WO2022135245A1 - 反应堆非能动安全系统 - Google Patents

反应堆非能动安全系统 Download PDF

Info

Publication number
WO2022135245A1
WO2022135245A1 PCT/CN2021/138587 CN2021138587W WO2022135245A1 WO 2022135245 A1 WO2022135245 A1 WO 2022135245A1 CN 2021138587 W CN2021138587 W CN 2021138587W WO 2022135245 A1 WO2022135245 A1 WO 2022135245A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
reactor
shell
passive
main circuit
Prior art date
Application number
PCT/CN2021/138587
Other languages
English (en)
French (fr)
Inventor
刘展
杨波
曹克美
刘镝
王海涛
戚展飞
Original Assignee
上海核工程研究设计院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海核工程研究设计院有限公司 filed Critical 上海核工程研究设计院有限公司
Priority to JP2023537932A priority Critical patent/JP2024500458A/ja
Publication of WO2022135245A1 publication Critical patent/WO2022135245A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to the technical field of safety of nuclear energy systems.
  • the present application provides a passive safety system for a reactor, which makes full use of the infinite operating environment of the ocean or the atmosphere, effectively responds to the design basis accident of a nuclear power plant, ensures the safety of the reactor, and simplifies the system design to the greatest extent, and cancels the current power plant.
  • Multiple redundant series of high, medium and low voltage safety injections are necessary to reduce the size of nuclear power plants or reactor cabins and greatly improve the economy.
  • the present application provides a reactor passive safety system, including a pressure vessel, a reactor cabin disposed outside the pressure vessel, a reactor core and a main loop heat exchanger disposed inside the pressure vessel, and the reactor passive safety system is further provided with a non-active safety system.
  • Active residual heat exchanger and water replenishment tank the main circuit heat exchanger is arranged above the reactor core, the main circuit heat exchanger and the passive residual heat exchanger are connected by the heat exchanger inlet pipeline and the heat exchanger outlet pipeline to form a heat exchange circuit, One end of the water supply tank is connected with the heat exchanger inlet pipeline, and the other end is connected with the heat exchanger outlet pipeline, so that the water supply tank and the passive residual heat exchanger form a parallel circuit.
  • the pressure vessel includes a first layer of shell and a second layer of shell arranged on top of the first layer of shell, a double-layer structure is formed on the top of the first layer of shell, and the second layer of shell and the first layer of shell are fixed
  • a voltage stabilizer is installed, the voltage stabilizer is connected to the top of the first layer shell of the pressure vessel through the stabilizer wave pipe, and the second layer shell is connected with a plurality of main circuit pipelines, and the upper end of each main circuit pipeline penetrates through The second shell extends above it.
  • an isolation valve for the main circuit pipeline between the double-layer shells is installed on each main circuit pipeline, and the isolation valve for the main circuit pipeline between the double-layer shells is arranged between the second-layer shell and the first-layer shell.
  • the passive waste heat heat exchanger is arranged inside the cabin and connected to the inner wall of the cabin.
  • the passive waste heat heat exchanger is arranged outside the reactor cabin and is immersed in seawater or atmospheric environment.
  • an isolation valve of the main circuit pipeline outside the shell is installed on each main circuit pipeline, and the isolation valve of the main circuit pipeline outside the shell is arranged between the second layer of the shell and the stack.
  • a heat exchanger outlet isolation valve is provided on the heat exchanger outlet pipeline, and the heat exchanger outlet isolation valve is arranged between the main circuit heat exchanger and the water replenishment tank.
  • an outlet isolation valve of the replenishment tank is provided between the replenishment tank and the outlet pipeline of the heat exchanger.
  • the reactor passive safety system includes at least two heat exchange circuits consisting of a main circuit heat exchanger, a passive residual heat exchanger and a make-up tank.
  • the invention adopts the passive safety design concept, does not rely on external driving force, greatly reduces the failure probability of the active system, and improves the safety of the reactor.
  • Adopting an all-natural circulation design the main circuit does not need a reactor coolant pump, which simplifies the design, reduces the failure and cancellation of operation and maintenance of the current active reactor type reactor coolant pump, and improves the safety of the reactor.
  • Fig. 1 is the schematic diagram of a preferred embodiment of the present invention
  • FIG. 2 is a schematic diagram of another preferred embodiment of the present invention.
  • 1 secure
  • 2 main circuit pipeline
  • 3 main circuit pipeline isolation valve outside the shell
  • 4 main circuit pipeline isolation valve between double-layer shells
  • 5 second shell
  • 6 pressurizer
  • 7 Pressure surge pipe
  • 8 Heat exchanger inlet pipeline
  • 9 Mainn circuit heat exchanger
  • 10 Passive residual heat exchanger
  • 11 Heat exchanger outlet pipeline
  • 12 Heat exchanger outlet isolation valve
  • 13 the first layer of shell
  • 14 reactor core
  • 16 isolation valve for the outlet of the replenishment tank.
  • the integrated design shows its unique advantages.
  • the main equipment of the main coolant system is located in the pressure vessel, including the steam generator, etc.
  • the integrated design cancels the main pipeline and eliminates the possibility of large rupture accidents.
  • the innovation and simplification adopts the top double-layer shell design, matching the corresponding valve to reduce the risk of bullet rod accident, and even eliminate the bullet rod accident to ensure the safety of the reactor, and greatly simplify the system design and reduce the double-layer pressure vessel shell.
