WO2022135234A1 - 一种带宽指示方法及设备、芯片和通信系统 - Google Patents

一种带宽指示方法及设备、芯片和通信系统 Download PDF

Info

Publication number
WO2022135234A1
WO2022135234A1 PCT/CN2021/138364 CN2021138364W WO2022135234A1 WO 2022135234 A1 WO2022135234 A1 WO 2022135234A1 CN 2021138364 W CN2021138364 W CN 2021138364W WO 2022135234 A1 WO2022135234 A1 WO 2022135234A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
bandwidth
bit
bits
channel
Prior art date
Application number
PCT/CN2021/138364
Other languages
English (en)
French (fr)
Inventor
李云波
刘辰辰
于健
淦明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21909230.1A priority Critical patent/EP4247051A4/en
Publication of WO2022135234A1 publication Critical patent/WO2022135234A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present application relates to the field of communication, and in particular, to a bandwidth indication method and device, chip and communication system.
  • the wireless channel environments where the sender and the receiver are located are different, it is very useful for data communication to negotiate a bandwidth available to both parties according to the channel availability of both parties before data communication.
  • the first 7 bits of the scrambling sequence (scrambling sequence) used by non-high throughput (non-HT) frames or non-HT duplicated frames Two of the bits (ie, the B5 bit and the B6 bit) are used to indicate the bandwidth.
  • the four values of the two bits correspond to the four bandwidths one-to-one.
  • the four bandwidths are 20MHz, 40Mhz, 80MHz, and 160MHz (or 80+80MHz).
  • the Institute of Electrical and Electronics Engineers is conducting discussions on the next-generation standard (802.11be) after 802.11ax.
  • the 802.11be standard supports extremely high throughput (EHT) data transmission.
  • the maximum transmission bandwidth supported by the 802.11be standard is 320MHz. Therefore, the 802.11be standard will introduce other bandwidths than 20MHz, 40Mhz, 80MHz, 80+80MHz or 160MHz, such as 320MHz.
  • the present application provides a bandwidth indication method, the method comprising:
  • the first device generates a first frame, the first frame includes a non-high throughput non-HT frame or a non-high throughput duplicated non-HT duplicated frame, the first frame includes the first bit, the second bit and the third bit, the first bit and the second bit are bits in the scrambling sequence of the first frame;
  • the third bit is the first value
  • the first bit and the second bit are used to indicate that the first channel bandwidth is one of 20MHz, 40MHz, 80MHz, or 160MHz ;
  • the third bit is a second value and is used to indicate the second channel bandwidth, and at least one of the first bit and the second bit is not used to indicate the second channel bandwidth, the second channel bandwidth is a bandwidth greater than 160MHz;
  • the first device sends the first frame to the second device.
  • the present application further provides a bandwidth indication method, the method comprising:
  • the second device receives the first frame sent by the first device, the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame, the first frame includes a first bit, the first frame Two bits and a third bit, the first bit and the second bit are bits in the scrambling code sequence of the first frame;
  • the second device determines, according to the first bit and the second bit, that the bandwidth of the first frame is the first channel bandwidth, and the first channel bandwidth One of 20MHz, 40MHz, 80MHz, or 160MHz;
  • the second device determines that the bandwidth of the first frame is the second channel bandwidth according to the third bit, and at least one of the first bit and the second bit is not used to indicate the second channel bandwidth, the second channel bandwidth is a bandwidth greater than 160 MHz.
  • the present application provides a first device, the device comprising:
  • a processing unit for generating a first frame the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame, the first frame includes a first bit, a second bit and a third bit, the first bit and the second bit are bits in the scrambling sequence of the first frame;
  • the third bit is a first value, and the first bit and the second bit are used to indicate that the first channel bandwidth is 20MHz, 40MHz, 80MHz, or one of 160MHz;
  • the third bit is a second value for indicating the second channel bandwidth, and at least one of the first bit and the second bit is not used for indicating the second channel bandwidth, the second channel bandwidth is a bandwidth greater than 160 MHz;
  • a sending unit configured to send the first frame to the second device.
  • the present application provides a second device, the device comprising:
  • a receiving unit configured to receive a first frame sent by a first device, the first frame is a non-high throughput non-HT frame or a non-high throughput duplicated non-HT frame, and the first frame includes a first bit , the second bit and the third bit, the first bit and the second bit are bits in the scrambling code sequence of the first frame;
  • a processing unit configured to determine the channel bandwidth of the first frame according to the first frame
  • the second device determines that the bandwidth of the first frame is the first channel bandwidth according to the first bit and the second bit, and the first channel bandwidth is 20MHz, 40MHz , 80MHz, or one of 160MHz;
  • the second device determines that the channel bandwidth of the first frame is the second channel bandwidth according to the third bit, and at least one of the first bit and the second bit is not used to indicate The second channel bandwidth is a bandwidth greater than 160 MHz.
  • At least one of the first bit and the second bit is not used to indicate the second channel bandwidth, that is, one of the first and second bits Or two bits are not used to carry bandwidth information, or they carry non-bandwidth information, which can save the indication bits used to indicate the channel bandwidth, increase the randomness of the scrambling sequence, reduce the peak-to-average power ratio in data transmission, and improve the Communication system performance.
  • the saved indication bits can be used to indicate new bandwidth, or to indicate other purposes.
  • the second channel bandwidth exemplarily includes 320MHz.
  • the 160MHz in the first channel bandwidth includes contiguous 160MHz, or non-contiguous 80+80Mhz.
  • the first bit and the second bit are the B5 and B6 bits in the first 7 bits of the scrambling sequence of the first frame, and the use of B5B6 for bandwidth indication can be applied to devices of previous generations of standard versions that support bandwidth indication. , the compatibility is good, and the aspect is operated in practice.
  • the third bit may be:
  • the third bit is any one of B0-B3 of the first seven bits of the scrambling code sequence, no additional signaling indication is required outside the scrambling code sequence, which can save signaling overhead.
  • the third bit is in the bits of other fields, since the bit overhead of the scrambling code sequence is not increased, the randomness of the scrambling code sequence can be increased, the peak-to-average power ratio in data transmission can be reduced, and the communication system can be improved. performance.
  • At least one of the first bit and the second bit is not used to indicate the second channel bandwidth includes: the values of the first bit and the second bit are random values.
  • At least one of the first bit and the second bit is not used to indicate the second channel bandwidth includes: the first bit is used to indicate the second channel bandwidth or used to indicate a reserved bandwidth , the second bit is a random value (not used to indicate the second channel bandwidth). For example, when the first bit is a third value, it is used to indicate the second channel bandwidth, when the first bit is a fourth value, it is used to indicate a reserved bandwidth, and the second bit is a random value. Or conversely, the second bit is used to indicate the second channel bandwidth or the reserved bandwidth, and the first bit is a random value.
  • the second bit is a third value for indicating the second channel bandwidth
  • the second bit is a fourth value for indicating the reserved bandwidth
  • the first bit is a random value .
  • the third bit and the first bit (or the second bit) are used to indicate the second channel bandwidth
  • setting the second bit (or the first bit) to a random value can save the use of
  • the scrambling code bits indicating the channel bandwidth the randomness of the scrambling code sequence is increased, the peak-to-average power ratio in data transmission is reduced, and the system performance of communication is improved.
  • the saved indication bits (bits not used to indicate the bandwidth of the second channel) can also be reserved for other purposes.
  • another value of the third bit may be used to indicate reserved bandwidth, may be used to indicate new bandwidth, or be used for other purposes.
  • the first frame includes a first field, and if at least one of the bits of the first field is not 0, it indicates that the first field is used to indicate a preamble puncturing mode.
  • the existing state of the reserved state of the first field being all 0 is cleverly used to distinguish whether the first field has a puncturing mode carrying a preamble. No other explicit indication signaling is required in this indication manner, which saves signaling overhead.
  • the first device generates a second frame, and the second frame includes a first indication, where the first indication is used to indicate whether the first field is used to indicate a preamble puncturing mode.
  • the second frame includes an association request frame or an association response frame.
  • this indication mode whether the first field in the first frame is used for the preamble puncturing mode is determined according to the capability indication information set in the association process. Since the capability indication information in the association process only needs to be sent once and will not change subsequently, no explicit indication signaling needs to be carried in the first frame sent subsequently, which saves signaling overhead.
  • the third bit indicates that the bandwidth granularity of the preamble puncturing mode indicated by the first field is 20 MHz.
  • the third bit is set to the second value, it indicates that the bandwidth granularity of the preamble puncturing mode indicated by the first field is 40 MHz.
  • the bandwidth granularity of the preamble puncturing mode of the first field is indicated by the size of the channel bandwidth. The bandwidth granularity can be indicated according to the size of the channel bandwidth, which can save the indication signaling and simplify the design.
  • the first field is carried in the reserved service bits of the first frame, the reserved service bits and the first 7 bits of the scrambling code sequence of the first frame, or the frame control field.
  • the first field is carried in the existing field, which has the advantage of not changing the existing frame structure design, so that the content of the first frame can also be correctly parsed by third-party sites other than the target site, Backward compatibility is maintained.
  • the present application provides a bandwidth indication method, the method comprising:
  • the first device generates a first frame, the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame, and the first frame includes a first bit, a second bit and a third bit, the first bit and the second bit are bits in the scrambling code sequence of the first frame, and the first device is a site that supports a bandwidth greater than 160 MHz;
  • the first device sends the first frame to the second device
  • the first bit and the second bit are used to indicate the first channel bandwidth, and the first channel bandwidth is one of 20MHz, 40MHz, 80MHz, or 160MHz Type, the third bit is not used to indicate the second channel bandwidth;
  • the second device is a site that supports a bandwidth greater than 160MHz
  • the third bit is the first value, and the first and second bits are used to indicate that the first channel bandwidth is 20MHz , 40MHz, 80MHz, 80+80MHz or 160MHz;
  • the third bit is the second value, which is used to indicate the second channel bandwidth, the first bit and the second bit At least one bit in is not used to indicate the second channel bandwidth, and the second channel bandwidth is a bandwidth greater than 160 MHz.
  • the present application further provides a bandwidth indication method, the method comprising:
  • the second device receives the first frame sent by the first device.
  • the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame.
  • the first frame includes the first bit, the second bit and the first frame. Three bits, the first bit and the second bit are bits in the scrambling code sequence of the first frame, and the first device is a site that supports a bandwidth greater than 160 MHz;
  • the second device determines that the bandwidth of the first frame is the first channel bandwidth according to the first bit and the second bit, and the first channel bandwidth is 20MHz, 40MHz, 80MHz or 160MHz One of, the third bit is not used to indicate the first channel bandwidth;
  • the second device is a site that supports a bandwidth greater than 160 MHz
  • the third bit is the first value
  • the second device determines that the bandwidth of the first frame is the first channel bandwidth according to the first bit and the second bit, and the first channel bandwidth It is one of 20MHz, 40MHz, 80MHz, 80+80MHz or 160MHz; if the third bit is the second value, the second device determines that the bandwidth of the first frame is the second channel bandwidth according to the third bit. At least one of the two bits is not used to indicate the second channel bandwidth, and the second channel bandwidth is a bandwidth greater than 160 MHz.
  • the present application provides a first device, the device comprising:
  • the first frame is a non-high throughput non-HT frame or a non-high throughput duplicated non-HT duplicated frame
  • the first frame includes a first bit, a second bit and a third bit
  • the first bit and the second bit are bits in the scrambling code sequence of the first frame
  • the first device is a site that supports a bandwidth greater than 160 MHz;
  • a sending unit configured to send the first frame to the second device
  • the first bit and the second bit are used to indicate the first channel bandwidth, and the first channel bandwidth is one of 20MHz, 40MHz, 80MHz, or 160MHz,
  • the third bit is not used to indicate the first channel bandwidth
  • the second device is a site that supports a bandwidth greater than 160MHz
  • the third bit is the first value, and the first and second bits are used to indicate that the first channel bandwidth is 20MHz , 40MHz, 80MHz, 80+80MHz or 160MHz;
  • the third bit is the second value, which is used to indicate the second channel bandwidth, the first bit and the second bit At least one bit in is not used to indicate the second channel bandwidth, and the second channel bandwidth is a bandwidth greater than 160 MHz.
  • the present application provides a second device, the device comprising:
  • the receiving unit is used to receive the first frame sent by the first device.
  • the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame.
  • the first frame includes a first bit and a second bit. and the third bit, the first bit and the second bit are bits in the scrambling code sequence of the first frame, and the first device is a site that supports a bandwidth greater than 160MHz;
  • a processing unit configured to determine the bandwidth of the channel according to the first frame
  • the second device determines that the bandwidth of the first frame is the first channel bandwidth according to the first bit and the second bit, and the first channel bandwidth is 20MHz, 40MHz, 80MHz or one of 160MHz, the third bit is not used to indicate the first channel bandwidth;
  • the second device is a site that supports a bandwidth greater than 160 MHz
  • the third bit is the first value
  • the second device determines that the bandwidth of the first frame is the first channel bandwidth according to the first bit and the second bit, and the first channel bandwidth It is one of 20MHz, 40MHz, 80MHz, 80+80MHz or 160MHz; if the third bit is the second value, the second device determines that the bandwidth of the first frame is the second channel bandwidth according to the third bit. At least one of the two bits is not used to indicate the second channel bandwidth, and the second channel bandwidth is a bandwidth greater than 160 MHz.
  • At least one of the first bit and the second bit is not used to indicate the second channel bandwidth, that is, one of the first and second bits Or two bits are not used to carry bandwidth information, or they carry non-bandwidth information, which can save the indication bits used to indicate the channel bandwidth, increase the randomness of the scrambling sequence, reduce the peak-to-average power ratio in data transmission, and improve the Communication system performance.
  • the saved indication bits can be used to indicate new bandwidth, or to indicate other purposes.
  • the second channel bandwidth includes 320 MHz.
  • the 160MHz in the first channel bandwidth includes contiguous 160MHz, or non-contiguous 80+80Mhz.
  • the stations supporting a bandwidth greater than 160 MHz include extremely high throughput EHT stations supporting the 802.11be standard.
  • the first bit and the second bit are B5 and B6 bits in the first 7 bits of the scrambling sequence of the first frame.
  • B5B6 for bandwidth indication can be applied to devices of previous generations of standard versions that support bandwidth indication, with good compatibility and practical operation.
  • the third bit may be:
  • the third bit is any one of B0-B3 of the first seven bits of the scrambling code sequence, no additional signaling indication is required outside the scrambling code sequence, which can save signaling overhead.
  • the third bit is in the bits of other fields, since the bit overhead of the scrambling code sequence is not increased, the randomness of the scrambling code sequence can be increased, the peak-to-average power ratio in data transmission can be reduced, and the communication system can be improved. performance.
  • At least one of the first bit and the second bit is not used to indicate the second channel bandwidth includes: the values of the first bit and the second bit are random values.
  • At least one of the first bit and the second bit is not used to indicate the second channel bandwidth includes: the first bit is used to indicate the second channel bandwidth or used to indicate a reserved bandwidth , the second bit is a random value (not used to indicate the second channel bandwidth). For example, when the first bit is a third value, it is used to indicate the second channel bandwidth, when the first bit is a fourth value, it is used to indicate a reserved bandwidth, and the second bit is a random value. Or conversely, the second bit is used to indicate the second channel bandwidth or the reserved bandwidth, and the first bit is a random value.
  • the second bit is a third value for indicating the second channel bandwidth
  • the second bit is a fourth value for indicating the reserved bandwidth
  • the first bit is a random value .
  • the third bit and the first bit (or the second bit) are used to indicate the second channel bandwidth
  • setting the second bit (or the first bit) to a random value can save the use of
  • the scrambling code bits indicating the channel bandwidth the randomness of the scrambling code sequence is increased, the peak-to-average power ratio in data transmission is reduced, and the system performance of communication is improved.
  • the saved indication bits (bits not used to indicate the bandwidth of the second channel) can also be reserved for other purposes.
  • another value of the third bit may be used to indicate reserved bandwidth, may be used to indicate new bandwidth, or be used for other purposes.
  • the first frame includes a first field, and if at least one of the bits of the first field is not 0, it indicates that the first field is used to indicate a preamble puncturing mode.
  • the existing state of the reserved state of the first field being all 0 is cleverly used to distinguish whether the first field has a puncturing mode carrying a preamble. No other explicit indication signaling is required in this indication manner, which saves signaling overhead.
  • the first device generates a second frame, and the second frame includes a first indication, where the first indication is used to indicate whether the first field is used to indicate a preamble puncturing mode.
  • the second frame includes an association request frame or an association response frame.
  • this indication mode whether the first field in the first frame is used for the preamble puncturing mode is determined according to the capability indication information set in the association process. Since the capability indication information in the association process only needs to be sent once and will not change subsequently, no explicit indication signaling needs to be carried in the first frame sent subsequently, which saves signaling overhead.
  • the third bit indicates that the bandwidth granularity of the preamble puncturing mode indicated by the first field is 20 MHz.
  • the third bit is set to the second value, it indicates that the bandwidth granularity of the preamble puncturing mode indicated by the first field is 40 MHz.
  • the bandwidth granularity of the preamble puncturing mode of the first field is indicated by the size of the channel bandwidth. The bandwidth granularity can be indicated according to the size of the channel bandwidth, which can save the indication signaling and simplify the design.
  • the first field is carried in the reserved service bits of the first frame, the reserved service bits and the first 7 bits of the scrambling code sequence of the first frame, or the frame control field.
  • the first field is carried in the existing field, which has the advantage of not changing the existing frame structure design, so that the content of the first frame can also be correctly parsed by third-party sites other than the target site, Backward compatibility is maintained.
  • the present application provides an information indication method, the method comprising:
  • the first device generates the first frame, the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame, and the first frame includes the first field, if there are at least one bit in the first field. One bit is not 0, indicating that the first field is used to indicate the preamble puncturing mode;
  • the first device sends the first frame to the second device.
  • the present application further provides an information indicating method, the method comprising:
  • the first device generates a first frame, the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame, and the first frame includes a first field;
  • the first device generates a second frame, the second frame includes a first indication, the second frame includes an association request frame or an association response frame, and the first indication is used to indicate whether the first field is used to indicate a preamble puncturing mode .
  • the first device sends the first frame and the second frame to the second device.
  • the present application further provides an information indicating method, the method comprising:
  • the second device receives the first frame sent by the first device, the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame, and the first frame includes a first field;
  • the second device determines that the first field is used to indicate the preamble puncturing mode according to at least one of the bits in the first field that is not 0.
  • the present application further provides an information indicating method, the method comprising:
  • the second device receives the first frame and the second frame sent by the first device, the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame, and the first frame includes the first frame A field, the second frame includes the first indication, and the second frame includes an association request frame or an association response frame;
  • the second device determines whether the first field is used to indicate a preamble puncturing mode according to the first indication.
  • the present application provides a first device, the device comprising:
  • the processing unit is used to generate the first frame.
  • the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame.
  • the first frame includes the first field. If the bits of the first field are in the At least one bit is not 0, indicating that the first field is used to indicate the preamble puncturing mode;
  • a sending unit configured to send the first frame to the second device.
  • the present application further provides a first device, the device comprising:
  • a processing unit used to generate a first frame, the first frame is a non-high-throughput non-HT frame or a non-high-throughput duplicated non-HT duplicated frame, and the first frame includes a first field;
  • the second frame includes a first indication
  • the second frame includes an association request frame or an association response frame
  • the first indication is used to indicate whether the first field is used to indicate a preamble puncturing mode.
  • a sending unit configured to send the first frame and the second frame to the second device.
  • the present application provides a second device, the device comprising:
  • a receiving unit configured to receive the first frame sent by the first device, where the first frame is a non-high-throughput non-HT frame or a non-high-throughput duplicated non-HT frame, and the first frame includes a first field;
  • the processing unit is configured to determine that the first field is used to indicate a preamble puncturing mode according to at least one bit in the first field that is not 0.
  • the present application further provides a second device, the device comprising:
  • the receiving unit is used to receive the first frame and the second frame sent by the first device.
  • the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame, and the first frame includes the first field , the second frame includes the first indication, and the second frame includes an association request frame or an association response frame;
  • the processing unit is configured to determine whether the first field is used to indicate the preamble puncturing mode according to the first indication.
  • the first field uses a non-OFDMA mode to indicate.
  • the bandwidth mode using non-OFDMA can indicate a certain mode, and requires less indication overhead.
  • the first field is carried in the reserved service bits of the first frame, the reserved service bits and the first 7 bits of the scrambling code sequence of the first frame, or in the frame control field.
  • the first field is carried in the existing field, which has the advantage of not changing the existing frame structure design, so that the content of the first frame can also be correctly parsed by third-party sites other than the target site, Backward compatibility is maintained.
  • the present application provides a bandwidth granularity indication method, the method comprising:
  • the first device generates a first frame, the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame, and the first frame includes a first bit, a second bit and a fourth bit, the first bit and the second bit are bits in the scrambling code sequence of the first frame;
  • the fourth bit is the first value
  • the first bandwidth granularity is 20MHz, corresponding to the first channel bandwidth
  • the first bit and the second bit are used to indicate the first channel bandwidth
  • the first A channel bandwidth is one of 20MHz, 40MHz, 80MHz, or 160MHz;
  • the fourth bit is the second value
  • the second bandwidth granularity is 40MHz
  • the corresponding channel bandwidth is the second channel bandwidth
  • the second channel bandwidth is a bandwidth greater than 160MHz
  • the first device sends the first frame to the second device.
  • the present application further provides a bandwidth granularity indication method, the method comprising:
  • the second device receives the first frame sent by the first device, the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame, the first frame includes a first bit, the first frame Two bits and a fourth bit, the first bit and the second bit are bits in the scrambling sequence of the first frame;
  • the second device determines that the bandwidth granularity of the first frame is the first bandwidth granularity, and the first bandwidth granularity is 20MHz, corresponding to the first channel bandwidth less than or equal to 160MHz, and the first device Determine according to the first bit and the second bit that the bandwidth of the first frame is the first channel bandwidth, and the first channel bandwidth is one of 20MHz, 40MHz, 80MHz, or 160MHz;
  • the second device determines that the bandwidth granularity of the first frame is the second bandwidth granularity, and the second bandwidth granularity is 40 MHz, corresponding to the second channel bandwidth, and the second channel bandwidth is a bandwidth greater than 160 MHz.
  • the present application provides a first device, the device comprising:
  • the processing unit is used to generate a first frame, the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame, and the first frame includes a first bit, a second bit and The fourth bit, the first bit and the second bit are bits in the scrambling code sequence of the first frame;
  • the fourth bit is the first value
  • the first bandwidth granularity is 20MHz, corresponding to the first channel bandwidth less than or equal to 160MHz
  • the first bit and the second bit are used to indicate the first value.
  • a channel bandwidth, the first channel bandwidth is one of 20MHz, 40MHz, 80MHz, or 160MHz;
  • the fourth bit is the second value
  • the second bandwidth granularity is 40MHz
  • the corresponding channel bandwidth is the second channel bandwidth
  • the second channel bandwidth is a bandwidth greater than 160MHz
  • a sending unit configured to send the first frame to the second device.
  • the present application provides a second device, the device comprising:
  • the receiving unit is used to receive the first frame sent by the first device.
  • the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame.
  • the first frame includes a first bit and a second bit. and the fourth bit, the first bit and the second bit are bits in the scrambling code sequence of the first frame;
  • a processing unit configured to determine the bandwidth granularity of the channel according to the first frame
  • the second device determines that the bandwidth granularity of the first frame is the first bandwidth granularity, and the first bandwidth granularity is 20 MHz, which corresponds to the first channel bandwidth.
  • the bit determines that the bandwidth of the first frame is the first channel bandwidth, and the first channel bandwidth is one of 20MHz, 40MHz, 80MHz, or 160MHz;
  • the second device determines that the bandwidth granularity of the first frame is the second bandwidth granularity, and the second bandwidth granularity is 40 MHz, which corresponds to the second channel bandwidth, and the second channel bandwidth is a bandwidth greater than 160 MHz.
  • the first bandwidth granularity and the second bandwidth granularity are used to indicate the bandwidth granularity of the preamble puncturing mode.
  • the indication method in this implementation manner indicates the channel bandwidth by indicating the bandwidth granularity of the preamble puncturing mode of the frame and distinguishing the bandwidth granularity, which can save indication signaling and simplify the design.
  • the second channel bandwidth includes 320MHz.
  • the 160MHz in the first channel bandwidth includes contiguous 160MHz, or non-contiguous 80+80Mhz.
  • the first bit and the second bit are B5 and B6 bits in the first 7 bits of the scrambling sequence of the first frame.
  • the fourth bit may be any one of B0, B1, B2, and B3 bits in the first 7 bits of the scrambling sequence of the first frame, or a reserved service bit A bit in the (Reserved SERVICE Bits), or a bit in the Receive Address (RA) field, or a bit in the Frame Control (Frame Control) field.
  • the fourth bit is any one of B0-B3 of the first seven bits of the scrambling code sequence, no additional signaling indication is required outside the scrambling code sequence, which can save signaling overhead.
  • the third bit is in the bits of other fields, since the bit overhead of the scrambling code sequence is not increased, the randomness of the scrambling code sequence can be increased, the peak-to-average power ratio in data transmission can be reduced, and the communication system can be improved. performance.
  • At least one of the first bit and the second bit is not used to indicate the second channel bandwidth includes: the values of the first bit and the second bit are random values.
  • At least one of the first bit and the second bit is not used to indicate the second channel bandwidth includes: the first bit is used to indicate the second channel bandwidth or used to indicate a reserved bandwidth , the second bit is a random value (not used to indicate the second channel bandwidth). For example, when the first bit is a third value, it is used to indicate the second channel bandwidth, when the first bit is a fourth value, it is used to indicate a reserved bandwidth, and the second bit is a random value. Or conversely, the second bit is used to indicate the second channel bandwidth or the reserved bandwidth, and the first bit is a random value.
  • the second bit is a third value for indicating the second channel bandwidth
  • the second bit is a fourth value for indicating the reserved bandwidth
  • the first bit is a random value .
  • the third bit and the first bit (or the second bit) are used to indicate the second channel bandwidth
  • setting the second bit (or the first bit) to a random value can save the use of
  • the scrambling code bits indicating the channel bandwidth the randomness of the scrambling code sequence is increased, the peak-to-average power ratio in data transmission is reduced, and the system performance of communication is improved.
  • the saved indication bits (bits not used to indicate the bandwidth of the second channel) can also be reserved for other purposes.
  • another value of the third bit may be used to indicate reserved bandwidth, may be used to indicate new bandwidth, or be used for other purposes.
  • the first frame includes a first field, and if at least one of the bits of the first field is not 0, it indicates that the first field is used to indicate a preamble puncturing mode.
  • the first device generates a second frame, and the second frame includes a first indication, where the first indication is used to indicate whether the first field is used to indicate a preamble puncturing mode.
  • the second frame includes an association request frame or an association response frame.
  • the first field is carried in the reserved service bits of the first frame, the reserved service bits and the first 7 bits of the scrambling code sequence of the first frame, or the frame control field.
  • the first field is carried in the existing field, which has the advantage of not changing the existing frame structure design, so that the content of the first frame can also be correctly parsed by third-party sites other than the target site, Backward compatibility is maintained.
  • the present application provides a communication device for implementing the first aspect, the second aspect, the fifth aspect, the sixth aspect, the ninth aspect to the twelfth aspect, the seventeenth aspect or the tenth aspect
  • the method in any possible implementation manner of the eight aspects.
  • the apparatus includes a unit for performing the method in the first aspect or any possible implementation manner of the first aspect.
  • the present application provides a computer-readable storage medium for storing a computer program, when the computer instructions are executed on a computer to execute the first aspect, the second aspect, the fifth aspect, and the sixth aspect An instruction of the method of any possible implementation of the aspect, the ninth aspect to the twelfth aspect, the seventeenth aspect or the eighteenth aspect.
  • an embodiment of the present application provides a computer program product, where the computer program product includes a computer program stored in a computer-readable storage medium, and the computer program can be loaded by a processor to implement the above-mentioned A method for any possible implementation of the first aspect, the second aspect, the fifth aspect, the sixth aspect, the ninth aspect to the twelfth aspect, the seventeenth aspect or the eighteenth aspect.
  • the present application provides a chip, the chip includes a logic circuit and an interface circuit, and the logic circuit is configured to perform the first aspect, the second aspect, the fifth aspect, the sixth aspect, and the ninth aspect
  • the interface circuit is configured to execute the first aspect, the second aspect, and the fifth aspect , the action of sending or receiving in any possible implementation method of the sixth aspect, the ninth aspect to the twelfth aspect, the seventeenth aspect or the eighteenth aspect, in this case, "send" is equivalent to For “output”, “receive” is equivalent to input.
  • a chip when a chip is used to perform the method of the first aspect, a chip is provided, the chip includes a first logic circuit and a first interface circuit, the first logic circuit is used for generating a first frame, the The first interface circuit is used to output the first frame; wherein, the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame, and the first frame includes a first bit , the second bit and the third bit, the first bit and the second bit are bits in the scrambling code sequence of the first frame; wherein, when indicating the first channel bandwidth of the first frame, the first Three bits are the first value, and the first bit and the second bit are used to indicate that the first channel bandwidth is one of 20MHz, 40MHz, 80MHz, or 160MHz; when indicating the second channel bandwidth of the first frame, The third bit is a second value and is used to indicate the second channel bandwidth. At least one of the first bit and the second bit is not used to indicate the second channel bandwidth.
  • the chip when a chip is used to execute the method described in the second aspect, the chip includes a second logic circuit and a second interface circuit, the second interface circuit is used for inputting the first frame, and the second logic circuit for determining the channel bandwidth of the first frame according to the first frame; wherein, the first frame is a non-high throughput non-HT frame or a non-high throughput duplicated non-HT frame, and the first frame
  • the frame includes a first bit, a second bit and a third bit, and the first bit and the second bit are bits in the scrambling code sequence of the first frame; wherein, if the third bit is a first value,
  • the second device determines, according to the first bit and the second bit, that the channel bandwidth of the first frame is the first channel bandwidth, and the first channel bandwidth is one of 20MHz, 40MHz, 80MHz, or 160MHz If the third bit is the second value, the second device determines that the channel bandwidth of the first frame is the second channel bandwidth according to the third bit, and the first bit and the second bit At
  • the present application provides a communication system, the communication system includes a first device and a second device, and the first device is configured to perform the first aspect, the fifth aspect, the ninth aspect, and the tenth aspect.
  • the method in any one possible implementation of the aspect or the seventeenth aspect.
  • the second device is configured to perform the method in any one possible implementation manner of the second aspect, the sixth aspect, the eleventh aspect, the twelfth aspect or the eighteenth aspect.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a service field provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an address field provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • Fig. 6 is a kind of data sending flow chart provided by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of a CF-END frame structure provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a puncturing mode for puncturing a channel bandwidth according to an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of an information indication method provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of another chip provided by an embodiment of the present application.
  • the applicable wireless communication system in the embodiment of the present application may be a wireless local area network (Wireless local area network, WLAN), a cellular network, a high performance radio LAN (HIPERLAN), a wide area network (WAN), a personal area network (personal area network) network, PAN) or other networks now known or later developed.
  • WLAN wireless local area network
  • HIPERLAN high performance radio LAN
  • WAN wide area network
  • PAN personal area network
  • the technical solutions provided in this application can be applied to various WLAN communication systems, such as systems using the IEEE 802.11 standard.
  • the IEEE 802.11 standard includes, but is not limited to, the 802.11be standard, or the next-generation 802.11 standard.
  • the applicable scenarios of the technical solution of the present application include: communication between an access point (access point, AP) and a station (station, STA), communication between an AP and an AP, and communication between a STA and a STA, and the like.
  • a station STA is also commonly referred to as a non-access point station non-AP STA, abbreviated as a non-AP.
  • the STAs involved in this application may be various user terminals, user devices, access devices, subscriber stations, subscriber units, mobile stations, user agents, user equipment or other names with wireless communication functions.
  • the user terminal may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to the wireless modem, as well as various forms of user equipment (UE), mobile mobile station (MS), terminal (terminal), terminal equipment (terminal equipment), portable communication device, hand-held, portable computing device, entertainment device, gaming device or system, global positioning system device or configured via wireless media Any other suitable device for network communication, etc.
  • the access point AP involved in this application is a device deployed in a wireless communication network to provide wireless communication functions to its associated STA.
  • the access point AP can be used as the center of the communication system, and can be a base station, a router , gateway, repeater, communication server, switch or bridge and other communication equipment, wherein, the base station may include various forms of macro base station, micro base station, relay station and so on.
  • IEEE802.11 is one of the current mainstream wireless access standards, and has been widely used in commercial applications for more than ten years. Taking the communication between an access point AP and a station STA as an example, the commonly used basic architecture is shown in Figure 1.
  • An access point AP accesses the Internet through wired or wireless, and the AP is associated with multiple station STAs. , the AP and the associated station perform uplink and downlink communication through the IEEE802.11 protocol.
  • the APs and STAs mentioned above are collectively referred to as stations.
  • WLAN starts from 802.11a/g, goes through 802.11n, 802.11ac, and is now 802.11ax and 802.11be under discussion. Please refer to Table 1 for the allowed transmission bandwidth.
  • the 802.11n standard is also called high throughput (HT)
  • the 802.11ac standard is called very high throughput (VHT)
  • 802.11ax (Wi-Fi 6) is called HE (High Efficiency)
  • 802.11 be (Wi-Fi 7) is called extremely high throughput (EHT)
  • EHT extremely high throughput
  • 802.11b adopts non-orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) mode, so it is not listed in Table 1.
  • OFDM orthogonal frequency division multiplexing
  • the 802.11n standard supports a maximum bandwidth of 40MHz
  • the 802.11ac/802.11ax standard supports a maximum bandwidth of 160MHz, of which the 160MHz bandwidth includes continuous 160MHz, or discontinuous 160Mhz (80+80Mhz).
  • the stations supporting the new generation standard in order to ensure backward compatibility, the stations supporting the new generation standard must also support the old standard. Some control frames are sent in the non-HT duplicated mode on the channel with the bandwidth greater than 20MHz. .
  • control frame is in a non-HT format (ie, the control frame is in a format compliant with the 802.11a standard), and the control frame is copied to one of the channels for transmission on a 20MHz channel.
  • a frame of 11a format is sent on each 20MHz channel, and the content on multiple 20MHz channels is repeated.
  • This enables 802.11a sites to parse the frame smoothly, ensuring backward compatibility.
  • the frame sent in the non-HT duplicated manner is referred to as a non-HT duplicated frame, or a frame in a non-HT duplicated format.
  • RTS and CTS frames are sent in a Non-HT duplicated manner in a bandwidth greater than 20MHz. Since the wireless channel environments where the sending site and the receiving site are located are different, before data communication, it is very useful for data communication to negotiate a bandwidth available to both parties according to the channel availability of both parties. However, since 802.11a only supports 20MHz bandwidth and does not need to indicate bandwidth indication information, the non-HT or non-HT duplicated frames do not carry bandwidth indication information, so the receiver cannot accurately know the bandwidth used by the sender at this time. Therefore, in the case that RTS and CTS cannot carry bandwidth information, bandwidth negotiation cannot be performed while reserving channels.
  • a non-HT frame or a non-HT duplicated frame includes a service field, and the structure of the service field can be referred to as shown in FIG. 2 . That is, the beginning of the data part is a 16-bit service field (SERVICE field), wherein the service field can be divided into two parts.
  • the first 7 bits of the service field are the Scrambler Initialization field, which is set to all 0s.
  • the last 9 bits of the service field are reserved service bits, which can be called reserved service bits (Reserved SERVICE Bits), and can also be called the reserved service field. 7 bits).
  • the data portion including the service field will be scrambled by a scrambler.
  • the scrambler will generate a scrambled sequence, which is composed of a 127-bit sequence through continuous repetition, and the 127-bit sequence is generated by a 7-bit scrambler initialization state result after the scrambler. That is, the data portion including the service field is scrambled by the scrambling sequence generated by the scrambler. Since the first 7 bits of the service field are all 0s, the first 7 bits of the scrambled service field are the same as the first 7 bits of the scrambling code sequence. That is, the first 7 bits of the service field are used to carry the first 7 bits of the scrambling sequence.
  • the given names of indication bits or fields are all examples, including bits or fields that can implement the same function, and are not limited herein.
  • the non-HT duplicated frame is a traditional frame format (legacy format), if it is rashly modified, the traditional site will not be able to parse it normally.
  • the B5 and B6 bits in the first 7 bits of the scrambling sequence used by the non-HT frame or the non-HT duplicated frame are set to the CH_BANDWIDTH_IN_NON_HT field , the CH_BANDWIDTH_IN_NON_HT field is used to indicate the bandwidth.
  • the first 7 bits of the scrambling code sequence are sequentially numbered as B0 bits-B6 bits from low order to high order.
  • the B5 bit is the 6th bit of the first 7 bits of the scrambling sequence
  • the B6 bit is the 7th bit of the first 7 bits of the scrambling sequence.
  • the transmission starts from the least significant bit (LSB), that is, the transmission order of the first 7 bits of the scrambling code sequence is that B0 is sent first, and B6 is sent last.
  • B6B5 represents bandwidth information
  • B5 is a low bit
  • B6 is a high bit, that is, B5 is sent first, and B6 is sent later.
  • CH_BANDWIDTH_IN_NON_HT sends the lowest bit first, and the corresponding relationship between the value of the CH_BANDWIDTH_IN_NON_HT field and the bandwidth may be as shown in Table 2.
  • the bandwidth may also be referred to as channel bandwidth or bandwidth.
  • the bandwidth indicated by the CH_BANDWIDTH_IN_NON_HT field in the current frame is the channel bandwidth used for frame transmission, or the bandwidth occupied by the frame, sometimes referred to as the frame bandwidth.
  • the sending address field or the receiving address field of the frame in the non-HT format shown in FIG. 3 includes 6 bytes.
  • the first byte includes 8 bits, represented as b0, b1, b2, b3, b4, b5, b6, and b7, respectively.
  • the sender uses the bandwidth Signaling TA to indicate that the bandwidth Signaling TA means that the sender uses a non-HT frame or a non-HT duplicated frame to send the address (
  • the unicast (Individual)/multicast (Group) bit in the transmitter address, TA) field indicates whether the B5 and B6 bits in the first 7 bits of the scrambling sequence are used as the CH_BANDWIDTH_IN_NON_HT field, that is, whether B5 and B6 are used to indicate the bandwidth .
  • the unicast/multicast bit is the first bit of the first byte of the sending address field or the receiving address field, that is, b0, another form of expression, unicast (unicast)/multicast (multicast) also refers to the sending address field or the first bit of the first byte of the Receive Address field. Specifically, if the unicast/multicast bit is set to 1, it means that the B5 bit and the B6 bit in the first 7 bits of the scrambling code sequence are used as the CH_BANDWIDTH_IN_NON_HT field to indicate the bandwidth.
  • the unicast/multicast bit is set to 0, it means that the B5 and B6 bits in the first 7 bits of the scrambling sequence are not used as the CH_BANDWIDTH_IN_NON_HT field, and can still be random values or used for other purposes.
  • the bandwidth that can be used between the sender and the receiver can exceed the four bandwidths shown in Table 2.
  • the 802.11be standard supports a maximum transmission bandwidth of 320MHz
  • other bandwidths such as 320MHz can be used between the transmitter and the receiver using the 802.11be standard.
  • a site of the 11ax next-generation standard is called an EHT site, so it is compatible with previous generations of standards and is also a non-HT (802.11a), HT (802.11n), VHT (802.11ac) and HE (802.11ax) site.
  • EHT site a site of the 11ax next-generation standard
  • non-HT (802.11a) a site of the 11ax next-generation standard
  • HT 802.11n
  • VHT (802.11ac) VHT (802.11ac)
  • HE (802.11ax) site Currently, the CH_BANDWIDTH_IN_NON_HT field can only support the four bandwidths shown in Table 2, and the four states of the CH_BANDWIDTH_IN_NON_HT field (two bits of B5B6) have all been used up.
  • the bandwidth may be extended to 320MHz.
  • EHT Extremely High Throughput
  • the unicast/multicast bit in the TA field of the sending address in a non-HT frame or a non-HT duplicated frame is set to 1, it means that the sending station carries the CH_BANDWIDTH_IN_NON_HT information in the scrambling sequence, that is, the first 7 bits of the scrambling sequence.
  • the B5 bit and the B6 bit among the bits serve as the CH_BANDWIDTH_IN_NON_HT field.
  • B5B6 in the first 7 bits of the scrambling sequence of a non-HT frame or a non-HT duplicated frame indicates 20MHz, 40MHz, 80MHz and 160(80+80)MHz modes.
