WO2022110138A1 - 一种信道监听方法以及相关装置 - Google Patents
一种信道监听方法以及相关装置 Download PDFInfo
- Publication number
- WO2022110138A1 WO2022110138A1 PCT/CN2020/132755 CN2020132755W WO2022110138A1 WO 2022110138 A1 WO2022110138 A1 WO 2022110138A1 CN 2020132755 W CN2020132755 W CN 2020132755W WO 2022110138 A1 WO2022110138 A1 WO 2022110138A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ssb
- pdcch
- satisfies
- value
- time domain
- Prior art date
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 77
- 238000000034 method Methods 0.000 title claims abstract description 74
- 235000019527 sweetened beverage Nutrition 0.000 claims description 344
- 238000004891 communication Methods 0.000 claims description 58
- 101150096310 SIB1 gene Proteins 0.000 claims description 39
- 238000004590 computer program Methods 0.000 claims description 16
- 125000004122 cyclic group Chemical group 0.000 claims description 9
- 230000006870 function Effects 0.000 description 23
- 238000010586 diagram Methods 0.000 description 21
- 238000012545 processing Methods 0.000 description 20
- 230000005540 biological transmission Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 6
- 230000007774 longterm Effects 0.000 description 5
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000010295 mobile communication Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 235000012976 tarts Nutrition 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
Definitions
- the present application relates to the field of communication technologies, and in particular, to a channel monitoring method and related devices.
- UE User equipment
- gNodeB gNodeB
- gNB base station
- SSB signal information block
- UE first By searching and demodulating the SSB, important information for initial access is obtained.
- the UE After the UE demodulates the SSB, it can determine the monitoring occasions of the physical downlink control channel (PDCCH). By monitoring the PDCCH at the monitoring occasion, the physical downlink shared channel (PDSCH, Physical Downlink Shared Channel) can be obtained. .
- PDCCH physical downlink control channel
- wireless unlicensed frequency band new radio unlicensed, NRU.
- LBT listen before talk
- the first aspect of the embodiments of the present application provides a channel monitoring method, including:
- the terminal device UE determines the first listening timing of the physical downlink control channel PDCCH according to the first signal information block SSB, and the PDCCH is used to carry the control resource set coreset#0;
- the UE determines the second monitoring occasion of the PDCCH according to the first SSB and the SSB having a quasi-co-located QCL relationship with the first SSB;
- the UE monitors the PDCCH on the second listening occasion.
- the network side does not need to send an additional SSB, so as to reduce the delay in sending the SSB by the network device.
- the terminal determines the monitoring timing (second monitoring timing) of the PDCCH according to the SSB associated with the PDCCH in various ways. In the case where the PDCCH cannot be monitored at the first monitoring occasion, the terminal can monitor the PDCCH successfully by monitoring the PDCCH at the second monitoring occasion.
- the second listening opportunity includes the target system frame number SFN c and the target time slot number n c , wherein,
- the second monitoring timing can be determined in various ways, thereby improving the implementation flexibility of the solution.
- the time slot difference between the time slot position of the first SSB and the second listening opportunity is 0, 1, M/2 or (M/2)-1, where M is the actual sent SSB
- M is the actual sent SSB
- the number or Q value, the number of SSBs actually sent is determined by the "ssb-PositionsInBurst" parameter carried in SIB1.
- the value of Q is Takes any of the values 1, 2, 4, 8, 16, 32, 64.
- the starting symbol index of the second listening opportunity is located in the time slot of the SSB with the QCL relationship, between symbol #0 and symbol #3, or between symbol #12 and symbol #12 of the previous time slot. any one of symbol #1 in the next slot;
- the start symbol index of the second listening opportunity is located in the time slot of the SSB with the QCL relationship, between symbol #0 and symbol #7 or between symbol #10 in the previous time slot and symbol # in the next time slot any one of 3;
- the number of symbols occupied by the PDCCH in the second listening opportunity is any one of ⁇ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ⁇ .
- the UE determines multiple second listening opportunities according to the first offset and the start symbol index of the second listening opportunities;
- the first offset is the offset in the time domain between adjacent PDCCHs in the time domain.
- the first offset and/or the number of PDCCHs are indicated by the parameters "subCarrierSpacingCommon", "ssb-SubcarrierOffset” and/or “SearchSpaceZero" in the main information block MIB, or, the first The offset and/or the number of PDCCHs are configured in the UE.
- the method further includes:
- the UE determines the time domain position of the target physical downlink shared channel PDSCH according to the PDCCH, and the target PDSCH carries the system information block SIB1/remaining minimum system information RMSI.
- the PDCCH corresponds to multiple different time domain locations
- the target PDSCH corresponds to multiple different time domain locations
- a PDCCH indicates the time domain location of a target PDSCH, or,
- One PDCCH indicates the time domain locations of multiple target PDSCHs.
- the PDCCH may indicate one or more target PDSCHs, so as to save the occupation of communication resources.
- determining the time domain position of the target PDSCH by the UE according to the PDCCH includes:
- the UE determines, according to the PDCCH, the starting symbol position S of the target PDSCH, the number of symbols L occupied by the target PDSCH in the time domain, and the interval K0 between the time slot number where the PDCCH is located and the time slot number where the PDCCH is located.
- the value of S satisfies any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8 ⁇
- the value of L satisfies the set ⁇ 2, 3, 4, 5, 6, 7 , any one of 8 ⁇
- the value of K0 satisfies one or more of ⁇ 0, 1, M/2, M/2+1 ⁇ ;
- the value of S satisfies any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8, 9, 10 ⁇
- the value of L satisfies the set ⁇ 2, 3, 4, 5, 6, 7, 8 ⁇
- Any one of the values of K0 satisfies one or more of ⁇ 0, 1, (m ⁇ M/2) ⁇ ;
- the value of S and L satisfies any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8, 9, 10 ⁇ , and the value of L satisfies the set ⁇ 2, 3, 4, 5, 6, 7, 8 ⁇ , the value of K0 satisfies one or more of ⁇ 0, 1, M/2, M/2+1 ⁇ ;
- the value of S satisfies any one of the set ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇ , and the value of L satisfies the set ⁇ 2, 3, Any one of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ⁇ , the value of K0 satisfies ⁇ 0, 1, M/2, M/2+1 ⁇ one or more of;
- the value of S satisfies any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8, 9, 10 ⁇
- the value of L satisfies the set ⁇ 2, 3, 4, 5, 6, 7, 8 ⁇
- Any one of the values of K0 satisfies one or more of ⁇ 0, 1, M/2, M/2+1 ⁇ ;
- the value of S satisfies any one of the set ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇ , and the value of L satisfies the set ⁇ 2, 3, Any one of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ⁇ , the value of K0 satisfies ⁇ 0, 1, M/2, M/2+1 ⁇ one or more of;
- the value of S satisfies any one of the set ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇
- the value of L satisfies ⁇ 0, 1, Any one of 2, 3, 4, 5, 6, 7, 8 ⁇
- the value of K0 satisfies the set ⁇ -1-M/2, -M/2, 1-M/2, -1, 0, 1, One or more of M/2-1, M/2, and M/2+1 ⁇ , where M is the number of actually sent SSBs or the Q value.
- the UE determines the time domain location of the target PDSCH according to the PDCCH, including:
- the UE determines the time domain position of the target PDSCH according to the downlink control information DCI carried in the PDCCH monitored at the second monitoring opportunity.
- the UE determines the time domain location of the target PDSCH according to the PDCCH, including:
- the UE obtains the number of target PDSCHs and the time domain information of the target PDSCH according to the newly added field in the downlink control information DCI carried in the PDCCH, such as "Time locations of PDSCHs for SIB1/RMSI", and the field "Time locations of PDSCHs for SIB1/ RMSI" occupies ⁇ 0, 1, ..., X ⁇ bits, and X is any one of ⁇ 0, 1, 2, 3, 4 ⁇ ;
- the number of target PDSCHs and the time domain information of the target PDSCH are obtained, and the number of bits occupied by the domain "Time domain resource assignment" is extended to more than 4 bits;
- DCI is DCI1_0 scrambled with a Cyclic Redundancy Check (CRC) by System Information-Radio Network Temporary Identifier SI-RNTI.
- CRC Cyclic Redundancy Check
- the subcarrier spacing SCS of the first SSB satisfies: 120 KHz, 240 KHz, 480 KHz or 960 KHz;
- the SCS of the PDCCH satisfies: 120 KHz, 240 KHz, 480 KHz or 960 KHz.
- an embodiment of the present application proposes a terminal device, including a processing module and a transceiver module:
- the processing module 901 is configured to determine, according to the first signal information block SSB, a first listening opportunity of a physical downlink control channel PDCCH, where the PDCCH is used to carry a control resource set coreset#0;
- the processing module 901 is further configured to, if the transceiver module 902 does not monitor the PDCCH on the first monitoring occasion, the UE determines the second monitoring occasion of the PDCCH according to the first SSB and the SSB having a quasi-co-located QCL relationship with the first SSB;
- the transceiver module 902 is further configured to monitor the PDCCH on the second monitoring opportunity.
- the second listening opportunity includes the target system frame number SFN c and the target time slot number n c , wherein,
- the time slot difference between the time slot position of the first SSB and the second listening opportunity is 0, 1, M/2, or (M/2)-1, where M is the actually sent
- M is the actually sent
- the number of SSBs or the Q value, the actual number of SSBs sent is determined by the "ssb-PositionsInBurst" parameter carried in SIB1.
- the Q value is Takes any of the values 1, 2, 4, 8, 16, 32, 64.
- the start symbol index of the second listening opportunity is located in the time slot of the SSB with the QCL relationship, between symbol #0 and symbol #3 or between symbol # of the previous time slot 12 to any of symbol #1 in the next slot;
- the start symbol index of the second listening opportunity is located in the time slot of the SSB with the QCL relationship, between symbol #0 and symbol #7 or between symbol #10 in the previous time slot and symbol # in the next time slot any one of 3;
- the number of symbols occupied by the PDCCH in the second listening opportunity is any one of ⁇ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ⁇ .
- the processing module 901 is further configured to determine a plurality of second listening opportunities according to the first offset and the start symbol index of the second listening opportunity when the number of PDCCHs is greater than 1; wherein, the first offset is in the time domain Time domain offset between adjacent PDCCHs.
- the first offset and/or the number of PDCCHs are indicated by the parameters "subCarrierSpacingCommon", “ssb-SubcarrierOffset” and/or “SearchSpaceZero" in the main information block MIB, or, The first offset and/or the number of PDCCHs are configured in the UE.
- the method further includes:
- the processing module 901 is further configured to determine the time domain position of the target physical downlink shared channel PDSCH according to the PDCCH, where the target PDSCH carries the system information block SIB1/remaining minimum system information RMSI.
- the PDCCH corresponds to a plurality of different time domain locations
- the target PDSCH corresponds to multiple different time domain locations
- a PDCCH indicates the time domain location of a target PDSCH, or,
- One PDCCH indicates the time domain locations of multiple target PDSCHs.
- determining the time domain position of the target PDSCH by the UE according to the PDCCH includes:
- the UE determines, according to the PDCCH, the starting symbol position S of the target PDSCH, the number of symbols L occupied by the target PDSCH in the time domain, and the interval K0 between the time slot number where the PDCCH is located and the time slot number where the PDCCH is located.
- the value of S satisfies any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8 ⁇
- the value of L satisfies the set ⁇ 2, 3, 4, 5, 6 , any one of 7, 8 ⁇
- the value of K0 satisfies one or more of ⁇ 0, 1, M/2, M/2+1 ⁇ ;
- the value of S satisfies any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8, 9, 10 ⁇
- the value of L satisfies the set ⁇ 2, 3, 4, 5, 6, 7, 8 ⁇
- Any one of the values of K0 satisfies one or more of ⁇ 0, 1, (m ⁇ M/2) ⁇ ;
- the value of S and L satisfies any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8, 9, 10 ⁇ , and the value of L satisfies the set ⁇ 2, 3, 4, 5, 6, 7, 8 ⁇ , the value of K0 satisfies one or more of ⁇ 0, 1, M/2, M/2+1 ⁇ ;
- the value of S satisfies any one of the set ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇ , and the value of L satisfies the set ⁇ 2, 3, Any one of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ⁇ , the value of K0 satisfies ⁇ 0, 1, M/2, M/2+1 ⁇ one or more of;
- the value of S satisfies any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8, 9, 10 ⁇
- the value of L satisfies the set ⁇ 2, 3, 4, 5, 6, 7, 8 ⁇
- Any one of the values of K0 satisfies one or more of ⁇ 0, 1, M/2, M/2+1 ⁇ ;
- the value of S satisfies any one of the set ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇ , and the value of L satisfies the set ⁇ 2, 3, Any one of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ⁇ , the value of K0 satisfies ⁇ 0, 1, M/2, M/2+1 ⁇ one or more of;
- the value of S satisfies any one of the set ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇
- the value of L satisfies ⁇ 0, 1, Any one of 2, 3, 4, 5, 6, 7, 8 ⁇
- the value of K0 satisfies the set ⁇ -1-M/2, -M/2, 1-M/2, -1, 0, 1, One or more of M/2-1, M/2, and M/2+1 ⁇ , where M is the number of actually sent SSBs or the Q value.
- the processing module 901 is further configured for the UE to determine the time domain position of the target PDSCH according to the downlink control information DCI carried in the PDCCH monitored at the second monitoring opportunity.
- the processing module 901 is also used to obtain the number of target PDSCHs and the time domain information of the target PDSCH according to the newly added domain in the downlink control information DCI carried in the PDCCH, such as "Time locations of PDSCHs for SIB1/RMSI", the domain "Time "locations of PDSCHs for SIB1/RMSI” occupies ⁇ 0, 1, ..., X ⁇ bits, and X is any one of ⁇ 0, 1, 2, 3, 4 ⁇ ;
- the number of target PDSCHs and the time domain information of the target PDSCH are obtained, and the number of bits occupied by the domain "Time domain resource assignment" is extended to more than 4 bits;
- DCI is DCI1_0 scrambled with a Cyclic Redundancy Check (CRC) by System Information-Radio Network Temporary Identifier SI-RNTI.
- CRC Cyclic Redundancy Check
- the subcarrier spacing SCS of the first SSB satisfies: 120 kHz KHz, 240 kHz, 480 kHz or 960 kHz; the SCS of the PDCCH satisfies: 120 kHz KHz, 240 kHz, 480 kHz or 960 kHz.
- an embodiment of the present application provides a communication device, including a processor and a transceiver. specific:
- a processor configured to determine, according to the first signal information block SSB, the first listening opportunity of the physical downlink control channel PDCCH, where the PDCCH is used to carry the control resource set coreset#0;
- the processor is further configured to, if the transceiver does not monitor the PDCCH on the first monitoring opportunity, the UE determines the second monitoring opportunity of the PDCCH according to the first SSB and the SSB having a quasi-co-located QCL relationship with the first SSB;
- the transceiver is further configured to monitor the PDCCH on the second listening opportunity.
- the second listening opportunity includes the target system frame number SFN c and the target time slot number n c , wherein,
- the time slot difference between the time slot position of the first SSB and the second listening opportunity is 0, 1, M/2, or (M/2)-1, where M is the actually sent
- M is the actually sent
- the number of SSBs or the Q value, the actual number of SSBs sent is determined by the "ssb-PositionsInBurst" parameter carried in SIB1.
- the Q value is Takes any of the values 1, 2, 4, 8, 16, 32, 64.
- the start symbol index of the second listening opportunity is located in the time slot of the SSB with the QCL relationship, between symbol #0 and symbol #3 or between symbol # of the previous time slot 12 to any of symbol #1 in the next slot;
- the start symbol index of the second listening opportunity is located in the time slot of the SSB with the QCL relationship, between symbol #0 and symbol #7, or between symbol #10 in the previous time slot and symbol # in the next time slot any one of 3;
- the number of symbols occupied by the PDCCH in the second listening opportunity is any one of ⁇ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ⁇ .
- the processor is further configured to determine a plurality of second listening opportunities according to the first offset and the start symbol index of the second listening opportunity when the number of PDCCHs is greater than 1; Time domain offset between adjacent PDCCHs.
- the first offset and/or the number of PDCCHs are indicated by the parameters "subCarrierSpacingCommon", “ssb-SubcarrierOffset” and/or “SearchSpaceZero" in the main information block MIB, or, The first offset and/or the number of PDCCHs are configured in the UE.
- the method further includes:
- the processor is further configured to determine the time domain position of the target physical downlink shared channel PDSCH according to the PDCCH, where the target PDSCH carries the system information block SIB1/remaining minimum system information RMSI.
- the PDCCH corresponds to a plurality of different time domain locations
- the target PDSCH corresponds to multiple different time domain locations
- a PDCCH indicates the time domain location of a target PDSCH, or,
- One PDCCH indicates the time domain locations of multiple target PDSCHs.
- determining the time domain position of the target PDSCH by the UE according to the PDCCH includes:
- the UE determines, according to the PDCCH, the starting symbol position S of the target PDSCH, the number of symbols L occupied by the target PDSCH in the time domain, and the interval K0 between the time slot number where the PDCCH is located and the time slot number where the PDCCH is located.
- the value of S satisfies any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8 ⁇
- the value of L satisfies the set ⁇ 2, 3, 4, 5, 6 , any one of 7, 8 ⁇
- the value of K0 satisfies one or more of ⁇ 0, 1, M/2, M/2+1 ⁇ ;
- the value of S satisfies any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8, 9, 10 ⁇
- the value of L satisfies the set ⁇ 2, 3, 4, 5, 6, 7, 8 ⁇
- Any one of the values of K0 satisfies one or more of ⁇ 0, 1, (m ⁇ M/2) ⁇ ;
- the value of S and L satisfies any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8, 9, 10 ⁇ , and the value of L satisfies the set ⁇ 2, 3, 4, 5, 6, 7, 8 ⁇ , the value of K0 satisfies one or more of ⁇ 0, 1, M/2, M/2+1 ⁇ ;
- the value of S satisfies any one of the set ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇ , and the value of L satisfies the set ⁇ 2, 3, Any one of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ⁇ , the value of K0 satisfies ⁇ 0, 1, M/2, M/2+1 ⁇ one or more of;
- the value of S satisfies any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8, 9, 10 ⁇
- the value of L satisfies the set ⁇ 2, 3, 4, 5, 6, 7, 8 ⁇
- Any one of the values of K0 satisfies one or more of ⁇ 0, 1, M/2, M/2+1 ⁇ ;
- the value of S satisfies any one of the set ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇ , and the value of L satisfies the set ⁇ 2, 3, Any one of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ⁇ , the value of K0 satisfies ⁇ 0, 1, M/2, M/2+1 ⁇ one or more of;
- the value of S satisfies any one of the set ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇
- the value of L satisfies ⁇ 0, 1, Any one of 2, 3, 4, 5, 6, 7, 8 ⁇
- the value of K0 satisfies the set ⁇ -1-M/2, -M/2, 1-M/2, -1, 0, 1, One or more of M/2-1, M/2, and M/2+1 ⁇ , where M is the number of actually sent SSBs or the Q value.
- the processor is further configured for the UE to determine the time domain position of the target PDSCH according to the downlink control information DCI carried in the PDCCH monitored at the second monitoring opportunity.
- the processor is also used to obtain the number of target PDSCHs and the time domain information of the target PDSCH according to the newly added field "Time locations of PDSCHs for SIB1/RMSI" in the downlink control information DCI carried in the PDCCH, and the field "Time locations of PDSCHs" for SIB1/RMSI" occupies ⁇ 0, 1, ..., X ⁇ bits, X is any one of ⁇ 0, 1, 2, 3, 4 ⁇ ;
- the quantity of the target PDSCH and the time domain information of the target PDSCH are obtained, and the number of bits occupied by the domain "Time domain resource assignment" is extended to be greater than 4 bits;
- DCI is DCI1_0 scrambled with a Cyclic Redundancy Check (CRC) by System Information-Radio Network Temporary Identifier SI-RNTI.
- CRC Cyclic Redundancy Check
- the subcarrier spacing SCS of the first SSB satisfies: 120 kHz KHz, 240 kHz, 480 kHz or 960 kHz; the SCS of the PDCCH satisfies: 120 kHz KHz, 240 kHz, 480 kHz or 960 kHz.
- an embodiment of the present application provides a communication apparatus, where the communication apparatus can implement the functions performed by the terminal device in the method involved in the first aspect above.
- the communication device includes a processor, a memory, a receiver connected to the processor and a transmitter connected to the processor; the memory is used for storing program codes and transmitting the program codes to the processor; the processor is used for The receiver and the transmitter are driven to execute the method of the first aspect according to the instructions in the program code; the receiver and the transmitter are respectively connected to the processor to execute the operations of XX in the methods of the foregoing aspects.
- the transmitter can perform the operation of sending, and the receiver can perform the operation of receiving.
- the receiver and the transmitter can be a radio frequency circuit, and the radio frequency circuit can receive and send messages through an antenna; the receiver and the transmitter can also be a communication interface, and the processor and the communication interface are connected through a bus, and the processing The server implements receiving or sending messages through this communication interface.
- an embodiment of the present application provides a communication device, where the communication device may include an entity such as a network device or a chip, and the communication device includes: a processor and a memory; the memory is used to store instructions; the processor is used to execute the memory The instruction in causes the communication device to perform the method according to any one of the foregoing first aspects.
- embodiments of the present application provide a computer-readable storage medium that stores one or more computer-executable instructions.
- the processor executes any one of the foregoing first aspects. a possible implementation.
- an embodiment of the present application provides a computer program product (or computer program) that stores one or more computer-executable instructions.
- the processor executes the first aspect any of the possible implementations.
- the present application provides a chip system, where the chip system includes a processor for supporting a computer device to implement the functions involved in the above aspects.
- the chip system further includes a memory for storing necessary program instructions and data of the computer device.
- the chip system may be composed of chips, or may include chips and other discrete devices.
- the present application provides a communication system, which includes the communication device according to the third aspect or above.
- FIG. 1a is a schematic diagram of an application scenario proposed by an embodiment of the application.
- FIG. 1b is a schematic diagram of another application scenario proposed by an embodiment of the present application.
- FIG. 2 is a schematic diagram of a hardware structure of a communication device in an embodiment of the present application.
- FIG. 3 is a schematic diagram of QCLed_SSB in an embodiment of the present application.
- FIG. 4 is a schematic diagram of a multiplexing pattern in an embodiment of the application.
- 5 is a schematic diagram of the PDCCH/SSB of multiplexing mode 2 in the prior art
- FIG. 6 is a schematic diagram of an embodiment of a channel monitoring method in an embodiment of the present application.
- FIG. 7 is a schematic diagram of time domain positions of PDCCH and PDSCH in an embodiment of the present application.
- FIG. 8 is a schematic diagram of another time domain location of PDCCH and PDSCH in an embodiment of the present application.
- FIG. 9 is a schematic diagram of an embodiment of a terminal device in an embodiment of the present application.
- At least one item(s) below or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
- at least one (a) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple .
- LTE Long Term Evolution
- FDD frequency division duplex
- TDD time division duplex
- UMTS universal mobile telecommunication system
- WiMAX worldwide interoperability for microwave access
- the part of various communication systems that is operated by an operator may be referred to as an operator network.
- the operator network also known as the PLMN network, is a network established and operated by the government or government-approved operators for the purpose of providing land mobile communication services to the public, mainly mobile network operators (MNOs).
- MNOs mobile network operators
- the operator network or PLMN network described in the embodiments of this application may be a network that meets the requirements of the 3rd generation partnership project (3rd generation partnership project, 3GPP) standard, which is referred to as a 3GPP network for short.