  • the unfavorable economics of design and the complexity of maintenance enhance the competitive advantage of small reactors for space.
  • the main coolant system removes the heat of the reactor core through the natural circulation of the main circuit to the passive special safety system to take away, which belongs to the implementation of passive special safety system important part of the path.
  • the invention makes full use of the infinite operating environment of the ocean or atmosphere, and proposes an advanced and simplified reactor passive special safety system, which can effectively deal with the design basis accident of the nuclear power plant, ensure the safety of the reactor, and simplifies the system design to the greatest extent. Redundant series of high, medium and low pressure safety injections reduce the size of nuclear power plants or reactor cabins and greatly improve economics.
  • the technical solutions of the present invention are described in detail below.
  • FIG. 1 is a schematic diagram of a preferred embodiment of the present invention.
  • the reactor passive safety system of the present invention includes a pressure vessel, a reactor cabin 1 arranged outside the pressure vessel, a reactor core 14 and a main loop heat exchanger 9 arranged inside the pressure vessel, and also A passive residual heat exchanger 10 and a supplementary water tank 15 are provided, the pressure vessel includes a first layer of shell 13 and a second layer of shell 5, and the external environment of the reactor cabin 1 is seawater or atmosphere.
  • the pressure vessel is an airtight vessel that accommodates the reactor core 14 and withstands the operating pressure of the reactor.
  • the pressure vessel is placed in the reactor compartment 1.
  • the reactor compartment 1 can protect the pressure vessel and other equipment from environmental damage and prevent nuclear leakage of the equipment.
  • the main loop heat exchanger 9 is arranged above the reactor core 14.
  • the main loop heat exchanger 9 and the passive residual heat exchanger 10 are connected by the heat exchanger inlet line 8 and the heat exchanger outlet line 11 to form a heat exchange loop.
  • One end of 15 is connected to the heat exchanger inlet pipeline 8, and the other end is connected to the heat exchanger outlet pipeline 11, so that the water supplement tank 15 and the passive residual heat exchanger 10 form a parallel circuit.
  • the main circuit heat exchanger 9 is connected to the passive waste heat exchanger 10 through the heat exchanger inlet line 8, and the fluid without heat release, due to its higher temperature, enters the heat exchanger inlet line from the main circuit heat exchanger 9 8. After the fluid flows into the passive waste heat exchanger 10 for cooling, it flows into the main circuit heat exchanger 9 through the heat exchanger outlet line 11 again. Due to the density difference formed by the cold and heat of the fluid, a natural circulation loop is formed.
  • the supplementary water tank 15 is arranged between the main circuit heat exchanger 9 and the passive residual heat exchanger 10, and forms a parallel circuit with the passive residual heat exchanger 10. When the fluid is cooled by the passive residual heat exchanger 10, the supplementary water tank can be used for cooling. 15 to replenish water to make up for the shortage of water level reduction caused by factors such as coolant shrinkage in the natural circulation loop, to ensure a long-term stable natural circulation, to effectively remove the heat of the reactor core 14, and to ensure the safety of the reactor.
  • This design effectively utilizes the double shell of the pressure vessel (the first shell 13 and the second shell 5) and the pipeline and valve arrangement (the main circuit pipeline isolation valve 3 outside the shell and the main circuit pipeline isolation valve between the double shells) 4), when the LOCA accident (loss of main circuit coolant accident) occurs, effectively isolate the breach, reduce or even cancel the water replenishment of the main circuit, and maximize the cooling and pressure reduction of the main circuit through the passive residual heat exchanger 10 to effectively alleviate the accident.
  • the related equipment that uses high, medium and low pressure safety injection in the current reactor type can be cancelled.
  • the primary and secondary circuits have several reactor coolant pumps (usually each circuit is equipped with a primary pump) to drive the fluid flow.
  • the circuits inside the pressure vessel and the passive waste heat exchanger 10 are
  • the natural circulation design eliminates the need to install the main loop reactor coolant pump and the secondary side waste heat removal system pump, and realizes the heat transfer of the natural circulation through the density difference, realizes the operation of the natural circulation mode, simplifies the design to the greatest extent, reduces the cost, and eliminates the pump. failure and operation and maintenance.
  • the passive residual heat exchanger 10 is disposed inside the reactor compartment 1 and is in contact with the inner wall surface of the reactor compartment 1 .
  • the decay heat is discharged in an infinite time through the heat exchange between the metal wall and the ocean or the atmosphere.
  • FIG. 2 is a schematic diagram of another preferred embodiment of the present invention.
  • the passive residual heat exchanger 10 is arranged outside the reactor tank 1 , immersed in seawater or placed in the atmospheric environment.
  • the decay heat is discharged indefinitely by convective heat exchange with seawater or the atmosphere.
  • the pressure vessel includes a first layer of shell 13 and a second layer of shell 5 disposed on top of the first layer of shell 13, forming a double-layer structure on top of the first layer of shell 13, and the second layer of shell
