WO2022135504A1 - 上行定位处理方法及相关设备 - Google Patents

上行定位处理方法及相关设备 Download PDF

Info

Publication number
WO2022135504A1
WO2022135504A1 PCT/CN2021/140733 CN2021140733W WO2022135504A1 WO 2022135504 A1 WO2022135504 A1 WO 2022135504A1 CN 2021140733 W CN2021140733 W CN 2021140733W WO 2022135504 A1 WO2022135504 A1 WO 2022135504A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration information
information
power
reference signal
bwp
Prior art date
Application number
PCT/CN2021/140733
Other languages
English (en)
French (fr)
Inventor
王园园
莫毅韬
庄子荀
邬华明
司晔
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2023538696A priority Critical patent/JP2024501936A/ja
Priority to EP21909499.2A priority patent/EP4271052A1/en
Publication of WO2022135504A1 publication Critical patent/WO2022135504A1/zh
Priority to US18/212,708 priority patent/US20230336308A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0236Assistance data, e.g. base station almanac
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0245Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal according to signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/247TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter sent by another terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/287TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission when the channel is in stand-by
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present application belongs to the field of communication technologies, and in particular, relates to an uplink positioning processing method and related equipment.
  • a network device configures a positioning reference signal for use in the connected state, so that uplink positioning is implemented when the terminal is in a connected state.
  • the terminal When the terminal is in an idle (Idle) state or an inactive (inactive) state, the terminal needs to re-enter the connected state to perform positioning, which will make the positioning power consumption of the terminal relatively large.
  • Embodiments of the present application provide an uplink positioning processing method and related equipment, which can solve the problem of large positioning power consumption of a terminal.
  • an uplink positioning processing method including:
  • the terminal receives the first configuration information sent by the network device
  • the first configuration information includes at least one of power configuration information and spatial relationship configuration information
  • the target information when the first configuration information includes the power configuration information, the target information includes transmit power, and in the first configuration information
  • the configuration information includes spatial relationship configuration information
  • the target information includes spatial relationship
  • the first positioning reference signal is used for the terminal to perform uplink positioning in an idle state or an inactive state.
  • an uplink positioning processing method including:
  • first configuration information sent by the network device where the first configuration information is used to determine target information of the first positioning reference signal
  • the first configuration information includes at least one of power configuration information and spatial relationship configuration information
  • the target information when the first configuration information includes the power configuration information, the target information includes transmit power, and in the first configuration information
  • the configuration information includes spatial relationship configuration information
  • the target information includes spatial relationship
  • the first positioning reference signal is used for the terminal to perform uplink positioning in an idle state or an inactive state.
  • an uplink positioning processing device including:
  • a first receiving module used for the terminal to receive the first configuration information sent by the network device
  • a determining module configured for the terminal to determine the target information of the first positioning reference signal according to the first configuration information
  • the first configuration information includes at least one of power configuration information and spatial relationship configuration information
  • the target information when the first configuration information includes the power configuration information, the target information includes transmit power, and in the first configuration information
  • the configuration information includes spatial relationship configuration information
  • the target information includes spatial relationship
  • the first positioning reference signal is used for the terminal to perform uplink positioning in an idle state or an inactive state.
  • an uplink positioning processing device including:
  • a first sending module used for first configuration information sent by the network device, where the first configuration information is used to determine target information of the first positioning reference signal
  • the first configuration information includes at least one of power configuration information and spatial relationship configuration information
  • the target information when the first configuration information includes the power configuration information, the target information includes transmit power, and in the first configuration information
  • the configuration information includes spatial relationship configuration information
  • the target information includes spatial relationship
  • the first positioning reference signal is used for the terminal to perform uplink positioning in an idle state or an inactive state.
  • a terminal in a fifth aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, when the program or instruction is executed by the processor.
  • a network device comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the processor When executed, the steps of the method as described in the first aspect are implemented.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect, or the The steps of the method of the second aspect.
  • an embodiment of the present application provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network device program or instruction to implement The method described in the second aspect.
  • an embodiment of the present application provides a computer program product, the computer program product is stored in a non-transitory storage medium, and the computer program product is executed by at least one processor to implement the first aspect. method, or implement the method described in the second aspect.
  • an embodiment of the present application provides a communication device, where the communication device is configured to perform the steps of the method according to the first aspect, or to perform the steps of the method according to the second aspect.
  • the terminal receives the first configuration information sent by the network device; the terminal determines the target information of the first positioning reference signal according to the first configuration information; wherein the first configuration information includes power configuration information and at least one item of spatial relationship configuration information, when the first configuration information includes the power configuration information, the target information includes transmit power, and when the first configuration information includes spatial relationship configuration information, the The target information includes a spatial relationship; the first positioning reference signal is used for the terminal to perform uplink positioning in an idle state or an inactive state. In this way, when the terminal is in the idle state or in the inactive state, the uplink positioning reference signal can be sent based on the determined target information, so that the terminal can be prevented from switching to the connected state to send the positioning reference signal. Therefore, the embodiments of the present application reduce the positioning power consumption and time delay of the terminal.
  • FIG. 1 is a structural diagram of a network system to which an embodiment of the present application can be applied;
  • FIG. 3 is a schematic flowchart of a cell handover in an uplink positioning processing method provided by an embodiment of the present application
  • FIG. 5 is a structural diagram of an uplink positioning processing apparatus provided by an embodiment of the present application.
  • FIG. 6 is a structural diagram of another uplink positioning processing apparatus provided by an embodiment of the present application.
  • FIG. 7 is a structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 8 is a structural diagram of a terminal provided by an embodiment of the present application.
  • FIG. 9 is a structural diagram of a network device provided by an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in most of the description below, but these techniques can also be applied to applications other than NR system applications, such as 6th Generation (6th Generation) , 6G) communication system.
  • 6th Generation 6th Generation
  • 6G 6th Generation
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network device 12.
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • PDA Personal Digital Assistant
  • the network device 12 may be a base station or a core network, where the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Transmission and Reception Point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical vocabulary, it should be noted that in the embodiment of this application, only NR is used The base station in the system is taken as an example, but the specific type of the base station is not limited. Core network equipment may be referred to as Location Management Function (
  • the state of the terminal includes three states: Idle state, Inactive state, and connected state.
  • the connected state may also be called a Radio Resource Control connected (Radio Resource Control connected, RRC_connected) state.
  • the UE in the Idle state has no RRC context on the network device, that is to say, the parameters necessary for communication between the network device and the UE do not belong to a specific cell, and the network device does not know whether the UE exists.
  • the UE is assigned a set of tracking area identifiers (TAI list). From the perspective of the core network, the connection between the radio access network (Radio Access Network, RAN) side and the core network has been disconnected. In order to reduce power consumption, the UE is in a dormant state most of the time, so data transmission cannot be performed.
  • a UE in the Idle state may wake up periodically to receive paging messages from network equipment. Mobility can be handled by UE performing cell reselection.
  • the UE and the network device will not maintain uplink synchronization. If you want to transition from the Idle state to the Connected state, you can only establish an RRC context between the UE and the network device through random access (Random Access).
  • the RRC context can be established and all parameters required for communication are known to both entities (UE and network equipment).
  • the UE is in the CN_Connected state.
  • the cell to which the UE belongs is known, and has been configured with a device identifier for the purpose of transmission signaling between the device and the network, that is, a cell radio network temporary identifier (Cell Radio Network Temporary Identifier, C-RNTI).
  • C-RNTI Cell Radio Network Temporary Identifier
  • the mobility can be controlled by the network device, that is, the UE provides neighbor cell measurements to the network device, and the network device commands the terminal to perform handover.
  • Uplink time synchronization may or may not exist. When there is data to be transmitted, uplink synchronization can be established by using random access.
  • RRC_INACTIVE In the RRC_INACTIVE state, the RRC context between the network device and the UE is maintained. From the perspective of the core network, the connection between the RAN side and the core network is in a state. Therefore, the transition from the inactive state to the connected state is fast, and no core network signaling is required. At the same time, the UE is allowed to sleep in an idle state-like manner, and the mobility is handled through cell reselection. Therefore, RRC_INACTIVE can be seen as a mix of idle and connected states.
  • Efficient mobility handling is a critical part of any mobile communication system. For idle and inactive states, mobility is handled by the terminal through cell reselection, while for connected state, mobility is handled by network equipment based on UE measurements.
  • the UE When there are the following five scenarios, the UE will return to the RRC connected state: uplink data to be sent; Non-Access Stratum (NAS) layer signaling process initiation; RAN paging (paging) response; notify the network
  • NAS Non-Access Stratum
  • RAN paging paging
  • the device has left the access network notification area (RAN notification area); the periodic access network notification area update timer (update timer) expires.
  • the uplink positioning reference signal may be a sounding reference signal (Sounding Reference Signal, SRS), wherein the time domain type of the uplink positioning reference signal includes periodic, aperiodic, and semi-static.
  • SRS Sounding Reference Signal
  • the first configuration information may be configured for each SRS resource set, that is, it may be understood as per SRS resource set configuration, and the first configuration information may also be configured for each SRS resource.
  • the path loss reference signal is used to obtain the path loss estimation of the SRS, including the synchronization signal block (Synchronization Signal and PBCH block, SSB) of the serving cell, the SSB of the neighboring cell, CSI-RS, and downlink positioning reference signal (Positioning Reference Signal, PRS) Wait for downlink signals or other SRS.
  • synchronization signal block Synchronization Signal and PBCH block, SSB
  • SSB synchronization Signal and PBCH block
  • SSB SSB of the serving cell
  • SSB of the neighboring cell CSI-RS
  • PRS Downlink positioning reference signal
  • RACH Random Access Channel
  • Non-contention based random access procedure
  • the UE sends a message 1 (Msg1) to the network device.
  • Msg1 message 1
  • the network device After receiving the Msg1, the network device sends a Msg2 message to the UE to the UE, and the message carries uplink grant (uplink grant) information.
  • the UE sends Msg3 according to the uplink grant information in Msg2.
  • the network device After receiving the Msg3, the network device sends the Msg4 (eg, the contention resolution identifier) to the UE.
  • the UE receives Msg4 and judges whether the contention is successfully resolved. If successful, the random access procedure is successful, otherwise, the random access procedure is re-initialized.
  • the network device allocates dedicated RACH resources for the UE to access, the UE sends a Msg1 (random access request) to the network device on the dedicated resource, and the network device sends the UE to the UE after receiving the Msg1. Send a Msg2 message to the UE.
  • the dedicated RACH resources are insufficient, the network device will instruct the UE to initiate contention-based random access (Random Access, RA).
  • 2step RACH includes the following steps:
  • the network device configures the UE with the configuration information of the new two-step random access, for example, including: sending resource information corresponding to MsgA and MsgB;
  • the UE triggers the 2-step RACH process.
  • Send the request information (MsgA) to the network device for example, through a Physical Uplink Shared Channel (PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • the UE may also send physical random access channel (Physical Random Access Channel, PRACH) information to the network device.
  • PRACH Physical Random Access Channel
  • the network device sends confirmation information (MsgB) to the UE. If the UE fails to receive the MsgB, the UE resends the MsgA.
  • MsgB confirmation information
  • the uplink positioning process includes the following steps:
  • LMF Local Management Function
  • TRP TRP exchange configuration information
  • New Radio Positioning Protocol A (New Radio Positioning Protocol A, NRPPa) requests positioning;
  • the base station determines the uplink (UL) SRS configuration
  • NRPPa positioning activation request base station activates SRS transmission; NRPPa positioning activation response;
  • the base station performs UL SRS measurement
  • FIG. 2 is a flowchart of an uplink positioning processing method provided by an embodiment of the present application. The method is executed by a terminal, as shown in FIG. 2, and includes the following steps:
  • Step 201 the terminal receives the first configuration information sent by the network device
  • Step 202 the terminal determines the target information of the first positioning reference signal according to the first configuration information
  • the first configuration information includes at least one of power configuration information and spatial relationship configuration information
  • the target information when the first configuration information includes the power configuration information, the target information includes transmit power, and in the first configuration information
  • the configuration information includes spatial relationship configuration information
  • the target information includes spatial relationship
  • the first positioning reference signal is used for the terminal to perform uplink positioning in an idle state or an inactive state.
  • the above-mentioned first positioning reference signal may be understood as an uplink positioning reference signal, which may specifically include a preamble (Preamble), an SRS, or other newly defined reference signals used for uplink positioning.
  • Preamble a preamble
  • SRS SRS is taken as an example to illustrate.
  • the above-mentioned power configuration information and spatial relationship configuration information may be carried in the same command or the same message, or may be carried in different commands or different messages, which are not further limited herein.
  • the first configuration information may also carry other information other than the power configuration information and the spatial relationship configuration information. Since the target information of the first positioning reference signal is determined through the first configuration information, when the terminal is in an idle state or an inactive state, the first positioning reference signal can be sent according to the target information, thereby realizing that the terminal is in an idle state or an inactive state. Upstream positioning in the active state.
  • the terminal may determine the above target information when it is in a connected state, and may also determine the above target information when it is in an idle state or an inactive state. No further limitation is made here.
  • the terminal may receive the above-mentioned first configuration information when it is in a connected state, and may also receive the above-mentioned first configuration information when it is in an idle state or an inactive state.
  • the terminal receives the first configuration information sent by the network device; the terminal determines the target information of the first positioning reference signal according to the first configuration information; wherein the first configuration information includes power configuration information and at least one item of spatial relationship configuration information, when the first configuration information includes the power configuration information, the target information includes transmit power, and when the first configuration information includes spatial relationship configuration information, the The target information includes a spatial relationship; the first positioning reference signal is used for the terminal to perform uplink positioning in an idle state or an inactive state. In this way, when the terminal is in the idle state or in the inactive state, the uplink positioning reference signal can be sent based on the determined target information, so that the terminal can be prevented from switching to the connected state to send the positioning reference signal. Therefore, the embodiments of the present application reduce the positioning power consumption and time delay of the terminal.
  • the first configuration information includes power configuration information
  • the terminal determining the target information of the first positioning reference signal according to the first configuration information includes:
  • BWP Bandwidth Part
  • the transmit power of the first positioning reference signal is determined according to the power configuration information and the first BWP.
  • the above-mentioned first BWP may be an activated BWP of the terminal when the terminal is in an idle state or an inactive state.
  • the above-mentioned first BWP may be the initial activated BWP of the terminal when the terminal is in an idle state or an inactive state, or may be the activated BWP switched by the terminal to send a positioning reference signal, for example, it may be The terminal switches to activate the BWP when sending the first positioning reference signal. It should be noted that, after switching the activated BWP, the currently activated BWP may be kept unchanged, or the activated BWP may be switched to the initial activated BWP after the first positioning reference signal is sent. No further limitation is made here.
  • the first BWP is at least one of the following BWPs:
  • the dedicated initial BWP is a BWP only used for uplink positioning when the terminal is in an idle state or an inactive state;
  • the above-mentioned initial BWP may be understood as an initial BWP configured in a connected state or a disconnected state of the terminal.
  • the above-mentioned dedicated initial BWP may be referred to as a second initial BWP, which is used to represent an initially activated BWP used in a specific situation when the terminal is in an idle state or an inactive state.
  • the specific situation may be a positioning situation, a low power consumption situation, or the like.
  • the BWP used for positioning can be understood as the BWP used to send the above-mentioned first positioning reference signal, and the BWP used for positioning may be the same as or different from the initial BWP and/or the dedicated initial BWP, which is not further limited here.
  • the method further includes:
  • the second configuration information includes at least one of the first sub-configuration information and the second sub-configuration information used by the terminal in an idle state or an inactive state;
  • the first sub-configuration information is the configuration of the initial BWP
  • the second sub-configuration information is the configuration of the dedicated initial BWP or the BWP used for positioning.
  • the above-mentioned first configuration information and second configuration information may be carried in the same command or the same message, or may be carried in different commands or different messages.
  • the above-mentioned first sub-configuration information and second sub-configuration information may exist at the same time.
  • only one of the first sub-configuration information and the second sub-configuration information is activated, in other words, when the terminal is in an idle state or an inactive state, the first sub-configuration information and the second sub-configuration information are activated. Either of the two sub-configuration information is activated.
  • first sub-configuration information and second sub-configuration information are combined to determine the second configuration information when the terminal is in an idle state or an inactive state.
  • first sub-configuration information and second sub-configuration information are used for different purposes, such as random access, and/or paging both use the first sub-configuration information, and positioning uses the second sub-configuration information,
  • the objectives can be combined arbitrarily, and are not limited here.
  • the first sub-power configuration information and the second sub-power configuration information may belong to one configuration unit or two different configuration units.
  • the terminal may send the above-mentioned first positioning reference signal in the currently activated BWP.
  • the terminal can send the above-mentioned first positioning reference signal on the currently activated BWP according to the corresponding configuration information.
  • the configuration information of the first BWP carries the configuration information of the positioning reference signal.
  • the configuration information of the positioning reference signal carried in the configuration information of the first BWP may include the configuration information of the positioning reference signal used to perform uplink positioning when the terminal is in an idle state or an inactive state, or The configuration information of the positioning reference signal for performing uplink positioning when the terminal is in a connected state may be included.
  • the configuration information of the positioning reference signal when the first BWP is the dedicated initial BWP or the BWP used for positioning, the configuration information of the positioning reference signal includes the third sub-configuration information and the fourth sub-configuration information.
  • the third sub-configuration information is configuration information of a positioning reference signal used for performing uplink positioning when the terminal is in an idle state or an inactive state
  • the fourth sub-configuration information The information is configuration information of a positioning reference signal used to perform uplink positioning when the terminal is in a connected state.
  • the above-mentioned fourth sub-configuration information may include some or all of the configurations in the above-mentioned first configuration information. Further, it may also include or only include other configurations of the positioning reference signal used for performing uplink positioning in the connected state of the terminal in addition to the above-mentioned first configuration information.
  • the configuration information of the first BWP may include a BWP index (ID), BWP common (common) information, and BWP dedicated (dedicated) information, where the configuration information of the positioning reference signal may be carried in the BWP dedicated information. (dedicated) information.
  • the configuration information of the first BWP further includes at least one of a first enabled state identifier and a second enabled state identifier.
  • the first enable state indicator is used to indicate whether it is used for positioning
  • the second enable state indicator is used to indicate whether it is used in an idle state or an inactive state.
  • the first enable state identifier when the first enable state identifier is the first value, it may indicate that the configuration information of the BWP carrying the first enable identifier is used for positioning; when the first enable state identifier is the first value When the value is two, it can indicate that the configuration information of the BWP carrying the first enabling identifier is not used for positioning. In this case, the value of the first enabled state identifier carried in the configuration information of the first BWP is the first value.
  • the configuration information of a certain BWP when the configuration information of a certain BWP does not carry the second enabled state identifier, it indicates that the configuration information of the BWP is used in the connected state; when the configuration information of a certain BWP carries the second enabled state When the enabled state identifier is used, it indicates that the configuration information of the BWP is used in the idle state or the inactive state; or, when the configuration information of a certain BWP carries the second enabled state identifier, and the second enabled state identifier is the third When the value is set, it indicates that the configuration information of the BWP is used in the idle state, inactive state or connected state, or indicates that the configuration information of the BWP is only used in the inactive state or connected state; or, when the configuration information of a BWP carries the first When the second enable state identifier is the fourth value, it indicates that the configuration information of the BWP is used in the connection state.
  • the configuration information of the first BWP may only include the first sub-configuration information or the second sub-configuration information, through the second enabled state Identifies whether the configuration information defining the first BWP can be used in another state.
  • the second enabled state identifier may need to be included in the configuration information of the first BWP. configuration information.
  • the configuration information of the positioning reference signal may only include the third sub-configuration information or the fourth sub-configuration information, which is defined by the second enable state identifier. Whether the configuration information of the positioning reference signal can be used in another state. Similarly, it can also be understood that, if the configuration information of the positioning reference signal only includes the third sub-configuration information or the fourth sub-configuration information, the second enabled state identifier may need to be included in the configuration information of the positioning reference signal. .
  • the configuration information of the first BWP includes at least one of the following: a first enable state identifier, a second enable state identifier, configuration information of the first positioning reference signal, BWP period, BWP activation offset and BWP activation window length;
  • the first enable state indicator is used to indicate whether it is used for positioning
  • the second enable state indicator is used to indicate whether it is used in an idle state or an inactive state.
  • the power configuration information includes at least one of the following:
  • the third enable state identifier is used to indicate whether the associated sub-power configuration information is used in the idle state or inactive state of the terminal, or the third enable state identifier is used to indicate the associated sub-power configuration information. Whether to use for the connected state of the terminal.
  • the above-mentioned first sub-power configuration information may be power control information used by the terminal in a connected state, or may be power control information used by the terminal in an idle state or an inactive state, which is not further limited here.
  • the role of the first sub-power configuration information may be determined by the above-mentioned third enabling state identifier. For example, when the power configuration information includes the first sub-power control information and the third enabling state identifier, Indicates that the third enable state identifier is associated with the first sub-power control information. At this time, if the third enable state identifier is the first value, it can indicate that the first sub-power control information is only used for the terminal in the connected state.
  • the third enable state identifier is a second value, which may indicate that the first sub-power control information is used in an idle state or a non-idle state.
  • the first sub-power control information is used in an idle state or a non-idle state is any of the following:
  • the first sub-power control information is only used in an idle state or a non-idle state
  • the first sub-power control information is used in a connected state, an idle state or a non-idle state.
  • the foregoing first sub-power configuration information may include at least one of the following:
  • the first sub-power configuration parameter may include at least one of expected received power value P0, power adjustment coefficient ⁇ , pre-obtained target power (preamble received target power), maximum transmit power and power increase or decrease coefficient (POWER_RAMPING);
  • the first sub-power path loss reference signal may include at least one of a first SSB, a second SSB, and a PRS, where the first SSB may include serving cell identification information and SSB identification information, and the second SSB may include cell identification information , SSB identification information and SSB configuration information.
  • the above-mentioned power configuration information further includes second sub-power configuration information; wherein, the first sub-power configuration information and the second sub-power configuration information satisfy at least one of the following: for different positioning references The power configuration of the signal; the power configuration of the positioning reference signal when the terminal is in different states.
  • the above-mentioned third enabled state identifier may be included in a certain sub-configuration information.
  • the first sub-power configuration information may be the power configuration of the positioning reference signal 1
  • the second sub-power configuration information may be the power configuration of the positioning reference signal 2.
  • the positioning reference signal 1 and the positioning reference signal 2 It may be the same positioning reference signal, or may be different positioning reference signals.
  • the first sub-power configuration information may only be suitable for the terminal to use in the connected state
  • the above-mentioned second sub-power configuration information may be suitable for the terminal to use in the idle state, inactive state and connected state
  • the above-mentioned second sub-power configuration information Only suitable for terminal use in idle state and inactive state.
  • the foregoing second sub-power configuration information may include at least one of the following:
  • the second sub-power configuration parameter may include at least one of an expected received power value P0, a power adjustment coefficient ⁇ , a pre-obtained target power, a maximum transmit power, and a power increase or decrease coefficient;
  • the second sub-power path loss reference signal may include at least one of a third SSB, a fourth SSB, and a PRS, where the third SSB may include serving cell identification information and SSB identification information, and the fourth SSB may include cell identification information , SSB identification information and SSB configuration information.
  • the first sub-power configuration information is used for a random access procedure, and/or the second sub-power configuration information is used for SRS.
  • the first sub-power configuration information and the second sub-power configuration information satisfy any one of the following:
  • the first sub-power configuration information and the second sub-power configuration information are included in the first information, where the first information is serving cell configuration information or medium access control (Medium Access Control, MAC) information;
  • the first information is serving cell configuration information or medium access control (Medium Access Control, MAC) information;
  • the first sub-power configuration information is included in the second information
  • the second sub-power configuration information is included in the radio resource control RRC release information or the third information
  • the second information is a system information block (System Information Block).
  • SIB System Information Block
  • MAC MAC
  • the third information includes serving cell configuration information, SRS configuration information, physical uplink shared channel PUSCH configuration information or Rach configuration information;
  • the first part of the information of the first object is included in the Rach configuration information, and the second part of the information in the first object other than the first part of the information is included in the second information;
  • the first object includes at least one of the following: the first sub-power configuration information and the second sub-power configuration information.
  • the first sub-power configuration information is used for SRS transmission in a connected state
  • the second sub-power configuration information is used for SRS transmission in an idle state or an inactive state.
  • the first sub-power configuration information is included in fourth information
  • the second sub-power configuration information is included in RRC release information or third information
  • the fourth sub-power configuration information includes serving cell configuration information, SRS configuration information, physical uplink shared channel PUSCH configuration information, Rach configuration information or MAC information