- 3rd generation partnership project 3rd generation partnership project
- 3GPP networks are operated by operators, including but not limited to fifth-generation (5th-generation, 5G) networks (referred to as 5G networks), fourth-generation (4th-generation, 4G) networks (referred to as 4G networks) Or the third-generation mobile communication technology (3rd-generation, 3G) network (referred to as 3G network). Also includes future 6G networks.
- 5G networks fifth-generation (5th-generation, 5G) networks
- 4G networks fourth-generation, 4G networks
- 3G network third-generation mobile communication technology
- 3G network third-generation mobile communication technology
- 3G network third-generation mobile communication technology
- FIG. 1a is a schematic diagram of an application scenario proposed by an embodiment of the present application.
- the sending end involved in the embodiment of the present application may be a network device, and the receiving end may be a terminal device.
- the sending end involved in the embodiment of the present application may be a terminal device, and the receiving end may be a network device.
- FIG. 1b is a schematic diagram of another application scenario proposed by an embodiment of the present application.
- the sending end involved in the embodiment of the present application may be a terminal device, and the receiving end may be another terminal device that establishes a communication connection with the sending end.
- the terminal device may also be referred to as user equipment (user equipment, UE).
- the terminal device involved in the embodiments of the present application can communicate with one or more core networks (core networks, CN) via an access network device in the network device.
- core networks CN
- a terminal device may also be referred to as an access terminal, terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless network device, user agent, or user device, and the like.
- Terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle; can also be deployed on water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
- the terminal device can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a smart phone (smart phone), a mobile phone (mobile phone), a wireless local loop (WLL) station, personal digital assistant (PDA), which can be a wireless communication-capable handheld device, computing device or other device connected to a wireless modem, in-vehicle device, wearable device, drone device or Internet of Things, car Terminals in networking, fifth generation (5G) networks, and any form of terminals in future networks, relay user equipment, or future evolved public land mobile networks (PLMN) A terminal, etc., where the relay user equipment may be, for example, a 5G home gateway (residential gateway, RG).
- SIP session initiation protocol
- PDA personal digital assistant
- 5G fifth generation
- PLMN public land mobile networks
- the terminal device can be a virtual reality (VR) terminal, an augmented reality (AR) terminal, a wireless terminal in industrial control (industrial control), a wireless terminal in self-driving (self driving), telemedicine Wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home wireless terminals, etc.
- VR virtual reality
- AR augmented reality
- WLAN wireless terminal in industrial control
- self-driving self driving
- telemedicine Wireless terminals in remote medical wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home wireless terminals, etc.
- This embodiment of the present application does not limit this.
- a network device can be regarded as a sub-network of an operator's network, and is an implementation system between a service node and a terminal device in the operator's network.
- the terminal device To access the operator's network, the terminal device first passes through the network device, and then can be connected to the service node of the operator's network through the network device.
- the network device in the embodiments of the present application is a device that provides a wireless communication function for a terminal device, and may also be referred to as a (radio) access network ((R)AN).
- Network equipment includes but is not limited to: next generation node base station (gNB) in 5G system, evolved node B (evolved node B, eNB) in long term evolution (LTE), wireless network Controller (radio network controller, RNC), node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved nodeB, or home node B, HNB), base band unit (BBU), transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP), small base station equipment (pico), mobile switching center, or Network equipment in the future network, etc.
- gNB next generation node base station
- eNB evolved node B
- LTE long term evolution
- RNC wireless network Controller
- node B node B
- base station controller base station controller
- BTS base transceiver station
- home base station for example, home evolved nodeB, or home node
- a channel monitoring method provided by this application can be applied to various communication systems, for example, the Internet of Things (Internet of things, IoT), narrowband Internet of Things (NB-IoT), Long Term Evolution ( long term evolution, LTE), it can also be the fifth generation (5G) communication system, it can also be a hybrid architecture of LTE and 5G, it can also be a 5G new radio (NR) system, and new technologies emerging in future communication development. communication systems, etc.
- the 5G communication system of the present application may include at least one of a non-standalone (NSA) 5G communication system and an independent (standalone, SA) 5G communication system.
- the communication system may also be a public land mobile network (PLMN) network, a device-to-device (D2D) network, a machine-to-machine (M2M) network, or other networks.
- PLMN public land mobile network
- D2D device-to-device
- M2M machine-to-machine
- embodiments of the present application may also be applicable to other future-oriented communication technologies, such as 6G and the like.
- the network architecture and service scenarios described in this application are for the purpose of illustrating the technical solutions of this application more clearly, and do not constitute a limitation on the technical solutions provided by this application. appears, the technical solutions provided in this application are also applicable to similar technical problems.
- FIG. 2 is a schematic diagram of a hardware structure of a communication device according to an embodiment of the present application.
- the communication apparatus may be a possible implementation manner of the network device or the terminal device in the embodiment of the present application.
- the communication apparatus includes at least a processor 204 , a memory 203 , and a transceiver 202 , and the memory 203 is further configured to store instructions 2031 and data 2032 .
- the communication device may further include an antenna 206 , an I/O (input/output, Input/Output) interface 210 and a bus 212 .
- the transceiver 202 further includes a transmitter 2021 and a receiver 2022.
- the processor 204 , the transceiver 202 , the memory 203 and the I/O interface 210 are communicatively connected to each other through the bus 212 , and the antenna 206 is connected to the transceiver 202 .
- the processor 204 can be a general-purpose processor, such as, but not limited to, a central processing unit (Central Processing Unit, CPU), or can be a special-purpose processor, such as, but not limited to, a digital signal processor (Digital Signal Processor, DSP), application Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA), etc.
- the processor 204 may also be a neural network processing unit (NPU).
- the processor 204 may also be a combination of multiple processors.
- the processor 204 may be configured to execute the relevant steps of the public beam-based communication method in the subsequent method embodiments.
- the processor 204 may be a processor specially designed to perform the above steps and/or operations, or may be a processor that performs the above steps and/or operations by reading and executing the instructions 2031 stored in the memory 203, the processor 204 Data 2032 may be required in performing the steps and/or operations described above.
- the transceiver 202 includes a transmitter 2021 and a receiver 2022 .
- the transmitter 2021 is used to transmit signals through the antenna 206 .
- the receiver 2022 is used to receive signals through at least one of the antennas 206 .
- the transmitter 2021 may be specifically configured to be executed by at least one antenna among the antennas 206.
- the public beam-based communication method in the subsequent method embodiments is applied to network equipment or terminal device, the operation performed by the receiving module or the sending module in the network device or terminal device.
- the transceiver 202 is configured to support the communication device to perform the aforementioned receiving function and sending function.
- a processor with processing capabilities is considered processor 204 .
- the receiver 2022 may also be called an input port, a receiving circuit, and the like, and the transmitter 2021 may be called a transmitter or a transmitting circuit, and the like.
- the processor 204 may be configured to execute the instructions stored in the memory 203 to control the transceiver 202 to receive messages and/or send messages, so as to complete the function of the communication device in the method embodiment of the present application.
- the function of the transceiver 202 may be implemented by a transceiver circuit or a dedicated chip for transceiver.
- receiving a message by the transceiver 202 may be understood as an input message by the transceiver 202
- sending a message by the transceiver 202 may be understood as an output message by the transceiver 202.
- the memory 203 may be various types of storage media, such as random access memory (Random Access Memory, RAM), read only memory (Read Only Memory, ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), and Programmable ROM (Programmable ROM, PROM), Erasable PROM (Erasable PROM, EPROM), Electrically Erasable PROM (Electrically Erasable PROM, EEPROM), Flash memory, optical memory and registers, etc.
- the memory 203 is specifically used to store the instructions 2031 and the data 2032, and the processor 204 can perform the steps and/or operations described in the method embodiments of the present application by reading and executing the instructions 2031 stored in the memory 203. Data 2032 may be required during the operations and/or steps of a method embodiment.
- the communication apparatus may further include an I/O interface 210, and the I/O interface 210 is used for receiving instructions and/or data from peripheral devices, and outputting instructions and/or data to peripheral devices.
- I/O interface 210 is used for receiving instructions and/or data from peripheral devices, and outputting instructions and/or data to peripheral devices.
- the system As an aid to the licensed frequency band, deploying the communication system (referred to as the system) on the shared licensed frequency band can not only improve the throughput of the communication system, but also solve the problem of shortage of spectrum resources.
- the technologies deployed in shared licensed frequency bands are called wireless unlicensed frequency bands.
- the system currently agreed to work on the shared frequency band needs to support all or some of the following key technologies: listen before talk mechanism (LBT, listen before talk), transmit power control (TPC, Transmit Power Control) and dynamic spectrum selection (DFS, Dynamic Frequency Selection).
- LBT listen before talk mechanism
- TPC transmit power control
- DFS Dynamic Frequency Selection
- the LBT mechanism means that the access device (such as UE) must first obtain the interference situation on the frequency band where the target channel is located before using the channel. Only when the interference level on the target frequency band channel is less than or equal to the preset threshold value, can the channel.
- the TPC mechanism means that in order not to affect the normal communication of other access devices, a transmitting device (such as a UE or a gNB) working on a shared licensed frequency band cannot increase its own transmit power without limitation.
- the DFS mechanism means that the system working on the shared licensed frequency band needs to avoid the frequency band where the high-priority system is located in time, and dynamically switch to the frequency band with lower interference to work.
- SSB is mainly composed of primary synchronization signal (PSS, Primary Synchronization signal), secondary synchronization signal (SSS, Secondary Synchronization signal) and physical broadcast channel (PBCH, Physical Broadcast Channel).
- PSS Primary Synchronization signal
- SSS Secondary Synchronization signal
- PBCH Physical Broadcast Channel
- Use symbols OFDM, Orthogonal Frequency Division Multiplexing
- RBs Resource Blocks
- the R16 protocol defines the concept of candidate SSB index/position (ie, Candidate SSB index/position).
- the candidate SSB index/position is used as indicates that it is used to send the actual SSB index (l).
- the UE considers that it corresponds to the same SSB index, that is, these SSB indexes satisfy the Quasi Co-Location (QCL, Quasi Co-Location) relationship.
- QCL Quasi Co-Location
- an SSB having a QCL relationship with the first SSB is referred to as QCLed_SSB.
- DMRS Demodulation Reference Signal
- MIB Master Information Block
- 0-19 in the first column means Each number represents the sent SSB index respectively.
- 0-3 in the second column indicates that the 20 SSBs in the first column can be divided into 4 groups of SSBs with a QCL relationship according to the QCL relationship.
- the SSBs corresponding to index numbers 0, 4, 8, 12, and 16 in the first column have a QCL relationship.
- the same receive beam may be used to receive SSB indices with QCL relationships at different candidate positions.
- the network device sends MIB information to the terminal device through the PBCH.
- the MIB information is carried in the SSB, and the UE can obtain the position information of the control channel for demodulating the system information block 1/remaining minimum system information (SIB1/RMSI, System Information Block 1/Remaining Minimum System Information) by demodulating the MIB information .
- the control information may be defined as Control Resource Set #0 (CORESET#0, Control Resource Set#0), which is transmitted through Type 0-Physical Downlink Control Channel (type0-PDCCH, type0-Physical Downlink Control Channel). That is, the network device sends CORESET#0 to the terminal through type0-pdcch.
- the information in SIB1/RMSI can be obtained by searching CORESET#0 through search space #0 (search space#0).
- the network device uses the same transmit beam to transmit the type0-PDCCH carrying CORESET#0 indicated by the MIB in the SSB and SSB, and the Physical Downlink Shared Channel (PDSCH, Physical Downlink Shared Channel) carrying SIB1/RMSI together.
- the UE may receive the PBCH channel, type0-PDCCH and PDSCH using the same receive beam. Therefore, the PBCH channel, type0-PDCCH and PDSCH can be understood as having a quasi-co-location relationship.
- the UE obtains Type0-PDCCH information for demodulating SIB1/RMSI by demodulating "pdcch-ConfigSIB1" in the MIB.
- the information "pdcch-ConfigSIB1" includes fields "controlResourceSetZero” and "searchSpaceZero”.
- the parameter "controlResourceSetZero” has a total of "0-15 values, and each value corresponds to the index in TS 38.213table13-1 ⁇ 13-10 (v16.1.0).
- the UE obtains different indexes by demodulating the parameter "controlResourceSetZero” , further obtain the multiplexing pattern (pattern) of the CORESET#0 with a QCL relationship corresponding to the index, the number of RBs occupied in the frequency domain, the number of symbols occupied in the time domain, the lowest subcarrier number of the CORESET#0 and the existence of a QCL relationship
- the offset (offset) between the lowest subcarrier numbers of the SSB is a total of "0-15 values, and each value corresponds to the index in TS 38.213table13-1 ⁇ 13-10 (v16.1.0).
- the UE obtains different indexes by demodulating the parameter "controlResourceSetZero” , further obtain the multiplexing pattern (pattern) of the CORESET#
- searchSpaceZero indicates the search space position where the terminal searches for CORESET#0. "0-15” values corresponding to the configuration in Radio Resource Management (RRC, Radio Resource Signal), corresponding to TS 38.213 (v16.3.0) table 13.11 ⁇ 13.15.
- the terminal obtains information such as the specific time-domain search space position, search space times and other information by looking up the corresponding "index" in Table 1 and the multiplexing pattern of the PDCCH/PDSCH relationship between the SSB and the QCL.
- the multiplexing pattern of PDCCH/PDSCH in the relationship between SSB and QCL can also be expressed as the multiplexing pattern of CORESET#0/PDSCH in the relationship between SSB and QCL.
- FIG. 4 is a schematic diagram of multiplexing patterns in an embodiment of the present application.
- CORESET#0/PDSCH of SSB and QCLed exists in the form of time division multiplexing, which is mainly used in FR1 and FR2.
- the CORESET#0/PDSCH having a QCL relationship with the SSB is referred to as the SSB having the first QCL relationship with the CORESET#0/PDSCH.
- the CORESET#0 may also be replaced with the PDCCH that carries the CORESET#0, that is, the SSB has a first QCL relationship with the PDCCH that carries the CORESET#0.
- pattern2 SSB and QCLed PDSCH exist in the form of frequency division multiplexing.
- the SSB has a first QCL relationship with the PDSCH.
- the SSB and QCLed CORESET#0/PDSCH exist in the form of frequency division multiplexing.
- the SSB has a first QCL relationship with the CORESET#0/PDSCH.
- pattern2 and pattern3 are mainly used in FR2 and higher frequency bands.
- FIG. 5 is a schematic diagram of PDCCH/SSB in multiplexing mode 2 in the prior art.
- the sub-carrier spacing (Sub-Carrier Spacing, SCS) of the PDCCH channel is 120 kilohertz (KHz), and the SCS of the SSB is 240 kHz as an example.
- the PDCCHs eg type0-PDCCH
- the SSB#0 that has a QCL relationship with the type0-PDCCH sent on the symbol #0 cannot be sent.
- the reason is that PDCCH and SSB with QCL relationship need to be sent at the same time.
- an embodiment of the present application proposes a channel monitoring method.
- the terminal device UE determines the first monitoring opportunity of the physical downlink control channel PDCCH according to the first signal information block SSB, and the PDCCH is used to carry the control resource set coreset#0;
- the UE monitors the PDCCH on the first monitoring opportunity; if the UE does not monitor the PDCCH, the UE has a quasi-co-located QCL relationship with the first SSB according to the first SSB and the first SSB.
- the SSB of the PDCCH determines the second monitoring occasion of the PDCCH; the UE monitors the PDCCH on the second monitoring occasion.
- the network side does not need to send additional SSBs, so as to reduce the delay in sending SSBs by network devices. And it is guaranteed that the terminal can successfully monitor the PDCCH.
- the monitoring timing of the PDCCH may also be referred to as the number of search spaces (search Spaces) of the PDCCH.
- FIG. 6 is a schematic diagram of an embodiment of a channel monitoring method in an embodiment of the present application.
- a channel monitoring method proposed by an embodiment of the present application includes:
- the terminal device determines the first monitoring timing of the PDCCH according to the first SSB.
- the terminal device determines the first monitoring timing of the PDCCH according to the MIB information carried in the first SSB.
- the PDCCH may be type0-PDCCH.
- the PDCCH carries the control resource set CORESET#0.
- the subcarrier spacing SCS of the first SSB satisfies: 120 kHz KHz, 240 kHz, 480 kHz or 960 kHz; the SCS of the PDCCH satisfies: 120 kHz KHz, 240 kHz, 480 kHz or 960 kHz.
- the SCS of the first SSB and the SCS of the PDCCH ⁇ (SCS of the first SSB), (SCS of the PDCCH) ⁇ satisfy: ⁇ 240KHz, 120KHz ⁇ , ⁇ 240KHz, 480KHz ⁇ , ⁇ 480KHz, 960KHz ⁇ , ⁇ 240KHz , 240KHz ⁇ , ⁇ 960KHz, 960KHz ⁇ or ⁇ 240KHz, 960KHz ⁇ etc.
- the terminal device determines the second monitoring opportunity according to the first SSB and the SSB having a QCL relationship with the first SSB.
- the terminal device determines the second monitoring opportunity for the PDCCH according to the first SSB and the SSB having a quasi-co-located QCL relationship with the first SSB.
- the SSB having a QCL relationship with the first SSB is referred to as QCLed_SSB for convenience of description in this embodiment of the present application.
- the QCL relationship indicates that multiple SSBs on different candidate SSB indexes have the same index. For example, in Fig.
- the SSBs corresponding to index numbers 0, 4, 8, 12, and 16 in the first column have a QCL relationship, then the SSB with index number 0 is used as the first SSB, and the SSBs with index numbers 4, 8, 12 and 12 are used as the first SSB.
- the SSB of 16 is QCLed_SSB.
- the specific method for determining the second monitoring timing is as follows:
- the second listening opportunity includes the target system frame number SFN c and the target time slot number n c , wherein,
- the time slot difference between the time slot position of the first SSB and the second listening opportunity is 0, 1, M/2 or (M/2)-1, where M is the number of actually sent SSBs or the Q value,
- M is the number of actually sent SSBs or the Q value
- the number of actually sent SSBs is determined by the "ssb-PositionsInBurst" parameter carried in SIB1.
- the number of SSBs actually sent refers to the number of SSBs sent by the network device within a certain time window.
- the time window may be a burst set window.
- the value of the burst set window is ⁇ 0.5 ms, 1 ms, 2 ms, 3 ms, 4 ms, 5 ms ⁇ .
- the Q value can be Should Takes any of the values 1, 2, 4, 8, 16, 32, 64. Indicated by the parameters "subCarrierSpacingCommon", “Ssb-SubcarrierOffset” and/or “SearchSpaceZero” in the main information block MIB. Specifically as follows: when When the value is 1, 2, 4, or 8, the Indicated by the parameter "Ssb-SubcarrierOffset” or “subCarrierSpacingCommon” in the main information block MIB. "Ssb-SubcarrierOffset” or “subCarrierSpacingCommon” respectively occupies 1 bit. when When the value is 16, 32, or 64, the Indicated jointly by "subCarrierSpacingCommon", “Ssb-SubcarrierOffset” and “SearchSpaceZero".
- the starting symbol index of the second listening opportunity is located in the time slot of the SSB with the QCL relationship, between symbol #0 and symbol #3 or between symbol #12 of the previous time slot and the next time slot any of the symbols #1;
- the start symbol index of the second listening opportunity is located in the time slot of the SSB with the QCL relationship, between symbol #0 and symbol #7, or between symbol #10 of the previous time slot and the next time slot any of the symbols #3 in the slot;
- the number of symbols occupied by the PDCCH in the second listening opportunity is any one of ⁇ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ⁇ .
- the UE determines a plurality of the second listening opportunities according to the first offset and the start symbol index of the second listening opportunity, where the first offset is The offset in the time domain between the adjacent PDCCHs in the time domain.
- the first offset and/or the number of PDCCHs are indicated by the parameters "subCarrierSpacingCommon", "ssb-SubcarrierOffset” and/or “SearchSpaceZero" in the main information block MIB, or the first The offset and/or the number of the PDCCH are configured in the UE.
- the first offset, the start symbol index of the second listening opportunity and the number of PDCCHs can be configured by the network device through MIB messages, for example: the 4 bits of "SearchSpaceZero" in the parameter "PDCCH-ConfigSIB1" in the MIB ( bits) in 1, 2, 3 or all 4 bits.
- the first offset, the start symbol index of the second listening opportunity, and the number of PDCCHs are fixed values.
- the terminal device determines the first offset and the start symbol index of the second listening opportunity through calculation.
- the calculation method is as the following pseudo code (or condition):
- SFN c SFN ssb, i +floor (Start symbol of type0-PDCCH/number of symbols in one slot ⁇ length of a frame);
- n ⁇ floor(start symbol of type0-PDCCH/number of symbols in one slot), ceil(start symbol of type0-PDCCH/number of symbols in one slot) ⁇ -length of a frame ⁇ (SFN c -SFN c_SSB, i );
- n c nn ssb, i .”
- SFN c SFN ssb, i +floor(start symbol of type0-PDCCH/(number of symbols in one slot ⁇ length of a frame));
- n ⁇ floor(start symbol of type0-PDCCH/number of symbols in one slot), ceil(start symbol of type0-PDCCH/number of symbols in one slot) ⁇ -length of a frame ⁇ (SFN c -SFN ssb, i );
- n c nn ssb, i .”.
- n ssb nn ssb, i .”
- length of a frame is the frame length, usually 10 milliseconds
- n c represents the time slot offset of the PDCCH relative to the SSB.
- the terminal device maintains a table of the association relationship between the first offset and the start symbol index of the second listening opportunity.
- the terminal device determines the first offset corresponding to the index and the start symbol index of the second listening opportunity in the table according to the index configured by the network device.
- the table is shown in Table 3:
- the SSB pattern refers to the position of the SSB at the symbol-level. In different SSB patterns, the number of SSBs contained in a slot is also different.
- the terminal device monitors the PDCCH on the second monitoring opportunity.
- the terminal device determines the time domain position of the PDSCH according to the PDCCH.
- the terminal device may further determine the time domain position of the PDSCH according to the PDCCH. Specifically, the terminal device determines the time domain position of the PDSCH indicated by the DCI according to the DCI in the PDCCH. The terminal device determines, according to the DCI in the PDCCH, the starting symbol position S of the target PDSCH, the number of symbols L occupied by the target PDSCH in the time domain, and the interval K0 between the time slot number where the PDCCH is located and the time slot number where the PDSCH is located.
- PDSCHs at different time domain locations are distinguished by redundancy versions (RV, Redundancy Version), that is, PDSCHs at different time domain locations have the same transmission content but different redundancy versions.
- RV Redundancy Version
- the time window may be the burst set window, or may be the symbol length occupied in the time domain by the first SSB with the SCS of 480KHz/960KHz and the PDCCH having a QCL relationship with the SCS of 120KHz/240KHz. The value is equal to the length of 16 symbols.
- the PDCCH carries CORESET#0.
- the UE determines the time domain position of the target physical downlink shared channel PDSCH according to the PDCCH, where the target PDSCH carries the system information block SIB1/remaining minimum system information RMSI.
- the PDCCH corresponds to a plurality of different time domain positions; the target PDSCH corresponds to a plurality of different time domain positions; one of the PDCCH indicates a time domain position of the target PDSCH, or one The PDCCH indicates a plurality of time domain positions of the target PDSCH. It should be noted that it may also be referred to as: one PDCCH schedules one or more PDSCHs.
- the UE determining the time domain position of the target PDSCH according to the PDCCH includes:
- the UE determines, according to the PDCCH, the starting symbol position S of the target PDSCH, the number of symbols L occupied by the target PDSCH in the time domain, the number of the time slot where the PDCCH is located and the number of the time slot where the PDSCH is located. interval K0.