  • a voltage stabilizer 6 is fixedly installed between the body 5 and the first layer of shell 13, and the voltage stabilizer 6 is connected to the top of the first layer of the shell 13 of the pressure vessel through the voltage stabilizer wave tube 7, on the first layer of the shell 13
  • a plurality of main circuit pipelines 2 are communicated with each other, and the upper end of each main circuit pipeline 2 penetrates through the second layer shell 5 and extends above it.
  • the voltage stabilizer 6 and the voltage stabilizer wave tube 7 are arranged between the second shell 5 and the first shell 13, and the main circuit pipeline 2 passes through the second shell 5 and the first shell 13, Combined with the application of the main circuit pipeline isolation valve 3 outside the shell and the main circuit pipeline isolation valve 4 between the double shells, it can effectively isolate the breach, reduce or even cancel the main circuit water replenishment under LOCA;
  • the main circuit in the pressure vessel is cooled and depressurized by the heat exchange circuit of the passive residual heat exchanger 10 and the main circuit heat exchanger 9 to the maximum extent, which can effectively alleviate the consequences of the LOCA accident, thereby eliminating the need for low-pressure injection or pressure accumulation in typical reactor types. Injection cooling increases equipment.
  • the risk of the rod accident can be reduced, or even canceled, the impact of the rod limit accident on the reactor core 14 can be effectively alleviated, and the safety of the reactor system can be ensured.
  • each main circuit line 2 is provided with a main circuit line isolation valve 4 between the double-layer shells, and the main circuit line isolation valve 4 between the double-layer shells is arranged on the second shell 5 and the first shell between layer shells 13 .
  • the coolant in the pressure vessel leaks through the rupture on the main circuit line 2. After the rupture is detected, the main circuit between the double shells is quickly closed. If the pipeline isolation valve 4 is installed, the coolant in the pressure vessel is contained in the first layer of shell 13, and through the natural circulation of the coolant in the pressure vessel, the reactor core 14 can still be effectively cooled; the reactor core 14 releases heat after the accident The heat is carried from the main circuit heat exchanger 9 to the passive residual heat exchanger 10 through the heat exchanger inlet pipeline 8.
  • the heat transfer pipe of the passive residual heat exchanger 10 is in direct contact with the wall surface of the reactor cabin 1, and the heat is passed through heat conduction or convection. The way of heat exchange is finally transferred to the seawater or atmospheric environment to achieve infinite cooling.
  • each main circuit line 2 is provided with a main circuit line isolation valve 3 outside the shell, and the main circuit line isolation valve 3 outside the shell is arranged between the second layer of shell 5 and the stack 1 .
  • the coolant in the pressure vessel leaks through the break on the main circuit line 2.
  • the reactor coolant is still contained in the second shell 5, a new pressure boundary is formed through the second shell 5 at the top, and the reactor core can still be effectively cooled through the natural circulation of the coolant in the pressure vessel 14.
  • the heat released from the reactor core 14 will be carried from the main circuit heat exchanger 9 through the heat exchanger inlet pipeline 8 to the passive residual heat exchanger 10.
  • the heat transfer tubes of the passive residual heat exchanger 10 are connected to the reactor cabin. 1 The walls are in direct contact, and the heat is finally transferred to the seawater or the atmospheric environment through thermal conduction or convection heat transfer to achieve infinite cooling.
  • the injected coolant is still contained in the second shell 5 of the pressure vessel, which still plays a role in relieving the cooling of the reactor core 14; under this condition, the reactor pressure boundary does not Not damaged (a design basis non-LOCA incident).
  • the accident process is similar to the rupture accident of the main circuit-related pipeline 2 between the second shell 5 at the top of the pressure vessel and the first shell 13 of the pressure vessel, and the accident mitigation method is also the same.
  • the mitigation method is similar to the LOCA accident: after the accident, the heat released by the reactor core 14 will pass through the passive residual heat exchanger 10 and The heat exchange circuit of the main circuit heat exchanger 9 takes the heat into the passive residual heat exchanger 10.
  • the heat transfer pipe of the passive residual heat exchanger 10 is in direct contact with the wall surface of the reactor cabin 1, and the heat is finally transferred by means of heat conduction or convection heat exchange. Transfer to seawater or atmospheric environment.
  • a heat exchanger outlet isolation valve 12 is provided on the heat exchanger outlet line 11 , and the heat exchanger outlet isolation valve 12 is arranged between the main circuit heat exchanger 9 and the supplementary water tank 15 . During normal operation of the reactor, the heat exchanger outlet isolation valve 12 is normally closed.
  • the heat exchanger outlet isolation valve 12 is opened to keep the heat exchange circuit in a flow state, thereby forming a fluid heat exchange circuit.
  • a makeup tank outlet isolation valve 16 is provided between the makeup tank 15 and the heat exchanger outlet line 11 .
  • the reactor passive safety system includes at least two heat exchange loops consisting of the main loop heat exchanger 9 , the passive residual heat exchanger 10 and the make-up tank 15 .
  • the passive safety system of the reactor includes at least two heat exchange loops consisting of the main loop heat exchanger 9, the passive residual heat exchanger 10 and the make-up water tank 15, that is, it should be considered that there is still a
  • the series effectively removes heat from the reactor core 14 to ensure the safety of the reactor system.