  • the third information includes serving cell configuration information, SRS configuration information, PUSCH configuration information or Rach configuration information.
  • the spatial relationship configuration information includes at least one of the following:
  • the fourth enable state identifier is used to indicate whether the associated subspace relationship configuration information is used in the idle state or the inactive state of the terminal.
  • the above-mentioned first subspace relationship configuration information may be power control information used by the terminal in a connected state, or may be power control information used by the terminal in an idle state or an inactive state, which is not further described here. limited.
  • the role of the first subspace relationship configuration information may be determined by the above-mentioned fourth enabling state identifier, for example, the spatial relationship configuration information includes the first subpower control information and the fourth enabling state identifier. When is , it indicates that the fourth enable state identifier is associated with the first sub-power control information.
  • the fourth enable state identifier is the first value, it can indicate that the first sub-power control information is only used for the terminal in the connected state , if the fourth enable state identifier is the second value, it may indicate that the first sub-power control information is used in an idle state or a non-idle state, specifically, the first sub-power control information is used in an idle state or a non-idle state Can be understood as any of the following:
  • the first sub-power control information is only used in an idle state or a non-idle state
  • the first sub-power control information is used in a connected state, an idle state or a non-idle state.
  • the above-mentioned first sub-power control information may include at least one of the following: SSB, PRS, Channel State Information Reference Signal (CSI-RS) and SRS.
  • the spatial relationship configuration information further includes second subspace relationship configuration information; wherein the first subspace relationship configuration information and the second subspace relationship configuration information satisfy at least one of the following: for different positioning reference signals The spatial relationship configuration of the terminal; the spatial relationship configuration of the positioning reference signal when the terminal is in different states.
  • the above-mentioned fourth enabled state identifier may be included in a certain sub-configuration information.
  • the above-mentioned fourth enabled state identifier may be carried in the configuration information of the second spatial sub-relationship.
  • first subspace relationship configuration information and the second subspace relationship configuration information may belong to one configuration unit or two different configuration units.
  • the first subspace relationship configuration information may be the power configuration of the positioning reference signal 1
  • the second subspace relationship configuration information may be the power configuration of the positioning reference signal 2
  • Signal 2 may be the same positioning reference signal, or may be different positioning reference signals.
  • the first subspace relationship configuration information may only be suitable for the terminal to use in the connected state
  • the above-mentioned second subspace relationship configuration information may be suitable for the terminal to use in the idle state, the inactive state and the connected state, or the above-mentioned second subspace
  • the relationship configuration information is only suitable for the terminal to use in idle state and inactive state.
  • the above-mentioned second sub-power configuration information may include at least one of the following: SSB, PRS, and a fourth enabled state identifier.
  • the first subspace relationship configuration information is used for a random access procedure, and/or the second subspace relationship configuration information is used for SRS.
  • the first subspace relationship configuration information and the second subspace relationship configuration information satisfy any of the following:
  • the first subspace relationship configuration information and the second subspace relationship configuration information are included in fourth information, where the fourth information is serving cell configuration information or media access control MAC information;
  • the first subspace relationship configuration information is included in fifth information
  • the second subspace relationship configuration information is included in radio resource control RRC release information or third information
  • the fifth information is system information block SIB information , MAC information or random access channel Rach configuration information
  • the third information includes serving cell configuration information, SRS configuration information, physical uplink shared channel PUSCH configuration information or Rach configuration information;
  • the first part of the information of the first object is included in the Rach configuration information, and the second part of the information in the first object except the first part of the information is included in the fifth information;
  • the first object includes at least one of the following: the first subspace relationship configuration information and the second subspace relationship configuration information.
  • the first subspace relationship configuration information is used for SRS transmission in a connected state
  • the second subspace relationship configuration information is used for SRS transmission in an idle state or an inactive state.
  • the first subspace relationship configuration information is included in sixth information
  • the second subspace relationship configuration information is included in RRC release information or SRS configuration information
  • the sixth information includes the third information, physical uplink shared channel PUSCH configuration information or Rach configuration information
  • the third information includes serving cell configuration information, SRS configuration information, PUSCH configuration information or Rach configuration information.
  • At least one of the power configuration information and the spatial relationship configuration information is included in RRC release information or third information, where the third information includes serving cell configuration information, SRS Configuration information, PUSCH configuration information or Rach configuration information.
  • the transmit power of the first positioning reference signal on the first BWP satisfies any one of the following:
  • the third transmission power is determined according to the target transmission power and/or the power increment; the target transmission power is the first transmission power, the second transmission power or the predetermined transmission power.
  • the above-mentioned power increment may be stipulated by a protocol or configured by a network device, wherein when the target transmit powers are different, the corresponding power increments may be the same or different.
  • the first transmit power satisfies any one of the following:
  • qs represents the first positioning reference signal
  • qd represents the path loss signal
  • b represents the first BWP used to transmit the first positioning reference signal
  • c represents the serving cell or the camping cell
  • f represents the carrier
  • i represents the i-th transmission
  • h represents the power adjustment state
  • represents the subcarrier configuration
  • represents the power adjustment coefficient
  • PL represents the path loss value
  • P0 represents the expected received power value
  • PCMAX represents the configured maximum transmission of the terminal.
  • Power where M represents the bandwidth of the first positioning reference signal, and represents the number of times of adjustment.
  • first transmit power may also satisfy any one of the following:
  • the foregoing second transmit power satisfies any one of the following:
  • qs represents the first positioning reference signal
  • qd represents the path loss signal
  • b represents the first BWP used to transmit the first positioning reference signal
  • c represents the serving cell or the camping cell
  • f represents the carrier
  • i represents the ith transmission
  • represents the subcarrier configuration
  • represents the power adjustment coefficient
  • PL represents the path loss value
  • PCMAX represents the configured maximum transmit power of the terminal
  • M represents the bandwidth of the first positioning reference signal , which represents the target received power.
  • the above-mentioned second transmit power may also satisfy any one of the following:
  • the target received power is determined according to at least one of a second expected received power, a power increase or decrease coefficient, and the counter.
  • the network device determines the target received power according to at least one of the second expected received power, the power increase/decrease coefficient, and the counter, and the target received power is used to determine the first received power.
  • represents the second expected received power
  • represents the power increase or decrease coefficient
  • K represents the value of the counter
  • represents the increment
  • can be configured by the network configuration or agreement or be 0.
  • the method further includes:
  • the path loss value is determined according to a target reference signal; wherein, the target reference signal is a reference signal indicated by the first configuration information or a preset reference signal.
  • the above-mentioned synchronization signal block SSB that satisfies the preset condition includes any one of the following:
  • the received power is greater than the preset value of the SSB
  • the method when the received power of the target reference signal is less than a preset value or the target reference signal is not detected, the method further includes:
  • the first positioning reference signal is sent according to the maximum transmit power of the terminal.
  • the determination of the power control method for the first positioning reference signal may be determined based on at least one of the following:
  • Configuration information for example, determined according to the configured power configuration information and power control type
  • Activation status such as whether to activate a specific or preset BWP
  • the first preset condition for example, the power is greater than a certain threshold, the first power is used
  • the second preset condition for example, the received power of the path loss signal is greater than the second threshold, and the reference signal received power (Reference Signal Received Power, RSRP) is greater than the third threshold;
  • RSRP Reference Signal Received Power
  • the determination of the power control method of the first positioning reference signal is at least one of the following:
  • a window is started. If no ack is received in the window, the power is increased, otherwise, the power remains unchanged.
  • the power increase may be the expected received power in any power control, or the transmit power is increased by a certain amount of power according to a certain transmit power.
  • the above-mentioned first positioning reference signal may be sent in a beam scanning manner. That is, the spatial relationship of the N first positioning reference signals is determined according to the number of transmit beams of the terminal and/or a first preset rule, wherein the first preset rule indicates the first positioning reference signal Correspondence between signals and transmit beams.
  • the first preset rule indicates the first positioning reference signal Correspondence between signals and transmit beams.
  • At least one of the first configuration information and the second configuration information is carried by a second object, and the second object includes any one of the following: RRC release message, RRC suspension release message, paging message, message 2, message 4, message B, downlink small data transmission, preset SIB information for positioning.
  • the method further includes:
  • the terminal sends request information to the network device through a third object, where the request information is used to request the network device to send at least one of the first configuration information and the second configuration information:
  • the third object includes any one of the following: preamble, message 3, message A, uplink small data transmission or uplink resources.
  • the request information includes at least one of the following: identification information of the terminal, a temporary identification of the cell wireless network, an identification of the first positioning reference signal, a preset temporary identification of the wireless network, and Serving cell ID. It should be noted that, if the terminal is handed over, the above request information may further include the identity of the original serving cell.
  • the identifier of the first positioning reference signal may be understood as an index or a sequence index of the first positioning reference signal.
  • the power and spatial relationship configuration information of the first BWP and the first positioning reference signal are regionally configured, for example, the UE receives the regional cell list, RNA or tracking area code ( Tracking Area Code, TAC), wherein, the positioning reference signal configuration under a cell list, RNA or TAC is all the same or partially the same.
  • the regional cell list RNA or tracking area code ( Tracking Area Code, TAC)
  • TAC Tracking Area Code
  • the collision rule for the first positioning reference signal includes at least one of the following:
  • the periodic first positioning reference signal/first BWP collides with uplink small data transmission (Small Data Transmission, SDT)
  • the periodic first positioning reference signal is discarded/the first BWP is not activated
  • the semi-static first positioning reference signal/first BWP collides with the preamble, the semi-static first positioning reference signal/first BWP is not activated;
  • Judgment is made according to the priorities of the first positioning reference signal and other signals/channels/data, and signals/channels/data with lower priorities are discarded.
  • collision rules may further include control rules of power and spatial relationship.
  • the power control rule may include at least one of the following:
  • the first positioning reference signal may be reduced or not transmitted Signal
  • the collision signal/channel may be reduced or not transmitted .
  • the control rule for the spatial relationship may include at least one of the following:
  • the first positioning reference signal or the collision signal is sent according to the priority of the spatial relationship. /channel;
  • the first positioning reference signal and the first positioning reference signal are sent according to the spatial relationship of the first positioning reference signal and collision signal/channel;
  • the first positioning reference signal and the collision signal/channel are sent according to the spatial relationship of the collision signal/channel signal/channel;
  • the first positioning reference signal and the collision signal/channel are sent according to the target spatial relationship;
  • the target spatial relationship is determined based on the priority of the spatial relationship.
  • the first positioning reference signal and the collision signal/channel may be represented as the first positioning reference signal and the collision signal, or the first positioning reference signal and the collision channel.
  • non-overlapping transmission resources can be understood as the transmission REs of the first positioning reference signal and the collision signal/channel are different, and it can also be understood as the transmission RE of the first positioning reference signal and the collision signal/channel.
  • the resources in the radio frequency domain are different. But there is no restriction on whether the resources are the same symbols in the time domain, or there are overlapping symbols.
  • Embodiment 1 Send the SRS on the initial (initial) BWP.
  • the terminal still sends the SRS on the activated BWP in the inactive/idle state, that is, the SRS is sent on the initial BWP.
  • the network device may send indication information of the first target configuration, where the indication information includes at least one of the following:
  • Cell indication information such as serving cell ID, cell ID and carrier information
  • the first SRS indication information The first SRS indication information.
  • the configuration information of the initial uplink BWP may include BWP ID, BWP public information and BWP dedicated information.
  • the BWP dedicated information carries the first target configuration and/or the second target configuration of the uplink positioning reference signal, and is dedicated configuration information used by the UE entering an idle/inactive state.
  • the above-mentioned first SRS indication information may include identification information of the first SRS, for example, may include an SRS resource ID and/or an SRS resource set ID.
  • the above-mentioned second target configuration may include at least one of the following:
  • the second SRS identification information may include an SRS resource ID and/or an SRS resource set ID;
  • the second SRS can be used for the indication information of the inactive state
  • the configuration information of the second SRS may include power configuration information and/or spatial relationship configuration information.
  • the power configuration information may include power configuration parameters and/or power path loss reference signals
  • the spatial relationship configuration information may include spatial relationship reference signals.
  • the above-mentioned first SRS is an SRS configured in a connected state, and the first SRS is instructed to be used in an inactive state through the indication information of the first target configuration.
  • the above-mentioned second SRS is an SRS configured for release, and is only used in an inactive state.
  • the indication information of the first target configuration or the second target configuration is carried in RRC release information
  • the indication information of the first target configuration or the second target configuration is carried in RRC inactive configuration information
  • the RRC deactivation configuration information is included in RRC release information.
  • Embodiment 2 The SRS is sent on the dedicated initial BWP.
  • the configuration information of the Dedicated Initial uplink BWP is different from the configuration information of the Initial uplink BWP.
  • the configuration information of the Dedicated Initial uplink BWP may include:
  • BWP dedicated information where the BWP dedicated information carries the first SRS configuration information and/or the second SRS configuration information.
  • the terminal includes the following behavior:
  • the BWP for sending the SRS is different from the initial BWP, and the difference includes one of the following: different time-frequency resources and different Dedicated information.
  • the initial BWP does not include SRS configuration information, or the SRS configuration information is different, such as power configuration information.
  • the time interval between sending is greater than the threshold 1;
  • the BWP for sending the SRS is different from the BWP for sending the preamble/MsgA, and the time interval between sending is less than a threshold value of 1, and the SRS is not expected to be sent;
  • the time interval between sending the SRS and receiving the paging is greater than the threshold 2;
  • the BWP resource for sending the SRS is different from the initial downlink BWP, the time interval between sending the SRS and receiving the paging is less than the threshold 2, and the SRS is not expected to be sent;
  • the Dedicated Initial uplink BWP is the activated BWP; optionally, at other times, the initial BWP is the activated BWP; optionally, in some embodiments, the Dedicated Initial uplink BWP is based on the SRS.
  • Period is periodically activated; optionally, in some embodiments, the Dedicated Initial uplink BWP is periodically deactivated according to the period of the SRS; optionally, in some embodiments, the Dedicated Initial uplink BWP activation time It is related to the transmission time of the SRS.
  • the Dedicated Initial uplink BWP is configured by the per serving cell.
  • the Dedicated Initial uplink BWP of the serving cell of the same base station has a corresponding relationship, for example, the time-frequency resources are the same and/or the SRS configuration information is the same.
  • the configuration information of the Dedicated Initial uplink BWP is included in the RRC release information, or included in the serving cell configuration information.
  • Embodiment 3 The SRS is sent on a BWP (positioning BWP) used for positioning.
  • BWP positioning BWP
  • the difference between the third embodiment and the first embodiment is that the SRS is sent on the positioning BWP in the inactive state, so it includes the following different information:
  • the positioning BWP is only used to send the positioning signal or positioning information
  • the positioning BWP is only used to send the positioning signal or positioning information inactive
  • the configuration information of positioning BWP is the configuration information of positioning BWP.
  • the configuration information of positioning BWP includes:
  • BWP dedicated information carrying the first SRS configuration information and/or the second SRS configuration information
  • the behavior of the terminal is similar to that of the second embodiment.
  • the dedicated initial BWP in the second embodiment may be replaced by the Positioning BWP, which will not be repeated here.
  • the positioning BWP is configured per serving cell.
  • the positioning BWP of the serving cell of the same base station has a corresponding relationship, in other words, it may be decoupled from the serving cell.
  • the time-frequency resources are the same and/or the SRS configuration information is the same.
  • Embodiment 4 When the residing cell changes, the configuration of the uplink positioning reference signal is updated, as shown in FIG. 2 , including the following process.
  • Step 301 the network device carries the configuration information of the uplink positioning reference signal through the RRC release message or the RRC state suspension message;
  • Step 302 when the camping cell handover is performed, a preamble may be sent by the terminal;
  • Step 303 the terminal receives a random access response (Random Access Response, RAR) sent by the network device;
  • RAR Random Access Response
  • Step 304 the terminal sends an RRC resume request (RRC resume request) to the network device;
  • Step 305 the terminal receives the competition result (Contention Resolution);
  • Step 306 after the terminal successfully accesses the new cell, the network device sends the RRC release message or the RRC state suspension message again, and carries the first target configuration of the uplink positioning reference signal and the RRC state suspension message in the RRC release message or RRC state suspension message. / or second target configuration.
  • Step 307 when the terminal is in an idle state or an inactive state, send the SRS based on the new first target configuration and/or the second target configuration.
  • FIG. 4 is a flowchart of another uplink positioning processing method provided by an embodiment of the present application. The method is executed by a network device. As shown in FIG. 4, the method includes the following steps:
  • Step 401 the first configuration information sent by the network device, the first configuration information is used to determine the target information of the first positioning reference signal;
  • the first configuration information includes at least one of power configuration information and spatial relationship configuration information
  • the target information when the first configuration information includes the power configuration information, the target information includes transmit power, and in the first configuration information
  • the configuration information includes spatial relationship configuration information
  • the target information includes spatial relationship
  • the first positioning reference signal is used for the terminal to perform uplink positioning in an idle state or an inactive state.
  • the method further includes:
  • the first positioning reference signal sent by the terminal based on the target information is received on the first partial bandwidth BWP.
  • the first BWP is an activated BWP of the terminal when the terminal is in an idle state or an inactive state.
  • the first BWP is at least one of the following BWPs:
  • the dedicated initial BWP is a BWP only used for uplink positioning when the terminal is in an idle state or an inactive state;
  • the method further includes:
  • the second configuration information includes at least one of the first sub-configuration information and the second sub-configuration information used by the terminal in an idle state or an inactive state;
  • the first sub-configuration information is the configuration of the initial BWP
  • the second sub-configuration information is the configuration of the dedicated initial BWP or the BWP used for positioning.
  • any one of the first sub-configuration information and the second sub-configuration information is activated.
  • the configuration information of the first BWP carries the configuration information of the positioning reference signal.
  • the configuration information of the positioning reference signal includes at least one of third sub-configuration information and fourth sub-configuration information Item; wherein, the third sub-configuration information is the configuration information of the positioning reference signal used for performing uplink positioning when the terminal is in an idle state or an inactive state, and the fourth sub-configuration information is used for Configuration information of the positioning reference signal for the terminal to perform uplink positioning in the connected state.
  • the configuration information of the first BWP further includes at least one of a first enabled state identifier and a second enabled state identifier, the first enabled state identifier.
  • An enable state indicator is used to indicate whether it is used for positioning
  • the second enable state indicator is used to indicate whether it is used in an idle state or an inactive state.
  • the configuration information of the first BWP includes at least one of the following: a first enable state identifier, a second enable state identifier, configuration information of the first positioning reference signal, BWP period, BWP activation offset, and BWP activate window length;
  • the first enable state indicator is used to indicate whether it is used for positioning
  • the second enable state indicator is used to indicate whether it is used in an idle state or an inactive state.
  • the power configuration information includes at least one of the following:
  • the third enabled state identifier is used to indicate whether the associated sub-power configuration information is used in an idle state or an inactive state of the terminal.
  • the power configuration information further includes second sub-power configuration information; wherein, the first sub-power configuration information and the second sub-power configuration information satisfy at least one of the following: power configurations for different positioning reference signals; Power configuration for the positioning reference signal when the terminal is in different states.
  • the first sub-power configuration information is used for a random access procedure, and/or the second sub-power configuration information is used for SRS.
  • the first sub-power configuration information and the second sub-power configuration information satisfy any one of the following:
  • the first sub-power configuration information and the second sub-power configuration information are included in first information, where the first information is serving cell configuration information or medium access control MAC information;
  • the first sub-power configuration information is included in the second information
  • the second sub-power configuration information is included in the radio resource control RRC release information or the third information
  • the second information is the system information block SIB information, MAC information or random access channel Rach configuration information
  • the third information includes serving cell configuration information, SRS configuration information, physical uplink shared channel PUSCH configuration information or Rach configuration information;
  • the first part of the information of the first object is included in the Rach configuration information, and the second part of the information in the first object other than the first part of the information is included in the second information;
  • the first object includes at least one of the following: the first sub-power configuration information and the second sub-power configuration information.
  • the first sub-power configuration information is used for SRS transmission in a connected state
  • the second sub-power configuration information is used for SRS transmission in an idle state or an inactive state.
  • the first sub-power configuration information is included in fourth information
  • the second sub-power configuration information is included in RRC release information or third information
  • the fourth information includes serving cell configuration information , SRS configuration information, physical uplink shared channel PUSCH configuration information, Rach configuration information or MAC information
  • the third information includes serving cell configuration information, SRS configuration information, PUSCH configuration information or Rach configuration information.
  • the spatial relationship configuration information includes at least one of the following:
  • the fourth enable state identifier is used to indicate whether the associated subspace relationship configuration information is used in the idle state or the inactive state of the terminal.
  • the spatial relationship configuration information further includes second subspace relationship configuration information; wherein the first subspace relationship configuration information and the second subspace relationship configuration information satisfy at least one of the following: for different positioning reference signals The spatial relationship configuration of the terminal; the spatial relationship configuration of the positioning reference signal when the terminal is in different states.
  • the first subspace relationship configuration information is used for a random access procedure, and/or the second subspace relationship configuration information is used for SRS.
  • the first subspace relationship configuration information and the second subspace relationship configuration information satisfy any of the following:
  • the first subspace relationship configuration information and the second subspace relationship configuration information are included in fourth information, where the fourth information is serving cell configuration information or media access control MAC information;
  • the first subspace relationship configuration information is included in fifth information
  • the second subspace relationship configuration information is included in radio resource control RRC release information or third information
  • the fifth information is system information block SIB information , MAC information or random access channel Rach configuration information
  • the third information includes serving cell configuration information, SRS configuration information, physical uplink shared channel PUSCH configuration information or Rach configuration information;
  • the first part of the information of the first object is included in the Rach configuration information, and the second part of the information in the first object except the first part of the information is included in the fifth information;
  • the first object includes at least one of the following: the first subspace relationship configuration information and the second subspace relationship configuration information.
  • the first subspace relationship configuration information is used for SRS transmission in a connected state
  • the second subspace relationship configuration information is used for SRS transmission in an idle state or an inactive state.
  • the first subspace relationship configuration information is included in sixth information
  • the second subspace relationship configuration information is included in RRC release information or SRS configuration information
  • the sixth information includes the third information, physical uplink shared channel PUSCH configuration information or Rach configuration information
  • the third information includes serving cell configuration information, SRS configuration information, PUSCH configuration information or Rach configuration information.
  • At least one of the power configuration information and the spatial relationship configuration information is included in RRC release information or third information, where the third information includes serving cell configuration information, SRS configuration information, and PUSCH configuration information or Rach configuration information.
  • the transmit power of the first positioning reference signal on the first BWP satisfies any one of the following:
  • the third transmission power is determined according to the target transmission power and/or the power increment; the target transmission power is the first transmission power, the second transmission power or the predetermined transmission power.
  • the first transmit power satisfies any of the following:
  • q s represents the first positioning reference signal
  • q d represents the path loss signal
  • b represents the first BWP used to transmit the first positioning reference signal
  • c represents the serving cell or the camping cell
  • f represents the Carrier
  • i represents the ith transmission
  • h represents the power adjustment state
  • represents the subcarrier configuration
  • represents the power adjustment coefficient
  • PL represents the path loss value
  • P0 represents the expected received power value
  • PCMAX represents the configured The maximum transmit power, where M represents the bandwidth of the first positioning reference signal, and represents the number of times of adjustment.
  • the second transmit power satisfies any one of the following:
  • qs represents the first positioning reference signal
  • qd represents the path loss signal
  • b represents the first BWP used to transmit the first positioning reference signal
  • c represents the serving cell or the camping cell
  • f represents the carrier
  • i represents the ith transmission
  • represents the subcarrier configuration
  • represents the power adjustment coefficient
  • PL represents the path loss value
  • PCMAX represents the configured maximum transmit power of the terminal
  • M represents the bandwidth of the first positioning reference signal , which represents the target received power.
  • the target received power is determined according to at least one of a second expected received power, a power increase or decrease coefficient, and the counter.
  • the spatial relationship of the N first positioning reference signals is determined according to the number of transmission beams of the terminal and/or a first preset rule, wherein the first preset rule indicates the first positioning reference Correspondence between signals and transmit beams.
  • At least one of the first configuration information and the second configuration information is carried by a second object, and the second object includes any one of the following: an RRC release message, an RRC suspend release message, a paging message, Message 2, Message 4, Message B, downlink small data transmission, and preset SIB information for positioning.
  • the method further includes:
  • the network device receives the request information sent by the terminal through the third object, and the request information is used to request the network device to send at least one of the first configuration information and the second configuration information:
  • the third object includes any one of the following: preamble, message 3, message A, uplink small data transmission or uplink resources.