- the value of S satisfies any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8 ⁇
- the value of L satisfies the set ⁇ 2, 3, 4, 5, 6, Any one of 7, 8 ⁇
- the value of K0 satisfies one or more of ⁇ 0, 1, M/2, M/2+1 ⁇ ;
- the value of S satisfies any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8, 9, 10 ⁇ , and the value of L satisfies the set ⁇ 2, 3, 4 , any one of 5, 6, 7, 8 ⁇ , the value of K0 satisfies one or more of ⁇ 0, 1, (m ⁇ M/2) ⁇ ;
- the values of S and L satisfy any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8, 9, 10 ⁇ , and the value of L satisfies the set ⁇ 2, 3 , any one of 4, 5, 6, 7, 8 ⁇ , the value of K0 satisfies one or more of ⁇ 0, 1, M/2, M/2+1 ⁇ ;
- the value of S satisfies any one of the sets ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇ , L
- the value satisfies any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ⁇ , and the value of K0 satisfies ⁇ 0, 1, M/ 2, one or more of M/2+1 ⁇ ;
- the value of S satisfies any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8, 9, 10 ⁇
- the value of L satisfies the set ⁇ 2, 3, 4 , any one of 5, 6, 7, 8 ⁇
- the value of K0 satisfies one or more of ⁇ 0, 1, M/2, M/2+1 ⁇ ;
- the value of S satisfies any one of the sets ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇ , L
- the value satisfies any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ⁇ , and the value of K0 satisfies ⁇ 0, 1, M /2, one or more of M/2+1 ⁇ ;
- the value of S satisfies any one of the set ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇
- the value of L satisfies any one of ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8 ⁇
- the value of K0 satisfies the set ⁇ -1-M/2, -M/2, 1-M/ One or more of 2, -1, 0, 1, M/2-1, M/2, M/2+1 ⁇ .
- M is the number of actually sent SSBs or the Q value.
- the number of target PDSCHs and the time domain information of the target PDSCH are obtained by the UE according to the newly added field "Time locations of PDSCHs for SIB1/RMSI" in the downlink control information DCI carried in the PDCCH, so
- the field "Time locations of PDSCHs for SIB1/RMSI” occupies ⁇ 0, 1, ..., X ⁇ bits, and X is any one of ⁇ 0, 1, 2, 3, 4 ⁇ ;
- the UE obtains the number of the target PDSCH and the time domain information of the target PDSCH according to the field "Time domain resource assignment" in the DCI carried in the PDCCH, and the field "Time domain resource assignment" occupies The number of bits is extended to more than 4 bits;
- the DCI is DCI 1_0 scrambled with a cyclic redundancy check (Cyclic Redundancy Check, CRC) through system information-radio network temporary identifier SI-RNTI.
- CRC Cyclic Redundancy Check
- the network side does not need to send an additional SSB, so as to reduce the delay in sending the SSB by the network device.
- the terminal determines the monitoring timing (second monitoring timing) of the PDCCH according to the SSB associated with the PDCCH in various ways. In the case where the PDCCH cannot be monitored at the first monitoring occasion, the terminal can monitor the PDCCH successfully by monitoring the PDCCH at the second monitoring occasion.
- the SCS of the first SSB and the SCS of the PDCCH satisfy ⁇ 240KHz, 120KHz ⁇ .
- the UE determines the second listening opportunity in the following manner, where the second listening opportunity includes the target system frame number SFN c and the target time slot number n c , wherein,
- the time slot number of the first SSB, the n QCLed_ssb, i is the time slot number of the QCLed_SSB, and i represents the same index of multiple SSBs with a QCL relationship.
- the time slot difference between the time slot position of the first SSB and the second listening opportunity is 0, 1, M/2 or (M/2)-1, where M is the number of actually sent SSBs or the Q value.
- the time window of the actually sent SSB may be a burst set window, and the value of the burst set window is ⁇ 0.5ms, 1ms, 2ms, 3ms, 4ms, 5ms ⁇ .
- the PDCCH listening occasions in Tables 4 and 5 refer to the second listening occasion, and the start symbol index refers to the start symbol index of the second listening occasion.
- the terminal device can also determine the second listening timing according to Table 3 and Table 4 above.
- one time slot includes two SSBs, and the interval (in the time domain) between the SSBs in one time slot is greater than or equal to 2 symbols.
- the maximum number of SSBs that can be sent (or 64 or 128 number of candidate SSB locations to send SSBs) within a time window (eg, a burst set window).
- the UE determines the second listening opportunity in the following manner, where the second listening opportunity includes the target system frame number SFN c and the target time slot number n c , wherein,
- the time slot difference between the time slot position of the first SSB and the second listening opportunity is 0, 1, M/2 or (M/2)-1, where M is the number of actually sent SSBs or the Q value.
- the time window of the actually sent SSB may be a burst set window, and the value of the burst set window is ⁇ 0.5ms, 1ms, 2ms, 3ms, 4ms, 5ms ⁇ .
- the PDCCH listening occasion in Table 6 refers to the second listening occasion
- the start symbol index refers to the start symbol index of the second listening occasion.
- the start symbol index of the second listening opportunity is located in the time slot of the SSB having the QCL relationship , any one between symbol #0 and symbol #3 or between symbol #12 in the previous time slot and symbol #1 in the next time slot; the number of symbols occupied by the PDCCH in the second listening opportunity is any one of ⁇ 1, 2, 4 ⁇ .
- the start symbol index of the second listening opportunity is located in the time slot of the SSB with the QCL relationship , any one between symbol #0 and symbol #7 or between symbol #10 in the previous time slot and symbol #3 in the next time slot; the number of symbols occupied by the PDCCH in the second listening opportunity is any one of ⁇ 1, 2, 4, 8 ⁇ .
- the time domain positions of PDSCH are different. Therefore, in the case of pattern 2, how the terminal determines the time domain position of the PDSCH (the PDSCH is the target PDSCH in the embodiment of the present application) is described next.
- K0, S, and L are: the values of S and L satisfy any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8 ⁇ , and the value of K0 is 0, 1 or (M/2).
- M is the number of actually transmitted SSBs or the Q value, the starting symbol position S of the target PDSCH, the number of symbols L occupied by the target PDSCH in the time domain, the time slot number where the PDCCH is located, and where the PDSCH is located The interval K0 between slot numbers.
- the SCS of the first SSB and the SCS of the PDCCH satisfy 240KHz and 480KHz.
- the SSB pattern satisfies: a time slot contains two SSBs, and when the interval between SSBs is greater than or equal to 2 symbols, within a time window, the maximum number of SSBs that can be sent or the maximum number of candidate positions for sending SSBs is 64 or 128.
- K0, S and L are: the value of S satisfies any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8, 9, 10 ⁇ , and the value of L satisfies the set ⁇ 2, 3, 4, 5, 6, 7, 8 ⁇ , K0 takes the value 0, 1 or (M/2).
- the "time window” here may represent a burst set window, which takes values ⁇ 0.5ms, 1ms, 2ms, 3ms, 4ms, 5ms ⁇ .
- the value of S satisfies any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8, 9, 10 ⁇ , and the value of L satisfies any of the set ⁇ 2, 3, 4, 5, 6, 7, 8 ⁇
- K0 takes the value 0, 1 or (M/2).
- M is the number of actually sent SSBs or the Q value.
- M is the number of actually transmitted SSBs or the Q value, the starting symbol position S of the target PDSCH, the number of symbols L occupied by the target PDSCH in the time domain, the time slot number where the PDCCH is located, and where the PDSCH is located The interval K0 between slot numbers.
- Two SSBs are included in one time slot, and the interval (in the time domain) between SSBs in one time slot is greater than or equal to 2 symbols.
- the maximum number of SSBs that can be sent (or 64 or 128 number of candidate SSB locations to send SSBs) within a time window (eg, a burst set window).
- K0, S and L can be any of the following combinations:
- S satisfies any of the set ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇
- L satisfies any one of ⁇ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ⁇
- K0 is 0, 1, M/ 2 or M/2+1.
- M is the number of actually sent SSBs or the Q value.
- the value of S satisfies any one of the set ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇ , L
- the value satisfies any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8, 9, 10 ⁇ ;
- the PDCCH indicates the PDSCH.
- downlink control information (Downlink Control Information, DCI) transmitted in a PDCCH may indicate a time domain location of a target PDSCH.
- the DCI transmitted in one PDCCH can also indicate the time domain positions of multiple target PDSCHs.
- PDSCHs located at different time domain positions are distinguished by redundancy versions (RV, Redundancy Version). That is, the transmission contents of the PDSCHs transmitted at different time domain positions are the same, but the redundancy versions of the PDSCHs transmitted at different time domain positions are different.
- the length of the time window is related to the SCS of the first SSB and the SCS of the PDCCH, for example, the length of the time window may be the length of a symbol occupied in the time domain by the SCS of the first SSB compared to the SCS of the PDCCH. For example, the length of the time window may be 16 symbols. For an example, see Table 7.
- a PDCCH indicates the time domain position of one target PDSCH (that is, one PDCCH corresponds to the time domain position of one target PDSCH), and one PDCCH indicates the time domain position of multiple target PDSCHs (that is, one PDCCH corresponds to the time domain position of multiple target PDSCHs). time domain location).
- a PDCCH indicates the time domain position of a target PDSCH.
- the DCI carried (also referred to as transmission, or bearer) in one PDCCH only indicates one PDSCH carrying SIB1/RMSI.
- the PDSCH is referred to as a target PDSCH in this embodiment of the present application.
- the UE may also obtain the first offset and the start symbol index of the second listening opportunity by other means. Details as follows:
- the first offset and the start symbol index of the second listening opportunity are configured to the terminal device by the network device system MIB information.
- the UE obtains the MIB information, for example, using 1, 2, 3 or all 4 bits of the 4 bits of "SearchSpaceZero" in the parameter "PDCCH-ConfigSIB1" in the MIB to indicate the first offset and the second listening opportunity Start symbol index.
- the first offset and/or the start symbol index of the second listening opportunity is preconfigured in the network device and the terminal device.
- the terminal device may determine the time domain position of the target PDSCH according to the preconfigured first offset and the start symbol index of the second listening opportunity.
- the terminal device may also determine the time domain position of the target PDSCH according to the preconfigured first offset and the calculated start symbol index of the second listening opportunity.
- the calculation method of the start symbol index of the second listening opportunity is as shown in the foregoing embodiment, such as pseudo code or formula, which will not be repeated here.
- the first offset and/or the start symbol index of the second listening opportunity is preconfigured in the network device and the terminal device.
- the terminal device determines, according to the indication information of the network device, the used first offset and the starting symbol index of the second listening opportunity from the preconfigured information. Specifically, as shown in the foregoing Table 3, details are not repeated here.
- the terminal device determines the first offset corresponding to the index and the start symbol index of the second listening opportunity in the table according to the index configured by the network device.
- the network device may determine the first offset and the start symbol index of the second listening opportunity through the bits in the "SearchSpaceZero" parameter. For example, taking Table 3 as an example, when the bit in the "SearchSpaceZero” parameter is "01", the corresponding index is 1. When the bit in the "SearchSpaceZero” parameter is "11”, the corresponding index is 2. When the bit in the "SearchSpaceZero” parameter is "11”, the corresponding index is 3. By analogy, no limitation is imposed here.
- the SCS of the first SSB and the SCS of the PDCCH satisfy ⁇ 120KHz, 120KHz ⁇ or ⁇ 240KHz, 240KHz ⁇ .
- K0 satisfies the set ⁇ -(M/2)-1, -(M/2), -(M/2)+1, -1, 0, 1, M/2-1, M/2, M
- One or more of /2+1 ⁇ the value of S satisfies any one of the set ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇ , L
- the value satisfies any one of ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8 ⁇ .
- the SCS of the first SSB and the SCS of the PDCCH satisfy ⁇ 120KHz, 120KHz ⁇ or ⁇ 240KHz, 240KHz ⁇ . Then the SSB pattern satisfies: at this time, one time slot contains two SSBs, and the interval (in the time domain) between the SSBs in one time slot is greater than or equal to 2 symbols.
- the maximum number of SSBs that can be sent (or 64 or 128 number of candidate SSB locations to send SSBs) within a time window (eg, a burst set window).
- the value of K0 satisfies one or more of the sets ⁇ 0, M/2 ⁇ .
- the value of S satisfies any one of the set ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇
- the value of L satisfies ⁇ 0, 1, 2, 3 , 4, 5, 6, 7, 8 ⁇ any one.
- one PDCCH indicates the time domain positions of multiple target PDSCHs.
- the DCI carried (also referred to as transmission, or bearer) in one PDCCH indicates multiple PDSCHs carrying SIB1/RMSI. Therefore, within a certain time window, only one DCI may be used to indicate multiple PDSCHs (ie, target PDSCHs).
- the symbol length occupied by the DCI may be 2 symbol positions, 3 symbol positions, or 4 or more symbol positions, which is not limited here.
- the SCS of the first SSB and the SCS of the PDCCH satisfy ⁇ 120KHz, 120KHz ⁇ or ⁇ 240KHz, 240KHz ⁇ .
- the value of K0 satisfies the set ⁇ -(M/2)-1, -(M/2), -(M/2)+1, -1, 0, 1, M/2-1, M/2, M
- the value of S satisfies any one of the set ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇
- the value of L satisfies ⁇ 0, 1, 2, 3 , 4, 5, 6, 7, 8 ⁇ any one.
- the SCS of the first SSB and the SCS of the PDCCH satisfy ⁇ 120KHz, 120KHz ⁇ or ⁇ 240KHz, 240KHz ⁇ . Then the SSB pattern satisfies: at this time, one time slot contains two SSBs, and the interval (in the time domain) between the SSBs in one time slot is greater than or equal to 2 symbols.
- the maximum number of SSBs that can be sent (or 64 or 128 number of candidate SSB locations to send SSBs) within a time window (eg, a burst set window).
- the value of K0 satisfies one or more of the sets ⁇ 0, M/2 ⁇ .
- the value of S satisfies any one of the set ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇
- the value of L satisfies ⁇ 0, 1, 2, 3 , 4, 5, 6, 7, 8 ⁇ any one.
- the communication system includes terminal equipment and network equipment.
- the SCS of the first SSB is the same as the SCS of the PDCCH, that is, ⁇ 240KHz, 240KHz ⁇ , ⁇ 480KHz, 480KHz ⁇ or ⁇ 960KHz, 960KHz ⁇ .
- the UE determines the second listening opportunity in the following manner, where the second listening opportunity includes the target system frame number SFN c and the target time slot number n c , wherein,
- SFN c SFN ssb,i , the SFN ssb,i is the frame number of the system where the first SSB is located;
- n c n ssb, i , wherein the n ssb, i is the time slot number of the first SSB and i represents the same index of multiple SSBs with a QCL relationship.
- the SSB pattern satisfies any one of the following two settings:
- two SSBs are included in one slot, and the interval (in the time domain) between the SSBs in one slot is greater than or equal to 2 symbols.
- the maximum number of SSBs that can be sent (or 64 or 128 number of candidate SSB locations to send SSBs) within a time window (eg, a burst set window).
- the UE determines the second listening opportunity in the following manner, where the second listening opportunity includes the target system frame number SFN c and the target time slot number n c , wherein,
- SFN c SFN ssb,i , the SFN ssb,i is the frame number of the system where the first SSB is located;
- the start symbol index of the second listening opportunity includes any one of ⁇ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇ .
- the terminal device determines the target system frame number SFN c and the target time slot number n c through calculation.
- the calculation method is as the following pseudo code (or condition):
- SFN c SFN ssb, i +floor(start symbol of type0-PDCCH/(number of symbols in one slot ⁇ length of a frame));
- n ⁇ floor(start symbol of type0-PDCCH/number of symbols in one slot), ceil(start symbol of type0-PDCCH/number of symbols in one slot) ⁇ -length of a frame ⁇ (SFN c -SFN ssb, i );
- n c nn ssb,i ".
- n ssb nn ssb,i ".
- length of a frame is the frame length, usually 10 milliseconds
- n c represents the time slot offset of the PDCCH relative to the SSB.
- the start symbol index of the second listening opportunity includes any one of ⁇ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇ .
- the communication system includes terminal equipment and network equipment.
- the SCS of the first SSB is the same as the SCS of the PDCCH, that is, ⁇ 240KHz, 240KHz ⁇ , ⁇ 480KHz, 480KHz ⁇ or ⁇ 960KHz, 960KHz ⁇ .
- the UE determines the second listening opportunity in the following manner, where the second listening opportunity includes the target system frame number SFN c and the target time slot number n c , wherein,
- the SSB pattern satisfies any one of the following two settings:
- two SSBs are included in one slot, and the interval (in the time domain) between the SSBs in one slot is greater than or equal to 2 symbols.
- the maximum number of SSBs that can be sent (or 64 or 128 number of candidate SSB locations to send SSBs) within a time window (eg, a burst set window).
- the start symbol index of the second listening opportunity includes any one of ⁇ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇ .
- the UE determines the second listening opportunity in the following manner, where the second listening opportunity includes the target system frame number SFN c and the target time slot number n c , wherein,
- the start symbol index of the second listening opportunity includes any one of ⁇ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇ .
- the terminal device determines the target system frame number SFN c and the target time slot number n c through calculation.
- the calculation method is as the following pseudo code (or condition):
- SFN c SFN SSB, i +floor(Start symbol of type0-PDCCH/number of symbols in one slot ⁇ length of a frame);
- n ⁇ floor(start symbol of type0-PDCCH/number of symbols in one slot), ceil(start symbol of type0-PDCCH/number of symbols in one slot) ⁇ -length of a frame ⁇ (SFN c -SFN c_SSB, i );
- n c nn ssb, i .”.
- the starting positions of the candidate SSBs include 128 or 256 candidate positions, wherein the actual number of SSBs sent may be 4, 8, or 64.
- the start symbol index of the second listening opportunity includes any one of ⁇ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇ .
- the time domain positions of PDSCH are different. Therefore, in the case of pattern 3, how the terminal determines the PDSCH (that is, the time domain position of the target PDSCH in the embodiment of the present application) is described next.
- K0 takes a value of 0 or M/2, where M is the number of actually sent SSBs or the Q value.
- the value of S satisfies any one of the set ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ⁇ , and the value of L satisfies the set ⁇ 2, 3, 4, 5, Any one of 6, 7, 8, 9, 10, 11, 12 ⁇ , K0 is 0, 1, (M/2) or (M/2+1).
- M is the number of actually transmitted SSBs or the Q value, the starting symbol position S of the target PDSCH, the number of symbols L occupied by the target PDSCH in the time domain, the time slot number where the PDCCH is located, and where the PDSCH is located The interval K0 between slot numbers.
- M 32 or 36.
- the SCS of the first SSB and the SCS of the PDCCH satisfy ⁇ 120KHz, 480KHz ⁇ or ⁇ 240KHz, 960KHz ⁇ .
- the SSB pattern satisfies: a time slot contains two SSBs, and when the interval between SSBs is greater than or equal to 2 symbols, within a time window, the maximum number of SSBs that can be sent or the maximum number of candidate positions for sending SSBs is 64 or 128.
- K0, S and L are: the value of S satisfies any one of the set ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇ , and L takes The value satisfies any one of ⁇ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ⁇ , and K0 takes the value 0, 1, M/2 or M/ 2+1.
- the "time window” here may represent a burst set window, which takes values ⁇ 0.5ms, 1ms, 2ms, 3ms, 4ms, 5ms ⁇ .
- the PDCCH indicates the PDSCH.
- downlink control information (Downlink Control Information, DCI) transmitted in a PDCCH may indicate a time domain location of a target PDSCH.
- the DCI transmitted in one PDCCH may also indicate the time domain positions of multiple target PDSCHs.
- the target PDSCH carries the System Information Block SIB1/Remaining Minimum System Information RMSI.
- a PDCCH indicates the time domain position of one target PDSCH (that is, one PDCCH corresponds to the time domain position of one target PDSCH), and one PDCCH indicates the time domain position of multiple target PDSCHs (that is, one PDCCH corresponds to the time domain position of multiple target PDSCHs). time domain location).
- a PDCCH indicates the time domain position of a target PDSCH.
- the DCI carried (also referred to as transmission, or bearer) in one PDCCH only indicates one PDSCH carrying SIB1/RMSI.
- the PDSCH is referred to as a target PDSCH in this embodiment of the present application.
- the value of K0 satisfies the set ⁇ -(M/2)-1, -(M/2), -(M/2)+1, -1, 0, 1, M/2-1, M/ 2, one or more of M/2+1 ⁇ .
- FIG. 7 is a schematic diagram of the time domain positions of the PDCCH and the PDSCH in this embodiment of the present application.
- the SCS of the first SSB and the SCS of the PDCCH satisfy ⁇ 240KHz, 960KHz ⁇ .
- the UE searches for the PDCCH in three time domain positions, that is, the UE has three search space positions, and the positions of each search space in the time domain are symbols #4 to #5 (defined as the PDCCH in the time domain position)
- the DCI carried is DCI(1)), symbols #10 ⁇ #11 (defined as DCI(2) carried by PDCCH in this time domain location) and symbols #0 ⁇ #1 of the next time slot (defined as this time
- the DCI carried by the PDCCH in the domain location is DCI(3)).
- the UE may also determine the start symbol index of the second listening opportunity by other methods (for example, pseudocode or formula, etc.) described in the embodiments of the present application, and the start symbol index of the second listening opportunity is DCI ( 1) of the starting symbol position.
- the offset in the time domain between the adjacent PDCCHs in the time domain is called the first offset.
- the first offset is also referred to as a time-domain offset between adjacent different DCIs in the time-domain.
- the first offset includes: a time-domain offset between DCI(1) and DCI(2), and a time-domain offset between DCI(2) and DCI(3).
- the UE may also obtain the first offset and the start symbol index of the second listening opportunity by other means. Details as follows:
- the first offset and the start symbol index of the second listening opportunity are configured by the network device system MIB information to the terminal device.
- the UE obtains the MIB information, for example, using 1, 2, 3 or all 4 bits of the 4 bits of "SearchSpaceZero" in the parameter "PDCCH-ConfigSIB1" in the MIB to indicate the first offset and the second listening opportunity Start symbol index.
- the first offset and/or the start symbol index of the second listening opportunity is preconfigured in the network device and the terminal device.
- the terminal device may determine the time domain position of the target PDSCH according to the preconfigured first offset and the start symbol index of the second listening opportunity.
- the terminal device may also determine the time domain position of the target PDSCH according to the preconfigured first offset and the calculated start symbol index of the second listening opportunity.
- the calculation method of the start symbol index of the second listening opportunity is as shown in the foregoing embodiment, such as pseudo code or formula, which will not be repeated here.
- the terminal device determines the time domain position of the DCI(1) according to the preconfigured information.
- the time domain position of DCI (2) and the time domain position of DCI (3) are determined according to the first offset.
- the first offset and/or the start symbol index of the second listening opportunity is preconfigured in the network device and the terminal device.
- the terminal device determines, according to the indication information of the network device, the used first offset and the starting symbol index of the second listening opportunity from the preconfigured information. Specifically, as shown in the foregoing Table 3, details are not repeated here.
- the terminal device determines the first offset corresponding to the index and the start symbol index of the second listening opportunity in the table according to the index configured by the network device.
- the network device may determine the first offset and the start symbol index of the second listening opportunity through the bits in the "SearchSpaceZero" parameter. For example, taking Table 3 as an example, when the bit in the "SearchSpaceZero” parameter is "01", the corresponding index is 1. When the bit in the "SearchSpaceZero” parameter is "11”, the corresponding index is 2. When the bit in the "SearchSpaceZero” parameter is "11”, the corresponding index is 3. By analogy, no limitation is imposed here.
- one PDCCH indicates the time domain positions of multiple target PDSCHs.
