a time length of 1 ms may be called normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI (for example, shortened TTI, etc.) may be read as a TTI less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs are physical resource blocks (Physical RB: PRB), sub-carrier groups (Sub-Carrier Group: SCG), resource element groups (Resource Element Group: REG), PRB pairs, RB pairs, etc. May be called.
  • Physical RB Physical RB: PRB
  • sub-carrier groups Sub-Carrier Group: SCG
  • resource element groups Resource Element Group: REG
  • PRB pairs RB pairs, etc. May be called.
  • the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
  • RE resource elements
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth) may represent a subset of consecutive common resource blocks for a neurology in a carrier. good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB.
  • the number of subcarriers, as well as the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection means any direct or indirect connection or connection between two or more elements and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applied standard.
  • RS Reference Signal
  • Pilot pilot
  • each of the above devices may be replaced with a "part”, a “circuit”, a “device”, or the like.
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. It may include (for example, accessing data in memory) to be regarded as “judgment” or “decision”.
  • judgment and “decision” are considered to be “judgment” and “decision” when the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming", “expecting”, “considering” and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • Radio communication system 20 NG-RAN 100 gNB 200 UE 210 Wireless signal transmitter / receiver 220 Amplifier 230 Modulator / demodulator 240 Control signal / reference signal processing 250 Encoding / decoding 260 Data transmitter / receiver 270 Control 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末は、上りリンク共有チャネルに上りリンク制御情報を多重する制御部と、前記上りリンク制御情報が多重された前記上りリンク共有チャネルを用いて、上りリンク信号を送信する通信部と、を備え、前記制御部は、前記上りリンク制御情報のレートマッチングにおいて、前記上りリンク制御情報の送信で使用可能な無線リソースに対してスケーリングファクタを乗算し、前記制御部は、前記スケーリングファクタが取り得る範囲として、既定範囲よりも小さい値を含む拡張範囲を適用する。

Description

端末
 本開示は、無線通信を実行する端末、特に、上りリンク共有チャネルに対する上りリンク制御情報の多重を実行する端末に関する。
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。
 3GPPのRelease 15では、同一スロット送信される2以上の上りリンクチャネル(PUCCH(Physical Uplink Control Channel)及びPUSCH(Physical Uplink Shared Channel))の多重がサポートされる。
 さらに、3GPPのRelease 17では、UCI(Uplink Control Information)の優先度とは異なる優先度を有するUL SCH(Uplink Shared Channel)に多重することをサポートすることが合意された(例えば、非特許文献1)。