Abstract

一种反应堆非能动安全系统,包括压力容器、设置在压力容器外部的堆舱(1)、及设置在压力容器内部的反应堆堆芯和主回路换热器,压力容器包括第一层壳体(13)和设置在第一层壳体(13)顶部的第二层壳体(5),在第一层壳体(13)顶部形成双层结构,反应堆非能动安全系统还设有非能动余热交换器(10)和补水箱(15),主回路换热器(9)设置在反应堆堆芯上方,主回路换热器(9)及非能动余热交换器(10)通过热交换器进口管线(8)和热交换器出口管线(11)相连接形成换热回路,补水箱(15)一端与热交换器进口管线(8)连接,另一端与热交换器出口管线(11)连接,使补水箱(15)与非能动余热交换器(10)形成并联回路。反应堆非能动安全系统充分利用海洋或大气的无限运行环境,有效应对核电厂设计基准事故,保证反应堆安全性,且最大限度的简化设备,提升经济性。

Description

反应堆非能动安全系统
相关申请的交叉引用
本申请要求享有于2020年12月24日提交的名称为“一种先进简化的小堆非能动专设安全系统”的中国专利申请202011551710.5的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本发明涉及核能系统的安全技术领域。
背景技术
随着我国工业化进程的发展,对海洋资源的开发和陆地偏远地区资源的开发愈加显得迫切。而海洋开发,尤其是深海资源开发,需要稳定、大容量的电能与热能,由于环境和用途的特殊性,小型反应堆(电功率小于300MWe)核能系统成为海洋开发最具有优势的热、电能源系统。因为小型反应堆换料周期为2年或更长,可长时间提供充足可靠的电和热,将小型核电、热供应站装载于输送船或移动平台上为不同海域上资源的开发提供电力和海水淡化的热能,具有非常良好的市场前景。此外,小型反应堆核能系统还可以为偏远地区供电供暖,为海上破冰船和其他船舶提供动力。
为提高反应堆安全性,应对反应堆设计基准失水事故(LOCA)及非失水事故(非LOCA),专设安全设施配置方案的优劣直接决定了反应堆堆型设计的成败。如何采用最优化的专设安全设施配置方案缓解设计基准事故,在保证安全性的前提下简化系统设计,提升经济性,历来是反应堆堆型研发中需要重点关注的内容。
发明内容
为了解决上述问题,本申请提供一种反应堆非能动安全系统,充分利用海洋或大气的无限运行环境,有效应对核电厂设计基准事故,保证反应堆安全性,且最大限度的简化系统设计,取消当前电厂必备的多个冗余系列高、中、低压安注,降低核电厂或堆舱尺寸,极大提升经济性。
本申请提供一种反应堆非能动安全系统,包括压力容器、设置在压力容器外部的堆舱、及设置在压力容器内部的反应堆堆芯和主回路换热器,反应堆非能动安全系统还设有非能动余热交换器和补水箱,主回路换热器设置在反应堆堆芯上方,主回路换热器及非能动余热交换器通过热交换器进口管线和热交换器出口管线相连接形成换热回路,补水箱一端与热交换器进口管线连接,另一端与热交换器出口管线连接,使补水箱与非能动余热交换器形成并联回路。压力容器包括第一层壳体以及设置在第一层壳体顶部的第二层壳体,在第一层壳体顶部形成双层结构,第二层壳体与第一层壳体之间固定安装有稳压器,稳压器通过稳压器波动管连接在压力容器第一层壳体的顶部,第二层壳体上连通有多个主回路管线,每个主回路管线的上端均贯穿第二层壳体并延伸至其上方。
优选地,每个主回路管线上均安装有双层壳体间主回路管线隔离阀,双层壳体间主回路管线隔离阀设置在第二层壳体和第一层壳体之间。
优选地,非能动余热热交换器设置于堆舱内部,与堆舱内壁面相连。
优选地,非能动余热热交换器设置于堆舱外部,浸泡于海水或大气环境中。
优选地,每个主回路管线上均安装有壳体外主回路管线隔离阀,壳体外主回路管线隔离阀设置在第二层壳体和堆舱之间。
优选地,热交换器出口管线上设置有热交换器出口隔离阀,热交换器出口隔离阀设置在主回路换热器和补水箱之间。
优选地,补水箱与热交换器出口管线之间设有补水箱出口隔离阀。
优选地,反应堆非能动安全系统包括至少两个由主回路换热器、非能动余 热交换器和补水箱组成的换热回路。