  • the EHT station uses B5B6 and another bit (eg, B3) in the scrambling sequence to indicate 20MHz, 40MHz, 80MHz, 160(80+80)MHz and 320MHz modes. As shown in Table 3, a total of 3 bits of B3, B5, and B6 are used to indicate the 320MHz mode.
  • one bit of a non-HT frame or a non-HT duplicated frame (the EHT bandwidth indication in Table 4) and B5B6 in the first 7 bits of the scrambling sequence are used to indicate 320MHz bandwidth.
  • FIG. 4 is a schematic flowchart of an indication method 400 provided by an embodiment of the present application.
  • the instruction method 400 includes but is not limited to the following steps:
  • the first device generates a non-HT frame or a non-HT duplicated frame
  • the first device sends a non-HT frame or a non-HT duplicated frame to the second device.
  • S403 The second device receives a non-HT frame or a non-HT duplicated frame.
  • the bandwidth indication method includes: a first device generates a first frame, and the first frame includes a non-high-throughput non-HT frame or a non-high-throughput copy non-HT duplicated frame, the first frame includes a first bit, a second bit and a third bit, and the first bit and the second bit are bits in the scrambling sequence of the first frame;
  • the third bit is the first value
  • the first bit and the second bit are used to indicate that the first channel bandwidth is one of 20MHz, 40MHz, 80MHz, or 160MHz;
  • the third bit is the second value and is used to indicate the second channel bandwidth, and at least one of the first bit and the second bit is not used to indicate the second channel bandwidth.
  • the second channel bandwidth is a bandwidth greater than 160MHz;
  • the first device sends the first frame to the second device.
  • the second device receives the first frame sent by the first device
  • the second device determines that the bandwidth of the first frame is the first channel bandwidth according to the first bit and the second bit, and the first channel bandwidth is one of 20MHz, 40MHz, 80MHz, or 160MHz. kind;
  • the second device determines that the bandwidth of the first frame is the second channel bandwidth according to the third bit, and at least one of the first bit and the second bit is not used to indicate the second channel bandwidth,
  • the second channel bandwidth is a bandwidth greater than 160 MHz.
  • the indication method includes:
  • the first device generates the first frame, the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame, the first frame includes the first bit, the second bit and the third bit, the first The first bit and the second bit are bits in the scrambling code sequence of the first frame, and the first device is a site that supports a bandwidth greater than 160MHz, including an extremely high throughput EHT site that supports the 802.11be standard;
  • the first bit and the second bit are used to indicate the first channel bandwidth, and the first channel bandwidth is one of 20MHz, 40MHz, 80MHz, or 160MHz,
  • the third bit is not used to indicate the first channel bandwidth
  • the second device is a site that supports a bandwidth greater than 160MHz
  • the third bit is the first value, and the first and second bits are used to indicate that the first channel bandwidth is 20MHz , 40MHz, 80MHz, 80+80MHz or 160MHz;
  • the third bit is the second value, which is used to indicate the second channel bandwidth, the first bit and the second bit At least one bit in is not used to indicate the second channel bandwidth, and the second channel bandwidth is a bandwidth greater than 160MHz;
  • the first device sends the first frame to the second device.
  • the second device receives the first frame sent by the first device
  • the second device determines that the bandwidth of the first frame is the first channel bandwidth according to the first bit and the second bit, and the first channel bandwidth is 20MHz, 40MHz, 80MHz or 160MHz One of, the third bit is not used to indicate the first channel bandwidth;
  • the second device is a site that supports a bandwidth greater than 160 MHz
  • the third bit is the first value
  • the second device determines that the bandwidth of the first frame is the first channel bandwidth according to the first bit and the second bit, and the first channel bandwidth It is one of 20MHz, 40MHz, 80MHz, 80+80MHz or 160MHz; if the third bit is the second value, the second device determines that the bandwidth of the first frame is the second channel bandwidth according to the third bit. At least one of the two bits is not used to indicate the second channel bandwidth, and the second channel bandwidth is a bandwidth greater than 160 MHz.
  • the above-mentioned indication method adopts the schematic flowchart of the bandwidth indication method 400 provided in FIG. 4 .
  • the steps in the two indication methods are as described in the bandwidth indication method 400 .
  • the first device and the second device in the different indication methods are not distinguished for simplicity of description, but may also be the third device and the fourth device, the fifth device and the sixth device, and so on.
  • the first frame, the first bit, the second bit, the third bit, etc. described in the same indication method are also not distinguished for the same reason, and are not limited here.
  • the same names in different indication methods may represent different meanings and specific implementation methods. Different indication methods may have different implementations, and for simplicity, they are still introduced together.
  • At least one of the first bit and the second bit is not used to indicate the second channel bandwidth, that is, one or both of the first and second bits
  • the bits are not used to carry bandwidth information, or carry non-bandwidth information, which can save the indication bits used to indicate the channel bandwidth, increase the randomness of the scrambling sequence, reduce the peak-to-average power ratio in data transmission, and improve the communication efficiency. system performance.
  • the saved indication bits can be used to indicate new bandwidth, or to indicate other purposes.
  • the first bit and the second bit are B5 and B6 bits in the first 7 bits of the scrambling code sequence, and the second channel bandwidth is 320MHz.
  • the use of B5B6 for bandwidth indication can be applied to devices of previous generations of standard versions that support bandwidth indication, with good compatibility and practical implementation.
  • the 160MHz in the first channel bandwidth includes contiguous 160MHz, or non-contiguous 80+80Mhz.
  • the first device is a station supporting a bandwidth greater than 160MHz.
  • the station supporting a bandwidth greater than 160MHz includes an extremely high throughput EHT station supporting the 802.11be standard, and also includes a station in a next-generation standard.
  • the third bit can be any of the following:
  • any one of the B0 bits, B1 bits, B2 bits, and B3 bits in the first 7 bits of the scrambling sequence one bit in the reserved service bits Reserved SERVICE Bits, one bit in the receiving address RA field, Frame Control A bit in the field.
  • the third bit is any one of B0-B3 of the first seven bits of the scrambling code sequence, no additional signaling indication is required outside the scrambling code sequence, which can save signaling overhead.
  • the third bit is in the bits of other fields, since the bit overhead of the scrambling code sequence is not increased, the randomness of the scrambling code sequence can be increased, the peak-to-average power ratio in data transmission can be reduced, and the communication system can be improved. performance.
  • the third bit is a second value, and at least one of the first bit and the second bit is not used to indicate the second channel bandwidth includes:
  • the values of the first bit and the second bit are random values.
  • the third bit By using only one bit (the third bit) to indicate a channel bandwidth greater than 160MHz, and setting the first and second bits to random values instead of indicating the second channel bandwidth, it is possible to save time in the scrambling sequence. bit, increase the randomness of the scrambling code sequence, reduce the peak-to-average power ratio in data transmission, and improve the system performance of communication.
  • the first bit is used to indicate the second channel bandwidth or the reserved bandwidth
  • the second bit is a random value.
  • the first bit is a third value
  • it is used to indicate the second channel bandwidth
  • the first bit is a fourth value
  • it is used to indicate a reserved bandwidth
  • the second bit is a random value
  • the second bit is used to indicate the second channel bandwidth or the reserved bandwidth
  • the first bit is a random value.
  • the second bit is a third value for indicating the second channel bandwidth
  • the second bit is a fourth value for indicating a reserved bandwidth
  • the first bit is a random value.
  • the third bit and the first bit (or the second bit) are used to indicate the second channel bandwidth, and setting the second bit (or the first bit) to a random value can save the use of
  • the scrambling code bits indicating the channel bandwidth the randomness of the scrambling code sequence is increased, the peak-to-average power ratio in data transmission is reduced, and the system performance of communication is improved.
  • the saved indication bits bits not used to indicate the bandwidth of the second channel
  • another value of the third bit may be used to indicate reserved bandwidth, may be used to indicate new bandwidth, or be used for other purposes.
  • the bandwidth indicated in the bandwidth indication method given in this application is the channel bandwidth used for frame transmission, or the bandwidth occupied by the frame, sometimes also called the bandwidth of the frame.
  • the receiving station determines how to set the bandwidth of the response frame according to the indicated bandwidth information.
  • the first value is 0 and the second value is 1.
  • the first value is 1 and the second value is 0. The following description will not be repeated.
  • the third value is 0, and the fourth value is 1.
  • the third value is 1 and the fourth value is 0. The following description will not be repeated.
  • the setting of the value of the bit indicating the bandwidth of the channel is only for illustration, and in actual situation, it is set to 1 or 0, and the corresponding replacement is not limited in this application.
  • An embodiment of the present application provides a communication system, as shown in FIG. 5 , the communication system includes:
  • the bandwidth may include 20 megabits of bandwidth, 40 megabits of bandwidth, 80 megabits of bandwidth, 160 (80+80) megabits of bandwidth, 240 megabits of bandwidth, and 320 megabits of bandwidth. That is, the bandwidth of the channel is 20MHz, 40MHz, 80MHz, 160(80+80)MHz, 240MHz, 320MHz, and so on.
  • Each channel includes at least one subchannel.
  • the first device When the channel includes a 20MHz subchannel, the first device generates a frame in non-HT format; when the channel includes multiple 20MHz subchannels, the first device generates a frame in non-HT duplicated format. frame.
  • the bandwidth of the channel sub-channel may be greater than or equal to 20 MHz. That is, each channel includes at least one sub-channel, and the bandwidth of each sub-channel may be the same or different.
  • the bandwidth indication method given in this application is: the non-HT frame or the non-HT duplicated frame includes the first bit, the second bit and the third bit.
  • the third bit is the first value
  • the first bit and the second bit are used to indicate that the channel bandwidth is one of 20MHz, 40MHz, 80MHz, or 160MHz.
  • the third bit is the second value
  • it can indicate that the channel bandwidth is a bandwidth greater than 160 MHz.
  • the first bit and the second bit can be set to random values or arbitrary values, or reserved or default values.
  • the bandwidth indication method provided by the present application can save the number of bits for indicating the bandwidth, so that the randomness of the original scrambling code can be preserved and the PAPR can be improved.
  • the indicator bits saved at the same time can be reserved for other uses.
  • the first bit and the second bit are the B5 and B6 bits in the first 7 bits of the scrambling sequence
  • the third bit can be the B0, B1, B2 and B3 bits in the first 7 bits of the scrambling sequence.
  • the reserved service bits may be Reserved SERVICE Bits
  • the control frame field may be the Frame Control field, which is described as an example, and is not limited here.
  • the third bit is any one of the B0, B1, B2 and B3 bits in the first 7 bits of the scrambling sequence, and the first and second bits are among the first 7 bits of the scrambling sequence.
  • the B5 and B6 bits are taken as an example, and an embodiment of the present application provides a bandwidth indication method for introduction.
  • the second device when the first device is associated with the second device, the second device sends its device type to the first device, and the first device sends its device type to the second device. Therefore, before performing this step, both the first device and the second device save the device type of the other party.
  • the first device can obtain the device type of the second device that it has saved.
  • the device type may be an Extremely High Throughput (Extremely High Throughput, EHT) station, and also includes a station in a next-generation standard, that is, a station supporting a bandwidth greater than 160 MHz.
  • EHT Extremely High Throughput
  • the device type may be a Very High Throughput (VHT) site that does not support EHT or a High Efficiency (HE) site, that is, a site that only supports a bandwidth less than or equal to 160MHz.
  • VHT Very High Throughput
  • HE High Efficiency
  • the device type of the first device is a site supporting a bandwidth greater than 160 MHz, including an extremely high throughput EHT site supporting the 802.11be standard, and also including a site in a next-generation standard.
  • the second device supports the use of any one of the B0, B1, B2 and B3 bits in the first 7 bits of the scrambling sequence (the third bit) and the scrambling code
  • the B5 bit and the B6 bit (the first bit and the second bit) in the first 7 bits of the sequence indicate the bandwidth of the channel.
  • the second device whose device type is a VHT site that does not support EHT or an HE site, the second device supports using the B5 bit and the B6 bit in the first 7 bits of the scrambling sequence to indicate the bandwidth of the channel.
  • the second device may agree in advance that when the second device is a device of an EHT site, the first device uses the B0 bit and the B1 bit in the first 7 bits of the scrambling sequence. , any one of B2 bits and B3 bits, and B5 bits and B6 bits in the first 7 bits of the scrambling code sequence to indicate the bandwidth of the channel. And when the second device is a device of a VHT site or an HE site that does not support EHT, the first device uses bits B5 and B6 in the first 7 bits of the scrambling sequence to indicate the bandwidth of the channel.
  • the channel is any channel between the first device and the second device. There may be at least one channel between the first device and the second device, and each channel in the at least one channel corresponds to a bandwidth.
  • the channel includes at least one 20MHz subchannel, and when the channel includes one 20MHz subchannel, the first device generates a frame in non-HT format; when the channel includes multiple 20MHz subchannels, the first device generates a frame in non-HT duplicated format frame.
  • the bandwidth of this application may also include new bandwidths such as 320MHz bandwidth.
  • the currently emerging bandwidths include 20MHz bandwidth, 40MHz bandwidth, 80MHz bandwidth and 160(80+80)MHz bandwidth, and may also include new bandwidths such as 240MHz bandwidth and 320MHz bandwidth.
  • any one of the B0, B1, B2 and B3 bits in the first 7 bits of the scrambling sequence and the B5 and B6 bits in the first 7 bits of the scrambling sequence can be used to Indicates the bandwidth of the channel.
  • the B0 and B1 bits in the first 7 bits of the scrambling sequence can be used.
  • any one of B2 bits and B3 bits, and B5 bits and B6 bits in the first 7 bits of the scrambling sequence to indicate the 20MHz bandwidth, 40MHz bandwidth, 80MHz bandwidth, and 160(80+80)MHz bandwidth of the channel.
  • any one of the B0 bits, B1 bits, B2 bits, and B3 bits in the first 7 bits of the scrambling sequence can be used to indicate the 320MHz bandwidth of the channel.
  • the B5 bit among the first 7 bits of the scrambling sequence The and B6 bits are not used to indicate the 320MHz bandwidth and can be set to random or arbitrary values, or to reserved or default values.
  • any one of the B0 bits, B1 bits, B2 bits, and B3 bits in the first 7 bits of the scrambling sequence and any one of the B5 bits and B6 bits in the first 7 bits of the scrambling sequence can be used. bit to indicate the 320MHz bandwidth of the channel.
  • the B5 bit and the B6 bit in the first 7 bits of the scrambling code sequence are not used to indicate the bandwidth.
  • the other bit can be set to a random value or any value, or a reserved value or Defaults. That is to say, if at least one bit in B5B6 is not used to indicate the 320MHz bandwidth, it can be used for other purposes. For example, it can be set to a random value to retain the randomness of the original scrambling code and improve PAPR. It can also be set to a reserved or default value to indicate other possible channel bandwidths, or for other purposes.
  • the bit B3 is used as an example to describe the case of indicating a bandwidth greater than 160 MHz.
  • 320 MHz is used as an example, which is also applicable to other bandwidths such as 240 MHz.
  • the bit indicating a bandwidth greater than 160 MHz may also be one of the bits in B0-B2.
  • the B3 bits in the first 7 bits of the scrambling code sequence and the B5 bits and B6 bits in the first 7 bits of the scrambling code sequence can be used to indicate the 20MHz bandwidth, 40MHz bandwidth, 80MHz bandwidth, 160(80+80MHz) of the channel. )MHz bandwidth.
  • the B3 bit in the first 7 bits of the scrambling sequence can be used to indicate the 320MHz bandwidth of the channel.
  • the bandwidth indication method given in the embodiment of the present application can use only one bit to indicate the 320MHz bandwidth, which can save two indication bits compared to using B3B5B6 to indicate the 320MHz bandwidth.
  • the two saved indication bits can be set to random values, which can increase the randomness of the scrambling code sequence and reduce the PAPR in data transmission. Also, the two saved indication bits can also be reserved for other purposes.
  • B3 and B6 are used as examples to describe the case of indicating a bandwidth greater than 160MHz.
  • 320MHz is used as an example, which is also applicable to other bandwidths such as 240MHz.
  • B3 can also be a bit in B0-B2, and B6 can also be B5.
  • the B3 bits in the first 7 bits of the scrambling code sequence and the B5 bits and B6 bits in the first 7 bits of the scrambling code sequence can be used to indicate the 20MHz bandwidth, 40MHz bandwidth, 80MHz bandwidth, 160(80+80MHz) of the channel. )MHz bandwidth.
  • the B3 bit in the first 7 bits of the scrambling sequence and the B5 bit in the first 7 bits of the scrambling sequence may be used to indicate the 320MHz bandwidth of the channel.
  • B3 is set to 1 and B6 is set to a third value (eg, set to 0), it indicates that the bandwidth of the current frame is 320MHz.
  • B5 no longer indicates bandwidth information and can be set to a random value.
  • B3 is set to 1 and B6 is set to a fourth value (for example, set to 1), it can be used to indicate a reserved bandwidth, for example, a bandwidth such as 240MHz. Or used to indicate other purposes.
  • B5 no longer indicates bandwidth information, and can be set to a random value.
  • the bandwidth indication method given in the embodiment of the present application can use only two bits to indicate the 320MHz bandwidth, which can save one indication bit compared to using B3B5B6 to indicate the 320MHz bandwidth.
  • One bit saved can be set to a random value, which can increase the randomness of the scrambling sequence and reduce the PAPR in data transmission.
  • the saved one indication bit can also be reserved for other purposes.
  • the bandwidth indication method also retains a reserved bandwidth state, which can be used to indicate new bandwidth or to indicate other purposes.
  • the second device supports using the B5 bit and the B6 bit in the first 7 bits of the scrambling sequence to indicate the bandwidth of the channel.
  • the channel is any channel between the first device and the second device. There may be at least one channel between the first device and the second device, and each channel in the at least one channel corresponds to a bandwidth.
  • the channel includes at least one 20MHz subchannel, and when the channel includes one 20MHz subchannel, the first device generates a frame in non-HT format; when the channel includes multiple 20MHz subchannels, the first device generates a frame in non-HT duplicated format frame.
  • the bandwidth indicated by the B5 and B6 bits in the first 7 bits of the exemplary scrambling sequence may be any of 20 MHz bandwidth, 40 MHz bandwidth, 80 MHz bandwidth, and 160(80+80) MHz bandwidth. It is indicated in the manner described in Table 2.
  • the first device generates a non-HT frame or a non-HT duplicated frame according to the bandwidth indication method given in the embodiment of the present application, and sends the non-HT frame or non-HT duplicated frame to the second device, and the second device receives the non-HT frame or the non-HT duplicated frame.
  • HT frames or non-HT duplicated frames are HT frames or non-HT duplicated frames.
  • the device type of the second device When the device type of the second device is a site that supports a bandwidth greater than 160 MHz, it includes an extremely high throughput EHT site that supports the 802.11be standard, and also includes a site in a next-generation standard.
  • the second device receives a non-HT frame or a non-HT duplicated frame, and determines the bandwidth for sending the frame corresponding to the implementation of the bandwidth indication mode adopted by the first device.
  • the scrambling code used to indicate the channel bandwidth is When any one of the B0, B1, B2 and B3 bits in the first 7 bits of the sequence is turned on (for example, set to 1), the B5 and B5 bits in the first 7 bits of the scrambling sequence are not required. B6 bits, the channel bandwidth is 320MHz.
  • the The values of the B5 bit and the B6 bit among the 7 bits determine the bandwidth of the channel indicated by the two bits. That is, which one of 20MHz, 40MHz, 80MHz, and 160(80+80)MHz is the bandwidth of the indicated channel.
  • the channel bandwidth is 320MHz.
  • the indicated channel bandwidth is the reserved value.
  • the B0, B1, B2 and B3 bits in the first 7 bits of the scrambling sequence used to indicate the channel bandwidth is off (for example, set to 0)
  • the The value of the B5 bit and the B6 bit in the 7 bits determines the bandwidth of the channel indicated by the two bits, that is, which one of 20MHz, 40MHz, 80MHz, and 160(80+80)MHz is the bandwidth of the indicated channel kind.
  • the second device receives the non-HT frame or the non-HT duplicated frame, and obtains the non-HT frame or the non-HT duplicated frame for indicating
  • the B5 bit and the B6 bit in the first 7 bits of the scrambling code sequence of the channel bandwidth determine the bandwidth of the channel indicated by the two bits, that is, the indicated channel bandwidth is 20MHz, 40MHz, 80MHz, and 160 (80+80 ) MHz.
  • the setting of the value of the bit indicating the bandwidth of the channel is only for illustration, and in actual situations, it is set to 1 or 0, and the corresponding replacement is not limited in this application.
  • the site types of the first device and the second device it is necessary to first determine the site types of the first device and the second device, and use different bit positions to indicate the channel bandwidth according to the distinction between EHT sites and VHT and HE sites. That is, if both the first device and the second device are EHT sites that support a bandwidth greater than 160 MHz, a third bit is used to indicate the bandwidth of the EHT site, for example, the B3 bit mentioned in the above embodiment. If at least one of the first device or the second device is a VHT or HE site that only supports a bandwidth less than or equal to 160MHz, the third bit is not used to indicate a bandwidth greater than 160MHz, and is still used for its original meaning or for other purposes . Therefore, this indication manner may be called an implicit indication method, which is not limited in this embodiment of the present application.
  • the sites that support bandwidths greater than 160MHz include extremely high throughput EHT sites that support the 802.11be standard, and sites that are named in other ways of the 802.11be standard, and also include sites in the next-generation standard.
  • This application does not limit the name of the site or the standard or other methods used by it, including the implementation manner that can achieve the same function.
  • the station type of the first device is used to distinguish whether to use the third bit to indicate the bandwidth
  • a special process needs to be performed for the CF-End frame.
  • Channel resources in the Wi-Fi system are shared by multiple sites through a competition mechanism.
  • the station that has data to send will compete for the channel through the enhanced distributed channel access (EDCA) mechanism.
  • EDCA enhanced distributed channel access
  • the station sends an initial frame. If the response frame of the initial frame can be received correctly, it means that the channel competition is successful.
  • a time length is set in the Duration field of the initial frame, which is calculated from the end of the initial frame.
  • time period for data transmission This time period is called a TXOP
  • site that successfully competes is called a TXOP holder.
  • a TXOP holder can initiate one or more frame interactions within a TXOP. After the TXOP holder has sent the buffered data, if there is still time left in the TXOP period, the TXOP holder can send a CF-END frame to release the remaining time in the TXOP period so that other stations can compete for channels.
  • the frame structure of the CF-End frame is shown in Figure 7. Including frame control (frame control) field, duration (duration) field, receiving address (RA) field, sending address (TA) field, frame check sequence (frame check sequence, FCS) field and so on.
  • the receiving address (RA) field is set to a broadcast frame, that is, all 1s.
  • the sending address TA field is set to the basic service set identifier BSSID, and is set to the BSSID of the basic service set BSS where it is located.
  • a BSS is a system established by APs, which includes a unique AP that can associate with one or more sites.
  • the BSSID is the unique identifier of the BSS, usually the MAC address of the AP.
  • the TXOP holder If the TXOP holder is the AP, then it sends a CF-END frame. At this time, the TA field in the sent CF-END frame is the BSSID, that is, the MAC address of the AP, and the execution method may refer to the method given in the above embodiment. If the TXOP holder is a non-AP station, the TXOP holder first sends a CF-END frame. After the associated AP receives the CF-END frame, the associated AP can send a corresponding CF-END at the interval of SIFS. frame.
  • the AP When the AP receives a CF-END frame whose BSSID(TA) field matches its own BSSID (without comparing the Individual/Group bits), it can respond to a CF-END frame.
  • the reason why the Individual/Group bit is not compared here is because the Individual/Group bit may be set to 1 because the indication carries the bandwidth indication information, which does not match the BSSID itself, so this bit is ignored during comparison, and the other remaining bits are the same The match is considered successful.
  • a problem here is that when a non-AP station sends a CF-END frame, the frame does not have its own MAC address, so the AP cannot know which station sent the CF-END frame from the frame format after receiving the frame.
  • the third bit is used to indicate the bandwidth in the received CF-END.
  • the method for indicating the bandwidth by the third bit in the above embodiment cannot be applied to the CF-END frame sent by the non-AP station, that is, the CF-End frame needs to be processed in a special way as mentioned in the embodiment of the present application.
  • the TXOP holder is a non-AP site, two solutions are proposed to solve the problem that the methods given in the above embodiments are not applicable.
  • the AP determines the TXOP holder in the current BSS after receiving the CF-END frame whose BSSID(TA) field matches its own BSSID (without comparing the Individual/Group bits), if the TXOP holder is an EHT site , the received CF-END frame uses the third bit to indicate the bandwidth. If the TXOP holder is a VHT or HE station, the third bit is not used to indicate the bandwidth in the received CF-END frame, that is, B6B5 in the first 7 bits of the scrambling sequence is used to indicate the bandwidth. Since there can only be one TXOP holder in the BSS at the same time, it can avoid the wrong judgment of the sending station.
  • the AP records the bandwidth of the TXOP in the current BSS. After receiving the CF-END frame whose BSSID(TA) field matches its own BSSID (without comparing the Individual/Group bits), the AP does not need to indicate the bandwidth. The information is interpreted, and it is considered that the bandwidth of this CF-END frame is equal to the bandwidth of the TXOP. , in the second scheme, it is required that the TXOP holder must use the TXOP bandwidth to send CF-END frames.
  • the AP After identifying the bandwidth information, the AP sends a CF-END frame with the same bandwidth after the SIFS time interval at the end of the received CF-END frame.
  • the embodiment of the present application also provides a bandwidth indication method, wherein the third bit is one of the reserved service bits Reserved SERVICE Bits, or the receiving address RA field, or the multiplexing Frame Control field in one of the existing fields.
  • the third bit is one of the reserved service bits Reserved SERVICE Bits, or the receiving address RA field, or the multiplexing Frame Control field in one of the existing fields.
  • One bit, the first bit and the second bit are the B5 and B6 bits in the first 7 bits of the scrambling code sequence as an example for introduction.
  • the non-HT frame or the non-HT duplicated frame adopts one of the reserved service bits Reserved SERVICE Bits, or the receiving address RA field, or one of the existing fields in the multiplexing Frame Control field.
  • the reserved SERVICE Bits used to indicate the bandwidth of the channel in the non-HT frame or the non-HT duplicated frame, or the receiving address RA field, or the multiplexing Frame Control field in the existing field One of the bits is called the EHT bandwidth signaling indication, and the name of the indication bit or indication field is only an example, and is not limited in this application.
  • the currently emerging bandwidths include 20MHz bandwidth, 40MHz bandwidth, 80MHz bandwidth and 160(80+80)MHz bandwidth, as well as new bandwidths such as 240MHz bandwidth and 320MHz bandwidth.
  • the EHT bandwidth signaling indication and the B5 bit and the B6 bit in the first 7 bits of the scrambling sequence can be used to indicate the bandwidth of the channel.
  • the EHT bandwidth signaling indication and the first 7 bits of the scrambling sequence can be used.
  • the B5 and B6 bits of the channel indicate the 20MHz bandwidth, 40MHz bandwidth, 80MHz bandwidth, and 160(80+80)MHz bandwidth of the channel.
  • the EHT bandwidth signaling can be used to indicate the 320MHz bandwidth of the indicator channel.
  • the B5 and B6 bits in the first 7 bits of the scrambling sequence are not used to indicate the 320MHz bandwidth, and can be set to a random value or any value, or is reserved or the default value.
  • the EHT bandwidth signaling indication and any one of the B5 bits and the B6 bits in the first 7 bits of the scrambling sequence can be used to indicate the 320MHz bandwidth of the channel.
  • B5 The other bit, the B6 bit, which is not used to indicate the bandwidth can be set to a random value or an arbitrary value, or a reserved value or a default value.
  • B5B6 if at least one bit in B5B6 is not used to indicate the 320MHz bandwidth, it can be used for other purposes. For example, it can be set to a random value to retain the randomness of the original scrambling code and improve PAPR. It can also be set to a reserved or default value to indicate other possible channel bandwidths, or for other purposes.
  • the device type may be an extremely high throughput (Extremely High Throughput, EHT) site, or the device type may be a very high throughput (Very High Throughput, VHT) site that does not support EHT or a high efficiency (High efficiency, HE) site.
  • EHT extremely high throughput
  • VHT Very High Throughput
  • HE high efficiency
  • the EHT bandwidth signaling indication is used as an example to introduce the case of indicating a bandwidth greater than 160 MHz.
  • 320 MHz is used as an example, which is also applicable to other bandwidths such as 240 MHz.
  • the B5 and B6 bits in the EHT bandwidth signaling indication and the first 7 bits of the scrambling sequence can be used to indicate the 20MHz bandwidth, 40MHz bandwidth, 80MHz bandwidth, and 160(80+80)MHz bandwidth of the channel.
  • the EHT bandwidth signaling indication may be used to indicate the 320MHz bandwidth of the channel.
  • the B5 bit and the B6 bit in the first 7 bits of the scrambling code sequence use 0 to 3 to indicate 20MHz, 40MHz, 80MHz and 160(80+80)MHz respectively. kind of bandwidth.
  • the EHT bandwidth signaling indication is set to on, it means that the current bandwidth is 320MHz, so it is not necessary to use the B5 and B6 bits or other bits or fields in the first 7 bits of the scrambling sequence to indicate the 320MHz bandwidth. That is, the B5 bit and the B6 bit channel in the first 7 bits of the scrambling code sequence no longer carry bandwidth information, and can be set to random values.
  • the EHT bandwidth signaling indication is set to be enabled (for example, set to 1), it indicates that the bandwidth of the current frame is 320MHz. At this time, B5B6 no longer indicates bandwidth information, and can be set to a random value.
  • the bandwidth indication method given in the embodiment of this application can only use the EHT bandwidth signaling to indicate this one bit to indicate the 320MHz bandwidth, which can save two indication bits compared to using the B5B6 display indication and scrambling sequence to indicate the 320MHz bandwidth.
  • the scrambling sequence may not be used to indicate 320 MHz, the randomness of the scrambling sequence may be increased, and the PAPR in data transmission may be reduced.
  • the saved two indication bits can be reserved for other uses.
  • the EHT bandwidth signaling indication and the B6 bit in the first 7 bits of the scrambling code sequence are used as examples to introduce the situation where the indication is larger than the 160MHz bandwidth.
  • 320MHz is used as an example, and it is also applicable to other bandwidths such as 240MHz.
  • the B5 and B6 bits in the EHT bandwidth signaling indication and the first 7 bits of the scrambling sequence can be used to indicate the 20MHz bandwidth, 40MHz bandwidth, 80MHz bandwidth, and 160(80+80)MHz bandwidth of the channel.
  • the EHT bandwidth signaling indication and the B5 bit in the first 7 bits of the scrambling sequence may be used to indicate the 320MHz bandwidth of the channel.
  • the B5 bit in the first 7 bits of the scrambling sequence may also be the B5 bit in the first 7 bits of the scrambling sequence.
  • EHT bandwidth signaling indication when the EHT bandwidth signaling indication is set to off (for example, set to 0), when B5B6 is equal to 0 to 3, it indicates 20MHz, 40MHz, 80MHz, and 160(80+80)MHz respectively, where B5 is low, B6 is high.
  • the EHT bandwidth signaling indication When the EHT bandwidth signaling indication is set to be enabled (for example, set to 1), and B6 is set to a third value (for example, set to 0), it indicates that the bandwidth of the current frame is 320MHz, and at this time, B5 no longer indicates bandwidth information, Can be set to a random value.
  • the EHT bandwidth signaling indication When the EHT bandwidth signaling indication is set to 1 and B6 is set to a fourth value (for example, set to 1), it can be used to indicate a reserved bandwidth, for example, a bandwidth such as 240 MHz. Or used to indicate other purposes. At this time, B5 no longer indicates bandwidth information, and can be set to a random value. at this time
  • the bandwidth indication method given in the embodiment of the present application can use only two bits to indicate the 320MHz bandwidth, which can save one indication bit compared to using the B5B6 display indication and scrambling sequence to indicate the 320MHz bandwidth.
  • the bits in the saved scrambling sequence can be set to random values, which can increase the randomness of the scrambling sequence and reduce the PAPR in data transmission.
  • the saved one indication bit can also be reserved for other purposes.
  • the bandwidth indication method also retains a reserved bandwidth state, which can be used to indicate new bandwidth or to indicate other purposes.
  • the first device generates a non-HT frame or a non-HT duplicated frame according to the bandwidth indication method given in the embodiment of the present application, and sends the non-HT frame or non-HT duplicated frame to the second device, and the second device receives the non-HT frame or the non-HT duplicated frame.
  • HT frames or non-HT duplicated frames are HT frames or non-HT duplicated frames.
  • the EHT bandwidth signaling when the EHT bandwidth signaling is used to indicate the 320MHz bandwidth of the channel, when the EHT bandwidth signaling is indicated to be enabled (for example, set to 1), B5 in the first 7 bits of the scrambling sequence is not required. bits and B6 bits, the channel bandwidth is 320MHz.
  • the EHT bandwidth signaling indication is off (for example, set to 0)
  • the bandwidth of the channel indicated by the two bits is determined by the values of the B5 bit and the B6 bit in the first 7 bits of the scrambling sequence. That is, which one of 20MHz, 40MHz, 80MHz, and 160(80+80)MHz is the bandwidth of the indicated channel.
  • the EHT bandwidth signaling indication and any one of the B5 bits and B6 bits in the first 7 bits of the scrambling sequence are used to indicate the 320MHz bandwidth of the channel
  • the EHT bandwidth signaling indication is When enabled (eg, set to 1)
  • the B5 bit and the other one of the B6 bits in the first 7 bits of the scrambling sequence are not required.
  • the channel bandwidth is 320MHz.
  • the indicated channel bandwidth is the reserved value.
  • the bandwidth of the channel indicated by the two bits is determined by the values of the B5 bit and the B6 bit in the first 7 bits of the scrambling sequence. That is, which one of 20MHz, 40MHz, 80MHz, and 160(80+80)MHz is the bandwidth of the indicated channel.
  • this indication manner may be called an explicit indication method, which is not limited in this embodiment of the present application.
  • an information indication method in a non-HT frame or a non-HT duplicated frame is also provided, and the information indication method is a preamble puncture mode.
  • the preamble puncturing mode may be referred to as a non-preamble puncturing mode, where the non-preamble puncturing mode refers to a mode in which the preamble is not punctured.
  • the first device can puncture the channel of the indicated bandwidth, and the punctured subchannel can be called a secondary subchannel.
  • the punctured slave subchannel is unavailable, that is, cannot be used for data communication, and the subchannel that has not been punctured can be used for data communication. Among them, the slave sub-channel here is also called the secondary channel.
  • the preamble puncture defined in 802.11ax introduces four new channel modes in addition to the four bandwidths of 802.11ac, namely mode 4 to mode 7.
  • Figure 8 shows that mode 4 to mode 7 punch holes on the channel schematic diagram.
  • P20 represents the 20MHz main sub-channel, and the main sub-channel will not be destroyed.
  • S represents the sub-channel, and Low and High represent the distinction between low and high frequencies. For example, S40-Low and S40-High are used to distinguish the two 20MHz in the S40 sub-channel.
  • the dotted line in the S80 indicates that the 20MHz sub-channel may or may not be destroyed. It is defined in the standard as:
  • Mode 4 is to punch holes in the 80MHz channel, and only the second 20MHz channel (S20 channel) is punched out;
  • Mode 5 is to puncture the 80MHz channel, and only one 20MHz channel (S40-low or S40-High) in the secondary 40MHz channel is punched out;
  • Mode 6 is to punch holes in the 160MHz or 80+80MHz channel.
  • the main 80MHz channel only the secondary 20MHz channel (S20 channel) is punched out, and the secondary 80MHz channel can be punched at a granularity of 20MHz;
  • Mode 7 is to perform puncturing in the 160MHz or 80+80MHz channel.
  • the main 80MHz channel the main 40MHz channel is available, and the slave 40MHz and slave 80MHz channels can be arbitrarily punctured with a granularity of 20MHz.
  • the preamble puncture in 802.11ac is only for the orthogonal frequency division multiple access (OFDMA) mode, while the bandwidth in 802.11be is extended to 320MHz. orthogonal frequency division multiple access, non-OFDMA) mode.
  • OFDMA orthogonal frequency division multiple access
  • non-OFDMA orthogonal frequency division multiple access
  • Table 9 shows 63 kinds of bandwidths. In Table 9, a "1" or “x” corresponds to a 20MHz channel, "1" indicates that the corresponding 20MHz channel is idle, and “x” indicates that the corresponding 20MHz channel is busy or not available (no available) .
  • the total bandwidth corresponding to the puncturing mode is the bandwidth without preamble puncturing.
  • the total bandwidth may be: 20MHz, 40MHz, 80MHz, 160MHz (or 80+80MHz), 320MHz (or 160+160MHz).
  • the preamble puncturing mode is also referred to as the bandwidth of channel puncturing, or the preamble puncture bandwidth, and is sometimes referred to as a bandwidth.
  • the preamble puncture indication can be implemented in the following ways:
  • the preamble puncture indication may be indicated in a non-OFDMA mode, that is, multiple bits are used to indicate the non-OFDMA preamble puncture mode.
  • a non-OFDMA mode that is, multiple bits are used to indicate the non-OFDMA preamble puncture mode.
  • Table 9 from the perspective of the non-OFDMA preamble puncture mode, it has a total of 63 channel puncturing bandwidths, which require 6 bits to indicate, that is, use the numerical range composed of the 6 bits to indicate. Of course, this is only an example. If the pattern indicated by the preamble puncture is increased or decreased, the corresponding indication bits may be increased or decreased, which is not limited in this application.
  • the non-OFDMA bandwidth modes are some bandwidth modes that utilize the remaining sub-channels after puncturing to transmit single-user data frames.
  • non-OFDMA bandwidth mode In order to avoid being too complicated in the implementation, some choices are made for the non-OFDMA bandwidth mode in the standard. Because filters need to be used to deal with the leakage of edge signals, the more holes are punched, the more filters are required, and the higher the cost. Therefore, an important factor in mode selection is to control the number of punched holes. For example, only one hole is allowed to be punched in the 160MHz bandwidth, and the size of this hole can be 20MHz or 40MHz.
  • the bandwidth mode using non-OFDMA can indicate a certain mode, and requires less indication overhead.
  • the bandwidth granularity indicated by the preamble puncture is 20MHz. That is, each value in the numerical range composed of 6 bits used to indicate the preamble puncture corresponds to the channel state of a 20MHz subchannel. In other words, each value in the value range composed of the 6 bits corresponds to a channel state of a 20MHz subchannel. In other words, each value in the value range composed of the 6 bits is used to indicate whether the 20MHz channel corresponding to the value is idle.
  • the bandwidth granularity indicated by the preamble puncture is 40MHz. That is, each value in the numerical range composed of 6 bits used to indicate the preamble puncture corresponds to the channel state of a 40MHz subchannel. In other words, each value in the value range composed of 6 bits corresponds to a channel state of a 40MHz subchannel. In other words, each value in the value range composed of the 6 bits is used to indicate whether the 40MHz channel corresponding to the value is idle.
  • all modes should correspond to a value in the range of 0 to (2 ⁇ n -1), where n is the number of bits used for preamble puncture bandwidth indication.
  • the preamble puncture indication occupies 8 bits, which can be called forming a bitmap bitmap.
  • the preamble puncture is used to indicate the preamble puncturing information corresponding to the total bandwidth, that is, used to indicate the channel status of the subchannels in the total bandwidth.
  • the bandwidth granularity indicated by the preamble puncture is 20MHz. That is, each of the 8 bits used to indicate the preamble puncture corresponds to the channel state of a 20MHz subchannel. In other words, each bit in the bitmap corresponds to the channel state of a 20MHz subchannel. In other words, each bit is used to indicate whether the 20MHz channel corresponding to the bit is idle.
  • the bandwidth granularity indicated by the preamble puncture is 40MHz. That is, each of the 8 bits used to indicate the preamble puncture corresponds to the channel state of a 40MHz subchannel. In other words, each bit in the bitmap corresponds to the channel state of a 40MHz subchannel. In other words, each bit is used to indicate whether the 40MHz channel corresponding to the bit is idle.
  • the channel corresponding to each bit in the preamble puncture indication is set in sequence. Therefore, in the preamble puncture indication, the low-order bits correspond to low-frequency channels, and the high-order bits correspond to high-frequency channels.
  • the channel corresponding to each bit in the preamble puncture indication is set in sequence. Therefore, in the preamble puncture indication, the low-order bits correspond to high-frequency channels, and the high-order bits correspond to low-frequency channels.
  • bits and channels are not only applicable to the implementation situation of the preamble puncture indication, but also applicable to other situations or other fields indicated by the preamble puncture.
  • a bit is used to indicate whether the channel corresponding to the bit is idle, which can be: a possible implementation manner, when the bit is set to 1, it means that the channel corresponding to the bit is idle; or, when the bit is set to 0, it means that The channel corresponding to this bit is unavailable or busy. In another possible implementation manner, when this bit is set to 0, it means that the channel corresponding to this bit is idle; or, when this bit is set to 1, it means that the channel corresponding to this bit is unavailable or busy.
  • the channel is unavailable or busy may be replaced with “the channel is unavailable” or “the channel is punctured”.
  • “Channel is idle” can be replaced with "channel available” or “channel not punctured”.
  • multiple bits in one of the following non-HT frames or non-HT duplicated frames are used to indicate preamble puncture information:
  • One or more bits of Reserved SERVICE Bits and one or more bits of the first 7 bits of the scrambler sequence for example, if an 8-bit bitmap is used to indicate the preamble puncturing information, the third bit in the above embodiment indicates that the channel bandwidth is At 320MHz, the B5 and B6 bits in the first 7 bits of the scrambling sequence are not used to indicate the 320MHz bandwidth, then the B5B6 bits in the first 7 bits of the scrambling sequence and the 6 bits in the Reserved SERVICE Bits can be used to form a bitmap. Used to indicate preamble puncture information.
  • the third bit and the B6 bit in the first 7 bits of the scrambling sequence are used to indicate that the channel bandwidth is greater than 160MHz, the B5 bit in the first 7 bits of the scrambling sequence and the reserved SERVICE Bits can be used.
  • the 7-bit bitmap is used to indicate the preamble puncture information. This is just an example, not a limitation.
  • the first field is carried in an existing field, which has the advantage of not changing the existing frame structure design, so that the content of the first frame can be correctly parsed by third-party sites other than the target site, maintaining backward compatibility.
  • the position of the frame occupied by the bit used to indicate the preamble puncture information and the position of the bit indicating the bandwidth in the above application embodiment do not overlap in the same implementation manner.
  • the multiple bits used to indicate the preamble puncture are not all 0, or the sum of the multiple bits is not 0, or at least one of the multiple bits is not 0, or the multiple bits are composed of If the value is not 0, it means that the current frame uses the preamble puncture indication. Otherwise, that is, the multiple bits used to indicate the preamble puncture are all 0, or the sum of the multiple bits is 0, or the value formed by the multiple bits is 0, it means that the current frame does not use the preamble puncture indication.
  • the preamble puncture adopts a non-OFDMA preamble puncture indication manner, for example, 6 bits are used for indication. Then, in the numerical range composed of 6 bits, the all-0 mode cannot be used to indicate any channel puncturing mode. That is, all modes should correspond to a value from 1 to (2 ⁇ n -1), and 0 cannot be used to indicate any channel puncturing mode, where n is the number of bits used for preamble puncture bandwidth indication. 0 cannot be used to indicate any channel puncturing mode, because it is indistinguishable from a situation in which multiple bits indicating preamble puncture are all 0 in this indication mode, which means that the current frame does not use preamble puncture indication.
  • the preamble puncture is in the form of a bitmap, for example, an 8-bit bitmap is used for indication. It needs to be agreed that each bit in the bitmap is set to 1 to indicate that the corresponding sub-channel is idle, and set to 0 to indicate that the corresponding sub-channel is unavailable or busy. At this time, the bit cannot be set to 1 to indicate that the corresponding subchannel is unavailable or busy, and the bit to 0 indicates that the corresponding subchannel is idle. Because at this time, if each sub-channel of the total bandwidth is idle, the indication form is all 0s. In contrast to this indication method, the multiple bits indicating the preamble puncture are all 0, which means that the current frame cannot be distinguished from the case where the preamble puncture indication is not used.
  • the first device when the first device associates with the second device, it will declare whether it supports the capability of performing preamble puncture indication in non-HT frames or non-HT duplicated frames.
  • the capability indication can be carried in the EHT capability element of the association frame, which is called a preamble puncture capability indication
  • the association frame includes an association request (association request) frame and an association response (association response) frame, carrying