 このような背景下において、発明者等は、鋭意検討の結果、UL SCHに対するUCIの多重において、レートマッチングに用いるスケーリングファクタ(例えば、α)の取り得る値が既定範囲のままでは、UL SCHに対するUCIの多重を適切に実行することができないことを見出した。
 そこで、以下の開示は、このような状況に鑑みてなされたものであり、上りリンク共有チャネルに対する上りリンク制御情報の多重を適切に実行し得る端末の提供を目的とする。
 本開示の一態様は、端末であって、上りリンク共有チャネルに上りリンク制御情報を多重する制御部と、前記上りリンク制御情報が多重された前記上りリンク共有チャネルを用いて、上りリンク信号を送信する通信部と、を備え、前記制御部は、前記上りリンク制御情報のレートマッチングにおいて、前記上りリンク制御情報の送信で使用可能な無線リソースに対してスケーリングファクタを乗算し、前記制御部は、前記スケーリングファクタが取り得る範囲として、既定範囲よりも小さい値を含む拡張範囲を適用する、ことを要旨とする。
図1は、無線通信システム10の全体概略構成図である。 図2は、無線通信システム10において用いられる周波数レンジを示す図である。 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。 図4は、UE200の機能ブロック構成図である。 図5は、レートマッチングについて説明するための図である。 図6は、レートマッチングについて説明するための図である。 図7は、レートマッチングについて説明するための図である。 図8は、スケーリングファクタ(α)が取り得る範囲の一例を示す図である。 図9は、スケーリングファクタ(α)が取り得る範囲の一例を示す図である。 図10は、スケーリングファクタ(α)が取り得る範囲の一例を示す図である。 図11は、スケーリングファクタ(α)が取り得る範囲の一例を示す図である。 図12は、スケーリングファクタ(α)が取り得る範囲の一例を示す図である。 図13は、スケーリングファクタ(α)が取り得る範囲の一例を示す図である。 図14は、スケーリングファクタ(α)が取り得る範囲の一例を示す図である。 図15は、スケーリングファクタ(α)が取り得る範囲の一例を示す図である。 図16は、動作例を示す図である。 図17は、UE200のハードウェア構成の一例を示す図である。
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。
 [実施形態]
 (1)無線通信システムの全体概略構成
 図1は、実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20)、及び端末200(以下、UE200)を含む。
 なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。
 NG-RAN20は、無線基地局100A(以下、gNB100A)及び無線基地局100B(以下、gNB100B)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。
 gNB100A及びgNB100Bは、5Gに従った無線基地局であり、UE200と5Gに従った無線通信を実行する。gNB100A、gNB100B及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMassive MIMO(Multiple-Input Multiple-Output)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。DCは、MCG(Master Cell Group)及びSCG(Secondary Cell Group)を用いたMR-DC(Multi-RAT Dual Connectivity)を含んでもよい。MR-DCとしては、EN-DC(E-UTRA-NR Dual Connectivity)、NE-DC(NR-EUTRA Dual Connectivity)及びNR-DC(NR-NR Dual Connectivity)などが挙げられる。ここで、CAで用いるCC(セル)は、同一セルグループを構成すると考えてもよい。MCG及びSCGは、同一のセルグループを構成すると考えてもよい。
 また、無線通信システム10は、複数の周波数レンジ(FR)に対応する。図2は、無線通信システム10において用いられる周波数レンジを示す。
 図2に示すように、無線通信システム10は、FR1及びFR2に対応する。各FRの周波数帯は、次のとおりである。
 ・FR1:410 MHz~7.125 GHz
 ・FR2:24.25 GHz~52.6 GHz
 FR1では、15, 30または60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60,または120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。
 なお、SCSは、numerologyと解釈されてもよい。numerologyは、3GPP TS38.300において定義されており、周波数ドメインにおける一つのサブキャリア間隔と対応する。
 さらに、無線通信システム10は、FR2の周波数帯よりも高周波数帯にも対応する。具体的には、無線通信システム10は、52.6GHzを超え、114.25GHzまでの周波数帯に対応する。このような高周波数帯は、便宜上「FR2x」と呼ばれてもよい。
 このような問題を解決するため、52.6GHzを超える帯域を用いる場合、より大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)を適用してもよい。
 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す。
 図3に示すように、1スロットは、14シンボルで構成され、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。SCSは、図3に示す間隔(周波数)に限定されない。例えば、480kHz、960kHzなどが用いられてもよい。