  • the request information includes at least one of the following: identification information of the terminal, a temporary identification of a cell wireless network, an identification of the first positioning reference signal, a temporary identification of a preset wireless network, and an identification of a serving cell.
  • this embodiment is an implementation of the network device corresponding to the embodiment shown in FIG. 2 .
  • the executing subject may be an uplink positioning processing method apparatus, or a control module in the uplink positioning processing apparatus for executing the uplink positioning processing method.
  • the uplink positioning processing method performed by the uplink positioning processing apparatus is taken as an example to describe the uplink positioning processing apparatus provided by the embodiments of the present application.
  • FIG. 5 is a structural diagram of an uplink positioning processing apparatus provided by an embodiment of the present application. As shown in FIG. 5, the uplink positioning processing apparatus 500 includes:
  • the first receiving module 501 is used for the terminal to receive the first configuration information sent by the network device;
  • a determining module 502 configured for the terminal to determine target information of a first positioning reference signal according to the first configuration information
  • the first configuration information includes at least one of power configuration information and spatial relationship configuration information
  • the target information when the first configuration information includes the power configuration information, the target information includes transmit power, and in the first configuration information
  • the configuration information includes spatial relationship configuration information
  • the target information includes spatial relationship
  • the first positioning reference signal is used for the terminal to perform uplink positioning in an idle state or an inactive state.
  • the first configuration information includes power configuration information
  • the determining module 502 includes:
  • a first determining unit configured to determine a first partial bandwidth BWP for sending the first positioning reference signal
  • a second determining unit configured to determine the transmit power of the first positioning reference signal according to the power configuration information and the first BWP.
  • the first BWP is an activated BWP of the terminal when the terminal is in an idle state or an inactive state.
  • the first BWP is at least one of the following BWPs:
  • the dedicated initial BWP is a BWP only used for uplink positioning when the terminal is in an idle state or an inactive state;
  • the first receiving module 501 is further configured to receive second configuration information sent by the network device;
  • the second configuration information includes at least one item of the first sub-configuration information and the second sub-configuration information used by the terminal in an idle state or an inactive state; the first sub-configuration information is the configuration of the initial BWP , the second sub-configuration information is the configuration of the dedicated initial BWP or the BWP used for positioning.
  • any one of the first sub-configuration information and the second sub-configuration information is activated.
  • the configuration information of the first BWP carries the configuration information of the positioning reference signal.
  • the configuration information of the positioning reference signal includes at least one of third sub-configuration information and fourth sub-configuration information Item; wherein, the third sub-configuration information is the configuration information of the positioning reference signal used for performing uplink positioning when the terminal is in an idle state or an inactive state, and the fourth sub-configuration information is used for Configuration information of the positioning reference signal for the terminal to perform uplink positioning in the connected state.
  • the configuration information of the first BWP further includes at least one of a first enabled state identifier and a second enabled state identifier, the first enabled state identifier.
  • An enable state indicator is used to indicate whether it is used for positioning
  • the second enable state indicator is used to indicate whether it is used in an idle state or an inactive state.
  • the configuration information of the first BWP includes at least one of the following: a first enable state identifier, a second enable state identifier, configuration information of the first positioning reference signal, BWP period, BWP activation offset, and BWP activate window length;
  • the first enable state indicator is used to indicate whether it is used for positioning
  • the second enable state indicator is used to indicate whether it is used in an idle state or an inactive state.
  • the power configuration information includes at least one of the following:
  • the third enabled state identifier is used to indicate whether the associated sub-power configuration information is used in an idle state or an inactive state of the terminal.
  • the power configuration information further includes second sub-power configuration information; wherein, the first sub-power configuration information and the second sub-power configuration information satisfy at least one of the following: power configurations for different positioning reference signals; Power configuration for the positioning reference signal when the terminal is in different states.
  • the first sub-power configuration information is used for a random access procedure, and/or the second sub-power configuration information is used for SRS.
  • the first sub-power configuration information and the second sub-power configuration information satisfy any one of the following:
  • the first sub-power configuration information and the second sub-power configuration information are included in first information, where the first information is serving cell configuration information or medium access control MAC information;
  • the first sub-power configuration information is included in the second information
  • the second sub-power configuration information is included in the radio resource control RRC release information or the third information
  • the second information is system information block SIB information, MAC information or random access channel Rach configuration information
  • the third information includes serving cell configuration information, SRS configuration information, physical uplink shared channel PUSCH configuration information or Rach configuration information;
  • the first part of the information of the first object is included in the Rach configuration information, and the second part of the information in the first object except the first part of the information is included in the second information;
  • the first object includes at least one of the following: the first sub-power configuration information and the second sub-power configuration information.
  • the first sub-power configuration information is used for SRS transmission in a connected state
  • the second sub-power configuration information is used for SRS transmission in an idle state or an inactive state.
  • the first sub-power configuration information is included in fourth information
  • the second sub-power configuration information is included in RRC release information or third information
  • the fourth information includes serving cell configuration information , SRS configuration information, physical uplink shared channel PUSCH configuration information, Rach configuration information or MAC information
  • the third information includes serving cell configuration information, SRS configuration information, PUSCH configuration information or Rach configuration information.
  • the spatial relationship configuration information includes at least one of the following:
  • the fourth enable state identifier is used to indicate whether the associated subspace relationship configuration information is used in the idle state or the inactive state of the terminal.
  • the spatial relationship configuration information further includes second subspace relationship configuration information; wherein the first subspace relationship configuration information and the second subspace relationship configuration information satisfy at least one of the following: for different positioning reference signals The spatial relationship configuration of the terminal; the spatial relationship configuration of the positioning reference signal when the terminal is in different states.
  • the first subspace relationship configuration information is used for a random access procedure, and/or the second subspace relationship configuration information is used for SRS.
  • the first subspace relationship configuration information and the second subspace relationship configuration information satisfy any of the following:
  • the first subspace relationship configuration information and the second subspace relationship configuration information are included in fourth information, where the fourth information is serving cell configuration information or media access control MAC information;
  • the first subspace relationship configuration information is included in fifth information
  • the second subspace relationship configuration information is included in radio resource control RRC release information or third information
  • the fifth information is system information block SIB information , MAC information or random access channel Rach configuration information
  • the third information includes serving cell configuration information, SRS configuration information, physical uplink shared channel PUSCH configuration information or Rach configuration information;
  • the first part of the information of the first object is included in the Rach configuration information, and the second part of the information in the first object except the first part of the information is included in the fifth information;
  • the first object includes at least one of the following: the first subspace relationship configuration information and the second subspace relationship configuration information.
  • the first subspace relationship configuration information is used for SRS transmission in a connected state
  • the second subspace relationship configuration information is used for SRS transmission in an idle state or an inactive state.
  • the first subspace relationship configuration information is included in sixth information
  • the second subspace relationship configuration information is included in RRC release information or SRS configuration information
  • the sixth information includes the third information, physical uplink shared channel PUSCH configuration information or Rach configuration information
  • the third information includes serving cell configuration information, SRS configuration information, PUSCH configuration information or Rach configuration information.
  • At least one of the power configuration information and the spatial relationship configuration information is included in RRC release information or third information, where the third information includes serving cell configuration information, SRS configuration information, and PUSCH configuration information or Rach configuration information.
  • the transmit power of the first positioning reference signal on the first BWP satisfies any one of the following:
  • the third transmission power is determined according to the target transmission power and/or the power increment; the target transmission power is the first transmission power, the second transmission power or the predetermined transmission power.
  • the first transmit power satisfies any of the following:
  • qs represents the first positioning reference signal
  • qd represents the path loss signal
  • b represents the first BWP used to transmit the first positioning reference signal
  • c represents the serving cell or the camping cell
  • f represents the carrier
  • i represents the i-th transmission
  • h represents the power adjustment state
  • represents the subcarrier configuration
  • represents the power adjustment coefficient
  • PL represents the path loss value
  • P0 represents the expected received power value
  • PCMAX represents the configured maximum transmission of the terminal.
  • Power where M represents the bandwidth of the first positioning reference signal, and represents the number of times of adjustment.
  • the second transmit power satisfies any one of the following:
  • qs represents the first positioning reference signal
  • qd represents the path loss signal
  • b represents the first BWP used to transmit the first positioning reference signal
  • c represents the serving cell or the camping cell
  • f represents the carrier
  • i represents the ith transmission
  • represents the subcarrier configuration
  • represents the power adjustment coefficient
  • PL represents the path loss value
  • PCMAX represents the configured maximum transmit power of the terminal
  • M represents the bandwidth of the first positioning reference signal , which represents the target received power.
  • the target received power is determined according to at least one of a second expected received power, a power increase or decrease coefficient, and the counter.
  • the determining module 502 is further configured to determine the path loss value according to a target reference signal, wherein the target reference signal is a reference signal indicated by the first configuration information or a preset reference signal.
  • the preset reference signal is any one of the following: a SIB, a synchronization signal block SSB that satisfies a preset condition, and a default SSB.
  • the synchronization signal block SSB that meets the preset condition includes any of the following:
  • the received power is greater than the preset value of the SSB
  • the uplink positioning processing apparatus 500 further includes:
  • the second sending module is configured to stop sending the first positioning reference signal; or, send the first positioning reference signal according to the maximum sending power of the terminal.
  • the spatial relationship of the N first positioning reference signals is determined according to the number of transmission beams of the terminal and/or a first preset rule, wherein the first preset rule indicates the first positioning reference Correspondence between signals and transmit beams.
  • At least one of the first configuration information and the second configuration information is carried by a second object, and the second object includes any one of the following: an RRC release message, an RRC suspend release message, a paging message, Message 2, Message 4, Message B, downlink small data transmission, and preset SIB information for positioning.
  • the uplink positioning processing apparatus 500 further includes:
  • the second sending module is used for the terminal to send request information to the network device through a third object, where the request information is used to request the network device to send at least one of the first configuration information and the second configuration information:
  • the third object includes any one of the following: preamble, message 3, message A, uplink small data transmission or uplink resources.
  • the request information includes at least one of the following: identification information of the terminal, a temporary identification of a cell wireless network, an identification of the first positioning reference signal, a temporary identification of a preset wireless network, and an identification of a serving cell.
  • the uplink positioning processing apparatus 500 provided in this embodiment of the present application can implement each process implemented by the terminal in the method embodiment of FIG. 2 , and to avoid repetition, details are not described here.
  • FIG. 6 is a structural diagram of an uplink positioning processing apparatus provided by an embodiment of the present application. As shown in FIG. 6, the uplink positioning processing apparatus 600 includes:
  • the first configuration information includes at least one of power configuration information and spatial relationship configuration information
  • the target information when the first configuration information includes the power configuration information, the target information includes transmit power, and in the first configuration information
  • the configuration information includes spatial relationship configuration information
  • the target information includes spatial relationship
  • the first positioning reference signal is used for the terminal to perform uplink positioning in an idle state or an inactive state.
  • the uplink positioning processing apparatus 600 further includes:
  • the second receiving module is configured to receive, on the first partial bandwidth BWP, the first positioning reference signal sent by the terminal based on the target information.
  • the first BWP is an activated BWP of the terminal when the terminal is in an idle state or an inactive state.
  • the first BWP is at least one of the following BWPs:
  • the dedicated initial BWP is a BWP only used for uplink positioning when the terminal is in an idle state or an inactive state;
  • the first sending module 601 is further configured to send, by the network device, second configuration information
  • the second configuration information includes at least one of the first sub-configuration information and the second sub-configuration information used by the terminal in an idle state or an inactive state;
  • the first sub-configuration information is the configuration of the initial BWP
  • the second sub-configuration information is the configuration of the dedicated initial BWP or the BWP used for positioning.
  • any one of the first sub-configuration information and the second sub-configuration information is activated.
  • the configuration information of the first BWP carries the configuration information of the positioning reference signal.
  • the configuration information of the positioning reference signal includes at least one of third sub-configuration information and fourth sub-configuration information Item; wherein, the third sub-configuration information is the configuration information of the positioning reference signal used for performing uplink positioning when the terminal is in an idle state or an inactive state, and the fourth sub-configuration information is used for Configuration information of the positioning reference signal for the terminal to perform uplink positioning in the connected state.
  • the configuration information of the first BWP further includes at least one of a first enabled state identifier and a second enabled state identifier, the first enabled state identifier.
  • An enable state indicator is used to indicate whether it is used for positioning
  • the second enable state indicator is used to indicate whether it is used in an idle state or an inactive state.
  • the configuration information of the first BWP includes at least one of the following: a first enable state identifier, a second enable state identifier, configuration information of the first positioning reference signal, BWP period, BWP activation offset, and BWP activate window length;
  • the first enable state indicator is used to indicate whether it is used for positioning
  • the second enable state indicator is used to indicate whether it is used in an idle state or an inactive state.
  • the power configuration information includes at least one of the following:
  • the third enabled state identifier is used to indicate whether the associated sub-power configuration information is used in an idle state or an inactive state of the terminal.
  • the power configuration information further includes second sub-power configuration information; wherein, the first sub-power configuration information and the second sub-power configuration information satisfy at least one of the following: power configurations for different positioning reference signals; Power configuration for the positioning reference signal when the terminal is in different states.
  • the first sub-power configuration information is used for a random access procedure, and/or the second sub-power configuration information is used for SRS.
  • the first sub-power configuration information and the second sub-power configuration information satisfy any one of the following:
  • the first sub-power configuration information and the second sub-power configuration information are included in first information, where the first information is serving cell configuration information or medium access control MAC information;
  • the first sub-power configuration information is included in the second information
  • the second sub-power configuration information is included in the radio resource control RRC release information or the third information
  • the second information is the system information block SIB information, MAC information or random access channel Rach configuration information
  • the third information includes serving cell configuration information, SRS configuration information, physical uplink shared channel PUSCH configuration information or Rach configuration information;
  • the first part of the information of the first object is included in the Rach configuration information, and the second part of the information in the first object other than the first part of the information is included in the second information;
  • the first object includes at least one of the following: the first sub-power configuration information and the second sub-power configuration information.
  • the first sub-power configuration information is used for SRS transmission in a connected state
  • the second sub-power configuration information is used for SRS transmission in an idle state or an inactive state.
  • the first sub-power configuration information is included in fourth information
  • the second sub-power configuration information is included in RRC release information or third information
  • the fourth information includes serving cell configuration information , SRS configuration information, physical uplink shared channel PUSCH configuration information, Rach configuration information or MAC information
  • the third information includes serving cell configuration information, SRS configuration information, PUSCH configuration information or Rach configuration information.
  • the spatial relationship configuration information includes at least one of the following:
  • the fourth enable state identifier is used to indicate whether the associated subspace relationship configuration information is used in the idle state or the inactive state of the terminal.
  • the spatial relationship configuration information further includes second subspace relationship configuration information; wherein the first subspace relationship configuration information and the second subspace relationship configuration information satisfy at least one of the following: for different positioning reference signals The spatial relationship configuration of the terminal; the spatial relationship configuration of the positioning reference signal when the terminal is in different states.
  • the first subspace relationship configuration information is used for a random access procedure, and/or the second subspace relationship configuration information is used for SRS.
  • the first subspace relationship configuration information and the second subspace relationship configuration information satisfy any of the following:
  • the first subspace relationship configuration information and the second subspace relationship configuration information are included in fourth information, where the fourth information is serving cell configuration information or media access control MAC information;
  • the first subspace relationship configuration information is included in fifth information
  • the second subspace relationship configuration information is included in radio resource control RRC release information or third information
  • the fifth information is system information block SIB information , MAC information or random access channel Rach configuration information
  • the third information includes serving cell configuration information, SRS configuration information, physical uplink shared channel PUSCH configuration information or Rach configuration information;
  • the first part of the information of the first object is included in the Rach configuration information, and the second part of the information in the first object except the first part of the information is included in the fifth information;
  • the first object includes at least one of the following: the first subspace relationship configuration information and the second subspace relationship configuration information.
  • the first subspace relationship configuration information is used for SRS transmission in a connected state
  • the second subspace relationship configuration information is used for SRS transmission in an idle state or an inactive state.
  • the first subspace relationship configuration information is included in sixth information
  • the second subspace relationship configuration information is included in RRC release information or SRS configuration information
  • the sixth information includes third information , physical uplink shared channel PUSCH configuration information or Rach configuration information
  • the third information includes serving cell configuration information, SRS configuration information, PUSCH configuration information or Rach configuration information.
  • At least one of the power configuration information and the spatial relationship configuration information is included in RRC release information or third information, where the third information includes serving cell configuration information, SRS configuration information, and PUSCH configuration information or Rach configuration information.
  • the transmit power of the first positioning reference signal on the first BWP satisfies any one of the following:
  • the third transmission power is determined according to the target transmission power and/or the power increment; the target transmission power is the first transmission power, the second transmission power or the predetermined transmission power.
  • the first transmit power satisfies any of the following:
  • qs represents the first positioning reference signal
  • qd represents the path loss signal
  • b represents the first BWP used to transmit the first positioning reference signal
  • c represents the serving cell or the camping cell
  • f represents the carrier
  • i represents the i-th transmission
  • h represents the power adjustment state
  • represents the subcarrier configuration
  • represents the power adjustment coefficient
  • PL represents the path loss value
  • P0 represents the expected received power value
  • PCMAX represents the configured maximum transmission of the terminal.
  • Power where M represents the bandwidth of the first positioning reference signal, and represents the number of times of adjustment.
  • the second transmit power satisfies any one of the following:
  • qs represents the first positioning reference signal
  • qd represents the path loss signal
  • b represents the first BWP used to transmit the first positioning reference signal
  • c represents the serving cell or the camping cell
  • f represents the carrier
  • i represents the ith transmission
  • represents the subcarrier configuration
  • represents the power adjustment coefficient
  • PL represents the path loss value
  • PCMAX represents the configured maximum transmit power of the terminal
  • M represents the bandwidth of the first positioning reference signal , which represents the target received power.
  • the target received power is determined according to at least one of a second expected received power, a power increase or decrease coefficient, and the counter.
  • the spatial relationship of the N first positioning reference signals is determined according to the number of transmission beams of the terminal and/or a first preset rule, wherein the first preset rule indicates the first positioning reference Correspondence between signals and transmit beams.
  • At least one of the first configuration information and the second configuration information is carried by a second object, and the second object includes any one of the following: an RRC release message, an RRC suspend release message, a paging message, Message 2, Message 4, Message B, downlink small data transmission, and preset SIB information for positioning.
  • the uplink positioning processing apparatus 600 further includes:
  • the second receiving module is used for the network device to send request information through a third object receiving terminal, where the request information is used to request the network device to send at least one of the first configuration information and the second configuration information:
  • the third object includes any one of the following: preamble, message 3, message A, uplink small data transmission or uplink resources.
  • the request information includes at least one of the following: identification information of the terminal, a temporary identification of a cell wireless network, an identification of the first positioning reference signal, a temporary identification of a preset wireless network, and an identification of a serving cell.
  • the uplink positioning processing apparatus 600 provided in this embodiment of the present application can implement each process implemented by the network device in the method embodiment of FIG. 4 , and to avoid repetition, details are not repeated here.
  • the uplink positioning processing apparatus in this embodiment of the present application may be an apparatus, or may be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the uplink positioning processing apparatus in this embodiment of the present application may be an apparatus having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the uplink positioning processing apparatus provided by the embodiments of the present application can implement the various processes implemented by the method embodiments in FIG. 2 to FIG. 4 , and achieve the same technical effect. To avoid repetition, details are not described here.
  • an embodiment of the present application further provides a communication device 700, including a processor 701, a memory 702, a program or instruction stored in the memory 702 and executable on the processor 701, When the program or instruction is executed by the processor 701, each process of the above-mentioned embodiments of the uplink positioning processing method is implemented, and the same technical effect can be achieved.
  • FIG. 8 is a schematic diagram of a hardware structure of a terminal implementing various embodiments of the present application.
  • the terminal 800 includes but is not limited to: a radio frequency unit 801, a network module 802, an audio output unit 803, an input unit 804, a sensor 805, a display unit 806, a user input unit 807, an interface unit 808, a memory 809, and a processor 810.
  • the terminal 800 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 810 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 8 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 804 may include a graphics processor (Graphics Processing Unit, GPU) 8041 and a microphone 8042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 806 may include a display panel 8061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 807 includes a touch panel 8071 and other input devices 8072 .
  • the touch panel 8071 is also called a touch screen.
  • the touch panel 8071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 8072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described herein again.
  • the radio frequency unit 801 after receiving the downlink data from the network device, processes it to the processor 810; in addition, it sends the uplink data to the network device.
  • the radio frequency unit 801 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 809 may be used to store software programs or instructions as well as various data.
  • the memory 809 may mainly include a storage program or instruction area and a storage data area, wherein the storage program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 809 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 810 may include one or more processing units; optionally, the processor 810 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 810.
  • the radio frequency unit 801 is used for the terminal to receive the first configuration information sent by the network device;
  • a processor 810 configured for the terminal to determine target information of the first positioning reference signal according to the first configuration information
  • the first configuration information includes at least one of power configuration information and spatial relationship configuration information
  • the target information when the first configuration information includes the power configuration information, the target information includes transmit power, and in the first configuration information
  • the configuration information includes spatial relationship configuration information
  • the target information includes spatial relationship
  • the first positioning reference signal is used for the terminal to perform uplink positioning in an idle state or an inactive state.
  • the above-mentioned processor 810 and the radio frequency unit 801 can implement each process implemented by the terminal in the method embodiment of FIG. 2 , which is not repeated here to avoid repetition.
  • the network device 900 includes: an antenna 901 , a radio frequency device 902 , and a baseband device 903 .
  • the antenna 901 is connected to the radio frequency device 902 .
  • the radio frequency device 902 receives information through the antenna 901, and sends the received information to the baseband device 903 for processing.
  • the baseband device 903 processes the information to be sent and sends it to the radio frequency device 902
  • the radio frequency device 902 processes the received information and sends it out through the antenna 901 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 903 , and the method performed by the network device in the above embodiments may be implemented in the baseband apparatus 903 .
  • the baseband apparatus 903 includes a processor 904 and a memory 905 .
  • the baseband device 903 may include, for example, at least one baseband board on which multiple chips are arranged. As shown in FIG. 9 , one of the chips is, for example, the processor 904 and is connected to the memory 905 to call the program in the memory 905 to execute The network devices shown in the above method embodiments operate.
  • the baseband device 903 may further include a network interface 906 for exchanging information with the radio frequency device 902, the interface being, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network device in the embodiment of the present application further includes: an instruction or program stored in the memory 905 and executable on the processor 904, and the processor 904 invokes the instruction or program in the memory 905 to execute each module shown in FIG. 6 to execute method, and achieve the same technical effect, in order to avoid repetition, it is not repeated here.
  • the embodiments of the present application further provide a readable storage medium, the readable storage medium may be non-volatile or volatile, and a program or an instruction is stored on the readable storage medium, and the program or instruction is stored in the readable storage medium.
  • a readable storage medium may be non-volatile or volatile
  • a program or an instruction is stored on the readable storage medium, and the program or instruction is stored in the readable storage medium.
  • the processor is the processor in the electronic device described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a network device program or instruction to implement the above uplink positioning processing method
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is configured to run a network device program or instruction to implement the above uplink positioning processing method
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • An embodiment of the present application further provides a computer program product, wherein the computer program product is stored in a non-transitory readable storage medium, and the computer program product is executed by at least one processor to implement the above uplink positioning process
  • the computer program product is stored in a non-transitory readable storage medium, and the computer program product is executed by at least one processor to implement the above uplink positioning process
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a base station, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Abstract