本发明采用非能动的安全设计理念,不依赖外部驱动力,极大地降低能动系统失效概率,提升反应堆的安全性。采用全自然循环设计,主回路无需反应堆冷却剂泵,简化设计,降低当前能动堆型反应堆冷却剂泵的故障和取消运维,提升反应堆的安全性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需使用的附图作简单地介绍,显而易见,以下描述的附图仅仅是本申请的具体实施例,本领域技术人员在不付出创造性劳动的前提下,可以根据以下附图获得其他实施例。
图1是本发明的一个较佳实施例的示意图;
图2是本发明的另一个较佳实施例的示意图。
其中,1—堆舱;2—主回路管线;3—壳体外主回路管线隔离阀;4—双层壳体间主回路管线隔离阀;5—第二层壳体;6—稳压器;7—稳压器波动管;8—热交换器入口管线;9—主回路换热器;10—非能动余热交换器;11—热交换器出口管线;12—热交换器出口隔离阀;13—第一层壳体;14—反应堆堆芯;15—补水箱;16—补水箱出口隔离阀。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
具体实施方式
为了更好地理解本申请的技术方案,下面结合附图对本申请实施例进行详 细描述。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
需要注意的是,本申请实施例所描述的“上”、“下”、“左”、“右”等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。此外,在上下文中,还需要理解的是,当提到一个元件连接在另一个元件“上”或者“下”时,其不仅能够直接连接在另一个元件“上”或者“下”,也可以通过中间元件间接连接在另一个元件“上”或者“下”。
对于小型反应堆,一体化设计显示出其独特的优势,主冷却剂系统主要设备均位于压力容器内,包括蒸汽发生器等,一体化的设计取消了主管道,消除了大破口事故发生的可能性。与此同时,创新简化采用顶部双层壳体设计,匹配相应的阀门降低弹棒事故风险,甚至消除弹棒事故,保证反应堆的安全性,并大幅简化系统设计,减小双层压力容器壳体设计带来的不利经济性以及维修的复杂性,提升小型堆对空间的竞争优势。事故缓解过程中,匹配创新的顶部双层壳体设计,主冷却剂系统通过主回路的自然循环将反应堆堆芯的热量移出至非能动专设安全系统带走,属于非能动专设安全系统实施路径的重要组成部分。
本发明充分利用海洋或大气的无限运行环境,提出一种先进简化的反应堆 非能动专设安全系统,有效应对核电厂设计基准事故,保证反应堆安全性,且最大限度的简化系统设计,取消多个冗余系列的高、中、低压安注,降低核电厂或堆舱尺寸,极大提升经济性。以下对本发明技术方案进行详细描述。
图1是本发明的一个较佳实施例的示意图。
如图1所示,本发明的反应堆非能动安全系统,包括压力容器、以及设置在压力容器外部的堆舱1,及设置在压力容器内部的反应堆堆芯14和主回路换热器9,还设有非能动余热交换器10和补水箱15,压力容器包括第一层壳体13和第二层壳体5,堆舱1的外部环境为海水或者大气。压力容器为容纳反应堆堆芯14并承受反应堆运行压力的密闭容器,压力容器置于堆舱1内,堆舱1可以保护压力容器及其他设备不受环境影响而破坏,同时防止设备发生核泄漏。
主回路换热器9设置在反应堆堆芯14上方,主回路换热器9及非能动余热交换器10通过热交换器进口管线8和热交换器出口管线11相连接形成换热回路,补水箱15一端与热交换器进口管线8连接,另一端与热交换器出口管线11连接,使补水箱15与非能动余热交换器10形成并联回路。
主回路换热器9通过热交换器进口管线8与非能动余热交换器10相连接,未经释热的流体,由于具有较高的温度,从主回路换热器9进入热交换器进口管线8,流体流入非能动余热交换器10进行冷却后,再由热交换器出口管线11再次流入主回路换热器9,由于流体的冷热形成的密度差,从而形成自然循环回路。补水箱15设置在主回路换热器9和非能动余热交换器10之间,与非能动余热交换器10形成并联回路,在通过非能动余热交换器10对流体进行冷却时,可通过补水箱15进行补水,弥补该自然循环回路中因冷却剂收缩等因素引起的水位降低方面的不足,保证能够长期稳定建立自然循环,有效移出反应堆堆芯14热量,确保反应堆的安全性。
本设计有效利用压力容器双层壳体(第一层壳体13和第二层壳体5)和管线及阀门布置(壳体外主回路管线隔离阀3和双层壳体间主回路管线隔离阀4), 当发生LOCA事故(丧失主回路冷却剂事故)时,有效隔离破口,减少甚至取消主回路的补水,最大限度地通过非能动余热交换器10对主回路降温降压,有效缓解事故后果,从而可取消目前反应堆堆型中采用高、中、低压安注的相关设备。