 また、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28、56シンボル)。さらに、サブフレーム当たりのスロット数は、SCSによって異なっていてよい。
 なお、図3に示す時間方向(t)は、時間領域、シンボル期間またはシンボル時間などと呼ばれてもよい。また、周波数方向は、周波数領域、リソースブロック、サブキャリア、BWP (Bandwidth Part)などと呼ばれてもよい。
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、UE200の機能ブロック構成について説明する。
 図4は、UE200の機能ブロック構成図である。図4に示すように、UE200は、無線信号送受信部210、アンプ部220、変復調部230、制御信号・参照信号処理部240、符号化/復号部250、データ送受信部260及び制御部270を備える。
 無線信号送受信部210は、NRに従った無線信号を送受信する。無線信号送受信部210は、Massive MIMO、複数のCCを束ねて用いるCA、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うDCなどに対応する。
 アンプ部220は、PA (Power Amplifier)/LNA (Low Noise Amplifier)などによって構成される。アンプ部220は、変復調部230から出力された信号を所定の電力レベルに増幅する。また、アンプ部220は、無線信号送受信部210から出力されたRF信号を増幅する。
 変復調部230は、所定の通信先(gNB100または他のgNB)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。変復調部230では、Cyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)が適用されてもよい。また、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)にも用いられてもよい。
 制御信号・参照信号処理部240は、UE200が送受信する各種の制御信号に関する処理、及びUE200が送受信する各種の参照信号に関する処理を実行する。 
 具体的には、制御信号・参照信号処理部240は、gNB100から所定の制御チャネルを介して送信される各種の制御信号、例えば、無線リソース制御レイヤ(RRC)の制御信号を受信する。また、制御信号・参照信号処理部240は、gNB100に向けて、所定の制御チャネルを介して各種の制御信号を送信する。 
 制御信号・参照信号処理部240は、Demodulation Reference Signal(DMRS)、及びPhase Tracking Reference Signal (PTRS)などの参照信号(RS)を用いた処理を実行する。
 DMRSは、データ復調に用いるフェージングチャネルを推定するための端末個別の基地局~端末間において既知の参照信号(パイロット信号)である。PTRSは、高い周波数帯で課題となる位相雑音の推定を目的した端末個別の参照信号である。
 なお、参照信号には、DMRS及びPTRS以外に、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)が含まれてもよい。
 また、チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、RACH(Random Access Channel)、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDownlink Control Information (DCI))、及びPhysical Broadcast Channel(PBCH)などが含まれる。
 また、データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。データとは、データチャネルを介して送信されるデータを意味する。データチャネルは、共有チャネルと読み替えられてもよい。
 実施形態では、制御信号・参照信号処理部240は、上りリンク制御情報(UCI(Uplink Control Information))が多重された上りリンク共有チャネル(UL SCH(Uplink Shared Channel))を用いて、上りリンク信号を送信する通信部を構成する。UL SCHは、PUSCH: Physical Uplink Shared Channelに多重されるトランスポートチャネルである。UL SCH(PUSCH)を介して送信される上りリンク信号は、UCIを含んでもよく、データを含んでもよい。UCIは、1以上のTBに対する確認応答(HARQ-ACK)を含んでもよい。UCIは、リソースのスケジューリングを要求するSR(Scheduling Request)を含んでもよく、チャネルの状態を表すCSI(Channel State Information)を含んでもよい。UCIは、PUCCHを介して送信されてもよく、PUSCHを介して送信されてもよい。
 符号化/復号部250は、所定の通信先(gNB100または他のgNB)毎に、データの分割/連結及びチャネルコーディング/復号などを実行する。
 具体的には、符号化/復号部250は、データ送受信部260から出力されたデータを所定のサイズに分割し、分割されたデータに対してチャネルコーディングを実行する。また、符号化/復号部250は、変復調部230から出力されたデータを復号し、復号したデータを連結する。
 データ送受信部260は、Protocol Data Unit (PDU)ならびにService Data Unit (SDU)の送受信を実行する。具体的には、データ送受信部260は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDUの組み立て/分解などを実行する。また、データ送受信部260は、ハイブリッドARQ(Hybrid automatic repeat request)に基づいて、データの誤り訂正及び再送制御を実行する。