  • the bits or fields of the preamble puncture capability indication and the frame in which the preamble puncture capability indication is located are not limited here, including all implementations that can achieve the same function.
  • the capability indication When the first device is a non-AP site, the capability indication is carried in an association request frame, and when the first device is an AP site, the capability indication is carried in an association response frame.
  • a bit is used to indicate whether to support the ability to perform preamble puncture indication, which may be: a possible implementation manner, when the bit is set to 1, it indicates that the preamble puncture indication is supported; or, when the bit is set to When 0, it indicates that the preamble puncture instruction is not supported. In another possible implementation manner, when the bit is set to 0, it means that the preamble puncture indication is supported; or, when the bit is set to 1, it means that the preamble puncture indication is not supported.
  • the preamble puncture indication when sending a non-HT or non-HT duplicated frame, MUST be used when the TA is set to bandwidth Signaling TA. Conversely, in another case, for the first device or the second device that claims not to support this capability, when sending a non-HT or non-HT duplicated frame, the preamble puncture is not used when the TA is set to bandwidth Signaling TA. instruct.
  • preamble puncture indication is also referred to as “indication preamble puncture”, or preamble puncture indication mode, or preamble puncture mode, that is, preamble puncturing mode and/or non-preamble puncturing Mode, which is used to indicate the subchannel status of the total bandwidth of the frame.
  • the information indication method provided in this application includes:
  • An indication method includes: a first device generates a first frame, the first frame is a non-high throughput non-HT frame or a non-high throughput duplicated non-HT frame, and the first frame includes a first field , if at least one of the bits of the first field is not 0, it means that the first field is used to indicate the preamble puncturing mode;
  • the second device receives the first frame sent by the first device, and the second device determines that the first field is used to indicate the preamble puncturing mode according to at least one bit in the first field that is not 0.
  • the first field is the bitmap bitmap composed of multiple bits described in the above embodiment or the multi-bit bits indicated by the mode of non-OFDMA.
  • This indication method may adopt the schematic flowchart of the bandwidth indication method 400 provided in FIG. 4 , and the steps of the indication method are as described in the indication method 400 , which will not be repeated here.
  • the information indication method includes:
  • the first device generates the first frame, the first frame is a non-high-throughput non-HT frame or a non-high-throughput duplicated non-HT duplicated frame, and the first frame includes the first field;
  • the first device generates a second frame, the second frame includes a first indication, the second frame includes an association request frame or an association response frame, and the first indication is used to indicate whether the first field is used to indicate a preamble puncturing mode;
  • the first device sends the first frame and the second frame, wherein the sending time of the second frame is earlier than the sending time of the first frame;
  • the second device receives the first frame and the second frame sent by the first device, the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame, the first frame includes the first field, the first frame The second frame includes the first indication, and the second frame includes the association request frame or the association response frame;
  • the second device determines whether the first field is used to indicate a preamble puncturing mode according to the first indication.
  • the first field is the bitmap bitmap composed of multiple bits described in the above embodiment or the multi-bit bits indicated by the mode of non-OFDMA.
  • the first indication is carried in the second frame, and is used to indicate whether the first field has the ability to indicate the preamble puncturing mode.
  • a specific introduction is given in the above embodiment, which can be carried in the EHT capability of the association request/response frame. element. Therefore, the present indication method may adopt the schematic flowchart of the bandwidth indication method 700 provided in FIG. 9 .
  • the bandwidth indication method 700 includes but is not limited to the following steps:
  • the first device generates a first frame and a second frame
  • S702 The first device sends the first frame and the second frame to the second device.
  • S703 The second device receives the first frame and the second frame.
  • the first device and the second device in the above instruction method are not distinguished for the convenience of description, but may also be the third device and the fourth device, the fifth device and the sixth device, and so on.
  • the first frame, the first field, etc. described in the same indication method are also not differentiated for the same reason, and are not limited here.
  • the same names in different indication methods may represent different meanings and specific implementation methods. Different indication methods may have different implementations, and for simplicity, they are still introduced together.
  • bandwidth granularity indication methods include:
  • the first device generates the first frame, the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame, the first frame includes the first bit, the second bit and the fourth bit, the first bit and the second bit are bits in the scrambling sequence of the first frame;
  • the fourth bit is the first value
  • the first bandwidth granularity is 20MHz, corresponding to the first channel bandwidth
  • the first bit and the second bit are used to indicate the first channel bandwidth
  • the first A channel bandwidth is one of 20MHz, 40MHz, 80MHz, or 160MHz;
  • the fourth bit is the second value
  • the second bandwidth granularity is 40MHz
  • the corresponding channel bandwidth is the second channel bandwidth
  • the second channel bandwidth is a bandwidth greater than 160MHz
  • the first device sends the first frame to the second device.
  • the second device receives the first frame sent by the first device; wherein, if the fourth bit is the first value, the second device determines that the bandwidth granularity of the first frame is the first bandwidth granularity, and the first bandwidth granularity is 20MHz, corresponding to the first Channel bandwidth, the first device determines that the bandwidth of the first frame is the first channel bandwidth according to the first bit and the second bit, and the first channel bandwidth is one of 20MHz, 40MHz, 80MHz, or 160MHz;
  • the second device determines that the bandwidth granularity of the first frame is the second bandwidth granularity, and the second bandwidth granularity is 40 MHz, which corresponds to the second channel bandwidth, and the second channel bandwidth is a bandwidth greater than 160 MHz.
  • the bandwidth granularity mentioned here refers to the bandwidth granularity of the preamble puncture mode, or the bandwidth granularity of the preamble puncture mode.
  • the first bit and the second bit are the B5 and B6 bits in the first 7 bits of the scrambling code sequence.
  • B5B6 for bandwidth indication can be applied to the devices of previous generations of standard versions that support bandwidth indication. It has good compatibility and is practical in practice. operate in.
  • the second channel bandwidth is 320MHz, and 160MHz in the first channel bandwidth includes continuous 160MHz, or discontinuous 80+80Mhz.
  • the first frame also includes a first field.
  • the first field is used to indicate the preamble puncturing mode. Specifically, how to indicate the preamble puncturing mode, and whether the current transmission frame uses the preamble puncture indication and which indication method is used, please refer to the previous section. The various embodiments of , will not be repeated here.
  • the fourth bit can be any of the following:
  • the fourth bit is any one of B0-B3 of the first seven bits of the scrambling code sequence, no additional signaling indication is required outside the scrambling code sequence, which can save signaling overhead.
  • the third bit is in the bits of other fields, since the bit overhead of the scrambling code sequence is not increased, the randomness of the scrambling code sequence can be increased, the peak-to-average power ratio in data transmission can be reduced, and the communication system can be improved. performance.
  • At least one of the first bit and the second bit is not used to indicate the second channel bandwidth includes:
  • the values of the first bit and the second bit are random values. Only one bit can be used to indicate the bandwidth of the channel, which can save the indicator bits in the scrambling code sequence, increase the randomness of the scrambling code sequence, reduce the peak-to-average power ratio in data transmission, and improve the system performance of communication. At the same time, the saved indication bits can be reserved for other uses.
  • the first bit is used to indicate the second channel bandwidth or the reserved bandwidth
  • the second bit is a random value.
  • the first bit is the third value
  • it is used to indicate the second channel bandwidth
  • the first bit is the fourth value
  • it is used to indicate the reserved bandwidth
  • the second bit is a random value.
  • the second bit is used to indicate the second channel bandwidth or the reserved bandwidth
  • the first bit is a random value.
  • the second bit is a third value for indicating the second channel bandwidth
  • the second bit is a fourth value for indicating the reserved bandwidth
  • the first bit is a random value.
  • the indicator bits used to indicate the channel bandwidth can be saved, including saving the indicator bits in the scrambling code sequence, increasing the randomness of the scrambling code sequence, reducing the peak-to-average power ratio in data transmission, and improving the system performance of communication.
  • the saved indication bits can be reserved for other uses.
  • a reserved bandwidth state is also reserved, which can be used to indicate new bandwidth, or to indicate other purposes.
  • the setting of the value of the bit indicating the bandwidth of the channel is only for illustration, and in actual situation, it is set to 1 or 0, and the corresponding replacement is not limited in this application.
  • the first device and the second device in the embodiment are not distinguished from the above embodiments for the convenience of description, but may also be the third device and the fourth device, the fifth device and the sixth device, and so on.
  • the same names of the first frame, first bit, second bit, and first channel bandwidth described in the same indication method are not distinguished, and are not limited here. They can represent different meanings and specific implementation methods. There may be different implementations in the examples of .
  • a preamble puncture indication is used in the currently transmitted frame, for example, a non-HT frame or a non-HT duplicated frame.
  • the indication method in this embodiment of the present application is as described in the above application embodiment, and details are not repeated here.
  • the fourth bit is used to indicate the bandwidth granularity of the preamble puncturing mode, and the bandwidth granularity includes 20MHz and 40MHz.
  • the fourth bit is set to the first value, that is, the bandwidth granularity is 20MHz.
  • the fourth bit is set to the second value, that is, the bandwidth granularity is 40 MHz.
  • the indication method of preamble puncture is as described in the above embodiment, and will not be repeated here.
  • the fourth bit is used to indicate the bandwidth granularity of the preamble puncturing mode, and at the same time, the distinction of the bandwidth granularity also implies the total bandwidth information, so the bandwidth information of the channel can be obtained at the same time.
  • the bandwidth granularity of the preamble puncturing mode of the frame is indicated, and the bandwidth granularity is differentiated to indicate the channel bandwidth, which can save indication signaling and simplify the design.
  • the fourth bit is set to the first value, and the bandwidth granularity used to indicate the preamble puncturing mode is 20MHz, then the total bandwidth corresponding to the puncturing mode is a bandwidth less than or equal to 160MHz, that is, it can indicate the bandwidth of the channel.
  • the bandwidth is the channel bandwidth less than or equal to 160 MHz.
  • the fourth bit is set to the second value, it is used to indicate that the bandwidth granularity of the preamble puncturing mode is 40MHz, then the total bandwidth corresponding to the puncturing mode is a bandwidth greater than 160MHz, that is, it can indicate that the bandwidth of the channel is a channel greater than 160MHz bandwidth. Therefore, the fourth bit can be used to indicate the bandwidth granularity of the preamble puncturing mode, and at the same time, the bandwidth of the transmitted frame can be obtained.
  • the bandwidth Signaling TA is used to indicate whether the first 7 bits of the scrambling code sequence of the transmission frame carry bandwidth information, which is consistent with the above embodiment, and will not be repeated here.
  • the currently emerging bandwidths include 20MHz bandwidth, 40MHz bandwidth, 80MHz bandwidth and 160(80+80)MHz bandwidth, as well as new bandwidths such as 240MHz bandwidth and 320MHz bandwidth.
  • the bandwidth granularity is determined by the fourth bit
  • the bandwidth of the channel can be indicated by the B5 bit and the B6 bit in the first 7 bits of the scrambling code sequence.
  • the bandwidth granularity is 20MHz, and the fourth bit is set as the first value
  • the B5 bit and the B6 bit in the first 7 bits of the scrambling sequence may indicate 20MHz bandwidth, 40MHz bandwidth, 80MHz bandwidth, 160(80+80)MHz bandwidth of the channel.
  • the bandwidth granularity is 40MHz
  • the fourth bit is set as the second value
  • the bandwidth of the channel is 320MHz
  • the B5 and B6 bits in the first 7 bits of the scrambling sequence are random values.
  • the bandwidth granularity is 40MHz at this time
  • the fourth bit is set as the second value
  • any one of the B5 bits and B6 bits in the first 7 bits of the scrambling sequence is used to indicate the 320MHz bandwidth of the channel.
  • another bit that is not used to indicate the bandwidth in the first 7 bits of the scrambling code sequence in the B5 bit and the B6 bit is a random value.
  • the device type may be an extremely high throughput (Extremely High Throughput, EHT) site, or the device type may be a very high throughput (Very High Throughput, VHT) site that does not support EHT or a high efficiency (High efficiency, HE) site.
  • EHT extremely high throughput
  • VHT Very High Throughput
  • HE high efficiency
  • an indication method for indicating bandwidth granularity is introduced by taking the fourth bit as the B3 bit in the first 7 bits of the scrambling sequence as an example.
  • the fourth bit can also be a bit in B0-B2, a bit in any of the reserved service bits Reserved SERVICE Bits, the receiving address RA field, and the Frame Control field.
  • the B3 bit (the fourth bit) in the first 7 bits of the scrambling code sequence indicates that the bandwidth granularity of the preamble puncturing mode is 20MHz
  • the B3 bit in the first 7 bits of the scrambling code sequence and the The B5 bit and the B6 bit in the first 7 bits indicate the 20MHz bandwidth, 40MHz bandwidth, 80MHz bandwidth, 160(80+80)MHz bandwidth of the channel.
  • the channel bandwidth is 320 MHz bandwidth at this time.
  • 320MHz is taken as an example, and it is also applicable to other bandwidths such as 240MHz.
  • the bandwidth granularity indicating the preamble puncturing mode is 20MHz, and when B5B6 is equal to 0 to 3, it indicates 20MHz, 40MHz, 80MHz, and 160(80+80)MHz respectively, where B5 is low, B6 is high.
  • B3 When B3 is set to 1, it indicates that the bandwidth granularity of the preamble puncturing mode is 40MHz, and at the same time indicates that the bandwidth of the current frame is 320MHz. At this time, B5B6 no longer indicates the bandwidth information and can be set to a random value.
  • the bandwidth granularity indication method given in the embodiment of the present application may use only one bit to indicate the bandwidth granularity of the preamble puncture mode, and at the same time, the channel bandwidth of the transmission frame may be determined according to the bandwidth granularity, so signaling overhead can be saved.
  • the bandwidth granularity is 40MHz, that is, when the bandwidth of 320MHz is indicated, two indication bits can be saved as random values, the randomness of the scrambling code sequence can be increased, and the PAPR in data transmission can be reduced. Also, the saved two indication bits can be reserved for other uses.
  • the fourth bit indicates the bandwidth granularity
  • any one of the B5 bits and B6 bits in the first 7 bits of the scrambling sequence is used to indicate the 320MHz bandwidth of the channel as an example
  • the fourth bit is the B3 bit in the first 7 bits of the scrambling sequence
  • any one of the B5 bits and the B6 bits in the first 7 bits of the scrambling sequence is B6.
  • B3 can also be B0-B2 in the first 7 bits of the scrambling code sequence
  • a bit in any of the reserved service bits Reserved SERVICE Bits, the receiving address RA field, and the Frame Control field, and B6 can also be B5.
  • the B3 bit (the fourth bit) in the first 7 bits of the scrambling code sequence indicates that the bandwidth granularity of the preamble puncturing mode is 20MHz
  • the B3 bit in the first 7 bits of the scrambling code sequence and the The B5 bit and the B6 bit in the first 7 bits indicate the 20MHz bandwidth, 40MHz bandwidth, 80MHz bandwidth, 160(80+80)MHz bandwidth of the channel.
  • the 320 MHz bandwidth of the channel is indicated according to the value of the B6 bit in the first 7 bits of the scrambling sequence.
  • 320MHz is taken as an example, and it is also applicable to other bandwidths such as 240MHz.
  • the bandwidth granularity indicating the preamble puncturing mode is 20MHz
  • B5B6 when B5B6 is equal to 0 to 3, it indicates 20MHz, 40MHz, 80MHz, and 160(80+80)MHz respectively, where B5 is low, B6 is high.
  • B3 When B3 is set to 1, it indicates that the bandwidth granularity of the preamble puncturing mode is 40MHz.
  • B6 when B6 is set to 0, it indicates that the bandwidth of the current frame is 320MHz. At this time, B5 no longer indicates bandwidth information, and can be set to a random value. When B6 is set to 1, it indicates that the bandwidth of the current frame is a reserved value. For example, the bandwidth is 240MHz, etc., or it is used to indicate other purposes. At this time, B5 no longer indicates the bandwidth information, and can be set to a random value.
  • the bandwidth granularity indication method given in the embodiment of the present application can use one bit to indicate the bandwidth granularity of the preamble puncture mode, and at the same time, when an additional bit is added to indicate the 320MHz bandwidth of the channel, one indication bit can be saved as a random value, and the scrambling can be increased. The randomness of the code sequence reduces the PAPR in data transmission. Also, the saved one indication bit can be reserved for other uses. At the same time, the indication method also retains a reserved bandwidth state, which may be used to indicate a new bandwidth, or may indicate a bandwidth granularity greater than 40 MHz, or be used to indicate other purposes.
  • the first device generates a non-HT frame or a non-HT duplicated frame according to the bandwidth indication method given in the embodiment of the present application, and sends the non-HT frame or non-HT duplicated frame to the second device, and the second device receives the non-HT frame or the non-HT duplicated frame.
  • HT frames or non-HT duplicated frames are HT frames or non-HT duplicated frames.
  • the fourth bit when the fourth bit is used to indicate the bandwidth granularity of the preamble puncture, and the 320MHz bandwidth of the channel can be indicated according to the fourth bit, when the fourth bit is the first value, it indicates the size of the preamble puncturing mode of the frame.
  • the bandwidth granularity is 20MHz, and at the same time, it is determined which channel bandwidth is 20MHz, 40MHz, 80MHz, and 160(80+80)MHz by the values of the B5 and B6 bits in the first 7 bits of the scrambling sequence.
  • the fourth bit is the second value, it indicates that the bandwidth granularity of the preamble puncturing mode of the frame is 40MHz, and the channel bandwidth is 320MHz.
  • any one of the fourth bit and the first 7 bits of the scrambling sequence can indicate the 320MHz bandwidth of the channel
  • the fourth bit is the first value, it indicates that the bandwidth granularity of the preamble puncturing mode of the frame is 20MHz, and the bandwidth of the channel is determined by the values of the B5 and B6 bits in the first 7 bits of the scrambling sequence. Which one is 20MHz, 40MHz, 80MHz, and 160(80+80)MHz.
  • the fourth bit is the second value, the bandwidth granularity of the preamble puncturing pattern of the frame is 40MHz.
  • any one of the B5 bit and the B6 bit in the first 7 bits of the scrambling sequence is the third value, it indicates that the bandwidth of the current frame is 320MHz. If any one of the B5 bit and the B6 bit in the first 7 bits of the scrambling sequence is the fourth value, it indicates that the bandwidth of the current frame is a reserved value. For example, the bandwidth is 240MHz, etc., or it is used to indicate other purposes. At this time, the B5 bit and the other bit in the B6 bit in the first 7 bits of the scrambling code sequence no longer indicate bandwidth information, and can be set to random values.
  • the random value in this application may also be any value, or a reserved value, or a default value, or the like.
  • the same method flow and steps in the above embodiments are described and summarized by using the same diagrams.
  • the specific implementation methods are different.
  • the first device and the second device in different embodiments are not distinguished for the sake of simplicity of description, but may also be the third device and the fourth device, the fifth device and the sixth device, and so on.
  • the first frame, the first bit, the second bit, the third bit, etc. in different embodiments are also not differentiated for the same reason, and are not limited herein.
  • the same names in different indication methods may represent different meanings and specific implementation methods. Different indication methods may have different implementations. In this application, for the convenience and clarity of description, the names are not distinguished in different embodiments, and the specific meanings are determined according to different embodiments, which are not limited here.
  • the sites described by the first device and the second device in this embodiment of the present application may be an access point (access point, AP) or a non-access point (non-AP). Called a station (station, STA), the station in this application includes both.
  • the first device communicates with the second device, the following situations exist: the first device is an AP, and the second device is a non-AP.
  • the first device is a non-AP, and the second device is an AP.
  • the first device is a non-AP, and the second device is a non-AP.
  • the first device is an AP, and the second device is an AP.
  • the non-HT frame and the non-HT duplicated frame may both be a Request To Send (Request To Send, RTS) frame, a Clear To Send (Clear To Send, CTS) frame, and the like.
  • RTS Request To Send
  • CTS Clear To Send
  • the sites that support bandwidths greater than 160MHz include extremely high throughput EHT sites that support the 802.11be standard, and sites that are named in other ways of the 802.11be standard, and also include sites in the next-generation standard.
  • This application does not limit the name of the site or the standard or other methods used by it, including the implementation manner that can achieve the same function.
  • the communication apparatus includes corresponding hardware structures and/or software modules for executing each function.
  • the present application can be implemented in hardware or in the form of a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • an embodiment of the present application provides a communication apparatus 1000, and the apparatus 1000 may be the first device or part of the first device in each of the foregoing embodiments or in FIG. 4, FIG. 5, or FIG. 9, for executing This first device (sending device).
  • the apparatus includes: a first processing unit 1001 and a first sending unit 1002 .
  • the first processing unit 1001 and the first sending unit 1002 may perform different functions. For example, in one embodiment:
  • the first processing unit 1001 is used to generate a first frame, the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame, and the first frame includes a first bit and a second bit. and the third bit, the first bit and the second bit are bits in the scrambling code sequence of the first frame;
  • the third bit is the first value
  • the first bit and the second bit are used to indicate that the first channel bandwidth is one of 20MHz, 40MHz, 80MHz, or 160MHz;
  • the third bit is the second value and is used to indicate the second channel bandwidth, and at least one of the first bit and the second bit is not used to indicate the second channel bandwidth.
  • the second channel bandwidth is a bandwidth greater than 160MHz;
  • the first sending unit 1002 is configured to send the first frame to the second device.
  • the first processing unit 1001 is used to generate a first frame, the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame, and the first frame includes a first bit and a second bit. and the third bit, the first bit and the second bit are bits in the scrambling code sequence of the first frame, and the first device is a site that supports a bandwidth greater than 160MHz;
  • the first sending unit 1002 configured to send the first frame to the second device
  • the first bit and the second bit are used to indicate the first channel bandwidth, and the first channel bandwidth is one of 20MHz, 40MHz, 80MHz, or 160MHz,
  • the third bit is not used to indicate the first channel bandwidth
  • the second device is a site that supports a bandwidth greater than 160MHz
  • the third bit is the first value, and the first and second bits are used to indicate that the first channel bandwidth is 20MHz , 40MHz, 80MHz, 80+80MHz or 160MHz;
  • the third bit is the second value, which is used to indicate the second channel bandwidth, the first bit and the second bit At least one bit in is not used to indicate the second channel bandwidth, and the second channel bandwidth is a bandwidth greater than 160 MHz.
  • the first processing unit 1001 is used to generate a first frame, the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame, and the first frame includes a first field. At least one bit in the bits of the field is not 0, indicating that the first field is used to indicate the preamble puncturing mode;
  • the first sending unit 1002 is configured to send the first frame to the second device.
  • the first processing unit 1001 is used to generate a first frame, the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame, and the first frame includes a first field;
  • the second frame includes a first indication
  • the second frame includes an association request frame or an association response frame
  • the first indication is used to indicate whether the first field is used to indicate a preamble puncturing mode.
  • the first sending unit 1002 is configured to send the first frame and the second frame to the second device.
  • the first processing unit 1001 is used to generate a first frame, the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame, and the first frame includes a first bit and a second bit. and the fourth bit, the first bit and the second bit are bits in the scrambling code sequence of the first frame;
  • the fourth bit is the first value
  • the first bandwidth granularity is 20MHz, corresponding to the first channel bandwidth
  • the first bit and the second bit are used to indicate the first channel bandwidth
  • the first A channel bandwidth is one of 20MHz, 40MHz, 80MHz, or 160MHz;
  • the fourth bit is the second value
  • the second bandwidth granularity is 40MHz
  • the corresponding channel bandwidth is the second channel bandwidth
  • the second channel bandwidth is a bandwidth greater than 160MHz
  • the first sending unit 1002 is configured to send the first frame to the second device.
  • an embodiment of the present application provides a communication apparatus 1100 , and the apparatus 1100 may be the second device or part of the second device in each of the foregoing embodiments or in FIG. 4 , FIG. 5 , or FIG. 9 , for executing This second device (receiving device).
  • the apparatus includes: a first receiving unit 1101 and a second processing unit 1102 .
  • the first receiving unit 1101 and the second processing unit 1102 may perform different functions. For example, in one embodiment:
  • the first receiving unit 1101 is configured to receive the first frame sent by the first device, where the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame, the first frame
  • the frame includes a first bit, a second bit and a third bit, and the first bit and the second bit are bits in the scrambling code sequence of the first frame;
  • the second processing unit 1102 configured to determine the channel bandwidth of the first frame according to the first frame
  • the second device determines that the bandwidth of the first frame is the first channel bandwidth according to the first bit and the second bit, and the first channel bandwidth is 20MHz, 40MHz , 80MHz, or one of 160MHz;
  • the second device determines that the channel bandwidth of the first frame is the second channel bandwidth according to the third bit, and at least one of the first bit and the second bit is not used to indicate The second channel bandwidth is a bandwidth greater than 160 MHz.
  • the first receiving unit 1101 is configured to receive the first frame sent by the first device.
  • the first frame is a non-high-throughput non-HT frame or a non-high-throughput duplicated non-HT frame, and the first frame includes the first frame.
  • bit, the second bit and the third bit, the first bit and the second bit are bits in the scrambling code sequence of the first frame, and the first device is a site that supports a bandwidth greater than 160MHz;
  • the second processing unit 1102 configured to determine the bandwidth of the channel according to the first frame
  • the second device determines that the bandwidth of the first frame is the first channel bandwidth according to the first bit and the second bit, and the first channel bandwidth is 20MHz, 40MHz, 80MHz or one of 160MHz, the third bit is not used to indicate the first channel bandwidth;
  • the second device is a site that supports a bandwidth greater than 160 MHz
  • the third bit is the first value
  • the second device determines that the bandwidth of the first frame is the first channel bandwidth according to the first bit and the second bit, and the first channel bandwidth It is one of 20MHz, 40MHz, 80MHz, 80+80MHz or 160MHz; if the third bit is the second value, the second device determines that the bandwidth of the first frame is the second channel bandwidth according to the third bit. At least one of the two bits is not used to indicate the second channel bandwidth, and the second channel bandwidth is a bandwidth greater than 160 MHz.
  • the first receiving unit 1101 is configured to receive the first frame sent by the first device.
  • the first frame is a non-high-throughput non-HT frame or a non-high-throughput duplicated non-HT frame, and the first frame includes the first frame. field;
  • the second processing unit 1102 is configured to determine that the first field is used to indicate a preamble puncturing mode according to at least one bit in the first field that is not 0.
  • the first receiving unit 1101 is used to receive the first frame and the second frame sent by the first device.
  • the first frame is a non-high throughput non-HT frame or a non-high throughput duplicated non-HT frame, and the first frame is The frame includes a first field, the second frame includes a first indication, and the second frame includes an association request frame or an association response frame;
  • the second processing unit 1102 is configured to determine whether the first field is used to indicate a preamble puncturing mode according to the first indication.
  • the first receiving unit 1101 is configured to receive the first frame sent by the first device.
  • the first frame is a non-high-throughput non-HT frame or a non-high-throughput duplicated non-HT frame, and the first frame includes the first frame.
  • bit, the second bit and the fourth bit, the first bit and the second bit are bits in the scrambling code sequence of the first frame;
  • the second processing unit 1102 is configured to determine the bandwidth granularity of the channel according to the first frame
  • the second device determines that the bandwidth granularity of the first frame is the first bandwidth granularity, and the first bandwidth granularity is 20 MHz, which corresponds to the first channel bandwidth.
  • the bit determines that the bandwidth of the first frame is the first channel bandwidth, and the first channel bandwidth is one of 20MHz, 40MHz, 80MHz, or 160MHz;
  • the second device determines that the bandwidth granularity of the first frame is the second bandwidth granularity, and the second bandwidth granularity is 40 MHz, which corresponds to the second channel bandwidth, and the second channel bandwidth is a bandwidth greater than 160 MHz.
  • the first device and the second device described above are written from the sending end and the receiving end, respectively, and correspond to the sending device and the receiving device.
  • a device it can implement the methods mentioned in the embodiments of the present application as a sending end, and can also implement the methods mentioned in the embodiments of the present application as a receiving end. Therefore, there is such a communication apparatus 1200, which has the units (processing unit and transmitting unit) included in the first device, and which also has the units (receiving unit and processing unit) included in the second device, when integrating the functions of the two devices , the two processing units can be combined into one.
  • an embodiment of the present application provides a communication apparatus 1200 .
  • the apparatus includes: a second receiving unit 1201 , a third processing unit 1202 , and a second sending unit 1203 .
  • the apparatus 1200 can be the first device or part of the first device in each of the previous embodiments or in FIG. 4 , FIG. 5 or FIG. 9 , for executing the first device (sending device), the executed method can be The various embodiments described with reference to FIG. 10 .
  • the apparatus 1200 may be the second device or part of the second device in each of the previous embodiments or FIG. 4, FIG. 5 or FIG. 9, and is used to execute the second device (receiving device). 11.
  • the second receiving unit 1201 and the third processing unit 1202 may perform different functions.
  • the second sending unit 1203 and the third processing unit 1202 may perform different functions.
  • the communication apparatus 1200 may execute the method executed by the first device (sending device) when communicating with STA1, and the second device (receiving device) may be executed when the communication apparatus 1200 communicates with STA2 method performed.
  • the communication device 1200 can execute the method executed by the first device (sending device) when communicating with AP1, and the second device (receiving device) can be executed when the communication device 1200 communicates with AP2. ) method executed.
  • the present application provides a communication system.
  • the communication system includes a first device and a second device.
  • the first device is the communication apparatus 1000 described in FIG. 10 or the communication apparatus 1200 described in FIG. 12 , and the executed method may be Various embodiments are described with reference to FIG. 10 or FIG. 12 .
  • the second device is the communication apparatus 1100 described in FIG. 11 or the communication apparatus 1200 described in FIG. 12 , and the method to be executed may refer to the various embodiments described in FIG. 11 or FIG. 12 . It is not repeated here.
  • FIG. 13 is a schematic diagram of a communication apparatus 1300 provided by an embodiment of the present application.
  • the apparatus 1300 may be an application specific integrated circuit, one or more FPGAs (Field Programmable Gate Arrays), PLDs (Programmable Logic Devices), controllers, state machines, gate logic, discrete hardware components, any other suitable circuits, or Any combination of circuits, chips, single boards, or communication devices, etc. capable of performing the various functions described throughout this application.
  • the apparatus 1300 is configured into the apparatus of each of the previous embodiments or the first device or the second device in FIG. 4 , FIG. 5 , and FIG. 9 , and can be used to perform the operations performed in the previous embodiments.
  • the apparatus 1300 includes: an input/output interface 1301 , a processor 1302 and a memory 1303 .
  • the input/output interface 1301 , the processor 1302 and the memory 1303 can be connected through a bus system 1304 .
  • the memory 1303 is used to store programs, instructions or codes.
  • the processor 1302 is configured to execute programs, instructions or codes in the memory 1303 to control the input/output interface 1301 to receive or send signals and to implement the first device or the second device in the implementation manner corresponding to the above embodiment. The steps and functions implemented by the device will not be repeated here.
  • the above input and output interface 1301 and the processor 1302 reference may be made to the above embodiments or the specific description of the first device or the second device in FIG. 4, FIG. 5, and FIG.
  • FIG. 14 is a schematic diagram of a chip 1400 provided by an embodiment of the present application.
  • the chip 1400 includes a first logic circuit 1401 and a first interface circuit 1402 .
  • the first logic circuit 1401 is configured to perform the generating step in the method of any possible implementation manner of the first aspect, the fifth aspect, the ninth aspect, the tenth aspect or the seventeenth aspect, the first
  • the interface circuit 1402 is configured to perform the action of sending or receiving in the method of any possible implementation manner of the first aspect, the fifth aspect, the ninth aspect, the tenth aspect or the seventeenth aspect, in this case, "Send" is equivalent to "output", and "receive" is equivalent to input.
  • the first logic circuit 1401 and the first interface circuit 1402 may perform different functions. For example, in one embodiment:
  • the first logic circuit 1401 is used to generate a first frame, the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame, and the first frame includes a first bit and a second bit. and the third bit, the first bit and the second bit are bits in the scrambling code sequence of the first frame;
  • the third bit is the first value
  • the first bit and the second bit are used to indicate that the first channel bandwidth is one of 20MHz, 40MHz, 80MHz, or 160MHz;
  • the third bit is the second value and is used to indicate the second channel bandwidth, and at least one of the first bit and the second bit is not used to indicate the second channel bandwidth.
  • the second channel bandwidth is a bandwidth greater than 160MHz;
  • the first interface circuit 1402 is used for outputting the first frame.
  • the first logic circuit 1401 is used to generate a first frame, the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame, and the first frame includes a first bit and a second bit. and the third bit, the first bit and the second bit are bits in the scrambling code sequence of the first frame, and the first device is a site that supports a bandwidth greater than 160MHz;
  • the first interface circuit 1402 configured to output the first frame
  • the first bit and the second bit are used to indicate the first channel bandwidth, and the first channel bandwidth is one of 20MHz, 40MHz, 80MHz, or 160MHz,
  • the third bit is not used to indicate the first channel bandwidth
  • the second device is a site that supports a bandwidth greater than 160MHz
  • the third bit is the first value, and the first and second bits are used to indicate that the first channel bandwidth is 20MHz , 40MHz, 80MHz, 80+80MHz or 160MHz;
  • the third bit is the second value, which is used to indicate the second channel bandwidth, the first bit and the second bit At least one bit in is not used to indicate the second channel bandwidth, and the second channel bandwidth is a bandwidth greater than 160 MHz.
  • the first logic circuit 1401 is used to generate a first frame, the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame, and the first frame includes a first field. At least one bit in the bits of the field is not 0, indicating that the first field is used to indicate the preamble puncturing mode;
  • the first interface circuit 1402 is used for outputting the first frame.
  • the first logic circuit 1401 is used to generate a first frame, the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame, and the first frame includes a first field;
  • the second frame includes a first indication
  • the second frame includes an association request frame or an association response frame
  • the first indication is used to indicate whether the first field is used to indicate a preamble puncturing mode.
  • the first interface circuit 1402 is used to output the first frame and the second frame.
  • the first logic circuit 1401 is used to generate a first frame, the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame, and the first frame includes a first bit and a second bit. and the fourth bit, the first bit and the second bit are bits in the scrambling code sequence of the first frame;
  • the fourth bit is the first value
  • the first bandwidth granularity is 20MHz, corresponding to the first channel bandwidth
  • the first bit and the second bit are used to indicate the first channel bandwidth
  • the first A channel bandwidth is one of 20MHz, 40MHz, 80MHz, or 160MHz;
  • the fourth bit is the second value
  • the second bandwidth granularity is 40MHz
  • the corresponding channel bandwidth is the second channel bandwidth
  • the second channel bandwidth is a bandwidth greater than 160MHz
  • the first interface circuit 1402 is used for outputting the first frame.
  • FIG. 15 is a schematic diagram of another chip 1500 provided by an embodiment of the present application.
  • the chip 1500 includes a second logic circuit 1501 and a second interface circuit 1502 .
  • the second logic circuit 1501 is configured to perform the generating step in the method of any possible implementation manner of the second aspect, the sixth aspect, the eleventh aspect, the twelfth aspect or the eighteenth aspect
  • the The second interface circuit 1502 is configured to perform the action of sending or receiving in the method of any possible implementation manner of the second aspect, the sixth aspect, the eleventh aspect, the twelfth aspect or the eighteenth aspect.
  • "send" is equivalent to "output”
  • "receive" is equivalent to input.
  • the second logic circuit 1501 and the second interface circuit 1502 may perform different functions. For example, in one embodiment:
  • the second interface circuit 1502 is configured to input the first frame sent by the first device, where the first frame is a non-high-throughput non-HT frame or a non-high-throughput non-HT duplicated frame, the first frame
  • the frame includes a first bit, a second bit and a third bit, and the first bit and the second bit are bits in the scrambling code sequence of the first frame;
  • the second logic circuit 1501 configured to determine the channel bandwidth of the first frame according to the first frame
  • the second device determines that the bandwidth of the first frame is the first channel bandwidth according to the first bit and the second bit, and the first channel bandwidth is 20MHz, 40MHz , 80MHz, or one of 160MHz;
  • the second device determines that the channel bandwidth of the first frame is the second channel bandwidth according to the third bit, and at least one of the first bit and the second bit is not used to indicate The second channel bandwidth is a bandwidth greater than 160 MHz.
  • the second interface circuit 1502 is used to input the first frame sent by the first device, the first frame is a non-high throughput non-HT frame or a non-high throughput duplicated non-HT frame, and the first frame includes the bit, the second bit and the third bit, the first bit and the second bit are bits in the scrambling code sequence of the first frame, and the first device is a site that supports a bandwidth greater than 160MHz;
  • the second logic circuit 1501 is configured to determine the bandwidth of the channel according to the first frame
  • the second device determines that the bandwidth of the first frame is the first channel bandwidth according to the first bit and the second bit, and the first channel bandwidth is 20MHz, 40MHz, 80MHz or one of 160MHz, the third bit is not used to indicate the first channel bandwidth;
  • the second device is a site that supports a bandwidth greater than 160 MHz
  • the third bit is the first value
  • the second device determines that the bandwidth of the first frame is the first channel bandwidth according to the first bit and the second bit, and the first channel bandwidth It is one of 20MHz, 40MHz, 80MHz, 80+80MHz or 160MHz; if the third bit is the second value, the second device determines that the bandwidth of the first frame is the second channel bandwidth according to the third bit. At least one of the two bits is not used to indicate the second channel bandwidth, and the second channel bandwidth is a bandwidth greater than 160 MHz.
  • the second interface circuit 1502 is used to input the first frame sent by the first device, the first frame is a non-high throughput non-HT frame or a non-high throughput duplicated non-HT frame, and the first frame includes the field;
  • the second logic circuit 1501 is configured to determine that the first field is used to indicate a preamble puncturing mode according to at least one bit in the first field that is not 0.
  • the second interface circuit 1502 is used to input the first frame and the second frame sent by the first device, the first frame is a non-high throughput non-HT frame or a non-high throughput duplicated non-HT frame, the first frame is The frame includes a first field, the second frame includes a first indication, and the second frame includes an association request frame or an association response frame;
  • the second logic circuit 1501 is configured to determine whether the first field is used to indicate a preamble puncturing mode according to the first indication.
  • the second interface circuit 1502 is used to input the first frame sent by the first device, the first frame is a non-high throughput non-HT frame or a non-high throughput duplicated non-HT frame, and the first frame includes the bit, the second bit and the fourth bit, the first bit and the second bit are bits in the scrambling code sequence of the first frame;
  • the second logic circuit 1501 is configured to determine the bandwidth granularity of the channel according to the first frame
  • the second device determines that the bandwidth granularity of the first frame is the first bandwidth granularity, and the first bandwidth granularity is 20 MHz, which corresponds to the first channel bandwidth.
  • the bit determines that the bandwidth of the first frame is the first channel bandwidth, and the first channel bandwidth is one of 20MHz, 40MHz, 80MHz, or 160MHz;
  • the second device determines that the bandwidth granularity of the first frame is the second bandwidth granularity, and the second bandwidth granularity is 40 MHz, which corresponds to the second channel bandwidth, and the second channel bandwidth is a bandwidth greater than 160 MHz.
  • Embodiments of the present application further provide a communication device, including one or more processors and one or more memories.
  • the one or more memories are coupled to the one or more processors for storing computer program code comprising computer instructions which, when executed by the one or more processors, cause the communication apparatus to perform
  • the above-mentioned relevant method steps implement the service processing method in the above-mentioned embodiment.
  • the communication device may be the first device, the second device, or the communication apparatus provided in this embodiment of the present application.
  • Embodiments of the present application further provide a computer-readable storage medium, where computer instructions are stored in the computer-readable storage medium, and when the computer instructions are executed on a computer, the computer can implement the methods provided in the foregoing embodiments.
  • the computer may be the first device, the second device, or the communication device provided by the embodiments of this application.
  • the embodiments of the present application also provide a computer program product, which, when the computer program product runs on a computer, causes the computer to execute the above-mentioned relevant steps, so as to implement the methods provided by the above-mentioned embodiments.
  • the embodiments of the present application also provide an apparatus, which may specifically be a chip, a component or a module, and the apparatus may include a connected processor and a memory; wherein, the memory is used for storing computer execution instructions, and when the apparatus is running, The processor can execute the computer-executed instructions stored in the memory, so that the chip executes the service processing method executed by the electronic device in the foregoing method embodiments.
  • the electronic device, computer-readable storage medium, computer program product or chip provided in this embodiment are all used to execute the corresponding method provided above. Therefore, for the beneficial effects that can be achieved, reference may be made to the above-provided method. The beneficial effects in the corresponding method will not be repeated here.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be Incorporation may either be integrated into another device, or some features may be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may be one physical unit or multiple physical units, that is, they may be located in one place, or may be distributed to multiple different places . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, which are stored in a storage medium , including several instructions to make a device (may be a single chip microcomputer, a chip, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read only memory (ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种带宽指示方法及设备,该方法包括:第一设备生成第一帧,并向第二设备发送所述第一帧。所述第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,所述第一帧包括第一比特,第二比特和第三比特,所述第一比特和第二比特为所述第一帧的扰码序列中的比特。若指示所述第一帧的第一信道带宽,第三比特为第一值,第一比特和第二比特用于指示第一信道带宽为20MHz、40MHz、80MHz或160MHz中的一种。若指示所述第一帧的第二信道带宽,第三比特为第二值,用于指示所述第二信道带宽,所述第一比特和所述第二比特中的至少一个比特不用于指示所述第二信道带宽,所述第二信道带宽为大于160MHz的带宽。该方法可以用于WIFI领域,该第二信道带宽可以为320MHz。