本申请公开了一种上行定位处理方法及相关设备。该方法包括:终端接收网络设备发送的第一配置信息;所述终端根据所述第一配置信息确定第一定位参考信号的目标信息;其中,所述第一配置信息包括功率配置信息和空间关系配置信息中的至少一项,在所述第一配置信息包括所述功率配置信息时,所述目标信息包括发送功率,在所述第一配置信息包括空间关系配置信息时,所述目标信息包括空间关系;所述第一定位参考信号用于所述终端在空闲态或非激活态下进行上行定位。

Description

上行定位处理方法及相关设备
相关申请的交叉引用
本申请主张在2020年12月23日在中国提交的中国专利申请No.202011546194.7的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,尤其涉及一种上行定位处理方法及相关设备。
背景技术
随着通信技术的发展,定位功能越来越完善。目前,通常在终端处于连接态下,由网络设备配置用于在连接态的定位参考信号,从而在终端处于连接态下,实现上行定位。当终端处于空闲(Idle)态或者非激活(inactive)态时,终端需要重新进入连接态才能执行定位,这样将会使得终端的定位功耗较大。
发明内容
本申请实施例提供一种上行定位处理方法及相关设备,能够解决终端的定位功耗较大的问题。
第一方面,提供了一种上行定位处理方法,包括:
终端接收网络设备发送的第一配置信息;
所述终端根据所述第一配置信息确定第一定位参考信号的目标信息;
其中,所述第一配置信息包括功率配置信息和空间关系配置信息中的至少一项,在所述第一配置信息包括所述功率配置信息时,所述目标信息包括发送功率,在所述第一配置信息包括空间关系配置信息时,所述目标信息包括空间关系;所述第一定位参考信号用于所述终端在空闲态或非激活态下进行上行定位。
第二方面,提供了一种上行定位处理方法,包括:
网络设备发送的第一配置信息,所述第一配置信息用于确定第一定位参 考信号的目标信息;
其中,所述第一配置信息包括功率配置信息和空间关系配置信息中的至少一项,在所述第一配置信息包括所述功率配置信息时,所述目标信息包括发送功率,在所述第一配置信息包括空间关系配置信息时,所述目标信息包括空间关系;所述第一定位参考信号用于终端在空闲态或非激活态下进行上行定位。
第三方面,提供了一种上行定位处理装置,包括:
第一接收模块,用于终端接收网络设备发送的第一配置信息;
确定模块,用于所述终端根据所述第一配置信息确定第一定位参考信号的目标信息;
其中,所述第一配置信息包括功率配置信息和空间关系配置信息中的至少一项,在所述第一配置信息包括所述功率配置信息时,所述目标信息包括发送功率,在所述第一配置信息包括空间关系配置信息时,所述目标信息包括空间关系;所述第一定位参考信号用于所述终端在空闲态或非激活态下进行上行定位。
第四方面,提供了一种上行定位处理装置,包括:
第一发送模块,用于网络设备发送的第一配置信息,所述第一配置信息用于确定第一定位参考信号的目标信息;
其中,所述第一配置信息包括功率配置信息和空间关系配置信息中的至少一项,在所述第一配置信息包括所述功率配置信息时,所述目标信息包括发送功率,在所述第一配置信息包括空间关系配置信息时,所述目标信息包括空间关系;所述第一定位参考信号用于终端在空闲态或非激活态下进行上行定位。
第五方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种网络设备,该网络设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第七方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第八方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络设备程序或指令,实现如第二方面所述的方法。
第九方面,本申请实施例提供了一种计算机程序产品,所述计算机程序产品存储在非瞬态的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如第一方面所述的方法,或实现如第二方面所述的方法。
第十方面,本申请实施例提供了一种通信设备,所述通信设备被配置为执行如第一方面所述的方法的步骤,或执行如第二方面所述的方法的步骤。
本申请实施例中,通过终端接收网络设备发送的第一配置信息;所述终端根据所述第一配置信息确定第一定位参考信号的目标信息;其中,所述第一配置信息包括功率配置信息和空间关系配置信息中的至少一项,在所述第一配置信息包括所述功率配置信息时,所述目标信息包括发送功率,在所述第一配置信息包括空间关系配置信息时,所述目标信息包括空间关系;所述第一定位参考信号用于所述终端在空闲态或非激活态下进行上行定位。这样,在终端处于空闲态或非激活态时,可以基于确定的目标信息发送上行定位参考信号,从而可以避免终端切换到连接态进行定位参考信号的发送。因此本申请实施例降低了终端的定位功耗和时延。
附图说明
图1是本申请实施例可应用的一种网络系统的结构图;
图2是本申请实施例提供的一种上行定位处理方法的流程图;
图3是本申请实施例提供的一种上行定位处理方法中的小区切换流程示意图;
图4是本申请实施例提供的另一种上行定位处理方法的流程图;
图5是本申请实施例提供的一种上行定位处理装置的结构图;
图6是本申请实施例提供的另一种上行定位处理装置的结构图;
图7是本申请实施例提供的一种通信设备的结构图;
图8是本申请实施例提供的一种终端的结构图;
图9是本申请实施例提供的一种网络设备的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系 统包括终端11和网络设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。核心网设备可被称为位置管理功能(Location Management Function,LMF)、增强服务移动定位中心(Enhance Serving Mobile Location Center,E-SMLC)、位置服务器或所述领域中其他某个合适的术语。
为了方便理解,以下对本申请实施例涉及的一些内容进行说明:
一、终端的状态包括Idle态、Inactive态和连接(connected)态三种状态,其中,connected态也可以称之为无线资源控制连接(Radio Resource Control connected,RRC_connected)态。
处于Idle态的UE,在网络设备上没有RRC上下文,也就是说网络设备与UE之间通信所必须的参数不属于某个特定的小区,网络设备也不知道是否存在该UE。UE被分配了一组跟踪区域标识(Tracking area identifier,TAI list)。从核心网的角度来看,无线接入网络(Radio Access Network,RAN)侧与核心网的连接已断开。为了减少耗电,UE在大部分时间处于休眠状态,因此无法进行数据传输。在下行链路中,处于Idle态的UE可周期性地唤醒以从网络设备接收寻呼消息。移动性(Mobility)可由UE进行小区重选来处 理。在Idle态,UE与网络设备不会保持上行同步,如果要从Idle态转入Connected态,只能通过随机接入(Random Access),在UE与网络设备建立RRC上下文。
在RRC_Connected态,可建立RRC上下文,且通信所需的所有参数对于两个实体(UE与网络设备)都是已知的。从核心网的角度来看,UE处于CN_Connected状态。UE所属的小区是已知的,并且已经配置了用于设备和网络之间的传输信令目的设备标识,即小区无线网络临时标识符(Cell Radio Network Temporary Identifier,C-RNTI)。在连接态,移动性(Mobility)可由网络设备控制,即UE向网络设备提供邻小区测量,网络设备命令终端进行切换(handover)。上行时间同步可能存在也可能不存在,当有数据要传输时,可通过使用随机接入去建立上行同步。
在RRC_INACTIVE态,保持了网络设备与UE的RRC上下文。从核心网的角度来看,RAN侧与核心网的连接处于状态。因此从非激活态转换到连接态的速度很快,且不需要核心网信令。同时,允许UE以空闲态类似的方式休眠,并且通过小区重选来处理移动性。因此,RRC_INACTIVE可以被视为空闲和连接状态的混合。
因此,对于不同状态之间的一个重要区别是所涉及的移动性机制(mobility)。高效的移动性处理是任何移动通信系统的关键部分。对于空闲和非激活状态,移动性由终端通过小区重选来处理,而对于连接态,移动性由网络设备基于UE测量来处理。
当存在以下5种场景时,UE将恢复到RRC connected状态:上行有数据待发;非接入(Non-Access Stratum,NAS)层有信令流程发起;RAN寻呼(paging)响应;通知网络设备已经离开接入网通知区域(RAN notification area);周期性接入网通知区域更新定时器(update timer)超时。
二、Connected态的上行定位参考信号的功率控制和空间关系。
该上行定位参考信号可以为探测参考信号(Sounding Reference Signal,SRS),其中上行定位参考信号的时域类型包括周期、非周期和半静态。可选地,可以针对每一SRS资源集配置第一配置信息,即可以理解为per SRS resource set配置,也可以针对每一SRS资源配置第一配置信息。
路损参考信号用于获取SRS的路损估计,包括服务小区的同步信号块(Synchronization Signal and PBCH block,SSB)、邻区的SSB、CSI-RS、下行定位参考信号(Positioning Reference Signal,PRS)等下行信号或者其它SRS。
三、随机接入过程。
四步随机接入可以称之为四步随机接入信道(4 step Random Access Channel,RACH),具体包括:
基于竞争的随机接入过程;
基于非竞争的随机接入过程。
对于“基于竞争的随机接入过程”,UE发送消息1(Msg1)给网络设备。网络设备接收到Msg1后给UE发送Msg2消息给UE,该消息中携带了上行授权(uplink grant)信息。UE根据Msg2中的上行授权信息,发送Msg3。网络设备接收到Msg3后发送Msg4(如,竞争解决标识)给UE。UE接收到Msg4判断是否竞争解决成功,如果成功则随机接入过程成功过,否则重新发起随机接入过程。
对于“基于非竞争的随机接入过程”,网络设备为UE分配专用的RACH资源进行接入,UE在专用资源上发送Msg1(随机接入请求)给网络设备,网络设备接收到Msg1后给UE发送Msg2消息给UE。但当专用的RACH资源不足时,网络设备会指示UE发起基于竞争的随机接入(Random Access,RA)。
2step RACH包括以下步骤:
1、网络设备给UE配置新两步随机接入的配置信息,如包括:MsgA和MsgB对应的发送资源信息;
2、UE触发2-step RACH过程。将请求信息(MsgA)发送给网络设备,如通过物理上行共享信道(Physical Uplink Shared Channel,PUSCH)发送。同时UE也可能会发送物理随机接入信道(Physical Random Access Channel,PRACH)信息给网络设备。
3、网络设备发送确认信息(MsgB)给UE。如果UE接收MsgB失败,则UE重新发送MsgA。
四、上行定位过程。
上行定位过程包括以下步骤:
1、本地管理功能(Location Management Function,LMF)和TRP交换配置信息;
2、LMF和UE交互能力信息;
3、新空口定位协议A(New Radio Positioning Protocol A,NRPPa)请求定位;
4、基站决定上行(Uplink,UL)SRS配置;
5、NRPPa定位响应;
6、NRPPa定位激活请求;基站激活SRS传输;NRPPa定位激活响应;
7、NRPPa测量请求;
8、基站进行UL SRS测量;
9、NRPPa测量响应。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的上行定位处理方法进行详细地说明。
请参见图2,图2是本申请实施例提供的一种上行定位处理方法的流程图,该方法由终端执行,如图2所示,包括以下步骤:
步骤201,终端接收网络设备发送的第一配置信息;
步骤202,所述终端根据所述第一配置信息确定第一定位参考信号的目标信息;
其中,所述第一配置信息包括功率配置信息和空间关系配置信息中的至少一项,在所述第一配置信息包括所述功率配置信息时,所述目标信息包括发送功率,在所述第一配置信息包括空间关系配置信息时,所述目标信息包括空间关系;所述第一定位参考信号用于所述终端在空闲态或非激活态下进行上行定位。
本申请实施例中,上述第一定位参考信号可以理解为上行定位参考信号,具体可以包括前导码(Preamble)、SRS或者新定义的其他用于上行定位的参考信号,以下各实施例中可以以SRS为例进行说明。
应理解,上述功率配置信息和空间关系配置信息可以携带在同一命令或 者同一消息中,也可以携带在不同命令或不同消息中,在此不做进一步地限定。还应理解,第一配置信息还可以携带除所述功率配置信息和空间关系配置信息以外的其它信息。由于通过第一配置信息,确定了第一定位参考信号的目标信息,从而在终端处于空闲态或非激活态时,可以根据目标信息发送第一定位参考信号,进而可以实现终端在空闲态或非激活态的上行定位。
需要说明的是,终端可以在处于连接态时,确定上述目标信息,也可以在处于空闲态或者非激活态的时,确定上述目标信息。在此不做进一步的限定。
需要说明的是,终端可以在处于连接态时,接收上述第一配置信息,也可以在处于空闲态或者非激活态的时,接收上述第一配置信息。
本申请实施例中,通过终端接收网络设备发送的第一配置信息;所述终端根据所述第一配置信息确定第一定位参考信号的目标信息;其中,所述第一配置信息包括功率配置信息和空间关系配置信息中的至少一项,在所述第一配置信息包括所述功率配置信息时,所述目标信息包括发送功率,在所述第一配置信息包括空间关系配置信息时,所述目标信息包括空间关系;所述第一定位参考信号用于所述终端在空闲态或非激活态下进行上行定位。这样,在终端处于空闲态或非激活态时,可以基于确定的目标信息发送上行定位参考信号,从而可以避免终端切换到连接态进行定位参考信号的发送。因此本申请实施例降低了终端的定位功耗和时延。
可选地,在一些实施例中,所述第一配置信息包括功率配置信息,所述终端根据所述第一配置信息确定第一定位参考信号的目标信息包括:
确定用于发送所述第一定位参考信号的第一部分带宽(Bandwidth Part,BWP);
根据所述功率配置信息和所述第一BWP确定所述第一定位参考信号的发送功率。
可选地,上述第一BWP可以为所述终端处于空闲态或者非激活态时,所述终端的激活BWP。
在本申请实施例中,上述第一BWP可以为所述终端处于空闲态或者非激活态时,所述终端的初始激活BWP,或者可以为终端为了发送定位参考信号 切换的激活BWP,例如,可以为在发送第一定位参考信号时,该终端切换激活BWP。需要说明的是,在切换激活BWP后,可以保持当前激活BWP不变,也可以在发送完第一定位参考信号后,将激活BWP切换到初始激活BWP。在此不做进一步的限定。
可选地,在一些实施例中,所述第一BWP为以下至少一项BWP:
初始BWP;
专用初始BWP,所述专用初始BWP为仅用于所述终端处于空闲态或非激活态时,进行上行定位的BWP;
用于定位的BWP。
本申请实施例中,上述初始BWP可以理解为终端处于连接态下或非连接态配置的初始BWP。上述专用初始BWP可以称之为第二初始BWP,用于表示在终端处于空闲态或者非激活态下在特定情况下使用的初始激活的BWP。所述特定情况可以是定位情况、低功耗情况等。当上述初始BWP和第二初始BWP相同时,可以理解为终端在不同状态下使用的初始激活的BWP相同。用于定位的BWP,可以理解为用于发送上述第一定位参考信号的BWP,该用于定位的BWP可以与初始BWP和/专用初始BWP相同,也可以不同,在此不做进一步的限定。
可选地,在一些实施例中,所述方法还包括:
接收所述网络设备发送的第二配置信息;
其中,所述第二配置信息包括所述终端在空闲态或者非激活态使用第一子配置信息和第二子配置信息的至少一项;所述第一子配置信息为所述初始BWP的配置,所述第二子配置信息为所述专用初始BWP或用于定位的BWP的配置。
本申请实施例中,上述第一配置信息和第二配置信息可以携带在相同命令或者相同消息中,也可以携带在不同命令或者不同消息中。在终端处于空闲态或非激活态时,可以同时存在上述第一子配置信息和第二子配置信息。在一个实施例中,上述第一子配置信息和第二子配置信息仅一者被激活,换句话说所述终端在空闲态或者非激活态时,所述第一子配置信息和所述第二子配置信息中的任一项被激活。在另一个实施例中,上述第一子配置信息和 第二子配置信息结合起来确定终端处于空闲态或非激活态时的第二配置信息。在又一个实施例中,上述第一子配置信息和第二子配置信息用于不同目的,如随机接入,和/或寻呼都使用第一子配置信息,定位使用第二子配置信息,所述目的可以任意结合,此处不做限定。
需要说明的是,在本申请实施例中,上述第一子功率配置信息和所述第二子功率配置信息可以属于一个配置单元或者两个不同的配置单元。
应理解,某一子配置信息被激活时,该子配置信息对应的BWP则被激活,终端可以在当前激活的BWP发送上述第一定位参考信号。
还可以理解为,某一BWP被激活,则对应的配置信息被激活,终端可以在当前激活的BWP上按照对应的配置信息发送上述第一定位参考信号。
可选地,在一些实施例中,上述第一BWP的配置信息携带定位参考信号的配置信息。
在本申请实施例中,上述第一BWP的配置信息携带的定位参考信号的配置信息可以包括用于在所述终端在空闲态或非激活态下进行上行定位的定位参考信号的配置信息,也可以包括在所述终端在连接态下进行上行定位的定位参考信号的配置信息。换句话说,在本申请实施例中,所述在所述第一BWP为所述专用初始BWP或者用于定位的BWP时,所述定位参考信号的配置信息包括第三子配置信息和第四子配置信息中的至少一项;其中,所述第三子配置信息为用于在所述终端在空闲态或非激活态下进行上行定位的定位参考信号的配置信息,所述第四子配置信息为用于在所述终端在连接态下进行上行定位的定位参考信号的配置信息。
需要说明的是,在本申请实施例中,上述第四子配置信息可以包括上述第一配置信息中的部分或者全部配置。进一步的,还可以包括或者仅包括除上述第一配置信息之外的用于在所述终端在连接态下进行上行定位的定位参考信号的其他配置。
本申请实施例中,上述第一BWP的配置信息可以包括BWP索引(ID)、BWP公共(common)信息和BWP专用(dedicated)信息,其中,上述定位参考信号的配置信息可以携带在上述BWP专用(dedicated)信息中。
可选地,在一些实施例中,当所述第一BWP为用于定位的BWP时,所 述第一BWP的配置信息还包括第一使能状态标识和第二使能状态标识中的至少一项,所述第一使能状态标识用于指示是否为用于定位,所述第二使能状态指示用于指示是否用于空闲态或者非激活态。
本申请实施例中,可选地,当第一使能状态标识为第一值时,可以表示携带该第一使能标识的BWP的配置信息用于定位;当第一使能状态标识为第二值时,可以表示携带该第一使能标识的BWP的配置信息不用于定位。此时上述第一BWP的配置信息中携带的第一使能状态标识的值为第一值。
可选地,在一些实施例中,当某一BWP的配置信息未携带该第二使能状态标识时,表示该BWP的配置信息用于连接态;当某一BWP的配置信息携带该第二使能状态标识时,表示该BWP的配置信息用于空闲态或者非激活态;或者,当某一BWP的配置信息携带该第二使能状态标识,且该第二使能状态标识为第三值时,表示该BWP的配置信息用于空闲态、非激活态或连接态、或者表示该BWP的配置信息仅用于非激活态或连接态;或者,当某一BWP的配置信息携带该第二使能状态标识,且该第二使能状态标识为第四值时,表示该BWP的配置信息用于连接态。
值得注意的是,在一个实施例中,当存在第二使能状态标识时,所述第一BWP的配置信息可能只包含第一子配置信息或第二子配置信息,通过第二使能状态标识限定所述第一BWP的配置信息是否可以用于另一状态。同理,也可以理解为,若所述第一BWP的配置信息只包含第一子配置信息或第二子配置信息,则第二使能状态标识可能需要包括于所述第一BWP的配置信息的配置信息。
同理,在一个实施例中,当存在第二使能状态标识时,所述定位参考信号的配置信息可能只包含第三子配置信息或第四子配置信息,通过第二使能状态标识限定所述定位参考信号的配置信息是否可以用于另一状态。同理,也可以理解为,若所述定位参考信号的配置信息只包含第三子配置信息或第四子配置信息,则第二使能状态标识可能需要包括于所述定位参考信号的配置信息。可选地,在一些实施例中,所述第一BWP的配置信息包括以下至少一项:第一使能状态标识、第二使能状态标识、第一定位参考信号的配置信息、BWP周期、BWP激活偏移和BWP激活窗长;
其中,所述第一使能状态标识用于指示是否为用于定位,所述第二使能状态指示用于指示是否用于空闲态或者非激活态。
可选地,在一些实施例中,所述功率配置信息包括以下至少一项:
第一子功率配置信息;
第三使能状态标识;
其中,所述第三使能状态标识用于指示关联的子功率配置信息是否用于所述终端的空闲态或非激活态或者所述第三使能状态标识用于指示关联的子功率配置信息是否用于所述终端的连接态。
本申请实施例中,上述第一子功率配置信息可以为终端处于连接态使用的功率功控信息,也可以为终端处于空闲态或者非激活态使用的功率控制信息,在此不做进一步的限定。可选地,在一些实施例中,该第一子功率配置信息的作用可以由上述第三使能状态标识确定,例如功率配置信息包括第一子功率控制信息和第三使能状态标识时,表示第三使能状态标识与该第一子功率控制信息关联,此时,若第三使能状态标识为第一值,可以表示该第一子功率控制信息仅用于终端处于连接态,若该第三使能状态标识为第二值,可以表示该第一子功率控制信息用于空闲态或者非空闲态,具体地,该第一子功率控制信息用于空闲态或者非空闲态可以理解为以下任一项:
第一子功率控制信息仅用于空闲态或者非空闲态;
第一子功率控制信息用于连接态、空闲态或者非空闲态。
本申请实施例中,上述第一子功率配置信息可以包括以下至少之一:
第一子功率配置参数,例如可以包括预期接收功率值P0,功率调整系数α、预先获得的目标功率(preamble received target power)、最大发送功率和功率增减系数(POWER_RAMPING)中的至少一项;
第一子功率路损参考信号,例如可以包括第一SSB、第二SSB和PRS中的至少一项,其中第一SSB可以包括服务小区识别信息和SSB识别信息,第二SSB可以包括小区识别信息、SSB识别信息和SSB配置信息。
可选地,在一些实施例中,上述功率配置信息还包括第二子功率配置信息;其中,所述第一子功率配置信息和第二子功率配置信息满足以下至少一项:为不同定位参考信号的功率配置;为所述终端处于不同状态下定位参考 信号的功率配置。
应理解,本申请实施例中,上述第三使能状态标识可以包含于某一子配置信息内。
在一些实施例中,上述第一子功率配置信息可以为定位参考信号1的功率配置,上述第二子功率配置信息可以为定位参考信号2的功率配置,该定位参考信号1和定位参考信号2可以为同一定位参考信号,也可以为不同的定位参考信号。该第一子功率配置信息可以仅适于终端在连接态使用,上述第二子功率配置信息,可以适于终端在空闲态、非激活态和连接态使用,或者,上述第二子功率配置信息仅适于终端在空闲态和非激活态使用。
本申请实施例中,上述第二子功率配置信息可以包括以下至少之一:
第二子功率配置参数,例如可以包括预期接收功率值P0,功率调整系数α、预先获得的目标功率、最大发送功率和功率增减系数中的至少一项;
第二子功率路损参考信号,例如可以包括第三SSB、第四SSB和PRS中的至少一项,其中第三SSB可以包括服务小区识别信息和SSB识别信息,第四SSB可以包括小区识别信息、SSB识别信息和SSB配置信息。
可选地,在一些实施例中,所述第一子功率配置信息用于随机接入过程,和/或,所述第二子功率配置信息用于SRS。
可选地,本申请实施例中,所述第一子功率配置信息和所述第二子功率配置信息满足以下任一项:
所述第一子功率配置信息和所述第二子功率配置信息包含于第一信息中,所述第一信息为服务小区配置信息或媒体接入控制(Medium Access Control,MAC)信息;
所述第一子功率配置信息包含于第二信息中,所述第二子功率配置信息包含于无线资源控制RRC释放信息或第三信息中,所述第二信息为系统信息块(System Information Block,SIB)信息、MAC信息或随机接入信道Rach配置信息;所述第三信息包括服务小区配置信息、SRS配置信息、物理上行共享信道PUSCH配置信息或Rach配置信息;
第一对象的第一部分信息包含于Rach配置信息中,所述第一对象中除所述第一部分信息之外的第二部分信息包含于所述第二信息中;
其中,所述第一对象包括以下至少一项:所述第一子功率配置信息和所述第二子功率配置信息。
可选地,在一些实施例中,所述第一子功率配置信息用于SRS在连接态发送,和/或,所述第二子功率配置信息用于SRS在空闲态或者非激活态发送。
可选地,本申请实施例中,所述第一子功率配置信息包含于第四信息中,所述第二子功率配置信息包含于RRC释放信息或第三信息中,其中,所述第四信息包括服务小区配置信息、SRS配置信息、物理上行共享信道PUSCH配置信息、Rach配置信息或MAC信息;所述第三信息包括服务小区配置信息、SRS配置信息、PUSCH配置信息或Rach配置信息。
可选地,在一些实施例中,所述空间关系配置信息包括以下至少一项:
第一子空间关系配置信息;
第四使能状态标识;
其中,所述第四使能状态标识用于指示关联的子空间关系配置信息是否用于所述终端的空闲态或非激活态。
本申请实施例中,上述第一子空间关系配置信息可以为终端处于连接态使用的功率功控信息,也可以为终端处于空闲态或者非激活态使用的功率控制信息,在此不做进一步的限定。可选地,在一些实施例中,该第一子空间关系配置信息的作用可以由上述第四使能状态标识确定,例如空间关系配置信息包括第一子功率控制信息和第四使能状态标识时,表示第四使能状态标识与该第一子功率控制信息关联,此时,若第四使能状态标识为第一值,可以表示该第一子功率控制信息仅用于终端处于连接态,若该第四使能状态标识为第二值,可以表示该第一子功率控制信息用于空闲态或者非空闲态,具体地,该第一子功率控制信息用于空闲态或者非空闲态可以理解为以下任一项:
第一子功率控制信息仅用于空闲态或者非空闲态;
第一子功率控制信息用于连接态、空闲态或者非空闲态。
本申请实施例中,上述第一子功率控制信息可以包括以下至少之一:SSB、PRS、信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)和SRS。
可选地,所述空间关系配置信息还包括第二子空间关系配置信息;其中,所述第一子空间关系配置信息和第二子空间关系配置信息满足以下至少一项:为不同定位参考信号的空间关系配置;为所述终端处于不同状态下定位参考信号的空间关系配置。
应理解,本申请实施例中,上述第四使能状态标识可以包含于某一子配置信息内。例如,在第二空间子关系配置信息中可以携带上述第四使能状态标识。
需要说明的是,在本申请实施例中,上述第一子空间关系配置信息和所述第二子空间关系配置信息可以属于一个配置单元或者两个不同的配置单元。
在一些实施例中,上述第一子空间关系配置信息可以为定位参考信号1的功率配置,上述第二子空间关系配置信息可以为定位参考信号2的功率配置,该定位参考信号1和定位参考信号2可以为同一定位参考信号,也可以为不同的定位参考信号。该第一子空间关系配置信息可以仅适于终端在连接态使用,上述第二子空间关系配置信息,可以适于终端在空闲态、非激活态和连接态使用,或者,上述第二子空间关系配置信息仅适于终端在空闲态和非激活态使用。
本申请实施例中,上述第二子功率配置信息可以包括以下至少之一:SSB、PRS和第四使能状态标识。