 制御部270は、UE200を構成する各機能ブロックを制御する。特に、実施形態では、制御部270は、UL SCHにUCIを多重する制御部を構成する。制御部270は、UCIのレートマッチングにおいて、上りリンク制御情報の送信で使用可能な無線リソースに対してスケーリングファクタ(α)を乗算する。制御部270は、αが取り得る範囲として、既定範囲よりも小さい値を含む拡張範囲を適用する。既定範囲は、3GPPのRelease 16で定義される範囲であると考えてもよい。拡張範囲は、3GPPのRelease 17で定義される範囲であると考えてもよい。
 (3)レートマッチング
 以下において、レートマッチングについて説明する。具体的には、UCIをUL SCHに多重するケースにおけるUCIのレートマッチングについて説明する。ここでは、UCIとして、HARQ-ACK、CSI Part 1、CSI Part 2について例示する。なお、HARQ-ACK、CSI-Part 1及びCSI-Part 2は別々に実行される。
 図5に示すように、”X0、X1、…”のビット系列を有するHARQ-ACKに対してチャネル符号化が適用されることによって”C00、C01、…”のビット系列が得られる。このようなビット系列に対してレートマッチングが適用される。レートマッチング後のビット系列(EUCI)は、EUCI=NL×Q’ACK×Qmによって表されてもよい。
 NLは、PUSCHの送信レイヤの数である。Qmは、PUSCHの変調条件である。例えば、Q’ACKは、以下の式によって表される(TS38.212 V16.3.0 §6.3.2.4.1.1 “HARQ-ACK”)。
Figure JPOXMLDOC01-appb-M000001
 なお、Q’ACKは、係数(β)によって定義される項目(左側)及びスケーリングファクタ(α)によって定義される項目(右側)の最小値である。従って、HARQ-ACKの送信に用いるRE(Resource Element)は、スケーリングファクタ(α)によって制限され得ることに留意すべきである。
 図6に示すように、”Y0、Y1、…”のビット系列を有するCSI Part 1に対してチャネル符号化が適用されることによって”C00、C01、…”のビット系列が得られる。このようなビット系列に対してレートマッチングが適用される。レートマッチング後のビット系列(EUCI)は、EUCI=NL×Q’CSI-part1×Qmによって表されてもよい。
 NLは、PUSCHの送信レイヤの数である。Qmは、PUSCHの変調条件である。例えば、Q’CSI-part1は、以下の式によって表される(TS38.212 V16.3.0 §6.3.2.4.1.2 “CSI part 1”)。
Figure JPOXMLDOC01-appb-M000002
 なお、Q’ACKは、係数(β)によって定義される項目(左側)及びスケーリングファクタ(α)によって定義される項目(右側)の最小値である。従って、CSI Part 1の送信に用いるRE(Resource Element)は、スケーリングファクタ(α)によって制限され得ることに留意すべきである。
 図7に示すように、”Z 0、Z1、…”のビット系列を有するCSI Part 2に対してチャネル符号化が適用されることによって”C00、C01、…”のビット系列が得られる。このようなビット系列に対してレートマッチングが適用される。レートマッチング後のビット系列(EUCI)は、EUCI=NL×Q’CSI-part2×Qmによって表されてもよい。
 NLは、PUSCHの送信レイヤの数である。Qmは、PUSCHの変調条件である。例えば、Q’CSI-part2は、以下の式によって表される(TS38.212 V16.3.0 §6.3.2.4.1.3 “CSI part 2”)。
Figure JPOXMLDOC01-appb-M000003
 なお、Q’ACKは、係数(β)によって定義される項目(左側)及びスケーリングファクタ(α)によって定義される項目(右側)の最小値である。従って、CSI Part 2の送信に用いるRE(Resource Element)は、スケーリングファクタ(α)によって制限され得ることに留意すべきである。
 (4)スケーリングファクタ(α)が取り得る範囲
 以下において、スケーリングファクタ(α)が取り得る範囲について説明する。
 (4.1)既定範囲
 図8に示すように、スケーリングファクタ(α)は、UCI-OnPUSCHに含まれる情報要素(scaling)であってもよく、UCI-OnPUSCH-ForDCI-Fromat0-2-r16に含まれる情報要素(scalingForDCI-Fromat0-2-r16)であってもよい。UCI-OnPUSCH-ForDCI-Fromat0-2-r16は、DCIのフォーマットがDCI Format 0_2である場合に用いられる情報要素である。既定範囲においてスケーリングファクタ(α)が取り得る最小値は”0.5”(f0p5)であり、既定範囲においてスケーリングファクタ(α)が取り得る最大値は”1”(f1)である。上述したように、既定範囲は、3GPPのRelease 16で定義される範囲である(TS38.331 V16.2.0 §6.3.2 ”Radio Resource Control Information elements”)。
 (4.2)拡張範囲の例1
 図9に示すように、拡張範囲の例1は、UCI-OnPUSCHに含まれるスケーリングファクタ(α)が取り得る範囲として、既定範囲よりも小さい値を含む。例えば、拡張範囲の例1は、既定範囲においてスケーリングファクタ(α)が取り得る値の最小値”0.5”よりも小さい値(ここでは、”0”(f0)、”0.2”(f0p2)、”0.350”(f0p35))を含む。拡張範囲の例1では、既定範囲で用いる情報要素(scaling)を拡張することによって、既定範囲よりも小さい値が定義される。