Description

一种带宽指示方法及设备、芯片和通信系统 技术领域
本申请涉及通信领域,特别涉及一种带宽指示方法及及设备、芯片和通信系统。
背景技术
在无线通信场景中,由于发送端和接收端所处的无线信道环境不同,在数据通信之前如果能够根据两者的信道可用情况,协商出双方都可用的带宽将对于数据通信非常有用。为了实现这一目的,在802.11ac标准中,将非高吞吐率(non-high throughput,non-HT)帧或者non-HT复制(duplicated)帧所使用的扰码序列(scrambling sequence)的前7个比特中的两个比特(也即B5比特和B6比特)用来指示带宽。这两个比特的四种取值与四种带宽一一对应。这四种带宽分别是20MHz、40Mhz、80MHz、160MHz(或者80+80MHz)。
目前,电气和电子工程师协会(institute of electrical and electronics engineers,IEEE)正在开展802.11ax之后的下一代标准(802.11be)的讨论。相比于之前的802.11ax标准,802.11be标准支持极高吞吐率(extremely high throughput,EHT)的数据传输。802.11be标准支持的最大传输带宽为320MHz。因此,802.11be标准会引入除了20MHz、40Mhz、80MHz、80+80MHz或160MHz之外的其他带宽,例如320MHz。
在引入除了20MHz、40MHz、80MHz、80+80MHz或160MHz之外的其他带宽之后,两个设备之间如何协商带宽,是亟待解决的技术问题。
发明内容
下面从不同的方面介绍本申请,应理解的是,下面的不同方面的实施方式和有益效果可以互相参考。
第一方面,本申请提供一种带宽指示方法,该方法包括:
第一设备生成第一帧,第一帧包括非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一比特,第二比特和第三比特,第一比特和第二比特为第一帧的扰码序列中的比特;
其中,指示所述第一帧的第一信道带宽时,第三比特为第一值,第一比特和第二比特用于指示第一信道带宽为20MHz、40MHz、80MHz、或160MHz中的一种;
指示所述第一帧的第二信道带宽时,第三比特为第二值,用于指示所述第二信道带宽,所述第一比特和所述第二比特中的至少一个比特不用于指示所述第二信道带宽,所述第二信道带宽为大于160MHz的带宽;
所述第一设备向第二设备发送第一帧。
第二方面,本申请又提供一种带宽指示方法,该方法包括:
第二设备接收第一设备发送的第一帧,所述第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,所述第一帧包括第一比特,第二比特和第三比特,所述第一比特和所述第二比特为第一帧的扰码序列中的比特;
其中,若所述第三比特为第一值,所述第二设备根据所述第一比特和所述第二比特确定所述第一帧的带宽为第一信道带宽,所述第一信道带宽为20MHz、40MHz、80MHz、或160MHz中的一种;
若第三比特为第二值,第二设备根据第三比特确定所述第一帧的带宽为第二信道带宽,第一比特和第二比特中的至少一个比特不用于指示所述第二信道带宽,所述第二信道带宽为大于160MHz的带宽。
第三方面,本申请提供一种第一设备,该设备包括:
处理单元,用于生成第一帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,所述第一帧包括第一比特,第二比特和第三比特,所述第一比特和所述第二比特为第一帧的扰码序列中的比特;
其中,指示所述第一帧的第一信道带宽时,所述第三比特为第一值,所述第一比特和所述第二比特用于指示第一信道带宽为20MHz、40MHz、80MHz、或160MHz中的一种;
指示所述第一帧的第二信道带宽时,所述第三比特为第二值,用于指示所述第二信道带宽,所述第一比特和所述第二比特中的至少一个比特不用于指示所述第二信道带宽,所述第二信道带宽为大于160MHz的带宽;
发送单元,用于向第二设备发送所述第一帧。
第四方面,本申请提供一种第二设备,该设备包括:
接收单元,用于接收第一设备发送的第一帧,所述第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,所述第一帧包括第一比特,第二比特和第三比特,所述第一比特和第二比特为所述第一帧的扰码序列中的比特;
处理单元,用于根据所述第一帧确定所述第一帧的信道带宽;
其中,若第三比特为第一值,第二设备根据所述第一比特和所述第二比特确定所述第一帧的带宽为第一信道带宽,所述第一信道带宽为20MHz、40MHz、80MHz、或160MHz中的一种;
若第三比特为第二值,所述第二设备根据所述第三比特确定所述第一帧的信道带宽为第二信道带宽,第一比特和第二比特中的至少一个比特不用于指示所述第二信道带宽,第二信道带宽为大于160MHz的带宽。
以上所给出的带宽指示方法和设备,所述第一比特和所述第二比特中的至少一个比特不用于指示所述第二信道带宽,即所述第一比特和第二比特中的一个或者两个比特未用于携带带宽信息,或者说携带的是非带宽的信息,可以节省用于指示信道带宽的指示比特,增加扰码序列的随机性,降低数据传输中的峰均功率比,提高通信的系统性能。同时,节省的指示比特可以用来指示新的带宽,或者用于指示其他的用途。
结合以上所有方面,示例性的,第二信道带宽包括320MHz。第一信道带宽中的160MHz包括连续的160MHz,或非连续的80+80Mhz。
示例性的,第一比特和第二比特为第一帧的扰码序列的前7个比特中的B5和B6比特,使用B5B6进行带宽指示能够适用于支持带宽指示的前几代标准版本的设备,兼容性好,方面在实际中进行操作。
示例性的,第三比特可以为:
第一帧的扰码序列的前7个比特中的B0比特、B1比特、B2比特和B3比特中的任意一个比特,或预留服务比特(Reserved SERVICE Bits)中的一个比特,或接收地址(receive address, RA)字段中的一个比特,或帧控制(Frame Control)字段中的一个比特。当第三比特为扰码序列的前七个比特的B0-B3的任一比特时,在扰码序列之外不需要额外的信令指示,可以节省信令开销。当第三比特为其他字段的比特中时,由于没有增加扰码序列的比特开销,可以增加扰码序列的随机性,降低数据传输中的降低数据传输中的峰均功率比,提高通信的系统性能。
在一个实现方式中,第一比特和第二比特中的至少一个比特不用于指示所述第二信道带宽包括:第一比特和第二比特的值为随机值。通过只使用一个比特(第三比特)来指示大于160MHz的信道带宽,将第一比特和第二比特设置为随机值,而不是用于指示所述第二信道带宽,能够节省扰码序列中的比特,增加扰码序列的随机性,降低数据传输中的峰均功率比,提高通信的系统性能。
在另一个实现方式中,第一比特和第二比特中的至少一个比特不用于指示所述第二信道带宽包括:所述第一比特用于指示第二信道带宽或用于指示预留的带宽,所述第二比特为随机值(不用于指示所述第二信道带宽)。例如,所述第一比特为第三值时,用于指示所述第二信道带宽,第一比特为第四值时,用于指示预留的带宽,所述第二比特为随机值。或者反过来,所述第二比特用于指示第二信道带宽或用于指示预留的带宽,所述第一比特为随机值。例如,所述第二比特为第三值,用于指示所述第二信道带宽,所述第二比特为第四值,用于指示所述预留的带宽,所述第一比特为随机值。该实现方式,所述所述第三比特,和第一比特(或第二比特)用于指示所述第二信道带宽,将第二比特(或第一比特)设置为随机值,可以节省用于指示信道带宽的扰码比特,增加扰码序列的随机性,降低数据传输中的峰均功率比,提高通信的系统性能。节省的指示比特(未用于指示所述第二信道带宽的比特)也可以留作其他的用途。与此同时,所述第三比特的另外一个值,可以用于指示预留带宽,可以用来指示新的带宽,或者用于其他的用途。
在一个实现方式中,该第一帧包括第一字段,若第一字段的比特位中有至少一个比特不为0,表示第一字段用于指示前导码打孔模式。该指示方式,巧妙地利用现有第一字段预留状态为全0的状态来区分第一字段是否有携带前导码打孔模式。这种指示方式中不需要其他显式的指示信令,节省信令开销。或者,第一设备生成第二帧,第二帧包括第一指示,第一指示用于指示第一字段是否用于指示前导码打孔模式。该第二帧包括关联请求帧或关联响应帧。该指示方式,根据其关联过程中设置的能力指示信息来判断第一帧中第一字段是否用于前导码打孔模式。由于关联过程中的能力指示信息只需要发送一次,后续不再变化,所以在后续发送的第一帧中不需要再携带显式的指示信令,节省信令开销。
在一个实现方式中,若第三比特设置为第一值,表示第一字段指示的前导码打孔模式的带宽粒度是20MHz。或者,若第三比特设置为第二值,表示第一字段指示的前导码打孔模式的带宽粒度是40MHz。该实现方式中的指示方式,通过信道带宽的大小来指示第一字段的前导码打孔模式的带宽粒度。可以根据信道带宽的大小来指示带宽粒度,能够节省指示信令,简化设计。
在一个实现方式中,第一字段承载在第一帧的预留服务比特中、预留服务比特和第一帧的扰码序列的前7个比特中、或者帧控制字段中。该实现方式中的指示方式,第一字段承载在已有的字段中,其好处在于不改变现有帧结构设计,这样第一帧的内容还可以被目标站点之外的第三方站点正确解析,保持后向兼容性。
第五方面,本申请提供一种带宽指示方法,该方法包括:
第一设备生成第一帧,所述第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,所述第一帧包括第一比特,第二比特和第三比特,所述第一比特和所述第二比特为所述第一帧的扰码序列中的比特,所述第一设备为支持大于160MHz带宽的站点;
第一设备向第二设备发送第一帧;
其中,若第二设备为仅支持小于或等于160MHz带宽的站点,第一比特和第二比特用于指示第一信道带宽,所述第一信道带宽为20MHz、40MHz、80MHz、或160MHz中的一种,第三比特不用于指示所述第二信道带宽;
若第二设备为支持大于160MHz带宽的站点,其中,若指示第一帧的第一信道带宽时,第三比特为第一值,第一比特和第二比特用于指示第一信道带宽为20MHz、40MHz、80MHz、80+80MHz或160MHz中的一种;若指示第一帧的第二信道带宽时,第三比特为第二值,用于指示第二信道带宽,第一比特和第二比特中的至少一个比特不用于指示所述第二信道带宽,第二信道带宽为大于160MHz的带宽。
第六方面,本申请又提供一种带宽指示方法,该方法包括:
第二设备接收第一设备发送的第一帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一比特,第二比特和第三比特,第一比特和第二比特为第一帧的扰码序列中的比特,第一设备为支持大于160MHz带宽的站点;
若第二设备为仅支持小于或等于160MHz带宽的站点,第二设备根据第一比特和第二比特确定第一帧的带宽为第一信道带宽,第一信道带宽为20MHz、40MHz、80MHz或160MHz中的一种,第三比特不用于指示所述第一信道带宽;
若第二设备为支持大于160MHz带宽的站点,其中,若第三比特为第一值,第二设备根据第一比特和第二比特确定第一帧的带宽为第一信道带宽,第一信道带宽为20MHz、40MHz、80MHz、80+80MHz或160MHz中的一种;若第三比特为第二值,第二设备根据第三比特确定第一帧的带宽为第二信道带宽,第一比特和第二比特中的至少一个比特不用于指示所述第二信道带宽,第二信道带宽为大于160MHz的带宽。
第七方面,本申请提供一种第一设备,该设备包括:
处理单元,用于生成第一帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一比特,第二比特和第三比特,第一比特和第二比特为第一帧的扰码序列中的比特,第一设备为支持大于160MHz带宽的站点;
发送单元,用于向第二设备发送第一帧;
其中,若第二设备为仅支持小于或等于160MHz带宽的站点,第一比特和第二比特用于指示第一信道带宽,第一信道带宽为20MHz、40MHz、80MHz、或160MHz中的一种,第三比特不用于指示所述第一信道带宽;
若第二设备为支持大于160MHz带宽的站点,其中,若指示第一帧的第一信道带宽时,第三比特为第一值,第一比特和第二比特用于指示第一信道带宽为20MHz、40MHz、80MHz、80+80MHz或160MHz中的一种;若指示第一帧的第二信道带宽时,第三比特为第二值,用于指示第二信道带宽,第一比特和第二比特中的至少一个比特不用于指示所述第二信道带宽,第二信道带宽为大于160MHz的带宽。
第八方面,本申请提供一种第二设备,该设备包括:
接收单元,用于接收第一设备发送的第一帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一比特,第二比特和第三比特,第一比特和第 二比特为第一帧的扰码序列中的比特,第一设备为支持大于160MHz带宽的站点;
处理单元,用于根据第一帧确定信道的带宽;
其中,若第二设备为仅支持小于或等于160MHz带宽的站点,第二设备根据第一比特和第二比特确定第一帧的带宽为第一信道带宽,第一信道带宽为20MHz、40MHz、80MHz或160MHz中的一种,第三比特不用于指示所述第一信道带宽;
若第二设备为支持大于160MHz带宽的站点,其中,若第三比特为第一值,第二设备根据第一比特和第二比特确定第一帧的带宽为第一信道带宽,第一信道带宽为20MHz、40MHz、80MHz、80+80MHz或160MHz中的一种;若第三比特为第二值,第二设备根据第三比特确定第一帧的带宽为第二信道带宽,第一比特和第二比特中的至少一个比特不用于指示所述第二信道带宽,第二信道带宽为大于160MHz的带宽。
以上所给出的带宽指示方法和设备,所述第一比特和所述第二比特中的至少一个比特不用于指示所述第二信道带宽,即所述第一比特和第二比特中的一个或者两个比特未用于携带带宽信息,或者说携带的是非带宽的信息,可以节省用于指示信道带宽的指示比特,增加扰码序列的随机性,降低数据传输中的峰均功率比,提高通信的系统性能。同时,节省的指示比特可以用来指示新的带宽,或者用于指示其他的用途。
结合以上第五方面至第八方面,示例性的,第二信道带宽包括320MHz。第一信道带宽中的160MHz包括连续的160MHz,或非连续的80+80Mhz。
示例性的,所述支持大于160MHz带宽的站点包括支持802.11be标准的极高吞吐量EHT站点。
示例性的,第一比特和第二比特为第一帧的扰码序列的前7个比特中的B5和B6比特。使用B5B6进行带宽指示能够适用于支持带宽指示的前几代标准版本的设备,兼容性好,方面在实际中进行操作。
示例性的,第三比特可以为:
第一帧的扰码序列的前7个比特中的B0比特、B1比特、B2比特和B3比特中的任意一个比特,或预留服务比特(Reserved SERVICE Bits)中的一个比特,或接收地址(RA)字段中的一个比特,或帧控制(Frame Control)字段中的一个比特。当第三比特为扰码序列的前七个比特的B0-B3的任一比特时,在扰码序列之外不需要额外的信令指示,可以节省信令开销。当第三比特为其他字段的比特中时,由于没有增加扰码序列的比特开销,可以增加扰码序列的随机性,降低数据传输中的降低数据传输中的峰均功率比,提高通信的系统性能。
在一个实现方式中,第一比特和第二比特中的至少一个比特不用于指示所述第二信道带宽包括:第一比特和第二比特的值为随机值。通过只使用一个比特(第三比特)来指示大于160MHz的信道带宽,将第一比特和第二比特设置为随机值,而不是用于指示所述第二信道带宽,能够节省扰码序列中的比特,增加扰码序列的随机性,降低数据传输中的峰均功率比,提高通信的系统性能。
在另一个实现方式中,第一比特和第二比特中的至少一个比特不用于指示所述第二信道带宽包括:所述第一比特用于指示第二信道带宽或用于指示预留的带宽,所述第二比特为随机值(不用于指示所述第二信道带宽)。例如,所述第一比特为第三值时,用于指示所述第二信道带宽,第一比特为第四值时,用于指示预留的带宽,所述第二比特为随机值。或者反过来,所述第二比特用于指示第二信道带宽或用于指示预留的带宽,所述第一比特为随机值。例如,所述第二比特为第三值,用于指示所述第二信道带宽,所述第二比特为第四值,用于 指示所述预留的带宽,所述第一比特为随机值。该实现方式,所述所述第三比特,和第一比特(或第二比特)用于指示所述第二信道带宽,将第二比特(或第一比特)设置为随机值,可以节省用于指示信道带宽的扰码比特,增加扰码序列的随机性,降低数据传输中的峰均功率比,提高通信的系统性能。节省的指示比特(未用于指示所述第二信道带宽的比特)也可以留作其他的用途。与此同时,所述第三比特的另外一个值,可以用于指示预留带宽,可以用来指示新的带宽,或者用于其他的用途。
在一个实现方式中,该第一帧包括第一字段,若第一字段的比特位中有至少一个比特不为0,表示第一字段用于指示前导码打孔模式。该指示方式,巧妙地利用现有第一字段预留状态为全0的状态来区分第一字段是否有携带前导码打孔模式。这种指示方式中不需要其他显式的指示信令,节省信令开销。或者,第一设备生成第二帧,第二帧包括第一指示,第一指示用于指示第一字段是否用于指示前导码打孔模式。该第二帧包括关联请求帧或关联响应帧。该指示方式,根据其关联过程中设置的能力指示信息来判断第一帧中第一字段是否用于前导码打孔模式。由于关联过程中的能力指示信息只需要发送一次,后续不再变化,所以在后续发送的第一帧中不需要再携带显式的指示信令,节省信令开销。
在一个实现方式中,若第三比特设置为第一值,表示第一字段指示的前导码打孔模式的带宽粒度是20MHz。或者,若第三比特设置为第二值,表示第一字段指示的前导码打孔模式的带宽粒度是40MHz。该实现方式中的指示方式,通过信道带宽的大小来指示第一字段的前导码打孔模式的带宽粒度。可以根据信道带宽的大小来指示带宽粒度,能够节省指示信令,简化设计。
在一个实现方式中,第一字段承载在第一帧的预留服务比特中、预留服务比特和第一帧的扰码序列的前7个比特中、或者帧控制字段中。该实现方式中的指示方式,第一字段承载在已有的字段中,其好处在于不改变现有帧结构设计,这样第一帧的内容还可以被目标站点之外的第三方站点正确解析,保持后向兼容性。
第九方面,本申请提供了一种信息指示方法,该方法包括:
第一设备生成第一帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一字段,若第一字段的比特位中有至少一个比特不为0,表示第一字段用于指示前导码打孔模式;
第一设备向第二设备发送第一帧。
第十方面,本申请又提供了一种信息指示方法,该方法包括:
第一设备生成第一帧,所述第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,所述第一帧包括第一字段;
第一设备生成第二帧,所述第二帧包括第一指示,第二帧包括关联请求帧或关联响应帧,第一指示用于指示所述第一字段是否用于指示前导码打孔模式。
第一设备向第二设备发送第一帧和第二帧。
第十一方面,本申请又提供了一种信息指示方法,该方法包括:
第二设备接收第一设备发送的第一帧,所述第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,所述第一帧包括第一字段;
第二设备根据第一字段的比特位中有至少一个比特不为0,确定第一字段用于指示前导 码打孔模式。
第十二方面,本申请又提供了一种信息指示方法,该方法包括:
第二设备接收第一设备发送的第一帧和第二帧,所述第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,所述第一帧包括第一字段,第二帧包括第一指示,第二帧包括关联请求帧或关联响应帧;
第二设备根据所述第一指示确定所述第一字段是否用于指示前导码打孔模式。
第十三方面,本申请提供一种第一设备,该设备包括:
处理单元,用于生成第一帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一字段,若第一字段的比特位中有至少一个比特不为0,表示第一字段用于指示前导码打孔模式;
发送单元,用于向第二设备发送第一帧。
第十四方面,本申请又提供一种第一设备,该设备包括:
处理单元,用于生成第一帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一字段;
用于生成第二帧,第二帧包括第一指示,第二帧包括关联请求帧或关联响应帧,第一指示用于指示所述第一字段是否用于指示前导码打孔模式。
发送单元,用于向第二设备发送第一帧和第二帧。
第十五方面,本申请提供一种第二设备,该设备包括:
接收单元,用于接收第一设备发送的第一帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一字段;
处理单元,用于根据第一字段的比特位中有至少一个比特不为0,确定第一字段用于指示前导码打孔模式。
第十六方面,本申请又提供一种第二设备,该设备包括:
接收单元,用于接收第一设备发送的第一帧和第二帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一字段,第二帧包括第一指示,第二帧包括关联请求帧或关联响应帧;
处理单元,用于根据第一指示确定第一字段是否用于指示前导码打孔模式。
结合第九方面至第十六方面,示例性的,第一字段采用non-OFDMA的模式进行指示。采用non-OFDMA的带宽模式能够指示确定的模式,需要的指示开销较少。
在一个实现方式中,第一字段承载在第一帧的预留服务比特中、预留服务比特和所述第一帧的扰码序列的前7个比特中或者帧控制字段中。该实现方式中的指示方式,第一字段承载在已有的字段中,其好处在于不改变现有帧结构设计,这样第一帧的内容还可以被目标站点之外的第三方站点正确解析,保持后向兼容性。
第十七方面,本申请提供了一种带宽粒度指示方法,该方法包括:
第一设备生成第一帧,所述第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,所述第一帧包括第一比特,第二比特和第四比特,第一比特和第二比特为第一帧的扰码序列中的比特;
其中,指示第一帧的第一带宽粒度时,第四比特为第一值,第一带宽粒度为20MHz,对应第一信道带宽,第一比特和第二比特用于指示第一信道带宽,第一信道带宽为20MHz、40MHz、80MHz、或160MHz中的一种;
指示第一帧的第二带宽粒度时,第四比特为第二值,第二带宽粒度为40MHz,对应信道带宽为第二信道带宽,第二信道带宽为大于160MHz的带宽;
第一设备向第二设备发送第一帧。
第十八方面,本申请又提供了一种带宽粒度指示方法,该方法包括:
第二设备接收第一设备发送的第一帧,所述第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,所述第一帧包括第一比特,第二比特和第四比特,所述第一比特和所述第二比特为第一帧的扰码序列中的比特;
其中,若第四比特为第一值,第二设备确定第一帧的带宽粒度为第一带宽粒度,第一带宽粒度为20MHz,对应小于或等于160MHz的第一信道带宽,所述第一设备根据第一比特和第二比特确定第一帧的带宽为第一信道带宽,第一信道带宽为20MHz、40MHz、80MHz、或160MHz中的一种;
若第四比特为第二值,第二设备确定第一帧的带宽粒度为第二带宽粒度,第二带宽粒度为40MHz,对应第二信道带宽,所述第二信道带宽为大于160MHz的带宽。
第十九方面,本申请提供一种第一设备,该设备包括:
处理单元,用于生成第一帧,所述第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,所述第一帧包括第一比特,第二比特和第四比特,第一比特和第二比特为第一帧的扰码序列中的比特;
其中,指示第一帧的第一带宽粒度时,第四比特为第一值,第一带宽粒度为20MHz,对应小于或等于160MHz的第一信道带宽,第一比特和第二比特用于指示第一信道带宽,第一信道带宽为20MHz、40MHz、80MHz、或160MHz中的一种;
指示第一帧的第二带宽粒度时,第四比特为第二值,第二带宽粒度为40MHz,对应信道带宽为第二信道带宽,第二信道带宽为大于160MHz的带宽;
发送单元,用于向第二设备发送第一帧。
第二十方面,本申请提供一种第二设备,该设备包括:
接收单元,用于接收第一设备发送的第一帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一比特,第二比特和第四比特,第一比特和第二比特为第一帧的扰码序列中的比特;
处理单元,用于根据第一帧确定信道的带宽粒度;
其中,若第四比特为第一值,第二设备确定第一帧的带宽粒度为第一带宽粒度,第一带宽粒度为20MHz,对应第一信道带宽,第一设备根据第一比特和第二比特确定第一帧的带宽 为第一信道带宽,第一信道带宽为20MHz、40MHz、80MHz、或160MHz中的一种;
若第四比特为第二值,第二设备确定第一帧的带宽粒度为第二带宽粒度,第二带宽粒度为40MHz,对应第二信道带宽,第二信道带宽为大于160MHz的带宽。
结合以上第十七方面至第二十方面,在一种可能的实现方式中,第一带宽粒度和第二带宽粒度用于指示前导码打孔模式的带宽粒度。该实现方式中的指示方式,通过指示所述帧的前导码打孔模式的带宽粒度,并且带宽粒度的区分来指示信道带宽,能够节省指示信令,简化设计。
在一种可能的实现方式中,第二信道带宽包括320MHz。第一信道带宽中的160MHz包括连续的160MHz,或非连续的80+80Mhz。
在一种可能的实现方式中,第一比特和第二比特为第一帧的扰码序列的前7个比特中的B5和B6比特。使用B5B6进行带宽指示能够适用于支持带宽指示的前几代标准版本的设备,兼容性好,方面在实际中进行操作。
在一种可能的实现方式中,第四比特可以为第一帧的扰码序列的前7个比特中的B0比特、B1比特、B2比特和B3比特中的任意一个比特,或预留服务比特(Reserved SERVICE Bits)中的一个比特,或接收地址(RA)字段中的一个比特,或帧控制(Frame Control)字段中的一个比特。当第四比特为扰码序列的前七个比特的B0-B3的任一比特时,在扰码序列之外不需要额外的信令指示,可以节省信令开销。当第三比特为其他字段的比特中时,由于没有增加扰码序列的比特开销,可以增加扰码序列的随机性,降低数据传输中的降低数据传输中的峰均功率比,提高通信的系统性能。
其中,第一比特和第二比特中的至少一个比特不用于指示所述第二信道带宽包括:第一比特和第二比特的值为随机值。通过只使用一个比特(第三比特)来指示大于160MHz的信道带宽,将第一比特和第二比特设置为随机值,而不是用于指示所述第二信道带宽,能够节省扰码序列中的比特,增加扰码序列的随机性,降低数据传输中的峰均功率比,提高通信的系统性能。
在另一个实现方式中,第一比特和第二比特中的至少一个比特不用于指示所述第二信道带宽包括:所述第一比特用于指示第二信道带宽或用于指示预留的带宽,所述第二比特为随机值(不用于指示所述第二信道带宽)。例如,所述第一比特为第三值时,用于指示所述第二信道带宽,第一比特为第四值时,用于指示预留的带宽,所述第二比特为随机值。或者反过来,所述第二比特用于指示第二信道带宽或用于指示预留的带宽,所述第一比特为随机值。例如,所述第二比特为第三值,用于指示所述第二信道带宽,所述第二比特为第四值,用于指示所述预留的带宽,所述第一比特为随机值。该实现方式,所述所述第三比特,和第一比特(或第二比特)用于指示所述第二信道带宽,将第二比特(或第一比特)设置为随机值,可以节省用于指示信道带宽的扰码比特,增加扰码序列的随机性,降低数据传输中的峰均功率比,提高通信的系统性能。节省的指示比特(未用于指示所述第二信道带宽的比特)也可以留作其他的用途。与此同时,所述第三比特的另外一个值,可以用于指示预留带宽,可以用来指示新的带宽,或者用于其他的用途。
在一个实现方式中,该第一帧包括第一字段,若第一字段的比特位中有至少一个比特不为0,表示第一字段用于指示前导码打孔模式。或者,第一设备生成第二帧,第二帧包括第一指示,第一指示用于指示第一字段是否用于指示前导码打孔模式。该第二帧包括关联请求 帧或关联响应帧。
在一个实现方式中,第一字段承载在第一帧的预留服务比特中、预留服务比特和第一帧的扰码序列的前7个比特中、或者帧控制字段中。该实现方式中的指示方式,第一字段承载在已有的字段中,其好处在于不改变现有帧结构设计,这样第一帧的内容还可以被目标站点之外的第三方站点正确解析,保持后向兼容性。
第二十一方面,本申请提供了一种通信装置,用于执行第一方面、第二方面、第五方面、第六方面、第九方面至第十二方面、第十七方面或第十八方面的任意一种可能的实现方式中的方法。具体地,所述装置包括用于执行第一方面或第一方面的任意一种可能的实现方式中的方法的单元。
第二十二方面,本申请提供了一种计算机可读存储介质,用于存储计算机程序,当所述计算机指令在计算机上运行时来执行第一方面、第二方面、第五方面、第六方面、第九方面至第十二方面、第十七方面或第十八方面的任意一种可能的实现方式的方法的指令。
第二十三方面,本申请实施例提供了一种计算机程序产品,所述计算机程序产品包括在计算机可读存储介质中存储的计算机程序,并且所述计算程序可以通过处理器进行加载来实现上述第一方面、第二方面、第五方面、第六方面、第九方面至第十二方面、第十七方面或第十八方面的任意一种可能的实现方式的方法。
第二十四方面,本申请提供了一种芯片,所述芯片包括逻辑电路和接口电路,所述逻辑电路用于执行第一方面、第二方面、第五方面、第六方面、第九方面至第十二方面、第十七方面或第十八方面的任意一种可能的实现方式的方法中的生成的步骤,所述接口电路,用于执行第一方面、第二方面、第五方面、第六方面、第九方面至第十二方面、第十七方面或第十八方面的任意一种可能的实现方式的方法中的发送或接收的动作,此种情况下,“发送”等同于“输出”,“接收”等同于输入。例如,当芯片用于执行第一方面所述的方法时,提供一种芯片,所述芯片包括第一逻辑电路和第一接口电路,所述第一逻辑电路用于生成第一帧,所述第一接口电路用于输出所述第一帧;其中,所述第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,所述第一帧包括第一比特,第二比特和第三比特,所述第一比特和所述第二比特为所述第一帧的扰码序列中的比特;其中,指示所述第一帧的第一信道带宽时,第三比特为第一值,第一比特和第二比特用于指示所述第一信道带宽为20MHz、40MHz、80MHz、或160MHz中的一种;指示所述第一帧的第二信道带宽时,第三比特为第二值,用于指示所述第二信道带宽,所述第一比特和所述第二比特中的至少一个比特不用于指示所述第二信道带宽,所述第二信道带宽为大于160MHz的带宽。
又例如,当芯片用于执行第二方面所述的方法时,所述芯片包括第二逻辑电路和第二接口电路,所述第二接口电路用于输入第一帧,所述第二逻辑电路用于根据所述第一帧确定所述第一帧的信道带宽;其中,所述第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,所述第一帧包括第一比特,第二比特和第三比特,所述第一比特和第二比特为所述第一帧的扰码序列中的比特;其中,若所述第三比特为第一值,所述第二设备根据所述第一比特和所述第二比特确定所述第一帧的信道带宽为第一信道带宽,所述第一信道带宽为20MHz、40MHz、80MHz、或160MHz中的一种;若所述第三比特为第二值,所述第二设备根据所述第三比特确定所述第一帧的信道带宽为第二信道带宽,所述第一比特和所述第二比特中的至少一个比特不用于指示所述第二信道带宽,所述第二信道带宽为大于160MHz的带 宽。
第二十五方面,本申请提供了一种通信系统,所述通信系统包括第一设备和第二设备,所述第一设备用于执行第一方面、第五方面、第九方面、第十方面或第十七方面的任意一种可能的实现方式中的方法。所述第二设备用于执行第二方面、第六方面、第十一方面、第十二方面或第十八方面的任意一种可能的实现方式中的方法。
上述第二十方面至第二十五方面中任一种设计所带来的技术效果可以参见第一方面至第二十方面中对应设计所带来的技术效果,此处不再赘述。
附图说明
为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1为本申请实施例提供的一种通信系统结构示意图;
图2为本申请实施例提供的一种服务字段的结构示意图;
图3为本申请实施例提供的一种地址字段的结构示意图;
图4为本申请实施例提供的一种指示方法的流程示意图;
图5为本申请实施例提供的一种通信系统结构示意图;
图6是本申请实施例提供的一种数据发送流程图;
图7是本申请实施例提供的一种CF-END帧结构示意图;
图8为本申请实施例提供的一种在信道带宽上打孔的打孔模式示意图;
图9为本申请实施例提供的一种信息指示方法的流程示意图;
图10为本申请实施例提供的一种通信装置的结构示意图;
图11为本申请实施例提供的另一种通信装置的结构示意图;
图12为本申请实施例提供的另一种通信装置的结构示意图;
图13为本申请实施例提供的另一种通信装置的结构示意图;
图14为本申请实施例提供的一种芯片的结构示意图;
图15为本申请实施例提供的另一种芯片的结构示意图;