可选地,所述第一子空间关系配置信息用于随机接入过程,和/或,所述第二子空间关系配置信息用于SRS。
可选地,所述第一子空间关系配置信息和所述第二子空间关系配置信息满足以下任一项:
所述第一子空间关系配置信息和所述第二子空间关系配置信息包含于第四信息中,所述第四信息为服务小区配置信息或媒体接入控制MAC信息;
所述第一子空间关系配置信息包含于第五信息中,所述第二子空间关系配置信息包含于无线资源控制RRC释放信息或第三信息中,所述第五信息为系统信息块SIB信息、MAC信息或随机接入信道Rach配置信息;所述第三信息包括服务小区配置信息、SRS配置信息、物理上行共享信道PUSCH配置信息或Rach配置信息;
第一对象的第一部分信息包含于Rach配置信息中,所述第一对象中除所述第一部分信息之外的第二部分信息包含于所述第五信息中;
其中,所述第一对象包括以下至少一项:所述第一子空间关系配置信息和所述第二子空间关系配置信息。
可选地,所述第一子空间关系配置信息用于SRS在连接态发送,和/或,所述第二子空间关系配置信息用于SRS在空闲态或者非激活态发送。
可选地,所述第一子空间关系配置信息包含于第六信息中,所述第二子空间关系配置信息包含于RRC释放信息或SRS配置信息中,其中,所述第六信息包括第三信息、物理上行共享信道PUSCH配置信息或Rach配置信息;所述第三信息包括服务小区配置信息、SRS配置信息、PUSCH配置信息或Rach配置信息。
可选地,在一些实施例中,所述功率配置信息和所述空间关系配置信息中的至少一项包含于RRC释放信息或第三信息中,所述第三信息包括服务小区配置信息、SRS配置信息、PUSCH配置信息或Rach配置信息。
可选地,在一些实施例中,所述第一定位参考信号在第一BWP上的发送功率满足以下任一项:
根据预期接收功率值、功率调整系数、所述第一定位参考信号的发送资源、路损值或最大发送功率确定第一发送功率;
根据第二预期接收功率、最大发送功率、功率增减系数或计数器确定第二发送功率,所述计数器用于记录所述功率增系数增减次数;
根据目标发送功率和/或功率增量确定第三发送功率;所述目标发送功率为所述第一发送功率、所述第二发送功率或预定发送功率。
上述功率增量可以由协议约定或者网络设备配置,其中,当目标发送功率不同时,对应的功率增量可以相同或者不同。
本申请实施例中,所述第一发送功率满足以下任一项:
Figure PCTCN2021140733-appb-000001
Figure PCTCN2021140733-appb-000002
Figure PCTCN2021140733-appb-000003
其中,qs表示所述第一定位参考信号,qd表示路损信号,b表示用于发送所述第一定位参考信号的所述第一BWP,c表示服务小区或驻留小区,f表示载波,i表示第i次传输,h表示功率调整状态,μ表示子载波配置,α表示功率调整系数,PL表示所述路损值,P0表示预期接收功率值,PCMAX表示所述终端被配置的最大发送功率,M表示所述第一定位参考信号的带宽,表示调整次数。
需要说明的是,在其他实施例中,上述第一发送功率还可以满足以下任一项:
Figure PCTCN2021140733-appb-000004
Figure PCTCN2021140733-appb-000005
Figure PCTCN2021140733-appb-000006
Figure PCTCN2021140733-appb-000007
Figure PCTCN2021140733-appb-000008
Figure PCTCN2021140733-appb-000009
Figure PCTCN2021140733-appb-000010
Figure PCTCN2021140733-appb-000011
Figure PCTCN2021140733-appb-000012
可选地,在本申请实施例中,上述第二发送功率满足以下任一项:
Figure PCTCN2021140733-appb-000013
Figure PCTCN2021140733-appb-000014
Figure PCTCN2021140733-appb-000015
其中,qs表示所述第一定位参考信号,qd表示路损信号,b表示用于发送所述第一定位参考信号的所述第一BWP,c表示服务小区或驻留小区,f表示载波,i表示第i次传输,μ表示子载波配置,α表示功率调整系数,PL表示所述路损值,PCMAX表示所述终端被配置的最大发送功率,M表示所述第一定位参考信号的带宽,表示目标接收功率。
需要说明的是,在其他实施例中,上述第二发送功率还可以满足以下任一项:
Figure PCTCN2021140733-appb-000016
Figure PCTCN2021140733-appb-000017
Figure PCTCN2021140733-appb-000018
Figure PCTCN2021140733-appb-000019
Figure PCTCN2021140733-appb-000020
Figure PCTCN2021140733-appb-000021
Figure PCTCN2021140733-appb-000022
Figure PCTCN2021140733-appb-000023
Figure PCTCN2021140733-appb-000024
可选地,在一些实施例中,所述目标接收功率根据第二预期接收功率、功率增减系数和所述计数器中的至少一项确定。换句话说,本申请实施例中,所述网络设备根据第二预期接收功率、功率增减系数和所述计数器中的至少一项确定目标接收功率,所述目标接收功率用于确定所述第一定位参考信号在第一BWP上的发送功率。本申请实施例中,上述,其中,表示第二预期接 收功率、β表示功率增减系数,K表示计数器的值,Δ表示增量,Δ可以由网络设配配置或者协议约定或者为0。
可选地,在一些实施例中,所述方法还包括:
根据目标参考信号确定所述路损值;其中,所述目标参考信号为所述第一配置信息指示的参考信号或者预设参考信号。
本申请实施例中,上述满足预设条件的同步信号块SSB包括以下任一项:
接收功率最大的SSB;
与物理下行控制信道(Physical downlink control channel,PDCCH)关联的SSB;
与准备发送的前导码关联的SSB;
接收功率大于预设值的SSB;
与目标应答消息具有准共址QCL关系的SSB,所述目标应答消息为所述网络设备针对所述第一定位参考信号反馈的应答消息。
可选地,在一些实施例中,在所述目标参考信号的接收功率小于预设值或者未检测到所述目标参考信号的情况下,所述方法还包括:
停止发送所述第一定位参考信号;
或者,按照所述终端的最大发送功率发送所述第一定位参考信号。
需要说明的是,在本申请实施例中,上述第一定位参考信号的功率控制方法的确定可以基于以下至少一项确定:
配置信息,例如根据配置的功率配置信息和功率控制类型确定;
协议约定;
激活状态,例如是否激活特定或预设的BWP;
第一预设条件,例如功率大于某一阈值,用第一功率;
第二预设条件,例如路损信号的接收功率大于第二阈值,参考信号接收功率(Reference Signal Received Power,RSRP)大于第三阈值;
预设路损或发送功率。
可选地,在一些实施例中,所述第一定位参考信号的功率控制方法的确定为以下至少之一:
发送SRS后启动一个窗口,若窗口内收到nack,功率增加,否则,功率 维持不变;
发送SRS后启动一个窗口,若窗口内未收到ack,功率增加,否则,功率维持不变。
其中,功率增加,可以是任一功率控制中的预期接收功率,或发送功率按照某一发射功率增大若干功率。
可选地,在一些实施例中,可以通过波束扫描的方式发送上述第一定位参考信号。也就是说,N个所述第一定位参考信号的空间关系根据所述终端的发送波束数目和/或第一预设规则确定,其中,所述第一预设规则指示所述第一定位参考信号和发送波束的对应关系。换句话说,N个所述第一定位参考信号一一对应的N个波束中,任意两个所述波束具有不同的方向,所述N个波束为基于N个所述定位参考信号的空间关系确定的波束。
可选地,在一些实施例中,所述第一配置信息和第二配置信息中的至少一项通过第二对象承载,所述第二对象包括以下任一项:RRC释放消息、RRC暂停释放消息、寻呼消息、消息2、消息4、消息B、下行小数据传输、用于定位的预设SIB信息。
可选地,在一些实施例中,所述方法还包括:
所述终端通过第三对象向网络设备发送请求信息,所述请求信息用于请求网络设备发送所述第一配置信息和所述第二配置信息中的至少一项:
所述第三对象包括以下任一项:前导码、消息3、消息A、上行小数据传输或上行资源。
可选地,在一些实施例中,所述请求信息包括以下至少一项:所述终端的标识信息、小区无线网络临时标识、所述第一定位参考信号的标识、预设无线网络临时标识和服务小区标识。需要说明的是,若终端发生切换的情况下,上述请求信息还可以包括原服务小区标识。
应理解第一定位参考信号的标识可以理解为第一定位参考信号的索引或者顺序索引。
可选地,在一些实施例中,上述第一BWP、第一定位参考信号的功率和空间关系配置信息是区域配置的,例如,UE接收网络设备配置的区域小区list、RNA或跟踪区域编码(Tracking Area Code,TAC),其中,一个小区list、RNA 或TAC下的定位参考信号配置全部相同或部分相同。
可选地,在一些实施例中,上述第一定位参考信号的碰撞规则包括以下至少之一:
当周期性第一定位参考信号/第一BWP与前导码发生碰撞时,丢弃周期性第一定位参考信号/不激活所述第一BWP;
当周期性第一定位参考信号/第一BWP与Msg3发生碰撞时,丢弃周期性第一定位参考信号/不激活所述第一BWP;
当周期性第一定位参考信号/第一BWP与MsgA发生碰撞时,丢弃周期性第一定位参考信号/不激活所述第一BWP;
当周期性第一定位参考信号/第一BWP与上行小数据传输(Small Data Transmission,SDT)发生碰撞时,丢弃周期性第一定位参考信号/不激活所述第一BWP;
当周期性第一定位参考信号/第一BWP与上行SDT发生碰撞时,丢弃上行SDT;
当非周期第一定位参考信号/第一BWP与前导码发生碰撞时,丢弃非周期第一定位参考信号/不激活所述第一BWP;
当非周期第一定位参考信号/激活BWP与前导码发生碰撞时,丢弃前导码BWP;
当非周期第一定位参考信号/第一BWP与Msg3发生碰撞时,丢弃非周期第一定位参考信号/不激活所述第一BWP;
当非周期第一定位参考信号/第一BWP与Msg3发生碰撞时,丢弃Msg3;
当非周期第一定位参考信号/第一BWP与MsgA发生碰撞时,丢弃非周期第一定位参考信号/不激活所述第一BWP;
当非周期第一定位参考信号/第一BWP与MsgA发生碰撞时,丢弃MsgA;
当非周期第一定位参考信号/第一BWP与上行SDT发生碰撞时,丢弃非周期第一定位参考信号/不激活所述BWP;
当非周期第一定位参考信号/第一BWP与上行SDT发生碰撞时,丢弃上行SDT;
当半静态第一定位参考信号/第一BWP与前导码发生碰撞时,丢弃半静 态第一定位参考信号/不激活所述第一BWP;
当半静态第一定位参考信号/第一BWP与前导码发生碰撞时,丢弃前导码;
当半静态第一定位参考信号/第一BWP与Msg3发生碰撞时,丢弃半静态第一定位参考信号/不激活所述第一BWP;
当半静态第一定位参考信号/第一BWP与Msg3发生碰撞时,丢弃Msg3;
当半静态第一定位参考信号/第一BWP与MsgA发生碰撞时,丢弃半静态第一定位参考信号/不激活所述第一BWP;
当半静态第一定位参考信号/第一BWP与MsgA发生碰撞时,丢弃MsgA;
当半静态第一定位参考信号/第一BWP与上行SDT发生碰撞时,丢弃半静态第一定位参考信号/不激活所述第一BWP;
当半静态第一定位参考信号与上行SDT发生碰撞时,丢弃上行SDT;
根据第一定位参考信号与其他信号/信道/数据的优先级进行判断,优先级较低的信号/信道/数据被丢弃。
需要说明的是,在一些实施例中,上述碰撞规则还可以包括功率和空间关系的控制规则。
可选地,功率的控制规则可以包括以下至少之一:
当第一定位参考信号和碰撞信号/信道的发射资源不重叠,且第一定位参考信号和碰撞信号/信道的总发送功率超过最大发送功率时,可以减小或不发送所述第一定位参考信号;
当第一定位参考信号和碰撞信号/信道的发射资源不重叠,且第一定位参考信号和碰撞信号/信道的总发送功率超过最大发送功率时,可以减小或不发送所述碰撞信号/信道。可选地,空间关系的控制规则可以包括以下至少之一:
当第一定位参考信号和碰撞信号/信道的发射资源不重叠,且第一定位参考信号和碰撞信号/信道的空间关系不同时,仅发送第一定位参考信号,丢弃碰撞信号/信道;
当第一定位参考信号和碰撞信号/信道的发射资源不重叠,且第一定位参考信号和碰撞信号/信道的空间关系不同时,仅发送碰撞信号/信道,丢弃第一定位参考信号;
当第一定位参考信号和碰撞信号/信道的发射资源不重叠,且第一定位参考信号和碰撞信号/信道的空间关系不同时,按照空间关系的优先级决定发送第一定位参考信号或碰撞信号/信道;
当第一定位参考信号和碰撞信号/信道的发射资源不重叠,且第一定位参考信号和碰撞信号/信道的空间关系不同时,按照第一定位参考信号的空间关系发送第一定位参考信号和碰撞信号/信道;
当第一定位参考信号和碰撞信号/信道的发射资源不重叠,且第一定位参考信号和碰撞信号/信道的空间关系不同时,按照碰撞信号/信道的空间关系发送第一定位参考信号和碰撞信号/信道;
当第一定位参考信号和碰撞信号/信道的发射资源不重叠,且第一定位参考信号和碰撞信号/信道的空间关系不同时,按照目标空间关系发送第一定位参考信号和碰撞信号/信道;所述目标空间关系基于空间关系的优先级决定。
可选地,第一定位参考信号和碰撞信号/信道可以表示为第一定位参考信号和碰撞信号,或者,第一定位参考信号和碰撞信道。
应理解的是,所述发射资源不重叠可以理解为,所述第一定位参考信号和碰撞信号/信道的发射RE不同,也可以理解为所述第一定位参考信号和碰撞信号/信道的发射频域资源不同。但未限制所述资源是否在时域上是相同的符号,还是存在重叠的符号。
为了更好的理解本申请,以下通过一些具体实例对本申请的实现过程进行详细说明。
实施例一:在初始(initial)BWP上发送SRS。本申请实施例中,终端在非激活/空闲态仍然在激活BWP上发送SRS,即所述SRS发送于所述初始BWP上。
可选地,网络设备可以发送第一目标配置的指示信息,该指示信息包括以下至少之一:
小区指示信息,例如服务小区ID,小区ID和载波信息;
初始上行BWP的配置信息;
第一SRS指示信息。
其中,初始上行BWP的配置信息可以包括BWP ID、BWP公共信息和 BWP专用信息。该BWP专用信息携带上行定位参考信号的第一目标配置和/或第二目标配置,UE进入空闲/非激活态使用的专用的配置信息。
上述第一SRS指示信息可以包括第一SRS的识别信息,例如可以包括SRS资源ID和/或SRS资源集ID。
上述第二目标配置可以包括以下至少之一:
第二SRS识别信息,例如可以包括SRS资源ID和/或SRS资源集ID;
第二SRS可用于非激活态的指示信息;
第二SRS的配置信息。
服务小区ID;
BWP ID。
其中,第二SRS的配置信息可以包括功率配置信息和/或空间关系配置信息。该功率配置信息可以包括功率配置参数和/或功率路损参考信号,空间关系配置信息可以包括空间关系参考信号。
可选地,上述第一SRS为连接态配置的SRS,通过该第一目标配置的指示信息,指示所述第一SRS用于非激活态。
可选地,上述第二SRS为release配置的SRS,仅用于非激活态。
可选地,所述第一目标配置的指示信息或第二目标配置携带于RRC release信息;
可选地,所述第一目标配置的指示信息或第二目标配置携带于RRC非激活配置信息;
可选地,所述RRC非激活配置信息包含于RRC release信息中。
实施例二,在dedicated initial BWP上发送所述SRS。
该实施例二与实施例一的区别在于Dedicated Initial uplink BWP的配置信息与Initial uplink BWP的配置信息不同,例如,在本申请实施例中,该Dedicated Initial uplink BWP的配置信息可以包括:
Bwp ID;
BWP公共信息;
BWP专用信息,该BWP专用信息携带第一SRS配置信息和/或第二SRS配置信息。
可选地,终端包括以下行为:
1、发送SRS的BWP与初始BWP不同,所述不同包括以下之一:时频资源不同、Dedicated的信息不同。例如,初始BWP不包括SRS配置信息,或SRS的配置信息不同,如功率配置信息。
2、发送SRS的BWP和所述发送前导码/MsgA的BWP不同,则发送之间的时间间隔大于阈值1;
3、所述发送SRS的BWP和所述发送前导码/MsgA的BWP不同,且发送之间的时间间隔小于阈值1,不期待发送所述SRS;
4、若发送SRS的BWP资源与所述下行初始BWP不同,则发送SRS和所述接收寻呼的时间间隔大于阈值2;
5、若发送SRS的BWP资源与所述下行初始BWP不同,则发送SRS和接收寻呼的时间间隔小阈值2,不期待发送所述SRS;
6、UE在SRS发送时间,或者特定时间,Dedicated Initial uplink BWP为激活BWP;可选地,其它时间,初始BWP为激活BWP;可选地,在一些实施例中,Dedicated Initial uplink BWP根据SRS的周期,被周期性的激活;可选地,在一些实施例中,Dedicated Initial uplink BWP根据SRS的周期,被周期性的去激活;可选地,在一些实施例中,Dedicated Initial uplink BWP激活时间和SRS的发送时间相关。
可选地,Dedicated Initial uplink BWP是per服务小区配置的。同一个基站的服务小区的Dedicated Initial uplink BWP有对应关系,例如,时频资源相同和/或SRS配置信息相同。
可选地,Dedicated Initial uplink BWP的配置信息包含于RRC release信息中,或者包含于服务小区配置信息中。
实施例三、在用于定位的BWP(positioning BWP)上发送所述SRS。
该实施例三与实施例一的区别在于所述SRS在非激活态发送于positioning BWP上,因此包括以下不同信息:
所述positioning BWP仅用于发送所述定位信号或定位信息;
所述positioning BWP仅用于非激活发送所述定位信号或定位信息;
positioning BWP的配置信息。
positioning BWP的配置信息包括:
1、Bwp ID;
2、BWP公共信息;
3、BWP专用信息,携带第一SRS配置信息和/或第二SRS配置信息;
4、用于Positioning使能标识;
5、用于非激活的使能标识。
其中,终端的行为与上述实施例二类似,具体可以参照上述实施例的描述,例如可以将实施例二中的专用初始BWP替换Positioning BWP即可,在此不再赘述。
进一步的,positioning BWP是per服务小区配置的。同一个基站的服务小区的positioning BWP有对应关系,换句话说,可能与服务小区解耦。例如时频资源相同和/或SRS配置信息相同。
实施例四,当驻留小区发生变化时,对上行定位参考信号的配置进行更新,如图2所示,包括以下流程。
步骤301,网络设备通过RRC释放消息或RRC状态挂起消息携带上行定位参考信号的配置信息;
步骤302,在进行驻留小区切换时,可以由终端发送前导码;
步骤303,终端接收网络设备发送的随机接入响应(Random Access Response,RAR);
步骤304,终端向网络设备发送RRC恢复请求(RRC resume request);
步骤305,终端接收竞争结果(Contention Resolution);
步骤306,在终端成功接入新的小区后,网络设备再次发送RRC释放消息或RRC状态挂起消息,并在RRC释放消息或RRC状态挂起消息中携带上行定位参考信号的第一目标配置和/或第二目标配置。
步骤307,在终端处于空闲态或非激活态时,基于新的第一目标配置和/或第二目标配置发送SRS。
请参见图4,图4是本申请实施例提供的另一种上行定位处理方法的流程图,该方法由网络设备执行,如图4所示,包括以下步骤:
步骤401,网络设备发送的第一配置信息,所述第一配置信息用于确定 第一定位参考信号的目标信息;
其中,所述第一配置信息包括功率配置信息和空间关系配置信息中的至少一项,在所述第一配置信息包括所述功率配置信息时,所述目标信息包括发送功率,在所述第一配置信息包括空间关系配置信息时,所述目标信息包括空间关系;所述第一定位参考信号用于终端在空闲态或非激活态下进行上行定位。
可选地,所述方法还包括:
在第一部分带宽BWP上接收终端基于所述目标信息发送的所述第一定位参考信号。
可选地,所述第一BWP为所述终端处于空闲态或者非激活态时,所述终端的激活BWP。
可选地,所述第一BWP为以下至少一项BWP:
初始BWP;
专用初始BWP,所述专用初始BWP为仅用于所述终端处于空闲态或非激活态时,进行上行定位的BWP;
用于定位的BWP。
可选地,所述方法还包括:
所述网络设备发送第二配置信息;
其中,所述第二配置信息包括所述终端在空闲态或者非激活态使用第一子配置信息和第二子配置信息的至少一项;所述第一子配置信息为所述初始BWP的配置,所述第二子配置信息为所述专用初始BWP或用于定位的BWP的配置。
可选地,所述终端在空闲态或者非激活态时,所述第一子配置信息和所述第二子配置信息中的任一项被激活。
可选地,所述第一BWP的配置信息携带定位参考信号的配置信息。
可选地,所述在所述第一BWP为所述专用初始BWP或者用于定位的BWP时,所述定位参考信号的配置信息包括第三子配置信息和第四子配置信息中的至少一项;其中,所述第三子配置信息为用于在所述终端在空闲态或非激活态下进行上行定位的定位参考信号的配置信息,所述第四子配置信息 为用于在所述终端在连接态下进行上行定位的定位参考信号的配置信息。
可选地,当所述第一BWP为用于定位的BWP时,所述第一BWP的配置信息还包括第一使能状态标识和第二使能状态标识中的至少一项,所述第一使能状态标识用于指示是否为用于定位,所述第二使能状态指示用于指示是否用于空闲态或者非激活态。
可选地,所述第一BWP的配置信息包括以下至少一项:第一使能状态标识、第二使能状态标识、第一定位参考信号的配置信息、BWP周期、BWP激活偏移和BWP激活窗长;
其中,所述第一使能状态标识用于指示是否为用于定位,所述第二使能状态指示用于指示是否用于空闲态或者非激活态。
可选地,所述功率配置信息包括以下至少一项:
第一子功率配置信息;
第三使能状态标识;
其中,所述第三使能状态标识用于指示关联的子功率配置信息是否用于所述终端的空闲态或非激活态。
可选地,所述功率配置信息还包括第二子功率配置信息;其中,所述第一子功率配置信息和第二子功率配置信息满足以下至少一项:为不同定位参考信号的功率配置;为所述终端处于不同状态下定位参考信号的功率配置。
可选地,所述第一子功率配置信息用于随机接入过程,和/或,所述第二子功率配置信息用于SRS。
可选地,所述第一子功率配置信息和所述第二子功率配置信息满足以下任一项:
所述第一子功率配置信息和所述第二子功率配置信息包含于第一信息中,所述第一信息为服务小区配置信息或媒体接入控制MAC信息;
所述第一子功率配置信息包含于第二信息中,所述第二子功率配置信息包含于无线资源控制RRC释放信息或第三信息中,所述第二信息为系统信息块SIB信息、MAC信息或随机接入信道Rach配置信息;所述第三信息包括服务小区配置信息、SRS配置信息、物理上行共享信道PUSCH配置信息或Rach配置信息;
第一对象的第一部分信息包含于Rach配置信息中,所述第一对象中除所述第一部分信息之外的第二部分信息包含于所述第二信息中;
其中,所述第一对象包括以下至少一项:所述第一子功率配置信息和所述第二子功率配置信息。
可选地,所述第一子功率配置信息用于SRS在连接态发送,和/或,所述第二子功率配置信息用于SRS在空闲态或者非激活态发送。
可选地,所述第一子功率配置信息包含于第四信息中,所述第二子功率配置信息包含于RRC释放信息或第三信息中,其中,所述第四信息包括服务小区配置信息、SRS配置信息、物理上行共享信道PUSCH配置信息、Rach配置信息或MAC信息;所述第三信息包括服务小区配置信息、SRS配置信息、PUSCH配置信息或Rach配置信息。
可选地,所述空间关系配置信息包括以下至少一项:
第一子空间关系配置信息;
第四使能状态标识;
其中,所述第四使能状态标识用于指示关联的子空间关系配置信息是否用于所述终端的空闲态或非激活态。
可选地,所述空间关系配置信息还包括第二子空间关系配置信息;其中,所述第一子空间关系配置信息和第二子空间关系配置信息满足以下至少一项:为不同定位参考信号的空间关系配置;为所述终端处于不同状态下定位参考信号的空间关系配置。
可选地,所述第一子空间关系配置信息用于随机接入过程,和/或,所述第二子空间关系配置信息用于SRS。
可选地,所述第一子空间关系配置信息和所述第二子空间关系配置信息满足以下任一项:
所述第一子空间关系配置信息和所述第二子空间关系配置信息包含于第四信息中,所述第四信息为服务小区配置信息或媒体接入控制MAC信息;
所述第一子空间关系配置信息包含于第五信息中,所述第二子空间关系配置信息包含于无线资源控制RRC释放信息或第三信息中,所述第五信息为系统信息块SIB信息、MAC信息或随机接入信道Rach配置信息;所述第三 信息包括服务小区配置信息、SRS配置信息、物理上行共享信道PUSCH配置信息或Rach配置信息;
第一对象的第一部分信息包含于Rach配置信息中,所述第一对象中除所述第一部分信息之外的第二部分信息包含于所述第五信息中;
其中,所述第一对象包括以下至少一项:所述第一子空间关系配置信息和所述第二子空间关系配置信息。
可选地,所述第一子空间关系配置信息用于SRS在连接态发送,和/或,所述第二子空间关系配置信息用于SRS在空闲态或者非激活态发送。
可选地,所述第一子空间关系配置信息包含于第六信息中,所述第二子空间关系配置信息包含于RRC释放信息或SRS配置信息中,其中,所述第六信息包括第三信息、物理上行共享信道PUSCH配置信息或Rach配置信息;所述第三信息包括服务小区配置信息、SRS配置信息、PUSCH配置信息或Rach配置信息。
可选地,所述功率配置信息和所述空间关系配置信息中的至少一项包含于RRC释放信息或第三信息中,所述第三信息包括服务小区配置信息、SRS配置信息、PUSCH配置信息或Rach配置信息。
可选地,所述第一定位参考信号在第一BWP上的发送功率满足以下任一项:
根据预期接收功率值、功率调整系数、所述第一定位参考信号的发送资源、路损值或最大发送功率确定第一发送功率;
根据第二预期接收功率、最大发送功率、功率增减系数或计数器确定第二发送功率,所述计数器用于记录所述功率增系数增减次数;
根据目标发送功率和/或功率增量确定第三发送功率;所述目标发送功率为所述第一发送功率、所述第二发送功率或预定发送功率。
可选地,所述第一发送功率满足以下任一项:
Figure PCTCN2021140733-appb-000025
Figure PCTCN2021140733-appb-000026
Figure PCTCN2021140733-appb-000027
其中,q s表示所述第一定位参考信号,q d表示路损信号,b表示用于发送所述第一定位参考信号的所述第一BWP,c表示服务小区或驻留小区,f表示载波,i表示第i次传输,h表示功率调整状态,μ表示子载波配置,α表示功率调整系数,PL表示所述路损值,P0表示预期接收功率值,PCMAX表示所述终端被配置的最大发送功率,M表示所述第一定位参考信号的带宽,表示调整次数。
可选地,所述第二发送功率满足以下任一项:
Figure PCTCN2021140733-appb-000028
Figure PCTCN2021140733-appb-000029
Figure PCTCN2021140733-appb-000030