 (4.3)拡張範囲の例2
 図10に示すように、拡張範囲の例2については、UCI-OnPUSCH-ForDCI-Fromat0-2-r16に含まれるスケーリングファクタ(α)が取り得る範囲として、既定範囲よりも小さい値を含む。例えば、拡張範囲の例2は、既定範囲においてスケーリングファクタ(α)が取り得る値の最小値”0.5”よりも小さい値(ここでは、”0”(f0)、”0.2”(f0p2)、”0.350”(f0p35))を含む。拡張範囲の例2では、既定範囲で用いる情報要素(scalingForDCI-Fromat0-2-r16)を拡張することによって、既定範囲よりも小さい値が定義される。
 (4.4)拡張範囲の例3
 図11に示すように、拡張範囲の例3については、UCI-OnPUSCH及びUCI-OnPUSCH-ForDCI-Fromat0-2-r16に含まれるスケーリングファクタ(α)が取り得る範囲として、既定範囲よりも小さい値を含む。例えば、拡張範囲の例3は、既定範囲においてスケーリングファクタ(α)が取り得る値の最小値”0.5”よりも小さい値(ここでは、”0”(f0)、”0.2”(f0p2)、”0.350”(f0p35))を含む。拡張範囲の例3では、既定範囲で用いる情報要素(scaling及びscalingForDCI-Fromat0-2-r16)を拡張することによって、既定範囲よりも小さい値が定義される。
 (4.5)拡張範囲の例4
 図12に示すように、拡張範囲の例4は、UCI-OnPUSCHに含まれるスケーリングファクタ(α)が取り得る範囲として、既定範囲よりも小さい値を含む。例えば、拡張範囲の例4は、既定範囲においてスケーリングファクタ(α)が取り得る値の最小値”0.5”よりも小さい値(ここでは、”0”(f0)、”0.2”(f0p2)、”0.350”(f0p35))を含む。拡張範囲の例4では、新たな情報要素(scalingForDifferentPriorities-r17)を導入することによって、既定範囲よりも小さい値が定義される。新たな情報要素のスケーリングファクタ(α)の取り得る値は、既定範囲においてスケーリングファクタ(α)が取り得る値(”0.5”(f0p5)、”0.65”(f0p65)、”0.8”(f0p8)、”1”(f1))を含んでもよい。
 (4.6)拡張範囲の例5
 図13に示すように、拡張範囲の例5については、UCI-OnPUSCH-ForDCI-Fromat0-2-r16に含まれるスケーリングファクタ(α)が取り得る範囲として、既定範囲よりも小さい値を含む。例えば、拡張範囲の例5は、既定範囲においてスケーリングファクタ(α)が取り得る値の最小値”0.5”よりも小さい値(ここでは、”0”(f0)、”0.2”(f0p2)、”0.350”(f0p35))を含む。拡張範囲の例5では、新たな情報要素(scalingForDCI-Fromat0-2-DifferentPriorities-r17)を導入することによって、既定範囲よりも小さい値が定義される。新たな情報要素のスケーリングファクタ(α)の取り得る値は、既定範囲においてスケーリングファクタ(α)が取り得る値(”0.5”(f0p5)、”0.65”(f0p65)、”0.8”(f0p8)、”1”(f1))を含んでもよい。
 (4.7)拡張範囲の例6
 図14に示すように、拡張範囲の例6については、UCI-OnPUSCH及びUCI-OnPUSCH-ForDCI-Fromat0-2-r16に含まれるスケーリングファクタ(α)が取り得る範囲として、既定範囲よりも小さい値を含む。例えば、拡張範囲の例6は、既定範囲においてスケーリングファクタ(α)が取り得る値の最小値”0.5”よりも小さい値(ここでは、”0”(f0)、”0.2”(f0p2)、”0.350”(f0p35))を含む。拡張範囲の例6では、新たな情報要素(scalingForDifferentPriorities-r17及びscalingForDCI-Fromat0-2-DifferentPriorities-r17)を導入することによって、既定範囲よりも小さい値が定義される。新たな情報要素のスケーリングファクタ(α)の取り得る値は、既定範囲においてスケーリングファクタ(α)が取り得る値(”0.5”(f0p5)、”0.65”(f0p65)、”0.8”(f0p8)、”1”(f1))を含んでもよい。
 (4.8)拡張範囲の例7
 図15に示すように、拡張範囲の例7については、スケーリングファクタ(α)は、係数(β)と同様に、インデックス(例えば、alpha-Index1、alpha-Index1、…alpha-Indexz)と対応付けられてもよい。インデックスと対応付けられるスケーリングファクタ(α)の範囲は、既定範囲においてスケーリングファクタ(α)が取り得る値の最小値”0.5”よりも小さい値(ここでは、”0”(f0)、”0.2”(f0p2)、”0.350”(f0p35))を含む。拡張範囲の例7では、新たな情報要素(alphas)の導入によって既定範囲よりも小さい値が定義される。新たな情報要素のスケーリングファクタ(α)の取り得る値は、既定範囲においてスケーリングファクタ(α)が取り得る値(”0.5”(f0p5)、”0.65”(f0p65)、”0.8”(f0p8)、”1”(f1))を含んでもよい。
 このようなケースにおいて、第1インデックス(例えば、alpha-Index1)は、既定範囲を適用するケースで用いるインデックスとして用いられてもよい。ここで、第1インデックスと対応付けられたスケーリングファクタ(α)は、既定範囲においてスケーリングファクタ(α)が取り得る値の最小値”0.5”よりも小さい値を含むが、gNB100の実装などによって、既定範囲においてスケーリングファクタ(α)が取り得る値の最小値”0.5”よりも小さい値が用いられなくてもよい。