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请实施例中适用的无线通信系统可以为无线局域网(Wireless local area network,WLAN)、蜂窝网、高性能无线LAN(high performance radio LAN,HIPERLAN)以及广域网(WAN)、个人区域网(personal area network,PAN)或其它现在已知或以后发展起来的网络。本申请提供的技术方案可以应用于各种WLAN通信系统,例如采用IEEE 802.11标准的系统。示例性的,IEEE 802.11标准包括但不限于:802.11be标准、或者更下一代的802.11标准。本申请的技术方案适用的场景包括:接入点(access point,AP)与站点(station,STA)之间的通信、AP与AP之间的通信、以及STA与STA之间的通信等。在标准中,站点STA通常也被称为非接入点站点non-AP STA,简称为non-AP。
本申请涉及到的STA可以是各种具有无线通信功能的用户终端、用户装置、接入装置、订户站、订户单元、移动站、用户代理、用户装备或其他名称。其中,用户终端可以包括各 种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(user equipment,UE)、移动台(mobile station,MS)、终端(terminal)、终端设备(terminal equipment)、便携式通信设备、手持机、便携式计算设备、娱乐设备、游戏设备或系统、全球定位系统设备或被配置为经由无线介质进行网络通信的任何其他合适的设备等。
本申请所涉及到的接入点AP是一种部署在无线通信网络中为其关联的STA提供无线通信功能的装置,该接入点AP可用作该通信系统的中枢,可以为基站、路由器、网关、中继器、通信服务器、交换机或网桥等通信设备,其中,所述基站可以包括各种形式的宏基站、微基站、中继站等。
IEEE802.11是当前主流的无线接入标准之一,近十多年来已经获得了极其广泛的商业应用。以接入点AP与站点STA之间的通信为例,其常用的基本架构如图1所示,是由一个接入点AP通过有线或者无线的接入因特网,而该AP关联多个站点STA,AP和关联站点之间通过IEEE802.11协议进行上行和下行的通信。在本申请实施例中,为了描述方便,上面提到的AP和STA统称为站点。
WLAN从802.11a/g开始,历经802.11n、802.11ac,到现在正在讨论中的802.11ax和802.11be,其允许传输的带宽可以参考表1。其中802.11n标准的名称又叫做高吞吐率(high throughput,HT),802.11ac标准叫做非常高吞吐率(very high throughput,VHT),802.11ax(Wi-Fi 6)叫做HE(High Efficiency),802.11be(Wi-Fi 7)叫做极高吞吐率(extremely high throughput,EHT),而对于HT之前的标准,如802.11a/b/g等统称叫做非高吞吐率(Non-HT)。其中802.11b采用非正交频分复用(orthogonal frequency division multiplexing,OFDM)模式,因此没有列在表1里。
表1
Figure PCTCN2021138364-appb-000001
在IEEE 802.11a标准中,只支持20MHz带宽,在后续标准演进过程中带宽不断增大。802.11n标准中最大支持40MHz带宽,802.11ac/802.11ax标准中最大支持160MHz带宽,其中160MHz带宽包括连续的160MHz,或非连续的160Mhz(80+80Mhz)。在802.11a之后的标准中,为了保证后向(backward compatibility)兼容性,支持新一代标准的站点也必须支持老的标准,一些控制帧在带宽大于20MHz的信道上采用non-HT duplicated方式进行发送。即,控制帧采用non-HT格式(也即,该控制帧采用符合802.11a标准的格式),并且控制帧被复制到信道中的一个20MHz信道上发送。换句话说,在每个20MHz信道上都发送一份11a格式的帧,多个20MHz信道上的内容是重复的。这样使得802.11a的站点也可以顺利地解析该帧,保证后向兼容性。为了便于描述,下文中将以non-HT duplicated方式发送的帧,称为non-HT duplicated帧,或者non-HT duplicated格式的帧。
由于无线局域网中普遍存在隐藏节点,因此经常采用RTS/CTS交互的方式来预留信道。RTS和CTS帧在大于20MHz的带宽中采用Non-HT duplicated的方式发送。由于发送站点和接收站点所处的无线信道环境不同,在数据通信之前如果能够根据两者此时信道可用情况,协商出双方都可用的带宽将对于数据通信非常有用。但是,由于802.11a只支持20MHz带宽,不需要指示带宽指示信息,因此non-HT或者non-HT duplicated帧中没有携带带宽指示信息, 因此接收端无法准确地获知此时发送端所采用的带宽。因此在RTS和CTS无法携带带宽信息的情况下,无法在预留信道的同时进行带宽协商。
示例性的,在802.11n标准中,non-HT帧或non-HT duplicated帧包括服务字段,服务字段的结构可以参考图2所示。即数据部分的最开始是16比特的服务字段(SERVICE field),其中,服务字段可以分为两个部分。服务字段的前7比特为扰码初始化字段(Scrambler Initialization),设置为全0。服务字段的后9比特为预留的服务比特,可以称之为预留服务比特(Reserved SERVICE Bits),也可以被称为预留服务字段,目前也设置为0(如图2中标示0的7个比特)。包括服务字段在内的数据部分将会通过一个扰码器进行加扰。该扰码器会生成一个扰码序列,该扰码序列是由一个127比特的序列通过不断重复构成的,该127比特序列通过一个7位的扰码器初始化状态结果扰码器以后生成。也就是说,包括服务字段在内的数据部分会通过扰码器产生的扰码序列进行加扰。由于服务字段的前7位为全0,所以加扰后的服务字段的前7位与扰码序列的前7位相同。即服务字段的前7个比特用于承载扰码序列(scrambling sequence)的前7个比特。在本申请中,所给出的指示位或者字段的名称均为举例说明,包括能够实现相同功能的比特位或者字段,在此不做限制。
由于non-HT duplicated帧是传统的帧格式(legacy format),如果贸然修改会导致传统站点不能正常解析。同时为了能够实现对带宽进行协商的目的,在802.11ac标准中,将non-HT帧或者non-HT duplicated帧所使用的扰码序列的前7个比特中的B5比特和B6比特设置为CH_BANDWIDTH_IN_NON_HT字段,CH_BANDWIDTH_IN_NON_HT字段用于指示带宽。
其中,扰码序列的前7个比特从低位到高位依次编号为B0比特-B6比特。从而,B5比特是扰码序列的前7个比特中的第6个比特,B6比特是扰码序列的前7个比特中的第7个比特。如图2所示,从最低位(least significant bit,LSB)开始发送,即扰码序列的前7位的发送顺序为B0先发送,B6最后发送。对应的,当B6B5表示带宽信息时,B5为低位,B6为高位,即B5先发送,B6后发送。
示例性的,在802.11ac标准中,CH_BANDWIDTH_IN_NON_HT优先发送最低位,CH_BANDWIDTH_IN_NON_HT字段的取值与带宽之间的对应关系可以如表2所示。表2中信道带宽(channel bandwidth,CBW)的单位为MHz,CBW20代表带宽是20MHz,CBW40代表带宽是40MHz,CBW80代表带宽是80MHz,CBW160代表带宽是连续的160MHz,CBW80+80代表带宽是80+80MHz(非连续的160MHz)。例如,CBW80取值为2,二进制表示为10,则B5=0、B6=1。
表2
带宽的枚举值 取值
CBW20 0
CBW40 1
CBW80 2
CBW160或CBW80+80 3
其中,带宽也可以称为信道带宽或者带宽。当前帧中CH_BANDWIDTH_IN_NON_HT字段所指示的带宽,即为帧传输所使用的信道带宽,或帧占用的带宽,有时候也称帧的带宽。
参见图3所示的non-HT格式的帧的发送地址字段或接收地址字段,该发送地址字段或接收地址字段包括6个字节。其中第一个字节包括8个比特,分别表示为b0、b1、b2、b3、b4、b5、b6和b7。为了让接收端知道发送端是否在扰码序列中携带了 CH_BANDWIDTH_IN_NON_HT字段,发送端使用bandwidth Signaling TA来指示,bandwidth Signaling TA是指发送端以non-HT帧或者non-HT duplicated帧中的发送地址(transmitter address,TA)字段中的单播(Individual)/组播(Group)比特来指示扰码序列前7个比特中的B5比特和B6比特是否作为CH_BANDWIDTH_IN_NON_HT字段,即B5、B6是否用于指示带宽。单播/组播比特是发送地址字段或接收地址字段的第一个字节的第一个比特,即b0,另一种表述形式,单播(unicast)/组播(multicast)也是指发送地址字段或接收地址字段的第一个字节的第一个比特。具体的,如果单播/组播比特设置为1,则表示扰码序列前7个比特中的B5比特和B6比特作为CH_BANDWIDTH_IN_NON_HT字段,用于指示带宽。如果单播/组播比特设置为0,则表示扰码序列前7个比特中的B5比特和B6比特没有作为CH_BANDWIDTH_IN_NON_HT字段使用,可以仍为随机值或者用于其他的用途。
随着技术发展,无线通信场景中,发送端和接收端之间可以采用的带宽可以超过表2所示的四种带宽。例如,由于802.11be标准支持最大传输带宽为320MHz,因此采用802.11be标准的发送端和接收端之间可以采用320MHz等其他带宽。
在WLAN系统的演进过程中,始终需要保持后向兼容,支持新一代标准的站点也必须支持老的标准。例如11ax下一代标准的站点称为EHT站点,那么它在兼容前几代标准的同时也是non-HT(802.11a)、HT(802.11n)、VHT(802.11ac)和HE(802.11ax)站点。目前,CH_BANDWIDTH_IN_NON_HT字段仅能支持表2所示的四种带宽,CH_BANDWIDTH_IN_NON_HT字段(B5B6两个比特)的四个状态已经全部用完。因此,在802.11ax的下一代标准802.11be(后续称为EHT,Extremely High Throughput)中,带宽可能会扩展到320MHz。在引入除了20MHz、40MHz、80MHz、80+80MHz或160MHz之外的其他带宽场景下,non-HT帧或者non-HT duplicated帧如何指示带宽,是亟待解决的技术问题。
当non-HT帧或者non-HT duplicated帧中的发送地址TA字段中的单播/组播比特设置为1,则表示发送站点在扰码序列中携带了CH_BANDWIDTH_IN_NON_HT信息,即扰码序列前7个比特中的B5比特和B6比特作为CH_BANDWIDTH_IN_NON_HT字段。在VHT、HE站点中,non-HT帧或者non-HT duplicated帧的扰码序列前7位中的B5B6来指示20MHz,40MHz、80MHz和160(80+80)MHz模式。一种现有技术中,EHT站点使用扰码序列中的B5B6和另外一个比特(例如,B3)来指示20MHz,40MHz、80MHz、160(80+80)MHz和320MHz模式。如表3所示,使用B3、B5、B6共3个比特来指示320MHz模式。
表3
B3 B5B6 BW
0 0 20MHz
0 1 40MHz
0 2 80MHz
0 3 160MHz or 80+80MHz
1 0 320MHz
1 1-3 reserved
如表3所示的指示方法中,当B3=0,使用扰码序列中的B5B6分别指示20MHz,40MHz、80MHz、160(80+80)MHz。当B3=1、B5B6=0,指示320MHz。当B3=1、B5B6=1~3,指示预留的带宽。这种指示方法,使得EHT站点比VHT、HE站点多使用一个比特来指示带宽。发送帧的峰均功率比(peak-to-average power ratio,PAPR)受发送数据内容和加扰序列两方面的影响,发送数据内容不能控制,但加扰序列随机性减小的情况下,可能会使得出现高PAPR 的概率变大,影响系统性能。因此所示的指示方法中会占用更多的比特用于指示,并且会使得发送帧的PAPR上升,降低系统性能。
另一种现有技术中,如表4所示,使用non-HT帧或者non-HT duplicated帧的一位比特(表4中的EHT带宽指示)和扰码序列前7位中的B5B6来指示320MHz带宽。将该EHT带宽指示设置为1和扰码序列前7位中的B5B6来指示320MHz模式。
表4
Figure PCTCN2021138364-appb-000002
如表4所示,当该EHT带宽指示=0,扰码序列中的B5B6=0~3时,分别指示20MHz,40MHz、80MHz、160(80+80)MHz。当该EHT带宽指示=1,扰码序列中的B5B6=0,指示320MHz。当该EHT带宽指示=1、B5B6=1~3,指示预留的带宽。这种指示方法,使用EHT带宽指示以及扰码序列的两个比特来指示信道带宽,新增的EHT带宽指示比特会带来信令的浪费。这样会占用更多的比特用于指示,且会使得发送帧的PAPR上升。
图4是本申请实施例提供的指示方法400的流程示意图。其中,该指示方法400包括但不限于以下步骤:
S401、第一设备生成non-HT帧或non-HT duplicated帧;
S402:第一设备向第二设备发送non-HT帧或non-HT duplicated帧。
S403:第二设备接收non-HT帧或者non-HT duplicated帧。
本申请实施例提供了一种带宽指示方法,一种指示方式中,该带宽指示方法包括:第一设备生成第一帧,第一帧包括非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一比特,第二比特和第三比特,第一比特和第二比特为第一帧的扰码序列中的比特;
其中,指示第一帧的第一信道带宽时,第三比特为第一值,第一比特和第二比特用于指示第一信道带宽为20MHz、40MHz、80MHz、或160MHz中的一种;
指示第一帧的第二信道带宽时,第三比特为第二值,用于指示第二信道带宽,第一比特和第二比特中的至少一个比特不用于指示所述第二信道带宽,第二信道带宽为大于160MHz的带宽;
第一设备向第二设备发送第一帧。
第二设备接收第一设备发送的第一帧;
其中,若第三比特为第一值,第二设备根据第一比特和第二比特确定第一帧的带宽为第一信道带宽,第一信道带宽为20MHz、40MHz、80MHz、或160MHz中的一种;
若第三比特为第二值,第二设备根据第三比特确定第一帧的带宽为第二信道带宽,第一比特和第二比特中的至少一个比特不用于指示所述第二信道带宽,第二信道带宽为大于160MHz的带宽。
另一种指示方法中,该指示方法包括:
第一设备生成第一帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一比特,第二比特和第三比特,第一比特和第二比特为第一帧的扰码序列中的比特,第一设备为支持大于160MHz带宽的站点包括支持802.11be标准的极高吞吐量EHT站点;
其中,若第二设备为仅支持小于或等于160MHz带宽的站点,第一比特和第二比特用于指示第一信道带宽,第一信道带宽为20MHz、40MHz、80MHz、或160MHz中的一种,第三比特不用于指示所述第一信道带宽;
若第二设备为支持大于160MHz带宽的站点,其中,若指示第一帧的第一信道带宽时,第三比特为第一值,第一比特和第二比特用于指示第一信道带宽为20MHz、40MHz、80MHz、80+80MHz或160MHz中的一种;若指示第一帧的第二信道带宽时,第三比特为第二值,用于指示第二信道带宽,第一比特和第二比特中的至少一个比特不用于指示所述第二信道带宽,第二信道带宽为大于160MHz的带宽;
第一设备向第二设备发送第一帧。
第二设备接收第一设备发送的第一帧;
若第二设备为仅支持小于或等于160MHz带宽的站点,第二设备根据第一比特和第二比特确定第一帧的带宽为第一信道带宽,第一信道带宽为20MHz、40MHz、80MHz或160MHz中的一种,第三比特不用于指示所述第一信道带宽;
若第二设备为支持大于160MHz带宽的站点,其中,若第三比特为第一值,第二设备根据第一比特和第二比特确定第一帧的带宽为第一信道带宽,第一信道带宽为20MHz、40MHz、80MHz、80+80MHz或160MHz中的一种;若第三比特为第二值,第二设备根据第三比特确定第一帧的带宽为第二信道带宽,第一比特和第二比特中的至少一个比特不用于指示所述第二信道带宽,第二信道带宽为大于160MHz的带宽。
为了描述方便以及清楚简洁,上述指示方法均采用图4提供的带宽指示方法400的流程示意图。其中,两种指示方法中的步骤如带宽指示方法400所述。不同的指示方法中的第一设备和第二设备为了描述简便没有区分,但也可以是第三设备和第四设备、第五设备和第六设备等。同样的指示方法中所述的第一帧、第一比特、第二比特、第三比特等也是相同的原因没有进行区分,在此不做限定。不同的指示方法中相同名称的可以代表不同的含义和具体实现方法。不同的指示方法可以有不同的实施方式,在这里为了简便,仍是一同进行介绍。
以上所给出的带宽指示方法,所述第一比特和所述第二比特中的至少一个比特不用于指示所述第二信道带宽,即所述第一比特和第二比特中的一个或者两个比特未用于携带带宽信息,或者说携带的是非带宽的信息,可以节省用于指示信道带宽的指示比特,增加扰码序列的随机性,降低数据传输中的峰均功率比,提高通信的系统性能。同时,节省的指示比特可以用来指示新的带宽,或者用于指示其他的用途。
具体的,第一比特和第二比特为扰码序列的前7个比特中的B5和B6比特,第二信道带宽为320MHz。使用B5B6进行带宽指示能够适用于支持带宽指示的前几代标准版本的设备,兼容性好,方面在实际中进行。第一信道带宽中的160MHz包括连续的160MHz,或非连续的80+80Mhz。
第一设备为支持大于160MHz带宽的站点,示例性的,所述支持大于160MHz带宽的站点包括支持802.11be标准的极高吞吐量EHT站点,也包括更下一代的标准中的站点。
第三比特可以为以下任意一种:
扰码序列的前7个比特中的B0比特、B1比特、B2比特和B3比特中的任意一个比特,预留服务比特Reserved SERVICE Bits中的一个比特,接收地址RA字段中的一个比特,Frame Control字段中的一个比特。当第三比特为扰码序列的前七个比特的B0-B3的任一比特时,在扰码序列之外不需要额外的信令指示,可以节省信令开销。当第三比特为其他字段的比特中时,由于没有增加扰码序列的比特开销,可以增加扰码序列的随机性,降低数据传输中的降低数据传输中的峰均功率比,提高通信的系统性能。
当指示第一帧的第二信道带宽时,第三比特为第二值,第一比特和第二比特中的至少一个比特不用于指示所述第二信道带宽包括:
一种可能的实施方式,第一比特和第二比特的值为随机值。通过只使用一个比特(第三比特)来指示大于160MHz的信道带宽,将第一比特和第二比特设置为随机值,而不是用于指示所述第二信道带宽,能够节省扰码序列中的比特,增加扰码序列的随机性,降低数据传输中的峰均功率比,提高通信的系统性能。
另一种可能的实施方式,所述第一比特用于指示所述第二信道带宽或用于指示预留的带宽,所述第二比特为随机值。例如,所述第一比特为第三值时,用于指示所述第二信道带宽,所述第一比特为第四值时,用于指示预留的带宽,所述第二比特为随机值。或者反过来,所述第二比特用于指示所述第二信道带宽或用于指示预留的带宽,所述第一比特为随机值。例如,所述第二比特为第三值,用于指示所述第二信道带宽,所述第二比特为第四值,用于指示预留的带宽,所述第一比特为随机值。该实现方式,所述所述第三比特,和第一比特(或第二比特)用于指示所述第二信道带宽,将第二比特(或第一比特)设置为随机值,可以节省用于指示信道带宽的扰码比特,增加扰码序列的随机性,降低数据传输中的峰均功率比,提高通信的系统性能。节省的指示比特(未用于指示所述第二信道带宽的比特)也可以留作其他的用途。与此同时,所述第三比特的另外一个值,可以用于指示预留带宽,可以用来指示新的带宽,或者用于其他的用途。
本申请中所给出的带宽指示方法中所指示的带宽,即为帧传输所使用的信道带宽,或帧占用的带宽,有时候也称帧的带宽。在通信过程中,接收站点根据所指示的带宽信息来确定如何设置响应帧的带宽。
示例性的,第一值为0,第二值为1。或者,第一值为1,第二值为0。以下不再赘述。
示例性的,第三值为0,第四值为1。或者,第三值为1,第四值为0。以下不再赘述。
在本申请中,指示信道的带宽的比特位的值的设置仅为举例说明,实际情况中设置为1或者0,以及对应性的替换在本申请不做限制。
本申请实施例提供了一种通信系统,如图5所示,该通信系统包括:
第一设备501和第二设备502。第一设备501和第二设备502之间存在至少一个信道,该至少一个信道中的每个信道对应一个带宽。
例如,带宽可以包括20兆带宽、40兆带宽、80兆带宽、160(80+80)兆带宽、240兆带宽和320兆带宽等多种。即,信道的带宽为20MHz、40MHz、80MHz、160(80+80)MHz、240MHz和320MHz等。
每个信道包括至少一个子信道,当信道包括一个20MHz子信道时,第一设备生成non-HT格式的帧;当该信道包括多个20MHz子信道时,第一设备生成non-HT duplicated格式的帧。示例性的,有时可以将信道子信道的带宽可以大于或等于20MHz。即每个信道包括至少一个 子信道,每个子信道的带宽可以相同,也可以不同。
具体来说本申请中给出的带宽指示方法为:non-HT帧或non-HT duplicated帧中包括第一比特、第二比特和第三比特。当第三比特为第一值时,第一比特和第二比特用于指示信道带宽为20MHz、40MHz、80MHz、或160MHz中的一种。当第三比特为第二值时,可以指示信道带宽为大于160MHz的带宽,此时第一比特和第二比特可以设置为随机值或任意值,或者为保留值或默认值。本申请提供的带宽指示方法能够节省指示带宽的比特数量,就可以保留原来扰码的随机性,提高PAPR。同时节省的指示比特可以留作其他的用途。第一比特和第二比特是扰码序列的前7个比特中的B5和B6比特,第三比特可以是扰码序列的前7个比特中的B0比特、B1比特、B2比特和B3比特中的任意一个比特,或者是预留服务比特中的一个比特,或者是接收地址RA字段中的一个比特,或者是控制帧字段中的一个比特。在本申请中,预留服务比特可以是Reserved SERVICE Bits,控制帧字段可以是Frame Control字段,以此为例进行介绍,在此不做限制。
以第三比特是扰码序列的前7个比特中的B0比特、B1比特、B2比特和B3比特中的任意一个比特,第一比特和第二比特是扰码序列的前7个比特中的B5和B6比特为例,本申请实施例给出了一种带宽指示方法进行介绍。
在实施例中,第一设备在与第二设备关联时,第二设备向第一设备发送其设备类型,以及第一设备向第二设备发送其设备类型。所以在执行本步骤之前,第一设备和第二设备均保存对方的设备类型。第一设备可以获取其保存的第二设备的设备类型。
示例性的,设备类型可以为极端高吞吐量(Extremely High Throughput,EHT)站点,也包括更下一代的标准中的站点,即支持大于160MHz带宽的站点。或者,设备类型可以为不支持EHT的非常高吞吐量(Very High Throughput,VHT)站点或高效的(High efficiency,HE)站点,即仅支持小于或等于160MHz带宽的站点。
其中,第一设备的设备类型为支持大于160MHz带宽的站点,包括支持802.11be标准的极高吞吐量EHT站点,也包括更下一代的标准中的站点。对于设备类型为EHT站点的第二设备,第二设备支持使用扰码序列的前7个比特中的B0比特、B1比特、B2比特和B3比特中的任意一个比特(第三比特)和扰码序列的前7个比特中的B5比特和B6比特(第一比特和第二比特)来指示信道的带宽。对于设备类型为不支持EHT的VHT站点或HE站点的第二设备,第二设备支持使用扰码序列的前7个比特中的B5比特和B6比特指示信道的带宽。
在本申请实施例,在标准中规定或者第一设备和第二设备可以事先约定当第二设备为EHT站点的设备时第一设备使用扰码序列的前7个比特中的B0比特、B1比特、B2比特和B3比特中的任意一个比特和扰码序列的前7个比特中的B5比特和B6比特来指示信道的带宽。以及当第二设备为不支持EHT的VHT站点或HE站点的设备时第一设备使用扰码序列的前7个比特中的B5比特和B6比特指示信道的带宽。
该信道为第一设备与第二设备之间的任一个信道。第一设备与第二设备之间可以有至少一个信道,该至少一个信道中的每个信道对应一个带宽。该信道包括至少一个20MHz子信道,当信道包括一个20MHz子信道时,第一设备生成non-HT格式的帧;当该信道包括多个20MHz子信道时,第一设备生成non-HT duplicated格式的帧。
本申请的带宽除了包括20MHz带宽、40MHz带宽、80MHz带宽和160MHz带宽四种外,还可以包括320MHz带宽等新的带宽。例如,目前出现的带宽除了包括20MHz带宽、40MHz带宽、80MHz带宽和160(80+80)MHz带宽四种外,还可以包括240MHz带宽、320MHz 带宽等新的带宽。
在本实施例中可以使用扰码序列的前7个比特中的B0比特、B1比特、B2比特和B3比特中的任意一个比特和扰码序列的前7个比特中的B5比特和B6比特来指示信道的带宽。对于20MHz带宽、40MHz带宽、80MHz带宽、160(80+80)MHz带宽和320MHz带宽等带宽中任一种带宽,具体来说,可以使用扰码序列的前7个比特中的B0比特、B1比特、B2比特和B3比特中的任意一个比特和扰码序列的前7个比特中的B5比特和B6比特来指示信道的20MHz带宽、40MHz带宽、80MHz带宽、160(80+80)MHz带宽。或者,可以使用扰码序列的前7个比特中的B0比特、B1比特、B2比特和B3比特中的任意一个比特指示信道的320MHz带宽,此时扰码序列的前7个比特中的B5比特和B6比特不用于指示该320MHz带宽,可以设置为随机值或任意值,或者为保留值或默认值。或者,可以使用扰码序列的前7个比特中的B0比特、B1比特、B2比特和B3比特中的任意一个比特和扰码序列的前7个比特中的B5比特、B6比特中的任意一个比特来指示信道的320MHz带宽,此时扰码序列的前7个比特中的B5比特、B6比特中没有用来指示带宽的另一个比特位可以设置为随机值或任意值,或者为保留值或默认值。也就是说,B5B6中至少一个比特不用于指示320MHz带宽的话,可以用作其他用途,比如,可以设置为随机值,就可以保留原来扰码的随机性,提高PAPR。也可以设置为保留值或默认值,用于指示其他的可能的信道带宽,或者留作其他的用途。
一种实施方式中,参见表5,以B3这个比特为例来进行介绍指示大于160MHz带宽的情形,这里以320MHz为例,对于其他带宽如240MHz也适用。实际中指示大于160MHz带宽的比特也可以是B0-B2中的一个比特。具体的,可以使用扰码序列的前7个比特中的B3比特和扰码序列的前7个比特中的B5比特和B6比特指示信道的20MHz带宽、40MHz带宽、80MHz带宽、160(80+80)MHz带宽。或者,可以使用扰码序列的前7个比特中的B3比特指示信道的320MHz带宽。
表5
Figure PCTCN2021138364-appb-000003
如表5所示,当B3设置为0时,B5B6等于0~3时分别指示20MHz、40MHz、80MHz、和160(80+80)MHz,其中B5是低位、B6是高位。具体的,当B3=0,B5=0,B6=0指示20MHz;当B3=0,B5=1,B6=0指示40MHz;当B3=0,B5=0,B6=1指示80MHz;当B3=0,B5=1,B6=1指示160MHz或80+80MHz。当B3设置为1时,指示当前帧的带宽为320MHz,此时B5B6不再指示带宽信息,可以设置为随机值。
本申请实施例中给出的带宽指示方法可以只使用一个比特来指示320MHz带宽,比使用B3B5B6来指示320MHz带宽可以节省两个指示比特。节省的两个指示比特可以设置为随机值,能够增加扰码序列的随机性,降低数据传输中的PAPR。并且,也可以将节省的两个指示比特留作其他的用途。
另一种实施方式,参见表6,以B3和B6两个比特为例来进行介绍指示大于160MHz带宽的情形,这里以320MHz为例,对于其他带宽如240MHz也适用。实际中B3也可以是B0-B2 中的一个比特,B6也可以是B5。具体的,可以使用扰码序列的前7个比特中的B3比特和扰码序列的前7个比特中的B5比特和B6比特指示信道的20MHz带宽、40MHz带宽、80MHz带宽、160(80+80)MHz带宽。或者,可以使用扰码序列的前7个比特中的B3比特和扰码序列的前7个比特中的B5比特指示信道的320MHz带宽。
表6
Figure PCTCN2021138364-appb-000004
如表6所示,当B3设置为0时,B5B6等于0~3时分别指示20MHz、40MHz、80MHz、和160(80+80)MHz,其中B5是低位、B6是高位。具体的,当B3=0,B5=0,B6=0指示20MHz;当B3=0,B5=1,B6=0指示40MHz;当B3=0,B5=0,B6=1指示80MHz;当B3=0,B5=1,B6=1指示160MHz或80+80MHz。当B3设置为1、B6设置为第三值(例如设置为0)时,指示当前帧的带宽为320MHz,此时B5不再指示带宽信息,可以设置为随机值。当B3设置为1、B6设置为第四值(例如设置为1)时,可以用来指示预留的带宽,例如240MHz等带宽。或者用于指示其他的用途,此时B5不再指示带宽信息,可以设置为随机值。
本申请实施例给出的带宽指示方法可以只使用两个比特来指示320MHz带宽,比使用B3B5B6来指示320MHz带宽可以节省一个指示比特。节省的一个比特可以设置为随机值,能够增加扰码序列的随机性,降低数据传输中的PAPR。并且,也可以将节省的一个指示比特留作其他的用途。与此同时,该带宽指示方式还保留了一个预留带宽状态,可以用来指示新的带宽,或者用于指示其他的用途。
当第二设备的设备类型为不支持EHT的VHT站点或HE站点时,第二设备支持使用扰码序列的前7个比特中的B5比特和B6比特指示信道的带宽。该信道为第一设备与第二设备之间的任一个信道。第一设备与第二设备之间可以有至少一个信道,该至少一个信道中的每个信道对应一个带宽。该信道包括至少一个20MHz子信道,当信道包括一个20MHz子信道时,第一设备生成non-HT格式的帧;当该信道包括多个20MHz子信道时,第一设备生成non-HT duplicated格式的帧。
示例性的扰码序列的前7个比特中的B5比特和B6比特指示的带宽可以为20MHz带宽、40MHz带宽、80MHz带宽和160(80+80)MHz带宽中的任一种。其指示方式如表2中所述。
第一设备根据本申请实施例给出的带宽指示方法生成non-HT帧或non-HT duplicated帧,并向第二设备发送该non-HT帧或non-HT duplicated帧,第二设备接收non-HT帧或non-HT duplicated帧。
当第二设备的设备类型为支持大于160MHz带宽的站点,包括支持802.11be标准的极高吞吐量EHT站点,也包括更下一代的标准中的站点。以第二设备为EHT站点为例,第二设备接收non-HT帧或者non-HT duplicated帧,对应于第一设备采用的带宽指示方式的实施方式确定发送帧的带宽。
一种实施方式中,当使用扰码序列的前7个比特中的B0比特、B1比特、B2比特和B3 比特中的任意一个比特指示信道的320MHz带宽时,当用于指示信道带宽的扰码序列的前7个比特中的B0比特、B1比特、B2比特和B3比特中的任意一个比特为开启(例如设置为1)时,则不需要扰码序列的前7个比特中的B5比特和B6比特,信道带宽即为320MHz。当用于指示信道带宽的扰码序列的前7个比特中的B0比特、B1比特、B2比特和B3比特中的任意一个比特为关闭(例如设置为0)时,则通过扰码序列的前7个比特中的B5比特和B6比特的值,确定该两个比特指示的信道的带宽。即所指示的信道的带宽是20MHz、40MHz、80MHz、和160(80+80)MHz中的哪一种。
另一种实施方式中,当使用扰码序列的前7个比特中的B0比特、B1比特、B2比特和B3比特中的任意一个比特,和扰码序列的前7个比特中的B5比特、B6比特中的任意一个比特来指示信道的320MHz带宽时,当用于指示信道带宽的扰码序列的前7个比特中的B0比特、B1比特、B2比特和B3比特中的任意一个比特为开启(例如设置为1)时,则不需要扰码序列的前7个比特中的B5比特和B6比特中的另一个比特。当扰码序列的前7个比特中的B5比特、B6比特中的任意一个比特为第三值时,信道带宽即为320MHz。当扰码序列的前7个比特中的B5比特、B6比特中的任意一个比特为第四值时,则指示的信道带宽为预留值。当用于指示信道带宽的扰码序列的前7个比特中的B0比特、B1比特、B2比特和B3比特中的任意一个比特为关闭(例如设置为0)时,则通过扰码序列的前7个比特中的B5比特和B6比特的值,确定该两个比特指示的信道的带宽,即所指示的信道的带宽是20MHz、40MHz、80MHz、和160(80+80)MHz中的哪一种。
当第二设备的设备类型为不支持EHT的VHT站点或HE站点时,第二设备接收non-HT帧或者non-HT duplicated帧,获取non-HT帧或者non-HT duplicated帧中的用于指示信道带宽的扰码序列的前7个比特中的B5比特和B6比特,确定该两个比特指示的信道的带宽,即所指示的信道的带宽是20MHz、40MHz、80MHz、和160(80+80)MHz中的哪一种。