传统电厂中主回路和次回路有若干台反应堆冷却剂泵(通常每个环路配置一台主泵)来驱动流体流动,本实施例中压力容器内部和非能动余热交换器10的回路都为自然循环设计,无需设置主回路反应堆冷却剂泵和二次侧余热排出系统泵,而通过密度差实现全自然循环热量传递,实现了全自然循环模式运行,最大限度简化设计降低成本,又消除泵的故障和运维。
如图1所示,在一些实施例中,非能动余热交换器10设置于堆舱1内部,与堆舱1内壁面相接触。通过金属壁面与海洋或大气换热实现无限时排出衰变热。
图2是本发明的另一个较佳实施例的示意图。
如图2所示,在另一些实施例中,非能动余热交换器10设置于堆舱1外部,浸泡于海水或置于大气环境中。通过与海水或大气的对流换热实现无限时排出衰变热。
在一些实施例中,压力容器包括第一层壳体13以及设置在第一层壳体13顶部的第二层壳体5,在第一层壳体13顶部形成双层结构,第二层壳体5与第一层壳体13之间固定安装有稳压器6,稳压器6通过稳压器波动管7连接在压力容器第一层壳体13的顶部,第一层壳体13上连通有多个主回路管线2,每个主回路管线2的上端均贯穿第二层壳体5并延伸至其上方。
将稳压器6、稳压器波动管7设置在第二层壳体5、第一层壳体13之间,主回路管线2穿过第二层壳体5、第一层壳体13,结合壳体外主回路管线隔离阀3和双层壳体间主回路管线隔离阀4的应用,可有效隔离破口,减少甚至取消LOCA下的主回路补水;并且,有效利用两层壳体,最大限度地通过非能动余热交换器10与主回路换热器9的换热回路对压力容器内主回路降温降压,有效缓解LOCA事故后果,从而可取消典型反应堆堆型中采用低压注射或蓄压注射冷却 增加的设备。
同时,通过提高双层壳体之间的压力,可降低弹棒事故的风险,甚至取消弹棒事故,有效缓解因弹棒极限事故对反应堆堆芯14造成的影响,保证反应堆系统的安全性。
在一些实施例中,每个主回路管线2上均安装有双层壳体间主回路管线隔离阀4,双层壳体间主回路管线隔离阀4设置在第二层壳体5和第一层壳体13之间。
当位于双层壳体外的主回路管线2发生破裂时,压力容器内的冷却剂通过主回路管线2上的破口发生泄漏,在监测到破口发生后,快速关闭双层壳体间主回路管线隔离阀4,则压力容器内的冷却剂被包容在第一层壳体13内,通过压力容器内的冷却剂自然循环,仍可有效冷却反应堆堆芯14;事故后反应堆堆芯14释热将从主回路换热器9通过热交换器入口管线8将热量带至非能动余热交换器10内,非能动余热交换器10的传热管与堆舱1壁面直接接触,热量通过导热或对流换热的方式最终传递至海水或大气环境,实现无限时冷却。
在一些实施例中,每个主回路管线2上均安装有壳体外主回路管线隔离阀3,壳体外主回路管线隔离阀3设置在第二层壳体5和堆舱1之间。
当位于双层壳体间的主回路管线2发生破裂时,压力容器内的冷却剂通过主回路管线2上的破口发生泄漏,在监测到破口发生后,关闭壳体外主回路管线隔离阀3,则反应堆冷却剂仍被包容在第二层壳体5内,通过顶部的第二层壳体5形成新的压力边界,通过压力容器内的冷却剂自然循环,仍可有效冷却反应堆堆芯14;事故后反应堆堆芯14释热将从主回路换热器9通过热交换器入口管线8将热量带至非能动余热交换器10内,非能动余热交换器10的传热管与堆舱1壁面直接接触,热量通过导热或对流换热的方式最终传递至海水或大气环境,实现无限时冷却。
当稳压器波动管7发生破裂时,喷放的冷却剂仍被包容在压力容器第二层 壳体5内,对反应堆堆芯14冷却仍起缓解作用;该工况下,反应堆压力边界并未遭到破坏(属于设计基准非LOCA事故)。该事故进程与发生于压力容器顶部第二层壳体5与压力容器第一层壳体13之间的主回路相关管线2破口事故类似,事故缓解方式亦相同。
对于其他设计基准非LOCA事故(任意一层反应堆压力边界均不出现破损,如丧失正常给水事故)的缓解方式与LOCA事故类似:事故后反应堆堆芯14释热将通过非能动余热交换器10与主回路换热器9的换热回路将热量带至非能动余热交换器10内,非能动余热交换器10的传热管与堆舱1壁面直接接触,热量通过导热或对流换热的方式最终传递至海水或大气环境。
在一些实施例中,热交换器出口管线11上设置有热交换器出口隔离阀12,热交换器出口隔离阀12设置在主回路换热器9和补水箱15之间。在反应堆正常运行时,热交换器出口隔离阀12处于常关状态。