其中,qs表示所述第一定位参考信号,qd表示路损信号,b表示用于发送所述第一定位参考信号的所述第一BWP,c表示服务小区或驻留小区,f表示载波,i表示第i次传输,μ表示子载波配置,α表示功率调整系数,PL表示所述路损值,PCMAX表示所述终端被配置的最大发送功率,M表示所述第一定位参考信号的带宽,表示目标接收功率。
可选地,所述目标接收功率根据第二预期接收功率、功率增减系数和所述计数器中的至少一项确定。
可选地,N个所述第一定位参考信号的空间关系根据所述终端的发送波束数目和/或第一预设规则确定,其中,所述第一预设规则指示所述第一定位参考信号和发送波束的对应关系。
可选地,所述第一配置信息和第二配置信息中的至少一项通过第二对象承载,所述第二对象包括以下任一项:RRC释放消息、RRC暂停释放消息、寻呼消息、消息2、消息4、消息B、下行小数据传输、用于定位的预设SIB信息。
可选地,所述方法还包括:
所述网络设备通过第三对象接收终端发送请求信息,所述请求信息用于请求网络设备发送所述第一配置信息和所述第二配置信息中的至少一项:
所述第三对象包括以下任一项:前导码、消息3、消息A、上行小数据传输或上行资源。
可选地,所述请求信息包括以下至少一项:所述终端的标识信息、小区无线网络临时标识、所述第一定位参考信号的标识、预设无线网络临时标识和服务小区标识。
需要说明的是,本实施例作为图2所示的实施例对应的网络设备的实施方式,其具体的实施方式可以参见图2所示的实施例相关说明,以及达到相同的有益效果,为了避免重复说明,此处不再赘述。
需要说明的是,本申请实施例提供的上行定位处理方法,执行主体可以为上行定位处理方法装置,或者,该上行定位处理装置中的用于执行上行定位处理方法的控制模块。本申请实施例中以上行定位处理装置执行上行定位处理方法为例,说明本申请实施例提供的上行定位处理装置。
请参见图5,图5是本申请实施例提供的一种上行定位处理装置的结构图,如图5所示,上行定位处理装置500包括:
第一接收模块501,用于终端接收网络设备发送的第一配置信息;
确定模块502,用于所述终端根据所述第一配置信息确定第一定位参考信号的目标信息;
其中,所述第一配置信息包括功率配置信息和空间关系配置信息中的至少一项,在所述第一配置信息包括所述功率配置信息时,所述目标信息包括发送功率,在所述第一配置信息包括空间关系配置信息时,所述目标信息包括空间关系;所述第一定位参考信号用于所述终端在空闲态或非激活态下进行上行定位。
可选地,所述第一配置信息包括功率配置信息,所述确定模块502包括:
第一确定单元,用于确定用于发送所述第一定位参考信号的第一部分带宽BWP;
第二确定单元,用于根据所述功率配置信息和所述第一BWP确定所述第一定位参考信号的发送功率。
可选地,所述第一BWP为所述终端处于空闲态或者非激活态时,所述终端的激活BWP。
可选地,所述第一BWP为以下至少一项BWP:
初始BWP;
专用初始BWP,所述专用初始BWP为仅用于所述终端处于空闲态或非激活态时,进行上行定位的BWP;
用于定位的BWP。
可选地,所述第一接收模块501还用于,接收所述网络设备发送的第二配置信息;
其中,所述第二配置信息包括所述终端在空闲态或者非激活态使用第一子配置信息和第二子配置信息的至少一项;所述第一子配置信息为所述初始BWP的配置,所述第二子配置信息为所述专用初始BWP或用于定位的BWP的配置。
可选地,所述终端在空闲态或者非激活态时,所述第一子配置信息和所述第二子配置信息中的任一项被激活。
可选地,所述第一BWP的配置信息携带定位参考信号的配置信息。
可选地,所述在所述第一BWP为所述专用初始BWP或者用于定位的BWP时,所述定位参考信号的配置信息包括第三子配置信息和第四子配置信息中的至少一项;其中,所述第三子配置信息为用于在所述终端在空闲态或非激活态下进行上行定位的定位参考信号的配置信息,所述第四子配置信息为用于在所述终端在连接态下进行上行定位的定位参考信号的配置信息。
可选地,当所述第一BWP为用于定位的BWP时,所述第一BWP的配置信息还包括第一使能状态标识和第二使能状态标识中的至少一项,所述第一使能状态标识用于指示是否为用于定位,所述第二使能状态指示用于指示是否用于空闲态或者非激活态。
可选地,所述第一BWP的配置信息包括以下至少一项:第一使能状态标识、第二使能状态标识、第一定位参考信号的配置信息、BWP周期、BWP激活偏移和BWP激活窗长;
其中,所述第一使能状态标识用于指示是否为用于定位,所述第二使能 状态指示用于指示是否用于空闲态或者非激活态。
可选地,所述功率配置信息包括以下至少一项:
第一子功率配置信息;
第三使能状态标识;
其中,所述第三使能状态标识用于指示关联的子功率配置信息是否用于所述终端的空闲态或非激活态。
可选地,所述功率配置信息还包括第二子功率配置信息;其中,所述第一子功率配置信息和第二子功率配置信息满足以下至少一项:为不同定位参考信号的功率配置;为所述终端处于不同状态下定位参考信号的功率配置。
可选地,所述第一子功率配置信息用于随机接入过程,和/或,所述第二子功率配置信息用于SRS。
可选地,所述第一子功率配置信息和所述第二子功率配置信息满足以下任一项:
所述第一子功率配置信息和所述第二子功率配置信息包含于第一信息中,所述第一信息为服务小区配置信息或媒体接入控制MAC信息;
所述第一子功率配置信息包含于第二信息中,所述第二子功率配置信息包含于无线资源控制RRC释放信息或第三信息中,所述第二信息为系统信息块SIB信息、MAC信息或随机接入信道Rach配置信息;所述第三信息包括服务小区配置信息、SRS配置信息、物理上行共享信道PUSCH配置信息或Rach配置信息;
第一对象的第一部分信息包含于Rach配置信息中,所述第一对象中除所述第一部分信息之外的第二部分信息包含于所述第二信息;
其中,所述第一对象包括以下至少一项:所述第一子功率配置信息和所述第二子功率配置信息。
可选地,所述第一子功率配置信息用于SRS在连接态发送,和/或,所述第二子功率配置信息用于SRS在空闲态或者非激活态发送。
可选地,所述第一子功率配置信息包含于第四信息中,所述第二子功率配置信息包含于RRC释放信息或第三信息中,其中,所述第四信息包括服务小区配置信息、SRS配置信息、物理上行共享信道PUSCH配置信息、Rach 配置信息或MAC信息;所述第三信息包括服务小区配置信息、SRS配置信息、PUSCH配置信息或Rach配置信息。
可选地,所述空间关系配置信息包括以下至少一项:
第一子空间关系配置信息;
第四使能状态标识;
其中,所述第四使能状态标识用于指示关联的子空间关系配置信息是否用于所述终端的空闲态或非激活态。
可选地,所述空间关系配置信息还包括第二子空间关系配置信息;其中,所述第一子空间关系配置信息和第二子空间关系配置信息满足以下至少一项:为不同定位参考信号的空间关系配置;为所述终端处于不同状态下定位参考信号的空间关系配置。
可选地,所述第一子空间关系配置信息用于随机接入过程,和/或,所述第二子空间关系配置信息用于SRS。
可选地,所述第一子空间关系配置信息和所述第二子空间关系配置信息满足以下任一项:
所述第一子空间关系配置信息和所述第二子空间关系配置信息包含于第四信息中,所述第四信息为服务小区配置信息或媒体接入控制MAC信息;
所述第一子空间关系配置信息包含于第五信息中,所述第二子空间关系配置信息包含于无线资源控制RRC释放信息或第三信息中,所述第五信息为系统信息块SIB信息、MAC信息或随机接入信道Rach配置信息;所述第三信息包括服务小区配置信息、SRS配置信息、物理上行共享信道PUSCH配置信息或Rach配置信息;
第一对象的第一部分信息包含于Rach配置信息中,所述第一对象中除所述第一部分信息之外的第二部分信息包含于所述第五信息中;
其中,所述第一对象包括以下至少一项:所述第一子空间关系配置信息和所述第二子空间关系配置信息。
可选地,所述第一子空间关系配置信息用于SRS在连接态发送,和/或,所述第二子空间关系配置信息用于SRS在空闲态或者非激活态发送。
可选地,所述第一子空间关系配置信息包含于第六信息中,所述第二子 空间关系配置信息包含于RRC释放信息或SRS配置信息中,其中,所述第六信息包括第三信息、物理上行共享信道PUSCH配置信息或Rach配置信息;所述第三信息包括服务小区配置信息、SRS配置信息、PUSCH配置信息或Rach配置信息。
可选地,所述功率配置信息和所述空间关系配置信息中的至少一项包含于RRC释放信息或第三信息中,所述第三信息包括服务小区配置信息、SRS配置信息、PUSCH配置信息或Rach配置信息。
可选地,所述第一定位参考信号在第一BWP上的发送功率满足以下任一项:
根据预期接收功率值、功率调整系数、所述第一定位参考信号的发送资源、路损值或最大发送功率确定第一发送功率;
根据第二预期接收功率、最大发送功率、功率增减系数或计数器确定第二发送功率,所述计数器用于记录所述功率增系数增减次数;
根据目标发送功率和/或功率增量确定第三发送功率;所述目标发送功率为所述第一发送功率、所述第二发送功率或预定发送功率。
可选地,所述第一发送功率满足以下任一项:
Figure PCTCN2021140733-appb-000031
Figure PCTCN2021140733-appb-000032
Figure PCTCN2021140733-appb-000033
其中,qs表示所述第一定位参考信号,qd表示路损信号,b表示用于发送所述第一定位参考信号的所述第一BWP,c表示服务小区或驻留小区,f表示载波,i表示第i次传输,h表示功率调整状态,μ表示子载波配置,α表示功率调整系数,PL表示所述路损值,P0表示预期接收功率值,PCMAX表示所述终端被配置的最大发送功率,M表示所述第一定位参考信号的带宽,表示调整次数。
可选地,所述第二发送功率满足以下任一项:
Figure PCTCN2021140733-appb-000034
Figure PCTCN2021140733-appb-000035
Figure PCTCN2021140733-appb-000036
其中,qs表示所述第一定位参考信号,qd表示路损信号,b表示用于发送所述第一定位参考信号的所述第一BWP,c表示服务小区或驻留小区,f表示载波,i表示第i次传输,μ表示子载波配置,α表示功率调整系数,PL表示所述路损值,PCMAX表示所述终端被配置的最大发送功率,M表示所述第一定位参考信号的带宽,表示目标接收功率。
可选地,所述目标接收功率根据第二预期接收功率、功率增减系数和所述计数器中的至少一项确定。
可选地,所述确定模块502还用于,根据目标参考信号确定所述路损值;其中,所述目标参考信号为所述第一配置信息指示的参考信号或者预设参考信号。
可选地,所述预设参考信号为以下任一项:SIB、满足预设条件的同步信号块SSB和默认SSB。
可选地,所述满足预设条件的同步信号块SSB包括以下任一项:
接收功率最大的SSB;
与物理下行控制信道PDCCH关联的SSB;
与准备发送的前导码关联的SSB;
接收功率大于预设值的SSB;
与目标应答消息具有准共址QCL关系的SSB,所述目标应答消息为所述网络设备针对所述第一定位参考信号反馈的应答消息。
可选地,在所述目标参考信号的接收功率小于预设值或者未检测到所述目标参考信号的情况下,所述上行定位处理装置500还包括:
第二发送模块,用于停止发送所述第一定位参考信号;或者,按照所述终端的最大发送功率发送所述第一定位参考信号。
可选地,N个所述第一定位参考信号的空间关系根据所述终端的发送波 束数目和/或第一预设规则确定,其中,所述第一预设规则指示所述第一定位参考信号和发送波束的对应关系。
可选地,所述第一配置信息和第二配置信息中的至少一项通过第二对象承载,所述第二对象包括以下任一项:RRC释放消息、RRC暂停释放消息、寻呼消息、消息2、消息4、消息B、下行小数据传输、用于定位的预设SIB信息。
可选地,所述上行定位处理装置500还包括:
第二发送模块,用于所述终端通过第三对象向网络设备发送请求信息,所述请求信息用于请求网络设备发送所述第一配置信息和所述第二配置信息中的至少一项:
所述第三对象包括以下任一项:前导码、消息3、消息A、上行小数据传输或上行资源。
可选地,所述请求信息包括以下至少一项:所述终端的标识信息、小区无线网络临时标识、所述第一定位参考信号的标识、预设无线网络临时标识和服务小区标识。
本申请实施例提供的上行定位处理装置500能够实现图2的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述。
请参见图6,图6是本申请实施例提供的一种上行定位处理装置的结构图,如图6所示,上行定位处理装置600包括:
第一发送模块601,用于网络设备发送的第一配置信息,所述第一配置信息用于确定第一定位参考信号的目标信息;
其中,所述第一配置信息包括功率配置信息和空间关系配置信息中的至少一项,在所述第一配置信息包括所述功率配置信息时,所述目标信息包括发送功率,在所述第一配置信息包括空间关系配置信息时,所述目标信息包括空间关系;所述第一定位参考信号用于终端在空闲态或非激活态下进行上行定位。
可选地,所述上行定位处理装置600还包括:
第二接收模块,用于在第一部分带宽BWP上接收终端基于所述目标信息发送的所述第一定位参考信号。
可选地,所述第一BWP为所述终端处于空闲态或者非激活态时,所述终端的激活BWP。
可选地,所述第一BWP为以下至少一项BWP:
初始BWP;
专用初始BWP,所述专用初始BWP为仅用于所述终端处于空闲态或非激活态时,进行上行定位的BWP;
用于定位的BWP。
可选地,所述第一发送模块601还用于,所述网络设备发送第二配置信息;
其中,所述第二配置信息包括所述终端在空闲态或者非激活态使用第一子配置信息和第二子配置信息的至少一项;所述第一子配置信息为所述初始BWP的配置,所述第二子配置信息为所述专用初始BWP或用于定位的BWP的配置。
可选地,所述终端在空闲态或者非激活态时,所述第一子配置信息和所述第二子配置信息中的任一项被激活。
可选地,所述第一BWP的配置信息携带定位参考信号的配置信息。
可选地,所述在所述第一BWP为所述专用初始BWP或者用于定位的BWP时,所述定位参考信号的配置信息包括第三子配置信息和第四子配置信息中的至少一项;其中,所述第三子配置信息为用于在所述终端在空闲态或非激活态下进行上行定位的定位参考信号的配置信息,所述第四子配置信息为用于在所述终端在连接态下进行上行定位的定位参考信号的配置信息。
可选地,当所述第一BWP为用于定位的BWP时,所述第一BWP的配置信息还包括第一使能状态标识和第二使能状态标识中的至少一项,所述第一使能状态标识用于指示是否为用于定位,所述第二使能状态指示用于指示是否用于空闲态或者非激活态。
可选地,所述第一BWP的配置信息包括以下至少一项:第一使能状态标识、第二使能状态标识、第一定位参考信号的配置信息、BWP周期、BWP激活偏移和BWP激活窗长;
其中,所述第一使能状态标识用于指示是否为用于定位,所述第二使能 状态指示用于指示是否用于空闲态或者非激活态。
可选地,所述功率配置信息包括以下至少一项:
第一子功率配置信息;
第三使能状态标识;
其中,所述第三使能状态标识用于指示关联的子功率配置信息是否用于所述终端的空闲态或非激活态。
可选地,所述功率配置信息还包括第二子功率配置信息;其中,所述第一子功率配置信息和第二子功率配置信息满足以下至少一项:为不同定位参考信号的功率配置;为所述终端处于不同状态下定位参考信号的功率配置。
可选地,所述第一子功率配置信息用于随机接入过程,和/或,所述第二子功率配置信息用于SRS。
可选地,所述第一子功率配置信息和所述第二子功率配置信息满足以下任一项:
所述第一子功率配置信息和所述第二子功率配置信息包含于第一信息中,所述第一信息为服务小区配置信息或媒体接入控制MAC信息;
所述第一子功率配置信息包含于第二信息中,所述第二子功率配置信息包含于无线资源控制RRC释放信息或第三信息中,所述第二信息为系统信息块SIB信息、MAC信息或随机接入信道Rach配置信息;所述第三信息包括服务小区配置信息、SRS配置信息、物理上行共享信道PUSCH配置信息或Rach配置信息;
第一对象的第一部分信息包含于Rach配置信息中,所述第一对象中除所述第一部分信息之外的第二部分信息包含于所述第二信息中;
其中,所述第一对象包括以下至少一项:所述第一子功率配置信息和所述第二子功率配置信息。
可选地,所述第一子功率配置信息用于SRS在连接态发送,和/或,所述第二子功率配置信息用于SRS在空闲态或者非激活态发送。
可选地,所述第一子功率配置信息包含于第四信息中,所述第二子功率配置信息包含于RRC释放信息或第三信息中,其中,所述第四信息包括服务小区配置信息、SRS配置信息、物理上行共享信道PUSCH配置信息、Rach 配置信息或MAC信息;所述第三信息包括服务小区配置信息、SRS配置信息、PUSCH配置信息或Rach配置信息。
可选地,所述空间关系配置信息包括以下至少一项:
第一子空间关系配置信息;
第四使能状态标识;
其中,所述第四使能状态标识用于指示关联的子空间关系配置信息是否用于所述终端的空闲态或非激活态。
可选地,所述空间关系配置信息还包括第二子空间关系配置信息;其中,所述第一子空间关系配置信息和第二子空间关系配置信息满足以下至少一项:为不同定位参考信号的空间关系配置;为所述终端处于不同状态下定位参考信号的空间关系配置。
可选地,所述第一子空间关系配置信息用于随机接入过程,和/或,所述第二子空间关系配置信息用于SRS。
可选地,所述第一子空间关系配置信息和所述第二子空间关系配置信息满足以下任一项:
所述第一子空间关系配置信息和所述第二子空间关系配置信息包含于第四信息中,所述第四信息为服务小区配置信息或媒体接入控制MAC信息;
所述第一子空间关系配置信息包含于第五信息中,所述第二子空间关系配置信息包含于无线资源控制RRC释放信息或第三信息中,所述第五信息为系统信息块SIB信息、MAC信息或随机接入信道Rach配置信息;所述第三信息包括服务小区配置信息、SRS配置信息、物理上行共享信道PUSCH配置信息或Rach配置信息;
第一对象的第一部分信息包含于Rach配置信息中,所述第一对象中除所述第一部分信息之外的第二部分信息包含于所述第五信息中;
其中,所述第一对象包括以下至少一项:所述第一子空间关系配置信息和所述第二子空间关系配置信息。
可选地,所述第一子空间关系配置信息用于SRS在连接态发送,和/或,所述第二子空间关系配置信息用于SRS在空闲态或者非激活态发送。
可选地,所述第一子空间关系配置信息包含于第六信息中,所述第二子 空间关系配置信息包含于RRC释放信息或SRS配置信息,其中,所述第六信息包括第三信息、物理上行共享信道PUSCH配置信息或Rach配置信息;所述第三信息包括服务小区配置信息、SRS配置信息、PUSCH配置信息或Rach配置信息。
可选地,所述功率配置信息和所述空间关系配置信息中的至少一项包含于RRC释放信息或第三信息中,所述第三信息包括服务小区配置信息、SRS配置信息、PUSCH配置信息或Rach配置信息。
可选地,所述第一定位参考信号在第一BWP上的发送功率满足以下任一项:
根据预期接收功率值、功率调整系数、所述第一定位参考信号的发送资源、路损值或最大发送功率确定第一发送功率;
根据第二预期接收功率、最大发送功率、功率增减系数或计数器确定第二发送功率,所述计数器用于记录所述功率增系数增减次数;
根据目标发送功率和/或功率增量确定第三发送功率;所述目标发送功率为所述第一发送功率、所述第二发送功率或预定发送功率。
可选地,所述第一发送功率满足以下任一项:
Figure PCTCN2021140733-appb-000037
Figure PCTCN2021140733-appb-000038
Figure PCTCN2021140733-appb-000039
其中,qs表示所述第一定位参考信号,qd表示路损信号,b表示用于发送所述第一定位参考信号的所述第一BWP,c表示服务小区或驻留小区,f表示载波,i表示第i次传输,h表示功率调整状态,μ表示子载波配置,α表示功率调整系数,PL表示所述路损值,P0表示预期接收功率值,PCMAX表示所述终端被配置的最大发送功率,M表示所述第一定位参考信号的带宽,表示调整次数。
可选地,所述第二发送功率满足以下任一项:
Figure PCTCN2021140733-appb-000040
Figure PCTCN2021140733-appb-000041
Figure PCTCN2021140733-appb-000042
其中,qs表示所述第一定位参考信号,qd表示路损信号,b表示用于发送所述第一定位参考信号的所述第一BWP,c表示服务小区或驻留小区,f表示载波,i表示第i次传输,μ表示子载波配置,α表示功率调整系数,PL表示所述路损值,PCMAX表示所述终端被配置的最大发送功率,M表示所述第一定位参考信号的带宽,表示目标接收功率。
可选地,所述目标接收功率根据第二预期接收功率、功率增减系数和所述计数器中的至少一项确定。
可选地,N个所述第一定位参考信号的空间关系根据所述终端的发送波束数目和/或第一预设规则确定,其中,所述第一预设规则指示所述第一定位参考信号和发送波束的对应关系。
可选地,所述第一配置信息和第二配置信息中的至少一项通过第二对象承载,所述第二对象包括以下任一项:RRC释放消息、RRC暂停释放消息、寻呼消息、消息2、消息4、消息B、下行小数据传输、用于定位的预设SIB信息。
可选地,所述上行定位处理装置600还包括:
第二接收模块,用于所述网络设备通过第三对象接收终端发送请求信息,所述请求信息用于请求网络设备发送所述第一配置信息和所述第二配置信息中的至少一项:
所述第三对象包括以下任一项:前导码、消息3、消息A、上行小数据传输或上行资源。
可选地,所述请求信息包括以下至少一项:所述终端的标识信息、小区无线网络临时标识、所述第一定位参考信号的标识、预设无线网络临时标识和服务小区标识。
本申请实施例提供的上行定位处理装置600能够实现图4的方法实施例 中网络设备实现的各个过程,为避免重复,这里不再赘述。
本申请实施例中的上行定位处理装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的上行定位处理装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的上行定位处理装置能够实现图2至图4的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图7所示,本申请实施例还提供一种通信设备700,包括处理器701,存储器702,存储在存储器702上并可在所述处理器701上运行的程序或指令,该程序或指令被处理器701执行时实现上述上行定位处理方法实施例的各个过程,且能达到相同的技术效果。
图8为实现本申请各个实施例的一种终端的硬件结构示意图。
该终端800包括但不限于:射频单元801、网络模块802、音频输出单元803、输入单元804、传感器805、显示单元806、用户输入单元807、接口单元808、存储器809以及处理器810等部件。
本领域技术人员可以理解,终端800还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器810逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图8中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元804可以包括图形处理器(Graphics Processing Unit,GPU)8041和麦克风8042,图形处理器8041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元806可包括显示面板8061,可以 采用液晶显示器、有机发光二极管等形式来配置显示面板8061。用户输入单元807包括触控面板8071以及其他输入设备8072。触控面板8071,也称为触摸屏。触控面板8071可包括触摸检测装置和触摸控制器两个部分。其他输入设备8072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元801将来自网络设备的下行数据接收后,给处理器810处理;另外,将上行的数据发送给网络设备。通常,射频单元801包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器809可用于存储软件程序或指令以及各种数据。存储器809可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器809可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器810可包括一个或多个处理单元;可选的,处理器810可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器810中。
其中,射频单元801,用于终端接收网络设备发送的第一配置信息;
处理器810,用于所述终端根据所述第一配置信息确定第一定位参考信号的目标信息;
其中,所述第一配置信息包括功率配置信息和空间关系配置信息中的至少一项,在所述第一配置信息包括所述功率配置信息时,所述目标信息包括发送功率,在所述第一配置信息包括空间关系配置信息时,所述目标信息包括空间关系;所述第一定位参考信号用于所述终端在空闲态或非激活态下进 行上行定位。
应理解,本实施例中,上述处理器810和射频单元801能够实现图2的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述。
具体地,本申请实施例还提供了一种网络设备。如图9所示,该网络设备900包括:天线901、射频装置902、基带装置903。天线901与射频装置902连接。在上行方向上,射频装置902通过天线901接收信息,将接收的信息发送给基带装置903进行处理。在下行方向上,基带装置903对要发送的信息进行处理,并发送给射频装置902,射频装置902对收到的信息进行处理后经过天线901发送出去。
上述频带处理装置可以位于基带装置903中,以上实施例中网络设备执行的方法可以在基带装置903中实现,该基带装置903包括处理器904和存储器905。
基带装置903例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图9所示,其中一个芯片例如为处理器904,与存储器905连接,以调用存储器905中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置903还可以包括网络接口906,用于与射频装置902交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络设备还包括:存储在存储器905上并可在处理器904上运行的指令或程序,处理器904调用存储器905中的指令或程序执行图6所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质可以是非易失的,也可以是易失的,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述上行定位处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络设备程序或指令,实现上述上行定位处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序产品,其中,所述计算机程序产品被存储在非瞬态的可读存储介质中,所述计算机程序产品被至少一个处理器执行以实现上述上行定位处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者基站等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上 述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (68)