示例性的,在本申请实施例中,指示信道的带宽的比特位的值的设置仅为举例说明,实际情况中设置为1或者0,以及对应性的替换在本申请不做限制。
示例性的,在本申请实施例中,需要首先判断第一设备和第二设备的站点类型,根据EHT站点和VHT、HE站点的区分,采用不同的比特位置进行信道带宽的指示。即如果第一设备和第二设备都是支持大于160MHz带宽的EHT站点,则利用第三比特指示EHT站点的带宽,例如上述实施例中所说的B3比特。如果第一设备或第二设备中至少有一个为仅支持小于或等于160MHz带宽的VHT、HE站点,则第三比特不用于指示大于160MHz的带宽,仍是其原来的含义或者用于其他的用途。因此,可以将这种指示方式称为隐性指示方法,在本申请实施例中不做限制。
本申请中,所说的支持大于160MHz带宽的站点,包括支持802.11be标准的极高吞吐量EHT站点,以及802.11be标准的其他命名方式的站点,也包括更下一代的标准中的站点,这本申请中不对站点的取名已经其所使用的标准或其他方式进行限制,包括能够实现相同功能的实施方式。
在使用第一设备的站点类型来区分是否使用第三比特来指示带宽的实施例中,对于CF-End帧需要做一个特殊的处理。这里先介绍一下CF-END帧的功能和应用场景。Wi-Fi系统中信道资源是多个站点通过竞争机制共享的。如图6所示,有数据要发送的站点会通过增强型分布式信道访问(enhanced distributed channel access,EDCA)机制进行信道竞争,当退 避结束之后,该站点发送一个初始帧。如果能正确收到该初始帧的响应帧,则意味着信道竞争成功。在初始帧的持续时间Duration字段中会设置一个时间长度,该时间长度从初始帧结束时刻起计算,在该时间长度内其它站点将不会发起信道竞争,从而保证竞争成功的站点可以独享该时间段进行数据发送。该时间段称为一个TXOP,而该竞争成功的站点被称为TXOP holder。TXOP holder在一个TXOP内可以发起一个或者多个帧交互。当TXOP holder把缓存数据发送完毕之后,如果TXOP时段还有剩余时间,则TXOP holder可以发送一个CF-END帧来将TXOP时间段内剩余时间释放,以使得其他站点可以进行信道竞争。
CF-End帧的帧结构如图7所示。包括帧控制(frame control)字段,持续时间(duration)字段,接收地址(RA)字段,发送地址(TA)字段,帧检测序列(frame check sequence,FCS)字段等。其中接收地址(RA)字段设置为广播帧,即全1。发送地址TA字段被设置为基本服务集标识符BSSID,设置为所在基本服务集BSS的BSSID。BSS是由AP建立的一个系统,其中包括唯一的一个AP,该AP可以关联一个或多个站点。BSSID是BSS的唯一识别符,通常为AP的MAC地址。
如果TXOP holder是AP,那么它发送一个CF-END帧。此时发送的CF-END帧中TA字段为BSSID,即AP的MAC地址,执行的方法参照上面实施例所给的方法即可。如果TXOP holder是non-AP站点,则TXOP holder先发送一个CF-END帧,当其关联的AP收到这个CF-END帧之后,关联的AP在间隔SIFS时间可以再发送一个响应的CF-END帧。
当AP接收到一个BSSID(TA)字段跟自己的BSSID匹配(不对比Individual/Group比特)的CF-END帧之后可以响应一个CF-END帧,该响应的CF-END帧使用与接收的CF-END帧相同的带宽。这里的不对比Individual/Group比特是因为Individual/Group比特可能会由于指示携带带宽指示信息而设置成1,此时就与BSSID本身不匹配了,所以比较的时候不管这一个比特,其它剩余比特相同就认为匹配成功。这里的一个问题是,当一个non-AP站点发送CF-END帧的时候,该帧中并没有自身的MAC地址,因此AP在收到CF-END帧之后无法从帧格式中获知是哪个站点发送的CF-END,因此无法确定接收到的CF-END中是否使用第三比特指示带宽了。上面实施例中所给出的第三比特指示带宽的方法不能适用在non-AP站点发送CF-END帧中,即本申请实施例所说的对于CF-End帧需要做一个特殊的处理主要是针对如果TXOP holder是non-AP站点,提出了两种方案解决上述实施例所给的方法不能适用的问题。
第一个方案中,AP在收到BSSID(TA)字段跟自己的BSSID匹配(不对比Individual/Group比特)的CF-END帧之后,确定当前本BSS内的TXOP holder,如果TXOP holder是EHT站点,则接收的CF-END帧中使用了第三比特指示带宽。如果TXOP holder是VHT或者HE站点,则接收的CF-END帧中没有使用第三比特指示带宽,即是使用扰码序列前7位中的B6B5来指示带宽的。由于同一个时刻,在本BSS内只能有一个TXOP holder,所以可以避免对发送站点判断失误。
第二个方案中,AP记录当前本BSS内TXOP的带宽,AP在收到BSSID(TA)字段跟自己的BSSID匹配(不对比Individual/Group比特)的CF-END帧之后,不需要对带宽指示信息进行解读,认为此CF-END帧的带宽等于TXOP的带宽。,在第二个方案中,要求TXOP holder必须使用TXOP带宽来发送CF-END帧。
在识别带宽信息之后,AP在接收的CF-END帧结束时刻间隔SIFS时间后发送一个相同带宽的CF-END帧。
本申请实施例还提供了一种带宽指示方法,其中,以第三比特是预留服务比特Reserved SERVICE Bits、或者接收地址RA字段、或者复用Frame Control字段中已有字段的其中一种中的一个比特,第一比特和第二比特是扰码序列的前7个比特中的B5和B6比特为例进行介绍。
即在本申请实施例中,non-HT帧或non-HT duplicated帧采用预留服务比特Reserved SERVICE Bits、或者接收地址RA字段、或者复用Frame Control字段中已有字段的其中一种中的一个比特(第三比特)和扰码序列的前7个比特中的B5比特和B6比特(第一比特和第二比特)来指示信道的带宽。
在本申请中,将non-HT帧或non-HT duplicated帧中的用于指示信道的带宽的预留服务比特Reserved SERVICE Bits、或者接收地址RA字段、或者复用Frame Control字段中已有字段的其中一种中的一个比特称之为EHT带宽信令指示,该指示位或指示字段的名称仅为举例,本申请不做限制。
例如,目前出现的带宽除了包括20MHz带宽、40MHz带宽、80MHz带宽和160(80+80)MHz带宽四种外,还包括240MHz带宽、320MHz带宽等新的带宽。在本实施例中可以使用EHT带宽信令指示和扰码序列的前7个比特中的B5比特和B6比特来指示信道的带宽。对于20MHz带宽、40MHz带宽、80MHz带宽、160(80+80)MHz带宽和320MHz带宽等带宽中任一种带宽,具体来说,可以使用EHT带宽信令指示和扰码序列的前7个比特中的B5比特和B6比特来指示信道的20MHz带宽、40MHz带宽、80MHz带宽、160(80+80)MHz带宽。或者,可以使用EHT带宽信令指示指示信道的320MHz带宽,此时扰码序列的前7个比特中的B5比特和B6比特不用于指示所述320MHz带宽,可以设置为随机值或任意值,或者为保留值或默认值。或者,可以使用EHT带宽信令指示和扰码序列的前7个比特中的B5比特、B6比特中的任意一个比特来指示信道的320MHz带宽,此时扰码序列的前7个比特中的B5比特、B6比特中没有用来指示带宽的另一个比特位可以设置为随机值或任意值,或者为保留值或默认值。也就是说,B5B6中至少一个比特不用于指示所述320MHz带宽的话,可以用作其他用途,比如,可以设置为随机值,就可以保留原来扰码的随机性,提高PAPR。也可以设置为保留值或默认值,用于指示其他的可能的信道带宽,或者留作其他的用途。
示例性的,设备类型可以为极端高吞吐量(Extremely High Throughput,EHT)站点,或者,设备类型可以为不支持EHT的非常高吞吐量(Very High Throughput,VHT)站点或高效的(High efficiency,HE)站点。在本申请实施例中,不需要对第一设备和第二设备的站点类型进行判断,通过EHT带宽信令指示即可判断采用的带宽指示方式。
一种实施方式中,以EHT带宽信令指示为例介绍指示大于160MHz带宽的情形,这里以320MHz为例,对于其他带宽如240MHz也适用。具体的,可以使用EHT带宽信令指示和扰码序列的前7个比特中的B5比特和B6比特指示信道的20MHz带宽、40MHz带宽、80MHz带宽、160(80+80)MHz带宽。或者,可以使用EHT带宽信令指示来指示信道的320MHz带宽。具体的,当EHT带宽信令指示设置为关闭时,扰码序列的前7个比特中的B5比特和B6比特使用0~3来分别指示20MHz、40MHz、80MHz和160(80+80)MHz四种带宽。当EHT带宽信令指示设置为开启时,这就可以说明当前带宽为320MHz,因此不需要用扰码序列的前7个比特中的B5比特和B6比特或者其他比特或字段来进行320MHz带宽指示。即扰码序列的前7个比特中的B5比特和B6比特信道不再携带带宽信息,可以设置为随机值。
表7
Figure PCTCN2021138364-appb-000005
如表7所示,当EHT带宽信令指示设置为关闭(例如设置为0)的情况下,B5B6等于0~3时分别指示20MHz、40MHz、80MHz、和160(80+80)MHz,其中B5是低位、B6是高位。具体的,当EHT带宽信令=0,B5=0,B6=0指示20MHz;当EHT带宽信令=0,B5=1,B6=0指示40MHz;当EHT带宽信令=0,B5=0,B6=1指示80MHz;当EHT带宽信令=0,B5=1,B6=1指示160MHz或80+80MHz。当EHT带宽信令指示设置为开启(例如设置为1)的情况下,指示当前帧的带宽为320MHz,此时B5B6不再指示带宽信息,可以设置为随机值。
本申请实施例中给出的带宽指示方法可以只使用EHT带宽信令指示这一个比特来指示320MHz带宽,比使用显示指示和扰码序列的B5B6来指示320MHz带宽可以节省两个指示比特。且可以不使用扰码序列来指示320MHz,可以增加扰码序列的随机性,降低数据传输中的PAPR。并且,可以将节省的两个指示比特留作其他的用途。
另一种实施方式,以EHT带宽信令指示和扰码序列的前7个比特中的B6比特为例来进行介绍指示大于160MHz带宽的情形,这里以320MHz为例,对于其他带宽如240MHz也适用。具体的,可以使用EHT带宽信令指示和扰码序列的前7个比特中的B5比特和B6比特指示信道的20MHz带宽、40MHz带宽、80MHz带宽、160(80+80)MHz带宽。或者,可以使用EHT带宽信令指示和扰码序列的前7个比特中的B5比特指示信道的320MHz带宽。示例性的,扰码序列的前7个比特中的B5比特也可以是扰码序列的前7个比特中的B5比特。
表8
Figure PCTCN2021138364-appb-000006
如表8所示,当EHT带宽信令指示设置为关闭(例如设置为0)的情况下,B5B6等于0~3时分别指示20MHz、40MHz、80MHz、和160(80+80)MHz,其中B5是低位、B6是高位。具体的,当EHT带宽信令=0,B5=0,B6=0指示20MHz;当EHT带宽信令=0,B5=1,B6=0指示40MHz;当EHT带宽信令=0,B5=0,B6=1指示80MHz;当EHT带宽信令=0,B5=1,B6=1指示160MHz或80+80MHz。当EHT带宽信令指示设置为开启(例如设置为1)的情况下、B6设置为第三值(例如设置为0)时,指示当前帧的带宽为320MHz,此时B5 不再指示带宽信息,可以设置为随机值。当EHT带宽信令指示设置为1、B6设置为第四值(例如设置为1)时,可以用来指示预留的带宽,例如240MHz等带宽。或者用于指示其他的用途,此时B5不再指示带宽信息,可以设置为随机值。此时
本申请实施例给出的带宽指示方法可以只使用两个比特来指示320MHz带宽,比使用显示指示和扰码序列的B5B6来指示320MHz带宽可以节省一个指示比特。节省的一个扰码序列中的比特可以设置为随机值,能够增加扰码序列的随机性,降低数据传输中的PAPR。并且,也可以将节省的一个指示比特留作其他的用途。与此同时,该带宽指示方式还保留了一个预留带宽状态,可以用来指示新的带宽,或者用于指示其他的用途。
第一设备根据本申请实施例给出的带宽指示方法生成non-HT帧或non-HT duplicated帧,并向第二设备发送该non-HT帧或non-HT duplicated帧,第二设备接收non-HT帧或non-HT duplicated帧。
一种实施方式中,当使用EHT带宽信令指示指示信道的320MHz带宽时,当EHT带宽信令指示为开启(例如设置为1)时,则不需要扰码序列的前7个比特中的B5比特和B6比特,信道带宽即为320MHz。当EHT带宽信令指示为关闭(例如设置为0)时,则通过扰码序列的前7个比特中的B5比特和B6比特的值,确定该两个比特指示的信道的带宽。即所指示的信道的带宽是20MHz、40MHz、80MHz、和160(80+80)MHz中的哪一种。
另一种实施方式中,当使用EHT带宽信令指示和扰码序列的前7个比特中的B5比特、B6比特中的任意一个比特来指示信道的320MHz带宽时,当EHT带宽信令指示为开启(例如设置为1)时,则不需要扰码序列的前7个比特中的B5比特和B6比特中的另一个比特。当扰码序列的前7个比特中的B5比特、B6比特中的任意一个比特比特为第五值时,信道带宽即为320MHz。当扰码序列的前7个比特中的B5比特、B6比特中的任意一个比特比特为第六值时,则指示的信道带宽为预留值。当EHT带宽信令指示为关闭(例如设置为0)时,则通过扰码序列的前7个比特中的B5比特和B6比特的值,确定该两个比特指示的信道的带宽。即所指示的信道的带宽是20MHz、40MHz、80MHz、和160(80+80)MHz中的哪一种。
示例性的,在本申请实施例中,不需要判断第一设备和第二设备的站点类型再进行信道的带宽指示。即通过第一比特、第二比特和第三比特直接进行信道的带宽的指示。因此,可以将这种指示方式称为显性指示方法,在本申请实施例中不做限制。
在本申请实施例中,还提供了一种non-HT帧或non-HT duplicated帧中的信息指示方法,该信息指示方法即为前导码打孔(preamble puncture)模式。另一种表述形式,前导码打孔模式可以被称为非前导码打孔模式,这里的非前导码打孔模式是指前导码未打孔的模式。在第一设备与第二设备进行数据通信前,第一设备可以在被指示的带宽的信道内进行打孔,被打孔掉的子信道可以称之为从子信道(secondary subchannel),被打孔掉的从子信道不可用,即不可用于进行数据通信,未被打孔掉的子信道可用于进行数据通信。其中,这里的从子信道也被称作从信道(secondary channel)。
在802.11ax中定义的preamble puncture是在802.11ac的4种带宽之外又引入了4种新的信道模式,即模式4~模式7,图8给出了模式4~模式7在信道上打孔的示意图。图中P20表示20MHz主子信道,主子信道不会被打掉。S表示从子信道,Low和High表示低频和高频的区分。例如,S40-Low和S40-High用于区分S40子信道中的两个20MHz。S80里面的虚线是表示其中的20MHz子信道可能被打掉也可能没有被打掉。在标准中的定义为:
模式4是在80MHz信道内进行打孔,只有次20MHz信道(S20信道)被打掉;
模式5是在80MHz信道内进行打孔,只有次40MHz信道中的一个20MHz信道(S40-low或者S40-High)被打掉;
模式6是在160MHz或80+80MHz信道内进行打孔,在主80MHz信道内只有从20MHz信道(S20信道)被打掉,从80MHz信道内可以以20MHz为粒度进行任意打孔;
模式7是在160MHz或80+80MHz信道内进行打孔,在主80MHz信道内主40MHz信道是可用的,从40MHz和从80MHz信道内可以以20MHz为粒度进行任意打孔。
在802.11ac中的preamble puncture仅针对正交频分多址(orthogonal frequency division multiple access,OFDMA)模式,而802.11be中带宽扩展到320MHz的基础上,增加了对非正交频分多址(non orthogonal frequency division multiple access,non-OFDMA)模式。示例性的,基于non-OFDMA,802.11be定义的的前导码打孔模式和非前导码打孔模式,可以参考表9所示。表9示出63种带宽。在表9中,一个“1”或“x”均对应一个20MHz信道,“1”表示对应的20MHz信道是空闲的,“x”表示对应的20MHz信道是繁忙的或者不可获(no available)的。
在本申请实施例中,对于前导码打孔模式来说,该打孔模式对应的总带宽即为不进行前导码打孔的情况下的带宽。示例性的,总带宽可以为:20MHz、40MHz、80MHz、160MHz(或80+80MHz)、320MHz(或160+160MHz)。
表9
Figure PCTCN2021138364-appb-000007
Figure PCTCN2021138364-appb-000008
在本申请实施例中,前导码打孔模式也被称为信道打孔的带宽,或者说preamble puncture带宽,有时还会被称为一种带宽。
preamble puncture指示可以采用以下实现方式:
一种实现方式中,preamble puncture指示可以采用non-OFDMA的模式进行指示,即多个比特来指示non-OFDMA preamble puncture模式。例如,如表9所示,从non-OFDMA preamble puncture的模式来看,它共有63种信道打孔的带宽,需要6个比特来进行指示,即用该6个比特组成的数值范围进行指示。当然这仅为举例,若preamble puncture指示的模式有增加或者减小,那么相对应的指示比特可以增加或者减小,本申请不做限制。non-OFDMA带宽模式是利用打孔后剩余子信道传输单用户数据帧的一些带宽模式。为了避免实现中过于复杂,标准中对non-OFDMA带宽模式进行了一些选择。因为需要使用滤波器来处理边缘信号的泄露问题,所以打孔的个数越多,需要的滤波器个数越多,成本也就越高。因此在模式选择的时候的一个重要的因素就是要控制打孔的个数。比如160MHz带宽内只允许打掉一个孔,这 个孔的大小可以是20MHz或者40MHz。采用non-OFDMA的带宽模式能够指示确定的模式,需要的指示开销较少。
一种情形中,当上述申请实施例给出的带宽指示方法中,non-HT帧或者non-HT duplicated帧所指示的总带宽小于或等于160MHz时,preamble puncture所指示的带宽粒度为20MHz。即用于指示preamble puncture的6个比特组成的数值范围中的每一个数值对应一个20MHz子信道的信道状态。或者说,该6个比特组成的数值范围中每一个数值对应一个20MHz子信道的信道状态。或者说,该6个比特组成的数值范围中每一个数值用于指示该数值对应的20MHz信道是否空闲。
另一种情形中,当上述申请实施例给出的带宽指示方法中,non-HT帧或者non-HT duplicated帧所指示的总带宽大于160MHz时,preamble puncture所指示的带宽粒度为40MHz。即用于指示preamble puncture的6个比特组成的数值范围中的每一个数值对应一个40MHz子信道的信道状态。或者说,该6个比特组成的数值范围中每一个数值对应一个40MHz子信道的信道状态。或者说,该6个比特组成的数值范围中每一个数值用于指示该数值对应的40MHz信道是否空闲。
示例性的,所有的模式要对应于0~(2 ^n-1)中的一个数值,其中n为preamble puncture带宽指示所用的比特数。
另一种实现方式中,preamble puncture指示占用8个比特,可以称之为组成一个比特位图bitmap。preamble puncture用于指示总带宽对应的前导码打孔信息,即用于指示总带宽中的子信道的信道状态。
一种情形中,当上述申请实施例给出的带宽指示方法中,non-HT帧或者non-HT duplicated帧所指示的总带宽小于或等于160MHz时,preamble puncture所指示的带宽粒度为20MHz。即用于指示preamble puncture的8个比特中的每一个比特对应一个20MHz子信道的信道状态。或者说,bitmap中每一个比特对应一个20MHz子信道的信道状态。或者说,每一个比特用于指示该比特对应的20MHz信道是否空闲。
另一种情形中,当上述申请实施例给出的带宽指示方法中,non-HT帧或者non-HT duplicated帧所指示的总带宽大于160MHz时,preamble puncture所指示的带宽粒度为40MHz。即用于指示preamble puncture的8个比特中的每一个比特对应一个40MHz子信道的信道状态。或者说,bitmap中每一个比特对应一个40MHz子信道的信道状态。或者说,每一个比特用于指示该比特对应的40MHz信道是否空闲。
示例性的,根据从低频到高频的顺序,依次设置preamble puncture指示中各个比特所对应的信道。从而,在preamble puncture指示中,低位的比特对应低频的信道,高位的比特对应高频的信道。
示例性的,根据从高频到低频的顺序,依次设置preamble puncture指示中各个比特所对应的信道。从而,在preamble puncture指示中,低位的比特对应高频的信道,高位的比特对应低频的信道。
上述比特与信道之间的对应关系不仅适用于preamble puncture指示的该实现方式情形中,还可以适用于preamble puncture指示的其他情形或者其他字段。
一个比特用于指示该比特对应的信道是否空闲,可以为:一种可能的实现方式,当该比特设置为1时,表示该比特对应的信道空闲;或者,当该比特设置为0时,表示该比特对应的信道不可获或者繁忙。另一种可能的实现方式,当该比特设置为0时,表示该比特对应的 信道空闲;或者,当该比特设置为1时,表示该比特对应的信道不可获或者繁忙。
在本申请实施例中,“信道不可获或者繁忙”,可以替换为“信道不可用”或者“信道被打孔”。“信道空闲”可以替换为“信道可用”或者“信道未被打孔”。
在本申请实施例中,使用non-HT帧或non-HT duplicated帧中的如下之一的多个比特来指示preamble puncture信息:
–Reserved SERVICE Bits中的多个比特;
–Reserved SERVICE Bits一个或多个比特和scrambler sequence前7比特中的一个或多个比特;例如,若采用8位bitmap来指示前导码打孔信息,如上面实施例中第三比特指示信道带宽为320MHz时,此时扰码序列的前7位中的B5比特和B6比特不用于指示320MHz带宽,则可以利用扰码序列的前7位中的B5B6比特和Reserved SERVICE Bits中的6位比特组成bitmap用于指示preamble puncture信息。或者,如果此时采用第三比特和扰码序列的前7位中的B6比特用于指示信道带宽大于160MHz时,则可以利用扰码序列的前7位中的B5比特和Reserved SERVICE Bits中的7位比特组成bitmap用于指示preamble puncture信息。这里仅为举例说明,不做限制。
–Frame Control中的多个比特;
第一字段承载在已有的字段中,其好处在于不改变现有帧结构设计,这样第一帧的内容还可以被目标站点之外的第三方站点正确解析,保持后向兼容性。其中,用于指示preamble puncture信息的比特所占用的帧的位置与上面申请实施例中指示带宽的比特的位置在同一种实现方式中不重合。
指示当前发送帧,例如non-HT帧或者non-HT duplicated帧,是否使用了preamble puncture指示,在本申请实施例中提供了以下的指示方式:
一种指示方式中,用于指示preamble puncture的多个比特不全为0,或者说多个比特之和不为0,或者说多个比特中至少有一位不为0,或者说多个比特所组成的数值不为0,则表示当前帧使用了preamble puncture指示。否则的话,即用于指示preamble puncture的多个比特全为0,或者说多个比特之和为0,或者说多个比特所组成的数值为0,则表示当前帧没有使用preamble puncture指示。
一种实现方式中,preamble puncture采用non-OFDMA preamble puncture的指示方式,例如用6个比特来进行指示。则需要约定6个比特所组成的数值范围中,全0模式不能用于指示任何一个信道打孔模式。即所有的模式要对应于1~(2 ^n-1)中的一个数值,0不能用于指示任何一个信道打孔模式,其中n为preamble puncture带宽指示所用的比特数。0不能用于指示任何一个信道打孔模式,是因为与该指示方式中,指示preamble puncture的多个比特全为0,即表示当前帧没有使用preamble puncture指示的情况无法区分。
另一种实现方式中,preamble puncture采用bitmap的形式,例如采用8个比特的bitmap进行指示。则需要约定bitmap中的每个比特设置为1代表对应的子信道为空闲,设置为0代表对应的子信道不可获或者繁忙。此时不能设置比特为1代表对应的子信道不可获或者繁忙、比特为0代表对应的子信道空闲。因为此时若当总带宽的各个子信道均为空闲,则指示形式即为全0。与该指示方式中,指示preamble puncture的多个比特全为0,即表示当前帧没有使用preamble puncture指示的情况无法区分。
另一种指示方式中,第一设备在与第二设备关联时,都会宣称自己是否支持在non-HT帧或者non-HT duplicated帧中进行preamble puncture指示的能力。一种可能的实施方式,该 能力指示可以承载于关联帧的EHT capability element中,称之为preamble puncture能力指示,该关联帧包括关联请求(association request)帧和关联响应(association response)帧,承载preamble puncture能力指示的比特位或字段,以及preamble puncture能力指示所在的帧在此不做限制,包括能够实现相同功能的所有实现方式。当第一设备为非AP站点时,该能力指示是承载于关联请求帧中,当第一设备为AP站点时,该能力指示是承载于关联响应帧中。指示位或指示字段的名称仅为举例,本申请不做限制。示例性的,一个比特用于指示是否支持进行preamble puncture指示的能力,可以为:一种可能的实现方式,当该比特设置为1时,表示支持进行preamble puncture指示;或者,当该比特设置为0时,表示不支持进行preamble puncture指示。另一种可能的实现方式,当该比特设置为0时,表示支持进行preamble puncture指示;或者,当该比特设置为1时,表示不支持进行preamble puncture指示。
一种情形中,对于宣称支持preamble puncture指示的第一设备或者第二设备,在发送non-HT或non-HT duplicated帧的时候,当TA设置为bandwidth Signaling TA的情况下必须使用preamble puncture指示。反之,另一种情形中,对于宣称不支该能力的第一设备或者第二设备,在发送non-HT或non-HT duplicated帧的时候,当TA设置为bandwidth Signaling TA的情况下不使用preamble puncture指示。
在本申请实施例中,“preamble puncture指示”也被称之为“指示preamble puncture”,或者说preamble puncture指示模式,或者说preamble puncture模式,即为前导打孔模式和/或非前导码打孔模式,用于指示帧的总带宽的子信道状态。
由上述所给出的具体的实施例,本申请给出的信息指示方法包括:
一种指示方式,该信息指示方法包括:第一设备生成第一帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一字段,若第一字段的比特位中有至少一个比特不为0,表示第一字段用于指示前导码打孔模式;
第二设备接收第一设备发送的第一帧,第二设备根据第一字段的比特位中有至少一个比特不为0,确定第一字段用于指示前导码打孔模式。
本指示方法中,第一字段即为上面实施例中所介绍的多个比特组成的比特位图bitmap或者non-OFDMA的模式指示的多位比特。本指示方法可以采用图4提供的带宽指示方法400的流程示意图,指示方法的步骤如指示方法400所述,在此不再赘述。
另一种指示方法,该信息指示方法包括:
第一设备生成第一帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一字段;
第一设备生成第二帧,第二帧包括第一指示,第二帧包括关联请求帧或关联响应帧,第一指示用于指示所述第一字段是否用于指示前导码打孔模式;
第一设备发送第一帧和第二帧,其中第二帧的发送时间早于第一帧的发送时间;
第二设备接收第一设备发送的第一帧和第二帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一字段,第二帧包括第一指示,第二帧包括关联请求帧或关联响应帧;
第二设备根据第一指示确定第一字段是否用于指示前导码打孔模式。
本指示方法中,第一字段即为上面实施例中所介绍的多个比特组成的比特位图bitmap或者non-OFDMA的模式指示的多位比特。第一指示承载在第二帧中,用于指示第一字段是否具有指示前导码打孔模式的能力,上面的实施例中给出了具体的介绍,可以承载在关联请求/ 响应帧的EHT capability element中。因此,本指示方法可以采用图9提供的带宽指示方法700的流程示意图。其中,该带宽指示方法700包括但不限于以下步骤:
S701、第一设备生成第一帧和第二帧;
S702:第一设备向第二设备发送第一帧和第二帧。
S703:第二设备接收第一帧和第二帧。
为了描述方便以及清楚简洁,上述指示方法中的第一设备和第二设备为了描述简便没有区分,但也可以是第三设备和第四设备、第五设备和第六设备等。同样的指示方法中所述的第一帧、第一字段等也是相同的原因没有进行区分,在此不做限定。不同的指示方法中相同名称的可以代表不同的含义和具体实现方法。不同的指示方法可以有不同的实施方式,在这里为了简便,仍是一同进行介绍。
本申请中,还提供了一种带宽粒度指示方法。该带宽粒度指示方法的流程示意图如上述实施例图4所示,指示方法的步骤如上面指示方法400所述,在此不再赘述。带宽粒度指示方法包括:
第一设备生成第一帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一比特,第二比特和第四比特,第一比特和第二比特为第一帧的扰码序列中的比特;
其中,指示第一帧的第一带宽粒度时,第四比特为第一值,第一带宽粒度为20MHz,对应第一信道带宽,第一比特和第二比特用于指示第一信道带宽,第一信道带宽为20MHz、40MHz、80MHz、或160MHz中的一种;
指示第一帧的第二带宽粒度时,第四比特为第二值,第二带宽粒度为40MHz,对应信道带宽为第二信道带宽,第二信道带宽为大于160MHz的带宽;
第一设备向第二设备发送第一帧。
第二设备接收第一设备发送的第一帧;其中,若第四比特为第一值,第二设备确定第一帧的带宽粒度为第一带宽粒度,第一带宽粒度为20MHz,对应第一信道带宽,第一设备根据第一比特和第二比特确定第一帧的带宽为第一信道带宽,第一信道带宽为20MHz、40MHz、80MHz、或160MHz中的一种;
若第四比特为第二值,第二设备确定第一帧的带宽粒度为第二带宽粒度,第二带宽粒度为40MHz,对应第二信道带宽,第二信道带宽为大于160MHz的带宽。
具体的,这里所说的带宽粒度是指前导码打孔模式的带宽粒度,或者说是preamble puncture模式的带宽粒度。第一比特和第二比特为扰码序列的前7个比特中的B5和B6比特,使用B5B6进行带宽指示能够适用于支持带宽指示的前几代标准版本的设备,兼容性好,方面在实际中进行操作。第二信道带宽为320MHz,第一信道带宽中的160MHz包括连续的160MHz,或非连续的80+80Mhz。
第一帧还包括第一字段,第一字段用于指示前导码打孔模式,具体如何指示前导码打孔模式,以及指示当前发送帧是否使用了preamble puncture指示和采用何种指示方式,参考前面的各个实施例,此处不再赘述。
第四比特可以为以下任意一种:
扰码序列的前7个比特中的B0比特、B1比特、B2比特和B3比特中的任意一个比特,预留服务比特Reserved SERVICE Bits中的一个比特,接收地址RA字段中的一个比特,Frame  Control字段中的一个比特。当第四比特为扰码序列的前七个比特的B0-B3的任一比特时,在扰码序列之外不需要额外的信令指示,可以节省信令开销。当第三比特为其他字段的比特中时,由于没有增加扰码序列的比特开销,可以增加扰码序列的随机性,降低数据传输中的降低数据传输中的峰均功率比,提高通信的系统性能。
其中,第一比特和第二比特中的至少一个比特不用于指示所述第二信道带宽包括:
示例性的,第一比特和第二比特的值为随机值。可以只使用一个比特来指示信道的带宽,能够节省扰码序列中的指示比特,增加扰码序列的随机性,降低数据传输中的峰均功率比,提高通信的系统性能。同时,节省的指示比特可以留作其他的用途。