当需要利用非能动余热交换器10与与主回路换热器9的换热回路进行导热时,打开热交换器出口隔离阀12使换热回路处于流通状态,从而形成流体的换热回路。
在一些实施例中,补水箱15与热交换器出口管线11之间设有补水箱出口隔离阀16。
当非能动余热交换器10与主回路换热器9的换热回路需要补水时(以便于在该自然循环回路中补充足够的水,使得自然循环能够长期稳定建立),打开补水箱出口隔离阀16,使补水箱15中的储存的液体进入非能动余热交换器10与主回路换热器9的换热回路。
在一些实施例中,反应堆非能动安全系统包括至少两个由主回路换热器9、非能动余热交换器10和补水箱15组成的换热回路。
反应堆非能动安全系统包括至少两个由主回路换热器9、非能动余热交换器10和补水箱15组成的换热回路,即要考虑单一故障情况下或一个换热回路断 裂后仍有一个系列有效移出反应堆堆芯14热量,保证反应堆系统的安全。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种反应堆非能动安全系统,包括压力容器、设置在所述压力容器外部的堆舱、及设置在所述压力容器内部的反应堆堆芯和主回路换热器,其特征在于,
    所述压力容器包括第一层壳体和设置在所述第一层壳体顶部的第二层壳体,在所述第一层壳体顶部形成双层结构,
    所述反应堆非能动安全系统还设有非能动余热交换器和补水箱,
    所述主回路换热器设置在所述反应堆堆芯上方,
    所述主回路换热器及所述非能动余热交换器通过热交换器进口管线和热交换器出口管线相连接形成换热回路,
    所述补水箱一端与所述热交换器进口管线连接,另一端与所述热交换器出口管线连接,使所述补水箱与所述非能动余热交换器形成并联回路。
  2. 根据权利要求1所述的反应堆非能动安全系统,其特征在于,所述非能动余热交换器设置于所述堆舱内部,与所述堆舱内壁面相接触。
  3. 根据权利要求1所述的反应堆非能动安全系统,其特征在于,所述非能动余热交换器设置于所述堆舱外部,浸泡于海水或置于大气环境中。
  4. 根据权利要求1所述的反应堆非能动安全系统,其特征在于,所述第二层壳体与第一层壳体之间固定安装有稳压器,所述稳压器通过稳压器波动管连接在所述压力容器第一层壳体的顶部。
  5. 根据权利要求1所述的反应堆非能动安全系统,其特征在于,所述第一层壳体上连通有多个主回路管线,每个所述主回路管线的上端均贯穿所述第二层壳体并延伸至其上方。
  6. 根据权利要求1或5所述的一体化非能动反应堆系统,其特征在于,每个所述主回路管线上均安装有双层壳体间主回路管线隔离阀,所述双层壳体间主回路管线隔离阀设置在所述第二层壳体和所述第一层壳体之间。
  7. 根据权利要求1或5所述的一体化非能动反应堆系统,其特征在于,每个所述主回路管线上均安装有壳体外主回路管线隔离阀,所述壳体外主回路管线隔离阀设置在所述第二层壳体和所述堆舱之间。
  8. 根据权利要求1-7任一项所述的一体化非能动反应堆系统,其特征在于,所述热交换器出口管线上设置有热交换器出口隔离阀,所述热交换器出口隔离阀设置在所述主回路换热器和所述补水箱之间。
  9. 根据权利要求8所述的一体化非能动反应堆系统,其特征在于,所述补水箱与所述热交换器出口管线之间设有补水箱出口隔离阀。
  10. 根据权利要求1所述的一体化非能动反应堆系统,其特征在于,包括至少两个由所述主回路换热器、所述非能动余热交换器和所述补水箱组成的换热回路。
PCT/CN2021/138587 2020-12-24 2021-12-16 反应堆非能动安全系统 WO2022135245A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023537932A JP2024500458A (ja) 2020-12-24 2021-12-16 原子炉受動的安全システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011551710.5 2020-12-24
CN202011551710.5A CN112530611A (zh) 2020-12-24 2020-12-24 一种先进简化的小堆非能动专设安全系统