  1. 一种上行定位处理方法,包括:
    终端接收网络设备发送的第一配置信息;
    所述终端根据所述第一配置信息确定第一定位参考信号的目标信息;
    其中,所述第一配置信息包括功率配置信息和空间关系配置信息中的至少一项,在所述第一配置信息包括所述功率配置信息时,所述目标信息包括发送功率,在所述第一配置信息包括空间关系配置信息时,所述目标信息包括空间关系;所述第一定位参考信号用于所述终端在空闲态或非激活态下进行上行定位。
  2. 根据权利要求1所述的方法,其中,所述第一配置信息包括功率配置信息,所述终端根据所述第一配置信息确定第一定位参考信号的目标信息包括:
    确定用于发送所述第一定位参考信号的第一部分带宽BWP;
    根据所述功率配置信息和所述第一BWP确定所述第一定位参考信号的发送功率。
  3. 根据权利要求2所述的方法,其中,所述第一BWP为所述终端处于空闲态或者非激活态时,所述终端的激活BWP。
  4. 根据权利要求2所述的方法,其中,所述第一BWP为以下至少一项BWP:
    初始BWP;
    专用初始BWP,所述专用初始BWP为仅用于所述终端处于空闲态或非激活态时,进行上行定位的BWP;
    用于定位的BWP。
  5. 根据权利要求4所述的方法,其中,所述方法还包括:
    接收所述网络设备发送的第二配置信息;
    其中,所述第二配置信息包括所述终端在空闲态或者非激活态使用第一子配置信息和第二子配置信息的至少一项;所述第一子配置信息为所述初始BWP的配置,所述第二子配置信息为所述专用初始BWP或用于定位的BWP 的配置。
  6. 根据权利要求5所述的方法,其中,所述终端在空闲态或者非激活态时,所述第一子配置信息和所述第二子配置信息中的任一项被激活。
  7. 根据权利要求4所述的方法,其中,所述第一BWP的配置信息携带定位参考信号的配置信息。
  8. 根据权利要求7所述的方法,其中,所述在所述第一BWP为所述专用初始BWP或者用于定位的BWP时,所述定位参考信号的配置信息包括第三子配置信息和第四子配置信息中的至少一项;其中,所述第三子配置信息为用于在所述终端在空闲态或非激活态下进行上行定位的定位参考信号的配置信息,所述第四子配置信息为用于在所述终端在连接态下进行上行定位的定位参考信号的配置信息。
  9. 根据权利要求7所述的方法,其中,当所述第一BWP为用于定位的BWP时,所述第一BWP的配置信息还包括第一使能状态标识和第二使能状态标识中的至少一项,所述第一使能状态标识用于指示是否为用于定位,所述第二使能状态指示用于指示是否用于空闲态或者非激活态。
  10. 根据权利要求2所述的方法,其中,所述第一BWP的配置信息包括以下至少一项:第一使能状态标识、第二使能状态标识、第一定位参考信号的配置信息、BWP周期、BWP激活偏移和BWP激活窗长;
    其中,所述第一使能状态标识用于指示是否为用于定位,所述第二使能状态指示用于指示是否用于空闲态或者非激活态。
  11. 根据权利要求1所述的方法,其中,所述功率配置信息包括以下至少一项:
    第一子功率配置信息;
    第三使能状态标识;
    其中,所述第三使能状态标识用于指示关联的子功率配置信息是否用于所述终端的空闲态或非激活态。
  12. 根据权利要求11所述的方法,其中,所述功率配置信息还包括第二子功率配置信息;其中,所述第一子功率配置信息和第二子功率配置信息满足以下至少一项:为不同定位参考信号的功率配置;为所述终端处于不同状 态下定位参考信号的功率配置。
  13. 根据权利要求12所述的方法,其中,所述第一子功率配置信息用于随机接入过程,和/或,所述第二子功率配置信息用于探测参考信号SRS。
  14. 根据权利要求13所述的方法,其中,所述第一子功率配置信息和所述第二子功率配置信息满足以下任一项:
    所述第一子功率配置信息和所述第二子功率配置信息包含于第一信息中,所述第一信息为服务小区配置信息或媒体接入控制MAC信息;
    所述第一子功率配置信息包含于第二信息中,所述第二子功率配置信息包含于无线资源控制RRC释放信息或第三信息中,所述第二信息为系统信息块SIB信息、MAC信息或随机接入信道Rach配置信息;所述第三信息包括服务小区配置信息、SRS配置信息、物理上行共享信道PUSCH配置信息或Rach配置信息;
    第一对象的第一部分信息包含于Rach配置信息中,所述第一对象中除所述第一部分信息之外的第二部分信息包含于所述第二信息中;
    其中,所述第一对象包括以下至少一项:所述第一子功率配置信息和所述第二子功率配置信息。
  15. 根据权利要求12所述的方法,其中,所述第一子功率配置信息用于SRS在连接态发送,和/或,所述第二子功率配置信息用于SRS在空闲态或者非激活态发送。
  16. 根据权利要求15所述的方法,其中,所述第一子功率配置信息包含于第四信息中,所述第二子功率配置信息包含于RRC释放信息或第三信息,其中,所述第四信息包括服务小区配置信息、SRS配置信息、物理上行共享信道PUSCH配置信息、Rach配置信息或MAC信息;所述第三信息包括服务小区配置信息、SRS配置信息、PUSCH配置信息或Rach配置信息。
  17. 根据权利要求1所述的方法,其中,所述空间关系配置信息包括以下至少一项:
    第一子空间关系配置信息;
    第四使能状态标识;
    其中,所述第四使能状态标识用于指示关联的子空间关系配置信息是否 用于所述终端的空闲态或非激活态。
  18. 根据权利要求17所述的方法,其中,所述空间关系配置信息还包括第二子空间关系配置信息;其中,所述第一子空间关系配置信息和第二子空间关系配置信息满足以下至少一项:为不同定位参考信号的空间关系配置;为所述终端处于不同状态下定位参考信号的空间关系配置。
  19. 根据权利要求18所述的方法,其中,所述第一子空间关系配置信息用于随机接入过程,和/或,所述第二子空间关系配置信息用于SRS。
  20. 根据权利要求19所述的方法,其中,所述第一子空间关系配置信息和所述第二子空间关系配置信息满足以下任一项:
    所述第一子空间关系配置信息和所述第二子空间关系配置信息包含于第四信息中,所述第四信息为服务小区配置信息或媒体接入控制MAC信息;
    所述第一子空间关系配置信息包含于第五信息中,所述第二子空间关系配置信息包含于无线资源控制RRC释放信息或第三信息中,所述第五信息为系统信息块SIB信息、MAC信息或随机接入信道Rach配置信息;所述第三信息包括服务小区配置信息、SRS配置信息、物理上行共享信道PUSCH配置信息或Rach配置信息;
    第一对象的第一部分信息包含于Rach配置信息中,所述第一对象中除所述第一部分信息之外的第二部分信息包含于所述第五信息中;
    其中,所述第一对象包括以下至少一项:所述第一子空间关系配置信息和所述第二子空间关系配置信息。
  21. 根据权利要求18所述的方法,其中,所述第一子空间关系配置信息用于SRS在连接态发送,和/或,所述第二子空间关系配置信息用于SRS在空闲态或者非激活态发送。
  22. 根据权利要求21所述的方法,其中,所述第一子空间关系配置信息包含于第六信息中,所述第二子空间关系配置信息包含于RRC释放信息或SRS配置信息中,其中,所述第六信息包括第三信息、物理上行共享信道PUSCH配置信息或Rach配置信息;所述第三信息包括服务小区配置信息、SRS配置信息、PUSCH配置信息或Rach配置信息。
  23. 根据权利要求1所述的方法,其中,所述功率配置信息和所述空间关 系配置信息中的至少一项包含于RRC释放信息或第三信息中,所述第三信息包括服务小区配置信息、SRS配置信息、PUSCH配置信息或Rach配置信息。
  24. 根据权利要求1所述的方法,其中,所述第一定位参考信号在第一BWP上的发送功率满足以下任一项:
    根据预期接收功率值、功率调整系数、所述第一定位参考信号的发送资源、路损值或最大发送功率确定第一发送功率;
    根据第二预期接收功率、最大发送功率、功率增减系数或计数器确定第二发送功率,所述计数器用于记录所述功率增系数增减次数;
    根据目标发送功率和/或功率增量确定第三发送功率;所述目标发送功率为所述第一发送功率、所述第二发送功率或预定发送功率。
  25. 根据权利要求24所述的方法,其中,所述第一发送功率满足以下任一项:
    Figure PCTCN2021140733-appb-100001
    Figure PCTCN2021140733-appb-100002
    Figure PCTCN2021140733-appb-100003
    其中,qs表示所述第一定位参考信号,qd表示路损信号,b表示用于发送所述第一定位参考信号的所述第一BWP,c表示服务小区或驻留小区,f表示载波,i表示第i次传输,h表示功率调整状态,μ表示子载波配置,α表示功率调整系数,PL表示所述路损值,P0表示预期接收功率值,PCMAX表示所述终端被配置的最大发送功率,M表示所述第一定位参考信号的带宽,l表示调整次数。
  26. 根据权利要求24所述的方法,其中,所述第二发送功率满足以下任一项:
    Figure PCTCN2021140733-appb-100004
    Figure PCTCN2021140733-appb-100005
    Figure PCTCN2021140733-appb-100006
    其中,qs表示所述第一定位参考信号,qd表示路损信号,b表示用于发送所述第一定位参考信号的所述第一BWP,c表示服务小区或驻留小区,f表示载波,i表示第i次传输,μ表示子载波配置,α表示功率调整系数,PL表示所述路损值,PCMAX表示所述终端被配置的最大发送功率,M表示所述第一定位参考信号的带宽,表示目标接收功率。
  27. 根据权利要求26所述的方法,其中,所述目标接收功率根据第二预期接收功率、功率增减系数和所述计数器中的至少一项确定。
  28. 根据权利要求24所述的方法,其中,所述方法还包括:
    根据目标参考信号确定所述路损值;其中,所述目标参考信号为所述第一配置信息指示的参考信号或者预设参考信号。
  29. 根据权利要求28所述的方法,其中,所述预设参考信号为以下任一项:SIB、满足预设条件的同步信号块SSB和默认SSB。
  30. 根据权利要求29所述的方法,其中,所述满足预设条件的同步信号块SSB包括以下任一项:
    接收功率最大的SSB;
    与物理下行控制信道PDCCH关联的SSB;
    与准备发送的前导码关联的SSB;
    接收功率大于预设值的SSB;
    与目标应答消息具有准共址QCL关系的SSB,所述目标应答消息为所述网络设备针对所述第一定位参考信号反馈的应答消息。
  31. 根据权利要求28所述的方法,其中,在所述目标参考信号的接收功率小于预设值或者未检测到所述目标参考信号的情况下,所述方法还包括:
    停止发送所述第一定位参考信号;
    或者,按照所述终端的最大发送功率发送所述第一定位参考信号。
  32. 根据权利要求1所述的方法,其中,N个所述第一定位参考信号的空间关系根据所述终端的发送波束数目和/或第一预设规则确定,其中,所述第一预设规则指示所述第一定位参考信号和发送波束的对应关系。
  33. 根据权利要求5所述的方法,其中,所述第一配置信息和第二配置信息中的至少一项通过第二对象承载,所述第二对象包括以下任一项:RRC释放消息、RRC暂停释放消息、寻呼消息、消息2、消息4、消息B、下行小数据传输、用于定位的预设SIB信息。
  34. 根据权利要求33所述的方法,其中,所述方法还包括:
    所述终端通过第三对象向网络设备发送请求信息,所述请求信息用于请求网络设备发送所述第一配置信息和所述第二配置信息中的至少一项:
    所述第三对象包括以下任一项:前导码、消息3、消息A、上行小数据传输或上行资源。
  35. 根据权利要求34所述的方法,其中,所述请求信息包括以下至少一项:所述终端的标识信息、小区无线网络临时标识、所述第一定位参考信号的标识、预设无线网络临时标识和服务小区标识。
  36. 一种上行定位处理方法,其中,包括:
    网络设备发送的第一配置信息,所述第一配置信息用于确定第一定位参考信号的目标信息;
    其中,所述第一配置信息包括功率配置信息和空间关系配置信息中的至少一项,在所述第一配置信息包括所述功率配置信息时,所述目标信息包括发送功率,在所述第一配置信息包括空间关系配置信息时,所述目标信息包括空间关系;所述第一定位参考信号用于终端在空闲态或非激活态下进行上行定位。
  37. 根据权利要求36所述的方法,其中,所述方法还包括:
    在第一部分带宽BWP上接收终端基于所述目标信息发送的所述第一定位参考信号。
  38. 根据权利要求37所述的方法,其中,所述第一BWP为所述终端处于空闲态或者非激活态时,所述终端的激活BWP。
  39. 根据权利要求38所述的方法,其中,所述第一BWP为以下至少一项BWP:
    初始BWP;
    专用初始BWP,所述专用初始BWP为仅用于所述终端处于空闲态或非 激活态时,进行上行定位的BWP;
    用于定位的BWP。
  40. 根据权利要求39所述的方法,其中,所述方法还包括:
    所述网络设备发送第二配置信息;
    其中,所述第二配置信息包括所述终端在空闲态或者非激活态使用第一子配置信息和第二子配置信息的至少一项;所述第一子配置信息为所述初始BWP的配置,所述第二子配置信息为所述专用初始BWP或用于定位的BWP的配置。
  41. 根据权利要求40所述的方法,其中,所述终端在空闲态或者非激活态时,所述第一子配置信息和所述第二子配置信息中的任一项被激活。
  42. 根据权利要求39所述的方法,其中,所述第一BWP的配置信息携带定位参考信号的配置信息。
  43. 根据权利要求42所述的方法,其中,所述在所述第一BWP为所述专用初始BWP或者用于定位的BWP时,所述定位参考信号的配置信息包括第三子配置信息和第四子配置信息中的至少一项;其中,所述第三子配置信息为用于在所述终端在空闲态或非激活态下进行上行定位的定位参考信号的配置信息,所述第四子配置信息为用于在所述终端在连接态下进行上行定位的定位参考信号的配置信息。
  44. 根据权利要求42所述的方法,其中,当所述第一BWP为用于定位的BWP时,所述第一BWP的配置信息还包括第一使能状态标识和第二使能状态标识中的至少一项,所述第一使能状态标识用于指示是否为用于定位,所述第二使能状态指示用于指示是否用于空闲态或者非激活态。
  45. 根据权利要求37所述的方法,其中,所述第一BWP的配置信息包括以下至少一项:第一使能状态标识、第二使能状态标识、第一定位参考信号的配置信息、BWP周期、BWP激活偏移和BWP激活窗长;
    其中,所述第一使能状态标识用于指示是否为用于定位,所述第二使能状态指示用于指示是否用于空闲态或者非激活态。
  46. 根据权利要求36所述的方法,其中,所述功率配置信息包括以下至少一项:
    第一子功率配置信息;
    第三使能状态标识;
    其中,所述第三使能状态标识用于指示关联的子功率配置信息是否用于所述终端的空闲态或非激活态。
  47. 根据权利要求46所述的方法,其中,所述功率配置信息还包括第二子功率配置信息;其中,所述第一子功率配置信息和第二子功率配置信息满足以下至少一项:为不同定位参考信号的功率配置;为所述终端处于不同状态下定位参考信号的功率配置。
  48. 根据权利要求47所述的方法,其中,所述第一子功率配置信息用于随机接入过程,和/或,所述第二子功率配置信息用于探测参考信号SRS。
  49. 根据权利要求47所述的方法,其中,所述第一子功率配置信息用于SRS在连接态发送,和/或,所述第二子功率配置信息用于SRS在空闲态或者非激活态发送。
  50. 根据权利要求36所述的方法,其中,所述空间关系配置信息包括以下至少一项:
    第一子空间关系配置信息;
    第四使能状态标识;
    其中,所述第四使能状态标识用于指示关联的子空间关系配置信息是否用于所述终端的空闲态或非激活态。
  51. 根据权利要求50所述的方法,其中,所述空间关系配置信息还包括第二子空间关系配置信息;其中,所述第一子空间关系配置信息和第二子空间关系配置信息满足以下至少一项:为不同定位参考信号的空间关系配置;为所述终端处于不同状态下定位参考信号的空间关系配置。
  52. 根据权利要求51所述的方法,其中,所述第一子空间关系配置信息用于随机接入过程,和/或,所述第二子空间关系配置信息用于SRS。
  53. 根据权利要求51所述的方法,其中,所述第一子空间关系配置信息用于SRS在连接态发送,和/或,所述第二子空间关系配置信息用于SRS在空闲态或者非激活态发送。
  54. 根据权利要求36所述的方法,其中,所述功率配置信息和所述空间 关系配置信息中的至少一项包含于RRC释放信息或第三信息中,所述第三信息包括服务小区配置信息、SRS配置信息、PUSCH配置信息或Rach配置信息。
  55. 根据权利要求36所述的方法,其中,所述第一定位参考信号在第一BWP上的发送功率满足以下任一项:
    根据预期接收功率值、功率调整系数、所述第一定位参考信号的发送资源、路损值或最大发送功率确定第一发送功率;
    根据第二预期接收功率、最大发送功率、功率增减系数或计数器确定第二发送功率,所述计数器用于记录所述功率增系数增减次数;
    根据目标发送功率和/或功率增量确定第三发送功率;所述目标发送功率为所述第一发送功率、所述第二发送功率或预定发送功率。
  56. 根据权利要求55所述的方法,其中,所述方法还包括:
    所述网络设备根据第二预期接收功率、功率增减系数和所述计数器中的至少一项确定目标接收功率,所述目标接收功率用于确定所述第一定位参考信号在第一BWP上的发送功率。
  57. 根据权利要求36所述的方法,其中,N个所述第一定位参考信号的空间关系根据所述终端的发送波束数目和/或第一预设规则确定,其中,所述第一预设规则指示所述第一定位参考信号和发送波束的对应关系。
  58. 根据权利要求40所述的方法,其中,所述方法还包括:
    所述网络设备通过第三对象接收终端发送请求信息,所述请求信息用于请求网络设备发送所述第一配置信息和所述第二配置信息中的至少一项:
    所述第三对象包括以下任一项:前导码、消息3、消息A、上行小数据传输或上行资源。
  59. 根据权利要求58所述的方法,其中,所述请求信息包括以下至少一项:所述终端的标识信息、小区无线网络临时标识、所述第一定位参考信号的标识、预设无线网络临时标识和服务小区标识。
  60. 一种上行定位处理装置,包括:
    第一接收模块,用于终端接收网络设备发送的第一配置信息;
    确定模块,用于所述终端根据所述第一配置信息确定第一定位参考信号 的目标信息;
    其中,所述第一配置信息包括功率配置信息和空间关系配置信息中的至少一项,在所述第一配置信息包括所述功率配置信息时,所述目标信息包括发送功率,在所述第一配置信息包括空间关系配置信息时,所述目标信息包括空间关系;所述第一定位参考信号用于所述终端在空闲态或非激活态下进行上行定位。
  61. 根据权利要求60所述的装置,其中,所述第一配置信息包括功率配置信息,所述确定模块包括:
    第一确定单元,用于确定用于发送所述第一定位参考信号的第一部分带宽BWP;
    第二确定单元,用于根据所述功率配置信息和所述第一BWP确定所述第一定位参考信号的发送功率。
  62. 一种上行定位处理装置,包括:
    第一发送模块,用于网络设备发送的第一配置信息,所述第一配置信息用于确定第一定位参考信号的目标信息;
    其中,所述第一配置信息包括功率配置信息和空间关系配置信息中的至少一项,在所述第一配置信息包括所述功率配置信息时,所述目标信息包括发送功率,在所述第一配置信息包括空间关系配置信息时,所述目标信息包括空间关系;所述第一定位参考信号用于终端在空闲态或非激活态下进行上行定位。
  63. 一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现如权利要求1至35中任一项所述的上行定位处理方法中的步骤。
  64. 一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求36至59中任一项所述的上行定位处理方法中的步骤。
  65. 一种可读存储介质,所述可读存储介质上存储程序或指令,其中,所述程序或指被处理器执行时实现如权利要求1至59中任一项所述的上行定位处理方法的步骤。
  66. 一种芯片,包括处理器和通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至59中任一项所述的上行定位处理方法的步骤。
  67. 一种计算机程序产品,其中,所述计算机程序产品被存储在非瞬态存储介质中,所述计算机程序产品被至少一个处理器执行以实现如权利要求1至59中任一项所述的数据传输方法的步骤。
  68. 一种通信设备,被配置为执行如权利要求1至59中任一项所述的数据传输方法的步骤。
PCT/CN2021/140733 2020-12-23 2021-12-23 上行定位处理方法及相关设备 WO2022135504A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023538696A JP2024501936A (ja) 2020-12-23 2021-12-23 上りリンク測位処理方法及び関連機器
EP21909499.2A EP4271052A1 (en) 2020-12-23 2021-12-23 Uplink positioning processing method and related device
US18/212,708 US20230336308A1 (en) 2020-12-23 2023-06-21 Uplink positioning processing method and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011546194.7A CN114666875A (zh) 2020-12-23 2020-12-23 上行定位处理方法及相关设备
CN202011546194.7 2020-12-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/212,708 Continuation US20230336308A1 (en) 2020-12-23 2023-06-21 Uplink positioning processing method and related device