示例性的,第一比特用于指示第二信道带宽或用于指示预留的带宽,第二比特为随机值。例如,第一比特为第三值时,用于指示第二信道带宽,第一比特为第四值时,用于指示预留的带宽,第二比特为随机值。或者反过来,第二比特用于指示第二信道带宽或用于指示预留的带宽,第一比特为随机值。例如,第二比特为第三值,用于指示第二信道带宽,第二比特为第四值,用于指示预留的带宽,第一比特为随机值。
可以节省用于指示信道带宽的指示比特,包括节省扰码序列中的指示比特,增加扰码序列的随机性,降低数据传输中的峰均功率比,提高通信的系统性能。同时,节省的指示比特可以留作其他的用途。与此同时,还保留了一个预留带宽状态,可以用来指示新的带宽,或者用于指示其他的用途。
在本申请中,指示信道的带宽的比特位的值的设置仅为举例说明,实际情况中设置为1或者0,以及对应性的替换在本申请不做限制。
为了描述方便以及清楚简洁,实施例中的第一设备和第二设备为了描述简便和上面的实施例没有区分,但也可以是第三设备和第四设备、第五设备和第六设备等。同样的指示方法中所述的第一帧、第一比特、第二比特、第一信道带宽等相同的名称没有进行区分,在此不做限定,可以代表不同的含义和具体实现方法,在不同的实施例中可以有不同的实施方式。
指示当前发送帧,例如non-HT帧或者non-HT duplicated帧中,是否使用了preamble puncture指示,在本申请实施例中的指示方式如上面申请实施例中所述,在此不再赘述。
第四比特用来指示前导码打孔模式的带宽粒度,带宽粒度包括20MHz和40MHz。当non-HT帧或者non-HT duplicated帧所指示的总带宽小于或等于160MHz时,第四比特设置为第一值,即带宽粒度为20MHz。或者,non-HT帧或者non-HT duplicated帧所指示的总带宽大于160MHz时,第四比特设置为第二值,即带宽粒度为40MHz。
preamble puncture的指示方法如上面实施例中所述,在这里不再赘述。
第四比特用于指示前导码打孔模式的带宽粒度,同时,带宽粒度的区分也隐含着总的带宽信息,因此可以同时得到信道的带宽信息。该实施例通过指示所述帧的前导码打孔模式的带宽粒度,并且带宽粒度的区分来指示信道带宽,能够节省指示信令,简化设计。具体来说,当第四比特设置为第一值,用于指示前导码打孔模式的带宽粒度为20MHz,则该打孔模式对应的总带宽为小于或等于160MHz的带宽,即可以指示信道的带宽为小于或等于160MHz的信道带宽。当第四比特设置为第二值,用于指示前导码打孔模式的带宽粒度为40MHz,则该打孔模式对应的总带宽为大于160MHz的带宽,即可以指示信道的带宽为大于160MHz的信道带宽。因此第四比特可以用于指示前导码打孔模式的带宽粒度的同时,能够得到发送帧的带宽。
在本申请实施例中,使用bandwidth Signaling TA指示发送帧的扰码序列的前7个比特中 是否携带带宽信息与上面实施例一致,在此不再赘述。
例如,目前出现的带宽除了包括20MHz带宽、40MHz带宽、80MHz带宽和160(80+80)MHz带宽四种外,还包括240MHz带宽、320MHz带宽等新的带宽。在本实施例中可以通过第四比特确定带宽粒度的同时,和扰码序列的前7个比特中的B5比特和B6比特来指示信道的带宽。对于20MHz带宽、40MHz带宽、80MHz带宽、160(80+80)MHz带宽和320MHz带宽等带宽中任一种带宽,具体来说,此时带宽粒度为20MHz,设置第四比特为第一值,并且扰码序列的前7个比特中的B5比特和B6比特可以指示信道的20MHz带宽、40MHz带宽、80MHz带宽、160(80+80)MHz带宽。或者,对于320MHz带宽,此时带宽粒度为40MHz,设置第四比特为第二值,信道的带宽即为320MHz,此时扰码序列的前7个比特中的B5比特和B6比特为随机值。或者,对于320MHz带宽,此时带宽粒度为40MHz,设置第四比特为第二值,并且扰码序列的前7个比特中的B5比特、B6比特中的任意一个比特用来指示信道的320MHz带宽,此时扰码序列的前7个比特中B5比特、B6比特中没有用来指示带宽的另一个比特位为随机值。
示例性的,设备类型可以为极端高吞吐量(Extremely High Throughput,EHT)站点,或者,设备类型可以为不支持EHT的非常高吞吐量(Very High Throughput,VHT)站点或高效的(High efficiency,HE)站点。在本申请实施例中,不需要对第一设备和第二设备的站点类型进行判断,通过第四比特指示即可判断采用的带宽指示方式。
一种实施方式中,参见表10,以第四比特为扰码序列的前7个比特中的B3比特为例介绍指示带宽粒度的指示方法。实际中第四比特也可以是B0-B2中的一个比特,预留服务比特Reserved SERVICE Bits、接收地址RA字段、Frame Control字段中的任意一种中的一个比特。即扰码序列的前7个比特中的B3比特(第四比特)指示前导码打孔模式的带宽粒度为20MHz时,同时,扰码序列的前7个比特中的B3比特和扰码序列的前7个比特中的B5比特和B6比特指示信道的20MHz带宽、40MHz带宽、80MHz带宽、160(80+80)MHz带宽。或者,扰码序列的前7个比特中的B3比特指示前导码打孔模式的带宽粒度为40MHz时,此时信道带宽即为320MHz带宽。这里以320MHz为例,对于其他带宽如240MHz也适用。
表10
Figure PCTCN2021138364-appb-000009
如表10所示,当B3设置为0时,指示前导码打孔模式的带宽粒度为20MHz,B5B6等于0~3时分别指示20MHz、40MHz、80MHz、和160(80+80)MHz,其中B5是低位、B6是高位。具体的,当B3=0,B5=0,B6=0指示20MHz;当B3=0,B5=1,B6=0指示40MHz;当B3=0,B5=0,B6=1指示80MHz;当B3=0,B5=1,B6=1指示160MHz或80+80MHz。当B3设置为1时,指示前导码打孔模式的带宽粒度为40MHz,同时指示当前帧的带宽为320MHz,此时B5B6不再指示带宽信息,可以设置为随机值。
本申请实施例中给出的带宽粒度指示方法可以只使用一个比特指示preamble puncture模式的带宽粒度,同时根据带宽粒度可以确定发送帧的信道带宽,因此能够节省信令开销。在 带宽粒度为40MHz时,即指示320MHz带宽时,能够节省两个指示比特为随机值,可以增加扰码序列的随机性,降低数据传输中的PAPR。并且,可以将节省的两个指示比特留作其他的用途。
另一种实施方式,参见表11,以第四比特指示带宽粒度,同时和扰码序列的前7个比特中的B5比特、B6比特中的任意一个比特用来指示信道的320MHz带宽为例,介绍指示带宽粒度并且确定信道带宽的指示方法。例如,第四比特为扰码序列的前7个比特中的B3比特,扰码序列的前7个比特中的B5比特、B6比特中的任意一个比特为B6。其中B3也可以是扰码序列的前7个比特中B0-B2,预留服务比特Reserved SERVICE Bits、接收地址RA字段、Frame Control字段中的任意一种中的一个比特,B6也可以是B5。即扰码序列的前7个比特中的B3比特(第四比特)指示前导码打孔模式的带宽粒度为20MHz时,同时,扰码序列的前7个比特中的B3比特和扰码序列的前7个比特中的B5比特和B6比特指示信道的20MHz带宽、40MHz带宽、80MHz带宽、160(80+80)MHz带宽。或者,扰码序列的前7个比特中的B3比特指示前导码打孔模式的带宽粒度为40MHz时,根据扰码序列的前7个比特中的B6比特的取值指示信道的320MHz带宽。这里以320MHz为例,对于其他带宽如240MHz也适用。
表11
Figure PCTCN2021138364-appb-000010
如表11所示,当B3设置为0时,指示前导码打孔模式的带宽粒度为20MHz,B5B6等于0~3时分别指示20MHz、40MHz、80MHz、和160(80+80)MHz,其中B5是低位、B6是高位。具体的,当B3=0,B5=0,B6=0指示20MHz;当B3=0,B5=1,B6=0指示40MHz;当B3=0,B5=0,B6=1指示80MHz;当B3=0,B5=1,B6=1指示160MHz或80+80MHz。当B3设置为1,指示前导码打孔模式的带宽粒度为40MHz。此时B6设置为0时,指示当前帧的带宽为320MHz,此时B5不再指示带宽信息,可以设置为随机值。当B6设置为1时,指示当前帧的带宽为预留值。例如带宽为240MHz等,或者用于指示其他的用途,此时B5不再指示带宽信息,可以设置为随机值。
本申请实施例中给出的带宽粒度指示方法可以使用一个比特指示preamble puncture模式的带宽粒度,同时再增加一个比特即可以指示信道的320MHz带宽时,能够节省一个指示比特为随机值,可以增加扰码序列的随机性,降低数据传输中的PAPR。并且,可以将节省的一个指示比特留作其他的用途。与此同时,该指示方式还保留了一个预留带宽状态,可以用来指示新的带宽,或者可以指示大于40MHz的带宽粒度,或者用于指示其他的用途。
第一设备根据本申请实施例给出的带宽指示方法生成non-HT帧或non-HT duplicated帧,并向第二设备发送该non-HT帧或non-HT duplicated帧,第二设备接收non-HT帧或non-HT duplicated帧。
一种实施方式中,当使用第四比特指示preamble puncture的带宽粒度,以及根据第四比 特能够指示信道的320MHz带宽时,当第四比特为第一值时,指示帧的前导码打孔模式的带宽粒度为20MHz,同时通过扰码序列的前7个比特中的B5比特和B6比特的值,确定信道的带宽是20MHz、40MHz、80MHz、和160(80+80)MHz中的哪一种。当第四比特为第二值时,指示帧的前导码打孔模式的带宽粒度为40MHz,并且信道带宽即为320MHz。
另一种实施方式中,当使用第四比特指示preamble puncture的带宽粒度,并且根据第四比特和扰码序列的前7个比特中的B5比特、B6比特中任意一个比特能够指示信道的320MHz带宽时当,当第四比特为第一值时,指示帧的前导码打孔模式的带宽粒度为20MHz,通过扰码序列的前7个比特中的B5比特和B6比特的值,确定信道的带宽是20MHz、40MHz、80MHz、和160(80+80)MHz中的哪一种。当第四比特为第二值时,帧的前导码打孔模式的带宽粒度为40MHz。若扰码序列的前7个比特中的B5比特、B6比特中任意一个比特为第三值时,指示当前帧的带宽为320MHz。若扰码序列的前7个比特中的B5比特、B6比特中任意一个比特为第四值时,指示当前帧的带宽为预留值。例如带宽为240MHz等,或者用于指示其他的用途。此时,扰码序列的前7个比特中的B5比特、B6比特中另一个比特不再指示带宽信息,可以设置为随机值。
示例性的,本申请中的随机值也可以为任意值,或者为保留值,或者为默认值等。
为了描述方便以及清楚简洁,上述实施例中相同的方法流程和步骤采用相同的图进行描述和概括,但针对不同的实施例,其中的具体实施方法不同,不同实施例参考上述实施例中的介绍进行区分,在此不构成限制。同样的,不同的实施例中的第一设备和第二设备为了描述简便没有区分,但也可以是第三设备和第四设备、第五设备和第六设备等。不同的实施例中的第一帧、第一比特、第二比特、第三比特等也是相同的原因没有进行区分,在此不做限定。不同的指示方法中相同名称的可以代表不同的含义和具体实现方法。不同的指示方法可以有不同的实施方式,在本申请中为了描述方便和清楚简洁,在不同实施例中名称没有区分,具体含义根据不同的实施例分别确定,在这里不做限制。
示例性的,本申请实施例中的第一设备和第二设备所述的站点可以为接入点(access point,AP)或者非接入点(non-AP),有时非接入点也被称为站点(station,STA),本申请中的站点包括这两种。在第一设备和第二设备通信时,存在以下情况:第一设备为AP,第二设备为non-AP。第一设备为non-AP,第二设备为AP。第一设备为non-AP,第二设备为non-AP。第一设备为AP,第二设备为AP。
在本申请实施例中non-HT帧、non-HT duplicated帧可以均为请求发送(Request To Send,RTS)帧、允许发送(Clear To Send,CTS)帧等。
本申请中,所说的支持大于160MHz带宽的站点,包括支持802.11be标准的极高吞吐量EHT站点,以及802.11be标准的其他命名方式的站点,也包括更下一代的标准中的站点,这本申请中不对站点的取名已经其所使用的标准或其他方式进行限制,包括能够实现相同功能的实施方式。
下面主要从通信装置的角度对本申请实施例提供的方案进行介绍。可以理解的是,通信装置为了实现上述功能,其包含了执行每一个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以 对各个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
参见图10,本申请实施例提供了一种通信装置1000,所述装置1000可以为前面各个实施例或图4、图5或图9中的第一设备或第一设备的部分,用于执行本第一设备(发送设备)。所执行的方法,该装置包括:第一处理单元1001和第一发送单元1002。
针对不同的方法实施例,第一处理单元1001和第一发送单元1002可以执行不同的功能。例如,在一个实施例中:
所述第一处理单元1001,用于生成第一帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一比特,第二比特和第三比特,第一比特和第二比特为第一帧的扰码序列中的比特;
其中,指示第一帧的第一信道带宽时,第三比特为第一值,第一比特和第二比特用于指示第一信道带宽为20MHz、40MHz、80MHz、或160MHz中的一种;
指示第一帧的第二信道带宽时,第三比特为第二值,用于指示第二信道带宽,第一比特和第二比特中的至少一个比特不用于指示所述第二信道带宽,第二信道带宽为大于160MHz的带宽;
所述第一发送单元1002,用于向第二设备发送第一帧。
在另一个实施例中:
所述第一处理单元1001,用于生成第一帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一比特,第二比特和第三比特,第一比特和第二比特为第一帧的扰码序列中的比特,第一设备为支持大于160MHz带宽的站点;
所述第一发送单元1002,用于向第二设备发送第一帧;
其中,若第二设备为仅支持小于或等于160MHz带宽的站点,第一比特和第二比特用于指示第一信道带宽,第一信道带宽为20MHz、40MHz、80MHz、或160MHz中的一种,第三比特不用于指示所述第一信道带宽;
若第二设备为支持大于160MHz带宽的站点,其中,若指示第一帧的第一信道带宽时,第三比特为第一值,第一比特和第二比特用于指示第一信道带宽为20MHz、40MHz、80MHz、80+80MHz或160MHz中的一种;若指示第一帧的第二信道带宽时,第三比特为第二值,用于指示第二信道带宽,第一比特和第二比特中的至少一个比特不用于指示所述第二信道带宽,第二信道带宽为大于160MHz的带宽。
在又一个实施例中:
所述第一处理单元1001,用于生成第一帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一字段,若第一字段的比特位中有至少一个比特不为0,表示第一字段用于指示前导码打孔模式;
所述第一发送单元1002,用于向第二设备发送第一帧。
在又一个实施例中:
所述第一处理单元1001,用于生成第一帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一字段;
用于生成第二帧,第二帧包括第一指示,第二帧包括关联请求帧或关联响应帧,第一指示用于指示所述第一字段是否用于指示前导码打孔模式。
所述第一发送单元1002,用于向第二设备发送第一帧和第二帧。
在又一个实施例中:
所述第一处理单元1001,用于生成第一帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一比特,第二比特和第四比特,第一比特和第二比特为第一帧的扰码序列中的比特;
其中,指示第一帧的第一带宽粒度时,第四比特为第一值,第一带宽粒度为20MHz,对应第一信道带宽,第一比特和第二比特用于指示第一信道带宽,第一信道带宽为20MHz、40MHz、80MHz、或160MHz中的一种;
指示第一帧的第二带宽粒度时,第四比特为第二值,第二带宽粒度为40MHz,对应信道带宽为第二信道带宽,第二信道带宽为大于160MHz的带宽;
所述第一发送单元1002,用于向第二设备发送第一帧。
参见图11,本申请实施例提供了一种通信装置1100,所述装置1100可以为前面各个实施例或图4、图5或图9中的第二设备或第二设备的部分,用于执行本第二设备(接收设备)。所执行的方法,该装置包括:第一接收单元1101和第二处理单元1102。
针对不同的方法实施例,第一接收单元1101和第二处理单元1102可以执行不同的功能。例如,在一个实施例中:
所述第一接收单元1101,用于接收第一设备发送的第一帧,所述第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,所述第一帧包括第一比特,第二比特和第三比特,所述第一比特和第二比特为所述第一帧的扰码序列中的比特;
所述第二处理单元1102,用于根据所述第一帧确定所述第一帧的信道带宽;
其中,若第三比特为第一值,第二设备根据所述第一比特和所述第二比特确定所述第一帧的带宽为第一信道带宽,所述第一信道带宽为20MHz、40MHz、80MHz、或160MHz中的一种;
若第三比特为第二值,所述第二设备根据所述第三比特确定所述第一帧的信道带宽为第二信道带宽,第一比特和第二比特中的至少一个比特不用于指示所述第二信道带宽,第二信道带宽为大于160MHz的带宽。
在另一个实施例中:
所述第一接收单元1101,用于接收第一设备发送的第一帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一比特,第二比特和第三比特,第一比特和第二比特为第一帧的扰码序列中的比特,第一设备为支持大于160MHz带宽的站点;
所述第二处理单元1102,用于根据第一帧确定信道的带宽;
其中,若第二设备为仅支持小于或等于160MHz带宽的站点,第二设备根据第一比特和第二比特确定第一帧的带宽为第一信道带宽,第一信道带宽为20MHz、40MHz、80MHz或160MHz中的一种,第三比特不用于指示所述第一信道带宽;
若第二设备为支持大于160MHz带宽的站点,其中,若第三比特为第一值,第二设备根据第一比特和第二比特确定第一帧的带宽为第一信道带宽,第一信道带宽为20MHz、40MHz、80MHz、80+80MHz或160MHz中的一种;若第三比特为第二值,第二设备根据第三比特确定第一帧的带宽为第二信道带宽,第一比特和第二比特中的至少一个比特不用于指示所述第二信道带宽,第二信道带宽为大于160MHz的带宽。
在又一个实施例中:
所述第一接收单元1101,用于接收第一设备发送的第一帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一字段;
所述第二处理单元1102,用于根据第一字段的比特位中有至少一个比特不为0,确定第一字段用于指示前导码打孔模式。
在又一个实施例中:
所述第一接收单元1101,用于接收第一设备发送的第一帧和第二帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一字段,第二帧包括第一指示,第二帧包括关联请求帧或关联响应帧;
所述第二处理单元1102,用于根据第一指示确定第一字段是否用于指示前导码打孔模式。
在又一个实施例中:
所述第一接收单元1101,用于接收第一设备发送的第一帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一比特,第二比特和第四比特,第一比特和第二比特为第一帧的扰码序列中的比特;
所述第二处理单元1102,用于根据第一帧确定信道的带宽粒度;
其中,若第四比特为第一值,第二设备确定第一帧的带宽粒度为第一带宽粒度,第一带宽粒度为20MHz,对应第一信道带宽,第一设备根据第一比特和第二比特确定第一帧的带宽为第一信道带宽,第一信道带宽为20MHz、40MHz、80MHz、或160MHz中的一种;
若第四比特为第二值,第二设备确定第一帧的带宽粒度为第二带宽粒度,第二带宽粒度为40MHz,对应第二信道带宽,第二信道带宽为大于160MHz的带宽。
前面介绍的第一设备和第二设备,分别是从发送端和接收端来写的,对应发送设备和接收设备。但对于一个设备来说,它可以作为发送端的角色实施本申请的实施例提到的方法,也可以作为接收端的角色实施本申请实施例提到的方法。因此,存在这样一个通信装置1200,具有第一设备所包括的单元(处理单元和发送单元),它也具有第二设备所包括的单元(接收单元和处理单元),当集成两个设备的功能时,两个处理单元可以合为一体。例如,参见图12,本申请实施例提供了一种通信装置1200,该装置包括:第二接收单元1201、第三处理单元1202和第二发送单元1203。当所述装置1200可以为前面各个实施例或图4、图5或图9中的第一设备或第一设备的部分时,用于执行本第一设备(发送设备),所执行的方法可以参照图10介绍的各个实施例。所述装置1200可以为前面各个实施例或图4、图5或图9中的第二设备或第二设备的部分,用于执行本第二设备(接收设备),所执行的方法可以参照图11介绍的各个实施例
针对不同的方法实施例,第二接收单元1201和第三处理单元1202可以执行不同的功能。同样的,针对不同的方法实施例,第二发送单元1203和第三处理单元1202可以执行不同的功能。例如,和不同的STA1、STA2进行通信,通信装置1200和STA1通信时可以执行本第一设备(发送设备)所执行的方法,通信装置1200和STA2通信时可以执行本第二设备(接收设备)所执行的方法。再例如,和不同的AP1、AP2进行通信,通信装置1200和AP1通信时可以执行本第一设备(发送设备)所执行的方法,通信装置1200和AP2通信时可以执行本第二设备(接收设备)所执行的方法。
本申请提供了一种通信系统,所述通信系统包括第一设备和第二设备,所述第一设备如上述图10介绍的通信装置1000或图12介绍的通信装置1200,所执行的方法可以参照图10 或图12介绍的各个实施例。所述第二设备如上述图11介绍的通信装置1100或图12介绍的通信装置1200,所执行的方法可以参照图11或图12介绍的各个实施例。在此不再赘述。
图13是本申请实施例提供的通信装置1300的示意图。该装置1300可以是专用集成电路、一个或多个FPGA(现场可编程门阵列)、PLD(可编程逻辑器件)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合、芯片、单板、或者通信设备等。所述装置1300被配置到前面各个实施例或图4、图5、图9中的第一设备或第二设备的装置中,可以用于执行前面各个实施例中执行的操作。如图13所示,该装置1300包括:输入输出接口1301、处理器1302和存储器1303。该输入输出接口1301、处理器1302和存储器1303可以通过总线系统1304相连。
所述存储器1303用于存储包括程序、指令或代码。所述处理器1302,用于执行所述存储器1303中的程序、指令或代码,以控制输入输出接口1301接收或发送信号以及实施上述实施例中所对应的实施方式中的第一设备或者第二设备所实施的各步骤及功能,此处不再赘述。上述输入输出接口1301和处理器1302的具体实施方式可以相应参考上述各个实施例或图4、图5、图9中的第一设备或第二设备的具体说明,这里不再赘述。
图14为本申请实施例提供的一种芯片1400的示意图。所述芯片1400包括第一逻辑电路1401和第一接口电路1402。所述第一逻辑电路1401用于执行第一方面、第五方面、第九方面、第十方面或第十七方面的任意一种可能的实现方式的方法中的生成的步骤,所述第一接口电路1402,用于执行第一方面、第五方面、第九方面、第十方面或第十七方面的任意一种可能的实现方式的方法中的发送或接收的动作,此种情况下,“发送”等同于“输出”,“接收”等同于输入。
针对不同的方法实施例,第一逻辑电路1401和第一接口电路1402可以执行不同的功能。例如,在一个实施例中:
所述第一逻辑电路1401,用于生成第一帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一比特,第二比特和第三比特,第一比特和第二比特为第一帧的扰码序列中的比特;
其中,指示第一帧的第一信道带宽时,第三比特为第一值,第一比特和第二比特用于指示第一信道带宽为20MHz、40MHz、80MHz、或160MHz中的一种;
指示第一帧的第二信道带宽时,第三比特为第二值,用于指示第二信道带宽,第一比特和第二比特中的至少一个比特不用于指示所述第二信道带宽,第二信道带宽为大于160MHz的带宽;
所述第一接口电路1402,用于输出第一帧。
在另一个实施例中:
所述第一逻辑电路1401,用于生成第一帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一比特,第二比特和第三比特,第一比特和第二比特为第一帧的扰码序列中的比特,第一设备为支持大于160MHz带宽的站点;
所述第一接口电路1402,用于输出第一帧;
其中,若第二设备为仅支持小于或等于160MHz带宽的站点,第一比特和第二比特用于指示第一信道带宽,第一信道带宽为20MHz、40MHz、80MHz、或160MHz中的一种,第三比特不用于指示所述第一信道带宽;
若第二设备为支持大于160MHz带宽的站点,其中,若指示第一帧的第一信道带宽时, 第三比特为第一值,第一比特和第二比特用于指示第一信道带宽为20MHz、40MHz、80MHz、80+80MHz或160MHz中的一种;若指示第一帧的第二信道带宽时,第三比特为第二值,用于指示第二信道带宽,第一比特和第二比特中的至少一个比特不用于指示所述第二信道带宽,第二信道带宽为大于160MHz的带宽。
在又一个实施例中:
所述第一逻辑电路1401,用于生成第一帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一字段,若第一字段的比特位中有至少一个比特不为0,表示第一字段用于指示前导码打孔模式;
所述第一接口电路1402,用于输出第一帧。
在又一个实施例中:
所述第一逻辑电路1401,用于生成第一帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一字段;
用于生成第二帧,第二帧包括第一指示,第二帧包括关联请求帧或关联响应帧,第一指示用于指示所述第一字段是否用于指示前导码打孔模式。
所述第一接口电路1402,用于输出第一帧和第二帧。
在又一个实施例中:
所述第一逻辑电路1401,用于生成第一帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一比特,第二比特和第四比特,第一比特和第二比特为第一帧的扰码序列中的比特;
其中,指示第一帧的第一带宽粒度时,第四比特为第一值,第一带宽粒度为20MHz,对应第一信道带宽,第一比特和第二比特用于指示第一信道带宽,第一信道带宽为20MHz、40MHz、80MHz、或160MHz中的一种;
指示第一帧的第二带宽粒度时,第四比特为第二值,第二带宽粒度为40MHz,对应信道带宽为第二信道带宽,第二信道带宽为大于160MHz的带宽;
所述第一接口电路1402,用于输出第一帧。
图15为本申请实施例提供的另一种芯片1500的示意图。所述芯片1500包括第二逻辑电路1501和第二接口电路1502。所述第二逻辑电路1501用于执行第二方面、第六方面、第十一方面、第十二方面或第十八方面的任意一种可能的实现方式的方法中的生成的步骤,所述第二接口电路1502,用于执行第二方面、第六方面、第十一方面、第十二方面或第十八方面的任意一种可能的实现方式的方法中的发送或接收的动作,此种情况下,“发送”等同于“输出”,“接收”等同于输入。
针对不同的方法实施例,第二逻辑电路1501和第二接口电路1502可以执行不同的功能。例如,在一个实施例中:
所述第二接口电路1502,用于输入第一设备发送的第一帧,所述第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,所述第一帧包括第一比特,第二比特和第三比特,所述第一比特和第二比特为所述第一帧的扰码序列中的比特;
所述第二逻辑电路1501,用于根据所述第一帧确定所述第一帧的信道带宽;
其中,若第三比特为第一值,第二设备根据所述第一比特和所述第二比特确定所述第一帧的带宽为第一信道带宽,所述第一信道带宽为20MHz、40MHz、80MHz、或160MHz中的一种;
若第三比特为第二值,所述第二设备根据所述第三比特确定所述第一帧的信道带宽为第二信道带宽,第一比特和第二比特中的至少一个比特不用于指示所述第二信道带宽,第二信道带宽为大于160MHz的带宽。
在另一个实施例中:
所述第二接口电路1502,用于输入第一设备发送的第一帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一比特,第二比特和第三比特,第一比特和第二比特为第一帧的扰码序列中的比特,第一设备为支持大于160MHz带宽的站点;
所述第二逻辑电路1501,用于根据第一帧确定信道的带宽;
其中,若第二设备为仅支持小于或等于160MHz带宽的站点,第二设备根据第一比特和第二比特确定第一帧的带宽为第一信道带宽,第一信道带宽为20MHz、40MHz、80MHz或160MHz中的一种,第三比特不用于指示所述第一信道带宽;
若第二设备为支持大于160MHz带宽的站点,其中,若第三比特为第一值,第二设备根据第一比特和第二比特确定第一帧的带宽为第一信道带宽,第一信道带宽为20MHz、40MHz、80MHz、80+80MHz或160MHz中的一种;若第三比特为第二值,第二设备根据第三比特确定第一帧的带宽为第二信道带宽,第一比特和第二比特中的至少一个比特不用于指示所述第二信道带宽,第二信道带宽为大于160MHz的带宽。
在又一个实施例中:
所述第二接口电路1502,用于输入第一设备发送的第一帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一字段;
所述第二逻辑电路1501,用于根据第一字段的比特位中有至少一个比特不为0,确定第一字段用于指示前导码打孔模式。
在又一个实施例中:
所述第二接口电路1502,用于输入第一设备发送的第一帧和第二帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一字段,第二帧包括第一指示,第二帧包括关联请求帧或关联响应帧;
所述第二逻辑电路1501,用于根据第一指示确定第一字段是否用于指示前导码打孔模式。
在又一个实施例中:
所述第二接口电路1502,用于输入第一设备发送的第一帧,第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,第一帧包括第一比特,第二比特和第四比特,第一比特和第二比特为第一帧的扰码序列中的比特;
所述第二逻辑电路1501,用于根据第一帧确定信道的带宽粒度;
其中,若第四比特为第一值,第二设备确定第一帧的带宽粒度为第一带宽粒度,第一带宽粒度为20MHz,对应第一信道带宽,第一设备根据第一比特和第二比特确定第一帧的带宽为第一信道带宽,第一信道带宽为20MHz、40MHz、80MHz、或160MHz中的一种;
若第四比特为第二值,第二设备确定第一帧的带宽粒度为第二带宽粒度,第二带宽粒度为40MHz,对应第二信道带宽,第二信道带宽为大于160MHz的带宽。
本申请实施例还提供一种通信设备,包括一个或多个处理器以及一个或多个存储器。该一个或多个存储器与一个或多个处理器耦合,一个或多个存储器用于存储计算机程序代码,计算机程序代码包括计算机指令,当一个或多个处理器执行计算机指令时,使得通信装置执 行上述相关方法步骤实现上述实施例中的业务处理方法。通信设备可以本申请实施例提供的第一设备,第二设备,或通信装置。
本申请的实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机指令,当该计算机指令在计算机上运行时,使得计算机实现上述实施例中提供的方法。计算机可以本申请实施例提供的第一设备,第二设备,或通信装置。
本申请的实施例还提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述相关步骤,以实现上述实施例提供的方法。
另外,本申请的实施例还提供一种装置,这个装置具体可以是芯片,组件或模块,该装置可包括相连的处理器和存储器;其中,存储器用于存储计算机执行指令,当装置运行时,处理器可执行存储器存储的计算机执行指令,以使芯片执行上述各方法实施例中电子设备执行的业务处理方法。
其中,本实施例提供的电子设备、计算机可读存储介质、计算机程序产品或芯片均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
通过以上实施方式的描述,所属领域的技术人员可以了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至 少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。