 一方で、第2インデックス(例えば、alpha-Index2)は、拡張範囲を適用するケースで用いるインデックスとして用いられてもよい。ここで、第2インデックスと対応付けられたスケーリングファクタ(α)は、既定範囲においてスケーリングファクタ(α)が取り得る値の最小値”0.5”よりも小さい値を含み、gNB100の実装などによって、既定範囲においてスケーリングファクタ(α)が取り得る値の最小値”0.5”よりも小さい値が用いられてもよい。
 拡張範囲の例7において、alpha-Indexは、DCIに含まれる情報要素によって指定されてもよい。例えば、DCIに含まれる情報要素が”0”である場合に、既定範囲に含まれる値(例えば、alpha-Index1と対応付けられた値)が用いられてもよい。DCIに含まれる情報要素が”1”である場合に、拡張範囲に含まれる値(例えば、alpha-Index1と対応付けられた値)が用いられてもよい。このような情報要素がDCIに含まれていない場合には、既定範囲(alpha-Index1又はscaling)が適用されてもよい。
 なお、拡張範囲の例7において、PUSCHをスケジューリングするDCIのフォーマットが特定フォーマット(例えば、DCI Format 0_2)である場合に、DCIによって既存範囲よりも小さな値(α)を指定可能であってもよい。PUSCHをスケジューリングするDCIのフォーマットが特定フォーマット(例えば、DCI Format 0_2)でない場合に、DCIによって既存範囲よりも小さな値(α)を指定可能でなくてもよい。
 また、図15では、UCI-OnPUSCHに含まれる新たな情報要素(alphas)について説明したが、実施形態はこれに限定されるものではない。新たな情報要素(alphas)は、UCI-OnPUSCH-ForDCI-Fromat0-2-r16に含まれてもよく、UCI-OnPUSCH及びUCI-OnPUSCH-ForDCI-Fromat0-2-r16の双方に含まれてもよい。
 (5)拡張範囲の適用例
 以下において、拡張範囲の適用例について説明する。ここでは、拡張範囲を適用するケースで要求される条件について説明する。
 (5.1)条件1
 条件1は、拡張範囲を適用するケースで要求される条件が特にないことである。例えば、既存の情報要素(scaling及びscaling ForDCI-Fromat0-2-r16)を用いて、既定範囲よりも小さい値(以下、αの拡張値)が定義される場合には、既存の情報要素によってαの拡張値を指定することが可能である。例えば、図9~図11に示す拡張範囲については、特に条件が要求されることなく適用されてもよい。
 (5.2)条件2
 条件2は、無線リソース制御メッセージ(RRCメッセージ)に基づいて指定されることである。言い換えると、UE200は、RRCメッセージに基づいて拡張範囲を適用する。
 例えば、RRCメッセージは、拡張範囲を適用するか否かを示す情報要素を含んでもよい。拡張範囲を適用することを示す情報要素がRRCメッセージに含まれる場合に、拡張範囲が適用されてもよい。拡張範囲を適用することを示す情報要素がRRCメッセージに含まれない場合に、又は、拡張範囲を適用しないことを示す情報要素がRRCメッセージに含まれる場合に、拡張範囲が適用されなくてもよい。図12~図14に示す情報要素(scalingForDifferentPriorities-r17及びscalingForDCI-Fromat0-2-DifferentPriorities-r17)は、拡張範囲を適用することを示す情報要素の一例であってもよい。図15に示す情報要素(alphas)は、拡張範囲を適用することを示す情報要素の一例であってもよい。
 (5.3)条件3
 条件3は、拡張範囲の適用に関する情報要素を含むUE CapabilityがUE200から報告されていることである。言い換えると、UE200は、UE200の能力(UE Capability)に基づいて拡張範囲を適用する。
 例えば、拡張範囲の適用に関する情報要素は、UCIの優先度とは異なる優先度の上りリンクチャネル(UL-SCH、PUSCH)に対するUCIの多重にUE200が対応していることを示す情報要素であってもよい。拡張範囲の適用に関する情報要素は、拡張範囲にUE200が対応していることを示す情報要素であってもよい。
 (5.4)条件4
 条件4は、下りリンク制御情報(DCI)のフォーマットが特定フォーマットであることである。言い換えると、UE200は、DCIに基づいて拡張範囲を適用する。特定フォーマットは、DCI Format 0_2であってもよい。
 なお、条件4は、上述した条件2と組み合わされてもよい。例えば、UCI-OnPUSCH-ForDCI-Fromat0-2-r16に含まれる情報要素(scaling ForDCI-Fromat0-2-r16)によってαの拡張値が指定可能であり、かつ、DCIのフォーマットがDCI Format 0_2である場合に、拡張範囲が適用されてもよい。或いは、UCI-OnPUSCH-ForDCI-Fromat0-2-r16に含まれる新たな情報要素(scalingForDCI-Fromat0-2-DifferentPriorities-r17又はalphas)によってαの拡張値が指定可能であり、かつ、DCIのフォーマットがDCI Format 0_2である場合に、拡張範囲が適用されてもよい。
 (5.5)条件5
 条件5は、係数(β)が閾値以上であることであってもよい。言い換えると、UE200は、係数(β)の値に基づいて拡張範囲を適用する。
 例えば、閾値は、既定範囲においてスケーリングファクタ(α)が取り得る値の最小値(”0.5”(0fp5))に応じて定められてもよい。βがαの最小値によって指定されるQ’ACKに相当する閾値以上である場合に、既定範囲よりも小さい値を含む拡張範囲が適用されてもよい。
 (5.6)条件6
 条件6は、上りリンク制御情報(UCI)の優先度が上りリンク共有チャネル(UL-SCH、PUSCH)の優先度が異なることであってもよい。言い換えると、UE200は、UCIの優先度がUL-SCHの優先度と異なる場合に、拡張範囲を適用してもよい。