Publications (1)

Publication Number Publication Date
WO2022135245A1 true WO2022135245A1 (zh) 2022-06-30

Family

ID=74976283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138587 WO2022135245A1 (zh) 2020-12-24 2021-12-16 反应堆非能动安全系统

Country Status (3)

Country Link
JP (1) JP2024500458A (zh)
CN (1) CN112530611A (zh)
WO (1) WO2022135245A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112530611A (zh) * 2020-12-24 2021-03-19 上海核工程研究设计院有限公司 一种先进简化的小堆非能动专设安全系统
CN113345610A (zh) * 2021-05-08 2021-09-03 中国舰船研究设计中心 热管反应堆非能动余热排出系统及其控制方法
CN113421665A (zh) * 2021-06-24 2021-09-21 中国舰船研究设计中心 一种水下装备热管式耐压壳体共形余热排除系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110158371A1 (en) * 2008-09-30 2011-06-30 Kabushiki Kaisha Toshiba Pressurized water reactor plant
CN103778976A (zh) * 2012-10-22 2014-05-07 中国核动力研究设计院 一种设置于蒸汽发生器二次侧的非能动余热排出系统
CN204480678U (zh) * 2014-12-29 2015-07-15 国核华清(北京)核电技术研发中心有限公司 一种核电站非能动余热排出系统
CN105810256A (zh) * 2014-12-29 2016-07-27 国核华清(北京)核电技术研发中心有限公司 一种核电站非能动余热排出系统
CN110911020A (zh) * 2019-12-04 2020-03-24 上海核工程研究设计院有限公司 一种压力容器顶部双层的先进专设安全设施配置方案
CN111710445A (zh) * 2020-06-10 2020-09-25 上海核工程研究设计院有限公司 一种压力容器顶部双层壳体设计的安全设施配置方案
CN112530611A (zh) * 2020-12-24 2021-03-19 上海核工程研究设计院有限公司 一种先进简化的小堆非能动专设安全系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103632737A (zh) * 2012-08-20 2014-03-12 中国核动力研究设计院 一种核电站蒸汽发生器二次侧非能动余热排出系统
CN105719706A (zh) * 2014-12-01 2016-06-29 上海核工程研究设计院 小型反应堆的非能动堆芯冷却系统
WO2017045159A1 (zh) * 2015-09-16 2017-03-23 中广核工程有限公司 核电站反应堆压力容器与屏蔽墙的组合结构
CN106782697B (zh) * 2016-11-25 2017-12-01 中国核动力研究设计院 一种紧凑型换热器
CN207909507U (zh) * 2017-10-31 2018-09-25 上海核工程研究设计院有限公司 一种非能动余热排出系统
CN216487334U (zh) * 2020-12-24 2022-05-10 上海核工程研究设计院有限公司 一种先进简化的小堆非能动专设安全系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110158371A1 (en) * 2008-09-30 2011-06-30 Kabushiki Kaisha Toshiba Pressurized water reactor plant
CN103778976A (zh) * 2012-10-22 2014-05-07 中国核动力研究设计院 一种设置于蒸汽发生器二次侧的非能动余热排出系统
CN204480678U (zh) * 2014-12-29 2015-07-15 国核华清(北京)核电技术研发中心有限公司 一种核电站非能动余热排出系统
CN105810256A (zh) * 2014-12-29 2016-07-27 国核华清(北京)核电技术研发中心有限公司 一种核电站非能动余热排出系统
CN110911020A (zh) * 2019-12-04 2020-03-24 上海核工程研究设计院有限公司 一种压力容器顶部双层的先进专设安全设施配置方案
CN111710445A (zh) * 2020-06-10 2020-09-25 上海核工程研究设计院有限公司 一种压力容器顶部双层壳体设计的安全设施配置方案
CN112530611A (zh) * 2020-12-24 2021-03-19 上海核工程研究设计院有限公司 一种先进简化的小堆非能动专设安全系统

Also Published As

Publication number Publication date
CN112530611A (zh) 2021-03-19
JP2024500458A (ja) 2024-01-09

Similar Documents

Publication Publication Date Title
WO2022135245A1 (zh) 反应堆非能动安全系统
JP5006178B2 (ja) 原子炉格納容器およびそれを用いた原子力プラント
CN103903659B (zh) 浮动核电站非能动余热排出系统
CN104733060A (zh) 一种船用核动力装置的非能动余热排出系统
WO2021109622A1 (zh) 一体化非能动反应堆系统
CN107403650B (zh) 海上浮动核电站的二次侧非能动余热排出系统
CN107464590A (zh) 船用压水堆二次侧非能动余热排出系统
US20230197300A1 (en) Passive waste heat removal system on secondary side of marine environmental reactor
CN112071451B (zh) 一种压水堆多功能双层混凝土安全壳系统
CN107833641A (zh) 一种船用压水堆海水冷却二次侧非能动余热排出系统
CN109545401A (zh) 一种铅基快堆堆外非能动余热排出系统
US20240029904A1 (en) Integrated passive reactor
CN107833642A (zh) 换热器位于水箱外船用压水堆二次侧非能动余热排出系统
CN207624389U (zh) 换热器位于水箱外船用压水堆二次侧非能动余热排出系统
CN207624390U (zh) 一种船用压水堆海水冷却二次侧非能动余热排出系统
CN109273113A (zh) 一种基于海水冷却的热管式非能动余热排出系统
CN216487334U (zh) 一种先进简化的小堆非能动专设安全系统
CN107799190A (zh) 一种船用压水反应堆及其一次侧非动能余热排出系统
CN207250149U (zh) 海上浮动核电站的二次侧非能动余热排出系统
CN207489488U (zh) 一种船用压水反应堆及其一次侧非动能余热排出系统
CN212113243U (zh) 一种海洋环境二次侧非能动余热排出系统
CN214624452U (zh) 一种基于双层管道技术的新型反应堆
CN214377694U (zh) 反应堆的应急余热排出系统
CN208271569U (zh) 船用反应堆及其二次侧非能动余热排出系统
CN209641364U (zh) 一种铅基快堆堆外非能动余热排出系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909241

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023/006831

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: 2023537932

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909241

Country of ref document: EP

Kind code of ref document: A1