Publications (1)

Publication Number Publication Date
WO2022135504A1 true WO2022135504A1 (zh) 2022-06-30

Family

ID=82024717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140733 WO2022135504A1 (zh) 2020-12-23 2021-12-23 上行定位处理方法及相关设备

Country Status (5)

Country Link
US (1) US20230336308A1 (zh)
EP (1) EP4271052A1 (zh)
JP (1) JP2024501936A (zh)
CN (1) CN114666875A (zh)
WO (1) WO2022135504A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024031561A1 (en) * 2022-08-11 2024-02-15 Nokia Shanghai Bell Co., Ltd. Improved positioning activity
CN117835262A (zh) * 2022-09-26 2024-04-05 维沃移动通信有限公司 Ai模型的处理方法、装置及通信设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278116A (zh) * 2018-12-28 2020-06-12 维沃移动通信有限公司 上行信号发送方法及装置
CN111278088A (zh) * 2019-01-04 2020-06-12 维沃移动通信有限公司 定位方法及终端
US20200267685A1 (en) * 2019-02-14 2020-08-20 Samsung Electronics Co., Ltd. Position of user equipment
CN111586855A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 信号传输的方法与装置
CN112787780A (zh) * 2019-11-07 2021-05-11 维沃移动通信有限公司 Srs发射设置方法、信息配置方法、定位方法和相关设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018171476A1 (zh) * 2017-03-22 2018-09-27 华为技术有限公司 用于传输数据的方法和终端设备
CN110690947B (zh) * 2018-07-04 2022-11-25 维沃移动通信有限公司 信号处理方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278116A (zh) * 2018-12-28 2020-06-12 维沃移动通信有限公司 上行信号发送方法及装置
CN111278088A (zh) * 2019-01-04 2020-06-12 维沃移动通信有限公司 定位方法及终端
US20200267685A1 (en) * 2019-02-14 2020-08-20 Samsung Electronics Co., Ltd. Position of user equipment
CN111586855A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 信号传输的方法与装置
CN112787780A (zh) * 2019-11-07 2021-05-11 维沃移动通信有限公司 Srs发射设置方法、信息配置方法、定位方法和相关设备

Also Published As

Publication number Publication date
EP4271052A1 (en) 2023-11-01
JP2024501936A (ja) 2024-01-17
CN114666875A (zh) 2022-06-24
US20230336308A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
WO2022028467A1 (zh) 定位方法、装置及相关设备
WO2022135504A1 (zh) 上行定位处理方法及相关设备
WO2022135506A1 (zh) 非连接态定位方法、装置及设备
WO2022042752A1 (zh) 物理下行控制信道的监听方法、装置和设备
US20240031934A1 (en) Positioning method, terminal, and network-side device
WO2022017359A1 (zh) 直接通信启动控制方法及相关设备
WO2022028455A1 (zh) 小区切换方法和终端
WO2022078502A1 (zh) 功率确定方法、装置、终端及可读存储介质
WO2022017360A1 (zh) 直接通信启动控制方法及相关设备
US20230239933A1 (en) Random access method and apparatus, and related device
US20230217512A1 (en) Connection establishment method, apparatus, device, and storage medium
US20240073818A9 (en) Indication method of power saving mode, and terminal and network side device
WO2022184101A1 (zh) 间隙gap处理方法、装置、设备及存储介质
WO2022127850A1 (zh) Pdcch监听方法、终端和网络侧设备
WO2022068795A1 (zh) 随机接入方法、装置、终端及可读存储介质
WO2022028460A1 (zh) Css监测方法和终端
CN113973393A (zh) 随机接入方法、装置、设备及系统
WO2022068752A1 (zh) 通信资源激活方法、终端及网络侧设备
WO2022063102A1 (zh) 功率控制方法、终端及网络侧设备
JPWO2020065802A1 (ja) ユーザ装置
WO2022033476A1 (zh) 处理方法、配置方法及相关设备
WO2022152240A1 (zh) 非周期srs的传输方法和设备
WO2022017479A1 (zh) 小区调度方式确定方法、装置、终端及网络侧设备
WO2023066129A1 (zh) 信息上报方法、设备及可读存储介质
WO2023011457A1 (zh) 辅小区组状态控制方法、装置、网元及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909499

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538696

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021909499

Country of ref document: EP

Effective date: 20230724