 例えば、UCIの優先度が低く、UL-SCHの優先度が高い場合に、既定範囲よりも小さい値を含む拡張範囲が適用されてもよい。このようなケースにおいて、PUSCH(UL-SCH)に優先度が高いUCIが既に多重されていてもよい。
 なお、UE200は、UCIの優先度がUL-SCHの優先度と同じ場合に、既定範囲を適用してもよい。但し、UE200は、UCIの優先度がUL-SCHの優先度と同じ場合に、拡張範囲を適用してもよい。UCIの優先度がUL-SCHの優先度と同じであるケースは、UCI及びUL-SCHの双方の優先度が低いケースを含んでもよく、UCI及びUL-SCHの双方の優先度が高いケースを含んでもよい。
 (6)動作例
 以下において、実施形態の動作例について説明する。以下においては、UL-SCH(PUSCH)に対するUCIの多重について主として説明する。
 図16に示すように、ステップS10において、UE200は、UE Capabilityを含むメッセージをNG-RAN20に送信する。UE Capabilityは、拡張範囲の適用に関する情報要素を含んでもよい(上述した条件3)。
 ステップS11において、UE100は、RRCメッセージをNG-RAN20から受信する。RRCメッセージは、拡張範囲を適用するか否かを示す情報要素を含んでもよい(上述した条件1、条件2)。
 ステップS12において、UE200は、PDCCHを介して1以上のDCIをNG-RAN20から受信する。DCIのフォーマットは、DCI Format 0_2であってもよい(上述した条件4)。
 ステップS13において、UE200は、UCIが多重されたUL-SCH(PUSCH)を用いて、上りリンク信号を送信する。このようなケースにおいて、上述した条件1~条件6の少なくともいずれか1つに基づいて、UE200は、スケーリングファクタ(α)が取り得る範囲として拡張範囲を適用してもよい。
 (7)作用・効果
 実施形態では、UE200は、レートマッチングで用いるスケーリングファクタ(α)の取り得る範囲として、既定範囲よりも小さい値を含む拡張範囲(図9~図15)を適用する。このような構成によれば、上りリンク共有チャネル(UL-SCH、PUSCH)に対する上りリンク制御情報(UCI)の多重を適切に実行することができる。特に、このような構成は、UCIの優先度がUL-SCHの優先度と異なるケースにおいて有用である。
 [その他の実施形態]
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 上述した開示では、HARQ-ACKについて主として説明した。しかしながら、上述した開示はこれに限定されるものではない。UL-SCHに多重されるUCIは、CSI Part 1を含んでもよく、CSI Part 2を含んでもよい。
 上述した開示では特に触れていないが、既定範囲は、上りリンク制御情報(UCI)の優先度が上りリンク共有チャネル(UL-SCH、PUSCH)の優先度が同じである場合に用いる範囲であってもよい。このような範囲は第1範囲と呼称されてもよい。上りリンク制御情報(UCI)の優先度が上りリンク共有チャネル(UL-SCH、PUSCH)の優先度が異なる場合に用いる範囲であってもよい。このような範囲は第2範囲と呼称されてもよい。
 上述した開示では特に触れていないが、優先度は以下のように定められてもよい。例えば、HARQ-ACKの優先度は、SRの優先度よりも高くてもよい。URLLC(Ultra Reliable and Low Latency Communications)に関する優先度は、eMBB(enhanced Mobile BroadBand)に関する優先度よりも高くてもよい。
 上述した開示では特に触れていないが、係数(β)が取り得る範囲として、既定範囲よりも小さい値を含む拡張範囲が導入されてもよい。既定範囲は、3GPPのRelease 16で定義される範囲であると考えてもよい。拡張範囲は、3GPPのRelease 17で定義される範囲であると考えてもよい。このようなケースにおいて、拡張範囲の適用に関する情報要素は、係数(β)に関する拡張範囲にUE200が対応していることを示す情報要素であってもよい(上述した条件2)。既存範囲よりも小さい値が係数(β)として用いられる場合に、スケーリングファクタ(α)に関する拡張範囲が適用されなくてもよい。既存範囲よりも小さい値が係数(β)として用いられない場合に、スケーリングファクタ(α)に関する拡張範囲が適用されてもよい。
 上述した実施形態の説明に用いたブロック構成図(図4)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼ばれる。何れも、上述したとおり、実現方法は特に限定されない。
 さらに、上述したUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図17は、当該装置のハードウェア構成の一例を示す図である。図17に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 当該装置の各機能ブロック(図4参照)は、当該コンピュータ装置の何れかのハードウェア要素、又は当該ハードウェア要素の組み合わせによって実現される。
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor:DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 情報、信号(情報等)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、又は追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。
 「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。
 サブフレームはさらに時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
 10 無線通信システム