Claims (17)

  1. 一种信息指示方法,其特征在于,所述方法包括:
    第一设备生成第一帧,所述第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,所述第一帧包括第一字段,若所述第一字段中至少一个比特位不为0,指示所述第一字段用于指示前导码打孔模式;
    所述第一设备向第二设备发送第一帧。
  2. 一种信息指示方法,其特征在于,所述方法包括:
    第二设备接收第一设备发送的第一帧,所述第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,所述第一帧包括第一字段;
    若所述第一字段中有至少一个比特位不为0,所述第二设备根据所述第一字段确定前导码打孔模式。
  3. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一设备生成第二帧,所述第二帧包括第一指示,所述第二帧包括关联请求帧或关联响应帧,所述第一指示用于指示所述第一字段是否用于指示前导码打孔模式。
    所述第一设备向所述第二设备发送第二帧。
  4. 如权利要求2所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收所述第一设备发送的第二帧,所述第二帧包括第一指示,所述第二帧包括关联请求帧或关联响应帧;
    所述第二设备根据所述第一指示确定所述第一字段是否用于指示前导码打孔模式。
  5. 如权利要求1至4任一项所述的方法,其特征在于,所述第一帧还包括第三比特:
    所述第三比特设置为所述第一值,表示所述第一字段指示的前导码打孔模式的带宽粒度是20MHz;或者,
    所述第三比特设置为所述第二值,表示所述第一字段指示的前导码打孔模式的带宽粒度是40MHz。
  6. 如权利要求1至5任一项所述的方法,其特征在于,所述第一字段承载在:
    所述第一帧的预留服务比特中;
    所述预留服务比特和所述第一帧的扰码序列的前7个比特中;或者
    帧控制字段中。
  7. 如权利要求1至6任一项所述的方法,所述第一字段采用non-OFDMA的模式进行指示。
  8. 一种第一设备,其特征在于,所述设备包括:
    处理单元,用于生成第一帧,所述第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,所述第一帧包括第一字段,若所述第一字段中至少一个比特位不为0,指示所述第一字段用于指示前导码打孔模式;
    发送单元,用于向第二设备发送第一帧。
  9. 一种第二设备,其特征在于,所述设备包括:
    接收单元,用于接收第一设备发送的第一帧,所述第一帧为非高吞吐率non-HT帧或非高吞吐率复制non-HT duplicated帧,所述第一帧包括第一字段;
    处理单元,用于当所述第一字段的中有至少一个比特位不为0,根据所述第一字段确定前导码打孔模式。
  10. 如权利要求8所述的设备,其特征在于,所述设备还包括:
    所述处理单元还用于生成第二帧,所述第二帧包括第一指示,所述第二帧包括关联请求帧或关联响应帧,所述第一指示用于指示所述第一字段是否用于指示前导码打孔模式。
    所述发送单元还用于向所述第二设备发送第二帧。
  11. 如权利要求9所述的设备,其特征在于,所述设备还包括:
    所述接收单元还用于接收所述第二帧,所述第二帧包括第一指示,所述第二帧包括关联请求帧或关联响应帧;
    所述处理单元还用于根据所述第一指示确定所述第一字段是否用于指示前导码打孔模式。
  12. 如权利要求8至11任一项所述的设备,其特征在于,所述第一帧还包括第三比特:
    所述第三比特设置为所述第一值,表示所述第一字段指示的前导码打孔模式的带宽粒度是20MHz;或者,
    所述第三比特设置为所述第二值,表示所述第一字段指示的前导码打孔模式的带宽粒度是40MHz。
  13. 如权利要求8至12任一项所述的设备,其特征在于,所述第一字段承载在:
    所述第一帧的预留服务比特中;
    所述预留服务比特和所述第一帧的扰码序列的前7个比特中;或者
    帧控制字段中。
  14. 如权利要求8至13任一项所述的设备,所述第一字段采用non-OFDMA的模式进行指示。
  15. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器存储有计算机程序,当所述计算机程序被所述处理器运行时,使得所述通信装置执行权利要求1-7任意一项所述的方法。
  16. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储计算机指令, 当所述计算机指令在计算机上运行时,使得权利要求1至7任一项所述的方法被执行。
  17. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行权利要求1至7任一项所述的方法。
PCT/CN2021/138364 2020-12-26 2021-12-15 一种带宽指示方法及设备、芯片和通信系统 WO2022135234A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21909230.1A EP4247051A4 (en) 2020-12-26 2021-12-15 BANDWIDTH DISPLAY METHOD, APPARATUS, CHIP AND COMMUNICATION SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011570774.X 2020-12-26
CN202011570774.XA CN114698030A (zh) 2020-12-26 2020-12-26 一种带宽指示方法及设备、芯片和通信系统

Publications (1)

Publication Number Publication Date
WO2022135234A1 true WO2022135234A1 (zh) 2022-06-30

Family

ID=82130395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138364 WO2022135234A1 (zh) 2020-12-26 2021-12-15 一种带宽指示方法及设备、芯片和通信系统

Country Status (3)

Country Link
EP (1) EP4247051A4 (zh)
CN (1) CN114698030A (zh)
WO (1) WO2022135234A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150312386A1 (en) * 2014-04-28 2015-10-29 Newracom, Inc. Signaling method
US20170064708A1 (en) * 2015-08-28 2017-03-02 Newracom, Inc. Apparatus and method for network allocation vector operations
CN110621043A (zh) * 2018-06-20 2019-12-27 华为技术有限公司 一种带宽模式指示方法、信道指示方法及装置
CN110769467A (zh) * 2018-07-28 2020-02-07 华为技术有限公司 一种带宽信息的指示方法和通信设备
CN113630787A (zh) * 2020-05-09 2021-11-09 华为技术有限公司 操作模式的协商方法、装置及芯片

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11159207B2 (en) * 2018-01-10 2021-10-26 Mediatek Singapore Pte. Ltd. Null data packet sounding for preamble puncture techniques

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150312386A1 (en) * 2014-04-28 2015-10-29 Newracom, Inc. Signaling method
US20170064708A1 (en) * 2015-08-28 2017-03-02 Newracom, Inc. Apparatus and method for network allocation vector operations
CN110621043A (zh) * 2018-06-20 2019-12-27 华为技术有限公司 一种带宽模式指示方法、信道指示方法及装置
CN110769467A (zh) * 2018-07-28 2020-02-07 华为技术有限公司 一种带宽信息的指示方法和通信设备
CN113630787A (zh) * 2020-05-09 2021-11-09 华为技术有限公司 操作模式的协商方法、装置及芯片

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4247051A4 *
YONGHO SEOK: "lb225-cr-10_22_2_5 ; 11-17-0209-01-00ax-lb225-cr-10-22-2-5", IEEE DRAFT; 11-17-0209-01-00AX-LB225-CR-10-22-2-5 DOC.: IEEE 802.11-12/1234R01, no. 1, 31 January 2017 (2017-01-31), pages 1 - 8, XP068112660 *

Also Published As

Publication number Publication date
CN114698030A (zh) 2022-07-01
EP4247051A1 (en) 2023-09-20
EP4247051A4 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
KR20180088470A (ko) 불연속 채널을 이용한 무선 통신 방법 및 무선 통신 단말
WO2021036949A1 (zh) 一种数据的传输方法及装置
WO2019237832A1 (zh) 一种请求信号的发送、接收方法及设备、装置
EP4114079A1 (en) Method and device for updating parameters in communication system supporting multi-link
WO2020143617A1 (zh) 一种下行控制信道的传输方法、终端和网络侧设备
KR20170022993A (ko) 전력 절약을 위한 무선 통신 방법 및 이를 이용한 무선 통신 단말
WO2021239131A1 (zh) 通信方法及装置
US20240030964A1 (en) Communication method and apparatus
WO2021030991A1 (zh) 一种上行传输资源的确定方法及装置
WO2022188508A1 (zh) 直连链路同步信号块传输方法及装置、计算机可读存储介质
JP2023535294A (ja) トリガベースのアップリンクマルチユーザ送信のための通信装置および通信方法
TWI826057B (zh) 一種實體上行控制通道的發送方法、接收方法及通信裝置
WO2022135234A1 (zh) 一种带宽指示方法及设备、芯片和通信系统
WO2022194075A1 (zh) 一种通信方法及通信装置
WO2022089553A1 (zh) Ppdu的上行带宽指示方法及相关装置
WO2021087886A1 (zh) 定时器设置方法及相关设备
KR20230007434A (ko) 통신 방법 및 통신 장치
TWI839839B (zh) 實體層協定資料單元傳輸方法、通信裝置、電腦可讀儲存介質、電腦程式產品、晶片及通信系統
WO2019096147A1 (zh) 一种控制信息的检测方法及装置
WO2023036306A1 (zh) 物理层协议数据单元传输方法及装置
WO2022110138A1 (zh) 一种信道监听方法以及相关装置
WO2022228478A1 (zh) 信息传输方法、通信装置、计算机可读存储介质和芯片
WO2022028618A1 (zh) 带宽模式指示方法及装置
WO2022151782A1 (zh) 一种数据传输方法以及通信装置
US20240214138A1 (en) Communication apparatus and communication method for aggregated signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909230

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021909230

Country of ref document: EP

Effective date: 20230616

NENP Non-entry into the national phase

Ref country code: DE