- the DCI carried (also referred to as transmission, or bearer) in one PDCCH indicates multiple PDSCHs carrying SIB1/RMSI. Therefore, within a certain time window, only one DCI may be used to indicate multiple PDSCHs (ie, target PDSCHs).
- the symbol length occupied by the DCI may be 2 symbol positions, 3 symbol positions, or 4 or more symbol positions, which is not limited here.
- the UE determines the time domain position of the target PDSCH according to the PDCCH, including:
- the UE obtains the number of the target PDSCH and the time domain information of the target PDSCH according to the newly added field (field) "Time locations of PDSCHs for SIB1/RMSI" in the downlink control information DCI carried in the PDCCH,
- the field "Time locations of PDSCHs for SIB1/RMSI” occupies ⁇ 0, 1, ..., X ⁇ bits, and X is any one of ⁇ 0, 1, 2, 3, 4 ⁇ ;
- the DCI is DCI 1_0 scrambled with a Cyclic Redundancy Check (CRC) by System Information-Radio Network Temporary Identifier SI-RNTI.
- CRC Cyclic Redundancy Check
- FIG. 8 is a schematic diagram of another time domain location of the PDCCH and the PDSCH in the embodiment of the present application.
- the starting symbol position of the second listening opportunity is symbol #4.
- the terminal device includes corresponding hardware structures and/or software modules for executing each function.
- the present application can be implemented in hardware or in the form of a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
- the terminal device may be divided into functional modules according to the foregoing method examples.
- each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
- the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
- Terminal device 900 includes:
- the processing module 901 is configured to determine, according to the first signal information block SSB, a first listening opportunity of a physical downlink control channel PDCCH, where the PDCCH is used to carry a control resource set coreset#0;
- the processing module 901 is further configured to: if the transceiver module 902 does not monitor the PDCCH at the first monitoring opportunity, the UE will perform a quasi-co-located QCL relationship with the first SSB according to the first SSB and the first SSB.
- the SSB determines the second listening opportunity of the PDCCH;
- the transceiver module 902 is further configured to monitor the PDCCH on the second monitoring opportunity.
- the second listening opportunity includes a target system frame number SFN c and a target time slot number n c , wherein,
- the time slot difference between the time slot position of the first SSB and the second listening opportunity is 0, 1, M/2, or (M/2)-1, where M is the number of actually sent SSBs or the Q value, and the number of actually sent SSBs is determined by the "ssb-PositionsInBurst" parameter carried in SIB1.
- the Q value is Takes any of the values 1, 2, 4, 8, 16, 32, 64.
- the start symbol index of the second listening opportunity is located in the time slot of the SSB with the QCL relationship, between symbol #0 and symbol #3 or between the previous time any one of symbol #12 of a slot to symbol #1 in the next slot;
- the start symbol index of the second listening opportunity is located in the time slot of the SSB with the QCL relationship, between symbol #0 and symbol #7, or between symbol #10 of the previous time slot and the next time slot any of the symbols #3 in the slot;
- the number of symbols occupied by the PDCCH in the second listening opportunity is any one of ⁇ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ⁇ .
- the processing module 901 is further configured to, when the number of the PDCCHs is greater than 1, determine a plurality of the second listening occasions according to the first offset and the start symbol index of the second listening occasion;
- An offset is the offset in the time domain between the adjacent PDCCHs in the time domain.
- the first offset and/or the number of the PDCCH are determined by the parameters "subCarrierSpacingCommon", “ssb-SubcarrierOffset” and/or “SearchSpaceZero" in the main information block MIB Indicates, or, the first offset and/or the number of the PDCCH is configured in the UE.
- the method further includes:
- the processing module 901 is further configured to determine a time domain position of a target physical downlink shared channel PDSCH according to the PDCCH, where the target PDSCH carries a system information block SIB1/remaining minimum system information RMSI.
- the PDCCH corresponds to multiple different time domain locations
- the target PDSCH corresponds to a plurality of different time domain positions
- a said PDCCH indicates a time domain position of said target PDSCH, or,
- One of the PDCCHs indicates the time domain positions of multiple target PDSCHs.
- the UE determining the time domain position of the target PDSCH according to the PDCCH includes:
- the UE determines, according to the PDCCH, the starting symbol position S of the target PDSCH, the number of symbols L occupied by the target PDSCH in the time domain, the number of the time slot where the PDCCH is located and the number of the time slot where the PDSCH is located. interval K0.
- the value of S satisfies any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8 ⁇
- the value of L satisfies the set ⁇ 2, 3, 4, 5, 6 , any one of 7, 8 ⁇
- the value of K0 satisfies one or more of ⁇ 0, 1, M/2, M/2+1 ⁇ ;
- the value of S satisfies any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8, 9, 10 ⁇
- the value of L satisfies the set ⁇ 2, 3, 4, 5, 6, 7, 8 ⁇
- Any one of the values of K0 satisfies one or more of ⁇ 0, 1, (m ⁇ M/2) ⁇ ;
- the value of S and L satisfies any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8, 9, 10 ⁇ , and the value of L satisfies the set ⁇ 2, 3, 4, 5, 6, 7, 8 ⁇ , the value of K0 satisfies one or more of ⁇ 0, 1, M/2, M/2+1 ⁇ ;
- the value of S satisfies any one of the set ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇ , and the value of L satisfies the set ⁇ 2, 3, Any one of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ⁇ , the value of K0 satisfies ⁇ 0, 1, M/2, M/2+1 ⁇ one or more of;
- the value of S satisfies any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8, 9, 10 ⁇
- the value of L satisfies the set ⁇ 2, 3, 4, 5, 6, 7, 8 ⁇
- Any one of the values of K0 satisfies one or more of ⁇ 0, 1, M/2, M/2+1 ⁇ ;
- the value of S satisfies any one of the set ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇ , and the value of L satisfies the set ⁇ 2, 3, Any one of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ⁇ , the value of K0 satisfies ⁇ 0, 1, M/2, M/2+1 ⁇ one or more of;
- the value of S satisfies any one of the set ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇
- the value of L satisfies ⁇ 0, 1, Any one of 2, 3, 4, 5, 6, 7, 8 ⁇
- the value of K0 satisfies the set ⁇ -1-M/2, -M/2, 1-M/2, -1, 0, 1, One or more of M/2-1, M/2, and M/2+1 ⁇ , where M is the number of actually sent SSBs or the Q value.
- the processing module 901 is further configured for the UE to determine the time domain position of the target PDSCH according to the downlink control information DCI carried in the PDCCH monitored by the second monitoring opportunity.
- the processing module 901 is further configured to obtain the number of the target PDSCH and the time domain information of the target PDSCH according to the newly added domain "Time locations of PDSCHs for SIB1/RMSI" in the downlink control information DCI carried in the PDCCH , the field "Time locations of PDSCHs for SIB1/RMSI" occupies ⁇ 0, 1, ..., X ⁇ bits, and X is any one of ⁇ 0, 1, 2, 3, 4 ⁇ ;
- the DCI is DCI 1_0 scrambled with a Cyclic Redundancy Check (CRC) by System Information-Radio Network Temporary Identifier SI-RNTI.
- CRC Cyclic Redundancy Check
- the subcarrier spacing SCS of the first SSB satisfies: 120 kHz KHz, 240 kHz, 480 kHz or 960 kHz; the SCS of the PDCCH satisfies: 120 kHz KHz, 240 kHz, 480 kHz or 960KHz.
- a communication device includes a processor and a transceiver. specific:
- a processor configured to determine, according to the first signal information block SSB, a first listening opportunity of a physical downlink control channel PDCCH, where the PDCCH is used to carry a control resource set coreset#0;
- the processor is further configured to, if the transceiver does not monitor the PDCCH at the first monitoring opportunity, the UE determines according to the first SSB and the SSB having a quasi-co-located QCL relationship with the first SSB the second monitoring occasion of the PDCCH;
- the transceiver is further configured to monitor the PDCCH on the second monitoring opportunity.
- the second listening opportunity includes a target system frame number SFN c and a target time slot number n c , wherein,
- the time slot difference between the time slot position of the first SSB and the second listening opportunity is 0, 1, M/2, or (M/2)-1, where M is the number of actually sent SSBs or the Q value, and the number of actually sent SSBs is determined by the "ssb-PositionsInBurst" parameter carried in SIB1.
- the Q value is Takes any of the values 1, 2, 4, 8, 16, 32, 64.
- the start symbol index of the second listening opportunity is located in the time slot of the SSB with the QCL relationship, between symbol #0 and symbol #3 or between the previous time any one of symbol #12 of a slot to symbol #1 in the next slot;
- the start symbol index of the second listening opportunity is located in the time slot of the SSB with the QCL relationship, between symbol #0 and symbol #7, or between symbol #10 of the previous time slot and the next time slot any of the symbols #3 in the slot;
- the number of symbols occupied by the PDCCH in the second listening opportunity is any one of ⁇ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ⁇ .
- the processor is further configured to, when the number of the PDCCHs is greater than 1, determine a plurality of the second listening occasions according to the first offset and the start symbol index of the second listening occasion; wherein, the first The offset is the offset in the time domain between the adjacent PDCCHs in the time domain.
- the first offset and/or the number of the PDCCH are determined by the parameters "subCarrierSpacingCommon", “ssb-SubcarrierOffset” and/or “SearchSpaceZero" in the main information block MIB Indicates, or, the first offset and/or the number of the PDCCH is configured in the UE.
- the method further includes:
- the processor is further configured to determine a time domain position of a target physical downlink shared channel PDSCH according to the PDCCH, where the target PDSCH carries a system information block SIB1/remaining minimum system information RMSI.
- the PDCCH corresponds to multiple different time domain locations
- the target PDSCH corresponds to a plurality of different time domain positions
- a said PDCCH indicates a time domain position of said target PDSCH, or,
- One of the PDCCHs indicates the time domain positions of multiple target PDSCHs.
- the UE determining the time domain position of the target PDSCH according to the PDCCH includes:
- the UE determines, according to the PDCCH, the starting symbol position S of the target PDSCH, the number of symbols L occupied by the target PDSCH in the time domain, the number of the time slot where the PDCCH is located and the number of the time slot where the PDSCH is located. interval K0.
- the value of S satisfies any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8 ⁇
- the value of L satisfies the set ⁇ 2, 3, 4, 5, 6 , any one of 7, 8 ⁇
- the value of K0 satisfies one or more of ⁇ 0, 1, M/2, M/2+1 ⁇ ;
- the value of S satisfies any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8, 9, 10 ⁇
- the value of L satisfies the set ⁇ 2, 3, 4, 5, 6, 7, 8 ⁇
- Any one of the values of K0 satisfies one or more of ⁇ 0, 1, (m ⁇ M/2) ⁇ ;
- the value of S and L satisfies any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8, 9, 10 ⁇ , and the value of L satisfies the set ⁇ 2, 3, 4, 5, 6, 7, 8 ⁇ , the value of K0 satisfies one or more of ⁇ 0, 1, M/2, M/2+1 ⁇ ;
- the value of S satisfies any one of the set ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇ , and the value of L satisfies the set ⁇ 2, 3, Any one of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ⁇ , the value of K0 satisfies ⁇ 0, 1, M/2, M/2+1 ⁇ one or more of;
- the value of S satisfies any one of the set ⁇ 2, 3, 4, 5, 6, 7, 8, 9, 10 ⁇
- the value of L satisfies the set ⁇ 2, 3, 4, 5, 6, 7, 8 ⁇
- Any one of the values of K0 satisfies one or more of ⁇ 0, 1, M/2, M/2+1 ⁇ ;
- the value of S satisfies any one of the set ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇ , and the value of L satisfies the set ⁇ 2, 3, Any one of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ⁇ , the value of K0 satisfies ⁇ 0, 1, M/2, M/2+1 ⁇ one or more of;
- the value of S satisfies any one of the set ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ⁇
- the value of L satisfies ⁇ 0, 1, Any one of 2, 3, 4, 5, 6, 7, 8 ⁇
- the value of K0 satisfies the set ⁇ -1-M/2, -M/2, 1-M/2, -1, 0, 1, One or more of M/2-1, M/2, and M/2+1 ⁇ , where M is the number of actually sent SSBs or the Q value.
- the processor is further configured for the UE to determine the time domain position of the target PDSCH according to the downlink control information DCI carried in the PDCCH monitored by the second monitoring opportunity.
- the processor is further configured to obtain the number of the target PDSCH and the time domain information of the target PDSCH according to the newly added field "Time locations of PDSCHs for SIB1/RMSI" in the downlink control information DCI carried in the PDCCH,
- the field "Time locations of PDSCHs for SIB1/RMSI" occupies ⁇ 0, 1, ..., X ⁇ bits, and X is any one of ⁇ 0, 1, 2, 3, 4 ⁇ ;
- the DCI is DCI 1_0 scrambled with a Cyclic Redundancy Check (CRC) by System Information-Radio Network Temporary Identifier SI-RNTI.
- CRC Cyclic Redundancy Check
- the subcarrier spacing SCS of the first SSB satisfies: 120 kHz KHz, 240 kHz, 480 kHz or 960 kHz; the SCS of the PDCCH satisfies: 120 kHz KHz, 240 kHz, 480 kHz or 960KHz.
- the present application also provides a communication system, which includes at least one or more of a network device or a terminal device.
- Embodiments of the present application further provide a computer-readable storage medium, including instructions, which, when run on a computer, enable the computer to control a network device or a terminal device to execute any one of the implementations shown in the foregoing method embodiments.
- An embodiment of the present application also provides a computer program product, the computer program product includes computer program code, and when the computer program code runs on a computer, the computer can execute any one of the implementations shown in the foregoing method embodiments.
- An embodiment of the present application further provides a chip system, including a memory and a processor, the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the chip executes any one of the implementations shown in the foregoing method embodiments. Way.
- Embodiments of the present application further provide a chip system, including a processor, where the processor is configured to call and run a computer program, so that the chip executes any one of the implementations shown in the foregoing method embodiments.
- the device embodiments described above are only schematic, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units , that is, it can be located in one place, or it can be distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
- the connection relationship between the modules indicates that there is a communication connection between them, which may be specifically implemented as one or more communication buses or signal lines.
- the computer program product includes one or more computer instructions.
- the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
- Computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, computer instructions may be transferred from a website site, computer, network device, terminal device, network device , computing equipment or data center to another website site, computer, network equipment, terminal equipment, network device, computing device or data center for transmission.
- the computer-readable storage medium can be any available medium that can be stored by a computer or a data storage device such as a network device, a data center, etc., which includes an integration of one or more available media.
- Useful media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), and the like.
- the disclosed system, apparatus and method may be implemented in other manners.
- the apparatus embodiments described above are only illustrative.
- the division of units is only a logical function division.
- there may be other division methods for example, multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
- the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
- Units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
- each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
- the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
- the integrated unit if implemented as a software functional unit and sold or used as a stand-alone product, may be stored in a computer-readable storage medium.
- the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods in the various embodiments of the present application.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请实施例公开一种信道监听方法,其中,该方法包括:终端设备UE根据第一信号信息块SSB,确定物理下行控制信道PDCCH的第一监听时机,PDCCH用于携带控制资源集coreset#0;若UE在第一监听时机上未监听到PDCCH,则UE根据第一SSB和与第一SSB具有准共址QCL关系的SSB确定PDCCH的第二监听时机;UE在第二监听时机上监听PDCCH。网络侧无需发送额外的SSB,以降低网络设备发送SSB的延迟。终端根据与PDCCH具有关联关系的SSB,确定该PDCCH的监听时机(第二监听时机)。在第一监听时机无法监听PDCCH的情况下,通过在第二监听时机监听PDCCH,以保证终端可以成功监听到PDCCH。
Description
本申请涉及通信技术领域,尤其涉及一种信道监听方法以及相关装置。
用户设备(user equipment,UE)也称为终端设备,与网络设备例如基站(gNodeB,gNB)在建立通信之前的初始接入过程中,基站广播信号信息块(synchronization signal block,SSB),UE首先通过搜索并解调SSB,以获取用于初始接入的重要信息。UE解调SSB后,可以确定物理下行控制信道(physical downlink control channel,PDCCH)的监听时机(monitoring occasions),通过在该监听时机监听PDCCH,可以得到物理下行共享信道(PDSCH,Physical Downlink Shared Channel)。
在第五代移动通信技术(5th generation mobile networks,5G)的背景框架下,将部署在共享频段的技术统一叫做无线非授权频段(new radio unlicensed,NRU)。相关法规规定,工作在共享频段上的系统需要支持先听后说(listen before talk,LBT)机制。当基站在某个PDCCH上进行LBT时,UE解调SSB得到该PDCCH的监听时机后,无法监听到PDCCH。
发明内容
有鉴于此,本申请实施例第一方面提供了信道监听方法,包括:
终端设备UE根据第一信号信息块SSB,确定物理下行控制信道PDCCH的第一监听时机,PDCCH用于携带控制资源集coreset#0;
若UE在第一监听时机上未监听到PDCCH,则UE根据第一SSB和与第一SSB具有准共址QCL关系的SSB确定PDCCH的第二监听时机;
UE在第二监听时机上监听PDCCH。
本申请实施例中,网络侧无需发送额外的SSB,以降低网络设备发送SSB的延迟。终端通过多种方式,根据与PDCCH具有关联关系的SSB,确定该PDCCH的监听时机(第二监听时机)。在第一监听时机无法监听PDCCH的情况下,通过在第二监听时机监听PDCCH,以保证终端可以成功监听到PDCCH。
在一种可能的实现方式中,第二监听时机包括目标系统帧号SFN
c和目标时隙号n
c,其中,
SFN
c=SFN
ssb,i或者SFN
c=SFN
QCLed_ssb,i,SFN
ssb,i为第一SSB所在系统帧号,SFN
QCLed_ssb,i为QCLed_SSB的系统帧号,QCLed_SSB与第一SSB具有QCL关系,QCL关系指示不同的候选SSB索引上的多个SSB具有相同的索引;
n
c=n
ssb,i,或者,n
c=n
QCLed_ssb,i,或者n
c=n
ssb,i-1,或者n
c=n
ssb,i+1,或者n
c=n
QCLed_ssb,i-1,其中,n
ssb,i为第一SSB的时隙号,n
QCLed_ssb,i为QCLed_SSB的时隙号。
本申请实施例中,通过多种方式可以确定第二监听时机,提升方案的实现灵活性。
在一种可能的实现方式中,第一SSB的时隙位置与第二监听时机相差时隙为0、1、M/2或(M/2)-1,其中,M为实际发送的SSB的数量或者Q值,实际发送的SSB的数量通过SIB1中携带的“ssb-PositionsInBurst”参数确定。
在一种可能的实现方式中,第二监听时机的起始符号索引位于具有QCL关系的SSB的时隙内,符号#0到符号#3之间或者介于前一个时隙的符号#12到下一个时隙中符号#1中的任意一个;
或者,第二监听时机的起始符号索引位于具有QCL关系的SSB的时隙内,符号#0到符号#7之间或者介于前一个时隙的符号#10到下一个时隙中符号#3中的任意一个;
第二监听时机中PDCCH占用的符号数量为{1,2,3,4,5,6,7,8,9,10,11,12}中的任意一个。
在一种可能的实现方式中,当PDCCH的数量大于1时,UE根据第一偏移量和第二监听时机的起始符号索引确定多个第二监听时机;
其中,第一偏移量为时域上相邻的PDCCH之间时域的偏移量。
在一种可能的实现方式中,第一偏移量和/或PDCCH的数量,由主信息块MIB中的参数“subCarrierSpacingCommon”、“ssb-SubcarrierOffset”和/或“SearchSpaceZero”指示,或者,第一偏移量和/或PDCCH的数量配置于UE中。
在一种可能的实现方式中,UE在第二监听时机的监听PDCCH之后,还包括:
UE根据PDCCH确定目标物理下行共享信道PDSCH的时域位置,目标PDSCH携带系统信息块SIB1/剩余最小系统信息RMSI。
在一种可能的实现方式中,PDCCH对应于多个不同的时域位置;
目标PDSCH对应于多个不同的时域位置;
一个PDCCH指示一个目标PDSCH的时域位置,或者,
一个PDCCH指示多个目标PDSCH的时域位置。
本申请实施例中,PDCCH可以指示一个或多个目标PDSCH,以节省对通信资源的占用。
在一种可能的实现方式中,UE根据PDCCH确定目标PDSCH的时域位置包括:
UE根据PDCCH确定目标PDSCH的起始符号位置S、目标PDSCH在时域上占用的符号个数L、PDCCH所在时隙号和PDCCH所在时隙号之间的间隔K0。
在一种可能的实现方式中,S取值满足集合{2,3,4,5,6,7,8}中任意一个,L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0取值满足{0,1,M/2,M/2+1}中的一个或多个;
或,S取值满足集合{2,3,4,5,6,7,8,9,10}中任意一个,L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0取值满足{0,1,(m×M/2)}中的一个或多个;
或,S和L取值满足集合{2,3,4,5,6,7,8,9,10}中任意一个,L取值满足集 合{2,3,4,5,6,7,8}中任意一个,K0取值满足{0,1,M/2,M/2+1}中的一个或多个;
或,S取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足集合{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}中任意一个,K0取值满足{0,1,M/2,M/2+1}中的一个或多个;
或,S取值满足集合{2,3,4,5,6,7,8,9,10}中任意一个,L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0的取值满足{0,1,M/2,M/2+1}中的一个或者多个;
或,S取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足集合{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}中任意一个,K0的取值满足{0,1,M/2,M/2+1}中的一个或者多个;
或,S的取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足{0,1,2,3,4,5,6,7,8}中任意一个,K0的取值满足集合{-1-M/2,-M/2,1-M/2,-1,0,1,M/2-1,M/2,M/2+1}中的一个或者多个,M为实际发送的SSB的数量或者Q值。
在一种可能的实现方式中,UE根据PDCCH确定目标PDSCH的时域位置,包括:
UE根据第二监听时机监听的PDCCH中携带的下行控制信息DCI,确定目标PDSCH的时域位置。
在一种可能的实现方式中,UE根据PDCCH确定目标PDSCH的时域位置,包括:
UE根据PDCCH中携带的下行控制信息DCI中的新增域,比如“Time locations of PDSCHs for SIB1/RMSI”,获取目标PDSCH的数量和目标PDSCH的时域信息,域“Time locations of PDSCHs for SIB1/RMSI”占用{0,1,…,X}比特,X取值为{0,1,2,3,4}中任意一个;
或者,根据PDCCH中携带的DCI中的域“Time domain resource assignment”,获取目标PDSCH的数量和目标PDSCH的时域信息,域“Time domain resource assignment”占用比特数扩展至大于4比特;
DCI为通过系统信息-无线网络临时标识符SI-RNTI对循环冗余校验(CRC)加扰的DCI1_0。
在一种可能的实现方式中,第一SSB的子载波间隔SCS满足:120千赫兹KHz、240KHz、480KHz或960KHz;
PDCCH的SCS满足:120千赫兹KHz、240KHz、480KHz或960KHz。
第二方面,本申请实施例提出一种终端设备,包括处理模块与收发模块:
处理模块901,用于根据第一信号信息块SSB,确定物理下行控制信道PDCCH的第一监听时机,PDCCH用于携带控制资源集coreset#0;
处理模块901,还用于若收发模块902在第一监听时机上未监听到PDCCH,则UE根据第一SSB和与第一SSB具有准共址QCL关系的SSB确定PDCCH的第二监听时机;
收发模块902,还用于在第二监听时机上监听PDCCH。
在本申请的一些可选实施例中,第二监听时机包括目标系统帧号SFN
c和目标时隙号n
c,其中,
SFN
c=SFN
ssb,i或者SFN
c=SFN
QCLed_ssb,i,SFN
ssb,i为第一SSB所在系统帧号,SFN
QCLed_ssb,i为QCLed_SSB的系统帧号,QCLed_SSB与第一SSB具有QCL关系,QCL关系指示不同的候选SSB索引上的多个SSB具有相同的索引;
n
c=n
ssb,i,或者,n
c=n
QCLed_ssb,i,或者n
c=n
ssb,i-1,或者n
c=n
ssb,i+1,或者n
c=n
QCLed_ssb,i-1,其中,n
ssb,i为第一SSB的时隙号,n
QCLed_ssb,i为QCLed_SSB的时隙号。
在本申请的一些可选实施例中,第一SSB的时隙位置与第二监听时机相差时隙为0、1、M/2或(M/2)-1,其中,M为实际发送的SSB的数量或者Q值,实际发送的SSB的数量通过SIB1中携带的“ssb-PositionsInBurst”参数确定。
在本申请的一些可选实施例中,第二监听时机的起始符号索引位于具有QCL关系的SSB的时隙内,符号#0到符号#3之间或者介于前一个时隙的符号#12到下一个时隙中符号#1中的任意一个;
或者,第二监听时机的起始符号索引位于具有QCL关系的SSB的时隙内,符号#0到符号#7之间或者介于前一个时隙的符号#10到下一个时隙中符号#3中的任意一个;
第二监听时机中PDCCH占用的符号数量为{1,2,3,4,5,6,7,8,9,10,11,12}中的任意一个。
在本申请的一些可选实施例中,
处理模块901,还用于当PDCCH的数量大于1时,根据第一偏移量和第二监听时机的起始符号索引确定多个第二监听时机;其中,第一偏移量为时域上相邻的PDCCH之间时域的偏移量。
在本申请的一些可选实施例中,第一偏移量和/或PDCCH的数量,由主信息块MIB中的参数“subCarrierSpacingCommon”、“ssb-SubcarrierOffset”和/或“SearchSpaceZero”指示,或者,第一偏移量和/或PDCCH的数量配置于UE中。
在本申请的一些可选实施例中,UE在第二监听时机的监听PDCCH之后,还包括:
处理模块901,还用于根据PDCCH确定目标物理下行共享信道PDSCH的时域位置,目标PDSCH携带系统信息块SIB1/剩余最小系统信息RMSI。
在本申请的一些可选实施例中,PDCCH对应于多个不同的时域位置;
目标PDSCH对应于多个不同的时域位置;
一个PDCCH指示一个目标PDSCH的时域位置,或者,
一个PDCCH指示多个目标PDSCH的时域位置。
在本申请的一些可选实施例中,UE根据PDCCH确定目标PDSCH的时域位置包括:
UE根据PDCCH确定目标PDSCH的起始符号位置S、目标PDSCH在时域上占用的符号个数L、PDCCH所在时隙号和PDCCH所在时隙号之间的间隔K0。
在本申请的一些可选实施例中,S取值满足集合{2,3,4,5,6,7,8}中任意一个,L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0取值满足{0,1,M/2,M/2+1}中的一个或多个;
或,S取值满足集合{2,3,4,5,6,7,8,9,10}中任意一个,L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0取值满足{0,1,(m×M/2)}中的一个或多个;
或,S和L取值满足集合{2,3,4,5,6,7,8,9,10}中任意一个,L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0取值满足{0,1,M/2,M/2+1}中的一个或多个;
或,S取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足集合{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}中任意一个,K0取值满足{0,1,M/2,M/2+1}中的一个或多个;
或,S取值满足集合{2,3,4,5,6,7,8,9,10}中任意一个,L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0的取值满足{0,1,M/2,M/2+1}中的一个或者多个;
或,S取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足集合{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}中任意一个,K0的取值满足{0,1,M/2,M/2+1}中的一个或者多个;
或,S的取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足{0,1,2,3,4,5,6,7,8}中任意一个,K0的取值满足集合{-1-M/2,-M/2,1-M/2,-1,0,1,M/2-1,M/2,M/2+1}中的一个或者多个,M为实际发送的SSB的数量或者Q值。
在本申请的一些可选实施例中,
处理模块901,还用于UE根据第二监听时机监听的PDCCH中携带的下行控制信息DCI,确定目标PDSCH的时域位置。
在本申请的一些可选实施例中,
处理模块901,还用于根据PDCCH中携带的下行控制信息DCI中的新增域,比如“Time locations of PDSCHs for SIB1/RMSI”,获取目标PDSCH的数量和目标PDSCH的时域信息,域“Time locations of PDSCHs for SIB1/RMSI”占用{0,1,…,X}比特,X取值为{0,1,2,3,4}中任意一个;
或者,根据PDCCH中携带的DCI中的域“Time domain resource assignment”,获取目标PDSCH的数量和目标PDSCH的时域信息,域“Time domain resource assignment”占用比特数扩展至大于4比特;
DCI为通过系统信息-无线网络临时标识符SI-RNTI对循环冗余校验(CRC)加扰的DCI1_0。
在本申请的一些可选实施例中,第一SSB的子载波间隔SCS满足:120千赫兹KHz、240KHz、480KHz或960KHz;PDCCH的SCS满足:120千赫兹KHz、240KHz、480KHz或960KHz。
第三方面,本申请实施例提出一种通信装置,包括处理器和收发器。具体的:
处理器,用于根据第一信号信息块SSB,确定物理下行控制信道PDCCH的第一监听时机,PDCCH用于携带控制资源集coreset#0;
处理器,还用于若收发器在第一监听时机上未监听到PDCCH,则UE根据第一SSB和与第一SSB具有准共址QCL关系的SSB确定PDCCH的第二监听时机;
收发器,还用于在第二监听时机上监听PDCCH。
在本申请的一些可选实施例中,第二监听时机包括目标系统帧号SFN
c和目标时隙号n
c,其中,
SFN
c=SFN
ssb,i或者SFN
c=SFN
QCLed_ssb,i,SFN
ssb,i为第一SSB所在系统帧号,SFN
QCLed_ssb,i为QCLed_SSB的系统帧号,QCLed_SSB与第一SSB具有QCL关系,QCL关系指示不同的候选SSB索引上的多个SSB具有相同的索引;
n
c=n
ssb,i,或者,n
c=n
QCLed_ssb,i,或者n
c=n
ssb,i-1,或者n
c=n
ssb,i+1,或者n
c=n
QCLed_ssb,i-1,其中,n
ssb,i为第一SSB的时隙号,n
QCLed_ssb,i为QCLed_SSB的时隙号。
在本申请的一些可选实施例中,第一SSB的时隙位置与第二监听时机相差时隙为0、1、M/2或(M/2)-1,其中,M为实际发送的SSB的数量或者Q值,实际发送的SSB的数量通过SIB1中携带的“ssb-PositionsInBurst”参数确定。
在本申请的一些可选实施例中,第二监听时机的起始符号索引位于具有QCL关系的SSB的时隙内,符号#0到符号#3之间或者介于前一个时隙的符号#12到下一个时隙中符号#1中的任意一个;
或者,第二监听时机的起始符号索引位于具有QCL关系的SSB的时隙内,符号#0到符号#7之间或者介于前一个时隙的符号#10到下一个时隙中符号#3中的任意一个;
第二监听时机中PDCCH占用的符号数量为{1,2,3,4,5,6,7,8,9,10,11,12}中的任意一个。
在本申请的一些可选实施例中,
处理器,还用于当PDCCH的数量大于1时,根据第一偏移量和第二监听时机的起始符号索引确定多个第二监听时机;其中,第一偏移量为时域上相邻的PDCCH之间时域的偏移量。
在本申请的一些可选实施例中,第一偏移量和/或PDCCH的数量,由主信息块MIB中的参数“subCarrierSpacingCommon”、“ssb-SubcarrierOffset”和/或“SearchSpaceZero”指示,或者,第一偏移量和/或PDCCH的数量配置于UE中。
在本申请的一些可选实施例中,UE在第二监听时机的监听PDCCH之后,还包括:
处理器,还用于根据PDCCH确定目标物理下行共享信道PDSCH的时域位置,目标PDSCH携带系统信息块SIB1/剩余最小系统信息RMSI。
在本申请的一些可选实施例中,PDCCH对应于多个不同的时域位置;
目标PDSCH对应于多个不同的时域位置;
一个PDCCH指示一个目标PDSCH的时域位置,或者,
一个PDCCH指示多个目标PDSCH的时域位置。
在本申请的一些可选实施例中,UE根据PDCCH确定目标PDSCH的时域位置包括:
UE根据PDCCH确定目标PDSCH的起始符号位置S、目标PDSCH在时域上占用的符号个数L、PDCCH所在时隙号和PDCCH所在时隙号之间的间隔K0。
在本申请的一些可选实施例中,S取值满足集合{2,3,4,5,6,7,8}中任意一个,L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0取值满足{0,1,M/2,M/2+1}中的一个或多个;
或,S取值满足集合{2,3,4,5,6,7,8,9,10}中任意一个,L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0取值满足{0,1,(m×M/2)}中的一个或多个;
或,S和L取值满足集合{2,3,4,5,6,7,8,9,10}中任意一个,L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0取值满足{0,1,M/2,M/2+1}中的一个或多个;
或,S取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足集合{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}中任意一个,K0取值满足{0,1,M/2,M/2+1}中的一个或多个;
或,S取值满足集合{2,3,4,5,6,7,8,9,10}中任意一个,L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0的取值满足{0,1,M/2,M/2+1}中的一个或者多个;
或,S取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足集合{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}中任意一个,K0的取值满足{0,1,M/2,M/2+1}中的一个或者多个;
或,S的取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足{0,1,2,3,4,5,6,7,8}中任意一个,K0的取值满足集合{-1-M/2,-M/2,1-M/2,-1,0,1,M/2-1,M/2,M/2+1}中的一个或者多个,M为实际发送的SSB的数量或者Q值。
在本申请的一些可选实施例中,
处理器,还用于UE根据第二监听时机监听的PDCCH中携带的下行控制信息DCI,确定目标PDSCH的时域位置。
在本申请的一些可选实施例中,
处理器,还用于根据PDCCH中携带的下行控制信息DCI中的新增域“Time locations of PDSCHs for SIB1/RMSI”,获取目标PDSCH的数量和目标PDSCH的时域信息,域“Time locations of PDSCHs for SIB1/RMSI”占用{0,1,…,X}比特,X取值为{0,1,2,3,4}中任意一个;
或者,根据PDCCH中携带的DCI中的域“Time domain resource assignment”,获取目标PDSCH的数量和目标PDSCH的时域信息,域“Time domain resource assignment”占 用比特数扩展至大于4比特;
DCI为通过系统信息-无线网络临时标识符SI-RNTI对循环冗余校验(CRC)加扰的DCI1_0。
在本申请的一些可选实施例中,第一SSB的子载波间隔SCS满足:120千赫兹KHz、240KHz、480KHz或960KHz;PDCCH的SCS满足:120千赫兹KHz、240KHz、480KHz或960KHz。
第四方面,本申请实施例提供了一种通信装置,该通信装置可以实现上述第一方面所涉及方法中终端设备所执行的功能。该通信装置包括处理器、存储器以及与该处理器连接的接收器和与该处理器连接的发射器;该存储器用于存储程序代码,并将该程序代码传输给该处理器;该处理器用于根据该程序代码中的指令驱动该接收器和该发射器执行如上述第一方面的方法;接收器和发射器分别与该处理器连接,以执行上述各个方面的的方法中XX的操作。具体地,发射器可以进行发送的操作,接收器可以进行接收的操作。可选的,该接收器与发射器可以是射频电路,该射频电路通过天线实现接收与发送消息;该接收器与发射器还可以是通信接口,处理器与该通信接口通过总线连接,该处理器通过该通信接口实现接收或发送消息。
第五方面,本申请实施例提供一种通信装置,该通信装置可以包括网络设备或者芯片等实体,该通信装置包括:处理器,存储器;该存储器用于存储指令;该处理器用于执行该存储器中的该指令,使得该通信装置执行如前述第一方面中任一项的方法。
第六方面,本申请实施例提供了一种存储一个或多个计算机执行指令的计算机可读存储介质,当该计算机执行指令被处理器执行时,该处理器执行如前述第一方面中任意一种可能的实现方式。
第七方面,本申请实施例提供一种存储一个或多个计算机执行指令的计算机程序产品(或称计算机程序),当该计算机执行指令被该处理器执行时,该处理器执行前述第一方面中任意一种可能的实现方式。
第八方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持计算机设备实现上述方面中所涉及的功能。在一种可能的设计中,该芯片系统还包括存储器,该存储器,用于保存计算机设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第九方面,本申请提供了一种通信系统,该通信系统包括如上述第三方面或的通信装置。
图1a为本申请实施例提出的一种应用场景示意图;
图1b为本申请实施例提出的另一种应用场景示意图;
图2为本申请实施例中通信装置的硬件结构示意图;
图3为本申请实施例中QCLed_SSB的示意图;
图4为本申请实施例中复用pattern的示意图;
图5为现有技术中复用模式2的PDCCH/SSB示意图;
图6为本申请实施例中一种信道监听方法的实施例示意图;
图7为本申请实施例中PDCCH与PDSCH的时域位置示意图;
图8为本申请实施例中PDCCH与PDSCH的又一种时域位置示意图;
图9为本申请实施例中终端设备的一种实施例示意图。
本申请的说明书和权利要求书及上述附图中的术语“第一”、第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述。在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请的描述中,“至少一项”是指一项或者多项,“多项”是指两项或两项以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统,LTE频分双工(frequency division duplex,FDD)系统,LTE时分双工(time division duplex,TDD),通用移动通信系统(universal mobile telecommunication system,UMTS),全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,第五代(5th generation,5G)系统或NR以及未来的第六代通信系统等。
各种通信系统中由运营者运营的部分可称为运营商网络。运营商网络也可称为PLMN网络,是由政府或政府所批准的经营者,以为公众提供陆地移动通信业务为目的而建立和经营的网络,主要是移动网络运营商(mobile network operator,MNO)为用户提供移动宽带接入服务的公共网络。本申请实施例中所描述的运营商网络或PLMN网络,可以为符合第三代合作伙伴项目(3rd generation partnership project,3GPP)标准要求的网络,简称3GPP网络。通常3GPP网络由运营商来运营,包括但不限于第五代移动通信(5th-generation,5G)网络(简称5G网络),第四代移动通信(4th-generation,4G)网络(简称4G网络)或第三代移动通信技术(3rd-generation,3G)网络(简称3G网络)。还包括未来的6G网络。为了方便描述,本申请实施例中将以运营商网络(如移动网络运营商(mobile network operator,MNO)网络)为例进行说明。
为了便于理解本申请实施例,介绍本方案的一些应用场景。请参阅图1a,图1a为本申请实施例提出的一种应用场景示意图。在一种可选的实现方式中,本申请实施例涉及的 发送端可以是网络设备,接收端可以是终端设备。在另一种可选的实现方式中,本申请实施例涉及的发送端可以是终端设备,接收端可以是网络设备。
请参阅图1b,图1b为本申请实施例提出的另一种应用场景示意图。在另一种可选的实现方式中,本申请实施例涉及的发送端可以是终端设备,接收端可以是与该发送端建立通信连接的另一终端设备。
本申请实施例中,终端设备也可以称为用户设备(user equipment,UE)。本申请实施例中所涉及的终端设备作为一种具有无线收发功能的设备,可以经网络设备中的接入网设备与一个或多个核心网(core network,CN)进行通信。终端设备也可称为接入终端、终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线网络设备、用户代理或用户装置等。终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是蜂窝电话(cellular phone)、无绳电话、会话启动协议(session initiation protocol,SIP)电话、智能电话(smart phone)、手机(mobile phone)、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA),可以是具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它设备、车载设备、可穿戴设备、无人机设备或物联网、车联网中的终端、第五代移动通信(fifth generation,5G)网络以及未来网络中的任意形态的终端、中继用户设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端等,其中,中继用户设备例如可以是5G家庭网关(residential gateway,RG)。例如终端设备可以是虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。本申请实施例对此并不限定。
网络设备可以看作是运营商网络的子网络,是运营商网络中业务节点与终端设备之间的实施系统。终端设备要接入运营商网络,首先是经过网络设备,进而可通过网络设备与运营商网络的业务节点连接。本申请实施例中的网络设备,是一种为终端设备提供无线通信功能的设备,也可以称为(无线)接入网((radio)access network,(R)AN)。网络设备包括但不限于:5G系统中的下一代基站节点(next generation node base station,gNB)、长期演进(long term evolution,LTE)中的演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(base band unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、小基站设备(pico)、移动交换中心,或者未来网络中的网络设备等。采用不同无线接入技术的系统中,具备接入网设备功能的设备的名称可能会有所不同。
本申请提供的一种信道监听方法可以应用于各类通信系统中,例如,可以是物联网 (internet of things,IoT)、窄带物联网(narrow band internet of things,NB-IoT)、长期演进(long term evolution,LTE),也可以是第五代(5G)通信系统,还可以是LTE与5G混合架构、也可以是5G新无线(new radio,NR)系统以及未来通信发展中出现的新的通信系统等。本申请的5G通信系统可以包括非独立组网(non-standalone,NSA)的5G通信系统、独立组网(standalone,SA)的5G通信系统中的至少一种。通信系统还可以是公共陆地移动网络(public land mobile network,PLMN)网络、设备到设备(device-to-device,D2D)网络、机器到机器(machine to machine,M2M)网络或者其他网络。
此外,本申请实施例还可以适用于面向未来的其他通信技术,例如6G等。本申请描述的网络架构以及业务场景是为了更加清楚的说明本申请的技术方案,并不构成对本申请提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
图2为本申请实施例中通信装置的硬件结构示意图。该通信装置可以是本申请实施例中网络设备或终端设备的一种可能的实现方式。如图2所示,通信装置至少包括处理器204,存储器203,和收发器202,存储器203进一步用于存储指令2031和数据2032。可选的,该通信装置还可以包括天线206,I/O(输入/输出,Input/Output)接口210和总线212。收发器202进一步包括发射器2021和接收器2022。此外,处理器204,收发器202,存储器203和I/O接口210通过总线212彼此通信连接,天线206与收发器202相连。
处理器204可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit,CPU),也可以是专用处理器,例如但不限于,数字信号处理器(Digital Signal Processor,DSP),应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。该处理器204还可以是神经网络处理单元(neural processing unit,NPU)。此外,处理器204还可以是多个处理器的组合。特别的,在本申请实施例提供的技术方案中,处理器204可以用于执行,后续方法实施例中基于公共波束的通信方法的相关步骤。处理器204可以是专门设计用于执行上述步骤和/或操作的处理器,也可以是通过读取并执行存储器203中存储的指令2031来执行上述步骤和/或操作的处理器,处理器204在执行上述步骤和/或操作的过程中可能需要用到数据2032。
收发器202包括发射器2021和接收器2022,在一种可选的实现方式中,发射器2021用于通过天线206发送信号。接收器2022用于通过天线206之中的至少一根天线接收信号。特别的,在本申请实施例提供的技术方案中,发射器2021具体可以用于通过天线206之中的至少一根天线执行,例如,后续方法实施例中基于公共波束的通信方法应用于网络设备或终端设备时,网络设备或终端设备中接收模块或发送模块所执行的操作。
在本申请实施例中,收发器202用于支持通信装置执行前述的接收功能和发送功能。将具有处理功能的处理器视为处理器204。接收器2022也可以称为输入口、接收电路等,发射器2021可以称为发射器或者发射电路等。
处理器204可用于执行该存储器203存储的指令,以控制收发器202接收消息和/或发送消息,完成本申请方法实施例中通信装置的功能。作为一种实现方式,收发器202的功能可以考虑通过收发电路或者收发的专用芯片实现。本申请实施例中,收发器202接收 消息可以理解为收发器202输入消息,收发器202发送消息可以理解为收发器202输出消息。
存储器203可以是各种类型的存储介质,例如随机存取存储器(Random Access Memory,RAM),只读存储器(Read Only Memory,ROM),非易失性RAM(Non-Volatile RAM,NVRAM),可编程ROM(Programmable ROM,PROM),可擦除PROM(Erasable PROM,EPROM),电可擦除PROM(Electrically Erasable PROM,EEPROM),闪存,光存储器和寄存器等。存储器203具体用于存储指令2031和数据2032,处理器204可以通过读取并执行存储器203中存储的指令2031,来执行本申请方法实施例中所述的步骤和/或操作,在执行本申请方法实施例中操作和/或步骤的过程中可能需要用到数据2032。
可选的,该通信装置还可以包括I/O接口210,该I/O接口210用于接收来自外围设备的指令和/或数据,以及向外围设备输出指令和/或数据。
下面,介绍本申请实施例涉及的一些概念。
(1)、无线非授权频段(NRU,New Radio Unlicensed)。
作为授权频段的辅助,将通信系统(简称为系统)部署到共享授权频段上,不但可以提升通信系统的吞吐量,还可以解决频谱资源紧缺的问题。在5G背景下,将部署在共享授权频段的技术统一叫做无线非授权频段。当前约定工作在共享频段上的系统需要支持如下所有或者部分关键技术:先听后说机制(LBT,listen before talk)、发送功率控制(TPC,Transmit Power Control)和动态频谱选择(DFS,Dynamic Frequency Selection)。
其中,LBT机制是指接入设备(例如UE)在使用信道之前都要先获取目标信道所在频段上的干扰情况,只有当目标频段信道上的干扰水平小于等于预设门限值,才能使用该信道。TPC机制是指为了不影响其它接入设备的正常通信情况,工作在共享授权频段上的发送设备(例如UE或gNB)不能无限制的提升自身的发射功率。DFS机制是指工作在共享授权频段上系统需要及时的避开高优先级系统所在的频段,动态切换到干扰较低的频段上工作。
(2)、候选SSB索引/位置(Candidate SSB index/position)。
SSB主要由主同步信号(PSS,Primary Synchronization signal),辅同步信号(SSS,Secondary Synchronization signal)和物理广播信道(PBCH,Physical Broadcast Channel)组成,时频域上为跨越4个正交频分复用符号(OFDM,Orthogonal Frequency Division Multiplexing)和频域上20个资源块(RBs,Resource Blocks)的二维区域。
考虑到LBT机制的存在,R16协议定义了候选SSB索引/位置的概念(即Candidate SSB index/position),本申请实施例中将候选SSB索引/位置用
表示,它用来发送实际的SSB索引(l)。当候选SSB位置上的实际SSB索引满足公式
或
时,UE认为其对应同一个SSB索引,即这些SSB索引是满足准共址(QCL,Quasi Co-Location)关系。本申请实施例中为了便于描述,将与第一SSB具有QCL关系的SSB称为QCLed_SSB。
表示SSB中映射到物理广播信道PBCH的解调参考信号(DMRS,Demodulation Reference Signal)的序列。
为Q值,占用2比特(bits),取值{1,2,4,8},UE通过解调主信息块(MIB,Master Information Block)获取
为便于说明
和(l)的关系,假设
l=4,长度为5毫秒(ms)内QCLed_SSB示意图如下图3所示,图3为本申请实施例中QCLed_SSB的示意图。
图3中,第一列的0-19表示
每个数字分别表示发送的SSB索引。第二列的0-3表示按照QCL关系可以将第一列的20个SSB分为4组具有QCL关系的SSB。例如:第一列中索引号为0、4、8、12和16对应的SSB之间具有QCL关系。对UE来说,可使用同一个接收波束接收在不同候选位置上具有QCL关系的SSB索引。
(3)、准共址(QCL,Quasi Co-Location)关系。
网络设备通过PBCH向终端设备发送MIB信息。该MIB信息携带在SSB中,UE通过解调MIB信息可以获取用于解调系统信息块1/剩余最小系统信息(SIB1/RMSI,System Information Block 1/Remaining Minimum System Information)的控制信道的位置信息。该控制信息可定义为控制资源集#0(CORESET#0,Control Resource Set#0),通过类型0-物理下行控制信道(type0-PDCCH,type0-Physical Downlink Control Channel)传输。即网络设备通过type0-pdcch将CORESET#0发送给终端。对UE来说,通过搜索空间#0(search space#0)对CORESET#0进行搜索,便获取SIB1/RMSI中的信息。
初始接入过程中,网络设备使用同一发送波束将SSB、SSB中MIB指示的携带CORESET#0的type0-PDCCH、和携带SIB1/RMSI的物理下行共享信道(PDSCH,Physical Downlink Shared Channel)一起发送出来。UE可使用同一个接收波束接收PBCH信道、type0-PDCCH以及PDSCH。因此,PBCH信道、type0-PDCCH以及PDSCH可以理解成为具有准共址关系。
具体解调过程如下:
UE通过解调MIB中的“pdcch-ConfigSIB1”获取用于解调SIB1/RMSI的Type0-PDCCH信息。信息“pdcch-ConfigSIB1”包括字段“controlResourceSetZero”和“searchSpaceZero”。
参数“controlResourceSetZero”共有“0-15个值,每个值分别对应TS 38.213table13-1~13-10(v16.1.0)中的索引(index)。UE通过解调参数“controlResourceSetZero”获取不同的索引,进一步获取与该索引对应存在QCL关系的CORESET#0的复用模式(pattern)、频域上占用的RB数、时域上占用的符号数、该CORESET#0最低子载波编号与存在QCL关系SSB最低子载波编号之间偏移量(offset)。
示例性的,如表1所示:
表1
参数“searchSpaceZero”表示终端搜索CORESET#0的搜索空间位置。无线资源管理(RRC,Radio Resource Signal)中的配置对应的“0-15”个数值,对应于TS 38.213(v16.3.0)table 13.11~13.15。终端通过查找表1中对应的“索引”和SSB与QCL关系PDCCH/PDSCH的复用pattern,获取具体的时域搜索空间位置、搜索空间次数等信息。
示例性的,如表2所示:
表2
(4)、复用模式(multiplexing pattern)。
SSB与QCL关系PDCCH/PDSCH的复用pattern,也可表达成SSB与QCL关系CORESET#0/PDSCH的复用pattern。当前规定的三种复用pattern,请参阅图4,图4为本申请实施例中复用pattern的示意图。
pattern1:SSB和QCLed的CORESET#0/PDSCH以时分复用的形式存在,主要应用于 FR1和FR2中。本申请实施例中,为了便于描述,将与SSB具有QCL关系的CORESET#0/PDSCH称为,该SSB与该CORESET#0/PDSCH具有第一QCL关系。该CORESET#0还可以替换为承载该CORESET#0的PDCCH,即,该SSB与承载该CORESET#0的PDCCH具有第一QCL关系。
pattern2:SSB和QCLed的PDSCH之间以频分复用的形式存在。该SSB与该PDSCH具有第一QCL关系。
pattern3中,SSB和QCLed的CORESET#0/PDSCH之间以频分复用的形式存在。该SSB与该CORESET#0/PDSCH具有第一QCL关系。
其中,pattern2和pattern3主要用于FR2以及更高的频段。
请参阅图5,图5为现有技术中复用模式2的PDCCH/SSB示意图。以pattern2的复用模式中,PDCCH信道的子载波间隔(Sub-Carrier Spacing,SCS)为120千赫兹(KHz),SSB的SCS为240千赫兹为例。在PDCCH信道上,当符号#0上LBT成功时,符号#1~#3上的PDCCH(例如type0-PDCCH)能够成功发送出来。与符号#0上传输的type0-PDCCH无法发送,与该符号#0上发送的type0-PDCCH具有QCL关系的SSB#0,无法发送出来。原因是,具有QCL关系的PDCCH与SSB需要同时发送。
基于此,本申请实施例提出一种信道监听方法,终端设备UE根据第一信号信息块SSB,确定物理下行控制信道PDCCH的第一监听时机,所述PDCCH用于携带控制资源集coreset#0;所述UE在所述第一监听时机上监听所述PDCCH;若所述UE未监听到所述PDCCH,则所述UE根据所述第一SSB和与所述第一SSB具有准共址QCL关系的SSB确定所述PDCCH的第二监听时机;所述UE在所述第二监听时机上监听所述PDCCH。网络侧无需发送额外的SSB,以降低网络设备发送SSB的延迟。并且保证终端可以成功监听到PDCCH。
需要说明的是,本申请实施例中PDCCH的监听时机也可以称为PDCCH的搜索空间(searchSpace)数量。
下面结合附图说明本申请实施例的技术方案。请参阅图6,图6为本申请实施例中一种信道监听方法的实施例示意图。本申请实施例提出的一种信道监听方法包括:
601、终端设备根据第一SSB确定PDCCH的第一监听时机。
本实施例中,终端设备根据第一SSB中携带的MIB信息,确定PDCCH的第一监听时机。
可选的,该PDCCH可以是type0-PDCCH。
可选的,该PDCCH中携带控制资源集CORESET#0。
本实施例中,所述第一SSB的子载波间隔SCS满足:120千赫兹KHz、240KHz、480KHz或960KHz;所述PDCCH的SCS满足:120千赫兹KHz、240KHz、480KHz或960KHz。示例性的,第一SSB的SCS与PDCCH的SCS{(第一SSB的SCS),(PDCCH的SCS)}满足:{240KHz,120KHz}、{240KHz,480KHz}、{480KHz,960KHz}、{240KHz,240KHz}、{960KHz,960KHz}或{240KHz,960KHz}等。
602、当终端设备在第一监听时机上未监听到该PDCCH时,则终端设备根据第一SSB和与第一SSB具有QCL关系的SSB确定第二监听时机。
本实施例中,当终端设备在第一监听时机上未监听到该PDCCH时,则终端设备根据第一SSB和与第一SSB具有准共址QCL关系的SSB确定该PDCCH的第二监听时机。该与第一SSB具有QCL关系的SSB在本申请实施例中为了便于描述,称为QCLed_SSB。该QCL关系指示不同的候选SSB索引上的多个SSB具有相同的索引。例如图3中,第一列中索引号为0、4、8、12和16对应的SSB之间具有QCL关系,则以索引号0的SSB作为第一SSB,索引号4、8、12与16的SSB为QCLed_SSB。
具体确定第二监听时机的方法如下:
所述第二监听时机包括目标系统帧号SFN
c和目标时隙号n
c,其中,
SFN
c=SFN
ssb,i或者SFN
c=SFN
QCLed_ssb,i,所述SFN
ssb,i为所述第一SSB所在系统帧号,所述SFN
QCLed_ssb,i为QCLed_SSB的系统帧号,所述QCLed_SSB与所述第一SSB具有QCL关系,所述QCL关系指示不同的候选SSB索引上的多个SSB具有相同的索引;
n
c=n
ssb,i,或者,n
c=n
QCLed_ssb,i,或者n
c=n
ssb,i-1,或者n
c=n
ssb,i+1,或者n
c=n
QCLed_ssb,i-1,其中,所述n
ssb,i为所述第一SSB的时隙号,所述n
QCLed_ssb,i为所述QCLed_SSB的时隙号,i表示具有QCL关系的多个SSB的同一个索引。
所述第一SSB的时隙位置与所述第二监听时机相差时隙为0、1、M/2或(M/2)-1,其中,M为实际发送的SSB的数量或者Q值,所述实际发送的SSB的数量通过SIB1中携带的“ssb-PositionsInBurst”参数确定。
具体的,该实际发送的SSB的数量,指的是在一定时间窗口内网络设备发送的SSB的数量。可选的,该时间窗口可以是突发集窗口。其中,所述突发集窗口的取值为{0.5毫秒,1毫秒,2毫秒,3毫秒,4毫秒,5毫秒}。
可选的,该Q值可以是
该
取值1,2,4,8,16,32,64中的任意一个。
由主信息块MIB中的参数“subCarrierSpacingCommon”、“Ssb-SubcarrierOffset”和/或“SearchSpaceZero”指示。具体如下:当
取值为1,2,4,或8时,该
由主信息块MIB中的参数“Ssb-SubcarrierOffset”或“subCarrierSpacingCommon”指示。“Ssb-SubcarrierOffset”或“subCarrierSpacingCommon”分别占用1比特。当
取值为16,32,或64时,该
由“subCarrierSpacingCommon”、“Ssb-SubcarrierOffset”和“SearchSpaceZero”联合指示。
所述第二监听时机的起始符号索引位于具有所述QCL关系的SSB的时隙内,符号#0到符号#3之间或者介于前一个时隙的符号#12到下一个时隙中符号#1中的任意一个;
或者,所述第二监听时机的起始符号索引位于具有所述QCL关系的SSB的时隙内,符号#0到符号#7之间或者介于前一个时隙的符号#10到下一个时隙中符号#3中的任意一个;
所述第二监听时机中所述PDCCH占用的符号数量为{1,2,3,4,5,6,7,8,9,10,11,12}中的任意一个。
当需要监听的PDCCH的数量大于1时,UE根据第一偏移量和所述第二监听时机的起始符号索引确定多个所述第二监听时机,其中,所述第一偏移量为时域上相邻的所述PDCCH之间时域的偏移量。
具体的,所述第一偏移量和/或所述PDCCH的数量,由主信息块MIB中的参数“subCarrierSpacingCommon”、“ssb-SubcarrierOffset”和/或“SearchSpaceZero”指示,或者,所述第一偏移量和/或所述PDCCH的数量配置于所述UE中。
该第一偏移量、第二监听时机的起始符号索引与PDCCH的数量,可以由网络设备通过MIB消息配置,例如:MIB中参数“PDCCH-ConfigSIB1”中的“SearchSpaceZero”的4个比特(bits)中的1、2、3或者全部4个bits来表示。
或者,预先配置于终端设备与网络设备中,该第一偏移量、第二监听时机的起始符号索引与PDCCH的数量为固定值。
或者,终端设备通过计算确定该第一偏移量与第二监听时机的起始符号索引。示例性的,该计算方法如以下伪代码(或者条件):
If start symbol of type0-PDCCH<number of symbols in one slot×length of a frame
SFN
c=SFN
c_SSB,i
Else
SFN
c=SFN
ssb,i+floor(Start symbol of type0-PDCCH/number of symbols in one slot×length of a frame);
n={floor(start symbol of type0-PDCCH/number of symbols in one slot),ceil(start symbol of type0-PDCCH/number of symbols in one slot)}-length of a frame×(SFN
c-SFN
c_SSB,i);
n
c=n-n
ssb,i.”
If start symbol of type0-PDCCH<number of symbols in one slot×length of a frame
SFN
c=SFN
ssb,i
else
SFN
c=SFN
ssb,i+floor(start symbol of type0-PDCCH/(number of symbols in one slot×length of a frame));
n={floor(start symbol of type0-PDCCH/number of symbols in one slot),ceil(start symbol of type0-PDCCH/number of symbols in one slot)}-length of a frame×(SFN
c-SFN
ssb,i);
或者,终端设备中维护一份第一偏移量与第二监听时机的起始符号索引关联关系的表格。终端设备根据网络设备配置的索引,在该表格中确定与该索引对应的第一偏移量和第二监听时机的起始符号索引。示例性的,该表格如表3所示:
表3
需要说明的是,根据SSB模式(SSB pattern)的不同,或者,PDCCH的SCS与SSB的SCS的不同,终端设备确定第二监听时机的方式存在差异,在后续实施例中进行详细说明。SSB pattern指的是SSB在符号级(symbol-level)的位置,不同的SSB pattern中,一个时隙(slot)内包含的SSB个数也不一样。
603、终端设备在第二监听时机上监听该PDCCH。
604、终端设备根据该PDCCH确定PDSCH的时域位置。
本实施例中,当终端设备在第二监听时机上监听该PDCCH后,终端设备还可以根据该PDCCH确定PDSCH的时域位置。具体的,终端设备根据PDCCH中的DCI,确定该DCI所指示的PDSCH的时域位置。终端设备根据PDCCH中的DCI,确定目标PDSCH的起始符号位置S、目标PDSCH在时域上占用的符号个数L、PDCCH所在时隙号和所述PDSCH所在时隙号之间的间隔K0。
可选的,在某个时间窗口内,不同时域位置上的PDSCH通过冗余版本(RV,Redundancy Version)予以区分,即不同时域位置上的PDSCH的传输内容相同,但是冗余版本不同。
可选的,该时间窗口可以是突发集窗口,也可以是SCS为120KHz/240KHz下第一SSB相对于SCS为480KHz/960KHz的存在QCL关系的PDCCH在时域上所占用的符号长度,其值等于16个符号的长度。该PDCCH携带CORESET#0。
具体的,所述UE根据所述PDCCH确定目标物理下行共享信道PDSCH的时域位置,所述目标PDSCH携带系统信息块SIB1/剩余最小系统信息RMSI。
本实施例中,所述PDCCH对应于多个不同的时域位置;所述目标PDSCH对应于多个不同的时域位置;一个所述PDCCH指示一个所述目标PDSCH的时域位置,或者,一个所述PDCCH指示多个所述目标PDSCH的时域位置。需要说明的是,也可以称为:一个PDCCH调度一个或多个PDSCH。
所述UE根据所述PDCCH确定所述目标PDSCH的时域位置包括:
所述UE根据所述PDCCH确定所述目标PDSCH的起始符号位置S、所述目标PDSCH在时域上占用的符号个数L、所述PDCCH所在时隙号和所述PDSCH所在时隙号之间的间 隔K0。
在一种可选的实现方式中,S取值满足集合{2,3,4,5,6,7,8}中任意一个,L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0取值满足{0,1,M/2,M/2+1}中的一个或多个;
在另一种可选的实现方式中,S取值满足集合{2,3,4,5,6,7,8,9,10}中任意一个,L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0取值满足{0,1,(m×M/2)}中的一个或多个;
在另一种可选的实现方式中,S和L取值满足集合{2,3,4,5,6,7,8,9,10}中任意一个,L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0取值满足{0,1,M/2,M/2+1}中的一个或多个;
在另一种可选的实现方式中,S取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足集合{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}中任意一个,K0取值满足{0,1,M/2,M/2+1}中的一个或多个;
在另一种可选的实现方式中,S取值满足集合{2,3,4,5,6,7,8,9,10}中任意一个,L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0的取值满足{0,1,M/2,M/2+1}中的一个或者多个;
在另一种可选的实现方式中,S取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足集合{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}中任意一个,K0的取值满足{0,1,M/2,M/2+1}中的一个或者多个;
在另一种可选的实现方式中,S的取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足{0,1,2,3,4,5,6,7,8}中任意一个,K0的取值满足集合{-1-M/2,-M/2,1-M/2,-1,0,1,M/2-1,M/2,M/2+1}中的一个或者多个。M为实际发送的SSB的数量或者Q值。
可选的,目标PDSCH的数量和所述目标PDSCH的时域信息,所述UE根据所述PDCCH中携带的下行控制信息DCI中的新增域“Time locations of PDSCHs for SIB1/RMSI”获取,所述域“Time locations of PDSCHs for SIB1/RMSI”占用{0,1,…,X}比特,X取值为{0,1,2,3,4}中任意一个;
或者,UE根据所述PDCCH中携带的所述DCI中的域“Time domain resource assignment”,获取所述目标PDSCH的数量和所述目标PDSCH的时域信息,所述域“Time domain resource assignment”占用比特数扩展至大于4比特;
可选的,所述DCI为通过系统信息-无线网络临时标识符SI-RNTI对循环冗余校验(Cyclic Redundancy Check,CRC)加扰的DCI 1_0。
本申请实施例中,网络侧无需发送额外的SSB,以降低网络设备发送SSB的延迟。终端通过多种方式,根据与PDCCH具有关联关系的SSB,确定该PDCCH的监听时机(第二监听时机)。在第一监听时机无法监听PDCCH的情况下,通过在第二监听时机监听PDCCH,以保证终端可以成功监听到PDCCH。
下面,在图6所示实施例的基础上,结合不同的SSB pattern与SCS对上述实施例进行 展开说明。
(1)、复用模式2(pattern 2)。
一、当第一SSB的SCS与PDCCH的SCS满足{240KHz,120KHz}时。示例性的,240KHz下SSB pattern为{8,12,16,20,32,36,40,44}+56·n,n=0,1,2,3,5,6,7,8中的任意一个。
UE通过以下方式确定第二监听时机,所述第二监听时机包括目标系统帧号SFN
c和目标时隙号n
c,其中,
SFN
c=SFN
ssb,i或者SFN
c=SFN
QCLed_ssb,i,所述SFN
ssb,i为所述第一SSB所在系统帧号,所述SFN
QCLed_ssb,i为QCLed_SSB的系统帧号,所述QCLed_SSB与所述第一SSB具有QCL关系,所述QCL关系指示不同的候选SSB索引上的多个SSB具有相同的索引;
n
c=n
ssb,i,或者,n
c=n
QCLed_ssb,i,或者n
c=n
ssb,i-1,或者n
c=n
QCLed_ssb,i-1,其中,所述n
ssb,i为所述第一SSB的时隙号,所述n
QCLed_ssb,i为所述QCLed_SSB的时隙号,i表示具有QCL关系的多个SSB的同一个索引。
所述第一SSB的时隙位置与所述第二监听时机相差时隙为0、1、M/2或(M/2)-1,其中,M为实际发送的SSB的数量或者Q值。所述实际发送的SSB的时间窗口可以是突发集窗口,该突发集窗口的取值为{0.5ms,1ms,2ms,3ms,4ms,5ms}。
示例性的,请参阅表4与表5,表4与表5中的PDCCH监听时机指的是第二监听时机,该起始符号索引指的是第二监听时机的的起始符号索引。
表4
表5
需要说明的是,当第一SSB的SCS与PDCCH的SCS为{480KHz,240KHz}或{960KHz,480KHz}时,终端设备也可以通过上述表3与表4确定第二监听时机。
二、当第一SSB的SCS满足240KHz、480KHz、960KHz;PDCCH的SCS满足240KHz、480KHz、960KHz时。此时,一个时隙内包含两个SSB,在一个时隙内SSB之间的间隔(时域上)大于或等于2个符号。在一个时间窗口内(例如突发集窗口),可发送SSB的最大数量(或者发送SSB的候选SSB位置数量为64或128)。示例性的,SSB pattern为{2,8}+14·n,n=0,1,…,31或{2,8}+14·n,n=0,1,…,63。
当第一SSB的SCS与PDCCH的SCS满足{240KHz,480KHz}或{480KHz,960KHz}或{240KHz,960KHz}或{120KHz,480KHz}时:
UE通过以下方式确定第二监听时机,所述第二监听时机包括目标系统帧号SFN
c和目标时隙号n
c,其中,
SFN
c=SFN
ssb,i或者SFN
c=SFN
QCLed_ssb,i,所述SFN
ssb,i为所述第一SSB所在系统帧号,所述SFN
QCLed_ssb,i为QCLed_SSB的系统帧号,所述QCLed_SSB与所述第一SSB具有QCL关系,所述QCL关系指示不同的候选SSB索引上的多个SSB具有相同的索引;
n
c=n
ssb,i,或者,n
c=n
QCLed_ssb,i,其中,所述n
ssb,i为所述第一SSB的时隙号,所述n
QCLed_ssb,i为所述QCLed_SSB的时隙号,i表示具有QCL关系的多个SSB的同一个索引。
所述第一SSB的时隙位置与所述第二监听时机相差时隙为0、1、M/2或(M/2)-1,其中,M为实际发送的SSB的数量或者Q值。所述实际发送的SSB的时间窗口可以是突发集窗口,该突发集窗口的取值为{0.5ms,1ms,2ms,3ms,4ms,5ms}。
示例性的,请参阅表6,表6中的PDCCH监听时机指的是第二监听时机,该起始符号索引指的是第二监听时机的的起始符号索引。
表6
示例性的,当第一SSB的SCS与PDCCH的SCS满足{240KHz,480KHz}或{480KHz,960KHz}时,所述第二监听时机的起始符号索引位于具有所述QCL关系的SSB的时隙内,符号#0到符号#3之间或者介于前一个时隙的符号#12到下一个时隙中符号#1中的任意一个;所述第二监听时机中所述PDCCH占用的符号数量为{1,2,4}中的任意一个。
示例性的,当第一SSB的SCS与PDCCH的SCS满足{240KHz,960KHz}或{120KHz,480KHz}时,所述第二监听时机的起始符号索引位于具有所述QCL关系的SSB的时隙内,符号#0到符号#7之间或者介于前一个时隙的符号#10到下一个时隙中符号#3中的任意一个;所述第二监听时机中所述PDCCH占用的符号数量为{1,2,4,8}中的任意一个。
三、PDSCH的时域位置。
在不同的复用模式中,PDSCH的时域位置存在不同。因此,接下来介绍pattern2情况下,终端是如何确定PDSCH的时域位置(该PDSCH即本申请实施例中的目标PDSCH)。
(A)、第一SSB的SCS与PDCCH的SCS满足{240KHz,480KHz}或{480KHz,960KHz} 时。
(A.1)、第一SSB的SCS与PDCCH的SCS满足{240KHz,480KHz}下,SSB pattern为{8,12,16,20,32,36,40,44}+56·n,其中,n=0,1,2,3,5,6,7,8。
K0、S和L的取值为:S和L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0取值0、1或(M/2)。M为实际发送的SSB的数量或者Q值,所述目标PDSCH的起始符号位置S、所述目标PDSCH在时域上占用的符号个数L、所述PDCCH所在时隙号和所述PDSCH所在时隙号之间的间隔K0。
(A.2)、第一SSB的SCS与PDCCH的SCS满足240KHz和480KHz。
SSB pattern满足:一个时隙内包含两个SSB,SSB之间的间隔大于等于2个符号时,在一个时间窗口内,可发送SSB的最大数量或者发送SSB的候选最大位置数量为64或者128。比如:SSB pattern为{2,8}+14·n,n=0,1,…,31或:SSB pattern为{2,8}+14·n,n=0,1,…,63。K0、S和L的取值为:S取值满足集合{2,3,4,5,6,7,8,9,10}中任意一个,L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0取值0、1或(M/2)。
这里的“时间窗口”可表示突发集窗口,其取值{0.5ms,1ms,2ms,3ms,4ms,5ms}。
(B)、第一SSB的SCS与PDCCH的SCS满足{120KHz,480KHz}或{240KHz,960KHz}时。
(B.1)、SSB pattern为{8,12,16,20,32,36,40,44}+56·n,其中,n=0,1,2,3,5,6,7,8。S取值满足集合{2,3,4,5,6,7,8,9,10}中任意一个,L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0取值0、1或(M/2)。M为实际发送的SSB的数量或者Q值。M为实际发送的SSB的数量或者Q值,所述目标PDSCH的起始符号位置S、所述目标PDSCH在时域上占用的符号个数L、所述PDCCH所在时隙号和所述PDSCH所在时隙号之间的间隔K0。
(B.2)、一个时隙内包含两个SSB,在一个时隙内SSB之间的间隔(时域上)大于或等于2个符号。在一个时间窗口内(例如突发集窗口),可发送SSB的最大数量(或者发送SSB的候选SSB位置数量为64或128)。示例性的,SSB pattern为{2,8}+14·n,n=0,1,…,31或{2,8}+14·n,n=0,1,…,63。
K0、S和L的值可以是如下几种组合:S取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}中任意一个,K0取值0、1、M/2或M/2+1。M为实际发送的SSB的数量或者Q值。
比如,K0=0或者M/2时,S取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足集合{2,3,4,5,6,7,8,9,10}中任意一个;K0=1或者M/2+1时,S取值满足集合{4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足集合{2,3,4,5,6,7,8,9,10}中任意一个。
四、PDCCH指示PDSCH。
本申请实施例中,一个PDCCH中传输的下行控制信息(Downlink Control Information,DCI)可以指示一个目标PDSCH的时域位置。一个PDCCH中传输的DCI也可以指示多个目 标PDSCH的时域位置。
具体的,携带coreset#0的PDCCH的数量,与该PDCCH中传输的DCI所指示的PDSCH的数量存在一对一的关系或者一对多的关系。
可选的,在不同复用模式(pattern)下,在某个时间长度窗口内,位于不同时域位置的PDSCH通过冗余版本(RV,Redundancy Version)进行区分。即不同时域位置上传输的PDSCH的传输内容相同,但是不同时域位置上传输的PDSCH的冗余版本不同。该时间窗口的长度与第一SSB的SCS和PDCCH的SCS相关,例如,该时间窗口的长度可以是第一SSB的SCS相较于PDCCH的SCS在时域上占用的符号长度。例如该时间窗口的长度可以是16个符号。示例性的,请参阅表7。
表7
PDSCH的索引号 | PDSCH的时域位置(symbol) | 冗余版本号 |
1 | 1-2 | 1 |
2 | 5-6 | 2 |
3 | 9-10 | 3 |
下面,分别介绍一个PDCCH指示一个目标PDSCH的时域位置(即一个PDCCH对应一个目标PDSCH的时域位置),与一个PDCCH指示多个目标PDSCH的时域位置(即一个PDCCH对应多个目标PDSCH的时域位置)。
(A)、一个PDCCH指示一个目标PDSCH的时域位置。
具体的,一个PDCCH中携带(也称为传输,或承载)的DCI只指示一个携带SIB1/RMSI的PDSCH。该PDSCH在本申请实施例中称为目标PDSCH。
可选的,UE还可以通过其它方式获取第一偏移量与第二监听时机的起始符号索引。具体如下:
(1)、该第一偏移量与第二监听时机的起始符号索引由网络设备统MIB信息向终端设备配置。UE通过MIB信息获取,比如使用MIB中参数“PDCCH-ConfigSIB1”中的“SearchSpaceZero”的4个bits中的1、2、3或者全部4个bits来表示第一偏移量和第二监听时机的起始符号索引。
(2)、该第一偏移量和/或第二监听时机的起始符号索引预配置于网络设备与终端设备中。终端设备可以根据预配置的该第一偏移量与第二监听时机的起始符号索引,确定目标PDSCH的时域位置。终端设备也可以根据预配置的第一偏移量,和计算得到的第二监听时机的起始符号索引,确定目标PDSCH的时域位置。具体的,第二监听时机的起始符号索引的计算方法如前述实施例所示,例如伪代码或公式,此处不再赘述。
(3)、该第一偏移量和/或第二监听时机的起始符号索引预配置于网络设备与终端设备中。终端设备根据网络设备的指示信息,从预配置的信息中确定使用的第一偏移量与第二监听时机的起始符号索引。具体的,如前述表3所示,此处不再赘述。终端设备根据网络设备配置的索引,在该表格中确定与该索引对应的第一偏移量和第二监听时机的起始符号索引。
示例性的,网络设备可以通过“SearchSpaceZero”参数中的比特,确定第一偏移量与第 二监听时机的起始符号索引。例如:以表3为例,当“SearchSpaceZero”参数中的比特为“01”时,对应的索引为1。当“SearchSpaceZero”参数中的比特为“11”时,对应的索引为2。当“SearchSpaceZero”参数中的比特为“11”时,对应的索引为3。以此类推,此处不作限制。
示例性的,第一SSB的SCS与PDCCH的SCS满足{120KHz,120KHz}或{240KHz,240KHz}。则SSB pattern为{8,12,16,20,32,36,40,44}+56·n,n=0,1,2,3,5,6,7,8。K0的取值满足集合{-(M/2)-1,-(M/2),-(M/2)+1,-1,0,1,M/2-1,M/2,M/2+1}之一或者多个,S取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足{0,1,2,3,4,5,6,7,8}中任意一个。M为实际发送的SSB的数量或者Q值,比如,M=36。
示例性的,第一SSB的SCS与PDCCH的SCS满足{120KHz,120KHz}或{240KHz,240KHz}。则SSB pattern满足:此时,一个时隙内包含两个SSB,在一个时隙内SSB之间的间隔(时域上)大于或等于2个符号。在一个时间窗口内(例如突发集窗口),可发送SSB的最大数量(或者发送SSB的候选SSB位置数量为64或128)。示例性的,SSB pattern为{2,8}+14·n,n=0,1,…,31或{2,8}+14·n,n=0,1,…,63。K0的取值满足集合{0,M/2}之一或者多个。M为实际发送的SSB的数量或者Q值,比如,M=32。S取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足{0,1,2,3,4,5,6,7,8}中任意一个。
(B)、一个PDCCH指示多个目标PDSCH的时域位置。
具体的,一个PDCCH中携带(也称为传输,或承载)的DCI指示多个携带SIB1/RMSI的PDSCH。因此,在一定的时间窗口内,可以只使用一个DCI指示多个PDSCH(即目标PDSCH)。可选的,该DCI所占用的符号长度可以是2个符号位置、也可以是3个符号位置,还可以是4个或更多的符号位置,此处不作限制。
示例性的,第一SSB的SCS与PDCCH的SCS满足{120KHz,120KHz}或{240KHz,240KHz}。SSB pattern为{8,12,16,20,32,36,40,44}+56·n,n=0,1,2,3,5,6,7,8。K0的取值满足集合{-(M/2)-1,-(M/2),-(M/2)+1,-1,0,1,M/2-1,M/2,M/2+1}之一或者多个,M为实际发送的SSB的数量或者Q值,M=36。S取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足{0,1,2,3,4,5,6,7,8}中任意一个。
示例性的,第一SSB的SCS与PDCCH的SCS满足{120KHz,120KHz}或{240KHz,240KHz}。则SSB pattern满足:此时,一个时隙内包含两个SSB,在一个时隙内SSB之间的间隔(时域上)大于或等于2个符号。在一个时间窗口内(例如突发集窗口),可发送SSB的最大数量(或者发送SSB的候选SSB位置数量为64或128)。示例性的,SSB pattern为{2,8}+14·n,n=0,1,…,31或{2,8}+14·n,n=0,1,…,63。K0的取值满足集合{0,M/2}之一或者多个。M为实际发送的SSB的数量或者Q值,比如,M=32。S取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足{0,1,2,3,4,5,6,7,8}中任意一个。
(2)、复用模式3(pattern 3)。
一、对于工作在授权频段的通信系统。该通信系统包括终端设备与网络设备。
(A)、第一SSB的SCS与PDCCH的SCS相同,即{240KHz,240KHz}、{480KHz,480KHz}或{960KHz,960KHz}时。
UE通过以下方式确定第二监听时机,所述第二监听时机包括目标系统帧号SFN
c和目标时隙号n
c,其中,
SFN
c=SFN
ssb,i,所述SFN
ssb,i为所述第一SSB所在系统帧号;
n
c=n
ssb,i其中,所述n
ssb,i为所述第一SSB的时隙号i表示具有QCL关系的多个SSB的同一个索引。
(B)、当第一SSB的SCS与PDCCH的SCS不同,即满足{120KHz,480KHz}或{240KHz,960KHz}。其中,SSB pattern满足如下任意两种之一的设置:
SSB pattern为{8,12,16,20,32,36,40,44}+56·n,n=0,1,2,3,5,6,7,8。
或者,一个时隙内包含两个SSB,在一个时隙内SSB之间的间隔(时域上)大于或等于2个符号。在一个时间窗口内(例如突发集窗口),可发送SSB的最大数量(或者发送SSB的候选SSB位置数量为64或128)。示例性的,SSB pattern为{2,8}+14·n,n=0,1,…,31或{2,8}+14·n,n=0,1,…,63。
UE通过以下方式确定第二监听时机,所述第二监听时机包括目标系统帧号SFN
c和目标时隙号n
c,其中,
SFN
c=SFN
ssb,i,所述SFN
ssb,i为所述第一SSB所在系统帧号;
n
c=n
ssb,i,或者,n
c=n
ssb,i+1,其中,所述n
ssb,i为所述第一SSB的时隙号,i表示具有QCL关系的多个SSB的同一个索引。
第二监听时机的起始符号索引包括{1,2,3,4,5,6,7,8,9,10,11,12,13}中的任意一个。
或者,终端设备通过计算确定目标系统帧号SFN
c和目标时隙号n
c。示例性的,该计算方法如以下伪代码(或者条件):
If start symbol of type0-PDCCH<number of symbols in one slot×length of a frame
SFN
c=SFN
ssb,i
else
SFN
c=SFN
ssb,i+floor(start symbol of type0-PDCCH/(number of symbols in one slot×length of a frame));
n={floor(start symbol of type0-PDCCH/number of symbols in one slot),ceil(start symbol of type0-PDCCH/number of symbols in one slot)}-length of a frame×(SFN
c-SFN
ssb,i);
第二监听时机的起始符号索引包括{1,2,3,4,5,6,7,8,9,10,11,12,13}中的任意一个。
二、对于工作在非授权频段的通信系统。该通信系统包括终端设备与网络设备。
(A)、第一SSB的SCS与PDCCH的SCS相同,即{240KHz,240KHz}、{480KHz,480KHz}或{960KHz,960KHz}时。
UE通过以下方式确定第二监听时机,所述第二监听时机包括目标系统帧号SFN
c和目标时隙号n
c,其中,
SFN
c=SFN
ssb,i或者SFN
c=SFN
QCLed_ssb,i,所述SFN
ssb,i为所述第一SSB所在系统帧号,所述SFN
QCLed_ssb,i为QCLed_SSB的系统帧号,所述QCLed_SSB与所述第一SSB具有QCL关系,所述QCL关系指示不同的候选SSB索引上的多个SSB具有相同的索引;
n
c=n
ssb,i,或者,n
c=n
QCLed_ssb,i,或者n
c=n
ssb,i-1,或者n
c=n
ssb,i+1,或者n
c=n
QCLed_ssb,i-1,其中,所述n
ssb,i为所述第一SSB的时隙号,所述n
QCLed_ssb,i为所述QCLed_SSB的时隙号,i表示具有QCL关系的多个SSB的同一个索引。
(B)、当第一SSB的SCS与PDCCH的SCS不同,即满足{120KHz,480KHz}或{240KHz,960KHz}。其中,SSB pattern满足如下任意两种之一的设置:
对于120kHz的SSB pattern时,SSB pattern为:{4,8,16,20}+28*n,n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18;或者,对于240kHz的SSB pattern为{8,12,16,20,32,36,40,44}+56·n,n=0,1,2,3,5,6,7,8。
或者,一个时隙内包含两个SSB,在一个时隙内SSB之间的间隔(时域上)大于或等于2个符号。在一个时间窗口内(例如突发集窗口),可发送SSB的最大数量(或者发送SSB的候选SSB位置数量为64或128)。示例性的,SSB pattern为{2,8}+14·n,n=0,1,…,31或{2,8}+14·n,n=0,1,…,63。
第二监听时机的起始符号索引包括{1,2,3,4,5,6,7,8,9,10,11,12,13}中的任意一个。
UE通过以下方式确定第二监听时机,所述第二监听时机包括目标系统帧号SFN
c和目标时隙号n
c,其中,
SFN
c=SFN
ssb,i或者SFN
c=SFN
QCLed_ssb,i,所述SFN
ssb,i为所述第一SSB所在系统帧号,所述SFN
QCLed_ssb,i为QCLed_SSB的系统帧号,所述QCLed_SSB与所述第一SSB具有QCL关系,所述QCL关系指示不同的候选SSB索引上的多个SSB具有相同的索引;
n
c=n
ssb,i,或者,n
c=n
QCLed_ssb,i,其中,所述n
ssb,i为所述第一SSB的时隙号,所述n
QCLed_ssb,i为所述QCLed_SSB的时隙号,i表示具有QCL关系的多个SSB的同一个索引。
第二监听时机的起始符号索引包括{1,2,3,4,5,6,7,8,9,10,11,12,13}中的任意一个。
或者,终端设备通过计算确定目标系统帧号SFN
c和目标时隙号n
c。示例性的,该计算 方法如以下伪代码(或者条件):
If start symbol of type0-PDCCH<number of symbols in one slot×length of a frame
SFN
c=SFN
c_SSB,i
Else
SFN
c=SFN
SSB,i+floor(Start symbol of type0-PDCCH/number of symbols in one slot×length of a frame);
n={floor(start symbol of type0-PDCCH/number of symbols in one slot),ceil(start symbol of type0-PDCCH/number of symbols in one slot)}-length of a frame×(SFN
c-SFN
c_SSB,
i);
n
c=n-n
ssb,i.”。其中,
为PDCCH的SCS与SSB的SCS的比值,“length of a frame”为帧长度,通常是10毫秒,n
c表示PDCCH相对于SSB的时隙偏差,“candidate_start symbol of SSB
i”为候选的SSB的起始位置,本申请实施例中,该候选的SSB的起始位置包括128个或256个候选位置,其中,发送实际的SSB的数量可以是4、8或64个。
第二监听时机的起始符号索引包括{1,2,3,4,5,6,7,8,9,10,11,12,13}中的任意一个。
三、PDSCH的时域位置。
在不同的复用模式中,PDSCH的时域位置存在不同。因此,接下来介绍pattern3情况下,终端是如何确定PDSCH(即本申请实施例中的目标PDSCH的时域位置)。
(A)、第一SSB的SCS与PDCCH的SCS满足{240KHz,240KHz}、{480KHz,480KHz}或{960KHz,960KHz}时。K0取值0或M/2,M为实际发送的SSB的数量或者Q值。
(B)、第一SSB的SCS与PDCCH的SCS满足{120KHz,480KHz}或{240KHz,960KHz},SSB pattern为{8,12,16,20,32,36,40,44}+56·n,其中,n=0,1,2,3,5,6,7,8。
S取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12}中任意一个,L取值满足集合{2,3,4,5,6,7,8,9,10,11,12}中任意一个,K0取值0、1、(M/2)或(M/2+1)。M为实际发送的SSB的数量或者Q值,所述目标PDSCH的起始符号位置S、所述目标PDSCH在时域上占用的符号个数L、所述PDCCH所在时隙号和所述PDSCH所在时隙号之间的间隔K0。
示例性的,M=32或36。
(C)、第一SSB的SCS与PDCCH的SCS满足{120KHz,480KHz}或{240KHz,960KHz}。
SSB pattern满足:一个时隙内包含两个SSB,SSB之间的间隔大于等于2个符号时,在一个时间窗口内,可发送SSB的最大数量或者发送SSB的候选最大位置数量为64或者128。比如:SSB pattern为{2,8}+14·n,n=0,1,…,31或:SSB pattern为{2,8}+14·n,n=0,1,…,63。
K0、S和L的取值为:S取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}中任意一个,K0取值0、1、M/2或M/2+1。M为实际发送的SSB的数量或者Q值, M=32。比如K0=0或者M/2时,S取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足集合{2,3,4,5,6,7,8,9,10}中任意一个;K0=1或者M/2+1时,S取值满足集合{4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足集合{2,3,4,5,6,7,8,9,10}中任意一个。这里的“时间窗口”可表示突发集窗口,其取值{0.5ms,1ms,2ms,3ms,4ms,5ms}。
四、PDCCH指示PDSCH。
本申请实施例中,一个PDCCH中传输的下行控制信息(Downlink Control Information,DCI)可以指示一个目标PDSCH的时域位置。一个PDCCH中传输的DCI也可以指示多个目标PDSCH的时域位置。目标PDSCH携带系统信息块SIB1/剩余最小系统信息RMSI。
具体的,携带coreset#0的PDCCH的数量,与该PDCCH中传输的DCI所指示的PDSCH的数量存在一对一的关系或者一对多的关系。
下面,分别介绍一个PDCCH指示一个目标PDSCH的时域位置(即一个PDCCH对应一个目标PDSCH的时域位置),与一个PDCCH指示多个目标PDSCH的时域位置(即一个PDCCH对应多个目标PDSCH的时域位置)。
(A)、一个PDCCH指示一个目标PDSCH的时域位置。
具体的,一个PDCCH中携带(也称为传输,或承载)的DCI只指示一个携带SIB1/RMSI的PDSCH。该PDSCH在本申请实施例中称为目标PDSCH。此时,K0的取值满足集合{-(M/2)-1,-(M/2),-(M/2)+1,-1,0,1,M/2-1,M/2,M/2+1}之一或者多个。其中,M为实际发送的SSB的数量或者Q值,比如,M=36或32。
示例性的,以图7为例,图7为本申请实施例中PDCCH与PDSCH的时域位置示意图。以第一SSB的SCS与PDCCH的SCS满足{240KHz,960KHz}为例。UE在3个时域位置上搜索PDCCH,即UE存在三个搜索空间(searchSpace)位置,每个搜索空间在时域上的位置分别为符号#4~#5(定义为该时域位置中PDCCH携带的DCI为DCI(1)),符号#10~#11(定义为该时域位置中PDCCH携带的DCI为DCI(2))和下一个时隙符号#0~#1(定义为该时域位置中PDCCH携带的DCI为DCI(3))。DCI(1)指示的PDSCH的起始符号位置S为6,目标PDSCH在时域上占用的符号个数L为4,K0=0;DCI(2)指示的PDSCH的起始符号位置S为12,目标PDSCH在时域上占用的符号个数L为2,K0=0;DCI(3)指示的PDSCH的起始符号位置S为2,目标PDSCH在时域上占用的符号个数L为3,K0=1。
可选的,UE还可以通过本申请实施例中描述的其它方式(例如伪代码或公式等),确定第二监听时机的起始符号索引,该第二监听时机的起始符号索引即DCI(1)的起始符号位置。
时域上相邻的所述PDCCH之间时域的偏移量称为第一偏移量。该第一偏移量也称为时域上相邻的不同DCI之间时域的偏移量。例如:第一偏移量包括:DCI(1)与DCI(2)之间时域的偏移量,DCI(2)与DCI(3)之间时域的偏移量。
可选的,UE还可以通过其它方式获取第一偏移量与第二监听时机的起始符号索引。具体如下:
(1)、该第一偏移量与第二监听时机的起始符号索引由网络设备统MIB信息向终端设 备配置。UE通过MIB信息获取,比如使用MIB中参数“PDCCH-ConfigSIB1”中的“SearchSpaceZero”的4个bits中的1、2、3或者全部4个bits来表示第一偏移量和第二监听时机的起始符号索引。
(2)、该第一偏移量和/或第二监听时机的起始符号索引预配置于网络设备与终端设备中。终端设备可以根据预配置的该第一偏移量与第二监听时机的起始符号索引,确定目标PDSCH的时域位置。终端设备也可以根据预配置的第一偏移量,和计算得到的第二监听时机的起始符号索引,确定目标PDSCH的时域位置。具体的,第二监听时机的起始符号索引的计算方法如前述实施例所示,例如伪代码或公式,此处不再赘述。例如:终端设备根据预配置的信息,确定DCI(1)的时域位置。并根据第一偏移量确定DCI(2)的时域位置和DCI(3)的时域位置。
(3)、该第一偏移量和/或第二监听时机的起始符号索引预配置于网络设备与终端设备中。终端设备根据网络设备的指示信息,从预配置的信息中确定使用的第一偏移量与第二监听时机的起始符号索引。具体的,如前述表3所示,此处不再赘述。终端设备根据网络设备配置的索引,在该表格中确定与该索引对应的第一偏移量和第二监听时机的起始符号索引。
示例性的,网络设备可以通过“SearchSpaceZero”参数中的比特,确定第一偏移量与第二监听时机的起始符号索引。例如:以表3为例,当“SearchSpaceZero”参数中的比特为“01”时,对应的索引为1。当“SearchSpaceZero”参数中的比特为“11”时,对应的索引为2。当“SearchSpaceZero”参数中的比特为“11”时,对应的索引为3。以此类推,此处不作限制。
(B)、一个PDCCH指示多个目标PDSCH的时域位置。
具体的,一个PDCCH中携带(也称为传输,或承载)的DCI指示多个携带SIB1/RMSI的PDSCH。因此,在一定的时间窗口内,可以只使用一个DCI指示多个PDSCH(即目标PDSCH)。可选的,该DCI所占用的符号长度可以是2个符号位置、也可以是3个符号位置,还可以是4个或更多的符号位置,此处不作限制。
具体的,所述UE根据所述PDCCH确定所述目标PDSCH的时域位置,包括:
所述UE根据所述PDCCH中携带的下行控制信息DCI中的新增域(field)“Time locations of PDSCHs for SIB1/RMSI”,获取所述目标PDSCH的数量和所述目标PDSCH的时域信息,所述域“Time locations of PDSCHs for SIB1/RMSI”占用{0,1,…,X}比特,X取值为{0,1,2,3,4}中任意一个;
或者,根据所述PDCCH中携带的所述DCI中的域“Time domain resource assignment”,获取所述目标PDSCH的数量和所述目标PDSCH的时域信息,所述域“Time domain resource assignment”占用比特数扩展至大于4比特;
所述DCI为通过系统信息-无线网络临时标识符SI-RNTI对循环冗余校验(CRC)加扰的DCI 1_0。
以图8为例,图8为本申请实施例中PDCCH与PDSCH的又一种时域位置示意图。第二监听时机的起始符号位置为符号#4。该PDCCH中DCI指示了用于监听目标PDSCH的三 个时域位置。即PDSCH的S和L的取值分别为(6,4),(12,2)和(2,3),K0=0或1。为了便于理解,请参阅表8。
表8
上述主要以方法的角度对本申请实施例提供的方案进行了介绍。可以理解的是,终端设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
下面对本申请中的终端设备进行详细描述,请参阅图9,图9为本申请实施例中终端设备的一种实施例示意图。终端设备900包括:
处理模块901,用于根据第一信号信息块SSB,确定物理下行控制信道PDCCH的第一监听时机,所述PDCCH用于携带控制资源集coreset#0;
处理模块901,还用于若收发模块902在所述第一监听时机上未监听到所述PDCCH,则所述UE根据所述第一SSB和与所述第一SSB具有准共址QCL关系的SSB确定所述PDCCH的第二监听时机;
收发模块902,还用于在所述第二监听时机上监听所述PDCCH。
在本申请的一些可选实施例中,所述第二监听时机包括目标系统帧号SFN
c和目标时隙号n
c,其中,
SFN
c=SFN
ssb,i或者SFN
c=SFN
QCLed_ssb,i,所述SFN
ssb,i为所述第一SSB所在系统帧号,所述SFN
QCLed_ssb,i为QCLed_SSB的系统帧号,所述QCLed_SSB与所述第一SSB具有QCL关系,所述QCL关系指示不同的候选SSB索引上的多个SSB具有相同的索引;
n
c=n
ssb,i,或者,n
c=n
QCLed_ssb,i,或者n
c=n
ssb,i-1,或者n
c=n
ssb,i+1,或者n
c=n
QCLed_ssb,i-1,其中,所述n
ssb,i为所述第一SSB的时隙号,所述n
QCLed_ssb,i为所述QCLed_SSB的时隙号。
在本申请的一些可选实施例中,所述第一SSB的时隙位置与所述第二监听时机相差时 隙为0、1、M/2或(M/2)-1,其中,M为实际发送的SSB的数量或者Q值,所述实际发送的SSB的数量通过SIB1中携带的“ssb-PositionsInBurst”参数确定。
在本申请的一些可选实施例中,所述第二监听时机的起始符号索引位于具有所述QCL关系的SSB的时隙内,符号#0到符号#3之间或者介于前一个时隙的符号#12到下一个时隙中符号#1中的任意一个;
或者,所述第二监听时机的起始符号索引位于具有所述QCL关系的SSB的时隙内,符号#0到符号#7之间或者介于前一个时隙的符号#10到下一个时隙中符号#3中的任意一个;
所述第二监听时机中所述PDCCH占用的符号数量为{1,2,3,4,5,6,7,8,9,10,11,12}中的任意一个。
在本申请的一些可选实施例中,
处理模块901,还用于当所述PDCCH的数量大于1时,根据第一偏移量和所述第二监听时机的起始符号索引确定多个所述第二监听时机;其中,所述第一偏移量为时域上相邻的所述PDCCH之间时域的偏移量。
在本申请的一些可选实施例中,所述第一偏移量和/或所述PDCCH的数量,由主信息块MIB中的参数“subCarrierSpacingCommon”、“ssb-SubcarrierOffset”和/或“SearchSpaceZero”指示,或者,所述第一偏移量和/或所述PDCCH的数量配置于所述UE中。
在本申请的一些可选实施例中,所述UE在第二监听时机的监听所述PDCCH之后,还包括:
处理模块901,还用于根据所述PDCCH确定目标物理下行共享信道PDSCH的时域位置,所述目标PDSCH携带系统信息块SIB1/剩余最小系统信息RMSI。
在本申请的一些可选实施例中,所述PDCCH对应于多个不同的时域位置;
所述目标PDSCH对应于多个不同的时域位置;
一个所述PDCCH指示一个所述目标PDSCH的时域位置,或者,
一个所述PDCCH指示多个所述目标PDSCH的时域位置。
在本申请的一些可选实施例中,所述UE根据所述PDCCH确定所述目标PDSCH的时域位置包括:
所述UE根据所述PDCCH确定所述目标PDSCH的起始符号位置S、所述目标PDSCH在时域上占用的符号个数L、所述PDCCH所在时隙号和所述PDSCH所在时隙号之间的间隔K0。
在本申请的一些可选实施例中,S取值满足集合{2,3,4,5,6,7,8}中任意一个,L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0取值满足{0,1,M/2,M/2+1}中的一个或多个;
或,S取值满足集合{2,3,4,5,6,7,8,9,10}中任意一个,L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0取值满足{0,1,(m×M/2)}中的一个或多个;
或,S和L取值满足集合{2,3,4,5,6,7,8,9,10}中任意一个,L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0取值满足{0,1,M/2,M/2+1}中的一个或多个;
或,S取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足集合{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}中任意一个,K0取值满足{0,1,M/2,M/2+1}中的一个或多个;
或,S取值满足集合{2,3,4,5,6,7,8,9,10}中任意一个,L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0的取值满足{0,1,M/2,M/2+1}中的一个或者多个;
或,S取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足集合{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}中任意一个,K0的取值满足{0,1,M/2,M/2+1}中的一个或者多个;
或,S的取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足{0,1,2,3,4,5,6,7,8}中任意一个,K0的取值满足集合{-1-M/2,-M/2,1-M/2,-1,0,1,M/2-1,M/2,M/2+1}中的一个或者多个,M为实际发送的SSB的数量或者Q值。
在本申请的一些可选实施例中,
处理模块901,还用于所述UE根据所述第二监听时机监听的所述PDCCH中携带的下行控制信息DCI,确定所述目标PDSCH的时域位置。
在本申请的一些可选实施例中,
处理模块901,还用于根据所述PDCCH中携带的下行控制信息DCI中的新增域“Time locations of PDSCHs for SIB1/RMSI”,获取所述目标PDSCH的数量和所述目标PDSCH的时域信息,所述域“Time locations of PDSCHs for SIB1/RMSI”占用{0,1,…,X}比特,X取值为{0,1,2,3,4}中任意一个;
或者,根据所述PDCCH中携带的所述DCI中的域“Time domain resource assignment”,获取所述目标PDSCH的数量和所述目标PDSCH的时域信息,所述域“Time domain resource assignment”占用比特数扩展至大于4比特;
所述DCI为通过系统信息-无线网络临时标识符SI-RNTI对循环冗余校验(CRC)加扰的DCI 1_0。
在本申请的一些可选实施例中,所述第一SSB的子载波间隔SCS满足:120千赫兹KHz、240KHz、480KHz或960KHz;所述PDCCH的SCS满足:120千赫兹KHz、240KHz、480KHz或960KHz。
本申请实施例中,还提出一种通信装置,该通信装置包括处理器和收发器。具体的:
处理器,用于根据第一信号信息块SSB,确定物理下行控制信道PDCCH的第一监听时机,所述PDCCH用于携带控制资源集coreset#0;
处理器,还用于若收发器在所述第一监听时机上未监听到所述PDCCH,则所述UE根 据所述第一SSB和与所述第一SSB具有准共址QCL关系的SSB确定所述PDCCH的第二监听时机;
收发器,还用于在所述第二监听时机上监听所述PDCCH。
在本申请的一些可选实施例中,所述第二监听时机包括目标系统帧号SFN
c和目标时隙号n
c,其中,
SFN
c=SFN
ssb,i或者SFN
c=SFN
QCLed_ssb,i,所述SFN
ssb,i为所述第一SSB所在系统帧号,所述SFN
QCLed_ssb,i为QCLed_SSB的系统帧号,所述QCLed_SSB与所述第一SSB具有QCL关系,所述QCL关系指示不同的候选SSB索引上的多个SSB具有相同的索引;
n
c=n
ssb,i,或者,n
c=n
QCLed_ssb,i,或者n
c=n
ssb,i-1,或者n
c=n
ssb,i+1,或者n
c=n
QCLed_ssb,i-1,其中,所述n
ssb,i为所述第一SSB的时隙号,所述n
QCLed_ssb,i为所述QCLed_SSB的时隙号。
在本申请的一些可选实施例中,所述第一SSB的时隙位置与所述第二监听时机相差时隙为0、1、M/2或(M/2)-1,其中,M为实际发送的SSB的数量或者Q值,所述实际发送的SSB的数量通过SIB1中携带的“ssb-PositionsInBurst”参数确定。
在本申请的一些可选实施例中,所述第二监听时机的起始符号索引位于具有所述QCL关系的SSB的时隙内,符号#0到符号#3之间或者介于前一个时隙的符号#12到下一个时隙中符号#1中的任意一个;
或者,所述第二监听时机的起始符号索引位于具有所述QCL关系的SSB的时隙内,符号#0到符号#7之间或者介于前一个时隙的符号#10到下一个时隙中符号#3中的任意一个;
所述第二监听时机中所述PDCCH占用的符号数量为{1,2,3,4,5,6,7,8,9,10,11,12}中的任意一个。
在本申请的一些可选实施例中,
处理器,还用于当所述PDCCH的数量大于1时,根据第一偏移量和所述第二监听时机的起始符号索引确定多个所述第二监听时机;其中,所述第一偏移量为时域上相邻的所述PDCCH之间时域的偏移量。
在本申请的一些可选实施例中,所述第一偏移量和/或所述PDCCH的数量,由主信息块MIB中的参数“subCarrierSpacingCommon”、“ssb-SubcarrierOffset”和/或“SearchSpaceZero”指示,或者,所述第一偏移量和/或所述PDCCH的数量配置于所述UE中。
在本申请的一些可选实施例中,所述UE在第二监听时机的监听所述PDCCH之后,还包括:
处理器,还用于根据所述PDCCH确定目标物理下行共享信道PDSCH的时域位置,所述目标PDSCH携带系统信息块SIB1/剩余最小系统信息RMSI。
在本申请的一些可选实施例中,所述PDCCH对应于多个不同的时域位置;
所述目标PDSCH对应于多个不同的时域位置;
一个所述PDCCH指示一个所述目标PDSCH的时域位置,或者,
一个所述PDCCH指示多个所述目标PDSCH的时域位置。
在本申请的一些可选实施例中,所述UE根据所述PDCCH确定所述目标PDSCH的时域位置包括:
所述UE根据所述PDCCH确定所述目标PDSCH的起始符号位置S、所述目标PDSCH在时域上占用的符号个数L、所述PDCCH所在时隙号和所述PDSCH所在时隙号之间的间隔K0。
在本申请的一些可选实施例中,S取值满足集合{2,3,4,5,6,7,8}中任意一个,L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0取值满足{0,1,M/2,M/2+1}中的一个或多个;
或,S取值满足集合{2,3,4,5,6,7,8,9,10}中任意一个,L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0取值满足{0,1,(m×M/2)}中的一个或多个;
或,S和L取值满足集合{2,3,4,5,6,7,8,9,10}中任意一个,L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0取值满足{0,1,M/2,M/2+1}中的一个或多个;
或,S取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足集合{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}中任意一个,K0取值满足{0,1,M/2,M/2+1}中的一个或多个;
或,S取值满足集合{2,3,4,5,6,7,8,9,10}中任意一个,L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0的取值满足{0,1,M/2,M/2+1}中的一个或者多个;
或,S取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足集合{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}中任意一个,K0的取值满足{0,1,M/2,M/2+1}中的一个或者多个;
或,S的取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足{0,1,2,3,4,5,6,7,8}中任意一个,K0的取值满足集合{-1-M/2,-M/2,1-M/2,-1,0,1,M/2-1,M/2,M/2+1}中的一个或者多个,M为实际发送的SSB的数量或者Q值。
在本申请的一些可选实施例中,
处理器,还用于所述UE根据所述第二监听时机监听的所述PDCCH中携带的下行控制信息DCI,确定所述目标PDSCH的时域位置。
在本申请的一些可选实施例中,
处理器,还用于根据所述PDCCH中携带的下行控制信息DCI中的新增域“Time locations of PDSCHs for SIB1/RMSI”,获取所述目标PDSCH的数量和所述目标PDSCH的时域信息,所述域“Time locations of PDSCHs for SIB1/RMSI”占用{0,1,…,X}比特,X取值为{0,1,2,3,4}中任意一个;
或者,根据所述PDCCH中携带的所述DCI中的域“Time domain resource assignment”,获取所述目标PDSCH的数量和所述目标PDSCH的时域信息,所述域“Time domain resource assignment”占用比特数扩展至大于4比特;
所述DCI为通过系统信息-无线网络临时标识符SI-RNTI对循环冗余校验(CRC)加扰的DCI 1_0。
在本申请的一些可选实施例中,所述第一SSB的子载波间隔SCS满足:120千赫兹KHz、240KHz、480KHz或960KHz;所述PDCCH的SCS满足:120千赫兹KHz、240KHz、480KHz或960KHz。
本申请还提供一种通信系统,其包括网络设备或终端设备中的至少一种或多种。
本申请实施例还提供的一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机控制网络设备或终端设备执行如前述方法实施例所示任一项实现方式。
本申请实施例还提供的一种计算机程序产品,计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行如前述方法实施例所示任一项实现方式。
本申请实施例还提供一种芯片系统,包括存储器和处理器,存储器用于存储计算机程序,处理器用于从存储器中调用并运行计算机程序,使得芯片执行如前述方法实施例所示任一项实现方式。
本申请实施例还提供一种芯片系统,包括处理器,处理器用于调用并运行计算机程序,使得芯片执行如前述方法实施例所示任一项实现方式。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、ROM、RAM、磁碟或者光盘等,包括若干指令用以使得一台计算机设备执行本申请各个实施例的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令 时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、网络设备、终端设备、网络装置、计算设备或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、网络设备、终端设备、网络装置、计算设备或数据中心进行传输。计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的网络装置、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的一个或多个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存 储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。
总之,以上仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
Claims (18)
- 一种信道监听方法,其特征在于,包括:终端设备UE根据第一信号信息块SSB,确定物理下行控制信道PDCCH的第一监听时机,所述PDCCH用于携带控制资源集coreset#0;若所述UE在所述第一监听时机上未监听到所述PDCCH,则所述UE根据所述第一SSB和与所述第一SSB具有准共址QCL关系的SSB确定所述PDCCH的第二监听时机;所述UE在所述第二监听时机上监听所述PDCCH。
- 根据权利要求1所述的方法,其特征在于,所述第二监听时机包括目标系统帧号SFN c和目标时隙号n c,其中,SFN c=SFN ssb,i或者SFN c=SFN QCLed_ssb,i,所述SFN ssb,i为所述第一SSB所在系统帧号,所述SFN QCLed_ssb,i为QCLed_SSB的系统帧号,所述QCLed_SSB与所述第一SSB具有QCL关系,所述QCL关系指示不同的候选SSB索引上的多个SSB具有相同的索引;n c=n ssb,i,或者,n c=n QCLed_ssb,i,或者n c=n ssb,i-1,或者n c=n ssb,i+1,或者n c=n QCLed_ssb,i-1,其中,所述n ssb,i为所述第一SSB的时隙号,所述n QCLed_ssb,i为所述QCLed_SSB的时隙号。
- 根据权利要求2所述的方法,其特征在于,所述第一SSB的时隙位置与所述第二监听时机相差时隙为0、1、M/2或(M/2)-1,其中,M为实际发送的SSB的数量或者Q值,所述实际发送的SSB的数量通过SIB1中携带的“ssb-PositionsInBurst”参数确定。
- 根据权利要求1-5所述的方法,其特征在于,所述第二监听时机的起始符号索引位于具有所述QCL关系的SSB的时隙内,符号#0到符号#3之间或者介于前一个时隙的符号#12到下一个时隙中符号#1中的任意一个;或者,所述第二监听时机的起始符号索引位于具有所述QCL关系的SSB的时隙内,符号#0到符号#7之间或者介于前一个时隙的符号#10到下一个时隙中符号#3中的任意一个;所述第二监听时机中所述PDCCH占用的符号数量为{1,2,3,4,5,6,7,8,9,10,11,12}中的任意一个。
- 根据权利要求1-6中任一项所述的方法,其特征在于,所述的方法还包括:当所述PDCCH的数量大于1时,所述UE根据第一偏移量和所述第二监听时机的起始符号索引确定多个所述第二监听时机;其中,所述第一偏移量为时域上相邻的所述PDCCH之间时域的偏移量。
- 根据权利要求7所述的方法,其特征在于,所述第一偏移量和/或所述PDCCH的数量,由主信息块MIB中的参数“subCarrierSpacingCommon”、“ssb-SubcarrierOffset”和/或“SearchSpaceZero”指示,或者,所述第一偏移量和/或所述PDCCH的数量配置于所述 UE中。
- 根据权利要求1-8中任一项所述的方法,其特征在于,所述UE在第二监听时机的监听所述PDCCH之后,还包括:所述UE根据所述PDCCH确定目标物理下行共享信道PDSCH的时域位置,所述目标PDSCH携带系统信息块SIB1/剩余最小系统信息RMSI。
- 根据权利要求9所述的方法,其特征在于,所述PDCCH对应于多个不同的时域位置;所述目标PDSCH对应于多个不同的时域位置;一个所述PDCCH指示一个所述目标PDSCH的时域位置,或者,一个所述PDCCH指示多个所述目标PDSCH的时域位置。
- 根据权利要求9或10所述的方法,其特征在于,所述UE根据所述PDCCH确定所述目标PDSCH的时域位置包括:所述UE根据所述PDCCH确定所述目标PDSCH的起始符号位置S、所述目标PDSCH在时域上占用的符号个数L、所述PDCCH所在时隙号和所述PDSCH所在时隙号之间的间隔K0。
- 根据权利要求11所述的方法,其特征在于,S取值满足集合{2,3,4,5,6,7,8}中任意一个,L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0取值满足{0,1,M/2,M/2+1}中的一个或多个;或,S取值满足集合{2,3,4,5,6,7,8,9,10}中任意一个,L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0取值满足{0,1,(m×M/2)}中的一个或多个;或,S和L取值满足集合{2,3,4,5,6,7,8,9,10}中任意一个,L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0取值满足{0,1,M/2,M/2+1}中的一个或多个;或,S取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足集合{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}中任意一个,K0取值满足{0,1,M/2,M/2+1}中的一个或多个;或,S取值满足集合{2,3,4,5,6,7,8,9,10}中任意一个,L取值满足集合{2,3,4,5,6,7,8}中任意一个,K0的取值满足{0,1,M/2,M/2+1}中的一个或者多个;或,S取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足集合{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}中任意一个,K0的取值满足{0,1,M/2,M/2+1}中的一个或者多个;或,S的取值满足集合{0,1,2,3,4,5,6,7,8,9,10,11,12,13}中任意一个,L取值满足{0,1,2,3,4,5,6,7,8}中任意一个,K0的取值满足集合{-1-M/2,-M/2,1-M/2,-1,0,1,M/2-1,M/2,M/2+1}中的一个或者多个,M为实际发送的SSB的数量或者Q值。
- 根据权利要求9-12中任一项所述的方法,其特征在于,所述UE根据所述PDCCH确定所述目标PDSCH的时域位置,包括:所述UE根据所述第二监听时机监听的所述PDCCH中携带的下行控制信息DCI,确定所述目标PDSCH的时域位置。
- 根据权利要求9-13中任一项所述的方法,其特征在于,所述UE根据所述PDCCH确定所述目标PDSCH的时域位置,包括:所述UE根据所述PDCCH中携带的下行控制信息DCI中的新增域“Time locations of PDSCHs for SIB1/RMSI”,获取所述目标PDSCH的数量和所述目标PDSCH的时域信息,所述域“Time locations of PDSCHs for SIB1/RMSI”占用{0,1,…,X}比特,X取值为{0,1,2,3,4}中任意一个;或者,根据所述PDCCH中携带的所述DCI中的域“Time domain resource assignment”,获取所述目标PDSCH的数量和所述目标PDSCH的时域信息,所述域“Time domain resource assignment”占用比特数扩展至大于4比特;所述DCI为通过系统信息-无线网络临时标识符SI-RNTI对循环冗余校验(CRC)加扰的DCI 1_0。
- 根据权利要求1-14中任一项所述的方法,其特征在于,所述第一SSB的子载波间隔SCS满足:120千赫兹KHz、240KHz、480KHz或960KHz;所述PDCCH的SCS满足:120千赫兹KHz、240KHz、480KHz或960KHz。
- 一种通信装置,其特征在于,所述通信装置包括:处理器;所述处理器,用于执行存储器中存储的计算机程序或指令,以使所述通信装置执行如权利要求1-15中任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质具有程序指令,当所述程序指令被直接或者间接执行时,使得如权利要求1-15中任一所述的方法被实现。
- 一种芯片系统,其特征在于,所述芯片系统包括至少一个处理器,所述处理器用于执行存储器中存储的计算机程序或指令,当所述计算机程序或所述指令在所述至少一个处理器中执行时,使得如权利要求1-15中任一所述的方法被实现。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080107112.0A CN116438768A (zh) | 2020-11-30 | 2020-11-30 | 一种信道监听方法以及相关装置 |
PCT/CN2020/132755 WO2022110138A1 (zh) | 2020-11-30 | 2020-11-30 | 一种信道监听方法以及相关装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/132755 WO2022110138A1 (zh) | 2020-11-30 | 2020-11-30 | 一种信道监听方法以及相关装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022110138A1 true WO2022110138A1 (zh) | 2022-06-02 |
Family
ID=81753865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/132755 WO2022110138A1 (zh) | 2020-11-30 | 2020-11-30 | 一种信道监听方法以及相关装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116438768A (zh) |
WO (1) | WO2022110138A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190159165A1 (en) * | 2016-06-21 | 2019-05-23 | Samsung Electronics Co., Ltd. | System and method of paging in next generation wireless communication system |
CN110621073A (zh) * | 2019-11-08 | 2019-12-27 | 展讯通信(上海)有限公司 | Pdcch监听、发送方法及装置、存储介质、终端、基站 |
CN111294178A (zh) * | 2019-01-11 | 2020-06-16 | 北京展讯高科通信技术有限公司 | 一种物理下行控制信道的监听时刻确定方法及装置 |
CN111600692A (zh) * | 2019-06-14 | 2020-08-28 | 维沃移动通信有限公司 | 一种信道监听方法、信息传输方法、终端及网络设备 |
CN111800801A (zh) * | 2019-08-16 | 2020-10-20 | 维沃移动通信有限公司 | Pdcch的监听方法和设备 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220210720A1 (en) * | 2019-03-12 | 2022-06-30 | Ntt Docomo, Inc. | User terminal and radio communication method |
CN111278092B (zh) * | 2019-04-26 | 2021-06-08 | 维沃移动通信有限公司 | 一种信道监听方法、终端及网络设备 |
-
2020
- 2020-11-30 CN CN202080107112.0A patent/CN116438768A/zh active Pending
- 2020-11-30 WO PCT/CN2020/132755 patent/WO2022110138A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190159165A1 (en) * | 2016-06-21 | 2019-05-23 | Samsung Electronics Co., Ltd. | System and method of paging in next generation wireless communication system |
CN111294178A (zh) * | 2019-01-11 | 2020-06-16 | 北京展讯高科通信技术有限公司 | 一种物理下行控制信道的监听时刻确定方法及装置 |
CN111600692A (zh) * | 2019-06-14 | 2020-08-28 | 维沃移动通信有限公司 | 一种信道监听方法、信息传输方法、终端及网络设备 |
CN111800801A (zh) * | 2019-08-16 | 2020-10-20 | 维沃移动通信有限公司 | Pdcch的监听方法和设备 |
CN110621073A (zh) * | 2019-11-08 | 2019-12-27 | 展讯通信(上海)有限公司 | Pdcch监听、发送方法及装置、存储介质、终端、基站 |
Non-Patent Citations (1)
Title |
---|
NTT DOCOMO, INC.: "Initial access signals and channels for NR-U", 3GPP TSG RAN WG1 #99 R1-1912871, 22 November 2019 (2019-11-22), XP051820219 * |
Also Published As
Publication number | Publication date |
---|---|
CN116438768A (zh) | 2023-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3790353B1 (en) | System and method for enhanced high throughput (eht) stations | |
US11626947B2 (en) | Communication method and communications device | |
JP7148208B2 (ja) | 伝送方法、端末デバイス、コンピュータ可読記憶媒体及びプログラム | |
CN106559872B (zh) | 一种资源分配方法、装置及无线接入系统 | |
TWI725160B (zh) | 用於設備間通信的方法和裝置 | |
WO2020143804A1 (zh) | 一种旁链路资源的配置方法及装置 | |
WO2014000514A1 (zh) | 设备间通信方法、用户设备和基站 | |
WO2020063130A1 (zh) | 一种资源确定方法及装置 | |
US20210204312A1 (en) | Downlink control information transmission method and apparatus | |
WO2020088417A1 (zh) | 一种旁链路资源的配置方法及装置 | |
US20240179728A1 (en) | Communication method and communication apparatus | |
US11784746B2 (en) | Bandwidth puncture and response rules | |
CN115428515A (zh) | 用于多波束通信的控制消息传送 | |
CN116746244A (zh) | 信息确定方法、信息传输方法、装置、设备及存储介质 | |
WO2017119468A1 (ja) | ユーザ装置及び信号受信方法 | |
US12120738B2 (en) | Multi-user-RTS and CTS frames for a sub-channel selective transmission station | |
WO2022110138A1 (zh) | 一种信道监听方法以及相关装置 | |
JP7543540B2 (ja) | アクセス情報指示方法、装置、及びシステム | |
WO2021047479A1 (zh) | 一种通信方法及装置 | |
WO2020087982A1 (zh) | 通信方法、装置及存储介质 | |
EP3840281A1 (en) | Communication method and apparatus | |
WO2024187472A1 (zh) | 用于侧行传输的方法及终端设备 | |
WO2022094935A1 (zh) | 无线通信的方法、终端设备和网络设备 | |
WO2024092670A1 (zh) | 侧行传输方法及终端设备 | |
WO2022150990A1 (zh) | 一种无线通信的方法及装置、通信设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20963026 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20963026 Country of ref document: EP Kind code of ref document: A1 |