 20 NG-RAN
 100 gNB
 200 UE
 210 無線信号送受信部
 220 アンプ部
 230 変復調部
 240 制御信号・参照信号処理部
 250 符号化/復号部
 260 データ送受信部
 270 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス

Claims (5)

  1.  上りリンク共有チャネルに上りリンク制御情報を多重する制御部と、
     前記上りリンク制御情報が多重された前記上りリンク共有チャネルを用いて、上りリンク信号を送信する通信部と、を備え、
     前記制御部は、前記上りリンク制御情報のレートマッチングにおいて、前記上りリンク制御情報の送信で使用可能な無線リソースに対してスケーリングファクタを乗算し、
     前記制御部は、前記スケーリングファクタが取り得る範囲として、既定範囲よりも小さい値を含む拡張範囲を適用する、端末。
  2.  前記制御部は、前記上りリンク制御情報の優先度が前記上りリンク共有チャネルの優先度が異なる場合に、前記拡張範囲を適用する、請求項1に記載の端末。
  3.  前記制御部は、無線リソース制御メッセージ又は下りリンク制御情報に基づいて前記拡張範囲を適用する、請求項1又は請求項2に記載の端末。
  4.  前記制御部は、前記端末の能力に基づいて前記拡張範囲を適用する、請求項1乃至請求項3のいずれか1項に記載の端末。
  5.  前記制御部は、前記上りリンク制御情報を構成するビット数に対して乗算される係数の値に基づいて前記拡張範囲を適用する、請求項1乃至請求項4のいずれか1項に記載の端末。
PCT/JP2020/039733 2020-10-22 2020-10-22 端末 WO2022085156A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/039733 WO2022085156A1 (ja) 2020-10-22 2020-10-22 端末

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/039733 WO2022085156A1 (ja) 2020-10-22 2020-10-22 端末

Publications (1)

Publication Number Publication Date
WO2022085156A1 true WO2022085156A1 (ja) 2022-04-28

Family

ID=81289810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039733 WO2022085156A1 (ja) 2020-10-22 2020-10-22 端末

Country Status (1)

Country Link
WO (1) WO2022085156A1 (ja)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "Intra-UE multiplexing and prioritization", 3GPP DRAFT; R1-2005704, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051917679 *
LENOVO, MOTOROLA MOBILITY: "Intra-UE multiplexing enhancement for IIoT/URLLC", 3GPP DRAFT; R1-2005932, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051917825 *
SAMSUNG: "Remaining issues for PUSCH enhancement", 3GPP DRAFT; R1-2003867, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200525 - 20200605, 15 May 2020 (2020-05-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051885636 *

Similar Documents

Publication Publication Date Title
WO2021005663A1 (ja) 端末
WO2022149270A1 (ja) 端末、基地局及び無線通信方法
WO2021214921A1 (ja) 端末
WO2022137559A1 (ja) 端末及び無線通信方法
WO2022149269A1 (ja) 端末、基地局及び無線通信方法
WO2022149267A1 (ja) 無線基地局及び端末
WO2022149268A1 (ja) 無線基地局及び端末
WO2022085156A1 (ja) 端末
WO2022079872A1 (ja) 端末
WO2022102669A1 (ja) 端末
WO2022097724A1 (ja) 端末
WO2022074842A1 (ja) 端末
WO2022102718A1 (ja) 端末
WO2022102714A1 (ja) 端末
WO2022074843A1 (ja) 端末
WO2022102670A1 (ja) 端末
WO2022113232A1 (ja) 端末、基地局及び無線通信方法
WO2021261199A1 (ja) 通信装置
WO2022029972A1 (ja) 端末
WO2022079861A1 (ja) 端末
WO2022085201A1 (ja) 端末
WO2022029973A1 (ja) 端末
WO2022190289A1 (ja) 端末、無線通信システム及び無線通信方法
WO2022153505A1 (ja) 端末及び無線基地局
WO2021199387A1 (ja) 端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP